
11998 Morgan Kaufmann Publishers

Chapter 3
MIPS Assembly Language

21998 Morgan Kaufmann Publishers

Review

• MIPS instruction:fixed instruction size(32bit) and 3 simple formats
• bne or beq: R type or I-type?
• Using slt and beq to simulate ‘branch if less than’
• pseudo instruction

31998 Morgan Kaufmann Publishers

Compiling a While Loop

• C Source Code:

assuming that I,j,k corresponds to $s3,$s4,$s5 and the base address
of the array save is in $s6 (How is this example different from the
previous ones?)

• MIPS assembly code:

while (save[i] == k) i=i+j;

Loop: add $t1,$s3,$s3 #reg $t1 = 2*i
add $t1,$t1,$t1 #reg $t1 = 4*i
add $t1,$t1,$s6 #$t1 = address of save[i]
lw $t0,0($t1) #$t0 = save[i]
bne $t0,$s5, Exit # goto Exit if save[i]!=k
add $s3,$s3,$s4 # i= i + j
j Loop # goto Loop

Exit:

41998 Morgan Kaufmann Publishers

Another Example

• See page 126 of text.
• The loop modifies I, we must multiply its value by 4 each time

through the loop.
• Exists a more efficient method (See section 3.11, the pointer version)

51998 Morgan Kaufmann Publishers

Case/Switch Statement

• C source code:

• What is the MIPS assembly code assuming f-k correspond to
registers $s0-$s5 and $t2 contains 4 and $t4 contains base address
of JumpTable?

switch(k){
case 0: f=i+j;break;
case 1: f=g+h;break;
case 2: f=g-h;break;
case 3: f=i-j;break;
}

61998 Morgan Kaufmann Publishers

MIPS Assembly Code for Case/Switch

Slt $t3,$s5,$zero # test if k<0
bne $t3,$zero,Exit # go to Exit if k<0
slt $t3,$s5,$t2 # test if k<4
beq $t3,$zero,Exit # go to Exit if k>=4
add $t1,$s5,$s5 #$t1 =2*k
add $t1,$t1,$t1 #$t1 =4*k
add $t1,$t1,$t4 #$t1=address of JumpTable[k]
lw $t0,0($t1) #$to=JumpTable[k]
jr $t0 #jump based on register $t0
L0: add $s0,$s3,$s4

j Exit
L1: add $s0,$s1,$s2

j Exit
L2: sub $s0,$s1,$s2

j Exit
L3: sub $s0,$s3,$s4
Exit:

71998 Morgan Kaufmann Publishers

Supporting Procedures

• Basic steps:
– Place parameters in a place where the procedure can access

them
– Transfer control to the procedure
– Acquire the storage resources needed for the procedure
– Perform desired task
– Place the result in a place where the calling program can access

it
– Return control to the point of origin

81998 Morgan Kaufmann Publishers

Registers for Procedure Calling

• $a0-$a3: four argument registers
• $v0-$v1: two value registers
• $ra: return address register

• jump-and-link: jal ProcedureAddress
• jal instruction actually saves PC+4 in the register $ra
• return jump: jr $ra

91998 Morgan Kaufmann Publishers

Using more registers

• What if more than four arguments and two return values are needed?
• Spill register to memory
• use a stack data structure (last-in-first-out) to do this
• that’s why there is another register called $sp (stack pointer)
• Example on page 134 of text shows how a procedure call works.
• Nested procedures.

101998 Morgan Kaufmann Publishers

Procedure Frame

• The segment of the stack containing a procedure’s saved registers
and local variables is called a procedure frame.

• Some MIPS software uses a frame pointer ($fp) to point to the first
word of the frame of a procedure. (more stable)

Saved argument
registers (if any)

Local arrays and
structures (if any)

Saved saved
registers (if any)

Saved return address

b.

$sp

$sp

$sp

c.

$fp

$fp

$fp

a.

High address

Low address

111998 Morgan Kaufmann Publishers

MIPS Register Convention

Name Reg# Usage Preserved on call?
$zero 0 the constant value 0 n.a.
$v0-$v1 2-3 values for results no
$a0-$a3 4-7 arguments yes
$t0-$t7 8-15 temporaries no
$s0-$s7 16-23 saved yes
$t8-$t9 24-25 more temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address yes

Register 1, $at is reserved for assembler, registers 26-27,
called $k0-$k1, is reserved for the operating system.

121998 Morgan Kaufmann Publishers

Beyond Numbers

• ASCII code
• Loading and saving bytes:

• Example: strcpy (page 143)

lb $t0,0($sp) # Read byte from source

sb $t0,0($gp) # Write byte to dest.

131998 Morgan Kaufmann Publishers

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 != $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

• Formats:

• Addresses are not 32 bits
— How do we handle this with load and store instructions?

 op rs rt 16 bit address

 op 26 bit address
I

J

Addresses in Branches and Jumps

141998 Morgan Kaufmann Publishers

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4!=$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use upper 4 bits of PC
– address boundaries of 256 MB

 op rs rt 16 bit addressI

Addresses in Branches

151998 Morgan Kaufmann Publishers

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load w ord lw $s1, 100($s2) $s1 = Memory[$s2 + 100]Word from memory to register
store w ord sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100]Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper
immediate

lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For sw itch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

161998 Morgan Kaufmann Publishers

MIPS Addressing Mode

• Register addressing: operand is a register
• Base or displacement addressing: example: lw $t0,1200($t1)
• Immediate addressing: addi
• PC-relative addressing: address is the sum of the PC and a constant

in the instruction (conditional branch)
• Pseudodirect addressing: the jump address is the 26 bits of the

instruction concatenated with the upper bits of the PC (jump)

171998 Morgan Kaufmann Publishers

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

MIPS Addressing Mode (Cont’d)

181998 Morgan Kaufmann Publishers

Decoding Machine Code

• With the help of Figure 3.18, you should be able to decode the
following code:

0000 0000 1010 1111 1000 0000 0010 0000

• add $s0,$a1,$t7

191998 Morgan Kaufmann Publishers

Starting a Program

Assembler

Assembly language program

Compiler

C program

Linker

Executable: Machine language program

Loader

Memory

Object: Machine language module Object: Library routine (machine language)

201998 Morgan Kaufmann Publishers

Using PCSPIM For Windows

• Messages: SPIM messages
• Text Segments (instruction)
• Data Segments: displays the data load to the program’s memory and

data on the program’ stack.
• Registers
• Console

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20

