

CSc 252 — Computer Organization Slide 1 of 70 04 MIPS Introduction

MIPS Introduction

Reading: Chapter 3. Appendix A.

• Language of the Machine

• More primitive than higher level languages
e.g., no sophisticated control flow such as for and while
only simple branch, jump, and jump subroutine

• Very restrictive
e.g., MIPS Arithmetic Instructions, two operands, one result

• We’ll be working with the MIPS instruction set architecture
• similar to other architectures developed since the 1980’s
• used by NEC, Nintendo, Silicon Graphics, Sony

Design goals:

maximize performance and minimize cost,
reduce design time

CSc 252 — Computer Organization Slide 2 of 70 04 MIPS Introduction

Basic CPU Organization

• Simplified picture of a computer:

• Three components:
• Processor (or Central Processing Unit or CPU); MIPS R2000 in our case
• Memory — contains the program instructions to execute and the data for the program
• I/O Devices — how the computer communicates to the outside world. Keyboard, mouse, monitor, printer, etc.

• CPU contains three components:
• Registers — Hold data values for CPU
• ALU — Arithmetic Logic Unit; performs arithmetic and logic functions. Takes values from and returns values to

the registers
• Control — Determines what operation to perform, directs data flow to/from memory, directs data flow between

registers and ALU. Actions are determined by the current Instruction.

Control

Processor

Input

Output

I/O Devices

Memory

Registers

ALU

Control

Processor

Input

Output

I/O Devices

Memory

Registers

ALU

CSc 252 — Computer Organization Slide 3 of 70 04 MIPS Introduction

Memory Organization

• Viewed as a large, single-dimension array, with an address for each element —

byte

 —
of the array.

• A memory address is an

index

 into the array

• “Byte addressing” — the index points to a byte, 8 bits in today’s computers, of memory.

• MIPS addresses 4 Gigabytes of memory:

• Bytes are numbered from 0 to 2

32

 - 1, or 0 to 4,294,967,295

• Bytes are nice, but most data items use larger “words”

8 bits of data
8 bits of data
8 bits of data
8 bits of data
8 bits of data
8 bits of data
8 bits of data
8 bits of data
8 bits of data
8 bits of data
8 bits of data

0
1
2
3
4
5
6

…

4,294,967,295
4,294,967,294
4,294,967,293

CSc 252 — Computer Organization Slide 4 of 70 04 MIPS Introduction

• For MIPS, a word is 32 bits or 4 bytes
• Each register in the CPU holds 32 bits
• Not just a coincidence!

• 2

32

 bytes with byte addresses from 0 to 2

32

 - 1

• 2

30

 words with byte addresses 0, 4, 8, …, 2

32

 - 4

• Words are “aligned”
i.e., what are the least 2 significant bits of a word address in
binary?

Notes:

2

10

 = 1024 = 1 Kilo

2

20

 = 1 Mega

2

30

 = 1 Giga

32 bits, 4 bytes, of data0

32 bits, 4 bytes, of data4

32 bits, 4 bytes, of data8

32 bits, 4 bytes, of data12

32 bits, 4 bytes, of data…

32 bits, 4 bytes, of data

32 bits, 4 bytes, of data

32 bits, 4 bytes, of data4,294,967,292

4,294,967,284

4,294,967,288

CSc 252 — Computer Organization Slide 5 of 70 04 MIPS Introduction

Registers vs. Memory

• Registers can be thought of as a type of memory.
• Registers are the “closest” memory to the CPU, since they are inside the CPU
• Principal advantages of registers vs. memory:

• Fast access
• Fast access
• Fast access

• Principal advantages of memory vs. registers:
• Lower cost
• Lower cost
• Lower cost

• An intermediate type of memory: Cache
• Different “flavors” depending on size, physical location
• Level 1 cache “closest” to the CPU

• Usually installed on the chip as part of the CPU
• Typically small: 32K, 64K

• Level 2 cache between the CPU and the memory
• Physically separate, but installed close to the CPU (i.e., “backside cache”)
• Typically a few Megabytes.

• If you are curious, see Sections 7.2 and 7.3

CSc 252 — Computer Organization Slide 6 of 70 04 MIPS Introduction

Register Organization

Figure 3.13, page 140: (see also Appendix A, page A-23)

These are the “General Registers”. MIPS also has:
• PC (program counter) register and Status register
• Floating point registers

Name Register number Usage Preserved on call?

$zero 0 the constant value 0 n.a.
$at 1 reserved for assembler n.a.
$v0-$v1 2-3 values for results & expression evaluation no
$a0-$a3 4-7 arguments yes
$t0-$t7 8-15 temporaries no
$s0-$s7 16-23 saved yes
$t8-$t9 24-25 more temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address yes

CSc 252 — Computer Organization Slide 7 of 70 04 MIPS Introduction

MIPS Arithmetic

• All arithmetic instructions have at most

3

 operands

• All arithmetic is done in registers!
• Can not, for example, add a number to a value stored in memory.
• Must load value from memory into a register, then add the number to it.

• Operand order is fixed
• Destination operand is first

Example:
C code:

A = B + C;

MIPS code:

add $s0, $s1, $s2

adds contents of

$s1

 and

$s2

, placing result in

$s0

.

CSc 252 — Computer Organization Slide 8 of 70 04 MIPS Introduction

MIPS Arithmetic (con’t)

Design Principles:

1. Simplicity favors regularity.

2. Smaller is faster.
3. Good design demands good compromises.
4. Make the common case fast.

Why?

• Of course, this complicates some things…
C code:

A = B + C + D;

E = F - A;

MIPS code:

add $t0, $s1, $s2 # $t0 = $s1 + $s2, put result “temporarily” in $t0

add $s0, $t0, $s3 # $s0 = $t0 + $s3, now we can use the “temporary” result from $t0

sub $s4, $s5, $s0 # $s4 = $s5 - $s0

note: use of $t0 to hold “temporary” result

• Operands must be registers — only 32 registers provided

CSc 252 — Computer Organization Slide 9 of 70 04 MIPS Introduction

Design Principles:
1. Simplicity favors regularity.

2. Smaller is faster.

3. Good design demands good compromises.
4. Make the common case fast.

Why?
Clock cycle faster vs. More registers

• The amount of time it takes to get a value from a register into the ALU, or from the ALU into a register, is
proportional to the exponent of 2. That is, the time for 32 registers is twice the time of 16 registers and 1/2 the time
of 64 registers.

CSc 252 — Computer Organization Slide 10 of 70 04 MIPS Introduction

Registers vs. Memory

• Arithmetic instructions — operands must be registers
• only 32 registers

• Compiler associates variables with registers

• What about programs with lots of variables?
• Must move values between memory and registers

CSc 252 — Computer Organization Slide 11 of 70 04 MIPS Introduction

Load and Store Instructions

• Example:
C or Java code, where z, w, and y are 4-byte, signed, two’s-complement, integers:

z = w + y;

MIPS code:

la $t0, w # put address of w into $t0

lw $s0, 0($t0) # put contents of w into $s0

la $t1, y # put address of y into $t1

lw $s1, 0($t1) # put contents of y into $s1

add $s2, $s0, $s1 # add w + y, put result in $s2

la $t2, z # put address of z into $t2

sw $s2, 0($t2) # put contents of $s2 into z

•

la

 = “load address”

lw

 = “load word”

sw

 = “store word”
• Assembly language allows us to use variable names to represent locations in memory.

• Saves the hassle of computing the addresses ourselves!
• Must load address (

la

) to get the address of the memory location into a register
•

0($t0)

 means “go 0 bytes from the address specified by

$t0

”

CSc 252 — Computer Organization Slide 12 of 70 04 MIPS Introduction

• Example:
C or Java code:

A[8] = h + A[8];

MIPS code:

la $t3, A # load address of start of array A

lw $t0, 32($t3) # load contents of A[8]

add $t0, $s2, $t0

sw $t0, 32($t3)

32($t3)

 means:

$t3

 holds the starting address of the array
Take the value stored in

$t3

, add

32

 to it
(32 = 4 bytes for one integer * position 8 in array)

Use the sum of 32 and

$t3

 as the memory address.
Go to this location in memory.
Get the contents of the 4 bytes (one word, lw = “load word”) starting at that address.
Put the contents into register

$t0

.
• Store word has the destination last
• Remember: Arithmetic operands are registers,

not

memory

!

CSc 252 — Computer Organization Slide 13 of 70 04 MIPS Introduction

Example

• Swap two adjacent values in the array

v[]

.

k

 is the index of the first of the two adjacent values.

 int k = 7;
 int v[12] =
 {-87, 15, 13, ...,
 -6};
 int temp;

 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;

See file

swap.s

 from
examples link on class web
page.

.data # a section of memory used for variables
k: .word 7
v: .word -87 # v[0]

.word 15 # v[1]

.word 13 # v[2]
... # etc., until

.word -6 # v[11], last position in v
.text # marks a section of assembly instructions
swap:
 la $s1, k # Put address of k in $s1
 lw $s1, 0($s1) # Put contents of k in $s1
 add $t0, $s1, $s1 # Start with $t0 = k + k
 add $t0, $t0, $t0 # Now, $t0 = 4k = 2k + 2k
 la $s0, v # Put address of v in $s0
 add $t0, $s0, $t0 # Now, $t0 = v + 4k
 lw $t1, 0($t0) # load contents of v[k]
 lw $t2, 4($t0) # load contents of v[k+1] by
 # going 4 bytes beyond v[k]
 sw $t2, 0($t0) # store contents of $t2 in v[k]
 sw $t1, 4($t0) # store contents of $t1 in v[k+1]

CSc 252 — Computer Organization Slide 14 of 70 04 MIPS Introduction

Complete MIPS program for swap example:

.data # a section of memory used for variables

k:
 .word 7
v:
 .word -87 # v[0]
 .word 15 # v[1]
 .word 13 # v[2]
 .word -7 # v[3]
 .word 27 # v[4]
 .word 41 # v[5]
 .word 42 # v[6]
 .word 43 # v[7]
 .word -5 # v[8]
 .word 16 # v[9]
 .word 42 # v[10]
 .word -6 # v[11], last position in v

.text # marks a section of assembly instructions

main:

 # Function prologue -- even main has one
 subu $sp, $sp, 24 # allocate stack space --
 # default of 24 here
 sw $fp, 0($sp) # save caller's frame pointer
 sw $ra, 4($sp) # save return address
 addiu $fp, $sp, 24 # setup main's frame pointer

swap:
 la $s1, k # Put address of k in $s1
 lw $s1, 0($s1) # Put contents of k in $s1
 add $t0, $s1, $s1 # Start with $t0 = k + k
 add $t0, $t0, $t0 # Now, $t0 = 4k = 2k + 2k
 la $s0, v # Put address of v in $s0
 add $t0, $s0, $t0 # Now, $t0 = v + 4k
 lw $t1, 0($t0) # load contents of v[k]
 lw $t2, 4($t0) # load contents of v[k+1] by
 # going 4 bytes beyond v[k]
 sw $t2, 0($t0) # store contents of $t2 in v[k]
 sw $t1, 4($t0) # store contents of $t1 in v[k+1]

done: # Epilogue for main -- restore stack & frame
 # pointers and return
 lw $ra, 4($sp) # get return address from stack
 lw $fp, 0($sp) # restore caller's frame pointer
 addiu $sp,$sp,24 # restore caller's stack pointer
 jr $ra # return to caller's code

CSc 252 — Computer Organization Slide 15 of 70 04 MIPS Introduction

So far we’ve learned:

• MIPS
• loading

words

 but addressing

bytes

• arithmetic performed on

registers only

Instruction English Meaning

add $s1, $s2, $s3

sub $s1, $s2, $s3

la $t0, xray

lw $s1, 24($s2)

sw $s1, 72($s2)

“add”

“subtract”

“load address”

“load word”

“store word”

$s1 = $s2 + $s3

$s1 = $s2 - $s3

$t0 = address of label xray

$s1 = Memory[$s2 + 24]

Memory[$s2+72] = $s1

CSc 252 — Computer Organization Slide 16 of 70 04 MIPS Introduction

Machine Language

• Instructions, like registers and words of data, are also 32 bits long
• Example: add $t0, $s1, $s2
• registers have numbers: $t0 = 9, $s1 = 17, $s2 = 18
• see Figure 3.13, page 140.

• Instruction Format:

Can you guess what the field names stand for?
•

op

 — basic operation of the instruction, the

opcode

•

rs

 — first register source operand
•

rt

 — second register source operand
•

rd

 — register destination operand, it gets the result
•

shamt

 — shift amount (not used until Chapter 4)
•

funct

 — Function. Selects the specific variant of the opcode. (See Figure A.19, page A-54)

op rs rt rd shamt funct

000000 10001 10010 01001 00000 100000

CSc 252 — Computer Organization Slide 17 of 70 04 MIPS Introduction

Machine Language

• Consider the load-word and store-word instructions,
• What would the regularity principle have us do?

Design Principles:
1. Simplicity favors regularity.
2. Smaller is faster.

3. Good design demands good compromises.

4. Make the common case fast.

• Introduce a new type of instruction format
• I-type for data transfer instructions

• the previous format was R-type for register
• Example:

lw $t0, 32($s2)

Where’s the compromise?

Keep all instructions at 32 bits

Offset limited to 16-bits, ± 32K

op rs rt 16 bit number

35 18 8 32

CSc 252 — Computer Organization Slide 18 of 70 04 MIPS Introduction

Stored Program Concept

• Instructions are bits
• Programs are stored in memory

• to be read or written just like data

• Fetch & Execute Cycle
• Instructions are fetched and put into a special register — the

instruction register

• not one of the 32 general registers

• Bits in this register “control” the subsequent actions
• Fetch the “next” instruction and continue

Memory

Processor

memory for data,
programs, compilers,

editors, etc.

editor

draw

figure data
text file

CSc 252 — Computer Organization Slide 19 of 70 04 MIPS Introduction

Control

• Decision making instructions
• alter the control flow
• I.e, change the “next” instruction to be executed

• MIPS conditional branch instructions, two versions

bne $t0, $t1, Label

beq $t0, $t1, Label

• Example:

Note the reversal of the condition from equality to inequality!

if (i == j)

 h = i + j;

 bne $s0, $s1, Label

 add $s3, $s0, $s1

Label: ...

op = 4 rs rt 16 bit offsetbeq

op = 5 rs rt 16 bit offsetbne

CSc 252 — Computer Organization Slide 20 of 70 04 MIPS Introduction

Program Flow Control

• MIPS unconditional branch instructions:

j label

• Example:

if (i != j)

 h = i + j;

else

 h = i - j;

k = h + i;

 beq $s4, $s5, Lab1 # compare i, j

 add $s3, $s4, $s5 # h = i + j

 j Lab2 # skip false part

Lab1:

 sub $s3, $s4, $s5 # h = i - j

Lab2:

 add $s6, $s3, $4 # k = h + i

op 26 bit address

CSc 252 — Computer Organization Slide 21 of 70 04 MIPS Introduction

Set Less Than

• New instruction that will compare two values and put a result in a register.
• Comparison is less than

slt $t0, $t1, $t2

• First register listed is the destination —

$t0

 in this case
• Second and third registers are compared with less than:

$t1 < $t2

• Result is 1 if comparison is true
• Result is 0 if comparison is false

op rs rt rd shamt funct

000000 01001 01010 01000 00000 101010

CSc 252 — Computer Organization Slide 22 of 70 04 MIPS Introduction

For Loop Example

• C code:

sum = 0;
for (i = 0; i < y; i++)
 sum = sum + x;

• MIPS:
Assume:

x

,

y

, and

sum

 are in

$s0

,

$s1

, and

$s2

 respectively.
Will use

$t0

 for

i

 and

$t1

 for the constant

1

.

add $s2, $zero, $zero # sum = 0
add $t0, $zero, $zero # i = 0

LoopBegin:
slt $t2,

$t0, $s1

beq

$t2, $zero, LoopEnd # is i < y ??
add $s2, $s2, $s0 # sum = sum + x
add $t0, $t0, $t1 # i++
j LoopBegin

LoopEnd:

CSc 252 — Computer Organization Slide 23 of 70 04 MIPS Introduction

Complete MIPS program for loop example. Available as for1.s on examples link from the class web page

.data

x: .word 42
y: .word 8
sum: .word 0

one: .word 1

answer: .asciiz "The sum is "
newline: .asciiz "\n"

.text

main:
 # Function prologue -- even main has one
 subu $sp, $sp, 24 # allocate stack space --
 # default of 24 here
 sw $fp, 0($sp) # save caller's frame pointer
 sw $ra, 4($sp) # save return address
 addiu $fp, $sp, 24 # setup main's frame pointer

 # Put x into $s0
 la $t0, x
 lw $s0, 0($t0)

 # Put y into $s1
 la $t0, y
 lw $s1, 0($t0)

 # Put the constant 1 into $t1
 la $t0, one
 lw $t1, 0($t0)

 add $s2, $zero, $zero # sum = 0

 add $t0, $zero, $zero # i = 0

LoopBegin:
 slt $t2, $t0, $s1 # $t2 = (i < y)
 # branch out of loop if (i == y)
 beq $t2, $zero, LoopEnd
 add $s2, $s2, $s0 # sum = sum + x
 add $t0, $t0, $t1 # i++
 j LoopBegin

LoopEnd:
 # Print message
 la $a0, answer
 li $v0, 4
 syscall

 # Print the sum
 add $a0, $s2, $zero
 li $v0, 1
 syscall

 # Print newline
 la $a0, newline
 li $v0, 4
 syscall

done: # Epilogue for main -- restore stack & frame
 # pointers and return
 lw $ra, 4($sp) # get return address from stack
 lw $fp, 0($sp) # restore caller's frame pointer
 addiu $sp,$sp,24 # restore caller's stack pointer
 jr $ra # return to caller's code

CSc 252 — Computer Organization Slide 24 of 70 04 MIPS Introduction

While Loop

• C while loop (from example on page 127 in the textbook)

while (save[i] == k)

i = i + jj;

• MIPS version:

.data

save: .word 42
 .word 42
 .word 42
 .word 42
 .word 42
 .word 42
 .word 42
 .word 93
 .word -2
k: .word 42
i: .word 3
jj: .word 2 # can’t use ‘j’ for a variable since ‘j’ is “jump”
str: .asciiz "The final value of i = "
newline:.asciiz "\n"

.text

CSc 252 — Computer Organization Slide 25 of 70 04 MIPS Introduction

main:
 # Function prologue -- even main has one
 subu $sp, $sp, 24 # allocate stack space -- default of 24 here
 sw $fp, 0($sp) # save caller's frame pointer
 sw $ra, 4($sp) # save return address
 addiu $fp, $sp, 24 # setup main's frame pointer

 la $s6, save # $s6 = address of save[0], beginning of array
 la $t0, i
 lw $s3, 0($t0) # $s3 = value of i
 la $t0, jj
 lw $s4, 0($t0) # $s4 = value of jj
 la $t0, k
 lw $s5, 0($t0) # $s5 = value of k

LoopBegin:
 # Loop Test
 add $t1,$s3,$s3 # quadruple i to get offset for save[i]
 add $t1,$t1,$t1
 add $t1,$t1,$s6 # compute address of save[i]
 lw $t0, 0($t1) # $t0 = value stored at save[i]
 bne $t0,$s5,LoopEnd # end loop if save[i] != k

 # Loop body
 add $s3,$s3,$s4 # i = i + jj
 j LoopBegin

CSc 252 — Computer Organization Slide 26 of 70 04 MIPS Introduction

LoopEnd:
 sw $s3,i # store value of i into memory

 la $a0,str # $a0 = address of start of string
 li $v0,4
 syscall

 add $a0,$s3,$zero # $a0 = value of i
 li $v0,1
 syscall

 la $a0,newline # $a0 = address of newline string
 li $v0,4
 syscall

done: # Epilogue for main -- restore stack & frame pointers and return
 lw $ra, 4($sp) # get return address from stack
 lw $fp, 0($sp) # restore the caller's frame pointer
 addiu $sp, $sp, 24 # restore the caller's stack pointer
 jr $ra # return to caller's code

CSc 252 — Computer Organization Slide 27 of 70 04 MIPS Introduction

So far:

• Formats

Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 - $s3
lw $s1, 100($s2) $s1 = Memory[$s2 + 100]
sw $s1, 100($s2) Memory[$s2 + 100] = $s1
slt $s2, $t0, $t1 $s2 = $t0 < $t1, put 1 in $s2 if true, else 0
bne $s4, $s5, Label Next instruction is at Label if $s4

≠

 $s5
beq $s4, $s5, Label Next instruction is at Label is $s4 = $s5
j Label Next instruction is at Label

op rs rt rd shamt funct

op rs rt 16 bit number

op 26 bit addressR

I

J

CSc 252 — Computer Organization Slide 28 of 70 04 MIPS Introduction

Control Flow

• We have: beq, bne, what about Branch-if-less-than (and other options)?
• New instruction, Set if less than:

• Can use this instruction to build “branch if less than”

slt $t0, $s1, $s2 # set $t0 to 1 if $s1 < $s2
bne $t0, $zero, ToHere # branch if less than

• Can use this instruction to build “branch if greater than”

slt $t0, $s2, $s1 # set $t0 to 1 if $s1 > $s2
bne $t0, $zero, ToHere # branch if greater than

• Can build other control structures in a similar fashion
• Use of two instructions is faster than a single instruction, in this case,

• given the complexity that would be required for blt, bgt, etc.
• would increase CPI for branches and/or lower clock speed

slt $t0, $s1, $s2 if $s1 < $s2 then

 $t0 = 1

else

 $t0 = 0

CSc 252 — Computer Organization Slide 29 of 70 04 MIPS Introduction

Constant or Immediate Operands

• Section 3.8, pages 145-147
• Many times, one operand of an arithmetic instruction is a small constant

• 50% or more in some programs
• Possible solutions:

• put typical constants in memory and load them when needed
• hard-wire registers to hold common values, i.e.,

$zero

Design Principles:
1. Simplicity favors regularity.
2. Smaller is faster.
3. Good design demands good compromises.

4. Make the common case fast.

• MIPS Solution:
• Add “a few” opcodes that allow one operand to be stored in the instruction:

• addi
• slti
• li — a

pseudoinstruction

CSc 252 — Computer Organization Slide 30 of 70 04 MIPS Introduction

• Example:

addi $t1, $t1, 4

Note: There is NOT

subi, muli

16 bits = 2

16

 = 64K, but have to allow for negative constants, so range is limited to ±32K
How to handle large constants, those needing more than 16 bits?

Requires a two-step process:
to put 0000 0001 0011 1110 0000 1010 0000 0011

two

 = 0x013E0A03

hex

 into $s0

lui $s0, 0x013E # put values into upper 16-bits of $s0

addi $s0, $s0, 0x0A03 # add the lower 16-bits to $s0

op rs rt 16 bit immediate operand

8 9 9 4

CSc 252 — Computer Organization Slide 31 of 70 04 MIPS Introduction

Thus far, Sections 3.1 through 3.5, pages 106—131:

Name Example Comments

32 registers

$s0, $s1, …, $s7,
$t0, $t1, …, $t7,
$zero

Fast locations for data. Data must be in registers to
perform arithmetic. MIPS register

$zero

 always equals 0.

2

30

 memory words

Memory[0],
Memory[4], …,
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses
byte addresses, so sequential words differ by 4. Memory
holds data structures (arrays, spilled registers, etc.)

Category Instruction Example Meaning Comments

Arithmetic add

add $s1, $s2, $s3e $s1 = $s2 + $s3

3 operands; data in registers
subtract

sub $s1, $s2, $s3 $s1 = $s2 - $s3

3 operands; data in registers
Data transfer load word

lw $s1, 48($s2) $s1 = Memory[$s2+48]

Data fm memory to register
store word

sw $s1, 52($s2) Memory[$s2+52] = $s1

Data fm register to memory

Conditional
branch

branch on equal

beq $s1, $s2, L if ($s1==$s2) goto L

Equal test and branch
branch on not equal

bne $s1, $s2, L if ($s1!=$s2) goto L

Not equal test and branch
set on less than

slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than;
used with

beq

,

bne

Unconditional
jump

jump

j 2500 goto 10000

Jump to target address

CSc 252 — Computer Organization Slide 32 of 70 04 MIPS Introduction

Name Format Example Comments

add

R 0 18 19 17 0 32

add $s1,$s2,$s3

sub

R 0 18 19 17 0 34

sub $s1,$s2,$s3

lw

I 35 18 17 48

lw $s1,48($s2)

sw

I 43 18 17 52

sw $s1,52($s2)

beq

I 4 17 18 25

beq $s1,$s2,100

bne

I 5 17 18 25

bne $s1,$s2,100

slt

R 0 18 19 17 0 42

slt $s1,$s2,$s3

j

J 2 2500

j 10000 (p. 150)

Field size

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

R-format

R op rs rt rd shamt funct Arithmetic instruction format

I-format

I op rs rt address Data transfer, branch format

CSc 252 — Computer Organization Slide 33 of 70 04 MIPS Introduction

Procedures in MIPS

Reading: Section 3.6, pages 132 to 141, and Section A.6, pages A-22 to A-32.
• Overview

• Structure programs:
• make them easier to understand, and
• make code segments easier to re-use

• Problems:
• Want to call the procedure from anywhere in the code
• Want to pass arguments to the subroutine that may be different each time the procedure is called
• Want the procedure to return to the point from which it was called
• (May) want the procedure to return a value (technically, such a “procedure” is actually a “function”)

• Issues in implementing subroutines:
• How does the subroutine return to the caller’s location?
• Where/how is the result returned?
• Where are the parameter(s) passed?
• Where are the registers used (i.e., overwritten) by the subroutine saved?
• Where does the subroutine store its local variables?

• Issues must be agreed upon by both the caller and callee in order to work.
• Termed the

calling conventions

. Not enforced by hardware but expected to be followed by all programs.
• Information shared between caller and callee also termed the

subroutine linkage

.

CSc 252 — Computer Organization Slide 34 of 70 04 MIPS Introduction

Calling Subroutines

• The caller establishes part of the subroutine linkage in the

startup sequence

.
• The callee establishes the remainder of the linkage in the

subroutine prologue

• The

subroutine epilogue

 contains instructions that return to the caller.
• The

cleanup sequence

 contains instructions to clean up the linkage.

Startup
sequence

Cleanup
sequence

Call

Subroutine
prologue

Subroutine
epilogue

Body

CSc 252 — Computer Organization Slide 35 of 70 04 MIPS Introduction

Indicating the Return Address

• The calling convention describes the allocation, construction and deallocation of a subroutine linkage.
• Perhaps the most simple calling convention stores the return address in a register

• In MIPS, this is $ra, register $31.
• And then provides an instruction that can jump to the address contained in a register

• In MIPS, this is the jr (jump register) instruction:

jr $ra

• Example: We could do a simple subroutine with only the MIPS instructions we’ve learned:

Startup sequence:
la $ra, ReturnHere # Put return address in $ra
j SubBegin # Jump to beginning of subroutine

ReturnHere:
... code that follows subroutine call
Cleanup sequence
None needed this time...
... # continue w/ code following subroutine call

can do it again...
la $ra, ComeBackHere
j SubBegin

ComeBackHere:
... more MIPS code here ...

CSc 252 — Computer Organization Slide 36 of 70 04 MIPS Introduction

Somewhere else in .text segment:
SubBegin:

Subroutine prologue:
no prologue needed this time...

Subroutine body goes here...

Subroutine epilogue:
jr $ra # jump to address stored in register $ra

Using the JAL (Jump and Link) Instruction

• To support subroutines, machines provide an instruction that stores the return address and jumps to the start of the subroutine.
• Also called JSR (Jump to Subroutine) and BL (Branch and Link).

• Example: use the JAL instruction to implement a subroutine call:

Startup sequence:
other instructions

jal SubBegin # store return addr & jump to beginning of subroutine

• Do not need to specify which register to use;

jal

 will always put return address in

$ra

CSc 252 — Computer Organization Slide 37 of 70 04 MIPS Introduction

Registers and Parameters

• The registers must be considered as global memory locations among the different subroutines.
• Someone needs to insure after the subroutine returns, that registers contain the old values that they had before it was called.
• Multiple possible approaches:

• Before every subroutine call, the caller saves all the registers that it will need (regardless of the ones used by the callee),
and restores them after the subroutine returns, or

• The callee saves (in its prologue) the registers that it will use in its body, and restores all of them in its epilogue
(regardless of the ones used by its caller).

• MIPS: A compromise: Divide registers between those saved by caller (

t

 registers) and those saved by callee (

s

 registers).

• Done by the Caller
Startup sequence:

Save the

t

 registers used by the caller
Save the arguments sent to subroutine
Store return address and jump to subroutine (

jal

)
Cleanup sequence:

Restore the

t

 registers used by the caller

• Done by the Callee
Subroutine prologue:

Save the

s

 registers used in the subroutine body
Save the return address (

$ra

), if necessary
Subroutine epilogue:

Restore the

s

 registers saved in the prologue
Restore value of

$ra

, if necessary
Return

CSc 252 — Computer Organization Slide 38 of 70 04 MIPS Introduction

Where does all this go? On the Stack, of course :-)

Stack and Frame Pointers

• The MIPS calling conventions dictate that “t” registers are saved by the caller and “s” registers by the callee.
• Both caller and callee use the stack to save these.

• The stack pointer, SP, in MIPS is register

$sp

 (

$r29

).
• The frame pointer, FP, is

$fp

(

$r30

)
• points to the word after the last word (highest address) of the frame.

Passing parameters

• In general, the parameters to a subroutine are put on the stack by the caller, and loaded from there by the subroutine.
• Note: if the caller has a parameter in a register it must store it to the stack, then the subroutine must load it from the stack to

get it back in a register.
• MIPS optimizes this by passing the first four parameters in the registers

$a0

 -

$a3

; the remainder are passed on the stack.
• Space must be reserved for

all

 parameters (including those in

 $a0 - $a3

) on the stack in case the callee wants to store them
to memory before making calls of its own.

CSc 252 — Computer Organization Slide 39 of 70 04 MIPS Introduction

Putting It All Together

• Recall the four major steps in calling a subroutine:
• Caller executes

startup

 code to set things up for the subroutine and invokes the subroutine.
• Subroutine executes

prologue

 code to manage the stack frame.
• Subroutine executes

epilogue

 code prior to returning to undo the stack frame, then returns to the caller.
• Caller executes

cleanup

 code to clean up after the call.

Startup

• Save the caller-saved registers into the “saved registers” area of the current stack frame.
•

$t0

 -

$t9

 registers that will be needed after the call.
• The

$a0

 -

$a3

 registers, and
• Any additional arguments being passed to the subroutine beyond the first four

• Pass the arguments to the subroutine.
• The first four are in registers

$a0

 -

$a3

, the rest are put on the stack starting with the last argument first.
• Arguments are stored by the caller at negative offsets from the stack pointer.

• Use the

jal

 instruction to jump to the subroutine.

CSc 252 — Computer Organization Slide 40 of 70 04 MIPS Introduction

Prologue

• Allocate a stack frame by subtracting the frame size from the stack pointer.

Once set-up, a
function’s stack will be:

• The stack pointer must always be double-word aligned, so round the frame size to a
multiple of 8.

• The minimum frame size is 24 bytes (space for

$a0

 -

$a3

,

$fp

, and

$ra

) and is always
the minimum that must be allocated.

• Save the callee-saved registers into the frame, including

$fp

. Save

$ra

 if the subroutine
might call another subroutine, and save any of

$s0

 -

$s7

 that are used.
• Set the frame pointer to

$sp

 plus the frame size.

Epilogue

• Restore any registers that were saved in the prologue, including

$fp

.
• Pop the stack frame by adding the frame size to

$sp

.
• Return by jumping to the address in

$ra

.

arg n
…

arg 3
arg 2
arg 1
arg 0

saved
registers

local
variables

$sp

$fp

CSc 252 — Computer Organization Slide 41 of 70 04 MIPS Introduction

Function Call Example 1

• Want to call a function named

zap1

 that takes one int as an argument, and returns an

int

 as its result:

int zap1(int x)

• Want to call the function

zap1

 with

x

 as 15:

y = zap1(15);

• Calling code:

...
addi $a0, $zero, 15 # put value into $a0 to pass to zap1
jal zap1 # calling function zap1
get result from function
add $t1, $v0, $zero # put result of function in register $t1
...

caller’s
stack

$sp

$fp

CSc 252 — Computer Organization Slide 42 of 70 04 MIPS Introduction

• The Function:

zap1: subu $sp, $sp, 24 # make enough room for zap1’s needs on the stack
sw $fp, 0($sp) # save the caller’s frame pointer on the stack
sw $ra, 4($sp) # save the return address on the stack
sw $a0, 8($sp) # save $a0 on the stack
addiu $fp, $sp, 24 # set zap1’s frame pointer
$a1-$a3 not used here
body of zap1 here...
assuming zap1 does not use any s registers and does not call any other functions
somewhere in body, zap1 puts the return value into $v0
lw $a0, 8($sp) # restore original value of $a0 from the stack
lw $ra, 4($sp) # get return address so we can return
lw $fp, 0($sp) # restore caller’s $fp
addiu $sp, $sp, 24 # restore caller’s $sp
jr $ra # return to caller’s code

caller’s
stack

caller’s $sp

$fp

$a3 = 0
$a2 = 0
$a1= 0

$a0= 15
$ra

caller’s $fpzap1’s $sp

zap1’s $fp

CSc 252 — Computer Organization Slide 43 of 70 04 MIPS Introduction

.data
main1String: .asciiz “Inside main, after call to zap1, returned value = “
zap1String: .asciiz “Inside function zap1, quadrupled value = “
newline: .asciiz “\n”

.text
main:
 # Function prologue -- even main has one
 subu $sp, $sp, 24 # allocate stack space -- default of 24 here
 sw $fp, 0($sp) # save caller’s frame pointer
 sw $ra, 4($sp) # save return address
 addiu $fp, $sp, 24 # setup zap1’s frame pointer

 # body of main

 # call function zap1 with 15
 addi $a0, $zero, 15
 jal zap1

 add $t0, $v0, $zero # save return value in $t0

 la $a0, main1String
 li $v0, 4
 syscall
 add $a0, $t0, $zero
 li $v0, 1
 syscall

CSc 252 — Computer Organization Slide 44 of 70 04 MIPS Introduction

 la $a0, newline
 li $v0, 4
 syscall

 # call function zap1 with 42
 addi $a0, $zero, 42
 jal zap1

 add $t0, $v0, $zero # save return value in $t0

 la $a0, main1String
 li $v0, 4
 syscall
 add $a0, $t0, $zero
 li $v0, 1
 syscall
 la $a0, newline
 li $v0, 4
 syscall

done: # Epilogue for main -- restore stack & frame pointers and return
 lw $ra, 4($sp) # get return address from stack
 lw $fp, 0($sp) # restore the caller’s frame pointer
 addiu $sp, $sp, 24 # restore the caller’s stack pointer
 jr $ra # return to caller’s code

CSc 252 — Computer Organization Slide 45 of 70 04 MIPS Introduction

zap1:
 # Function prologue
 subu $sp, $sp, 24 # allocate stack space -- default of 24 here
 sw $fp, 0($sp) # save caller’s frame pointer
 sw $ra, 4($sp) # save return address
 sw $a0, 8($sp) # save parameter value
 addiu $fp, $sp, 24 # setup zap1’s frame pointer

 # something for zap to do
 add $t0, $a0, $a0 # double the parameter
 add $t0, $t0, $t0 # quadruple the parameter

 # print results
 la $a0, zap1String # print the string
 li $v0, 4
 syscall
 add $a0, $t0, $zero # print the quadruple’d value
 li $v0, 1
 syscall
 la $a0, newline
 li $v0, 4
 syscall

CSc 252 — Computer Organization Slide 46 of 70 04 MIPS Introduction

 # put result of function in $v0
 # Note: could not do this before printing!
 add $v0, $t0, $zero

 # Function epilogue -- restore stack & frame pointers and return
 lw $a0, 8($sp) # restore original value of $a0 for caller
 lw $ra, 4($sp) # get return address from stack
 lw $fp, 0($sp) # restore the caller’s frame pointer
 addiu $sp, $sp, 24 # restore the caller’s stack pointer
 jr $ra # return to caller’s code

CSc 252 — Computer Organization Slide 47 of 70 04 MIPS Introduction

Function Call Example 2

• Want to call a function that takes more than four arguments:

int zap2(int a, int b, int c, int d, int e, int f)

• Need to put a, b, c, and d into $a0-$a3.
• Where to put e and f? On the stack!
Caller’s code:

...
li $a0, 15 # put value into $a0 for zap2
li $a1, 20 # put value into $a1 for zap2
li $a2, 25 # put value into $a2 for zap2
li $a3, 30 # put value into $a3 for zap2
li $t0, 40
sw $t0, -4($sp) # put value onto stack for zap2
li $t1, 35
sw $t1, -8($sp) # put value onto stack for zap2
jal zap2 # calling function zap2
get result from function
add $t1, $v0, $zero # put result of function in register $t1
...

caller’s
stack

$sp 40
35

CSc 252 — Computer Organization Slide 48 of 70 04 MIPS Introduction

• The Function:

zap2: # make enough room for zap2 on the stack
subu $sp, $sp, 32
save the caller’s frame pointer on the stack
sw $fp, 0($sp)
save the return address on the stack
sw $ra, 4($sp)
save parameter values $a0-$a3 on the stack
sw $a0, 8($sp)
sw $a1, 12($sp)
sw $a2, 16($sp)
sw $a3, 20($sp)
set zap2’s frame pointer
add $fp, $sp, 32
assuming zap2 does not use any s registers and does not call any other functions
add up all six values:
add $t0, $a0, $a1 # add $a0 + $a1
add $t0, $t0, $a2 # add $a2
add $t0, $t0, $a3 # add $a3
lw $t1, 24($sp) # get 5th argument
add $t0, $t0, $t1 # add 5th argument
lw $t1, 28($sp) # get 6th argument
add $t0, $t0, $t1 # add 6th argument

caller’s
stack

caller’s $sp

$fp

$a3 = 30
$a2 = 25
$a1= 20
$a0= 15

$ra
caller’s $fpzap2’s $sp

fifth = 35
sixth = 40

CSc 252 — Computer Organization Slide 49 of 70 04 MIPS Introduction

zap2 puts the return value into $v0
add $v0, $t0, $zero
zap2 did not change $a0-$a3, so we do not need to restore them
lw $fp, 0($sp) # restore caller’s $fp
lw $ra, 4($sp) # get return address so we can return
addiu $sp, $sp, 32 # restore caller’s $sp
jr $ra # return to caller’s code

CSc 252 — Computer Organization Slide 50 of 70 04 MIPS Introduction

main:

 is a Function!

• The “outside world” does a function call to

main

 to start our program running
• “outside world” can be the O.S., can be a command-line shell
• parameters can be passed to our program from the outside.

• Have to set up main’s stack correctly
• First code in main will always be:

main:
 # Prologue: set up stack and frame pointers for main
 subu $sp, $sp, 24 # allocate stack space
 sw $fp, 0($sp) # save frame pointer
 sw $ra, 4($sp) # save return address

addiu $fp, $sp, 24 # establish main's $fp

• Final code in main will always be:

Epilogue: restore stack and frame pointers and return
 lw $ra, 4($sp) # restore return address
 lw $fp, 0($sp) # restore caller's frame pointer
 addiu $sp, $sp, 24 # restore caller's stack pointer
 jr $ra # return MAIN ENDS HERE

Following example is available to copy as:

funcExample2.s

• on lectura:

~cs252/fall03/SPIMexamples/funcExample2.s

• on Win2k:

Rotis -> cs252/source/SPIMexamples/funcExample2.s

O.S.’s $ra
O.S.’s $fp

$a3
$a2
$a1
$a0

$sp

$fp

main’s
stack

O.S.’s
stack

CSc 252 — Computer Organization Slide 51 of 70 04 MIPS Introduction

.data
str1: .asciiz "Result of call #1 to function zap2 is "
str2: .asciiz "Result of call #2 to function zap2 is "
nl: .asciiz "\n\n"
.text
main: # Prologue: set up stack and frame pointers for main
 subu $sp, $sp, 24 # allocate stack space
 sw $fp, 0($sp) # save caller’s frame pointer
 sw $ra, 4($sp) # save return address
 addiu $fp, $sp, 24 # setup main’s $fp

 # add up some numbers using zap2 and print result
 li $a0, 15 # put value into $a0 for zap2
 li $a1, 20 # put value into $a1 for zap2
 li $a2, 25 # put value into $a2 for zap2
 li $a3, 30 # put value into $a3 for zap2
 li $t0, 40
 sw $t0, -4($sp) # put value onto stack for zap2
 li $t1, 35
 sw $t1, -8($sp) # put value onto stack for zap2
 jal zap2 # calling function zap2

 # print result from function
 add $a0, $v0, $zero # put result of function in register $a0
 addi $a1, $zero, 1 # indicate which result this is

O.S.’s $ra
O.S.’s $fp

$a3
$a2
$a1
$a0

$sp

$fp

main’s
stack

O.S.’s
stack

CSc 252 — Computer Organization Slide 52 of 70 04 MIPS Introduction

 jal print_result

 # and, to show we can do it again...
 # add up some numbers using zap2 and print result
 li $a0, -15 # put value into $a0 for zap2
 li $a1, -20 # put value into $a1 for zap2
 li $a2, -25 # put value into $a2 for zap2
 li $a3, -30 # put value into $a3 for zap2
 li $t0, -40
 sw $t0, -4($sp) # put value onto stack for zap2
 li $t1, -35
 sw $t1, -8($sp) # put value onto stack for zap2
 jal zap2 # calling function zap2

 # print result from function
 add $a0, $v0, $zero # put result of function in register $a0
 addi $a1, $zero, 2 # indicate which result this is
 jal print_result

done: # Epilogue: restore stack and frame pointers and return
 lw $ra, 4($sp) # restore return address
 lw $fp, 0($sp) # restore caller's frame pointer
 addiu $sp, $sp, 24 # restore caller's stack pointer
 jr $ra # return MAIN ENDS HERE

CSc 252 — Computer Organization Slide 53 of 70 04 MIPS Introduction

zap2: # Prologue: set up stack and frame pointers for zap2
 subu $sp, $sp, 32
 # save the caller’s frame pointer on the stack
 sw $fp, 0($sp)
 # save the return address on the stack
 sw $ra, 4($sp)
 # set zap2's frame pointer
 add $fp, $sp, 32
 # zap2 doesn’t use s registers or call functions

 # add up all six values:
 add $t0, $a0, $a1 # add $a0 + $a1
 add $t0, $t0, $a2 # add $a2
 add $t0, $t0, $a3 # add $a3
 lw $t1, 24($sp) # get 5th argument
 add $t0, $t0, $t1 # add 5th argument
 lw $t1, 28($sp) # get 6th argument
 add $t0, $t0, $t1
 # zap2 puts the return value into $v0
 add $v0, $t0, $zero
 # zap2 did not change $a0-$a3, so we do not need to restore them
 lw $fp, 0($sp) # restore caller's $fp
 lw $ra, 4($sp) # get return address
 addiu $sp, $sp, 32 # restore caller's $sp
 jr $ra # return to caller's code ZAP2 ENDS HERE

O.S.’s $ra
O.S.’s $fp

$a3
$a2
$a1
$a0

$fp

main’s
stack

O.S.’s
stack

main’s $ra
main’s $fp

$a3
$a2
$a1
$a0

$sp

zap2’s
stack

arg6
arg5

CSc 252 — Computer Organization Slide 54 of 70 04 MIPS Introduction

print_result:
Prologue: set up stack and frame pointers for print_result

 subu $sp, $sp, 24
 # save the caller's frame pointer on the stack
 sw $fp, 0($sp)
 # save the return address on the stack
 sw $ra, 4($sp)
 # set-up our frame pointer
 addi $fp, $sp, 24
 # save parameter values $a0-$a1 on the stack
 # syscall's below use $a0, so save $a0 on stack
 # can also save $a1, but not necessary...
 sw $a0, 8($sp)

 # second parameter tells us which string to print
 beq $a1, 2, second
 la $a0, nl # print some blank lines
 li $v0, 4
 syscall
 la $a0, str1 # print first message
 li $v0, 4
 syscall
 j printSum

O.S.’s $ra
O.S.’s $fp

$a3
$a2
$a1
$a0

$fp

main’s
stack

O.S.’s
stack

main’s $ra
main’s $fp

$a3
$a2
$a1
$a0

$sp

print_result’s
stack

CSc 252 — Computer Organization Slide 55 of 70 04 MIPS Introduction

second: la $a0, str2 # print second message
 li $v0, 4
 syscall

printSum:
 lw $a0, 8($sp) # print the sum
 li $v0, 1
 syscall
 la $a0, nl # print the newline's
 li $v0, 4
 syscall

 # Epilogue: Restore stack and frame pointers and return
 # Since $a0 was modified by print_result, must restore $a0
 lw $a0, 8($sp)
 lw $fp, 0($sp) # restore caller's frame pointer
 lw $ra, 4($sp) # get return address so we can return
 addiu $sp, $sp, 24 # restore caller's stack pointer
 jr $ra # PRINTSUM ENDS HERE

CSc 252 — Computer Organization Slide 56 of 70 04 MIPS Introduction

Function Call Example 3 — Saving Registers

• The calling function is using all of the

t

 registers and needs to preserve their contents:

Startup sequence to call function zap3
Save t registers on stack, need 4 bytes for each
subu $sp, $sp, 40 # make room on my stack
sw $t9, 36($sp)
sw $t8, 32($sp)
sw $t7, 28($sp)
sw $t6, 24($sp)
sw $t5, 20($sp)
sw $t4, 16($sp)
sw $t3, 12($sp)
sw $t2, 8($sp)
sw $t1, 4($sp)
sw $t0, 0($sp)

Two parameters, put in $a0 and $a1
lw $a0, x
lw $a1, y

jal zap3 # call the function

caller’s
stack before
Startup code

$sp

$fp

contents of $t9
contents of $t8
contents of $t7
contents of $t6
contents of $t5
contents of $t4
contents of $t3
contents of $t2
contents of $t1
contents of $t0

caller’s
stack before
Startup code

$sp

$fp

CSc 252 — Computer Organization Slide 57 of 70 04 MIPS Introduction

Restore the t registers
lw $t9, 36($sp)
lw $t8, 32($sp)
lw $t7, 28($sp)
lw $t6, 24($sp)
lw $t5, 20($sp)
lw $t4, 16($sp)
lw $t3, 12($sp)
lw $t2, 8($sp)
lw $t1, 4($sp)
lw $t0, 0($sp)
addiu $sp, $sp, 40 # Shrink stack
#... code that follows function call

caller’s
stack before
Startup code

$sp

$fp

contents of $t9
contents of $t8

…

CSc 252 — Computer Organization Slide 58 of 70 04 MIPS Introduction

zap3: # zap3 may need to call another function, so must
save all the arguments on the stack and save the
s registers on the stack
Prologue code:
subu $sp, $sp, 56
sw $a1, 44($sp)
sw $a0, 40($sp)
sw $ra, 36($sp)
sw $fp, 32($sp)
sw $s7, 28($sp)
sw $s6, 24($sp)
sw $s5, 20($sp)
sw $s4, 16($sp)
sw $s3, 12($sp)
sw $s2, 8($sp)
sw $s1, 4($sp)
sw $s0, 0($sp)
addiu $fp, $sp, 56 # set zap3’s $fp

... body of zap3 goes here ...

Epilogue code:
Must restore the a registers before returning
lw $a1, 44($sp)
lw $a0, 40($sp)

contents of $t9
contents of $t8
contents of $t7
contents of $t6
contents of $t5
contents of $t4
contents of $t3
contents of $t2
contents of $t1
contents of $t0

caller’s
stack before
Startup code

zap3’s $sp

zap3’s $fp $a3
$a2
$a1
$a0
$ra
$fp

contents of $s7
contents of $s6
contents of $s5
contents of $s4
contents of $s3
contents of $s2
contents of $s1
contents of $s0

CSc 252 — Computer Organization Slide 59 of 70 04 MIPS Introduction

Must restore the s registers before returning
lw $ra, 36($sp)
lw $fp, 32($sp)
lw $s7, 28($sp)
lw $s6, 24($sp)
lw $s5, 20($sp)
lw $s4, 16($sp)
lw $s3, 12($sp)
lw $s2, 8($sp)
lw $s1, 4($sp)
lw $s0, 0($sp)
addiu $sp, $sp, 56
jr $ra

CSc 252 — Computer Organization Slide 60 of 70 04 MIPS Introduction

Function Call Example 4 — Recursion

• Functions can call other functions, including themselves.
• Set up the stack in the same way as for the original function call — not really any different from what we have been doing!
• Fibonacci sequence:

• Need to check the two base cases:

if N == 1, return 1
li $t0, 1
bne $a0, $t0, N2
li $v0, 1
j fibend

N2: # if N == 2, return 1
li $t0, 2
bne $a0, $t0, N3
li $v0, 1
j fibend

N3: # compute fibonacci(N-1) + fibonacci(N-2)
...

f N

()

1

N

,

1

=

1

N

,

2

=

f N

1

–

()

f N

2

–

()

+

N

3

≥,

=

CSc 252 — Computer Organization Slide 61 of 70 04 MIPS Introduction

• Need to make two recursive calls:
• Need to “remember” the value of $a0 so we can restore it — we’ve done this before
• Need to “remember” the results of the two recursive calls. Two ways to do this:

• Use a register for each — $t1 and $t2 in my example
• Save them as “local” variables

• Using two registers:

N3: # compute $t1 = fibonacci(N-1)
addi $a0, $a0, -1 # compute N - 1
jal fibonacci
add $t1, $v0, $zero # save result1 in $t1

compute $t2 = fibonacci(N-2)
save $t1 on the stack first
grow stack temporarily (double-word aligned means 8 bytes)
subu $sp, $sp, 8
sw $t1, 0($sp)
addi $a0, $a0, -1 # compute N - 2
jal fibonacci
add $t2, $v0, $zero # save result2 in $t2
get $t1 off the stack and shrink the stack
lw $t1, 0($sp)
addiu $sp, $sp, 8

add $v0, $t1, $t2 # compute answer = result1 + result2

CSc 252 — Computer Organization Slide 62 of 70 04 MIPS Introduction

• Using “local” variables
• Basic idea is to create enough space on the stack initially to hold locally-declared variables.
• The C code would be:

int fibonacci(int N) {
int result1;
int result2;
/* test for base cases not shown here... */
result1 = fibonacci(N - 1);
result2 = fibonacci(N - 2);
return result1 + result2;

}

• For “local” variables (result1 and result2 in this case), create space on the stack
• add enough space to the stack size, 8 bytes in this case.
• add extra space, if needed, to meet double-word aligned

requirement (not needed this time).
• order of locals on the stack entirely up to the programmer — no

convention for this.

caller’s
stack

fibonacci’s $sp

fibonacci’s $fp $a3
$a2
$a1
$a0
$ra
$fp

result1
result2

CSc 252 — Computer Organization Slide 63 of 70 04 MIPS Introduction

• The code for the local variable case:

fibonacci:
Prologue: set up stack and frame pointers for fibonacci
Need two local variables to hold the results of the two
recursive calls to fibonacci
subu $sp, $sp, 32 # allocate stack space
sw $fp, 8($sp) # save frame pointer
sw $ra,12($sp) # save return address
addi $fp, $sp, 32 # set-up our frame pointer
sw $a0,16($sp) # save $a0 on the stack

skip over the two base cases for now...

N3: # compute result1 = fibonacci(N-1)
addi $a0, $a0, -1 # compute N - 1
jal fibonacci
sw $v0, 4($sp) # save result1

compute result2 = fibonacci(N-2)
addi $a0, $a0, -1 # compute N - 2
jal fibonacci
sw $v0, 0($sp) # save result2

lw $t1, 4($sp) # $t1 = result1
lw $t2, 0($sp) # $t2 = result2
add $v0, $t1, $t2 # compute answer = result1 + result2

CSc 252 — Computer Organization Slide 64 of 70 04 MIPS Introduction

Epilogue: restore stack and frame pointers and return
lw $a0,16($sp) # restore $a0's value
lw $fp, 8($sp) # restore caller's frame pointer
lw $ra,12($sp) # restore return address
addiu $sp, $sp, 32 # restore caller's stack pointer
jr $ra # return FIBONACCI ENDS HERE

• Note:
• Using

t

 registers choice creates space on the stack at the next function call, and removes that space just after the next
function call.

• Local variable choice creates space on the stack for the variables at the beginning (prologue) of the function, and
removes that space at the end (epilogue) of the function.

• Complete program examples available for download:
• from web page:

http://www.cs.arizona.edu/classes/cs252/summer04/

• from lectura:

~cs252/summer04/SPIMexamples

• from Win2K:

Rotis -> cs252/source/SPIMexamples

CSc 252 — Computer Organization Slide 65 of 70 04 MIPS Introduction

Function Call Example 4 — Local Variables

Local variables

• If the subroutine has local variables that don’t fit in registers, it reserves space for them in its stack frame.

• Consider the following C code:

int zap4 (int start, int step) {
int i; /* loop index */
for (i = start; i < finish; i += step) {

•

int computeAverage(int zapArray[], int size) {
int sum;
int count;
...
return sum;

}

zapArray

’s address in

$a0

and on the stack.

size

’s value in

$a1

 and on the stack.

sum

 and

count

 on the local
variable part of the stack.

CSc 252 — Computer Organization Slide 66 of 70 04 MIPS Introduction

Case/Switch Statement (see example program named switch.s)

• C code: (see pages 129-130)

switch (k) {
 case 0: f = i + jj; break;
 case 1: f = g + h; break;
 case 2: f = g - h; break;
 case 3: f = i - jj; break;
}

• MIPS version:

.data
jump: .word L0 # address of label for case 0
 .word L1 # address of label for case 1
 .word L2 # address of label for case 1
 .word L3 # address of label for case 1
init some variable values
g: .word 42
h: .word 37
i: .word 15
jj: .word 12 # Note: can't use j: as a label; conflicts w/ j opcode
Useful messages
str0: .asciiz "case 0: f = i + jj = "
str1: .asciiz "case 1: f = g + h = "
str2: .asciiz "case 2: f = g - h = "
str3: .asciiz "case 3: f = i - jj = "

CSc 252 — Computer Organization Slide 67 of 70 04 MIPS Introduction

inputstr: .asciiz "Enter a value for k between 0 and 3 "
smallstr: .asciiz "k is too small, must be between 0 and 3\n\n"
largestr: .asciiz "k is too large, must be between 0 and 3\n\n"
nl: .asciiz "\n"

.text
main:
Get value of k from stdin
inputK:
 la $a0, inputstr # print input query
 li $v0, 4
 syscall
 li $v0, 5 # read k from stdin
 syscall
 add $t0, $v0, $zero # put k in $t0
 la $a0, nl # print a blank line
 li $v0, 4
 syscall
test for valid input, 0 <= k <= 3
 slt $t1, $t0, $zero # Test if k < 0
 bne $t1, $zero, toosmall
 slti $t1, $t0, 4 # Test if k > 3
 beq $t1, $zero, toolarge
 j switch

CSc 252 — Computer Organization Slide 68 of 70 04 MIPS Introduction

toosmall:
 la $a0, smallstr
 li $v0, 4
 syscall
 j inputK
toolarge:
 la $a0, largestr
 li $v0, 4
 syscall
 j inputK

switch statement
switch:

 la $t1, jump # load address of start of jump table

 # Compute offset from start of jump table
 add $t0, $t0, $t0 # compute k = 4 * k
 add $t0, $t0, $t0
 add $t1, $t0, $t1 # add offset (4 * k) to start of jump
 lw $t2, 0($t1) # load address from jump[k]
 jr $t2 # jump to appropriate case

CSc 252 — Computer Organization Slide 69 of 70 04 MIPS Introduction

L0: la $a0, str0 # print string for this case
 li $v0, 4
 syscall
 lw $s1, i # $s1 = i
 lw $s2, jj # $s2 = jj
 add $a0, $s1, $s2 # f = i + jj
 li $v0, 1 # print f
 syscall
 j endswitch

L1: la $a0, str1 # print string for this case
 li $v0, 4
 syscall
 lw $s1, g # $s1 = g
 lw $s2, h # $s2 = h
 add $a0, $s1, $s2 # f = g + h
 li $v0, 1 # print f
 syscall
 j endswitch

CSc 252 — Computer Organization Slide 70 of 70 04 MIPS Introduction

L2: la $a0, str2 # print string for this case
 li $v0, 4
 syscall
 lw $s1, g # $s1 = g
 lw $s2, h # $s2 = h
 sub $a0, $s1, $s2 # f = g - h
 li $v0, 1 # print f
 syscall
 j endswitch
L3: la $a0, str3 # print string for this case
 li $v0, 4
 syscall
 lw $s1, i # $s1 = i
 lw $s2, jj # $s2 = jj
 sub $a0, $s1, $s2 # f = i - jj
 li $v0, 1 # print f
 syscall

endswitch:
 la $a0, nl # print newline character
 li $v0, 4
 syscall
done: li $v0, 10 # exit
 syscall

