

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 1

Instruction Set Design
and Architecture

COE608: Computer Organization
and Architecture

Dr. Gul N. Khan
http://www.ee.ryerson.ca/~gnkhan

Electrical and Computer Engineering
Ryerson University

Overview
• Computer Organization and Instructions
• ISA Classes and MIPS Instruction Set

♦ MIPS arithmetic
♦ MIPS Memory Organization and Registers
♦ Branch Instructions and Control flow

• MIPS Instruction Format
• MIPS Instruction Set
• PowerPC: Alternative Architecture

Chapter 2 of the Text

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 2

Processor Instructions

• Native Language of a Computer CPU
• A primitive language with no sophisticated

control flow
As compared to high-level languages:
 C, Java, and FORTRAN.

• Very restrictive
 e.g. MIPS-Processor Arithmetic Instructions

We’ll be working with the MIPS instruction set
architecture. A series of RISC Processors
– Similar to other architectures developed since

the 1980's.
– Used by NEC, Nintendo, Silicon Graphics,

Sony, etc.

Instruction Set Design Goals
• Maximize performance
• Minimize cost
• Reduce design time

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 3

Computer Organization

All computers consist of five components

• Processor: (1) datapath and (2) control
• (3) Memory
• (4) Input devices and (5) Output devices

Not all “memory” are created equally
• Cache: expensive

Fast memory: Placed closer to the
processor

• Main memory: less expensive memory
We can have more.

Input and output (I/O) devices

The messiest organization
• Wide range of speed

Graphics vs. Keyboard/mouse
• Wide range of requirements

Speed, Standard, Cost ...
• Least amount of research (so far)

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 4

Computer Organization

Computer System Components

All the components have interfaces and their
own organization.

Processor

Caches

Busses

Memory

I/O Devices:

Controllers

adapters

Disks

Displays

Keyboards
Networks

Processor

Caches

Busses

Memory

I/O Devices:

Controllers

adapters

Disks

Displays

Keyboards
Networks

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 5

Computer Word Size

Computers are often described in terms of
their word size. General-purpose computers
range from 16-bit to 64-bit word sizes.

• In a 32-bit computer data and
instructions are stored in memory as 32-
bit units.

• Word size indicates the size of the data
bus of a computer system.

Two Types of Computer Words
• Instruction word
• Data words
 BCD
 Integer
 Floating Point
 ASCII

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 6

Computer Instructions

Two components of a computer instruction:
• Opcode field
• Address fields (one or more)

Instruction word size = opcode field + address fields
 (0, 1 or More)

ADD A, B, C

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 7

Instruction Set

Type and number of instructions vary:

Three, two, one and even zero address
instructions are common

Instruction Types
Data transfer, Arithmetic, Logical, Program
Control, System Control and I/O.

Addressing Modes
Inherent, Immediate, Absolute, Register, Indirect
Register, Indexed, Index Base Register, Index
Offset, Index relative etc.

Processor architecture has considerable
influence on a specific instruction format:

• Opcode field size determines the maximum
number of instructions.

• A unique binary pattern of opcode defines
each instruction.

Huffman Encoding: Less frequently used
instructions have large opcode field than the
frequently used instructions.

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 8

Instruction Word

A single-byte instruction for an 8051 µ-controller
consists of 5-bit opcode and 3-bit register address.
• 5-bit opcode field allows 32 instructions.
• 3-bit register address field can address only 8

registers or memory locations.

The opcode field tells the processor what to do and
register field provides the operand.

MOV A, R3 instruction code: 11101 011
Opcode (11101) provides the move instruction
Register address field (011) indicates R3

Reg A ← R3: Copy the content of R3 into Reg A

Small opcode/address fields limit the capabilities
of a processor.

Multi-byte instructions can be a solution to this
problem as indicated earlier.

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 9

ISA: Instruction Set Architecture

What must be specified?

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

• Instruction Format/Encoding
 – How is it decoded?

• Operands & Result Location
 – where other than memory?
 – how many explicit operands?

– how are memory operands
located?

– which can or cannot be in
memory?

• Data Type and Size

• Operations
 – what are supported

• Successor Instruction
– jumps, conditional and other

branches

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 10

 ISA Classes

Basic ISA (Instruction Set Architecture) Types
Accumulator (one register):
 1 address add A acc ← acc + mem[A]
 (1+x) address addx A acc ← acc + mem[A + x]

Stack:
 Zero address add tos ← tos + next

GPR: General Purpose Register
 2 address add A, B EA(A) ← EA(A) + EA(B)

3 address add A, B, C EA(C) ← EA(B)+EA(A)
EA: Effective Address

Load/Store:
 load R1, A R1 ← mem[A]
 load R2, B R2 ← mem[B]
 add R3, R2, R1 R3 ← R2 + R1
 store C, R3 mem[C] ← R3

Comparison
• Bytes per instruction?
• Number of Instructions?
• Cycles per instruction? CPI

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 11

Different ISA Classes

Consider the implementation of C = A + B
Code sequence for four classes of instruction sets

Stack:
Push A; Push B
Add
Pop C

Accumulator:
Load Acc
Add B Acc ← B + Acc
Store C

Register: (register-memory)
Load R1, A R1 ← A
Add R1, B
Store C, R1

Register: (load-store) e.g. MIPS-Processor
Load R1, A ; Load R2, B
Add R3,R1,R2
Store C, R3

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 12

 Instruction Set Classes

General Purpose Registers
Almost all the machines used it during 1975-1995
Advantages of registers

• Registers are faster than memory.
• Easier for a compiler to use.

(A*B) – (C*D) – (E*F) multiplies in any order
• Registers can hold variables
• Memory traffic is reduced (programs speed up)

Registers access is faster than memory.
• Code density improves
Registers are named with fewer bits as compared
to memory location (address).

To Summarize
• Expect new instruction set architecture to employ

general-purpose register architecture.
• Pipelining ⇒ Expect it to use load/store variant

of GPR ISA

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 13

Instruction Set Design

Main Goals
Maximize performance, minimize cost and reduce
design time

Between Software and Hardware

Which is easier to modify?

Instructions

software

hardware

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 14

Instruction Set Architectures

• Early trend was to add more instructions to
new CPUs to do elaborate operations

VAX architecture had an instruction to
multiply polynomials!

• RISC philosophy (Cocke IBM, Patterson,
Hennessy, 1980s) –
Reduced Instruction Set Computing
 Keep the instruction set small and simple,

makes it easier to build fast hardware.
 Let software do complicated operations by

composing simpler ones.

MIPS – A semiconductor company that built
one of the first commercial RISC architectures

We will study the MIPS architecture in detail
here, in this class

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 15

Computer Instructions

• Language of the Machine

Machine language or binary representation of
assembly language.

• More primitive than the higher level languages
like C and Java.

No sophisticated control flow

• Very Restrictive
e.g., MIPS-Processor Arithmetic Instructions

We’ll be working with the MIPS-Processor
(Load/Store) instruction set architecture

– similar to other architectures developed since
the 1980's

Used by NEC, Nintendo, Silicon Graphics, and
Sony systems

Design Goals
• Maximize performance (CPI)
• Minimize cost
• Reduce design time

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 16

MIPS-Processor Instruction

All instructions have three operands
Operand order is fixed (destination first)

Assembly Operands: Memory
• C variables map onto registers; what about large

data structures like arrays?
Memory contains such data structures

• But MIPS arithmetic instructions only operate on
registers, never directly on memory.

Data transfer instructions Transfer data
between registers and memory: Memory to
register and Register to memory

Processor

Computer

Control
(“brain”)

Datapath
Registers

Memory

Devices

Input

Output LLooaadd ((ffrroomm))

SSttoorree ((ttoo))

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 17

Memory Organization

Viewed as a large, one-dimension array
A memory address is an index into the array

 "Byte addressing" means that the index points to a
byte of memory.
Most data items use larger "words" (16-64 bit size)

For MIPS, a word is of 32 bits or 4 bytes.
232 bytes with byte addresses from 0 to 232-1
230 words with byte addresses 0, 4, 8, ... 232-4

Words are aligned, Alignment: Objects must fall
on address that is multiple of their size.

What are the least 2 significant bits of a word
address?

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

0

4

8

12

...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

0

4

8

12

...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 18

Memory vs. Registers

What if more variables than registers?

Compiler tries to keep most frequently used
variable in registers
Less common in memory:

Spilling
Why not keep all variables in memory?

Smaller is faster:
Registers are faster than memory

Registers more versatile:
• MIPS arithmetic instructions can read

two regsiters, operate on them, and write
one regsiter per instruction

• MIPS data transfer only read or write one
operand per instruction, and no operation

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 19

MIPS-Processor Arithmetic

All instructions have three operands
Operand order is fixed (destination first)
Example: C code: A = B + C
 MIPS code: add $s0, $s1, $s2
 (associated with variables by compiler)

Design Principle: simplicity favors regularity.

Of course this complicates few things...
e.g. C code: A = B + C + D;
 E = F - A;
MIPS-Processor code: $s0 <= A, $s1 <= B

add $t0, $s1, $s2 ; $s2 <= C, $s3 <= D
add $s0, $t0, $s3 ; $t0 <= B + C
sub $s4, $s5, $s0 ;

Design Principle: smaller is faster.
Why?
Arithmetic instruction operands must be in
registers.

only 32 registers provided

Compiler associates variables with registers.
What about programs with lots of variables?

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 20

MIPS-Processor Instructions

Load and store instructions
Example: C code: A[8] = h + A[8];

If h is associated with register $s2 and
base address for A[i] (i.e. A[0]) is in register $s3
 MIPS code:

lw $t0, 32($s3) A[8]
add $t0, $s2, $t0 h + A[8]
sw $t0, 32($s3)

Arithmetic operands are registers, not memory!

Can we figure out the code?

swap(int v[], int k); swap: add $t1, $a1, $a1 2 x k
{ int temp; add $t1, $t1, $t1 4 x k
 temp = v[k] add $t1, $a0, $t1 a0+4xk
 v[k] = v[k+1]; lw $t0, 0($t1) load v[k]
 v[k+1] = temp; lw $t2, 4($t1) load v[k+1]
} sw $t2, 0($t1)
 sw $t0, 4($t1)
 jr $ra

v[] and k are in $a0 and $a1

⇒

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 21

Pointers vs. Values

Key Concept: A register can hold any 32-bit
value. (signed) int, an unsigned int, a pointer
(memory address), etc.
If we write add $t2,$t1,$t0

then $t0 and $t1 better contain values
If we write lw $t2,0($t0)

then $t0 better contain a pointer

Compilation with Memory
What offset in lw to select A[5] in C Language?
 4 x 5 = 20 to select A[5], byte vs word

 Compile by hand using registers:
 g = h + A[5];
 g: $s1, h: $s2, $s3 is the base address of A

First transfer from memory to register:
 lw $t0,20($s3) # $t0 gets A[5]

 Add 20 to $s3 to select A[5], put into $t0
Next add it to h and place in g

add $s1,$s2,$t0 # $s1 = h+A[5]

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 22

MIPS-Processor Instructions

addu i.e. add two unsigned numbers

Instruction Format: R-format
000000 10001 10010 01000 00000 100001
 op rs rt rd shamt funct
 0 17 18 8 0 33
 $s1 $s2 $t0

addu $t0, $s1, $s2
$t0 is the destination

Name Register number Usage
$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 23

So far we’ve learned:

MIPS-Processor
 loading words but addressing bytes
 arithmetic on registers only

Instruction Meaning

add $s1, $s2, $s3 $s1 <= $s2 + $s3
sub $s1, $s2, $s3 $s1 <= $s2 – $s3
lw $s1, 100($s2) $s1 <= Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] => $s1

Instructions, like registers and words of data, are
also 32 bits long

– Example: add $t1, $s1, $s2
– A register’s address is a 5-bit number

$t1=9, $s1=17, $s2=18

Instruction Format: R-type
000000 10001 10010 01001 00000 100000
 op rs rt rd shamt funct
 $s1 $s2 $t1

Can you guess what the field names stand for?

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 24

Machine Language

Consider the load-word and store-word instructions
What would the regularity principle have us do?
New principle:

Good design demands a compromise

Introduce a new type of instruction format
I-type for data transfer instructions.
The other format was R-type for register.

I-Format: For load/store instructions

Example: lw $t0, 32($s3)

Where's the compromise?

A different kind of instruction formats for different
types of instructions.

35 19 8 32

op rs rt address (16-bit)

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 25

Stored Program

Instructions are bits
Programs are stored in memory (I-Format and R-
Format) to be read or written just like data.

Fetch & Execute Cycle
• Instructions are fetched and put into a special

register (Instruction Register).
• Instruction register bits "control" the

subsequent actions.
• Fetch the “next” instruction and continue

Control: Decision making instructions
• alter the control flow, J-Format

change the "next" instruction to be executed.

MIPS-Processor conditional branch instructions:
 bne $t0, $t1, Label (If $t0 is not = $t1)
 beq $t0, $t1, Label

Example: if (i==j) h = i + j;
 bne $s0, $s1, Label
 add $s3, $s0, $s1
 Label:

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 26

MIPS Decision Instructions

Decision instruction in MIPS:
beq register1, register2, L1beq is “Branch if

(registers are) equal”
Same meaning as (using C):
if (register1==register2) goto L1

Complementary MIPS decision Instruction:
 bne register1, register2, L1
 bne is “Branch if (registers are) not equal”

Same meaning as (using C):
 if (register1!=register2) goto L1

Called conditional branches

In addition to conditional branches, MIPS
has an unconditional branch:

 j label Called a Jump Instruction:
Same meaning as (using C): goto label

Technically, same as: beq $0, $0, label

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 27

Branch Instructions

MIPS-Processor unconditional branch instructions:
j label
Example: $s4 <= i, $s5 <= j, $s3 <= h
 if (i ! = j) beq $s4, $s5, Label1
 h = i + j; add $s3, $s4, $s5
 else j Label2
 h = i - j; Label1: sub $s3, $s4, $s5
 Label2: ...

Can you build a simple instruction for a loop?

So far:
Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3 R-type
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Mem[$s2+100] I-type
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4, $s5, L-1 Next instr. at L-1 if $s4 ≠ $s5
beq $s4, $s5, L-2 Next instr. at L-2 if $s4 = $s5
j Label Next instr. is at the Label
 j-type

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 28

Control Flow

We have seen beq and bne

what about Branch-if-less-than?

New instruction: if $s1 < $s2 then $t0 = 1
 slt $t0, $s1, $s2 else $t0 = 0

Can use this instruction to build
"blt $s1, $s2, Label" If s1 < s2 goto Label

 One can now build general control structures.

Name Number Usage Preserved across
a call?

$zero 0 the value 0 n/a
$v0-$v1 2-3 return values no
$a0-$a3 4-7 arguments no
$t0-$t7 8-15 temporaries no
$s0-$s7 16-23 saved yes
$t18-$t19 24-25 temporaries no
$sp 29 stack pointer yes
$ra 31 return address yes

“caller saved”
“callee saved”

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 29

Addresses in Branches and Jumps

Instructions:

bne $t4, $t5, Label Next instruction is at Label
if ($t4 != $t5)

beq $t4,$t5,Label Next instruction is at Label
if ($t4=$t5)

 j Label Next instruction is at Label

Formats:

Could specify a register (like lw and sw) and add it
to address.

– use Instruction Address Register
(i.e. PC: program counter)

– most branches are local
(principle of locality)

Jump instructions just use high order bits of PC
address boundaries of 256 MB

op rs rt 16 bit address

op 26 bit address
I

J

op rs rt 16 bit address

op 26 bit address
I

J

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 30

MIPS Instruction Formats

rs (Source Register): generally used to specify
register containing first operand
rt (Target Register): generally used to specify
register containing second operand (note that name
is misleading and some cases as dest. reg. address)
rd (Destination Register): generally used to specify
register which will receive result of computation

R-format: used for all other instructions
It will soon become clear why the instructions
have been partitioned in this way.

Define “fields” of the following number of bits
each: 6 + 5 + 5 + 5 + 5 + 6 = 32

opcode rs rd immediate

opcode rs rt rd funct shamt R
I
J target address opcode

6 5 5 5 6 5

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 31

Instruction R-Format

MIPS Instruction: add $8, $9, $10
Decimal number per field representation:

Binary number per field representation:

Hex representation: 012A 4020hex
Decimal representation: 19,546,144ten

Which instruction has same representation as 35?

A. add $0, $0, $0
B. subu $s0,$s0,$s0
C. lw $0, 0($0)
D. addi $0, $0, 35
E. subu $0, $0, $0

0 9 10 8 32 0

000000 01001 01010 01000 100000 00000
hex

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 32

Instruction Format

Which instruction has same representation as 35?

 add $0, $0, $0
 subu $s0,$s0,$s0
 lw $0, 0($0)
 addi $0, $0, 35
 subu $0, $0, $0

0: $0, 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7
 add: opcode = 0, funct = 32
 subu: opcode = 0, funct = 35
 addi: opcode = 8
 lw: opcode = 35

 add $0, $0, $0
 subu $s0,$s0,$s0
 lw $0, 0($0)
 addi $0, $0, 35
 subu $0, $0, $0

 opcode

rs rd offset

rd funct shamt opcode rs rt

 opcode

rs

rd immediate

rd funct shamt

opcode

rs

rt

rd funct shamt

opcode

rs rt

 35

0

0

 0

0

32

0

0 0

0

 8

0

0

 35

16

35

0

0

16 16

0

35

0

0

0

0

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 33

Instruction J-Format

J-format: used for j and jal
Define “fields” of the following number of bits each:

New PC = { PC[31..28], target address, 00 }
Understand where each part came from!

{ 4 bits , 26 bits , 2 bits } = 32 bit address
{ 1010, 11111111111111111111111111, 00 }
 = 10101111111111111111111111111100

Procedure Call: Jump & link (jal proc_lab)
 Put the return addr (next inst address)

 into link register, ra ($31)
 jump to next instruction

Procedure Return: Jump register (jr $ra)
 Copies $ra to program counter
 Can also be used for computed jumps

e.g. for case/switch statements

6

26

opcode target

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 34

Addresses in Branches and Jumps

Instructions:

bne $t4, $t5, Label Next instruction is at Label
if ($t4 != $t5)

beq $t4,$t5,Label Next instruction is at Label
if ($t4=$t5)

 j Label Next instruction is at Label
Formats:

Could specify a register (like lw and sw) and add it
to address.

– use Instruction Address Register
(i.e. PC: program counter)

– most branches are local
(principle of locality)

Jump instructions just use high order bits of PC
address boundaries of 256 MB

op rs rt 16 bit address

op 26 bit address
I

J

op rs rt 16 bit address

op 26 bit address
I

J

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 35

Instruction I-Format

I-format: used for instructions with
immediates, lw and sw (since the offset counts as
an immediate), and the branches (beq and bne)

Chances are that addi, lw, sw and slti will use
immediates small enough to fit in the immediate
field. …but what if it’s too big?
We need a way to deal with a 32-bit immediate in
any I-format instruction.

Solution:
Handle it in software + new instruction
Don’t change the current instructions: instead, add
a new instruction to help out
 lui register, immediate.

stands for Load Upper Immediate
• Takes 16-bit immediate and puts these bits in the

upper half (high order half) of the specified register
• sets lower half to 0s

opcode rs rt immediate

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 36

Constants

Small constants are used quite frequently
(50% of the operands are constants)

 e.g. A = A + 5; B = B + 1; C = C - 18;

Solutions? Why not?
– put 'typical constants' in memory and load them.
– create hard-wired registers (like $zero) for

constants like one.

MIPS Instructions:
 addi $29, $29, 4
 slti $8, $18, 10
 andi $29, $29, 6
 ori $29, $29, 4

How to make this work?

How about larger constants?

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 37

Large Constants

• We'd like to be able to load a 32 bit constant

into a register
• Must use two instructions, new "load upper

immediate" instruction.

 lui $t0, 1010101010101010

Then must get the lower order bits right, i.e.

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

filled with zeros

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 38

Assembly Language vs.
Machine Language

Assembly provides a convenient symbolic
representation.

– much easier than writing down numbers
– e.g. destination first

Machine language is the underlying reality

– e.g. destination is no longer first

Assembly can provide 'pseudo-instructions'

– e.g., “move $t0, $t1” exists only in Assembly
– would be implemented using

“add $t0,$t1,$zero”

When considering performance you should
count the real instructions.

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 39

Switch Statement

Choose among four alternatives depending on
whether k has the value 0, 1, 2 or 3. Compile the
following C code manually:

switch (k) {
 case 0: f = i+j; break;
 case 1: f = g+h; break;
 case 2: f = g–h; break;
 case 3: f = i–j; break;
}

Rewrite it as a chain of if-else statements, which
we already know how to compile:

if (k = = 0) f = i+j;
 else if (k = = 1) f = g+h;
 else if (k = = 2) f = g–h;
 else if (k = = 3) f = i–j;

Using the following mapping:
 f:$s0, g:$s1, h:$s2,
 i:$s3, j:$s4, k:$s5

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 40

Switch Statement

Final compiled MIPS code:

 bne $s5, $0, L1
 add $s0, $s3, $s4
 j Exit

L1: addi $t0, $s5, -1
 bne $t0, $0, L2
 add $s0, $s1, $s2
 j Exit

L2: addi $t0, $s5, -2
 bne $t0, $0, L3
 sub $s0, $s1, $s2
 j Exit

L3: addi $t0, $s5, -3
 bne $t0, $0, Exit
 sub $s0, $s3, $s4
Exit:

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 41

Function/Procedure Call

Registers play a major role in keeping track of
information for function calls.

MIPS CPU Registers
The constant 0 $0 $zero
Reserved for Assembler $1 $at
Return Values $2-$3 $v0-$v1
Arguments $4-$7 $a0-$a3
Temporary $8-$15 $t0-$t7
Saved $16-$23 $s0-$s7
More Temporary $24-$25 $t8-$t9
Used by Kernel $26-27 $k0-$k1
Global Pointer $28 $gp
Stack Pointer $29 $sp
Frame Pointer $30 $fp
Return Address $31 $ra

... sum(a, b); ... // a, b: $s0,$s1
 int sum(int x, int y) {
 return x + y;
 }

1000 add $a0,$s0,$zero
1004 add $a1,$s1,$zero
1008 addi $ra,$zero,1016
1012 j sum
1016 ...

2000 sum: add $v0,$a0,$a1
2004 jr $ra

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 42

Another Procedure Call

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 43

Function/Procedure Call

Why use jr here? Why not simply use j?

Procedure return: jump register
 jr $ra

Copies $ra to program counter
Can also be used for computed jumps

e.g. for case/switch statements

Procedure call: jump and link
jal Procedure-Label

Address of following instruction put in $ra

Jumps to target address

Single instruction to jump and save return address:
jump and link (jal)
With jr $ra as part of sum

1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #goto sum with jal

1008 jal sum # $ra=1012,goto sum

Why have a jal?

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 44

Function/Procedure Call Support

 Syntax for jal (jump link) is same as for
 j (jump): jal label

jal should really be called “link and jump”:

Step 1 (link): Save address of next instruction into $ra
(Why next instruction? Why not current one?)
Step 2 (jump): Jump to the given label

Nested Procedures call other procedures
For nested call, caller needs to save on the stack:
Its return address
Arguments and temporaries needed after the call
Restore from the stack after the call

C code:

int fact (int n)
{
 if (n < 1) return f;
 else return n * fact(n - 1);
}

Argument n in $a0
Result in $v0

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 45

Nested Procedure Call Support

MIPS code:

fact:
addi $sp, $sp, -8 :adjust stack for 2 items
sw $ra, 4($sp) :save return address
sw $a0, 0($sp) : save argument
slti $t0, $a0, 1 : test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 :yes, result is 1
addi $sp, $sp, 8 : pop 2 items from
jr $ra : stack and return

L1:

addi $a0, $a0, -1 : else decrement n
jal fact : recursive call
lw $a0, 0($sp) :restore original n
lw $ra, 4($sp) :and return address
addi $sp, $sp, 8 : pop 2 items from stack
mul $v0, $a0, $v0 : multiply to get
jr $ra :result and return

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 46

 Other Issues

Things we are not going to cover

Support for procedures, linkers, loaders, memory
layout, stacks, frames, recursion, manipulating
strings and pointers, interrupts and exceptions.
system calls and conventions.

Some of these we'll talk about later
We've focused on architectural issues
– basics of MIPS assembly & machine language
– We’ll build a processor to execute some of

these instructions.

Overview of MIPS-Processor ISA
• Simple instructions all 32 bits wide.
• Very structured, no unnecessary baggage.
• only three instruction formats.

• rely on compiler to achieve performance
 what are the compiler's goals?

• help compiler where we can.

op rs rt rd shamt funct
op rs rt 16 bit address

op 26 bit address

R

I

J

op rs rt rd shamt funct
op rs rt 16 bit address

op 26 bit address

R

I

J

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 47

 MIPS Arithmetic Instructions

jump, branch, compare instructions

Instruction Example Meaning Comments
add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible
subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible
add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible
add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions
subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions
add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions
multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product
divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder

Hi = $2 mod $3
divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder

Hi = $2 mod $3
Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi
Move from Lo mflo $1 $1 = Lo Used to get copy of Lo

Instruction Example Meaning
branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch
branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100

Not equal test; PC relative
set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; 2’s comp.
set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp.
set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; natural numbers
set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; natural numbers
jump j 10000 go to 10000

Jump to target address
jump register jr $31 go to $31

For switch, procedure return
jump and link jal 10000 $31 = PC + 4; go to 10000

For procedure call

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 48

To summarize:

MIPS operands
Name Example Comments

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform
32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 49

Alternative Architectures

Design alternative:
• provide more powerful operations
• goal is to reduce number of instructions to be

executed
• danger is a slower cycle time and/or a higher

CPI.

Sometimes referred to as “RISC vs. CISC”
architecture
• virtually all-new instruction sets since 1982

have been RISC.
• VAX: minimize code size, make assembly

language easy.

 instructions from 1 to 54 bytes long!

We’ll look at PowerPC

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 50

PowerPC

Indexed addressing

– example: lw $t1, $a0+$s3
$t1 <= Memory[$a0+$s3]

– What do we have to do in MIPS?

Update addressing
– update a register as part of load

(for marching through arrays)

– example: lwu $t0,4($s3)
$t0 <= Memory[$s3+4]

 $s3=$s3+4

– What do we have to do in MIPS?

Others:

– load multiple/store multiple words
– a special counter register “bc Loop”

– decrement counter, if not 0 goto loop

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 51

ARM & MIPS Similarities

ARM: the most popular embedded CPU core.
ARM and MIPS CPUs have a similar basic set of
instructions.

Compare and Branch in ARM
Uses condition codes for result of an arithmetic or
logical instruction

Compare instructions to set condition codes without
keeping the result
Each instruction can be conditional

• Top 4 bits of instruction word: condition value
Can avoid branches over single instructions

3 9 Data addressing

Mem-mapped Mem-mapped Input/output
31 × 32-bit 15 × 32-bit Registers

Aligned Aligned Data alignment
32-bit flat 32-bit flat Address space

32 bits 32 bits Instruction size
1985 1985 Date announced
MIPS ARM

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 52

Compare and Branch in ARM

• Uses condition codes for result of an arithmetic
or logical instruction.

 Negative, zero, carry & overflow
• Compare instructions to set condition codes

without keeping the result.
• Each instruction can be conditional.
• Top 4 bits of instruction word has the condition

value. It can avoid branches over single instr.

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 53

The Intel x86 ISA

Evolution and backward compatibility
• 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairs
• 8086 (1978): 16-bit extension to 8080

 Complex instruction set (CISC)
• 8087 (1980): floating-point coprocessor

 Adds FP instructions and register stack
• 80286 (1982): 24-bit addresses, MMU

 Segmented memory mapping and protection
• 80386 (1985): 32-bit extension (IA-32)

 Additional addressing modes and operations
 Paged memory mapping as well as segments

• i486 (1989): pipelined, on-chip caches/FPU
 Compatible competitors: AMD, Cyrix, …

• Pentium (1993): super-scalar, 64-bit datapath
 Later versions added MMX instructions
 The infamous FDIV bug

• Pentium Pro (1995), Pentium II (1997)
 New micro-architecture

• Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and

associated registers
• Pentium 4 (2001)
 New micro-architecture & added SSE2 instructions

• i3, i5, i7 (2008)

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 54

Basic x86 Registers
80386 Register Set

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 55

x86 Instruction Formats

Variable length encoding
• Postfix bytes specify addressing mode
• Prefix bytes modify operation

 Operand length, repetition, locking, …

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 56

Implementing IA-32

• Complex instruction set makes
implementation difficult
♦ Hardware translates instructions to simpler

micro-operations
 Simple instructions: 1–1
 Complex instructions: 1–many

♦ Micro-engine similar to RISC
♦ Market share makes it economically viable

• Comparable performance to RISC
♦ Compilers avoid complex instructions

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 57

Typical Instructions of IA-32

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 58

Fallacies

• Powerful instruction ⇒
 Higher Performance

♦ Fewer instructions required
♦ But complex instructions are hard to implement

 May slow down all instructions, including
simple ones

♦ Compilers are good at making fast code from
simple instructions

• Use assembly code for high performance

♦ But modern compilers are better at dealing with
modern processors

♦ More lines of code ⇒ more errors and less
productivity

© G. Khan Computer Organization & Architecture – COE608: ISA and IS Design Page: 59

Summary

Instruction complexity is only one variable.

Lower instruction count vs. higher CPI and
lower clock rate

Design Principles:
• simplicity favors regularity
• smaller is faster
• good design demands compromise
• make the common case fast

Instruction set architecture

– A very important abstraction indeed!

