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Foreword

The MIPS architecture was born in the early 1980s from the work done by
John Hennessy and his students at Stanford University. They were exploring

the architectural concept of RISC (Reduced Instruction Set Computing), which
theorized that relatively simple instructions, combined with excellent compilers
and hardware that used pipelining to execute the instructions, could produce
a faster processor with less die area. The concept was so successful that MIPS
Computer Systems was formed in 1984 to commercialize the MIPS architecture.

Over the course of the next 14 years, the MIPS architecture evolved in a
number of ways and its implementations were used very successfully in work-
station and server systems. Over that time, the architecture and its implementa-
tions were enhanced to support 64-bit addressing and operations, support for
complex memory-protected operating systems such as UNIX, and very high
performance floating point. Also in that period, MIPS Computer Systems was
acquired by Silicon Graphics and MIPS processors became the standard for
Silicon Graphics computer systems. With 64-bit processors, high-performance
floating point, and the Silicon Graphics heritage, MIPS processors became the
solution of choice in high-volume gaming consoles.

In 1998, MIPS Technologies emerged from Silicon Graphics as a stand-
alone company focused entirely on intellectual property for embedded markets.
As a result, the pace of architecture development has increased to address the
unique needs of these markets: high-performance computation, code compres-
sion, geometry processing for graphics, security, signal processing, and multi-
threading. Each architecture development has been matched by processor core
implementations of the architecture, making MIPS-based processors the
standard for high-performance, low-power applications.

The MIPS legacy in complex systems such as workstations and servers
directly benefits today’s embedded systems, which have, themselves, become
very complex. A typical embedded system is composed of multiple process-
ing elements, high-performance memory, and one or more operating systems.
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vi Foreword

When compared with other embedded architectures, which are just now
learning what is required to build a complex system, the MIPS architecture
provides a proven base on which to implement such systems.

In many ways, the first edition of See MIPS Run was a ground-breaking book
on the MIPS architecture and its implementations. While other books cov-
ered similar material, See MIPS Run focused on what the programmer needed
to understand of the architecture and the software environment in order to
effectively program a MIPS chip.

Increasing complexity of embedded systems has been matched by enhance-
ments to the MIPS architecture to address the needs of such systems. The
second edition of this book is required reading for any current developer of
MIPS-based embedded systems. It adds significant new material, including the
architectural standardization of the MIPS32 and MIPS64 architectures,
brand new application-specific extensions such as multithreading, and a very
nice treatment of the implementation of the popular Linux operating system
on the MIPS architecture. Short of the MIPS architecture specifications, the
second edition of See MIPS Run is the most current description of the state of
the art of the architecture and is, bar none, the most readable.

I hope that you will find this as worthwhile and as entertaining to read
as I did.

Michael Uhler,
Chief Technology Officer, MIPS Technologies, Inc.

Mountain View, CA
May 2006
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Preface

This book is about MIPS, the cult hit from the mid-1980s’ crop of RISC CPU
designs. These days MIPS is not the highest-volume 32-bit architecture, but

it is in a comfortable second place. Where it wins, hands down, is its range of
applications. A piece of equipment built around a MIPS CPU might have cost
you $35 for a wireless router or hundreds of thousands of dollars for an SGI
supercomputer (though with SGI’s insolvency, those have now reached the end
of the line). Between those extremes are Sony and Nintendo games machines,
many Cisco routers, TV set-top boxes, laser printers, and so on.

The first edition of this book has sold close to 10,000 English copies over the
years and has been translated into Chinese. I’m pleased and surprised; I didn’t
know there were so many MIPS programmers out there.

This second edition is See MIPS Run . . . Linux. The first edition struggled
to motivate some features of the MIPS architecture, because they don’t make
sense unless you can see how they help out inside an OS kernel. But now a lot
of you have some sense of how Linux works, and I can quote its source code;
more importantly, I can refer to it knowing that those of you who get interested
can read the source code and find out how it’s really done.

So this is a book about the MIPS architecture, but the last three chapters
stroll through the Linux kernel and application-programming system to cast
light on what those weird features do. I hope Linux experts will forgive my
relative ignorance of Linux details, but the chance to go for a description of
a real OS running on a real architecture was too good to pass up.

MIPS is a RISC: a useful acronym, well applied to the common features of
a number of computer architectures invented in the 1980s, to realize efficient
pipelined implementation. The acronym CISC is vaguer. I’ll use it in a narrow
sense, for the kind of features found in x86 and other pre-1982 architectures,
designed with microcoded implementations in mind.

Some of you may be up in arms: He’s confusing implementation with archi-
tecture! But while computer architecture is supposed to be a contract with the

xv



xvi Preface

programmer about what programs will run correctly, it’s also an engineering
design in its own right. A computer architecture is designed to make for good
CPUs. As chip design becomes more sophisticated, the trade-offs change.

This book is for programmers, and that’s the test we’ve used to decide what
gets included—if a programmer might see it, or is likely to be interested, it’s
here. That means we don’t get to discuss, for example, the strange system inter-
faces with which MIPS has tortured two generations of hardware design engi-
neers. And your operating system may hide many of the details we talk about
here; there is many an excellent programmer who thinks that C is quite low
level enough, portability a blessing, and detailed knowledge of the architecture
irrelevant. But sometimes you do need to get down to the nuts and bolts—and
human beings are born curious as to how bits of the world work.

A result of this orientation is that we’ll tend to be rather informal when
describing things that may not be familiar to a software engineer—particularly
the inner workings of the CPU—but we’ll get much more terse and techni-
cal when we’re dealing with the stuff programmers have met before, such as
registers, instructions, and how data is stored in memory.

We’ll assume some familiarity and comfort with the C language. Much of
the reference material in the book uses C fragments as a way of compress-
ing operation descriptions, particularly in the chapters on the details of the
instruction set and assembly language.

Some parts of the book are targeted at readers who’ve seen some assembly
language: the ingenuity and peculiarity of the MIPS architecture shows up best
from that viewpoint. But if assembly is a closed book to you, that’s probably
not a disaster.

This book aims to tell you everything you need to know about program-
ming generic MIPS CPUs. More precisely, it describes the architecture as it’s
defined by MIPS Technologies’ MIPS32 and MIPS64—specifically, the second
release of those specifications from 2003. We’ll shorten that to “MIPS32/64.”
But this is not just a reference manual: To keep an architecture in your head
means coming to understand it in the round. I also hope the book will interest
students of programming (at college or enrolled in the school of life) who want
to understand a modern CPU architecture all the way through.

If you plan to read this book straight through from front to back, you will
expect to find a progression from overview to detail, and you won’t be disap-
pointed. But you’ll also find some progression through history; the first time
we talk about a concept we’ll usually focus on its first version. Hennessy and
Patterson call this “learning through evolution,” and what’s good enough for
them is certainly good enough for me.

We start in Chapter 1 with some history and background, and set MIPS in
context by discussing the technological concerns and ideas that were uppermost
in the minds of its inventors. Then in Chapter 2 we discuss the characteristics
of the MIPS machine language that follow from their approach.
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To help you see the big picture, we leave out the details of processor con-
trol until Chapter 3, which introduces the ugly but eminently practical system
that allows MIPS CPUs to deal with their caches, exceptions and startup, and
memory management. Those last three topics, respectively, become the sub-
jects of Chapters 4 through 6.

The MIPS architecture has been careful to separate out the part of the
instruction set that deals with floating-point numbers. That separation allows
MIPS CPUs to be built with various levels of floating-point support, from none
at all through partial implementations to somewhere near the state of the art.
So we have also separated out the floating-point functions, and we keep them
back until Chapter 7.

Up to this point, the chapters follow a reasonable sequence for getting to
know MIPS. The following chapters change gear and are more like reference
manuals or example-based tutorials.

In Chapter 8, we go through the whole machine instruction set; the inten-
tion is to be precise but much more terse than the standard MIPS reference
works—we cover in 10 pages what takes a hundred in other sources.1 Chapter 9
is a brief introduction to reading and writing assembly, and falls far short of an
assembly programming manual.

Chapter 10 is a checklist with helpful hints for those of you who have to
port software between another CPU and a MIPS CPU. The longest section
tackles the troublesome problem of endianness in CPUs, software, and systems.

Chapter 11 is a bare-bones summary of the software conventions (regis-
ter use, argument passing, etc.) necessary to produce interworking software
with different toolkits. Chapter 12 introduces the debug and profiling features
standardized for MIPS CPUs.

Then we’re on to seeing how MIPS runs GNU/Linux. We describe relation-
ship between the Linux kernel and a computer architecture in Chapter 13; then
Chapters 14 and 15 dig down into some of the detail as to how the MIPS archi-
tecture does what the Linux kernel needs. Chapter 16 gives you a quick look at
the dynamic linking magic that makes GNU/Linux applications work.

Appendix A covers the MIPS MT (multithreading) extension, probably the
most important addition to the architecture in many years. And Appendix B
describes the more important add-ons: MIPS16, the new MIPS DSP extensions,
and MDMX.

You will also find at the end of this book a glossary of terms—a good place
to look for specialized or unfamiliar usage and acronyms—and a list of books,
papers, and online references for further reading.

1. I have taken considerable care in the generation of these tables, and they are mostly right. But if
your system depends on it, be sure to cross-check this information. An excellent source of fairly
reliable information can be found in the behavior and source code of the GNU tool collection—
but I referred to that too, so it’s not completely independent.
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Style and Limits

Every book reflects its author, so we’d better make a virtue of it.
Since some of you will be students, I wondered whether I should dis-

tinguish general use from MIPS use. I decided not to; I aim to be specific
except where it costs the reader nothing to be general. I also try to be con-
crete rather than abstract. I don’t worry overmuch about whatever meaning
terms like “TLB” have in the wider industry, but I explain them in a MIPS
context. Human beings are great generalizers, and this is unlikely to damage
your learning much.

It’s 20 years since I started working with MIPS CPUs in the fall of 1986.
Some of the material in this book goes back as far as 1988, when I started giving
training courses on MIPS architecture. In 1993, I gathered them together to
make a software manual focused on IDT’s R3051 family CPUs. It took quite a
lot of extra material to create the first edition, published in 1999.

A lot has happened since 1999. MIPS is now at the very end of its life in
servers with SGI but has carved out a significant niche in embedded systems.
Linux has emerged as the most-used OS for embedded MIPS, but there’s
still a lot of diversity in the embedded market. The MIPS specifications have
been reorganized around MIPS32 and MIPS64 (which this edition regards
as the baseline). This second edition has been in the works for about three
years.

The MIPS story continues; if it did not, we’d only be writing this book for
historians, and Morgan Kaufmann wouldn’t be very interested in publishing it.
MIPS developments that weren’t announced by the end of 2005 are much too
late for this edition.

Conventions

A quick note on the typographical conventions used in this book:

Type in this font (Minion) is running text.

Type in this font (Futura) is a sidebar.

Type in this font (Courier bold) is used for assembly
code and MIPS register names.

Type in this font (Courier) is used for C code and

hexadecimals.

Type in this font (Minion italic, small) is used for hardware signal names.
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Chapter

1 RISCs and MIPS
Architectures

MIPS is the most elegant among the effective RISC architectures; even the
competition thought so, as evidenced by the strong MIPS influence to

be seen in later architectures like DEC’s Alpha and HP’s Precision. Elegance by
itself doesn’t get you far in a competitive marketplace, but MIPS microproces-
sors have generally managed to be among the most efficient of each generation
by remaining among the simplest.

Relative simplicity was a commercial necessity for MIPS Computer Sys-
tems Inc., which spun off in 1985 from an academic project to make and
market the chips. As a result, the architecture had (and perhaps still has)
the largest range of active manufacturers in the industry—working from
ASIC cores (MIPS Technologies, Philips) through low-cost CPUs (IDT, AMD/
Alchemy) to the only 64-bit CPUs in widespread embedded use (PMC-Sierra,
Toshiba, Broadcom).

At the low end the CPU has practically disappeared from sight in the
“system on a chip”; at the high end Intrinsity’s remarkable processor ran at
2 GHz—a speed unmatched outside the unlimited power/heat budget of
contemporary PCs.

ARM gets more headlines, but MIPS sales volumes remain healthy enough:
100 M MIPS CPUs were shipped in 2004 into embedded applications.

The MIPS CPU is one of the RISC CPUs, born out of a particularly fertile
period of academic research and development. RISC (Reduced Instruction Set
Computing) is an attractive acronym that, like many such, probably obscures
reality more than it reveals it. But it does serve as a useful tag for a number of
new CPU architectures launched between 1986 and 1989 that owe their remark-
able performance to ideas developed a few years earlier in a couple of seminal
research projects. Someone commented that “a RISC is any computer
architecture defined after 1984”; although meant as a jibe at the industry’s use

1
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of the acronym, the comment is also true for a technical reason—no computer
defined after 1984 can afford to ignore the RISC pioneers’ work.

One of these pioneering projects was the MIPS project at Stanford. The
project name MIPS (named for the key phrase “microcomputer without inter-
locked pipeline stages”) is also a pun on the familiar unit “millions of instruc-
tions per second.” The Stanford group’s work showed that pipelining, although
a well-known technique, had been drastically underexploited by earlier archi-
tectures and could be much better used, particularly when combined with 1980
silicon design.

1.1 Pipelines

Once upon a time in a small town in the north of England, there was Evie’s fish
and chip shop. Inside, each customer got to the head of the queue and asked for
his or her meal (usually fried cod, chips, mushy peas,1 and a cup of tea). Then
each customer waited for the plate to be filled before going to sit down.

Evie’s chips were the best in town, and every market day the lunch queue
stretched out of the shop. So when the clog shop next door shut down, Evie
rented it and doubled the number of tables. But they couldn’t fill them! The
queue outside was as long as ever, and the busy townsfolk had no time to sit
over their cooling tea.

They couldn’t add another serving counter; Evie’s cod and Bert’s chips were
what made the shop. But then they had a brilliant idea. They lengthened the
counter and Evie, Bert, Dionysus, and Mary stood in a row. As customers came
in, Evie gave them a plate with their fish, Bert added the chips, Dionysus spooned
out the mushy peas, and Mary poured the tea and took the money. The cus-
tomers kept walking; as one customer got the peas, the next was already getting
chips and the one after that fish. Less hardy folk don’t eat mushy peas—but
that’s no problem; those customers just got nothing but a vacant smile from
Dionysus.

The queue shortened and soon they bought the shop on the other side as
well for extra table space.

That’s a pipeline. Divide any repetitive job into a number of sequential parts
and arrange them so that the work moves past the workers, with each specialist
doing his or her part for each unit of work in turn. Although the total time
any customer spends being served has gone up, there are four customers being
served at once and about three times as many customers being served in that
market day lunch hour. Figure 1.1 shows Evie’s organization, as drawn by her
son Einstein in a rare visit to nonvirtual reality.2

Seen as a collection of instructions in memory, a program ready to run
doesn’t look much like a queue of customers. But when you look at it from

1. Non-English readers should probably not inquire further into the nature of this delicacy.

2. It looks to me as if Einstein has been reading books on computer science.
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FIGURE 1.1 Evie’s fish and chip shop pipeline.

the CPU’s point of view, things change. The CPU fetches each instruction from
memory, decodes it, finds any operands it needs, performs the appropriate
action, and stores any results—and then it goes and does the same thing all
over again. The program waiting to be run is a queue of instructions waiting to
flow through the CPU one at a time.

The various different jobs required to deal with each instruction already
require different specialized chunks of logic inside the CPU, so building a pipe-
line doesn’t even make the CPU much more complicated; it just makes it work
harder.

The use of pipelining is not new with RISC microprocessors. What makes
the difference is the redesign of everything—starting with the instruction set—
to make the pipeline more efficient.3 So how do you make a pipeline efficient?
Actually, that’s probably the wrong question. The right question is this: What
makes a pipeline inefficient?

1.1.1 What Makes a Pipeline Inefficient?

It’s not good if one stage takes much longer than the others. The organization
of Evie’s shop depends on Mary’s ability to pour tea with one hand while giving
change with the other—if Mary takes longer than the others, the whole queue
will have to slow down to match her.

3. The first RISC in this sense was probably the CDC6600, designed by Seymour Cray in the 1970s,
but the idea didn’t catch on at that time. However, this is straying into the history of computer
architecture, and if you like this subject you’ll surely want to read Hennessy and Patterson, 1996.
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In a pipeline, you try to make sure that every stage takes roughly the same
amount of time. A circuit design often gives you the opportunity to trade off the
complexity of logic; against its speed, and designers can assign work to different
stages: with care, the pipeline is balanced.

The hard problem is not difficult actions, it’s awkward customers. Back in
the chip shop Cyril is often short of cash, so Evie won’t serve him until Mary
has counted his money. When Cyril arrives, he’s stuck at Evie’s position until
Mary has finished with the three previous customers and can check his pile of
old bent coins. Cyril is trouble, because when he comes in he needs a resource
(Mary’s counting) that is being used by previous customers. He’s a resource
conflict.

Daphne and Lola always come in together (in that order) and share their
meals. Lola won’t have chips unless Daphne gets some tea (too salty without
something to drink). Lola waits on tenterhooks in front of Bert until Daphne
gets to Mary, and so a gap appears in the pipeline. This is a dependency (and the
gap is called a pipeline bubble).

Not all dependencies are a problem. Frank always wants exactly the same
meal as Fred, but he can follow him down the counter anyway—if Fred gets
chips, Frank gets chips.

If you could get rid of awkward customers, you could make a more efficient
pipeline. This is hardly an option for Evie, who has to make her living in a town
of eccentrics. Intel is faced with much the same problem: The appeal of its CPUs
relies on the customer being able to go on running all that old software. But with
a new CPU you get to define the instruction set, and you can define many of the
awkward customers out of existence. In section 1.2 we’ll show how MIPS did
that, but first we’ll come back to computer hardware in general with a discussion
of caching.

1.1.2 The Pipeline and Caching

We said earlier that efficient pipeline operation requires every stage to take the
same amount of time. But a 2006 CPU can add two 64-bit numbers 50 to 100
times quicker than it can fetch a piece of data from memory.

So effective pipelining relies on another technique to speed most mem-
ory accesses by a factor of 50—the use of caches. A cache is a small, very
fast, local memory that holds copies of memory data. Each piece of data is
kept with a record of its main memory address (the cache tag) and when
the CPU wants data the cache gets searched and, if the requisite data is
available, it’s sent back quickly. Since we’ve no way to guess what data the
CPU might be about to use, the cache merely keeps copies of data the
CPU has had to fetch from main memory in the recent past; data is dis-
carded from the cache when its space is needed for more data arriving from
memory.

Even a simple cache will provide the data the CPU wants more than 90 per-
centage of the time, so the pipeline design needs only to allow enough time to
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FIGURE 1.2 MIPS five-stage pipeline.

fetch data from the cache; a cache miss is a relatively rare event and we can just
stop the CPU when it happens (though cleverer CPUs find more useful things
to do).

The MIPS architecture was planned with separate instruction and data
caches, so it can fetch an instruction and read or write a memory variable simul-
taneously.

CISC architectures have caches too, but they’re most often afterthoughts,
fitted in as a feature of the memory system. A RISC architecture makes more
sense if you regard the caches as very much part of the CPU and tied firmly into
the pipeline.

1.2 The MIPS Five-Stage Pipeline

The MIPS architecture is made for pipelining, and Figure 1.2 is close to the
earliest MIPS CPUs and typical of many. So long as the CPU runs from the
cache, the execution of every MIPS instruction is divided into five phases, called
pipestages, with each pipestage taking a fixed amount of time. The fixed amount
of time is usually a processor clock cycle (though some actions take only half
a clock, so the MIPS five-stage pipeline actually occupies only four clock
cycles).

All instructions are rigidly defined so they can follow the same sequence
of pipestages, even where the instruction does nothing at some stage. The net
result is that, so long as it keeps hitting the cache, the CPU starts an instruction
every clock cycle.
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Let’s look at Figure 1.2 and consider what happens in each pipestage.

IF (instruction fetch) Gets the next instruction from the instruction cache
(I-cache).

RD (read registers) Fetches the contents of the CPU registers whose num-
bers are in the two possible source register fields of the instruction.

ALU (arithmetic/logic unit) Performs an arithmetical or logical operation in
one clock cycle (floating-point math and integer multiply/divide can’t
be done in one clock cycle and are done differently, but that comes
later).

MEM Is the stage where the instruction can read/write memory variables in
the data cache (D-cache). On average, about three out of four instruc-
tions do nothing in this stage, but allocating the stage for each instruc-
tion ensures that you never get two instructions wanting the data cache
at the same time. (It’s the same as the mushy peas served by
Dionysus.)

WB (write back) Stores the value obtained from an operation back to the
register file.

You may have seen other pictures of the MIPS pipeline that look slightly
different; it has been common practice to simplify the picture by drawing each
pipestage as if it takes exactly one clock cycle. Some later MIPS CPUs have
longer or slightly different pipelines, but the pipeline with five stages in four
cycles is where the architecture started, and something very like it is still used
by the simpler MIPS CPUs.

The tyranny of the rigid pipeline limits the kinds of things instructions can
do. First, it forces all instructions to be the same length (exactly one machine
word of 32 bits), so that they can be fetched in a constant time. This itself dis-
courages complexity; there are not enough bits in the instruction to encode
really complicated addressing modes, for example. And the fixed-size instruc-
tions directly cause one problem; in a typical program built for an architecture
like x86, the average size of instructions is only just over three bytes. MIPS code
will use more memory space.

Second, the pipeline design rules out the implementation of instructions
that do any operation on memory variables. Data from cache or memory is
obtained only in phase 4, which is much too late to be available to the ALU.
Memory accesses occur only as simple load or store instructions that move
the data to or from registers (you will see this described as a load/store
architecture).

The RISC CPUs launched around 1987 worked because the instruction sets
designed around those restrictions prove just as useful (particularly for com-
piled code) as the complicated ones that give so much more trouble to the
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hardware. A 1987 or later RISC is characterized by an instruction set designed
for efficient pipelining and the use of caches.

The MIPS project architects also attended to the best thinking of the time
about what makes a CPU an easy target for efficient optimizing compilers. Many
of those requirements are quite compatible with the pipeline requirements, so
MIPS CPUs have 32 general-purpose registers and three-operand arithmeti-
cal/logical instructions. Happily, the complicated special-purpose instructions
that particularly upset pipelines are often those that compilers are unwilling to
generate.

The RISC pioneers’ judgment has stood the test of time. More recent
instruction sets have pushed the hardware/software line back even further;
they are called VLIW (very long instruction word) and/or EPIC (explicitly
parallel instruction computing). The most prominent is Intel’s IA64 architec-
ture, but it has not succeeded despite massive investment; it appears to have
got the hardware/software boundary wrong.

1.3 RISC and CISC

We can now have a go at defining what we mean by these overused terms.
For me, RISC is an adjective applied to machine architectures/instruction
sets. In the mid-1980s, it became attached to a group of relatively new
architectures in which the instruction set had been cunningly and effectively
specified to make pipelined implementations efficient and successful. It’s a
useful term because of the great similarity of approach apparent in SPARC,
MIPS, PowerPC, HP Precision, DEC Alpha, and (to a lesser extent) in ARM.

By contrast to this rather finely aimed description, CISC (Complex Instruc-
tion Set Computing) is used negatively to describe architectures whose defini-
tion has not been shaped by those insights about pipelined implementations.
The RISC revolution was so successful that no post-1985 architecture has aban-
doned the basic RISC principles;4 thus, CISC architectures are inevitably those
born before 1985. In this book you can reasonably assume that something said
about CISC is being said to apply to both Intel’s x86 family and Motorola’s
680x0.

Both terms are corrupted when they are applied not to instruction sets but
to implementations. It’s certainly true that Intel accelerated the performance of
its far-from-RISC x86 family by applying implementation tricks pioneered by
RISC builders. But to describe these implementations as having a RISC core is
misleading.

4. Even Intel’s complex and innovation-packed IA64 shares some RISC pipeline-friendly features.
But the adjective EPIC—as used by Intel—nicely captures both their boundless ambition and
the possibility of a huge flop.
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1.4 Great MIPS Chips of the Past and Present

It’s time to take a tour through the evolution of MIPS processors and the systems
that use them, over the span of the past 20 years or so. We’ll look at events in
the order they occurred, roughly speaking, with a few scenic detours. Along the
way, we’ll see that although the MIPS architecture was originally devised with
UNIX workstations in mind, it has since found its way into all sorts of other
applications—many of which could hardly have been foreseen during the early
years. You’ll get to know some of these names much better in the chapters that
follow.

And although much has happened to the instruction set as well as the sil-
icon, the user-level software from a 1985 R2000 would run perfectly well and
quite efficiently on any modern MIPS CPU. That’s possibly the best backward-
compatibility achievement of any popular architecture.

1.4.1 R2000 to R3000 Processors

MIPS Becomes a Corporation

MIPS Computer Systems Inc. was formed in 1984 to commercialize the work
of Stanford University’s MIPS CPU group; we’ll abbreviate the name to “MIPS
Inc.” Stanford MIPS was only one of several U.S. academic projects that were
bringing together chip design, compiler optimization, and computer architec-
ture in novel ways with great success. The commercial MIPS CPU was enhanced
with memory management hardware and first appeared late in 1985 as the
R2000.

Chip fabrication plants were very expensive to set up even during the mid-
1980s; they were certainly beyond the means of a small start-up company. MIPS
got its designs into production by licensing them to existing semiconductor
vendors who’d already committed the sizable investments required. Early
licensees included Integrated Device Technology (IDT), LSI Logic, Performance
Semiconductor, and NEC.

An ambitious external math coprocessor chip (the R2010 floating-point
accelerator, or FPU) first shipped in mid-1987. Since MIPS was intended to
serve the vigorous market for engineering workstations, good floating-point
performance was important, and the R2010 delivered it.

MIPS itself bought some of the devices produced by those vendors, incor-
porating them into its own small servers and workstations. The vendors were
free under their licensing agreements to supply the devices to other
customers.

The R3000 Processor

First shipped in 1988–1989, this took advantage of a more advanced manu-
facturing process along with some well-judged hardware enhancements, which
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combined to give a substantial boost to performance. From the programmer’s
point of view, the R3000 was almost indistinguishable from the R2000, which
meant the speed of this new design could be unleashed immediately on the
rapidly growing base of MIPS software. It was soon joined by the R3010 FPU—a
similarly improved version of its predecessor.

By the beginning of the 1990s, a few pioneers were using the R3000 in
embedded applications, beginning with high-performance laser printers and
typesetting equipment.

The R2000/R3000 chips include cache controllers—to get a cache, just add
commodity static RAMs. The FPU shared the cache buses to read instructions
(in parallel with the integer CPU) and to transfer operands and results. At 1986
speeds, this division of function was ingenious, practical, and workable; impor-
tantly, it held the number of signal connections on each device within the pin
count limitations of the pin-grid array packages commonly used at the time.
This made it possible to produce the devices at reasonable cost and also to
assemble them into systems using existing manufacturing equipment.

The Challenges of Raising the Clock Rate

Although it made good sense at the time of its introduction, difficulties even-
tually arose centering on the partitioning of functions among the R3000, the
R3010 FPU, and the external caches.

First, the R3000’s external cache implementation led indirectly to some
tricky problems for system designers. To squeeze as much performance as pos-
sible from the external cache RAMs, their control signals had to be switched at
very short, very precisely defined time intervals. The responsibility for imple-
menting the precision delays was passed along to the system designer: the R3000
required four externally generated copies of the input clock, separated by phase
shifts that defined the time intervals essential to correct management of the
cache control signals. At 20 MHz that was manageable, but as clock speeds rose
through 30 MHz and above, the relentless tightening of the accuracy require-
ments made the task much harder.

Second, the pressure to increase system clock rates also led to problems for
the RAM vendors: To keep pace with shrinking cycle times at the processor pipe-
line, they had to find ways to achieve corresponding improvements in the access
time of the memory devices.

All these difficulties became increasingly apparent as the 1980s drew to a
close and limited the designs of this generation to a modest rate of improve-
ment. Starting at 25 MHz in 1988, R3000 systems eventually reached 40 MHz
in 1991—and they weren’t going any faster.

1.4.2 The R6000 Processor: A Diversion

The late 1980s saw lively debates among processor designers about the best
way to increase microprocessor clock rates. Two subjects in particular came
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to the fore. First: Would it be better for future processor designs to keep
the cache implementation external, or to bring the caches on-chip? Second:
Which logic technology would be the most advantageous choice for future
designs?

The first-generation RISC CPUs were built using CMOS chips. They ran
cool and packed a lot of logic into a small space, and all low-cost (pre-RISC)
microprocessors used CMOS. CMOS proponents thought they had an advan-
tage for many years to come. Yes, CMOS logic was not the fastest, but that
would get fixed—the necessary investment would certainly be forthcoming
from companies like Intel. And they argued that CMOS would get even bet-
ter at the things it already did well—packing even more logic into a given
silicon area and switching at even higher frequency within a given power
budget.

Other designers knew how compelling speed was for CPUs, and they con-
cluded that high-end processors would be better off using ECL chips like those
that were already used for mainframe and supercomputer CPUs. Simple ECL
logic gates were faster, and it was much faster at sending signals between chips.
But you got less logic into a single chip, and it ran much hotter.

Since the two technologies faced such different challenges, it was very dif-
ficult to predict which one was the more likely to emerge as the eventual win-
ner. Among the ECL champions was Bipolar Integrated Technology (BIT), and
in 1988 it started work on a MIPS CPU called R6000. The project was ambi-
tious, and BIT hoped to redefine the performance of “super-minicomputers”
in the same way that CMOS RISC microprocessors had redefined workstation
performance.

There were problems. Because of ECL’s density limitations, the processor
design had to be partitioned into multiple devices. And customers were anx-
ious about a complete shift to ECL’s chip-to-chip signaling standards. BIT built
BiCMOS hybrids that sought to mix the best of both worlds.

In the end, the problems overwhelmed the project. The R6000 was delayed
by one problem after another, and slipped to be later than the R4000: the first of
a new generation of CMOS processors that used their greater density to move
the caches on-chip, gaining clock rate by a different route.

BiCMOS CPUs didn’t die along with BIT: A few years later, a company
named Exponential Technology made another valiant attempt, creating a
PowerPC implementation around 1996 that achieved a very impressive clock
rate for its time of over 500 MHz. Like BIT, however, the company was
eventually thwarted by a combination of technical and contractual difficulties
and went out of business.

In a really big argument, both sides are often wrong. In the end, several
more years were to pass before on-chip implementation of the caches became
essential to achieving the highest clock rate. Hewlett Packard stuck with CMOS
chips and a (large) external primary cache for its rather MIPS-like Precision
architecture. HP eventually pushed its clock rate to around 120 MHz—three
times the fastest R3000—without using ECL or BiCMOS. HP was its own
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customer for these processors, using them in its own workstations; the
company felt this market was best served by an evolutionary approach and
could bear the costs of high pin-count packages and careful high-speed system-
level design. This strategy put HP at the top of the performance stakes for a
long, long time; the winner is not always the most revolutionary.

1.4.3 The First CPU Cores

In the early 1980s, LSI Logic pioneered the idea of adapting high-volume chip
design and manufacturing techniques so that systems companies could create
devices specifically tailored to the needs of their own products. Those chips were
called Application-Specific Integrated Circuits (ASICs); by around 1990, they
could contain up to several thousand gates, equivalent to a large board full of
1970s-era logic devices. The unit cost was very low, and development costs were
manageable.

We’ve seen already that LSI took a very early interest in MIPS and made
some R2000/R3000 chips. A couple of years later, it was a natural move for the
company to create an implementation of the MIPS architecture that used its
own in-house ASIC technology; that move opened the door for customers to
include a MIPS processor within a chip that also incorporated other logic. Other
MIPS licensees, such as IDT, also began to offer products that integrated simple
peripheral functions alongside a MIPS CPU.

Even at the very beginning of the 1990s, you could easily put the basic logic
of an R3000-class CPU on an ASIC; but ASICs didn’t have very efficient RAM
blocks, so integrating the caches was a problem. But ASIC technology pro-
gressed rapidly, and by 1993 it was becoming realistic to think of implementing
an entire microprocessor system on a chip—not just the CPU and caches, but
also the memory controllers, the interface controllers, and any small miscella-
neous blocks of supporting logic.

The ASIC business depended on customers being able to take a design into
production in a relatively short time—much less than that needed to create a
chip using “custom” methods. While it was obviously attractive to offer cus-
tomers the idea of integrating a complete system on a chip, ASIC vendors had
to strike a balance: How could the inevitable increase in complexity still be
accommodated within the design cycles that customers had come to expect?

The ASIC industry’s answer was to offer useful functional elements—such
as an entire MIPS processor—in the form of cores: ready-made building blocks
that conveniently encapsulated all the necessary internal design work and ver-
ification, typically presented as a set of machine-readable files in the formats
accepted by ASIC design software. Systems designs of the future would be cre-
ated by connecting several ASIC cores together on a chip; in comparison with
existing systems—created by connecting together devices on a circuit board—
the new systems implemented as core-based ASICs would be smaller, faster, and
cheaper.
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Until this time, ASIC designers had naturally thought in terms of
combining fairly small logic blocks—state machines, counters, decoders, and
so forth. With the advent of ASIC cores, designers were invited to work with a
broader brush on a much larger canvas, bringing together processors, RAMs,
memory controllers, and on-chip buses.

If you suspect that it can’t have been that easy, you have good instincts.
It sounded compelling—but in practice, creating cores and connecting them
together both turned out to be very difficult things to do well. Neverthe-
less, these early ASIC cores are of great historical significance; they’re the
direct ancestors of the system-on-a-chip (SoC) designs that have become
pervasive during the early 2000s. We’ll take up the SoC story again a bit
later on, after we’ve followed several threads of MIPS development through
the 1990s.

1.4.4 The R4000 Processor: A Revolution

The R4000, introduced in 1991, was a brave and ground-breaking develop-
ment. Pioneering features included a complete 64-bit instruction set, the largest
possible on-chip caches (dual 8 KB), clock rates that seemed then like science
fiction (100 MHz on launch), an on-chip secondary cache controller, a system
interface running at a fraction of the internal CPU clock, and on-chip sup-
port for a shared-memory multiprocessor system. The R4000 was among the
first devices to adopt a number of the engineering developments that were to
become common by around 1995, though it’s important to note that it didn’t
take on the complexity of superscalar execution.

The R4000 wasn’t perfect. It was an ambitious chip and the design was
hard to test, especially the clever tricks used for multiprocessor support.
Compared with the R3000, it needs more clock cycles to execute a given
instruction sequence—those clock cycles are so much shorter that it ends
up well in front, but you don’t like to give performance away. To win on
clock speed the primary caches are on-chip: To keep the cost of each device
reasonable, the size of the caches had to be kept relatively small. The R4000
has a longer pipeline, mainly to spread the cache access across multiple clock
cycles. Longer pipelines are less efficient, losing time when the pipeline is
drained by a branch.

1.4.5 The Rise and Fall of the ACE Consortium

Around the time of the R4000’s introduction, MIPS had high hopes that the
new design would help it to become an important participant in the market for
workstations, desktop systems, and servers.

This wasn’t mere wishful thinking on the part of MIPS. During the early
1990s, many observers predicted that RISC processors would take an increas-
ing portion of the market away from their CISC competitors; the bolder
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prognosticators even suggested that the CISC families would die away entirely
within a few years.

In 1991, a group of about 20 companies came together to form a consortium
named the Advanced Computing Environment (ACE) initiative. The
group included DEC (minicomputers), Compaq (PCs), Microsoft, and SCO
(then responsible for UNIX System V). ACE’s goal was to define specifications
and standards to let future UNIX or Windows software drop straight onto any
of a range of machines powered by either Intel x86 or MIPS CPUs. Even in 1991,
a small percentage of the PC business would have meant very attractive sales for
MIPS CPUs and MIPS system builders.

If hype could create a success, ACE would have been a big one. But looking
back on it, Microsoft was more interested in proving that its new Windows NT
system was portable (and perhaps giving Intel a fright) than in actually breaking
up their PC market duopoly. For MIPS, the outcome wasn’t so good; chip vol-
umes wouldn’t sustain it and its systems business entered into a decline, which
before long became so serious that the future of the company was called into
question.

1.4.6 SGI Acquires MIPS

As 1992 progressed, the hoped-for flock of new ACE-compliant systems based
on MIPS processors was proving slow to materialize, and DEC—MIPS’s
highest-profile workstation user—decided that future generations of its systems
would instead use its own Alpha processor family.

That left workstation company Silicon Graphics, Inc. (SGI) as by far the
leading user of MIPS processors for computer systems. So in early 1993, SGI was
the obvious candidate to step in and rescue MIPS Inc., as a way of safeguarding
the future of the architecture on which its own business depended. By the end
of 1994, late-model R4400 CPUs (a stretched R4000 with bigger caches and
performance tuning) were running at 200–250 MHz and keeping SGI in touch
with the RISC performance leaders.

1.4.7 QED: Fast MIPS Processors for Embedded Systems

Some of MIPS Inc.’s key designers left to start a new company named Quantum
Effect Design (QED). The QED founders had been deeply involved in the design
of MIPS processors from the R2000 through R4000.

With IDT as a manufacturing partner and early investor, QED’s small team
set out to create a simple, fast 64-bit MIPS implementation. The plan was to
create a processor that would offer good performance for a reasonable selling
price, so that the device could find a home in many applications, ranging from
low-end workstations, through small servers, to embedded systems like top-of-
the-range laser printers and network routers.
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There were determined people who’d applied R4000 chips to embedded
systems, but it was a fight. QED made sure that the R4600 was much more
appealing to embedded systems designers, and the device soon became a suc-
cess. It went back to a simple five-stage pipeline and offered very competitive
performance for a reasonable price. Winning a place in Cisco routers as well as
SGI’s Indy desktops led to another first: The R4600 was the first RISC CPU that
plainly turned in a profit.

The QED design team continued to refine its work, creating the R4650 and
R4700 during the mid-1990s. We’ll take up the QED story again a little further
on, when we talk about the R5000.

1.4.8 The R10000 Processor and Its Successors

During the mid-1990s, SGI placed very high importance on high-end worksta-
tions and supercomputers. Absolute performance was a very important selling
point, and the MIPS division was called upon to meet this challenge with its
next processor design.

The SGI/MIPS R10000 was launched in early 1996. It was a major departure
for MIPS from the traditional simple pipeline; it was the first CPU to make truly
heroic use of out-of-order execution, along with multiple instruction issue.
Within a few years, out-of-order designs were to sweep all before them, and all
really high-end modern CPUs are out-of-order. But the sheer difficulty of veri-
fying and debugging the R10000 convinced both participants and observers to
conclude that it had been a mistake for SGI to undertake such an ambitious
design in-house.

SGI’s workstation business began to suffer during the latter half of the 1990s,
leading inevitably to a decline in its ability to make continuing investments in
the MIPS architecture. Even as this took place, the market for mainstream PCs
continued to expand vigorously, generating very healthy revenue streams to
fund the future development of competing architectures—most notably Intel’s
Pentium family and its descendants and, to a lesser extent, the PowerPC devices
designed by Motorola and IBM.

Against this backdrop, SGI started work on MIPS CPUs beyond the
R10000; but, because of mounting financial pressures, the projects were can-
celed before the design teams were able to complete their work. In 1998, SGI
publicly committed itself to using the Intel IA-64 architecture in its future
workstations, and the last MIPS design team working on desktop/server prod-
ucts was disbanded. In 2006 (as I write) some SGI machines are still depen-
dent on the R16000 CPU; while it takes advantage of advances in process
technology to achieve higher clock rates, the internal design has scarcely been
enhanced beyond that of the 1996 R10000. Meanwhile, IA-64 CPUs have sold
well below Intel’s most pessimistic projections, and the fastest CPUs in the
world are all variants of the x86. SGI seems to be unlucky when it comes to
choosing CPUs!
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1.4.9 MIPS Processors in Consumer Electronics

LSI Logic and the Sony PlayStation

In 1993, Sony contracted with LSI Logic for the development of the chip that
was to form the heart of the first PlayStation. Based on LSI’s CW33000 pro-
cessor core, it was clocked at 33 MHz and incorporated a number of peripheral
functions, such as a DRAM controller and DMA engine. The PlayStation’s
highly integrated design made it cheap to produce and its unprecedented CPU
power made for exciting gaming. Sony rapidly overtook more established ven-
dors to become the leading seller of video game consoles.

The Nintendo64 and NEC’s Vr4300 Processor

Nintendo game consoles lost considerable market share to Sony’s PlayStation.
In response, Nintendo formed an alliance with Silicon Graphics and decided to
leapfrog 32-bit CPU architectures and go straight for a 64-bit chip—in a $199
games machine.

The chip at its heart—the NEC Vr4300—was a cut-down R4000, but not
that cut-down. It did have a 32-bit external bus, to fit in a cheaper package with
fewer pins, and it shared logic between integer and floating-point maths. But it
was a lot of power for a $199 box.

The Vr4300’s computing power, low price, and frugal power consumption
made it very successful elsewhere, particularly in laser printers, and helped
secure another niche for the MIPS architecture in “embedded” applications.

But the Vr4300 was the last really general-purpose CPU to storm the games
market; by the late 1990s, the CPU designs intended for this market had become
increasingly specialized, tightly coupled with dedicated hardware accelerators
for 3D rendering, texture mapping, and video playback. When Sony came back
with the PlayStation 2, it had a remarkable 64-bit MIPS CPU at its heart. Built
by Toshiba, it features a floating-point coprocessor whose throughput wouldn’t
have disgraced a 1988 supercomputer (though its accuracy would have been a
problem). It has proven too specialized to find applications outside the games
market, but a version of the same CPU is in Sony’s PSP handheld games console,
which will certainly be with us for a few years to come.

Cumulative sales of these video game consoles worldwide is well into the
tens of millions, accounting for a larger volume of MIPS processors than any
other application—and also causing them to outsell a good many other CPU
architectures.

1.4.10 MIPS in Network Routers and Laser Printers

The R5000 Processor

Following the success of the R4600 and its derivatives, QED’s next major design
was the R5000. Launched in 1995—the same year as SGI’s R10000—this
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was also a superscalar implementation, though in terms of general design
philosophy and complexity, the two designs stood in stark contrast to each other.

The R5000 used the classic five-stage pipeline and issued instructions
in-order. It was capable, however, of issuing one integer instruction and one
floating-point instruction alongside each other. The MIPS architecture makes
this scheme relatively easy to implement; the two instruction categories use sep-
arate register sets and execution units, so the logic needed to recognize oppor-
tunities for dual issue doesn’t have to be very complicated.

Of course, the other side of the same coin is that the performance gain is
relatively modest. Unless the R5000 is used in a system that runs a significant
amount of floating-point computation, the superscalar ability goes unused.
Even so, the R5000 incorporated other improvements that made it appealing
to system designers as an easy upgrade from the R4600 generation.

QED Becomes a Fabless Semiconductor Vendor

During the first few years of its life, QED had operated purely as a seller of
intellectual property, licensing its designs to semiconductor device vendors who
then produced and sold the chips. In 1996, the company decided it could do
better by selling chips under its own name. The manufacturing was still carried
out by outside partners—the company remained “fabless” (that is, it didn’t have
any fabrication plants under its direct ownership)—but now QED took charge
of testing the chips and handled all of its own sales, marketing, and technical
support.

Around this time, QED embarked on a project to develop a PowerPC imple-
mentation in the same lean, efficient style as the R4600. Unfortunately, busi-
ness and contractual difficulties with the intended customer reared their heads,
with the result that the device was never brought to market. After this brief
excursion into PowerPC territory, QED resumed its exclusive focus on the MIPS
architecture.

QED’s RM5200 and RM7000 Processors

QED’s first “own-brand” CPU was the RM5200 family, a direct descendant of
the R5000. With a 64-bit external bus it played well in network routers, while a
32-bit bus and cheaper package was good for laser printers.

QED built on the RM5200’s success, launching the RM7000 in 1998. This
device marked several important milestones for MIPS implementations: It was
the first to bring the (256 Kbyte) secondary cache on-chip.5 RM7000 was also a
serious superscalar design, which could issue many pairings of integer instruc-
tions besides the integer/floating-point combination inherited from the R5000.

5. QED originally hoped to use a DRAM-like memory to make the RM7000’s secondary cache very
small, but it turned out that an adequate compromise between fast logic and dense DRAM on a
single chip was not then possible. It still isn’t.
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The RM5200 and RM7000 processor families sold well during the mid to
late 1990s into many high-end embedded applications, finding especially
widespread use in network routers and laser printers. QED wisely ensured that
the RM7000 was very closely compatible with the RM5200, both from the pro-
grammer’s and system designer’s points of view. This made it fairly straightfor-
ward to give aging RM5200 systems a quick midlife boost by upgrading them
to the RM7000, and many customers found it useful to follow this path.

SandCraft

Around 1998, the design team that had created the Vr4300 for Nintendo incor-
porated as SandCraft, and set out to produce embedded CPUs intended for the
high-end embedded applications then served by QED’s RM5200 and RM7000
families.

SandCraft’s designs were architecturally ambitious and took time to bring
to market. Despite several years of continued efforts to build a large enough
customer base, the company eventually went out of business. Its assets
were acquired by Raza Technologies, and it remains to be seen whether any sig-
nificant portion of SandCraft’s legacy will eventually find its way into
production.

1.4.11 MIPS Processors in Modern Times

Alchemy Semiconductor: Low-Power MIPS Processors

By 1999, the markets for cellphones, personal organizers, and digital cameras
were growing rapidly. The priority for such processors is low power con-
sumption: Since these appliances need to be small, light, and have to run
from internal batteries, they must be designed to operate within very tight
power budgets. At the same time, competitive pressures require each genera-
tion of appliances to offer more features than its predecessor. Manufacturers
sought 32-bit computing power to meet the growing applications’ hungry
demands.

Taken together, these requirements present a moving target for processor
designers: Within a power budget that grows only gradually (with advances in
battery chemistry and manufacturing), they’re called upon to deliver a signifi-
cant boost in performance with every design generation.

It is really just a matter of historical accident that nobody had implemented
a fast, low-power MIPS processor. But DEC had built a 200-MHz low-power
ARM (“StrongARM”) and the ARM company was willing to build less exalted
machines that would eke out your battery life even longer. When DEC engaged
in unwise litigation with Intel over CPU patents, they lost, big-time. Among the
things Intel picked up was the StrongARM development. Amazingly, it seems
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to have taken Intel a couple of years to notice this jewel, and by that time all the
developers had left.

In 1999, Alchemy Semiconductor was founded precisely to exploit this
opportunity. With backing from Cadence, a vendor of chip design tools, some
members of the design team that had created StrongARM now turned their
ingenuity to the design of a very low power 32-bit MIPS CPU. It works very
well, but their designs were too high-end, and perhaps just a bit late, to break
the ARMlock on cellphones.

Alchemy pinned its hopes on the market for personal organizers, which
certainly needed faster CPUs than the phones did. But the market didn’t
boom in the same way. Moreover, the organizer market seemed to be one in
which every innovator lost money; and finally Microsoft’s hot-then-cold sup-
port of MIPS on Windows CE made the MIPS architecture a handicap
in this area.

SiByte

This company was also founded in 1999 around an experienced design team,
again including some members who had worked on DEC’s Alpha and Strong-
ARM projects.6

SiByte built a high-performance MIPS CPU design—it aimed for
efficient dual-issue at 1 GHz. Moreover, this was to be wrapped up for easy
integration into a range of chip-level products; some variants were to empha-
size computational capacity, featuring multiple CPU cores, while others laid the
stress on flexible interfacing by integrating a number of controllers.

SiByte’s design found considerable interest from networking equipment
makers who were already using QED’s RM5200 and RM7000 devices; as the
company began to put the device into production, however, manufacturing
difficulties caused long delays, and the 1-GHz target proved difficult.

Consolidation: PMC-Sierra, Broadcom, AMD

The last years of the 1990s saw the infamous “dotcom bubble.” Many small
technology companies went public and saw their stock prices climb to dizzying
heights within weeks.

Networking companies were among the darlings of the stock market and
with their market capitalizations rising into tens of billions, they found it easy
to buy companies providing useful technology—and that sometimes meant
MIPS CPUs.

This was the climate in which Broadcom acquired SiByte, and PMC-Sierra
acquired QED—both in mid-2000. It seemed that the future of high-end MIPS

6. In the U.S. market, a canceled project can have as seminal an effect as a successful one.
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designs for embedded systems was now doubly safeguarded by the deep pockets
of these two new parent companies.

The collapse of the technology bubble came swiftly and brutally. By late
2001, the networking companies saw their stock prices showing unexpected
weakness, and orders from their customers slowing alarmingly; by 2002, the
entire industry found itself in the grip of a savage downturn. Some companies
saw their market capitalizations drop to less than a tenth of their peak values
over one year.

The resulting downdraft inevitably affected the ability of PMC-Sierra and
Broadcom to follow through with their plans for the QED and SiByte proces-
sor designs. It wasn’t just a matter of money; it became extremely difficult for
these companies even to find a reasonable strategic direction, as sales for many
established product lines slowed to a trickle.

Alchemy Semiconductor also felt the cold wind of change, and despite the
impressively low power consumption of its designs, the company had diffi-
culty finding high-volume customers. Finally, in 2002, Alchemy was acquired
by Advanced Micro Devices (AMD), which continued to market the Au1000
product line for a couple of years. As we go to press, we hear that the Alchemy
product line has been acquired by Raza Technologies.

Highly Integrated Multiprocessor Devices

Broadcom had initially announced plans for an ambitious evolution of SiByte’s
1250 design from two CPU cores to four, along with an extra memory con-
troller and much faster interfaces. This project became a casualty of the down-
turn, and the evolutionary future of the 1250 product line fell into
uncertainty.

Meanwhile, the QED design team—now operating as PMC-Sierra’s MIPS
processor division—created its own dual-CPU device, the RM9000x2. This also
integrated an SDRAM controller and various interfaces. Due in part to the chilly
market conditions, the RM9000 family was slow to find customers, though it
did surpass the 1-GHz milestone for CPU clock rate. Subsequent derivatives
added further interfaces, including Ethernet controllers, but the difficulties in
securing large design wins persisted.

In 2006, the future for such highly integrated devices appears doubtful.
As the transistors in chips shrink, the amount of logic you can get for the
production-cost dollar increases. But the one-off cost of getting a new design
into production keeps going up: For the most recent 90-nanometer generation,
it’s $1 M or more. If you fill the space available with logic to maximize what
your chip will do, design and test costs will be tens of millions.

To get that back, you need to sell millions of units of each chip over its prod-
uct lifetime. A particular version of a chip like the RM9000x2 or Broadcom’s
1250 can sell tens or hundreds of thousands: It isn’t enough. It’s not clear what
sort of device may attract enough volume to fund full-custom embedded-CPU
design in future.
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Intrinsity: Taking a MIPS Processor to 2 GHz

Alert readers will have noticed the overall arc of the MIPS story to date: The
early R2000/R3000 implementations were performance leaders among micro-
processors, but competing families eventually caught up and overtook
MIPS.

So you might be wondering: Has anyone tried to make a really fast MIPS
processor in the last few years? The answer is yes: Intrinsity Semiconductor
announced in 2002 its FastMath processor. Using careful design techniques to
extract high performance from essentially standard process technologies, Intrin-
sity was able to produce a lean 32-bit MIPS design with an impressive clock rate
of 2 GHz.

While this was widely recognized as a fine technical achievement, the
device has struggled to find a market. It’s still not nearly as fast as a modern PC
processor, and its power consumption and heat dissipation is relatively high by
consumer standards.

1.4.12 The Rebirth of MIPS Technologies

In 1998, SGI—facing mounting cash-flow problems—decided to spin off its
CPU design group, restoring it to independence as MIPS Technologies. The new
company was chartered to create core CPUs to be used as part of a system-on-
a-chip (SoC). You might recall that we encountered the idea of an SoC much
earlier in this section, when we described the appearance of the first ASIC
cores.

In the early days of SoCs, CPU vendors found that it was very difficult
to guarantee a core’s performance—for example, the CPU clock rate—unless
they provided their customers with a fixed silicon layout for the core internals,
predefined for each likely target chip “foundry”—a “hard core.”

MIPS Technologies originally intended to build high-performance hard
cores and built and shipped fast 64-bit designs (20 Kc and later 25 Kf). But
that was the wrong horse. During the last few years, the market has increasingly
preferred its cores to be synthesizable (originally called “soft core”).

A synthesizable core is a set of design files (usually in Verilog) that describes
the circuit and can be compiled into a real hardware design. A synthesizable
core product consists of a lot more than a Verilog design, since the customer
must be able to incorporate it in a larger SoC design and validate the CPU
and its connections well enough that the whole chip will almost certainly
work.

MIPS Technologies’ first synthesizable core was the modest 32-bit 4-K fam-
ily; since then, it has added the 64-bit 5 K, the high-performance 32-bit 24 K,
and (launched in early 2006) the multithreading 34 K.
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1.4.13 The Present Day

MIPS CPUs in use today come in four broad categories:

SoC cores: MIPS CPUs still benefit in size and power consumption from
the simplicity that came from the Stanford project, and an architecture
with a long history spanning handhelds to supercomputers is an attrac-
tive alternative to architectures tailored for the low end. MIPS was the
first “grown up” CPU to be available as an ASIC core—witness its
presence in the Sony PlayStation games console. The most prominent
supplier is MIPS Technologies Inc., but Philips retains their own
designs.

Integrated embedded 32-bit CPUs: From a few dollars upward, these chips
contain CPU, caches, and substantial application-oriented blocks (net-
work controllers are popular). There’s considerable variation in price,
power consumption, and processing power. Although AMD/Alchemy
has some very attractive products, this market seems to be doomed,
with devices in the target marketplace finding that an SoC heart does
a better job of maximizing integration, saving vital dollars and
milliwatts.

Integrated embedded 64-bit CPUs: These chips offer a very attractive
speed/power-consumption trade-off for high-end embedded applica-
tions: Network routers and laser printers are common applications.
But it doesn’t look as though they can sell in sufficient numbers to
go on paying for chip development costs.

But somewhere in this category are companies that are trying radically
new ideas, and it’s a tribute to the MIPS architecture’s clean concepts
that it often seems the best base for leading-edge exploration. Raza’s XLR
series of multicore, multithreaded processors represent a different kind
of embedded CPU, which aims to add more value (and capture more rev-
enue per unit) than a “traditional” embedded CPU. Cavium’s Octium is
also pretty exciting.

Server processors: Silicon Graphics, the workstation company that was
the adoptive parent of the MIPS architecture, continued to ship high-
end MIPS systems right up to its insolvency in 2006, even though that
was seven years after it committed to a future with Intel IA-64. But it’s
the end of the road for these systems: MIPS is destined to be “only” in
the vast consumer and embedded markets.

The major distinguishing features of some milestone products are summa-
rized in Table 1.1. We haven’t discussed the instruction set revision levels from
MIPS I through MIPS64, but there’ll be more about them in section 2.7, where
you’ll also find out what happened to MIPS II.



TABLE 1.1 Milestones in MIPS CPUs

Designer/model/ Cache
Year clock rate (MHz) Instruction set (I+D) Notes

1987 MIPS R2000-16 MIPS I External: 4 K+4 K to
32 K+32 K

External (R2010) FPU.

1990 IDT R3051-20 4 K+1 K The first embedded MIPS CPU with on-chip cache and progenitor of a family of
pin-compatible parts.

1991 MIPS R4000-100 MIPS III 8 K+8 K Integrates FPU and L2 cache controller with pinout option. Full 64-bit CPU—but five
years later, few MIPS CPUs were exploiting their 64-bit instruction set. Long pipeline and
half-speed interface help achieve high clock rates.

1993 IDT/QED R4600-100 16 K+16 K QED’s brilliantly tuned redesign is much faster than R4000 or R4400 at the same clock
rate—partly because it returned to the classic MIPS five-stage pipeline. Important to SGI’s
fast and affordable low-end Indy workstation and Cisco’s routers.

1995 NEC/MIPS Vr4300-133 16 K+8 K Low cost, low power but full-featured R4000 derivative. Initially aimed at Nintendo
64 games console, but embedded uses include HP’s LJ4000 laser printers.

1996 MIPS R10000-200 MIPS IV 32 K+32 K Bristling with microprocessor innovations, the R10000 is not at all simple. The main MIPS
tradition it upholds is that of taking a principle to extremes. The result was hot,
unfriendly, but with unmatched performance/MHz.

1998 QED RM7000 16 K+16 K+256 K L2 The first MIPS CPU with on-chip L2 cache, this powered generations of high-end laser
printers and Internet routers.

2000 MIPS 4 K core family MIPS32 16 K+16 K (typ) The most successful MIPS core to date—synthesizable and frugal.

2001 Alchemy AU-1000 16 K+16 K If you wanted 400 MHz for 500 mW, this was the only show in town. But it lost markets.

2001 Broadcom BCM1250 MIPS64 32 K+32 K+256 K L2 Dual-CPU design at 600 MHz+ (the L2 is shared).

2002 PMC-Sierra RM9000x2 MIPS64 16 K+16 K+256 K L2 Dual-CPU design at 1 GHz (the L2 is NOT shared; each CPU has its own 256 K). First
MIPS CPU to reach 1 GHz.

2003 Intrinsity FastMath MIPS32 16 K+16 K+1 M L2 Awesome 2-GHz CPU with vector DSP did not find a market.

2003 MIPS 24 K core MIPS32 R2 At 500 MHz in
synthesizable logic, a
solidly successful core
design.

2005 MIPS 34 K core MIPS32+MT ASE 32 K+32 K (typ) MIPS multithreading pioneer.
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1.5 MIPS Compared with CISC Architectures

Programmers who have some assembly-language-level knowledge of earlier
architectures—particularly those brought up on x86 or 680x0 CISC instruc-
tion sets—may get some surprises from the MIPS instruction set and register
model. We’ll try to summarize them here, so you don’t get sidetracked later into
doomed searches for things that don’t quite exist, like a stack with push/pop
instructions!

We’ll consider the following: constraints on MIPS operations imposed to
make the pipeline efficient; the radically simple load/store operations; possi-
ble operations that have been deliberately omitted; unexpected features of the
instruction set; and the points where the pipelined operation becomes visible
to the programmer.

The Stanford group that originally dreamed up MIPS was paying particular
attention to the short, simple pipeline it could afford to build. But it’s a testa-
ment to the group’s judgment that many of the decisions that flowed from that
have proven to make more ambitious implementations easier and faster, too.

1.5.1 Constraints on MIPS Instructions

All instructions are 32 bits long: That means that no instruction can fit into
only two or three bytes of memory (so MIPS binaries are typically 20 per-
cent to 30 percent bigger than for 680x0 or 80x86) and no instruction can
be bigger.

It follows that it is impossible to incorporate a 32-bit constant into a
single instruction (there would be no instruction bits left to encode the
operation and the target register). The MIPS architects decided to make
space for a 26-bit constant to encode the target address of a jump or
jump to subroutine; but that’s only for a couple of instructions. Other
instructions find room only for a 16-bit constant. It follows that load-
ing an arbitrary 32-bit value requires a two-instruction sequence, and
conditional branches are limited to a range of 64-K instructions.

Instruction actions must fit the pipeline: Actions can only be carried out in
the right pipeline phase and must be complete in one clock. For exam-
ple, the register write-back phase provides for just one value to be stored
in the register file, so instructions can only change one register.

Integer multiply and divide instructions are too important to leave out
but can’t be done in one clock. MIPS CPUs have traditionally provided
them by dispatching these operations into a separately pipelined unit
we’ll talk about later.

Three-operand instructions: Arithmetical/logical operations don’t have to
specify memory locations, so there are plenty of instruction bits to define
two independent sources and one destination register. Compilers love
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three-operand instructions, which give optimizers much more scope to
improve code that handles complex expressions.

The 32 registers: The choice of the number of registers is largely driven by
software requirements, and a set of 32 general-purpose registers is eas-
ily the most popular in modern architectures. Using 16 would definitely
not be as many as modern compilers like, but 32 is enough for a C com-
piler to keep frequently accessed data in registers in all but the largest
and most intricate functions. Using 64 or more registers requires a big-
ger instruction field to encode registers and also increases context-switch
overhead.

Register zero: $0 always returns zero, to give a compact encoding of that
useful constant.

No condition codes: One feature of the MIPS instruction set that is radi-
cal even among the 1985 RISCs is the lack of any condition flags. Many
architectures have multiple flags for “carry,” “zero,” and so on. CISC
architectures typically set these flags according to the result written by
any or a large subset of machine instructions, while some RISC architec-
tures retain flags (though typically they are only set explicitly, by compare
instructions).

The MIPS architects decided to keep all this information in the register
file: Compare instructions set general-purpose registers and conditional
branch instructions test general-purpose registers. That does benefit a
pipelined implementation, in that whatever clever mechanisms are built
in to reduce the effect of dependencies on arithmetical/logical operations
will also reduce dependencies in compare/branch pairs.

We’ll see later that efficient conditional branching (at least in one favorite
simple pipeline organization) means that the decision about whether to
branch or not has to be squeezed into only half a pipeline stage; the archi-
tecture helps out by keeping the branch decision tests very simple. So
MIPS conditional branches test a single register for sign/zero or a pair of
registers for equality.

1.5.2 Addressing and Memory Accesses

Memory references are always plain register loads and stores: Arithmetic on
memory variables upsets the pipeline, so it is not done. Every memory
reference has an explicit load or store instruction. The large register file
makes this much less of a problem than it sounds.

Only one data-addressing mode: Almost all loads and stores select the
memory location with a single base register value modified by a
16-bit signed displacement (a limited register-plus-register address mode
is available for floating-point data).
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Byte-addressed: Once data is in a register of a MIPS CPU, all operations
always work on the whole register. But the semantics of languages such
as C fit badly on a machine that can’t address memory locations down
to byte granularity, so MIPS gets a complete set of load/store operations
for 8- and 16-bit variables (we will say byte and halfword). Once the data
has arrived in a register it will be treated as data of full register length,
so partial-word load instructions come in two flavors—sign-extend and
zero-extend.

Load/stores must be aligned: Memory operations can only load or store
data from addresses aligned to suit the data type being transferred. Bytes
can be transferred at any address, but halfwords must be even-aligned
and word transfers aligned to four-byte boundaries. Many CISC micro-
processors will load/store a four-byte item from any byte address, but the
penalty is extra clock cycles.

However, the MIPS instruction set architecture (ISA) does include a cou-
ple of peculiar instructions to simplify the job of loading or storing at
improperly aligned addresses.

Jump instructions: The limited 32-bit instruction length is a particular
problem for branches in an architecture that wants to support very large
programs. The smallest opcode field in a MIPS instruction is 6 bits, leav-
ing 26 bits to define the target of a jump. Since all instructions are
four-byte aligned in memory, the two least significant address bits need
not be stored, allowing an address range of 228 = 256 MB. Rather than
make this branch PC relative, this is interpreted as an absolute address
within a 256-MB segment. That’s inconvenient for single programs larger
than this, although it hasn’t been much of a problem yet!

Branches out of segment can be achieved by using a jump register instruc-
tion, which can go to any 32-bit address.

Conditional branches have only a 16-bit displacement field—giving a
218-byte range, since instructions are four-byte aligned—which is inter-
preted as a signed PC-relative displacement. Compilers can only code a
simple conditional branch instruction if they know that the target will
be within 128 KB of the instruction following the branch.

1.5.3 Features You Won’t Find

No byte or halfword arithmetic: All arithmetical and logical operations are
performed on 32-bit quantities. Byte and/or halfword arithmetic requires
significant extra resources and many more opcodes, and it is rarely really
useful. The C language’s semantics cause most calculations to be carried
out with int precision, and for MIPS int is a 32-bit integer.

However, where a program explicitly does arithmetic as short or
char, a MIPS compiler must insert extra code to make sure that the
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results wrap and overflow as they would on a native 16- or 8-bit
machine.

No special stack support: Conventional MIPS assembly usage does define
one of the registers as a stack pointer, but there’s nothing special to the
hardware about sp. There is a recommended format for the stack
frame layout of subroutines, so that you can mix modules from differ-
ent languages and compilers; you should almost certainly stick to these
conventions, but they have no relationship to the hardware.

A stack pop wouldn’t fit the pipeline, because it would have two regis-
ter values to write (the data from the stack and the incremented pointer
value).

Minimal subroutine support: There is one special feature: jump instruc-
tions have a jump and link option, which stores the return address into
a register. $31 is the default, so for convenience and by convention
$31 becomes the return address register.

This is less sophisticated than storing the return address on a stack, but
it has some significant advantages. Two examples will give you a feeling
for the argument: First, it preserves a pure separation between branch
and memory-accessing instructions; second, it can aid efficiency when
calling small subroutines that don’t need to save the return address on
the stack at all.

Minimal interrupt handling: It is hard to see how the hardware could do
less. It stashes away the restart location in a special register, modifies the
machine state just enough to let you find out what happened and to dis-
allow further interrupts, then jumps to a single predefined location in
low memory. Everything else is up to the software.

Minimal exception handling: Interrupts are just one sort of exception (the
MIPS word exception covers all sorts of events where the CPU may want
to interrupt normal sequential processing and invoke a software han-
dler). An exception may result from an interrupt, an attempt to access
virtual memory that isn’t physically present, or many other things. You
go through an exception, too, on a deliberately planted trap instruc-
tion like a system call that is used to get into the kernel in a protected
OS. All exceptions result in control passing to the same fixed entry
point.7

On any exception, a MIPS CPU does not store anything on a stack, write
memory, or preserve any registers for you.

By convention, two general-purpose registers are reserved so that excep-
tion routines can bootstrap themselves (it is impossible to do anything

7. I exaggerate slightly; these days there are quite a few different entry points, and there were always
at least two. Details will be given in section 5.3.
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FIGURE 1.3 The pipeline and branch delays.

on a MIPS CPU without using some registers). For a program running
in any system that takes interrupts or traps, the values of these registers
may change at any time, so you’d better not use them.

1.5.4 Programmer-Visible Pipeline Effects

So far, this has all been what you might expect from a simplified CPU. However,
making the instruction set pipeline friendly has some stranger effects as well,
and to understand them we’re going to draw some pictures.

Delayed branches: The pipeline structure of the MIPS CPU (Figure 1.3)
means that when a jump/branch instruction reaches the execute phase
and a new program counter is generated, the instruction after the jump
will already have been started. Rather than discard this potentially useful
work, the architecture dictates that the instruction after a branch must
always be executed before the instruction at the target of the branch. The
instruction position following any branch is called the branch delay slot.

If nothing special was done by the hardware, the decision to branch or
not, together with the branch target address, would emerge at the end
of the ALU pipestage—by which time, as Figure 1.3 shows, you’re too
late to present an address for an instruction in even the next-but-one
pipeline slot.

But branches are important enough to justify special treatment, and you
can see from Figure 1.3 that a special path is provided through the ALU to
make the branch address available half a clock cycle early. Together with
the odd half-clock-cycle shift of the instruction fetch stage, that means
that the branch target can be fetched in time to become the next but one,
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so the hardware runs the branch instruction, then the branch delay slot
instruction, and then the branch target—with no other delays.

It is the responsibility of the compiler system or the assembly program-
ming wizard to allow for and even to exploit the branch delay; it turns out
that it is usually possible to arrange that the instruction in the branch delay
slot does useful work. Quite often, the instruction that would otherwise
have been placed before the branch can be moved into the delay slot.

This can be a bit tricky on a conditional branch, where the branch delay
instruction must be (at least) harmless on both paths. Where nothing
useful can be done, the delay slot is filled with a nop instruction.

Many MIPS assemblers will hide this odd feature from you unless you
explicitly ask them not to.

Late data from load (load delay slot): Another consequence of the pipeline
is that a load instruction’s data arrives from the cache/memory system
after the next instruction’s ALU phase starts—so it is not possible to use
the data from a load in the following instruction. (See Figure 1.4 for how
this works.)

The instruction position immediately after the load is called the load delay
slot, and an optimizing compiler will try to do something useful with it.
The assembler will hide this from you but may end up putting in a nop.

On modern MIPS CPUs the load result is interlocked: If you try to use
the result too early, the CPU stops until the data arrives. But on early
MIPS CPUs, there were no interlocks, and the attempt to use data in the
load delay slot led to unpredictable results.
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2 MIPS Architecture

The rather grandiose word architecture is used in computing to describe the
abstract machine you program, rather than the actual implementation of

that machine. That’s a useful distinction—and one worth defending from the
widespread misuse of the term in marketing hype. The abstract description may
be unfamiliar, but the concept isn’t. If you drive a stick-shift car you’ll find the
gas pedal on the right and the clutch on the left, regardless of whether the car is
front-wheel drive or rear-wheel drive. The architecture (which pedal is where)
is deliberately kept the same, although the implementation is different.

Of course, if you’re a rally driver concerned with going very fast along slip-
pery roads, it’s suddenly going to matter a whole lot which wheels are driven.
Computers are like that too—once your performance needs are extreme or
unusual, the details of the implementation may become important to you.

In general, a CPU architecture consists of an instruction set and some
knowledge about registers. The terms instruction set and architecture are pretty
close to synonymous, and you can get both at once in the acronym ISA (Instruc-
tion Set Architecture).

These days the MIPS ISA is best defined by the MIPS32 and MIPS64 archi-
tecture specifications published by MIPS Technologies Inc. MIPS32 is a subset
of MIPS64 for CPUs with 32-bit general-purpose registers. “The MIPS32 and
MIPS64 architecture specifications” is a bit of a mouthful, so we’ll abbreviate it
to “MIPS32/64.”

Most of the companies making MIPS CPUs are now making them com-
patible with these specifications—and those that are not strictly compatible are
generally reducing differences as they can.

Before MIPS32/64, a number of versions of the MIPS architecture were
written down. But those older definitions formally applied only to the
instructions and resources used by higher-level software—they regarded the
CPU control mechanisms necessary to operating systems as implementation
dependent. That meant that portable operating system work depended on a

29
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gentleman’s agreement to keep the unspecified areas of the MIPS architecture
stable, too. The way that worked out was that each architecture version was
naturally associated with a “parent” implementation:

MIPS I: The instruction set used by the original 32-bit processors (R2000/
3000); every MIPS CPU there ever was will run these instructions,
so it is still common as a lingua franca.

MIPS II: A minor upgrade defined for the MIPS R6000, which didn’t get
beyond preproduction. But something very like it has been widely
used for 32-bit MIPS CPUs for the embedded market. MIPS II is the
immediate parent of MIPS32.

MIPS III: The 64-bit instruction set introduced by the R4000.

MIPS IV: Adds a few useful instructions (mostly floating point) to MIPS III,
appearing in two different implementations (R10000 and R5000).

MIPS V: Adds some surprising two operations at once (“SIMD”) floating-
point operations—but no MIPS V CPU was built. Most of it reap-
peared as an optional part of MIPS64 called “paired-single.”

MIPS32, MIPS64: Standards promulgated by MIPS Technologies Inc. after
its demerger from Silicon Graphics in 1998. For the first time, the
standards encompassed the “CPU control” functions known as
coprocessor 0. MIPS32 is a superset of MIPS II, while MIPS64—
which includes 64-bit instructions—is a superset of MIPS IV (and
contains much of MIPS V as an optional extension).

Most MIPS CPUs designed since 1999 are compatible with these
standards, so we’ll use MIPS32/64 as the base architectures in this
book. To be more precise, our base is Release 2 of the MIPS32/64
specifications, as published in 2003. Earlier MIPS32/64 CPUs might
be referred to as Release 1.

The architecture levels define everything the original company documenta-
tion chose to define; up to MIPS V, that was typically rather more than enough
to ensure the ability to run the same UNIX application and less than enough
to ensure complete portability of code that uses OS or low-level features. By
contrast, if a CPU conforms to MIPS32/64, it should run a reasonable portable
operating system.

Early MIPS CPUs (starting with the R3000) had CPU control instructions
and registers that are fairly different from MIPS32; they’re very old now, and
these features aren’t detailed in this book.

Quite a few implementations add some of their own new instructions and
interesting features. It’s not always easy to get software or tools (particularly
compilers) that take advantage of implementation-specific features. We’ll
describe most that I find interesting.
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There are two levels of detail at which we can describe the MIPS architecture.
The first (this chapter) is the kind of view you’d get if you were writing a user
program for a workstation but chose to look at your code at the assembly level.
That means that the whole normal working of the CPU would be visible.

In the later chapters we’ll take on everything, including all the gory details
that a high-level operating system hides—CPU control registers, interrupts,
traps, cache manipulation, and memory management. But at least we can cut
the task into smaller pieces.

CPUs are often much more compatible at the user level than when
everything is exposed. All known MIPS CPUs can run MIPS I user-level
code.

Bringing Order to Instruction Set Extensions—ASEs

We’ve kept stressing that being RISC has very little to do with keeping the
instruction set small. In fact, RISC simplicity makes it temptingly easy to extend
the instruction set with new twists on three-operand register-to-register
calculations.

When MIPS CPUs began to be used in embedded systems, new instruc-
tions aimed at helping out some particular application began to mushroom.
MIPS32/64 has included some of those inventions. But it also provides some
regulations, in the form of recognized ASEs (Application-Specific instruction
set Extensions). ASEs are optional extensions to MIPS32/64 whose presence is
marked in a standard way through configuration registers. There are already
quite a lot of them:

MIPS16e: This extension long predates MIPS32 and MIPS Technologies.
It was pioneered by LSI Logic in the 1990s, with a view to reducing the
size of MIPS binary programs. MIPS16 encodes a subset of user-privilege
MIPS instructions (and a few special ones added in) in 16-bit op-codes.
Such an instruction set is evidently “too small” and programs compile
into significantly more MIPS16 than regular MIPS instructions; how-
ever, the half-size instructions lead to much smaller code. The MIPS16
instruction set was organized and slightly augmented to be an extension
of MIPS32, and the augmented version is called MIPS16e. This book
has few details about MIPS16e: It’s a large subject and rarely met up
with even at assembly level, but there are some words on the subject in
section B.1.

MDMX: Another old extension, this one championed by SGI. It adds a
large set of SIMD arithmetic operations using the FP (coprocessor 1) reg-
ister set. They’re SIMD because each operation runs in parallel on each
of a short array of integer values packed into the 64-bit registers. Many of
the operations are “saturating”; when a result would otherwise overflow,
the destination is filled with the nearest representable value. Saturating
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small-integer SIMD operations accelerates a variety of audio and video
“media stream” computations. They’re also broadly characteristic of the
specialized CPUs called DSPs (Digital Signal Processors).

MDMX resembles the early versions of Intel’s MMX extension. But
MDMX was never implemented by SGI, and few implementations
survive: Broadcom’s CPUs seem to be the only ones.

SmartMIPS: A very small extension to the architecture aimed at improv-
ing the performance of encryption operations believed to be key to the
smart card market; it is coupled to a bunch of other security- and size-
related tweaks to the CPU control system. One day the 32-bit smart card
market will be huge, but it hasn’t happened yet.

MT: A rather small extension in terms of instructions but a hugely signif-
icant one: This adds hardware multithreading to MIPS cores. It was first
seen in MIPS Technologies’ 34-K family, launched in 2005. Appendix A
gives an overview of the MIPS MT system.

DSP: Like MDMX, this is a set of instructions held to be useful for
audio/video processing, with saturating and SIMD arithmetic on small
integers to the fore—but it already looks more useful in practice than
MDMX. It was also new in 2005, available in MIPS Technologies’ 24-K
and 34-K families. The DSP ASE was made public just in time to include
a sketchy description here in section B.2.

There are some other optional parts of the MIPS32/64 specification that
may not be regarded as primarily instruction set extensions:

Floating point: The oldest are the best. Floating point has been an
optional part of the MIPS instruction set since the earliest days. But it fits
within the confines of the “coprocessor 1” encodings. It’s well described
in this book.

CP2: The second coprocessor encoding region is free for brave customers.
But it’s a lot of design and testing work, and few try it. There’s nothing
more about it here.

CorExtend: MIPS Technologies’ best shot at a relatively easy-to-use user-
definable instruction set. The idea was much hyped in 2002/2003, with
announcements from companies such as ARM and Tensilica.

EJTAG: An optional system to improve the debugging facilities, described
in section 12.1.

Paired single: An extension to the floating-point unit that provides SIMD
operations, each of which works simultaneously on two single-precision
(32-bit) sets of values.
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MIPS-3D: Usually associated with paired single, adds a handful of
instructions to help out with the floating-point matrix operations
heavily used by 3D scene rendering.

2.1 A Flavor of MIPS Assembly Language

Assembly language is the human-writable (and readable) version of the CPU’s
raw binary instructions, and Chapter 9 tells you more about how to understand
it. Readers who have never seen any assembly language will find some parts of
this book mystifying—but there’s no time like now to start.

For readers familiar with assembly language, but not the MIPS version, here
are some examples of what you might see:

# this is a comment

entrypoint: # that’s a label
addu $1, $2, $3 # (registers) $1 = $2 + $3

Like most assembly languages, it is line oriented. The end of a line delimits
instructions, and the assembly’s native comment convention is that it ignores
any text on a line beyond a “#” character. But it is possible to put more than one
instruction on a line, separated by semicolons.

A label is a word followed by a colon “:”—word is interpreted loosely, and
labels can contain all sorts of strange characters. Labels are used to define entry
points in code and to name storage locations in data sections.

MIPS assembly programs interpret a rather stark language, full of register
numbers. Most programmers use the C preprocessor and some standard header
files so they can write registers by name; the names of the general-purpose reg-
isters reflect their conventional use (which we’ll talk about in section 2.2). If you
use the C preprocessor, you can also use C-style comments.

A lot of instructions are three-operand, as shown. The destination register
is on the left (watch out, that’s opposite to the Intel x86 convention). In general,
the register result and operands are shown in the same order you’d use to write
the operation in C or any other algebraic language, so:

subu $1, $2, $3

means exactly:

$1 = $2 - $3;

That should be enough for now.



34 Chapter 2—MIPS Architecture

2.2 Registers

There are 32 general-purpose registers for your program to use: $0 to $31. Two,
and only two, behave differently than the others:

$0 Always returns zero, no matter what you store in it.

$31 Is always used by the normal subroutine-calling instruction (jal) for the
return address. Note that the call-by-register version (jalr) can use any
register for the return address, though use of anything except $31 would
be eccentric.

In all other respects, all these registers are identical and can be used in any
instruction (you can even use $0 as the destination of instructions, though the
resulting data will disappear without a trace).

In the MIPS architecture the program counter is not a register, and it is
probably better for you not to think of it that way—in a pipelined CPU there
are multiple candidates for its value, which gets confusing. The return address
of a jal is the next instruction but one in sequence:

...
jal printf
mov $4, $6
xxx # return here after call

That makes sense, because the instruction immediately after the call is the
call’s delay slot—remember, the rules say it must be executed before the branch
target. The delay slot instruction of the call is rarely wasted, because it is typically
used to set up a parameter.

There are no condition codes; nothing in the status register or other CPU
internals is of any consequence to the user-level programmer.

There are two register-sized result ports (called hi and lo) associated with
the integer multiplier. They are not general-purpose registers, nor are they use-
ful for anything except multiply and divide operations. However, there are
instructions defined that insert an arbitrary value back into these ports—after
some reflection, you may be able to see that this is required when restoring the
state of a program that has been interrupted.

The floating-point math coprocessor (floating-point accelerator, or FPU),
if available, adds 32 floating-point registers; in simple assembly language, they
are called $f0 to $f31.

Actually, for early 32-bit machines (conforming to MIPS I), only the 16
even-numbered registers were usable for math. But each even-numbered reg-
ister can be used for either a single-precision (32-bit) or double-precision (64-
bit) number; when you do double-precision arithmetic, register $f1 holds the
remaining bits of the register identified as $f0, and so on. In MIPS I programs
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you only see odd-numbered math registers when you move data between
integer and FPU registers or load/store floating-point register values—and even
then the assembler helps you forget that complication.

MIPS32/64 CPUs have 32 genuine FP registers. But you may still meet soft-
ware that avoids using the odd-numbered registers, preferring to maintain soft-
ware compatibility with old CPUs. There’s a mode bit in one of the control
registers to make a modern FPU behave like an old one.

2.2.1 Conventional Names and Uses of General-Purpose Registers

We’re a couple of pages into an architecture description and here we are talking
about software. But I think you need to know this now.

Although the hardware makes few rules about the use of registers, their
practical use is governed by a forest of conventions. The hardware cares nothing
for these conventions, but if you want to be able to use other people’s subrou-
tines, compilers, or operating systems, then you had better fit in.

With the conventional uses of the registers go a set of conventional names.
Given the need to fit in with the conventions, use of the conventional names is
pretty much mandatory. The common names are listed in Table 2.1.

Somewhere about 1996 Silicon Graphics began to introduce compilers that
use new conventions. The new conventions can be used to build programs that
use 32-bit or 64-bit addressing, and in those two cases they are called, respec-
tively, “n32” and “n64.” We’ll ignore them for now, but there is a terse but
fairly complete description of them in section 11.2.8.

Conventional Assembly Names and Usages for Registers

at: This register is reserved for the synthetic instructions generated by
the assembler. Where you must use it explicitly (such as when saving
or restoring registers in an exception handler), there’s an assembly
directive to stop the assembly from using it behind your back—but then
some of the assembler’s macro instructions won’t be available.

v0, v1: Used when returning non-floating-point values from a subrou-
tine. If you need to return anything too big to fit in two registers, the
compiler will arrange to do it in memory. See section 11.2.1 for details.

a0–a3: Used to pass the first four non-FP parameters to a subroutine.
That’s an occasionally false oversimplification—see section 11.2.1 for the
grisly details.

t0–t9: By convention, subroutines may use these values without pre-
serving them. This makes them a good choice for “temporaries” when
evaluating expressions—but the compiler/programmer must remember
that the values stored in them may be destroyed by a subroutine call.
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TABLE 2.1 Conventional Names of Registers with Usage Mnemonics

Register number Name Used for

0 zero Always returns 0

1 at (assembly temporary) Reserved for use by assembly

2–3 v0, v1 Value returned by subroutine

4–7 a0–a3 (arguments) First few parameters for a subroutine

8–15 t0–t7 (temporaries) Subroutines can use without saving

24, 25 t8, t9

16–23 s0–s7 Subroutine register variables; a subroutine that writes one of these
must save the old value and restore it before it exits, so the calling
routine sees the values preserved

26, 27 k0, k1 Reserved for use by interrupt/trap handler; may change under your
feet

28 gp Global pointer; some runtime systems maintain this to give easy
access to (some) static or extern variables

29 sp Stack pointer

30 s8/fp Ninth register variable; subroutines that need one can use this as a
frame pointer

31 ra Return address for subroutine

s0–s8: By convention, subroutines must guarantee that the values of
these registers on exit are the same as they were on entry, either by not
using them or by saving them on the stack and restoring them before
exit. This makes them eminently suitable for use as register variables or
for storing any value that must be preserved over a subroutine call.

k0, k1: Reserved for use by an OS trap/interrupt handlers, which will use
them and not restore their original value; they are of little use to anyone
else.

gp: This is used for two distinct purposes. In the kind of position-
independent code (PIC) used by Linux applications, all out-of-module
code and data references go through a table of pointers known as the
GOT (for Global Offset Table). The gp register is maintained to point to
the GOT. See Chapter 16 for details.

In regular non-PIC code (as is used by simpler embedded systems) gp
is sometimes used to point to a link-time-determined location in the
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midst of your static data. This means that loads and stores to data lying
within 32 KB of either side of the gp value can be performed in a single
instruction using gp as the base register.

Without the global pointer, loading data from a static memory area takes
two instructions: one to load the most significant bits of the 32-bit con-
stant address computed by the compiler and loader and one to do the
data load.

To create gp-relative references, a compiler must know at compile time
that a datum will end up linked within a 64-KB range of memory loca-
tions. In practice it can’t know; it can only guess. The usual practice is
to put small global data items (eight bytes and less in size) in the gp area
and to get the linker to complain if it still gets too big.

sp: It takes explicit instructions to raise and lower the stack pointer, so
MIPS code usually adjusts the stack only on subroutine entry and exit;
it is the responsibility of the subroutine being called to do this. sp is
normally adjusted, on entry, to the lowest point that the stack will need
to reach at any point in the subroutine. Now the compiler can access stack
variables by a constant offset from sp. Once again, see section 11.2.1 for
conventions about stack usage.

fp: Also known as s8, a frame pointer will be used by a subroutine
to keep track of the stack if for any reason the compiler or program-
mer was unable or unwilling to compute offsets from the stack pointer.
That might happen, in particular, if the program does things that involve
extending the stack by an amount that is determined at run time.
Some languages may do this explicitly; assembly programmers are
always welcome to experiment; and C programs that use the alloca()
library routine will find themselves doing so.

If the stack bottom can’t be computed at compile time, you can’t access
stack variables from sp, so fp is initialized by the function prologue to
a constant position relative to the function’s stack frame. Cunning use
of register conventions means that this behavior is local to the function
and doesn’t affect either the calling code or any nested function calls.

ra: On entry to any subroutine, return address holds the address to
which control should be returned—so a subroutine typically ends with
the instruction jr ra. In theory, any register could be used, but some
sophisticated CPUs use optimization (branch prediction) tricks, which
work better if you use a jr ra.

Subroutines that themselves call subroutines must first save ra, usually
on the stack.

There is a corresponding set of standard uses for floating-point registers too,
which we’ll summarize in section 7.5. We’ve described here the original conven-
tions promulgated by MIPS; some evolution has occurred in recent times and
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the old conventions are called o32—but we won’t discuss newer conventions
until section 11.2.8.

2.3 Integer Multiply Unit and Registers

The MIPS architects decided that integer multiplication was important enough
to deserve a hardwired instruction. This was not universal in 1980s, RISCs. One
alternative was to implement a multiply step that fits in the standard integer
execution pipeline but mandates software routines for every nontrivial multi-
plication; early SPARC CPUs did just that.

Another way of avoiding the complexity of the integer multiplier would be
to perform integer multiplication in the floating-point unit—a good solution
used in Motorola’s short-lived 88000 family—but that would compromise the
optional nature of the MIPS floating-point coprocessor.

Instead, a MIPS CPU has a special-purpose integer multiply unit, which
is not quite integrated with the main pipeline. The multiply unit’s basic opera-
tion is to multiply two register-sized values together to produce a twice-register-
sized result, which is stored inside the multiply unit. The instructions mfhi,
mflo retrieve the result in two halves into specified general registers.

Since multiply results are not returned so fast as to be automatically avail-
able for any subsequent instruction, the multiply result registers are and always
were interlocked. An attempt to read out the results before the multiplication is
complete results in the CPU being stopped until the operation completes.

The integer multiply unit will also perform an integer division between val-
ues in two general-purpose registers; in this case the lo register stores the result
(quotient) and the hi register stores the remainder.

You don’t get a multiply unit answer out in one clock: multiply takes 4–12
clock cycles and division 20–80 clock cycles (it depends on the implementation,
and for some implementations it depends on the size of the operands). Some
CPUs have fully or partially pipelined multiply units—that is, they can start
a multiply operation every one or two clocks, even though the result will not
arrive for four or five clocks.

MIPS32/64 includes a three-operand mul instruction, which returns the
low half of the multiply result to a general-purpose register. But that instruction
must stall until the operation is finished; highly tuned software will still use sep-
arate instructions to start the multiply and retrieve the results. MIPS32/64 CPUs
(and most other CPUs still on the market) also have multiply-accumulate oper-
ations, where products from successive multiply operations are accumulated
inside the lo/hi pair.

Integer multiply and divide operations never produce an exception: not
even divide by zero (though the result you get from that is unpredictable). Com-
pilers will often generate additional instructions to check for and trap on errors,
particularly on divide by zero.
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Instructions mthi, mtlo are defined to set up the internal registers from
general-purpose registers. They are essential to restore the values of hi and lo
when returning from an exception but probably not for anything else.

2.4 Loading and Storing: Addressing Modes

As mentioned previously, there is only one addressing mode.1 Any load or store
machine instruction can be written:

lw $1, offset($2)

You can use any registers for the destination and source. The offset is a
signed, 16-bit number (and so can be anywhere between −32768 and 32767);
the program address used for the load is the sum of $2 and the offset. This
address mode is normally enough to pick out a particular member of a C struc-
ture (offset being the distance between the start of the structure and the mem-
ber required). It implements an array indexed by a constant; it is enough to
reference function variables from the stack or frame pointer and to provide a
reasonable-sized global area around the gp value for static and extern variables.

The assembler provides the semblance of a simple direct addressing mode
to load the values of memory variables whose address can be computed at link
time.

More complex modes such as double-register or scaled index must be
implemented with sequences of instructions.

2.5 Data Types in Memory and Registers

MIPS CPUs can load or store between one and eight bytes in a single opera-
tion. Naming conventions used in the documentation and to build instruction
mnemonics are as follows.

2.5.1 Integer Data Types

Byte and halfword loads come in two flavors. Sign-extending instructions lb
and lh load the value into the least significant bits of the 32-bit register but fill
the high-order bits by copying the sign bit (bit 7 of a byte, bit 15 of a halfword).
This correctly converts a signed integer value to a 32-bit signed integer, as shown
in the following chart.

1. Not entirely true any more; now there is a register+register mode available for floating-point
load and store.
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C name MIPS name Size (bytes) Assembly mnemonic

long long dword 8 “d” as in ld

int word 4 “w” as in lw

long2

short halfword 2 “h” as in lh

char byte 1 “b” as in lb

The unsigned instructions lbu and lhu zero-extend the data; they load the
value into the least significant bits of a 32-bit register and fill the high-order bits
with zeros.

For example, if the byte-wide memory location whose address is in t1
contains the value 0xFE (−2, or 254 if interpreted as unsigned), then:

lb t2, 0(t1)
lbu t3, 0(t1)

will leave t2 holding the value 0xFFFF.FFFE (−2 as signed 32-bit value) and
t3 holding the value 0x0000 00FE (254 as signed or unsigned 32-bit value).

The above description relates to MIPS machines considered as 32-bit CPUs,
but many have 64-bit registers. It turns out that all partial-word loads (even
unsigned ones) sign-extend into the top 32 bits; this behavior looks bizarre but
is helpful, as is explained in section 2.7.3.

Subtle differences in the way shorter integers are extended to longer ones are
a historical cause of C portability problems, and the modern C standards have
very definite rules to remove possible ambiguity. On machines like the MIPS,
which cannot do 8- or 16-bit precision arithmetic directly, expressions involv-
ing short or char variables require the compiler to insert extra instructions
to make sure things overflow when they should; this is nearly always undesir-
able and rather inefficient. When porting code that uses small integer variables
to a MIPS CPU, you should consider identifying which variables can be safely
changed to int.

2.5.2 Unaligned Loads and Stores

Normal loads and stores in the MIPS architecture must be aligned; halfwords
may be loaded only from two-byte boundaries and words only from four-byte
boundaries. A load instruction with an unaligned address will produce a trap.

2. Nothing is simple. Recent MIPS compilers offering 64-bit pointers interpret the long data type
as 64 bits (it’s good practice for a C compiler that a long should be big enough to hold a pointer).
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Because CISC architectures such as the MC680x0 and Intel x86 do handle
unaligned loads and stores, you may come across this as a problem when port-
ing software; in extremity, you may even decide to install a trap handler that will
emulate the desired load operation and hide this feature from the application—
but that’s going to be horribly slow unless the references are very rare.

All data items declared by C code will be correctly aligned.
Where you know in advance that you want to code a transfer from an address

whose alignment is unknown and that may turn out to be unaligned, the archi-
tecture does allow for a two-instruction sequence (much more efficient than a
series of byte loads, shifts, and adds). The operation of the constituent instruc-
tions is obscure and hard to grasp, but they are normally generated by the
macro-instruction ulw (unaligned load word). They’re described fully in
section 8.5.1.

A macro-instruction ulh (unaligned load half) is also provided and is syn-
thesized by two loads, a shift, and a bitwise “or” operation.

By default, a C compiler takes trouble to align all data correctly, but there are
occasions (e.g., when importing data from a file or sharing data with a different
CPU) when being able to handle unaligned integer data efficiently is a require-
ment. Most compilers permit you to flag a data type as potentially unaligned
and will generate (reasonably efficient) special code to cope—see section 11.1.5.

2.5.3 Floating-Point Data in Memory

Loads into floating-point registers from memory move data without any inter-
pretation—you can load an invalid floating-point number (in fact, an arbitrary
bit pattern) and no FP error will result until you try to do arithmetic with it.

On 32-bit processors, this allows you to load single-precision values by a
load into an even-numbered floating-point register, but you can also load a
double-precision value by a macro instruction, so that on a 32-bit CPU the
assembly instruction:

l.d $f2, 24(t1)

is expanded to two loads to consecutive registers:

lwc1 $f2, 24(t1)
lwc1 $f3, 28(t1)

On a 64-bit CPU, l.d is the preferred alias for the machine instruction
ldc1, which does the whole job.

Any C compiler that complies with the MIPS/SGI rules aligns eight-byte-
long double-precision floating-point variables to eight-byte boundaries. The
32-bit hardware does not require this alignment, but it’s done for forward com-
patibility: 64-bit CPUs will trap if asked to load a double from a location that
is not eight-byte aligned.
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2.6 Synthesized Instructions in Assembly Language

MIPS machine code might be rather dreary to write; although there are
excellent architectural reasons why you can’t load a 32-bit constant value into
a register with a single instruction, assembly programmers don’t want to think
about it every time. So the GNU assembler (and other good MIPS assemblers)
will synthesize instructions for you. You just write an li (load immediate)
instruction and the assembler will figure out when it needs to generate two
machine instructions.

This is obviously useful, but it can be abused. Some MIPS assemblers end
up hiding the architecture to an extent that is not really necessary. In this book,
we will try to use synthetic instructions sparingly, and we will tell you when it
happens. Moreover, in the instruction tables, we will consistently distinguish
between synthetic and machine instructions.

It is my feeling that these features are there to help human programmers and
that serious compilers should generate instructions that are one-for-one with
machine code.3 But in an imperfect world many compilers will in fact generate
synthetic instructions.

Helpful things the assembler does include the following:

A 32-bit load immediate: You can code a load with any value (including a
memory location that will be computed at link time), and the assembler
will break it down into two instructions to load the high and low half of
the value.

Load from memory location: You can code a load from a memory-resident
variable. The assembler will normally replace this by loading a temporary
register with the high-order half of the variable’s address, followed by a
load whose displacement is the low-order half of the address. Of course,
this does not apply to variables defined inside C functions, which are
implemented either in registers or on the stack.

Efficient access to memory variables: Some C programs contain many ref-
erences to static or extern variables, and a two-instruction sequence
to load/store any of them is expensive. Some compilation systems, with
the help of some runtime support, get around this. Certain variables
are selected at compile/assemble time (most commonly the assembler
selects variables that occupy eight or less bytes of storage) and are kept
together in a single section of memory that must end up smaller than
64 KB. The runtime system then initializes one register—$28 or gp by
convention—to point to the middle of this section.

3. This principle was behind the MIPS back end being reworked for the GNU C compiler in
2003/2004.
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Loads and stores to these variables can now be coded as a single
gp-relative load or store.

More types of branch conditions: The assembler synthesizes a full set of
branches conditional on an arithmetic test between two registers.

Simple or different forms of instructions: Unary operations such as not
and neg are produced as a nor or sub with the zero-valued register $0.
You can write two-operand forms of three-operand instructions and the
assembler will put the result back into the first-specified register.

Hiding the branch delay slot: In normal coding the assembler will move
the instruction you wrote before the branch around into the delay slot if
it can see it is safe to do so. The assembler can’t see much, so it is not very
good at filling branch delays. An assembly directive .set noreorder
is available to tell the assembler that you’re in control and it must not
move instructions about.

Hiding the load delay: Some assemblers may detect an attempt to use the
result of a load in the immediately succeeding instruction and may move
an instruction up or back in sequence if it can.

Unaligned transfers: The unaligned load/store instructions (ulh, ulw,
etc.) will fetch halfword and word quantities correctly, even if the target
address turns out to be unaligned.

Other pipeline corrections: Some instructions (such as those that use the
integer multiply unit) have additional constraints on some old CPUs. If
you have such an old CPU, you may find that your assembler helps out.

In general, if you really want to correlate assembly source language (not
enclosed by a.set noreorder) with instructions stored in memory, you need
help. Use a disassembler utility.

2.7 MIPS I to MIPS64 ISAs: 64-Bit (and Other) Extensions

The MIPS architecture has grown since its invention—notably, it’s grown from
32 to 64 bits. That growth has been done so neatly that it would be quite possi-
ble to describe contemporary MIPS as a 64-bit architecture with a well-defined
32-bit subset for lower-cost implementations. We haven’t quite done that, for
several reasons. First, that is not how it happened, so such a description is in
danger of mystifying you. Second, one of the lessons that MIPS has to offer
the world is the art of extending an architecture nicely. And third, the material
in this book was in fact written about 32-bit MIPS before it was extended to
encompass 64 bits.
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So the approach is a hybrid one. We will usually introduce the 32-bit version
first, but once we get down to the details we’ll handle both versions together.
We’ll use the acronym ISA for the long-winded term instruction set
architecture.

Once MIPS started to evolve, the ISA of the original 32-bit MIPS CPUs
(the R2000, R3000, and descendants) was retrospectively called MIPS I.4 The
next variant to be widely used is a substantial enhancement that leads to a
complete 64-bit ISA for the R4000 CPU and its successors; this was called
MIPS III.

Although there has been much ISA evolution, at least at the application level
(all the code that you can see when writing applications on a workstation),
the newer instruction sets are generally backward compatible, fully support-
ing programs written for old ones. 32-bit ISAs obviously don’t run 64-bit pro-
grams; otherwise the only ISA version that could cause you trouble is MIPS V,
some of which is not available in MIPS64. But then it was never implemented,
either.

There was a MIPS II, but it came to nothing because its first implementation
(the R6000) ended up being overtaken by the MIPS III R4000. However, MIPS II
was very close to being the same as the subset of MIPS III that you get by leaving
out the 64-bit integer operations. This interpretation of the MIPS II ISA made
a bit of a comeback in the 1990s as the ISA of choice for new implementations
of 32-bit MIPS CPUs.

As we mentioned previously, the different ISA levels define whatever they
define; at a minimum, they define all the instructions usable by a user-level pro-
gram in a protected operating system—which includes the floating-point oper-
ations.5 To go with the instructions, the ISA defines and describes the integer,
floating-point data, and floating-point control register.

Prior to MIPS32/64, ISA definitions were careful to exclude the CPU con-
trol (coprocessor 0) registers and the whole CPU control instruction set. I don’t
know how much this helps, though it does create employment for MIPS con-
sultants by concealing information; a book called The MIPS IV Instruction Set
is no good if you want to know how to program the cache on an R5000.

In practice, coprocessor 0 has evolved in step with the formal ISA, and like
the formal ISA there were two major variants: One associated with the R3000—
now pretty much obsolete—and the other deriving from the very first MIPS III
CPU, the R4000. The R4000 family approach has now been standardized as
MIPS64. I’ll refer to these family groups as “R3000-style” and “MIPS32/64,”
respectively. But you won’t find much material about R3000-style in this edition
of the book.

4. This is similar to a film fan asking whether you’ve seen Terminator 1, even though
there never was a film called that. Even Beethoven’s Symphony No. 1 was once called
Beethoven’s Symphony.

5. But it’s always been possible to make a CPU that doesn’t implement floating point.
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2.7.1 To 64 Bits

With the introduction of the R4000 CPU in 1990, MIPS became the first
64-bit RISC architecture to reach production. The MIPS64 ISA6 defines 64-
bit general-purpose registers, and some of the CPU control registers are wider
than 32 bits. Moreover, all operations produce 64-bit results, though some of the
instructions carried forward from the 32-bit instruction set do not do anything
useful on 64-bit data. New instructions are added where the 32-bit operation
can’t be compatibly extended to do the corresponding job for 64-bit operands.

Although a MIPS32 CPU is permitted to have a 32-bit-only FPU, so far none
has done so. MIPS32 and MIPS64 CPUs have FPUs with real 64-bit FP registers,
so you don’t need a pair of them to hold a double-precision value any more.
This extension is incompatible with the old MIPS I model (which had 32 32-bit
registers but used in pairs so you seemed to have 16 64-bit registers), so a mode
switch in a CPU control register can be set to make the registers behave like a
MIPS I CPU and allow the use of old software.

2.7.2 Who Needs 64 Bits?

By 1996, 32 bits was no longer a big enough address space for the very largest
workstation and server applications. Pundits seem to agree that programs grow
bigger exponentially, doubling every 18 months or so. So long as this goes on,
demand for address space is expanding at about 3

4 of a bit per year. Genuine
32-bit CPUs (68020, i386) appeared to replace 16/20-bit machines somewhere
around 1984—and indeed, 32 bits really began to look inadequate around 2002.
If this makes MIPS’s 1991 move seem premature, that’s probably true—big
MIPS proponent Silicon Graphics did not introduce its first 64-bit-capable OS
into general use until 1995.

MIPS’s early move was spurred by research interest in operating systems
using large sparse virtual address spaces, which permit objects to be named by
their virtual address over a long period of time. MIPS was by no means the
most prestigious organization to be deceived about the rate at which operating
systems would evolve; Intel’s world-dominating 32-bit CPU range had to wait
11 years before Windows 95 brought 32-bit operation to the mass market.

A side effect of the 64-bit architecture is that such a computer can han-
dle more bits at once, which can speed up some data-intensive applications in
graphics and imaging. It’s not clear, though, whether this is really preferable to
the multimedia instruction set extensions exemplified by Intel’s MMX, which
features wide data paths with a new set of wide registers, and some way of oper-
ating simultaneously on multiple one-byte or 16-bit chunks of that wide data.
MIPS’s DSP ASE is somewhat similar—see section B.2.

6. The R4000 is not 100 percent compatible with the later MIPS64 standard, but it’s close, and
we’re going to focus on the difference between MIPS32 and MIPS64 in this section.
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By 1996, any architecture with pretensions to longevity needed a 64-bit
implementation. Maybe getting there early was not a bad thing.

The nature of the MIPS architecture—committed to a flat address space and
the use of general-purpose registers as pointers—means that 64-bit addressing
and 64-bit registers go together. Even where the long addresses are irrelevant,
the increased bandwidth of the wide registers and ALU may be useful for rou-
tines that shovel a lot of data, which are often found in graphics or high-speed
communication applications.

It’s one of the signs of hope for the MIPS architecture (and certain other
simpler RISC architectures) that the move to 64 bits makes segmentation (which
still burden even 64-bit versions of x86 and PowerPC architectures) totally
pointless.

2.7.3 Regarding 64 Bits and No Mode Switch: Data in Registers

The standard way to extend a CPU to new areas is to do what DEC did
long ago when taking the PDP-11 up to the VAX and Intel did when going
from the 8086 to the i286 and i386: They defined a mode switch in the new
processor that, when turned on, makes the processor behave exactly like its
smaller ancestor.

But mode switches are kludges and in any case are difficult to implement in
a machine that is not microcoded. MIPS64 uses a different approach:

All instructions from the 32-bit architecture are preserved.

So long as you only run MIPS32 instructions you get 100 percent com-
patibility: Programs behave identically, and the low 32 bits of each
MIPS64 64-bit register hold the same values as would have filled the
corresponding MIPS32 register at this point in your program.

As many as possible of the MIPS32 instructions are defined so as to be
both compatible and still to be useful MIPS64 instructions.

The crucial decision (and an easy one, once you ask the right question) is:
What shall be in the high-order 32 bits of a register when we’re being MIPS32
compatible? There are a number of choices, but only a few are simple, and only
one really makes sense.

We could simply decide that the high bits should be undefined; when you’re
being MIPS32 compatible, the high bits of registers can contain any old garbage.
This is easy to achieve but fails the third test above: We would need separate
MIPS32 and MIPS64 versions of test instructions and conditional branches
(they test registers for equality, or for being negative, by looking at the top
bit—and that’s either bit 31 or bit 63).

A second and more promising option would be to decide that the high-
register bits should remain zero while we’re running MIPS32 instructions; but
again, this means we’ll have to double up tests for negatives and for comparisons
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of negative numbers. Also, a MIPS64 nor instruction between two top-half-
zero values doesn’t naturally produce a top-half-zero value.

The third, and best, solution is to maintain the top half of the register full of
copies of bit 31. If (when running only MIPS32 instructions) we ensure that
each register contains the correct low 32 bits and the top half flooded with
copies of bit 31, then all MIPS64 comparisons and tests are compatible with
their MIPS32 versions—so we can go on using the MIPS32 encodings for those
instructions. All bitwise logical instructions must work too (anything that
works on bit 31 works the same on bits 32–63).

The successful candidate can be described by saying that you keep 32-bit
values in registers by sign-extending them to 64 bits; but note that this is done
without regard to whether the 32-bit value is being interpreted as signed or
unsigned.

With that decided, MIPS64 needs new 64-bit versions of simple arithmetic
(the MIPS32 addu instruction, when confronted by 32-bit overflow, has to pro-
duce the overflow value in the low half of the register, and bit 31 copies in the
top half—not the same as a 64-bit add!). It also needs a load-64-bits and new
shift instructions, but it’s a modest enough set. Where new instructions are
needed for 64-bit data they get a “d” for double in the instruction mnemonic,
generating names like daddu, dsub, dmult, and ld.

Slightly less obvious is that the existing 32-bit load instruction lw is now
more precisely described as load word signed, so a new zero-extending lwu
appears. The number of instructions added is fattened by the need to sup-
port existing variants of load and store and (in the case of shift-by-a-constant)
the need to use a different opcode to escape the limits of MIPS32’s 5-bit shift
amount field.

All MIPS64 instructions are listed in horrible detail in Chapter 8.

2.8 Basic Address Space

The way MIPS processors use and handle addresses is subtly different from that
of traditional CISC CPUs, and we know that it causes confusion. Read the first
part of this section carefully. We’ll start off with the original 32-bit picture and
then describe the 64-bit version—if you’ll bear with me you’ll see why.

Here are some guidelines. With a MIPS CPU the addresses you put in your
programs are never the same as the physical addresses that come out of the chip
(sometimes they’re rather simply related, but they’re not the same). We’ll refer
to them as program addresses7 and physical addresses, respectively.

A MIPS CPU runs at one of two privilege levels: user and kernel.8 We’ll often
talk about user mode and kernel mode for brevity, but it’s a feature of the MIPS

7. A program address in this sense is exactly the same as a virtual address—but for many people
virtual address suggests a lot of operating system complications that aren’t relevant here.

8. MIPS CPUs after R4000 have a third supervisor mode; however, since all MIPS OSs so far have
ignored it, we will mostly do so too.
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Mapped (kseg2)

FIGURE 2.1 MIPS memory map: the 32-bit view.

architecture that the change from kernel to user never makes anything work
differently; it just sometimes makes it illegal. At the user level, any program
address with the most significant bit of the address set is illegal and causes a
trap. Also, some instructions cause a trap in user mode.

In the 32-bit view (Figure 2.1), the program address space is divided into
four big areas with traditional (and thoroughly meaningless) names; different
things happen according to the area an address lies in, as follows:

kuseg 0x0000.0000–7FFF.FFFF (low 2 GB): These are the addresses per-
mitted in user mode. In machines with an MMU, they will always be
translated (see Chapter 6). You should not attempt to use these
addresses unless the MMU is set up. Some documentation calls this
region “useg,” particularly when describing the address space seen by a
user program. This book doesn’t use “useg” again.

For machines without an MMU, what happens is implementation
defined; your particular CPU’s manual may tell you about something
useful you could do with them. But if you want your code to be portable
to and between MMU-less MIPS processors, avoid this area.

kseg0 0x8000.0000–9FFF.FFFF (512MB): These addresses are translated
into physical addresses by merely stripping off the top bit and mapping
them contiguously into the low 512 MB of physical memory. Since this
is a trivial translation, these addresses are often called “untranslated,”
but now you know better!
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Addresses in this region are almost always accessed through the cache,
so they may not be used until the caches are properly initialized. They
will be used for most programs and data in systems not using the MMU
and will be used for the OS kernel for systems that do use the MMU.

kseg1 0xA000.0000–BFFF.FFFF (512MB): These addresses are mapped
into physical addresses by stripping off the leading 3 bits, giving a dupli-
cate mapping of the low 512 MB of physical memory. But this time,
access will not use the cache.

The kseg1 region is the only chunk of the memory map that is guar-
anteed to behave properly from system reset; that’s why the after-reset
starting point (0xBFC0.0000) lies within it. The physical address of the
starting point is 0x1FC0.0000—tell your hardware engineer.9

You will therefore use this region to access your initial program ROM,
and most people use it for I/O registers. If your hardware designer pro-
poses to map such things outside the low 512 MB of physical memory,
apply persuasion.

kseg2 0xC000.0000–FFFF.FFFF (1GB): This area is only accessible in ker-
nel mode but is once again translated through the MMU. Don’t access
it before the MMU is set up. Unless you are writing a serious operating
system, you will probably never have cause to use kseg2.

You’ll sometimes see this region divided into two halves called kseg2
and kseg3, to emphasize that the lower half (kseg2) is accessible to
programs running in supervisor mode. If you ever use supervisor
mode . . .

2.8.1 Addressing in Simple Systems

MIPS program addresses are never simply the same as physical addresses, but
simple embedded software will probably use addresses in kseg0 and kseg1,
where the program address is related in an obvious way to physical addresses.

Physical memory locations from 0x2000.0000 (512 MB) upward are not
mapped anywhere in that simple picture, and most simple systems map every-
thing below 512 MB. But if you need to, you can reach higher addresses by
putting translation entries in the memory management unit (the TLB) or by
using some of the extra spaces available in 64-bit CPUs.

2.8.2 Kernel versus User Privilege Level

With kernel privileges (where the CPU starts up) it can do anything. In user
mode, program addresses above 2 GB (top bit set) are illegal and will cause a

9. The engineer wouldn’t be the first to have put the ROM at physical address 0xBFC0.0000 and
found that the system wouldn’t bootstrap.
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trap. Note that if the CPU has an MMU, this means that all user addresses must
be translated by the MMU before reaching physical memory, giving an OS the
power to prevent a user program from running amok. That means, though,
that the user privilege level is redundant for a MIPS CPU running without a
memory-mapped OS.

Also, in user mode some instructions—particularly the CPU control
instructions an OS needs—become illegal.

Note that when you change the kernel/user privilege mode bit, it does not
change the interpretation of anything—it just means that some things cease to
be allowed in user mode. At kernel level, the CPU can access low addresses just
as if they were in user mode, and they will be translated in the same way.

Note also that, though it can sound as if kernel mode is for operating systems
writers and user mode is the simple everyday mode, the reverse is the truth.
Simple systems (including many real-time operating systems) never leave MIPS
kernel mode.

2.8.3 The Full Picture: The 64-Bit View of the Memory Map

MIPS addresses are always formed by adding a 16-bit offset to a value in a reg-
ister. In 64-bit MIPS CPUs, the register always holds a 64-bit value, so there are
64 bits of program address. Such a huge space permits a rather cavalier attitude
to chopping up the address space, and you can see how it’s done in Figure 2.2.

The first thing to notice is that the 64-bit memory map is packed inside of
the 32-bit map. That’s an odd trick—like Doctor Who’s TARDIS, the inside is
much bigger than the outside—and it depends upon the rule we described in
section 2.7.3: When emulating the 32-bit instruction set, registers always con-
tain the 64-bit sign extension of the 32-bit value. As a result, a 32-bit program
gets access to the lowest and highest 2 GB of the 64-bit program space. So the
extended map assigns those lowest and highest regions to the same purpose as
in the 32-bit version, and extension spaces are defined in between.

In practice, the vastly extended user space and supervisor-accessible spaces
are not likely to be of much significance unless you’re implementing a vir-
tual memory operating system; hence, many MIPS64 users continue to define
pointers as 32-bit objects. The large unmapped windows onto physical memory
might be useful to overcome the 512-MB limit of kseg0 and kseg1, but you can
achieve the same effect by programming the memory manager unit (the TLB).

2.9 Pipeline Visibility

Any pipelined CPU hardware is always subject to timing delays for operations
that won’t fit into a strict one-clock-cycle regime. The designers of the archi-
tecture, though, get to choose which (if any) of these delays is visible to the
programmer. Hiding timing foibles simplifies the programmer’s model of what
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FIGURE 2.2 A 64-bit view of the memory map.

the CPU is doing, but it also loads complexity onto the hardware implementer.
Leaving the scheduling problem to programmers and their software tools sim-
plifies the hardware but can create development and porting problems.

As we’ve said several times already, the MIPS architecture leaves some pipe-
line artifacts visible and makes the programmer or compiler responsible for
making the system work. The following points summarize where the pipeline
shows up:

Branch delay: In all MIPS CPUs, the instruction following any branch
instruction (in the branch delay slot) is executed even though the branch
is taken. The programmer or compiler should find a useful or at least
harmless instruction for the branch delay slot—at worst, use a nop. But
even the assembler will hide the branch delay from you unless you specify
otherwise.
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In the branch likely variant instructions, introduced as an option by the
MIPS II instruction set, the delay slot instruction is executed only if the
branch is taken; see section 8.5.4 for when this is useful.

Load delay: I can’t think of any MIPS CPU where the instruction imme-
diately following a load could use the loaded data without causing a
delay.10

But optimizing compilers and programmers should always be aware of
how much time a particular CPU needs to get data ready to use—the
load-to-use delay. Long load-to-use delays sap performance, and hard-
ware designers will do a lot of work to ensure data is ready for the next-
but-one instruction after the load.

Floating-point (coprocessor 1) foibles: Floating-point computations nearly
always take multiple clock cycles to complete, and typical MIPS FPU
hardware has several somewhat independent pipelined units. MIPS
hardware must hide the FPU pipeline; FP computations are allowed to
proceed in parallel with the execution of later instructions, and the CPU
is stalled if an instruction reads a result register before the computation
finishes. Really heavyweight optimization requires the compiler to have
tables of instruction repeat rates and latencies for each target CPU type,
but you won’t want to depend on those for the program to work at all.

CPU control instruction problems: This is where life gets tricky. When you
change CP0 fields like those in the CPU status register, you are potentially
affecting things that happen at all pipeline stages.

With MIPS32/64 (at least Release 2) things are better. CP0 interactions
have been divided into two. Those where the previous CP0 operation
might affect the instruction fetch of a later instruction are the most trou-
blesome and are called instruction hazards; the rest are execution hazards.
Then you are provided with two flavors of hazard barrier instructions:
There’s a barrier suitable for execution hazards and a choice of souped-
up branch instructions, which make you safe against instruction hazards
too. You’re guaranteed freedom from half-done CP0 side effects if you
put an appropriate hazard barrier between the producer and consumer.
See section 3.4.

Prior to the second revision of MIPS32/64, CP0 interactions were firmly
consigned to being machine dependent. No hazard barrier instructions
were formally available, and programmers must read the CPU manual
to discover how to add enough padding instructions to make sure side
effects are given time to propagate.

10. In very old MIPS I CPUs it was the programmer’s or compilation tool’s job to put in an explicit
no-op, but you probably don’t need to worry about that any more.
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3 Coprocessor 0: MIPS
Processor Control

In addition to its normal computational functions, any CPU needs units to
handle interrupts, configuration options, and some way of observing or

controlling on-chip functions like caches and timers. But it’s difficult to do
this in the neat implementation-independent way that the ISA does for the
computational instruction set.

It would be desirable and easier for you to follow if we could introduce this
through some chapters that separate out the different functions. We’re going to
do that. But we have to describe the common mechanisms used to implement
these features first. You should read the first part of this chapter before tackling
the next three chapters of this book; take particular note of the use of the word
coprocessor, as explained on the next page.

So what jobs does CP0 on a MIPS CPU do?

CPU configuration: MIPS hardware is often very flexible, and you may
be able to select major features of the CPU (such as its endianness; see
Chapter 10) or alter the way the system interface works. One or more
internal registers provide control and visibility of these options.

Cache control: MIPS CPUs have always integrated cache controllers, and
all but the oldest integrate caches too. The CP0 cache instruction is
used—in multiple different flavors—to manipulate cache entries. We’ll
talk about caches in Chapter 4.

Exception/interrupt control: What happens on an interrupt or any excep-
tion, and what you do to handle it, are defined and controlled by CP0
registers and a few special instructions. This is described in Chapter 5.

Memory management unit control: This is discussed in Chapter 6.

53
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Special MIPS Use of the Word Coprocessor

The word coprocessor is normally used to mean an
optional part of a processor that takes responsibil-
ity for some extension to the instruction set. The MIPS
standard instruction set omits many features needed
in any real CPU, but op-codes are reserved and
instruction fields defined for up to four coprocessors.
One of these (coprocessor 1) is the floating-point
coprocessor, which really is a coprocessor in any-
one’s language.
Another (coprocessor 0 or CP0) is described by
MIPS as the system control coprocessor, and its instruc-
tions are essential to handle all those functions out-
side the responsibility of a user-mode program; they
are the subject of this chapter.
Coprocessor 0 has no independent existence and
is certainly not optional—you can’t possibly make
a MIPS CPU without a CPU status register, for
example. But it does provide a standard way
of coding the instructions that access the status
register, so that, although the definition of the
status register has evolved through different MIPS
implementations, you can at least use the same
assembly program for both CPUs.

The OS-only coprocessor 0 functions are deliber-
ately corralled off from the MIPS ISA. When MIPS
was young, system suppliers invariably shipped a
customized operating system kernel, so changes in
CP0 required changes in the kernel—but only in the
kernel; it didn’t affect application compatibility. So
for MIPS I through MIPS V, the CP0 functions were
regarded as implementation dependent.
Not any more. Multiple bodies now build OS code
for MIPS, and it’s a major headache if OS porting
work is required between different MIPS CPUs. So
the newer standards, MIPS32 and MIPS64, define
the CP0 registers and functions in enough detail that
you can build a portable OS.
Getting back to the architecture: Of the four coproc-
essor encoding spaces, CP3 has been invaded by
floating-point instructions from MIPS32/64 and is
now only usable where you are sure you’ll never
want to implement floating point. CP2 is available
and occasionally used for custom ISA extensions or
to provide application-specific registers in a few SoC
applications. CP1 is the floating-point unit itself.

Miscellaneous: There’s always more: timers, event counters, parity error
detection. Whenever additional functions are built into the CPU too
tightly to be conveniently accessed as I/O devices, this is where they get
attached.

We’ll summarize everything found in MIPS32/64 CPUs in the second half
of this chapter. But first, we’ll leave aside what we’re trying to do and look at
the mechanisms we use to do it. There are relatively few CP0 instructions—
wherever possible, low-level control over the CPU involves reading and writing
bitfields within special CP0 registers.

Table 3.1 introduces the functions of CPU control registers. It lists every reg-
ister that is required for compliance with MIPS32/64, and a few that are optional
but common.

This is not a complete list; other registers are associated with optional
extensions to the instruction set (ASEs) or with other optional features of
MIPS32/64.

In addition, MIPS CPUs may have implementation-specific registers—this
is a preferred way to add features to the MIPS architecture. Refer to your
particular CPU’s manuals.
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To avoid burying you in detail at this stage, we’ve banished the bit-by-bit
description of the CP0 registers required by MIPS32/64 to a separate section,
section 3.3. You can skip over that section for now if you’re interested in going
on to the following chapters.

While we’re listing registers, k0 and k1 (general purpose registers $26–27)
are worth a mention. These are two general-purpose registers reserved (by soft-
ware convention) for use in exception handler code. It’s pretty much essential
to reserve at least one register; the choice of which register is arbitrary, but it
must be one that is embedded in all extant MIPS toolkits and binaries.

3.1 CPU Control Instructions

There are several special CPU control instructions used in the memory manage-
ment implementation, but we’ll leave those until Chapter 6. MIPS32/64 defines
a set of cache instructions that do everything required to manage caches,
described in Chapter 4.

But those aside, MIPS CPU control requires very few instructions. Let’s start
with the ones that give you access to all the registers we just listed:

mtc0 s, <n> # Move to coprocessor 0

This instruction loads coprocessor 0 register number n from CPU general
register s, with 32 bits of data (even in 64-bit CPUs many of the CP0 regis-
ters are only 32 bits long, but for the few long CP0 registers there’s the dmtc0
instruction). This is the only way of setting bits in a CPU control register.

When MIPS was new, there could be up to 32 CP0 registers. But MIPS32/64
cater for up to 256, and for instruction backward-compatibility that’s been done
by appending a 3-bit select field to the CP0 number (which is in fact encoded in
a previously zero part of the instruction). So mtc0 s,$12,1 is interpreted as
accessing “register 12, select 1.” We’ll write that as 12.1.

It is not good practice to refer to CPU control registers by their number in
assembly programs; normally, you use the mnemonic names shown in Table 3.1.
Most toolchains define these names in a C-style include file and arrange for
the C preprocessor to be run as a front end to the assembler; see your toolkit
documentation for guidance on how to do this. Although there’s a fair amount
of influence from original MIPS standards, there is some variation in the names
used for these registers. We’ll stick to the mnemonics shown in Table 3.1.

Getting data out of CP0 registers is the opposite:

mfc0 d,$n # Move from coprocessor 0

d is loaded with the values from CPU control register number n, and that’s the
only way of inspecting bits in a control register (though again, there’s a dmfc0
variant for the few wide CP0 registers in 64-bit machines). So if you want to
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TABLE 3.1 MIPS CPU Control Registers

Register CP0 register
mnemonic No. Description

SR 12 The Status Register, which, perversely, consists mostly of writable
control fields. Fields determine the CPU privilege level, which
interrupt pins are enabled, and other CPU modes.

Cause 13 What caused that exception or interrupt?

EPC 14 Exception Program Counter: where to restart after exception /interrupt.

Count 9 Together, these form a simple but useful high-resolution interval
timer, ticking at (usually) half the CPU pipeline clock rate.Compare 11

BadVAddr 8 The program address that caused the last address-related
exception. Set by address errors of all kinds, even if there is no MMU.

Context 4 Registers for programming the memory management/
translation hardware (the TLB), described in Chapter 6.

EntryHi 10

EntryLo0-1 2–3

Index 0

PageMask 5

Random 1

Wired 6

PRId 15 CPU type and revision level. The type number is managed by MIPS
Technologies and should (at least) change when the coprocessor 0
register set changes. There’s a list of values up to mid-2004 in Table 3.3.

Config 16 CPU setup parameters, usually system determined; some
writable here, some read-only. Some CPUs have higher-numbered
registers for implementation-specific purposes.

Config1–3 16.1–3

EBase 15.1 Exception entry point base address and—for multi-CPU
systems—CPU ID.

IntCtl 12.1 Setup for interrupt vector and interrupt priority features.

SRSCtl 12.2 Shadow register control, see section 5.8.6.

SRSMap 12.3 A map of eight shadow register numbers to be used with
each of eight possible interrupt causes, when the CPU is using the
“vectored interrupt” feature.

CacheErr 27 Fields for analyzing (and possibly recovering from)
a memory error, for CPUs using error-correcting code on the data path.
See section 4.9.3 for more details.ECC 26

ErrorEPC 30
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TABLE 3.1 continued

Register CP0 register
mnemonic No. Description

TagLo 28.0 Registers for cache manipulation, described in section 4.9.

DataLo 28.1

TagHi 29.0

DataHi 29.1

Debug 23.0 Registers for the EJTAG debug unit, described in section 12.1.7.

DEPC 24.0

DESAVE 31.0

WatchLo 18.0 Data watchpoint facility, which can cause an exception when the
CPU attempts to load or store at this address—potentially useful for
debugging. See section 12.2.

WatchHi 19.0

PerfCtl 25.0 Performance counter registers (more control/count pairs at
subsequent odd/even select numbers). See section 12.4.PerfCnt 25.1

LLAddr 17.0 Some CPUs (notably those with coherent caches or the
multithreading extension) store an address associated with an ll
(“load-linked”) instruction; when they do, it’s visible here, even
though only diagnostic software will ever read it. See section 8.5.2.

HWREna 7.0 A writable bit map that determines which hardware registers will be
accessible to user-privilege programs—see section 8.5.12.

update a single field inside—for example—the status register SR you’re usually
going to have to code something like:

mfc0 t0, SR
and t0, <complement of bits to clear>
or t0, <bits to set>
mtc0 t0, SR

The last crucial component of the control instruction set is a way of undoing
the effect of an exception. We’ll discuss exceptions in detail in Chapter 5, but the
basic problem is shared by any CPU that can implement any kind of secure OS;
the problem is that an exception can occur while running user (low-privilege)
code, but the exception handler runs at high privilege.1 So when returning from

1. Almost universally, CPUs use a software-triggered exception—a system call—as the only mech-
anism that user code can employ to invoke a service from the OS kernel (which runs at a higher
privilege level).
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the exception back to the user program, the CPU needs to steer between two
dangers: On the one hand, if the privilege level is lowered before control returns
to the user program, you’ll get an instant and fatal second exception caused by
the privilege violation; on the other hand, if you return to user code before
lowering the privilege level, a malicious nonprivileged program might get the
chance to run an instruction with kernel privileges. The return to user mode
and the change of privilege level must be indivisible from the programming
viewpoint (or atomic, in architecture jargon).

On all but the oldest MIPS CPUs the instruction eret does this job (on
those long-lost CPUs you needed a jump instruction with an rfe in its delay
slot). We’ll go into the details in Chapter 5.

3.2 Which Registers Are Relevant When?

These are the registers you will need to consult in the following circumstances:

After power-up: You’ll need to set up SR to get the CPU into a workable
state for the rest of the bootstrap process. It’s common practice for the
hardware to leave many register bits undefined following reset.

MIPS32 CPUs other than the earliest have one or more configuration
registers: Config and Config1–3. Some CPUs may have more, with
CPU-specific fields (Config7 is sometimes used for particularly CPU-
specific fields).

The first Config register has a few writable fields, which you may need
to set before very much will work. Consult your hardware engineer about
making sure that the CPU and system agree enough about configuration
to get to the point of writing these registers!

Handling any exception: In the early MIPS CPUs any exception (apart
from one particular MMU event) invoked a single common “general
exception handler” routine at a fixed address. But in the years since then
many reasons have been found to add separate handlers for different
purposes; see section 5.3.

On entry, no program registers have been saved, only the restart address
in EPC. The MIPS hardware knows nothing about stacks. In any case, in a
secure OS the privileged exception handler can’t assume anything about
the integrity of the user-level code—so, in particular, it can’t assume that
the stack pointer is valid or that stack space is available.

You need to use at least one of k0 and k1 to point to some memory
space reserved to the exception handler. Now you can save things, using
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Encoding of Control Registers

A note about reserved fields is in order here.
Many unused control register fields are marked
“0.” Bits in such fields are guaranteed to read
zero, and it is harmless to write them (though the
value written is ignored). Other reserved fields are

marked “reserved” or “×”; you should take care
to always write such a field as either zero or a
value you previously read from it. But you should
not assume that you will get back zero or any other
particular value.

the other k0 or k1 register to stage data from control registers where
necessary.

Consult the Cause register to find out what kind of exception it was and
dispatch accordingly.

Returning from exception: Control must eventually be returned to the
value stored in EPC on entry. Whatever kind of exception it was, you
will have to adjust SR back when you return, restoring the user-privilege
state, enabling interrupts, and generally unwinding the exception effect.

Finally, the return-from-exception instruction eret combines the return
to user space and resetting of SR(EXL).

Interrupts: SR is used to adjust the interrupt masks, to determine which
(if any) interrupts will be allowed higher priority than the current one.
The hardware offers no interrupt prioritization, but the software can do
whatever it likes.

Instructions just there to cause exceptions: These are often used (for system
calls, debug breakpoints, and to emulate some kinds of instruction). All
MIPS CPUs have implemented instructions called break and syscall;
some implementations have added extra ones.

3.3 CPU Control Registers and Their Encoding

This section tells you about the format of the control registers, with a sketch of
the function of each field. In most cases, more information about how things
work is to be found in separate sections below. However, we’ve left the registers
that are specific to the memory management system to Chapter 6, and those that
are just for cache management in Chapter 4, where we’re dealing with caches in
general.

Note that individual CPUs may define extra fields in some registers. The
fields described here are those that are either compulsory in MIPS32/64 or that
seem to be very commonly used.
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FIGURE 3.1 Fields in the SR register (status register).

3.3.1 Status Register (SR)

The MIPS CPU has remarkably few mode bits; those that exist are defined
by fields in the very packed CPU status register SR, as shown in Figure 3.1.
These are all the fields recognized by the MIPS32/64 standards; some of the

spare fields may be used for implementation-dependent purposes.
We emphasize again that there are no nontranslated or uncached modes in

MIPS CPUs; all translation and caching decisions are made on the basis of the
program address.

Here are the critical shared fields; it would be very bad form for a new imple-
mentation to recycle any of them for any purpose, and they are probably now
nailed down for the foreseeable future.

CU3-0 Each represents “coprocessor enable” for coprocessors 3–0,
respectively.

Coprocessor 1 is the FPU—so CU1 is set 1 to use the FPU if you
have it and 0 to disable it. When 0, all FPU instructions cause an
exception. While it’s obviously a bad idea to enable FPU instruc-
tions if your CPU lacks FPU hardware, it can be useful to turn off
an FPU even when you have one.2

Setting the CU0 bit has the unexpected effect of enabling user-
privilege programs to run CP0 instructions. You probably don’t
want to do that.

CU3-2 control the usability of coprocessors 3 and 2, respectively.
Cores from MIPS Technologies allow system builders to imple-
ment a CP2—that could be to add interesting new instructions,
but it’s quite likely to be done just to get 32 additional, easily
accessible registers.

The coprocessor 3 decode space has been invaded by instructions
from the standard MIPS32/64 floating-point instruction set, so is
really no longer compatible with a standard CP1.

2. Why turn off a perfectly good FPU? Some operating systems disable FP instructions for every
new task; if the task attempts some floating point, it will trap, and the FPU will be enabled for
that task. But now we can distinguish tasks that never use floating-point instructions, and when
such a task is suspended and restored we don’t need to save or restore the FP registers; that may
save some time in crucial context-saving code.
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RP Reduced Power—but whether and how it does anything is CPU
dependent. It might, for example, reduce the CPU’s operating
frequency, voltage, or both. Consult your CPU’s manual and talk
to your system designer.

FR A mode switch: Set 1 to expose all 32 double-sized floating-point
registers to software; set 0 to make them act as pairs of 32-bit
registers, as found in MIPS I.

RE (reverse endianness in user mode): The MIPS processors can be
configured, at reset time, with either endianness (see section 10.2
if you don’t know what that means). Since human beings are
perverse, there are now two universes of MIPS implementation:
DEC and Windows NT led off with little-endian, while SGI and
their UNIX world was big-endian. Embedded applications origi-
nally showed a strong big-endian bias but are now thoroughly
mixed.

It could be a useful feature in an operating system to be able
to run software from the opposite universe; the RE bit makes
it possible. When RE is active, user-privilege software runs as
if the CPU had been configured with the opposite endianness.
However, achieving cross-universe running would require a large
software effort as well, and to date nobody has done it.

MX Enable for either the DSP or MDMX ASE (instruction set
extensions)—you can’t have both in the same CPU. At the time
of writing, the DSP ASE is quite new, and MDMX appears to lack
toolchain and middleware support.

PX See description of SR(UX) below.

BEV Boot exception vectors: When BEV == 1, the CPU uses the ROM
(kseg1) space exception entry point (described in section 5.3).
BEV is usually set to 0 in running systems.

TS TLB shutdown: See Chapter 6 for details. On some CPUs, TS gets
set if a program address simultaneously matches two TLB entries,
which is certainly a sign of something horribly wrong in the OS
software. Prolonged operation in this state, in some implementa-
tions, could cause internal contention and damage to some chips,
so the TLB just switches off and ceases to match anything. TLB
shutdown is terminal and can be cleared only by a hardware reset.

Some MIPS CPUs have foolproof TLB hardware and may not
implement this bit, or it may indicate an attempt to write a dupli-
cate entry that was suppressed. Consult your CPU manual.

SR, NMI Soft reset or nonmaskable interrupt occurred: MIPS CPUs offer
several different grades of reset, distinguished by hardware sig-
nals. In particular, the configuration register Config retains its
values across a soft reset but must be reprogrammed after a hard
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reset. MIPS resets are somewhat like exceptions—though a soft or
hard reset is an exception from which no CPU ever returns—and
reset reuses a lot of the exception machinery.

The field SR(SR) is clear following a hard reset (one where all
operating parameters are reloaded from scratch) but set follow-
ing a soft reset or NMI. The field SR(NMI) is set only after an
NMI exception.

IM7-0 Interrupt mask: An 8-bit field defining which interrupt sources,
when active, will be allowed to cause an exception. Six of the
interrupt sources are generated by signals from outside the CPU
core (one may be used by the FPU, which, although it lives on the
same chip, is logically external); the other two are the software-
writable interrupt bits in the Cause register.

If you set your modern CPU to use EIC interrupts, then the inter-
pretation of SR(IM) changes; see section 5.8.5.

Unless you’re using the EIC system, no interrupt prioritization is
provided for you: the hardware treats all interrupt bits the same.
See section 5.8 for details.

UX, SX, KX Broadly speaking, these enable the much larger address space
available with a 64-bit CPU. There are separate bits for the three
different (user, supervisor, kernel) privilege levels; when the
appropriate one is set, the most common memory translation
exceptions (TLB misses) are redirected to a different entry point
where the software will expect to deal with 64-bit addresses.

In addition, when SR(UX) is zero the CPU won’t run 64-bit
instructions from the MIPS64 ISA in user mode. This allows an
OS to construct a user-mode “sandbox” within which a 32-bit
program—even a defective program that executes what ought to
be illegal instructions for a 32-bit CPU—will behave exactly as
it would on a MIPS32 CPU. Combining these features may not
always be good: If you want to use 64-bit instructions but still
stick with 32-bit addressing in user mode, you can set SR(PX).

KSU CPU privilege level: 0 for kernel, 1 for supervisor, 2 for user.
Regardless of this setting, the CPU is in kernel mode whenever
the EXL or ERL bits are set following an exception. The supervi-
sor privilege level was introduced with the R4x00 but has never
been used; see the sidebar for some background.

Some manuals document this field as two separate bits, with the
top bit called UM.

ERL Error level: This gets set when the CPU discovers it has received
bad data. MIPS CPUs can optionally receive and check extra par-
ity or ECC (error-correcting code) bits with each chunk of data
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Why Is There a Supervisor Mode?

The R3000 CPU offered only two privilege levels,
which are all that is required by most UNIX imple-
mentations and all that has ever been used in any
MIPS OS. So why did the R4000’s designers go to
considerable trouble to add a feature that has never
been used?
In 1989–1990, one of the biggest successes for
MIPS was the use of the R3000 CPU in DEC’s
DECstation product line, and MIPS wanted the
R4000 to be selected as DEC’s future workstation
CPU. The competition was an in-house develop-
ment that evolved into DEC’s Alpha architecture, but
they were coming from behind; R4000 was usable
about 18 months before Alpha.
WhicheverCPUwaschosenhad to runnot onlyUNIX
but DEC’s minicomputer operating system, VMS.
Alpha’s basic instruction set is almost identical to
MIPS’s; its biggest difference was the attempt to do

without any partial-word loads or stores (and that
turned out to be DEC’s mistake, fixed later).
In the end, it appears that the VMS software team
was decisive in choosing Alpha over the R4000—
they insisted that R4000’s much simpler CPU con-
trol system would make VMS too insecure, or the
port too long. Somewhere along the way they
cited MIPS’s two-level security system as a particular
problem; the R4000’s supervisor mode was MIPS’s
response.
I am deeply skeptical about the argu-
ments; I think this was more down to good
old-fashioned prejudice. Behind the technical
smokescreen, perhaps DEC was right to believe
that control over its microprocessor development
was essential, but it’s interesting to speculate
how things might have turned out differently if DEC
had stayed on board with the R4000 and exploited
that 18-month leadership.

from cache or memory. Parity errors are generally fatal (unless
there’s a known good replacement for the data available). But
ECC errors can be software-corrected, so long as no more than 1
(perhaps 2) bits have gone wrong.

When that happens, the CPU takes a parity/ECC error exception
with this special bit set. This is handled separately from standard
exceptions, because a correctable ECC error can happen
anywhere—even in the most sensitive part of an ordinary excep-
tion routine—and if the system is aiming to patch up ECC errors
and keep running, it must be able to fix them regardless of when
they occur. That’s challenging, since the ECC error exception rou-
tine has no registers it can safely use; with no registers to use as
pointers, it can’t start saving register values.

To get us out of this hole, SR(ERL) has drastic effects; all access
to normal user-space-translated addresses disappears, and pro-
gram addresses from 0 through 0x7FFF.FFFF become uncached
windows onto the same physical addresses. The intention is that
the cache error exception handler can use base + offset address-
ing off the zero register to access some uncached memory space
(reserved by the OS for this purpose), save some registers, and
make itself room to run.



64 Chapter 3—Coprocessor 0: MIPS Processor Control

EXL Exception level: Set by any exception, this forces kernel mode and
disables interrupts; the intention is to keep EXL on long enough
for software to decide what the new CPU privilege level and
interrupt mask are to be.

IE Global interrupt enable: Note that either ERL or EXL inhibit all
interrupts, regardless.

3.3.2 Cause Register

Figure 3.2 shows the fields in the Cause register, which you consult to find out
what kind of exception happened and use to decide which exception routine to
call. Cause is a key register in exception handling and is little changed since the
very earliest MIPS CPUs.

BD Branch delay: EPC is committed to being the address to which
control should return after an exception. Normally, this also
points at the exception victim instruction.

But when the exception victim is an instruction in the delay slot
following a branch, EPC has to point to the branch instruction;
it is harmless to re-execute the branch, but if you returned from
the exception to the branch delay instruction itself, the branch
would not be taken and the exception would have broken the
interrupted program.

Cause(BD) is set whenever an exception occurs on an instruc-
tion in a delay slot and EPC points to the branch. You need only
look at Cause(BD) if you want to analyze the exception vic-
tim instruction (if Cause(BD) == 1, then the instruction is at
EPC + 4).

TI (Newer MIPS32/64 CPUs only)—this exception was caused by
an interrupt from the internal timer.

CE Coprocessor error: If the exception is taken because a coprocessor
format instruction was not enabled by the corresponding
SR(CUx) field, then Cause(CE) has the coprocessor number
from that instruction.

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6  2 1 0

BD TI CE DC PCI 0 IV WP 0 IP7-2 IP1- 0 0 ExcCode 0

In EIC (external int ctrl) mode RIPL

FIGURE 3.2 Fields in the Cause register.
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DC (Newer MIPS32/64 CPUs only)—write this bit to 1 to stop the
Count register counting, which you might sometimes do to save
power.

PCI (Newer MIPS32/64 CPUs only)—a CP0 performance counter
overflowed and generated this interrupt.

IV Write this bit to 1 to use a special exception entry point for inter-
rupts, as described in section 5.8.5.

WP Reads 1 to remember that a watchpoint triggered when the CPU
was already in exception mode (which suppresses the watchpoint
exception). This bit will cause the CPU to take the watchpoint
exception as soon as it returns from exception mode to normal
operation, and it must be cleared by your watchpoint exception
handler.

Write this bit to 1 to use a special exception entry point for inter-
rupts, as described in section 5.8.5.

IP7-0 Interrupt pending: Shows you the interrupts that want to happen.
Cause(IP7-2) follow the CPU hardware input signals, whereas
Cause(IP1-0) (the software interrupt bits) are readable/
writable and contain whichever value you last wrote to them. Any
of these 8 bits that are active when enabled by the appropriate
SR(IM) bit (and subject to all the other conditions that inhibit
interrupts) will cause an interrupt.

Cause(IP) is subtly different from the rest of the Cause register
fields: It doesn’t tell you what happened when the exception took
place; instead, it tells you what is happening now.

Note that the interpretation of Cause(IP7-2) changes
when you use the EIC interrupt system, described in
section 5.8.5.

ExcCode This is a 5-bit code that tells you what kind of exception hap-
pened, as detailed in Table 3.2. This table needs to be here, but
many of the conditions it describes have not been mentioned in
this book up to this point. For now, please regard this as reference
material; it may all make sense later!

3.3.3 Exception Restart Address (EPC) Register

This is just a register that holds the address of the return point for this exception.
The instruction causing (or suffering) the exception is at EPC, unless Cause
(BD), in which case EPC points to the previous (branch) instruction. EPC is
64 bits wide if the CPU is.
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TABLE 3.2 ExcCode Values: Different Kinds of Exceptions

ExcCode
value Mnemonic Description

0 Int Interrupt.

1 Mod Store, but page marked as read-only in the TLB.

2 TLBL No TLB translation (read or store, respectively). That is, no valid entry
in the TLB matches the program address used.
When there is no matching entry at all (not even an invalid one) and the
CPU is not already in exception mode—i.e., SR(EXL) set—this is a TLB
miss, which is handled through a special exception entry point to
streamline handling this common event.

3 TLBS

4 AdEL Address error (on load/I-fetch or store, respectively): This is either an
attempt to get outside kuseg when in user mode or an attempt to read a
doubleword, word, or halfword at a misaligned address.

5 AdES

6 IBE Bus error (instruction fetch or data read, respectively): External
hardware has signaled an error of some kind; what you have to do about
it is system dependent. A bus error on a store can only come about
indirectly, as a result of a cache read to obtain the cache line to be
written.

7 DBE

8 Syscall Executed a syscall instruction.

9 Bp Executed a break instruction, used by debuggers.

10 RI Instruction code not recognized (or not legal).

11 CpU Tried to run a coprocessor instruction, but the appropriate coprocessor
is not enabled in SR(CU3-0).
In particular, this is the exception you get from a floating-point
operation if the FPU usable bit, SR(CU1), is not set; hence, it is where
floating-point emulation starts.

12 Ov Overflow from trapping form of integer arithmetic
instructions—possible, for example, with add but not with addu.
C programs don’t use overflow-trapping instructions.

13 TRAP Condition met on one of the conditional trap instructions teq, etc.

14 Now unused. On some older CPUs with L2 caches this was used when
hardware detected a possible cache alias, explained in section 4.12.

15 FPE Floating-point exception. (In some very old CPUs, floating-point
exceptions are signaled as interrupts.)
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TABLE 3.2 continued

ExcCode
value Mnemonic Description

16–17 – Custom exception types, implementation dependent.

18 C2E Exception from coprocessor 2 (which, if fitted, will be a custom
extension to the instruction set).

19–21 – Reserved for future expansion.

22 MDMX: Tried to run an MDMX instruction, but SR(MX) wasn’t set (most likely,
the CPU doesn’t do MDMX).

23 Watch Physical address of load/store matched enabled value in
WatchLo/WatchHi registers.

24 MCheck Machine check—CPU detected some disastrous error in the CPU
control system. Some MIPS Technologies cores take this exception if you
load a second translation matching the same program address into the
TLB.

25 Thread Thread-related exception, as described in Appendix A. There’s another
register field, VPEControl(EXCPT), that tells you more details about a
thread-related exception.

26 DSP Tried to run a DSP ASE instruction, but either this CPU does not
support DSP instructions or SR(MMX) isn’t set to enable DSP.

27–29 – Reserved for future expansion.

30 CacheErr Parity/ECC error somewhere in the core, on either instruction fetch,
load, or cache refill. Such errors have their own (uncached-space)
exception entry point. In fact you never see this value in
Cause(ExcCode); but some of the codes in this table, including this
one, can be visible in the debug mode of the EJTAG debug unit—see
section 12.1, and in particular the notes on the Debug register.

31 – Now unused, but historical use like bit 14, above.

3.3.4 Bad Virtual Address (BadVAddr) Register

This register holds the address whose use led to an exception; it is set on any
MMU-related exception, on an attempt by a user program to access addresses
outside kuseg, or if an address is wrongly aligned. After any other exception it
is undefined. Note in particular that it is not set after a bus error. BadVAddr is
64 bits wide if the CPU is.
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3.3.5 Count/Compare Registers: The On-CPU Timer

These registers provide a simple general-purpose interval timer that
runs continuously and that can be programmed to interrupt. The interrupt
usually comes out of the CPU and is wired back to an interrupt by some
system-dependent mechanism—but see the IntCtl register for how to
find out.

Count is a 32-bit counter that counts up continually, at the CPU’s pipeline
clock rate, half the rate or (rarely) some other divider. You can find out the
counter rate by reading a hardware register, as described in section 8.5.12.

When Count reaches the maximum 32-bit unsigned value, it overflows qui-
etly back to zero. You can read Count to find the current “time.” You can also
write Count at any time—but it’s normal practice not to do so.

Compare is a 32-bit read/write register. When Count increments to a value
equal to Compare, the interrupt is raised. The interrupt remains asserted until
cleared by a subsequent write to Compare.

To produce a periodic interrupt, the interrupt handler should always incre-
ment Compare by a fixed amount (not an increment to Count, because the
period would then get stretched slightly by interrupt latency). The software
needs to check for the possibility that a late interrupt response might lead it
to set Compare to a value that Count has already passed; typically, it rereads
Count after writing Compare.

3.3.6 Processor ID (PRId) Register

Figure 3.3 shows the layout of the PRId register, a read-only register to be
consulted to identify your CPU. CPU Id should change—at least—when
there’s a change in either the instruction set or the CPU control register defini-
tions. Revision is strictly manufacturer dependent and wholly unreliable for
any purpose other than helping a CPU vendor to keep track of silicon
revisions.

The Company ID field—values are available from MIPS Technologies—is
relatively recent, so historical CPUs have it set to zero. The Company Options
field is defined only in your CPU manual.

Some CPU Id settings we know about are listed in Table 3.3.
If you want to print out the values, it is conventional to print them out

as “x.y,” where x and y are the decimal values of CPU ID and Revision,

31 24 23 16 15 8 7 0

Company Options Company ID CPU ID Revision

FIGURE 3.3 PRId register fields.
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TABLE 3.3 MIPS CPU Implementation Numbers in PRId(Imp)

Id CPU type Id CPU type

1 R2000, R3000 128 MIPS 4KC

2 IDT R305x family 129 MIPS 5KC

3 R6000 130 MIPS 20KC

4 R4000, R4400 131 MIPS 4KMP

5 Early LSI Logic 32-bit CPUs 132 MIPS 4KEc

6 R6000A 133 MIPS 4KEmp

7 IDT R3041 134 MIPS 4KSc

9 R10000 135 MIPS M4K

10 NEC Vr4200 136 MIPS 25Kf

11 NEC Vr4300 137 MIPS 5KE

12 NEC Vr41xx family 144 MIPS 4KEc (MIPS32R2
compliant)

16 R8000 145 MIPS 4KEmp (MIPS32R2
compliant)

32 R4600 146 MIPS 4KSd

33 IDT R4700 147 MIPS 24K

34 Toshiba R3900 family 149 MIPS 34K

35 R5000 150 MIPS 24KE

40 QED RM5230, RM5260

respectively. Avoid using the contents of this register to establish parameters
(like cache size, speed, and so on) or to establish the presence or absence
of particular features; some features have a standard encoding in one of the
Config registers, or you can design code sequences to probe for the existence
of individual features.

3.3.7 Config Registers: CPU Resource Information and Configuration

The MIPS32/64 standard defines four configuration registers for initialization
software to use: Config and Config1-3. Most of the register fields are read-
only fields, which software interrogates to discover relevant information about
the CPU hardware; but (particularly in the original Config register—which
for historical reasons is not called “Config0”) there are also some writable fields,
which select some CPU options that are likely to be made just one way for any
system.
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31 30 16 15 14 13 12 10 9 7 6  4 3 2  0

M Impl BE AT AR MT 0 VI K0

FIGURE 3.4 Fields in MIPS32/64 Config register.

All MIPS32/64-compliant CPUs have the Config register, as shown in
Figure 3.4, with the following fields:

M Continuation bit—reads 1 if there’s at least one more configura-
tion register (i.e. Config1) available.

Impl Implementation-dependent configuration flags. Most CPUs will
have some custom fields here, both read-only for information
and writable for system setup. Look at your CPU’s manual.

BE Reads 1 for big-endian, 0 for little-endian.

AT MIPS32 or MIPS64? Encoding:

0 MIPS32

1 MIPS64 instruction set but MIPS32 address map

2 MIPS64 instruction set with full address map

AR Architecture revision level:

0 MIPS32/MIPS64 Release 1

1 MIPS32/MIPS64 Release 2

This book is based on MIPS32/MIPS64 Release 2.

MT MMU type:

0 None

1 MIPS32/64-compliant TLB

2 BAT type

3 MIPS32-standard FMT fixed mapping

The BAT type is for historical compatibility with some old CPUs
and is perhaps unlikely to be met with.

VI Set 1 if the L1 I-cache is indexed and tagged with virtual (pro-
gram) addresses. A virtual I-cache requires special care by oper-
ating systems.

K0 Writable field determining whether the fixed kseg0 region is cach-
ed or uncached. And if cached, how exactly does it behave? This
field is encoded just like the cache options field of a TLB entry, as
seen in EntryLo0-1(C) and described in the notes to Figure 6.3.
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31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6  5 4 3 2 1 0

L1 I-cache L1 D-cache
IS IL IA DS DL DA

Config1 M MMUSize C2 MD PC WR CA EP FP

31 30 28 27 24 23 20 19 16 15 12 11 8 7  4 3 0

L3 cache L2 cache
TU TS TL TA SU SS SL SA

Config2 M

FIGURE 3.5 Fields in the MIPS32/64 Config1–2 registers.

Figure 3.5 has the following fields:

Config1(M) Continuation bit, 1 if Config2 is implemented.

Config1(MMUSize) The size of the TLB array (the array has MMUSize+1
entries).

L1 I-cache, L1 D-cache For each cache, this reports three values:

S Number of cache index positions is 64 × 2S. Multiply by
associativity to get the number of lines in the cache.

L Zero means no cache at all; otherwise, tells you that the
cache line size is 2 × 2L bytes.

A Associativity—this cache is (A + 1)-way set-associative.

So if (IS, IL, IA) is (2, 4, 3), the cache has 256 sets/way, 32
bytes/line, and is four-way set-associative: That’s a 32-Kbyte
cache.

Config1(C2) 1 if there’s a coprocessor 2 fitted (that would be likely to be
some very application-specific coprocessor).

Config1(MD) 1 if the old MDMX ASE is implemented in the floating-point
unit (see section B.3).

Config1(PC) There is at least one performance counter implemented; see
section 12.4.

Config1(WR) Reads 1 if your CPU has at least one watchpoint register; see
section 12.2.

Config1(CA) Reads 1 when the MIPS16e compressed-code instruction set
is available; see section 12.1.

Config1(EP) Reads 1 if an EJTAG debug unit is provided; see section 12.1.

Config1(FP) A floating-point unit is attached.
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Config2(M) Continuation bit, 1 if Config3 is implemented.

Config2(TU) Implementation-specific bits related to L3 cache, if
fitted. Might even be writable.

Config2(TS,TL,TA) L3 cache size and shape—encoded just like
Config1(IS, IL,IA).

Config2(SU) Implementation-specific bits for secondary cache, if
fitted. Can be writable.

Config2(SS, SL, SA) Secondary cache size and shape, encoded like Config1
(IS, IL,IA), above.

Fields shown in Figure 3.6 include:

Config3(M) Continuation bit, zero if—as is likely—there is no Config4.

LPA Reads 1 when large physical address (LPA) support exists, which
allows for a physical address range larger than 236 bytes. When
there is LPA support, there’s an extra CP0 register called Page-
Grain, and the layout of the fields in EntryLo0-1 and EntryHi
change.

No MIPS32 core (to date) implements LPA, so it’s not described
in this book. Refer to manufacturer’s manuals as required.

DSPP Reads 1 if the MIPS DSP extension is implemented, as described
in section B.2.

VEIC Read-only bit, which indicates the availability of an EIC-comp-
atible interrupt controller; see section 5.8.5.

Note that this is not part of the core, so it is typically wired as an
input to the CPU or CPU core by the system designer.

VInt Reads 1 if your CPU can handle vectored interrupts.

SP Reads 1 only if your CPU supports sub-4-Kbyte page sizes. Most
general-purpose MIPS CPUs don’t.

MT Reads 1 if your CPU does multithreading, implementing the MIPS
MT extension described in Appendix A.

SM Reads 1 if your CPU handles instructions from the “SmartMIPS”
ASE. This extension provides some help to encryption routines
on slower CPUs and is mostly aimed at CPUs built for smart
cards.

31 30 11 10 98 7 6 5 4 3 2 1 0

Config3 DSPP 0 LPA VEIC VInt SP 0 MT SM TL0M

FIGURE 3.6 Fields in the MIPS32/64 Config3 registers.



3.3 CPU Control Registers and Their Encoding 73

TL Reads 1 if your core can record and output instruction traces.
Instruction tracing is an advanced optional feature of the EJTAG
debug unit, described in section 12.1.

3.3.8 EBase and IntCtl: Interrupt and Exception Setup

These registers (new in Release 2 of MIPS32/64) give you control over the new
interrupt capabilities added there.

EBase was added to allow you to relocate all the exception entry points for
a CPU; it’s primarily there for multiprocessor systems that share memory, so
that different CPUs are not obliged to use the same exception handlers.

The fields of EBase are shown in Figure 3.7:

1, 0 Read-only bits prefixed to the base address bits to make sure the
exception vector ends up in the kseg0 region, conventionally used
for OS code.

ExceptionBase Is the base address for the exception vectors, adjustable to a
resolution of 4 Kbytes. See Table 5.1 for where that leaves all the
exception entry points.

That means any of your CPUs (even the “virtual” CPUs of a mul-
tithreaded CPU) can have its own unique exception handlers.

CPUNum A number to distinguish this CPU from others in the same multi-
processor system. The contents of this field are most likely hard-
wired by the designer of your system.

Then in IntCtl, shown in Figure 3.8:

IPTI, IPPCI Are read-only fields, telling you how timer and performance
counter interrupts (generated inside the CPU) are wired up in
your system. It’s relevant in nonvectored and simple-vectored
(VI) interrupt modes.

Each is a 3-bit binary number identifying which CPU interrupt
input is shared by the internal timer interrupt (IPTI) or the per-
formance counter overflow interrupt (IPPCI).

The interrupt is specified by giving the number of the Cause
(IPx) bit where the resulting interrupt is seen. Because Cause

1 0  ExceptionBase 0 CPUNum
31 30 29 12 11 10 9 0

FIGURE 3.7 Layout of the EBase register.
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31 29 28 26 25 10 9 5 4 0

IPTI IPPCI 0 VS 0

FIGURE 3.8 Layout of the IntCtl register.

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 E ICSS 0 ESS 0 PSS 0 CSS

FIGURE 3.9 Layout of the SRSCtl register.

(IP0-1) are software interrupt bits, unconnected to any input,
the legal values for IntCtl(IPTI) and IntCtl(IPPCI) are
between 2 and 7.

The timer and performance counter interrupts are taken out to
the CPU interface, where they are generally sent back again down
one of the interrupt signals. So this information is not determined
inside the CPU itself and is provided by the system designer.

VS Is writable to give you software control of the vector spacing; the
spacing you get between consecutive entries is IntCtl(VS)× 32
bytes. Only values of 1, 2, 4, 8, and 16 work (to give spacings of
32, 64, 128, 256, and 512 bytes, respectively). A value of zero does
give a zero spacing, so all interrupts arrive at the same address.

3.3.9 SRSCtl and SRSMap: Shadow Register Setup

Shadow registers are a new feature in Release 2 of MIPS32/64. CPUs are
equipped with one or more extra sets of general-purpose registers and switch
to a different set on an exception—and in particular, on an interrupt.

In SRSCtl:, shown in Figure 3.9:

HSS The highest-numbered register set available on this VPE/CPU
(i.e., the number of available register sets minus one).

On multithreading CPUs this field may be changed by software
that assigns shadow register sets. But for most purposes, this field
is read-only.

CSS The register set currently in use. It’s read-only here; set on any
exception, replaced by the value in SRSCtl(PSS) on an eret.

ESS This writable field is the software-selected register set to be used
for “all other” exceptions; that’s other than an interrupt in VI or
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EIC mode (both have their own special ways of selecting a register
set). It’s probably quite unusual for it to be anything other than
zero.

PSS The “previous” register set, which will be used following the next
eret.

You can get at the values of registers in this set using rdpgpr and
wrpgpr.

SRSCtl(PSS) is writable, allowing the OS to dispatch code in a
new register set; load this value and then execute an eret.

EICSS In EIC mode (see section 5.8.5), an external interrupt controller
proposes a shadow register set number with each requested inter-
rupt (nonzero IPL). When the CPU takes an interrupt, the exter-
nally supplied set number determines the next set and is made
visible here, until the next interrupt.

Just a note: SRSCtl(PSS) and SRSCtl(CSS) are not updated by all excep-
tions, but only those which write a new return address to EPC (or equivalently,
those occasions where the exception level bit SR(EXL) goes from zero to one).
Exceptions where EPC is not written include:

Exceptions occurring with SR(EXL) already set

Cache error exceptions, where the return address is loaded into
ErrorEPC

EJTAG debug exceptions, where the return address is loaded into DEPC

3.3.10 Load-Linked Address (LLAddr) Register

This register holds the physical address of the last-run load-linked operation,
which is kept to monitor accesses that may cause a future store conditional to
fail; see section 5.8.4. Software access to LLAddr is for diagnostic use only.

3.4 CP0 Hazards—A Trap for the Unwary

Since the CPU is pipelined, the effects of CP0 operations may not reach their
target until after the later stages of the CP0 instruction—and even then may take
some number of clocks to filter out to the hardware. But even before our CP0
instruction reaches its later stages, other instructions will have been fetched and
started. How can we be sure that those instructions will be executed in the light
of our CP0 change?
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It would in theory be possible for the hardware engineers to find and
interlock every possible interaction, producing a CPU where the software engi-
neer had nothing to worry about on this score. SGI’s R10000 approaches this
ideal.

But CP0 operations are obscure, many happen rarely, and all are under the
control of OS software, which must already be trusted. So it has seemed rea-
sonable to MIPS architects and designers to push some of this trouble onto the
shoulders of the software authors.

Historically, they were supposed to do this by analyzing the flow of their
program, detect places where the software might malfunction, and apply fixes.
The weapons at hand were nop instructions, which safely do nothing while
changes propagate, and branch/jump instructions, which “invalidate” sequen-
tially prefetched instructions, forcing them to be refetched and re-executed.
If you look at the back of a manual of a MIPS CPU that doesn’t conform to
the 2003 (second) revision of MIPS32/64, you will usually find a table of CP0
hazards, detailing how many clocks various changes take to propagate before
you can guarantee they will be seen as done by subsequent instructions.

Even with early CPUs with simple pipelines, this was a bit of a challenge. As
the pipelines grew longer and more complicated, it became a real nuisance for
portable software. Once there were CPUs that executed instructions in parallel
(simple dual-issue or even out-of-order), it became difficult to count how many
nops were required. For a while, we even got the ssnop (“superscalar no-op”)
instruction, guaranteed to burn a whole clock time by issuing alone.

But MIPS32/64 CPUs now have a more sensible approach: hazard barrier
instructions. These are special instructions, which need only be placed where
needed, where they have the effect of delaying subsequent instructions until all
the side effects of preceding CP0 instructions have propagated.

MIPS32/64 distinguishes two flavors of CP0 hazard, depending on which
stage of a dependent instruction’s operation may be affected. Execution hazards
are those where the dependent instruction will not be affected until it reads a
CP0 register value; instruction hazards are those where the dependent instruc-
tion is affected in its very earliest stages—at worst, at the time it is fetched from
cache or memory.

Another interesting distinction is between hazards that strictly affect only
other CP0 instructions (which must be part of the OS) and those (we might call
them user hazards) that can affect ordinary instructions.

3.4.1 Hazard Barrier Instructions

Before we get started, note that any exception clears all hazards (so nothing can
go wrong because of something incomplete at the start of an exception handler),
and so does an eret—so nothing done by the OS can cause trouble back in the
user program.

There are three explicit hazard barrier instructions. You can clear execution
hazards with ehb—which older CPUs will see as a no-op. Instruction hazards
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are cleared by special jump-register instructions jr.hb and jalr.hb, which
are most often substituted for a normal subroutine return or subroutine call,
respectively.

MIPS architects were being smart when they chose special jump-register
instructions, which will just be decoded as jr or jalr on older CPUs. On those
CPUs such instructions clear the CPU pipeline (the jump-to-register is inher-
ently “unpredictable”), and in most cases will provide the necessary delay on
CPUs that don’t comply with later MIPS32/64 specifications.

3.4.2 Instruction Hazards and User Hazards

These typically happen when we make a change to CP0 state (a register, a TLB
entry, or perhaps a cache line) that will affect the way we fetch ordinary instruc-
tions (or, in a few cases, will affect the way load/store instructions access mem-
ory). Such hazards must be safely resolved before we return to any kind of
“uncontrolled” code.

In these cases you should put the hazard barrier after the CP0 operation that
changed the state. Most often you should put it immediately afterwards—but
you might have some other work to do that you know is safe and can run while
the hazardous operation’s effects percolate out. But that’s on your own head!

These sort of hazards include:

Change of TLB entry => fetch, load, or store in affected
page

Change of EntryHi (ASID
field)

=> any non-globally-mapped fetch,
load, or store

Change to ERL mode => fetch, load, or store from kuseg

cache instruction altering
cache line

=> fetch, load, or store in affected
line

Change to watchpoint register => fetch, load, or store that matches

Change of shadow register
setting

=> any use of GPR (an execution
hazard)

CP0 register change that
disables interrupt

=> instruction that could still be
interrupted (an execution
hazard)

Most of these are instruction hazards—and where there’s no eret to act as
an adequate barrier for these instructions, you should use a jr.hb or jalr.hb.
The execution hazards can be cleared with an ehb.

3.4.3 Hazards between CP0 Instructions

Any mfc0 instruction is explicitly dependent on the value in a CP0 register, but
because all TLB information is staged through registers, so are tlbwi, tlbwr,
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and tlbr. Similarly, those cache instructions that read data out of CP0
registers are dependent.

Less obviously, tlbp depends on EntryHi because of its ASID field.
All these are execution hazards and can be made safe with an ehb, placed

before the consuming CP0 instruction. If you have the chance to put it a few
instructions early in the sequence, so much the better (some CPUs may inhibit
all CP0 operations for a few clocks after an ehb).



Chapter

4 How Caches Work
on MIPS Processors

AMIPS CPU without a cache isn’t really a RISC. Perhaps that’s not fair; for
special purposes you might be able to build a MIPS CPU with a small,

tightly coupled memory that can be accessed in a fixed number of pipeline
stages (preferably one). But MIPS CPUs have always had cache hardware built
tightly into the pipeline.

This chapter will describe the way MIPS caches work and what the soft-
ware has to do to make caches useful and reliable. From reset, almost every-
thing about the cache state is undefined, so bootstrap software must be careful
to initialize the caches correctly before relying on them. You might also ben-
efit from some hints and tips for use when sizing the caches (it would be bad
software practice to assume you know how big the cache is). For the diagnostics
programmer, we discuss how to test the cache memory and probe for particular
entries.

Some real-time applications writers may want to control exactly what will
get cached at run time. We discuss how to do that, even though I am skeptical
about the wisdom of using such tricks.

There’s also some evolution to contend with. In early 32-bit MIPS proces-
sors, cache management functions relied upon putting the cache into a special
state and then using ordinary reads and writes whose side effects could initial-
ize or invalidate cache locations. But we won’t dwell on that here; even CPUs
that do not fully comply with MIPS32/64 generally use something close to the
mechanism described in the following text.

4.1 Caches and Cache Management

The cache’s job is to keep a copy of memory data that has been recently read or
written, so it can be returned to the CPU quickly. For L1 caches, the read must
complete in a fixed period of time to keep the pipeline running.

79
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MIPS CPUs always have separate L1 caches for instructions and data
(I-cache and D-cache, respectively) so that an instruction can be read and a
load or store done simultaneously.

Cached CPUs in old-established families (such as the x86) have to be com-
patible with code that was written for CPUs that didn’t have any caches. Mod-
ern x86 chips contain ingeniously designed hardware to make sure that software
doesn’t have to know about the caches at all (if you’re building a machine to run
MS-DOS, this is essential to provide backward compatibility).

But because MIPS machines have always had caches, there’s no absolute
requirement for the cache to be so clever. The caches must be transparent to
application software, apart from the increased speed. But in a MIPS CPU, which
has always had cache hardware, there is no attempt to make the caches invisible
to system software or device drivers—cache hardware is installed to make the
CPU go fast, not to help the system programmer. A UNIX-like operating system
hides the cache from applications, of course, but while a more lightweight OS
might hide the details of cache manipulation from you, you will still probably
have to know when to invoke the appropriate subroutine.

4.2 How Caches Work

Conceptually, a cache is an associative memory, a chunk of storage where data
is deposited and can be found again using an arbitrary data pattern as a key. In
a cache, the key is the full memory address. Produce the same key back to an
associative memory and you’ll get the same data back again. A real associative
memory will accept a new item using an arbitrary key, at least until it’s full;
however, since a presented key has to be compared with every stored key simul-
taneously, a genuine associative memory of any size is either hopelessly resource
hungry, slow, or both.

So how can we make a useful cache that is fast and efficient? Figure 4.1 shows
the basic layout of the simplest kind of cache, the direct-mapped cache used in
most MIPS CPUs up to the 1992 generation.

The direct-mapped arrangement uses a simple chunk of high-speed mem-
ory (the cache store) indexed by enough low address bits to span its size. Each
line inside the cache store contains one or more words of data and a cache tag
field, which records the memory address where this data belongs.

On a read, the cache line is accessed, and the tag field is compared with the
higher addresses of the memory address; if the tag matches, we know we’ve got
the right data and have “hit” in the cache. Where there’s more than one word in
the line, the appropriate word will be selected based on the very lowest address
bits.

If the tag doesn’t match, we’ve missed and the data will be read from mem-
ory and copied into the cache. The data that was previously held in the cache
is simply discarded and will need to be fetched from memory again if the CPU
references it.
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FIGURE 4.1 Direct-mapped cache.

A direct-mapped cache like this one has the property that, for any given
memory address, there is only one line in the cache store where that data can
be kept.1 That might be good or bad; it’s good because such a simple structure
will be fast and will allow us to run the whole CPU faster. But simplicity has its
bad side too: If your program makes repeated reference to two data items that
happen to share the same cache location (presumably because the low bits of
their addresses happen to be close together), then the two data items will keep
pushing each other out of the cache and efficiency will fall drastically.

A real associative memory wouldn’t suffer from this kind of thrashing, but
it is too slow and expensive.

A common compromise is to use a two-way set-associative cache—which is
really just a matter of running two direct-mapped caches in parallel and looking
up memory locations in both of them, as shown in Figure 4.2.

1. In a fully associative memory, data associated with any given memory address (key) can be
stored anywhere; a direct-mapped cache is as far from being content addressable as a cache
store can be.
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FIGURE 4.2 Two-way set-associative cache.

Now we’ve got two chances of getting a hit on any address. Four-way set-
associative caches (where there are effectively four direct-mapped subcaches)
are also common in on-chip caches.

In a multiway cache there’s more than one choice of the cache location to
be used in fixing up a cache miss, and thus more than one acceptable choice
of the cache line to be discarded. The ideal solution is probably to keep track
of accesses to cache lines and pick the “least recently used” (“LRU”) line to be
replaced, but maintaining strict LRU order means updating LRU bits in every
cache line every time the cache is read. Moreover, keeping strict LRU informa-
tion in a more-than-four-way set-associative cache becomes impractical. Real
caches often use compromise algorithms like “least recently filled” to pick the
line to discard.

There are penalties, however. Compared with a direct-mapped cache, a
set-associative cache requires many more bus connections between the cache
memory and controller. That means that caches too big to integrate onto a
single chip are much easier to build direct mapped. More subtly, because the
direct-mapped cache has only one possible candidate for the data you need, it’s
possible to keep the CPU running ahead of the tag check (so long as the CPU
does not do anything irrevocable based on the data). Simplicity and running
ahead can translate to a faster clock rate.
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Once the cache has been running for awhile it will be full, so capturing new
memory data usually means discarding some previously cached data. If you
know that the data in the cache is already safely in memory, you can just discard
the cached copy; if the data in the cache is more up-to-date than memory, you
need to write it back first.

That brings us to how the cache handles writes.

4.3 Write-Through Caches in Early MIPS CPUs

CPUs don’t just read data (as the above discussion seems to be assuming)—
they write it too. Since a cache is intended to be a local copy of some data from
main memory, one obvious way of handling the CPU’s writes is the use of what
is called a write-through cache.

In a write-through cache, the CPU’s data is always written to main memory;
if a copy of that memory location is resident in the cache, the cached copy is
updated too. If we always do this, then any data in the cache is known to be in
memory too, so we can discard the contents of a cache line anytime without
losing any data.

We would slow the processor down drastically if we waited for the mem-
ory write-through to complete, but we can fix that. Writes (address and data
together) destined for main memory can always be kept in a queue while the
memory controller gets itself ready and completes the write. The place where
writes are queued is organized as a first-in, first-out (FIFO) store and is called
a write buffer.

Early MIPS CPUs had a direct-mapped write-through cache and a write
buffer. So long as the memory system can happily absorb writes at the average
rate produced by a CPU, running a particular program this way works very well.

But CPU speeds have grown much faster than memory speeds, and some-
where around the time that the 32-bit MIPS generation was giving way to the
64-bit R4000, MIPS speeds passed the point where a memory system could
reasonably hope to absorb every write.2

4.4 Write-Back Caches in MIPS CPUs

While early MIPS CPUs use simple write-through data caches, later CPUs are
too fast for this approach—they would swamp their memory systems with writes
and slow to a (relative) crawl.

2. A very rough rule of thumb for programs is that there is one store per 10 instructions, so a write-
through solution may work until the memory cycle time reaches about 5–7 instruction times.
With DRAM cycle times then around 180 ns, the simple solution ran out of steam at about
30–40 MHz.
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The solution is to retain write data in the cache. Write data is stored only to
the cache, and the cache line is marked to make sure we don’t forget to write it
back to memory sometime later (a line that needs writing back is called dirty or
modified).3

There’s a subvariant here: If the addressed data is not currently in the cache,
we can either write it to main memory and ignore the cache, or we can bring
the data in specially just so we can write it—this is called write-allocate. Write-
allocate is not always the best approach: Data that is being written for some I/O
device to read (and that the CPU will not read or write again) is ideally kept out
of the cache. But that only works if the programmers can be relied upon to tell
the operating system.

All except the very lowest-end modern MIPS CPUs have on-chip caches that
are write-back and have line sizes of 16 or 32 bytes.

The R4000 and some later CPUs found uses in large computer servers from
Silicon Graphics and others. Their cache design choices are influenced by the
needs of multiprocessor systems. There’s a short description of typical multi-
processor systems in section 15.3.

4.5 Other Choices in Cache Design

The 1980s and 1990s have seen much work and exploration of how to build
caches. So there are yet more choices:

Physically addressed/virtually addressed: While the CPU is running a
grown-up OS, data and instruction addresses in your program (the
program address or virtual address) are translated before appearing as
physical addresses in the system memory.

A cache that works purely on physical addresses is easier to manage (we’ll
explain why below), but raw program (virtual) addresses are available to
start the cache lookup earlier, letting the system run that little bit faster.

So what’s wrong with program addresses? They’re not unique; many
different programs running in different address spaces on a CPU may
share the same program address for different data. We could reinitialize
the entire cache every time we switch contexts between different address
spaces; that used to be done some years ago and may be a reasonable solu-
tion for very small caches. But for big caches it’s ridiculously inefficient,

3. You might ask: Since we’re going to have to write it back sometime, surely we might as well do it
now? But actually programs often write many times in quick succession to the same small patch
of memory, and the write-back cache allows many individual write operations to be combined
into just one write to memory.
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and we’ll need to include a field identifying the address space in the cache
tag to make sure we don’t mix them up.

Many MIPS CPUs use the program (virtual) address to provide a fast
index for their L1 caches. But rather than using the program address
plus an address space identifier to tag the cache line, they use the
physical address. The physical address is unique to the cache line and
is efficient because the scheme allows the CPU to translate program
addresses to physical addresses at the same time as it is looking up
the cache.

There’s another, more subtle problem with program addresses, which
the physical tag does not solve: The same physical location may be
described by different addresses in different tasks. In turn, that might
lead to the same memory location being cached in two different cache
entries (because they were referred to by different virtual addresses
that selected different cache indexes). Many MIPS CPUs do not have
hardware to detect or avoid these cache aliases and leave them as
a problem to be worked around by the OS’s memory manager; see
section 4.12 for details.

Choice of line size: The line size is the number of words of data stored
with each tag. Early MIPS caches had one word per tag, but it’s usually
advantageous to store multiple words per tag, particularly when your
memory system will support fast burst reads (most do). Modern MIPS
caches tend to use four- or eight-word line sizes, but large L2 and L3
caches may have bigger lines.

When a cache miss occurs, the whole line must be filled from memory.

Split/unified: MIPS L1 caches are always separated into an I- and a
D-cache; the selection is done purely by function, in that instruction
fetches look in the I-cache and data loads/stores in the D-cache. (This
means, by the way, that if you try to execute code that the CPU just
copied into memory, you must both write back those instructions out
of the D-cache and invalidate the I-cache locations, to make sure you
really execute the new instructions.)

However, L2 caches are rarely divided up this way—it’s complex, more
costly, and generally performs poorly.

4.6 Managing Caches

I hope you recall from section 2.8 that a MIPS CPU has two fixed 512-MB win-
dows onto physical memory, one cached (“kseg0”) and one uncached (“kseg1”).
Typically, OS code runs in kseg0 and uses kseg1 to build uncached references.
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Physical addresses higher than 512 MB are not accessible here: A 64-bit CPU will
have direct access through another window, or you can set up the TLB (memory
management/translation hardware) to map an address. Each TLB entry can be
marked to make accesses either cached or uncached.

The cache hardware, with the help of system software, must be able to ensure
that any application gets the same data as it would have in an uncached system
and that any direct memory access (DMA) I/O controller (getting data directly
from memory) obtains the data that the program thinks it has written.

We’ve said before that in PCs and some other integrated systems the assis-
tance of system software is often not required; it’s worth spending the money,
silicon area, and extra cycles to get the hardware to make the cache genuinely
transparent. Such a hardware-managed cache is said to be coherent.

The contents of the cache arrays of your CPU are typically random following
power-up. Bootstrap software is responsible for initializing the caches; this can
be quite an intricate process, and there’s some advice about it below. But once
the system is up and running, there are only three circumstances in which the
CPU must intervene:

Before DMA out of memory: If a device is taking data out of memory,
it’s vital that it gets the right data. If the data cache is write back and a
program has recently written some data, some of the correct data may
still be held in the D-cache but not yet be written back to main memory.
The CPU can’t see this problem, of course; if it looks at the memory
locations it will get the correct data back from its cache.

So before the DMA device starts reading data from memory, any data
for that range of locations that is currently held in the D-cache must be
written back to memory if necessary.

DMA into memory: If a device is loading data into memory, it’s important
to invalidate any cache entries purporting to hold copies of the mem-
ory locations concerned; otherwise, the CPU reading these locations will
obtain stale cached data. The cache entries must be invalidated before the
CPU uses any data from the DMA input stream, but it’s quite common
to invalidate them before starting the DMA.

Writing instructions: When the CPU itself is storing instructions into
memory for subsequent execution, you must first ensure that the instruc-
tions are written back to memory and then make sure that the corre-
sponding I-cache locations are invalidated; the MIPS CPU has no
connection between the D-cache and the I-cache.

In the most modern MIPS CPUs the synci instruction does everything
that is necessary to make the instructions you’ve just stored usable for
execution—and it’s a user-privilege instruction.
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Why Not Manage Caches in Hardware?

Caches managed with hardware are described as
“coherent” (or, more informally, “snoopy.”) When
another CPU or some DMA device accesses mem-
ory, the cache control logic is notified. With a CPU
attached to a shared bus, this is pretty straightfor-
ward; the address bus contains most of the infor-
mation you need. The cache control logic watches
(snoops) the address bus even when the CPU is not
using it and picks out relevant cycles. It does that by
looking up its own cache to see whether it holds a
copy of the location being accessed.
If someone is writing data that is inside the cache,
the controller could pick up the data and update the
cache line but is more likely to just invalidate its own,
nowstale, copy. If someone is readingdata forwhich
updated information is held in the cache, the con-
troller may be able to intervene on the bus, telling
the memory controller that it has a more up-to-date
version.
One major problem with doing this is that it works
only within a system designed to operate that way.
Not all systems have a single bus where all trans-
actions appear, and bought-in I/O controllers are
unlikely to conform to the right protocols.
Also, that’s a lot of snooping going on. Most of the
locations that CPUs work with are the CPU’s private
areas; they will never be read or written by any other
CPU or device. We’d like not to build hardware inge-
nuity into the cache, loading every cache location
andbuscyclewithcomplexity thatwillonlysometimes

be used. It’s easy to suppose that a hardware cache
control mechanism must be faster than software, but
that’s not necessarily so. A snoopy cache controller
must look at the cache tags on every external cycle,
which could shut the CPU out of its cache and slow
it down; snoopy cache controllers usually fix this by
keeping two copies of the cache tags (a private-to-
CPU and public version). Software management can
operate on blocks of cache locations in a single fast
loop;hardwaremanagementwill interleave invalida-
tions or write-backs with CPU accesses at I/O speed,
and that usually implies more arbitration overhead.
Historically, MIPS designers took the radical RISC
position: MIPS CPUs either had no cache manage-
ment hardware or, where designed for multiproces-
sors, they had everything.
From a 21st-century perspective, the trade-off looks
different. Formost classesofCPU, it looksmoreworth-
while to accept some hardware complexity to avoid
the system software bugs that occur when program-
mers miss a place where the cache needs atten-
tion. At the time of writing (2006), there’s a shift
in progress toward implementing “invisible” caches
with some level of hardware cache management
on all but the smallest MIPS CPUs. If your MIPS
CPU is fully coherent, you may not need this chap-
ter at all (but very few do the whole job). And
many MIPS cores that will be in production for
years to come still don’t have coherent cache con-
trollers, so the shift will take a long time to complete.

If your software is going to fix these problems, it needs to be able to do two
distinct operations on a cache entry.

The first operation is called write-back. When the data of interest is present
in the cache and is dirty (marked as having been written by the CPU since it was
last obtained from memory or written back to memory), then the CPU copies
the data from the cache into main memory.

The second is invalidate. When the data of interest is in the cache, the CPU
marks it invalid so that any subsequent access will fetch fresh data from
memory.
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It’s tempting to use the more colorful and evocative word “flush” in this
context, but it is ambiguously used to mean write-back, invalidate, or the com-
bination of the two—so we’ll avoid it.

There are some much more complicated issues involved when two or more
processors share memory. Most shared-memory systems are too complex for
one CPU to know which locations the other will read or write, so the software
can’t figure out exactly which memory regions need to be invalidated or written
back. Either any shared memory must always be accessed uncached (very slow
unless the amount of interaction is very limited), or the caches must have spe-
cial hardware that keeps the caches (and memory) coherent. Multi-CPU cache
coherency got less scary after it was systematized by a group of engineers work-
ing on the ambitious FutureBus standard in the mid-1980s. There’s a discussion
of multiprocessor mechanisms in section 15.3.

4.7 L2 and L3 Caches

In larger systems, there’s often a nested hierarchy of caches. A small and
fast L1 or primary cache is close to the CPU. Accesses that miss in the
L1 cache are looked up not directly in memory but in an L2 or secondary
cache—typically several times bigger and several times slower than the L1
(but still several times faster than the main memory). The number of levels
of hierarchy that might be useful depends on how slow main memory is
compared with the CPU’s fastest access; with CPU cycle times falling much
faster than memory access times, 2006 desktop systems commonly have L3
cache. 2006 embedded systems, trailing desktop speeds by several years (and
different constraints, particularly for power consumption and heat dissipa-
tion) are only just getting around to using L2 caches outside a few specialist
high-end applications.

4.8 Cache Configurations for MIPS CPUs

We can now classify some landmark MIPS CPUs, ancient and modern, by
their cache implementations and see how the cache hierarchy has evolved
(Table 4.1).

As clock speeds get higher, we see more variety in cache configurations as
designers try to cope with a CPU that is running increasingly ahead of its mem-
ory system. To earn its keep, a cache must improve performance by supplying
data significantly faster than the next outer memory and must usually succeed
in supplying the data (hitting).

CPUs that add a second level of cache reduce the miss penalty for the L1
cache—which may then be able to be smaller or simpler. CPUs with on-chip
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TABLE 4.1 Cache Evolution in MIPS CPUs

L1 L2 L3

CPU Size Direct/ On- Direct/ On- Direct/ On-
(MHz) I-cache D-cache n-way chip? Size n-way chip? Size n-way chip?

R3000-33 32 K 32 K Direct Off

R3052-33 8 K 2 K Direct On

R4000-100 8 K 8 K Direct On 1 M Direct Off

R10000-250 32 K 32 K Two-way On 4 M Two-way Off

R5000-200 32 K 32 K Two-way On 1 M Direct Off

RM7000-250 16 K 16 K Four-way On 256 K Four-way On 8 M Direct Off

L2 caches typically have smaller L1s, with dual 16-KB L1 caches a favored “sweet
spot.” Until recently, most MIPS CPUs fitted the L1 cache access into one clock
cycle. It seems reasonable that, as chip performance grows and clock rates
increase, the size of memory that can be accessed in one clock period should
be more or less constant. But in fact, on-chip memory speed is lagging behind
logic. Modern CPU designs often lengthen the pipeline mainly to allow for a
two-clock cache access.4

Off-chip caches are often direct mapped because a set-associative cache
needs much wider interfaces to carry multiple tags, so they can be matched
in parallel.

Amidst all this evolution, there have been two main generations of the soft-
ware interface to a MIPS cache. There is one style founded by the R3000 and
followed by most early 32-bit MIPS CPUs; there is another starting with the
R4000 and used by all 64-bit CPUs to date. The R4000 style has now become a
part of the MIPS32 standard too and is now commonplace—and that’s all we
will describe.

Most modern MIPS CPUs have L1 caches that are write-back, virtually
indexed, physically tagged, and two- or four-way set-associative. Cache man-
agement is done using a special cache instruction.

The first R4000 CPUs had on-chip L2 cache control, and QED’s RM7000
(around 1998) introduced on-chip L2 cache, which is now commonplace in
high-end designs. The cache instruction as defined by MIPS32/64 extends to
L2 and L3 caches.

4. This is not a recent invention. Early systems built with the RISC HP-8x00 CPU family accepted
a 2-clock-cycle L1 cache latency in return for a huge external L1 cache, and performed very well.
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CAUTION! Some system implementations have L2 caches that are not controlled by
hardware inside the MIPS CPU but built onto the memory bus. The soft-
ware interface to caches like that is going to be system specific and may
be quite different from the CPU-implemented or CPU-controlled caches
described in this chapter.

4.9 Programming MIPS32/64 Caches

The MIPS32/64 specifications define a tidy way of managing caches (following
the lead of the R4000, which fixed the unseemly cache maintenance of the
earlier CPUs).

MIPS32/64 CPUs often have much more sophisticated caches than early
MIPS CPUs—write-back, and with longer lines. Because it’s a write-back cache,
each line needs a status bit that marks it as dirty when it gets written by the
CPU (and hence becomes different from the main memory copy of the data).
To manage the caches, there are a number of primitive operations we’d really
like. The actions we need to achieve are:

Invalidate range of locations: Removes any data from this address range
from the cache, so that the next reference to it will acquire fresh data
from memory.

The instruction cache HitInvalidate has the form of a load/store
instruction, providing a virtual address. It invalidates any single cache
line containing the data referenced by that virtual address. Repeat the
instruction at line-size-separated addresses across the range.

Write-back range of locations: Ensures that any CPU-written data in
this range currently held in dirty cache lines is sent back to main
memory.

The instruction cache HitWritebackInvalidate writes back any
single cache line containing the data referenced by that virtual address,
and then makes it invalid as a bonus.

Invalidate entire cache: Discards all cached data. This is rarely required
except at initialization, but is sometimes the last resort of operating sys-
tem code that is not sure which cached data needs to be
invalidated.

The instruction cache IndexInvalidate is used here. Its address
argument is interpreted only as an index into the memory array underly-
ing the cache—successive lines are accessed at index values from 0
upward, in cache-line-size increments.
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Initialize caches: Whatever is required to get the caches usable from an
unknown state. Setting up the cache control fields (the “tag”) usually
involves zeroing the CP0 TagLo register and using a cache Index-
StoreTag operation on each line-sized chunk of the cache. Caches with
data check bits may also need to be prefilled with data—even though
the lines are invalid, they should not have bad check bits. Prefilling
an I-cache would be tricky, but you can usually use a cache Fill
instruction.

4.9.1 The Cache Instruction

The cache instruction has the general form of a MIPS load or store instruc-
tion (with the usual register plus 16-bit signed displacement address)—but
where the data register would have been encoded there’s a 5-bit operation
field, which must encode the cache to be operated on, determine how to
find the line, and figure out what to do with the line when you find it.
You write a cache line in assembly as cache OP,addr, where OP is just
a numeric value for the operation field.

The best thing to do is to use the C preprocessor to define text “names”
representing the numeric values for the operations. There are no standard
names; I’ve arbitrarily used the names of C preprocessor definitions found in
header files from the MIPS Technologies toolkit package.

Of the 5-bit field, the upper 2 bits select which cache to work on:

0 = L1 I-cache
1 = L1 D-cache
2 = L3 cache, if fitted
3 = L2 cache, if fitted

Before we list the individual commands, note that they come in three fla-
vors, which differ in how they select the cache entry (the “cache line”) they will
work on:

Hit-type cache operation: Presents an address (just like a load/store),
which is looked up in the cache. If this location is in the cache (if it
“hits”), the cache operation is carried out on the enclosing line. If this
location is not in the cache, nothing happens.

Address-type cache operation: Presents an address of some memory data,
which is processed just like a cached access. That is, if the line you
addressed was not previously in cache, the data is fetched from memory
before the cache operation.

Index-type cache operation: Uses as many low bits of the virtual address
as are needed to select the byte within the cache line, then the cache
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line address inside one of the cache ways, and then the way.5 You have
to know the size of your cache (discoverable from Config1-2, see
section 3.3.7 for details) to know exactly where the field boundaries
are, but your address is used something like this:

31 5 4 0

Unused Way1-0 Index byte-within-line

Once you’ve picked your cache and cache line, you have a choice of opera-
tions you can perform on it, as shown in Table 4.2. Three operations must be
supported by a CPU to claim MIPS32/64 compatibility: that’s index invalidate,
index store tag, and hit write-back invalidate. Other operations are optional—if
you use them, check your CPU manual carefully.

The synci instruction (new to the MIPS32 Release 2 update) provides a
clean mechanism for ensuring that instructions you’ve just written are correctly
presented for execution (it combines a D-cache write-back with an
I-cache invalidate). If your CPU supports it, you should use synci in prefer-
ence to the traditional alternative (a pair of cache instructions, to do D-cache
write-back followed by an I-cache invalidate).

4.9.2 Cache Initialization and Tag/Data Registers

For diagnostic and maintenance purposes it’s good to be able to read and write
the cache tags; MIPS32/64 defines a pair of 32-bit registers TagLo and TagHi6

to stage data between the tag part of the cache and management software. TagHi
is often not necessary: Until your physical address space is more than 36 bits,
there is usually room for the whole tag in TagLo.

The fields in the two registers reflect the tag field in the cache and are CPU
dependent. Only one thing is guaranteed: An all-zero value in the tag register(s)
corresponds to a legal, properly formed tag for a line that contains no valid data.
The CPU implements a cache IndexStoreTag instruction, which copies the
contents of the tag registers into the cache line. So by setting the registers to zero,
and storing the tag value, you can start to initialize a cache from an unknown
starting state.

There are “store data” and “load data” cache operations defined by
MIPS32/64, but they are optional and should only be used by code that is
already known to be CPU-specific. You can always access the data by “hitting”
on it.

5. Some still-in-use MIPS CPUs use the least significant address bits to select the “way.”
Those CPUs may need special initialization. I am not aware of any MIPS32/64-compliant
CPUs that do this: but it’s another thing to be careful about.

6. Some CPU manuals use different registers to talk to the I- and D-caches, and then call them
ITagLo, and so on.
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TABLE 4.2 Operations on a Cache Line Available with the Cache Instruction

Value Command What it does

0 Index invalidate Sets the line to “invalid.” If it’s a D-cache line that is valid and
dirty (has been written by CPU since fetched from memory),
then write the contents back to memory first.
This is the best and simplest way to invalidate an I-cache when
initializing the CPU—though if your cache is parity protected,
you also need to fill it with good-parity data; see Fill below.
And this is not suitable for D-caches, where it might cause
random write-backs: see IndexStoreTag type below.
All MIPS32/64 CPUs must provide this operation.

1 Index Load Tag Read the cache line tag bits and addressed doubleword data
into TagLo/TagHi, DataLo/DataHi.
This command is obscure, for diagnostics and geeks only.

2 Index Store Tag Set the cache tag from the TagLo/TagHi registers.
To initialize a D-cache from an unknown state, set the
TagLo/TagHi registers to zero and then do this to each line.
All MIPS32/64 CPUs must provide this operation.

4 Hit invalidate Invalidate, but do not write-back the data even if dirty. All
MIPS32/64 CPUs implement this operation on the I-cache.
May cause data loss unless you know the line is not dirty.

Hit Writeback
invalidate

5 On a D-cache

Invalidate the line—but only after writing it back, if dirty. This
is the recommended way of invalidating a D-cache line in a
running cache. All MIPS32/64-compatible CPUs implement
this on the D-cache.

Fill

5 On an I-cache

Address-type operation—fill a suitable cache line from the data
at the supplied address—it will be selected just as if you were
processing an I-cache miss at this address.
Used to initialize an I-cache line’s data field, which should be
done when setting up the CPU when the cache is parity
protected.

6 Hit writeback If a line is dirty, write it back to memory but leave it valid in the
cache.
Used in a running system where you want to ensure that data is
pushed into memory for access by a DMA device or other CPU.

7 Fetch and Lock An address-type operation. Get the addressed data into the
same line as would be used on a regular cached reference (if the
data wasn’t already cached, that might involve writing back the
previous occupant of the cache line).
Then lock the line. Locked lines are not replaced on a cache
miss.
It stays locked until explicitly invalidated with a cache
“invalidate” of some kind.
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A cache tag must hold all the address bits that are not implicitly known
from the cache index (look back at Figure 4.1 if this does not seem
obvious).

So the L1 cache tag field length is the difference between the number of
bits of physical address supported and the number of bits used to index the L1
cache—12 bits for a 16-K four-way set-associative cache. TagLo(PTagLo) has
room for 24 bits, which would support up to a 36-bit physical address range for
such a cache.

The field TagLo(PState) contains the state bits. Your CPU manual will
tell you more about them; however, for all cache management and initialization,
it suffices to know that an all-zero tag is always a legitimate code representing
an invalid cache entry.

4.9.3 CacheErr, ERR, and ErrorEPC Registers: Memory/Cache
Error Handling

The CPU’s caches form a vital part of the memory system, and high-availability
or trustworthy systems find it worthwhile to use some extra bits to monitor the
integrity of the data stored there.

Data integrity checks should ideally be implemented end to end; check bits
should be computed as soon as data is generated or introduced to the system,
stored with the data, and checked just before it’s used. That way the check
catches faults not just in the memory array but in the complex buses and gizmos
that data passes through on its way to the CPU and back.

For this reason MIPS CPUs that may be used to implement high-reliability
systems often choose to provide error checking in the caches. As in a main
memory system, you can use either simple parity or an error-correcting code
(ECC).

The components used to build memory systems tend to come in multi-
ples of 8-bit widths these days, and memory modules that allow for check-
ing provide 64 data and 8 check bits. So whatever else we use should follow
that lead.

Parity is simple to implement as an extra bit for each byte of mem-
ory. A parity error tells the system that data is unreliable and allows a
somewhat-controlled shutdown instead of creeping random failure. A crucial
role of parity is that it can be an enormous help during system development,
because it unambiguously identifies problems as being due to memory data
integrity.

But a byte of complete garbage has a 50 percent chance of having correct
parity, and random rubbish on the 64-bit bus and its parity bits will still escape
detection 1 time in 256. Some systems want something better.

An error-correcting code (ECC) is more complex to calculate, because it
involves the whole 64-bit word with 8 check bits used together. It’s more
thorough: a 1-bit error can be uniquely identified and corrected, and no
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2-bit error can escape detection. ECC is a powerful tool for weeding out
random errors in very large memory arrays.

Because the ECC bits check the whole 64-bit word at once, ECC
memories can’t perform a partial-word write by just selecting which part of
the word to operate on but must always merge the new data and recompute
the ECC. MIPS CPUs running uncached require their memory system to
implement partial-word writes, making things complicated. Memory system
hardware must transform partial-word writes into a read-merge-recalculate-
write sequence.

For simpler systems, the choice is usually parity or nothing. It can be valu-
able to make parity optional, to get the diagnostic benefits during design devel-
opment without paying the price in production.

Ideally, whichever check mechanism is implemented in the memory sys-
tem will be carried inside the caches. In different CPUs, you may be able to use
parity, a per-doubleword 8-bit ECC field, or no protection at all.

If possible, the data check bits are usually carried straight from the sys-
tem interface into the cache store: They need not be checked when the data
arrives from memory and is loaded into the cache. The data is checked
when it’s used, which ensures that any cache parity exception is delivered
to the instruction that causes it, not just to one that happens to share the
same cache line.

A data check error on the system bus for an uncached fetch is handled by the
same mechanism, which means it will be reported as a “cache parity error”—
which can confuse you.

Note that it’s possible for the system interface to mark incoming data as
having no valid check bits. In this case, the CPU will generate check bits for its
internal cache.

If an error occurs, the CPU takes the special error trap. This vectors
through a dedicated location in uncached space (if the cache contains bad
data, it would be foolish to execute code from it). If a system uses ECC,
the hardware will either correct the error or present enough information
for the software to fix the data.

The fields in the CacheErr register are implementation dependent, and
you’ll need to consult your CPU manual. You may be able to get sample cache
error management routines from your CPU supplier.

4.9.4 Cache Sizing and Figuring Out Configuration

In MIPS32/64-compliant CPUs cache size, cache organization, and line size are
reliably reported to you as part of the CP0 Config1-2 registers, described in
section 3.3.7.

But for portability it makes sense to write or recycle initialization software,
which works robustly across a large range of MIPS CPUs. The next section has
some tried-and-tested solutions.
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4.9.5 Initialization Routines

Here’s one good way to do it:

1. Set up some memory you can fill the cache from—it doesn’t matter what
data you store in it, but it needs to have correct check bits if your system
uses parity or ECC. A good trick is to reserve the bottom 32 K of system
memory for this purpose, at least until after the cache has been initial-
ized. If you fill it with data using uncached writes, it will contain correct
parity.

A buffer that size is not going to be big enough to initialize a large L2
cache, and you may need to do something more complicated.

2. Set TagLo to zero, which makes sure that the valid bit is unset and the
tag parity is consistent (we’d set TagHi on a CPU that needed it).

The TagLo register will be used by the cache IndexStoreTag cache
instructions to forcibly invalidate a line and clear the tag parity.

3. Disable interrupts if they might otherwise happen.

4. Initialize the I-cache first, then the D-cache. Following is C code for
I-cache initialization. (You have to believe in the functions or macros
likeIndex Store Tag I(), which do low-level functions; they’re either
trivial assembly code subroutines that run the appropriate machine
instructions or—for the brave GNU C user—macros invoking a C asm

statement.)

for (addr = KSEG0; addr < KSEG0 + size; addr += lnsize)

/* clear tag to invalidate */

Index_Store_Tag_I (addr);

for (addr = KSEG0; addr < KSEG0 + size; addr += lnsize)

/* fill once, so data field parity is correct */

Fill_I (addr);

for (addr = KSEG0; addr < KSEG0 + size; addr += lnsize)

/* invalidate again---prudent but not strictly necessary */

Index_Store_Tag_I (addr);

We did the fill operation because some CPUs may detect and trap on
parity errors, even on apparently invalid cache lines. Unfortunately
the Fill I operation is not mandated by MIPS32/64. You can rea-
sonably expect that any CPU that implements parity or ECC protec-
tion will include it: CPUs that don’t protect cache data need only the
first store tag loop.

Moreover, we use three separate loops rather than combining them,
because you have to be careful about the tags; with a two-way cache, a
single loop would initialize half the cache twice, since the “index store
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tag” with a zero tag register will reset the LRU bit, which determines
which set of the cache line is to be used on the next cache miss.

5. D-cache initialization is slightly more awkward, because there is no
D-side equivalent of the “fill” operation; we have to load through the
cache and rely on normal miss processing. Here’s how it’s done:

/* clear all tags */

for (addr = KSEG0; addr < KSEG0 + size; addr += lnsize)

Index_Store_Tag_D (addr);

/* load from each line (in cached space) */

for (addr = KSEG0; addr < KSEG0 + size; addr += lnsize)

junk = *addr;

/* clear all tags */

for (addr = KSEG0; addr < KSEG0 + size; addr += lnsize)

Index_Store_Tag_D (addr);

4.9.6 Invalidating or Writing Back a Region of Memory in the Cache

The parameters for an invalidate or write-back will invariably be a range of
program or physical addresses corresponding to some I/O buffer.

You will nearly always do this using the hit-style operations, which invali-
date or write back only the locations that need it. If you needed to invalidate or
write back a huge area of memory, it might be faster to use index operations to
invalidate or write back the entire cache, but this is an optimization you may
well choose to ignore.

It’s sufficient to do this:

PI_cache_invalidate (void *buf, int nbytes)

{

char *s;

for (s = (char *)buf; s < buf+nbytes; s += lnsize)

Hit_Invalidate_I (s);

}

There’s no need to generate a special address so long as buf is a program
address. If you had to invalidate based on a physical address p, then so long as
p was in the first 512 MB of physical space, you would just add a constant to
generate the corresponding kseg0 region address:

PI_cache_invalidate (p + 0x80000000, nbytes);
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4.10 Cache Efficiency

Ever since the move to on-chip caches in the early 1990s, the performance of
high-end CPUs has been to a large extent determined by the efficiency of their
cache systems. In many current systems (particularly embedded systems, where
there’s a need to economize on cache sizes and memory performance) the CPU
is waiting for a cache refill for 50 percent to 65 percent of its time. At this point,
doubling the performance of the CPU core will deliver only a 15 percent to
25 percent increase in application performance.

Cache efficiency depends on the amount of time the system is waiting for a
cache refill. You can define it as the product of two numbers:

Cache misses per instruction: The number of cache misses divided by the
number of instructions executed. Scale to “cache misses per thousand
instructions” for a more useful measure.

Cache miss/refill penalty: The time it takes for the memory system to refill
the cache and restart the CPU.

You might think it would be better to consider the cache miss rate—the
number of misses per CPU memory access. But cache miss rates are affected
by many factors, some of them rather unexpected. For example, x86 CPUs are
rather short of registers, so a program compiled for x86 will generate many
more data load and store events than the same program compiled for MIPS.
But the extra loads and stores will be of the stack locations that the x86 compiler
uses as surrogates for registers; this is a very heavily used area of memory and
will be very effectively cached. The number of misses per thousand instructions
is not so affected by this kind of difference.

Even such a trivial analysis is useful in pointing out the following obvious
ways of making a system go faster.

Reduce the number of cache misses:

– Make the cache bigger. This is always effective, but expensive. A cache
of 64 KB occupies roughly the same space as the whole of the rest of
a simple CPU (excluding floating-point hardware).

– Increase the set associativity of the cache. It’s worth going up to four-
way but after that the gains in cache performance are too small to
notice.7

7. There are systems with eight-way or more caches, but that’s usually done for some reason other
than reducing cache misses. Generous provision of cache ways can be good for power reduction
(whole ways can be powered down when not being used) and can sometimes avoid cache aliases,
as described in section 4.12.
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– Add another level of cache. That makes the calculation much more
complicated, of course. Apart from the complication of yet another
subsystem, the miss rate in an L2 cache is often depressingly high;
the L1 cache has already “skimmed the cream”8 of the repetitive data
access behavior of the CPU. To make it worthwhile, the L2 cache must
be much larger (typically eight times or greater) than the L1 cache,
and an L2 cache hit must be much faster (two times or better) than a
memory reference.

– Reorganize your software to reduce the number of cache misses. It’s
not clear whether this works in practice: It’s easy to reorganize a small
or trivial program to great effect, but so far nobody has succeeded
in building a general tool that has any useful effect on an arbitrary
program. See section 4.11.

Decrease the cache refill penalty:

– Get the first word back to the CPU faster. DRAM memory systems
have to do a lot of work to start up, then tend to provide data quite
fast. The closer the memory is to the CPU and the shorter the data
path between them, the sooner the data will arrive.

Increasing bandwidth costs money. Decreasing latency, on the other
hand, is usually achieved by simplifying the system: So this is the only
point in this list where you can save money and gain performance
at the same time. Paradoxically, it’s had the least attention, probably
because it requires more integration between the CPU interface and
memory system design. CPU designers are loath to deal with system
issues when they decide the interface of their chips, perhaps because
their job is too complicated already!

– Increase the memory burst bandwidth. This was traditionally
approached by the expensive technique of bank interleaving, where
two or more memories are used to store alternate words; after the
start-up delay, you can take words from each memory bank alter-
nately, doubling the available bandwidth. However, while memory
latency has reduced only very slowly as the chips shrink, the band-
width available from a single standard memory component has
exploded. And within a DRAM bank, chips expose separate internal
banks where accesses can be pipelined to reduce overall latency. As a
result, physical bank interleaving is now rare.

Restart the CPU earlier: A naive CPU will remain stalled until the whole
cache line is filled with new data. But you can arrange that data from
memory is passed both to the cache and directly to the waiting CPU,
and have the CPU restart as soon as the data it is waiting for arrives. The
rest of the cache refill continues in parallel with CPU activity.

8. Thanks to Hennessy and Patterson for this evocative metaphor.
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Many MIPS CPUs enhance this by passing the address of the word whose
request triggered the cache miss to the memory controller and having
the critical word of the block returned first (“critical word first”).

Don’t stop the CPU until it must have the data: More radically, you can just
let execution continue through a load; the load operation is handed off
to a bus interface unit and the CPU runs on until such time as it actually
refers to the register data that was loaded. This is called a nonblocking
load and is now common practice.

In normal CPUs, and with most software, you really won’t go very far
before something wants the value from the load and the CPU stops any-
way. But it effectively shaves a few cycles off the latency, which can be
particularly useful when there’s an L2 cache.

Most drastically, you can just keep running any code that isn’t actually
waiting for data to be loaded, as is done by the out-of-order (OOO) exe-
cution R10000. OOO designs use this technique quite generally, not just
for loads but for computational instructions and branches. All the fastest
high-end CPUs are now implemented with OOO pipelines. It’s true that
OOO is not just complicated but relatively power hungry, which may
slow its arrival in more power-sensitive embedded applications. But it
probably is just a matter of time.

Multithread the CPU: The detrimental effect of cache-miss latency on
program performance can be mitigated but never avoided. So a truly
radical approach is to run multiple threads on the CPU, which can take
advantage of idle CPU resources during each others’ waiting times. See
Appendix A for a brief introduction to the MIPS MT system.

4.11 Reorganizing Software to Influence Cache Efficiency

In systems running an unpredictable mix taken from a very large number of
possible applications, cache behavior can only be estimated. But where an
embedded system runs a single application, the pattern of cache misses is likely
to be very characteristic of a particular build of a particular piece of software.
It’s tempting to wonder whether we can massage the application code in a sys-
tematic manner to improve caching efficiency. To see how this might work, you
can classify cache misses by their cause:

First-time accesses: Everything has to be read from memory once.

Replacement: The cache has a finite size, and soon after your program
starts, every cache miss and refill will be displacing some other valid data,
some of which would have been worth keeping. As the program runs, it
will repeatedly lose data and have to load it again. You can minimize
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replacement misses by using a bigger cache or a smaller program (it’s
the ratio of program size to cache size that matters).

Thrashing: In a four-way set-associative cache (more ways are uncom-
mon for MIPS CPUs) there are only four positions in the cache that can
keep any particular memory location. (In a direct-mapped cache, there’s
just one).

If your program happens to make heavy use of a number of pieces of data
whose low-order addresses are close enough that they use the same cache
line, then once the number of pieces is higher than the set associativity
of the cache you can get periods of very high cache misses as the different
chunks of data keep pushing each other out of the cache.

Thrashing losses diminish rapidly with set associativity; most research
suggests that going beyond four ways makes little difference to perform-
ance (though there are other reasons to build eight-way and more caches).

With this background, what kind of changes to a program will make it
behave better in a cache?

Make it smaller: A good idea if you can do it. You can use modest compiler
optimization (exotic optimization often makes programs larger).

Make the heavily used portion of the program smaller: Access density in
programs is not at all uniformly distributed. There’s often a significant
amount of code that is almost never used (error handling, obscure sys-
tem management), or used only once (initialization code). If you can
separate the rarely used code, you might be able to get better cache hit
rates for the remainder.

An approach that has been tried with qualified success is to use a pro-
filer to establish the most heavily used functions in a program while
running a representative workload, then to arrange the functions in
memory in decreasing order of execution time. That means at least
that the very most frequently used functions won’t fight each other
for cache locations.

Force some important code/data to be cache resident: Some vendors pro-
vide a mechanism to allow part of the cache to be loaded and then to
protect those contents from replacement. This seems like a way of obtain-
ing deterministic performance for interrupt handlers or other crucial
pieces of software. This is usually implemented by consuming a set from
a multiway set-associative cache.

I am very skeptical about the viability of this approach, and I don’t know
of any research that backs up its usefulness. The loss in performance to
the rest of the system is likely to outweigh the performance gain of the
critical code. Cache locking has been used as a rather dubious marketing
tool to tackle customer anxiety about the heuristic nature of caches. The



102 Chapter 4—How Caches Work on MIPS Processors

anxiety is understandable, but faster, more complex, larger systems seem
to be inherently unpredictable, and most developers should probably
learn to live with that—caches are only one part of this issue.

Lay out the program to avoid thrashing: Beyond making the active part
of the program smaller (see above) this seems to me to cause too much
maintenance hassle to be a good idea. And a set-associative cache (even
just two-way) usually makes it quite pointless.

Make some rarely used data or code uncacheable: It seems appealing to just
reserve the cache for important code, leaving used-once or used-rarely
code out.

This is almost always a mistake. If the data is really rarely used, it will
almost never get into the cache in the first place. And because caches usu-
ally read data in lines of 4–16 words, they often produce a huge speedup
even when traversing data or code that is used only once; the burst refill
from memory takes little longer than a single-word access and gives you
the next 3–15 words free.

In short, we warmly recommend the following approach as a starting point
(tobeabandonedonlyaftermuchmeasurementanddeepthought).Tostartwith,
allow everything to be cacheable except I/O registers and lightly used remote
memory. See what the cache heuristics do for your application before you try
to second-guess them. Second, fix hardware problems in hardware. There’s no
softwarebandagethatwill regainperformance lost toexcessivecacherefill latency
or lowmemorybandwidth.Theattemptto lowercachemissratesbyreorganizing
software is bound to be lengthy and complicated; be aware at the start that the
gains will be small and hard-won. Try to get the hardware fixed too!

4.12 Cache Aliases

This problem afflicts caches where the address used to generate the cache index
is different from the address stored in the cache tag. It’s common practice for
the L1 caches of MIPS CPUs to be indexed using the virtual address and tagged
using the physical address. This is good for performance: If we used a phys-
ical index, we couldn’t even start a cache lookup until the address had been
translated through the TLB. But it can lead to aliases. (See Figure 4.3.)

Most of these CPUs can translate addresses in 4-KB pages. That means the
low 12 bits of the virtual address need no translation. So long as your cache is
4 KB or less in size, a virtual index is the same as the physical index would be,
and you’re OK. It’s better than that: So long as your cache index spans 4 KB or
less, you’re OK. In a set-associative cache, each index accesses a number of cache
slots (one for each way)—so even in a 16-KB four-way set-associative cache, the
virtual index is the same as the physical index, and no alias can occur.
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FIGURE 4.3 Cache aliases.

But suppose your cache index spans 8 KB (as it does for a 32-KB four-way
set-associative cache). You might have a single physical page accessible at two
different virtual addresses: They might be, for example, sequential pages—let’s
say those starting at 0 and 4 KB. If the program accesses data at 0, it will be
loaded into one of the cache slots at index 0. If it accesses the same data at the
alternate address of 4 KB, it will be fetched again from memory into the cache
at the different index of 4 KB. Now there are two copies of the same cache line,
and modifications made at one address will not find their way to the other one.
This is a cache alias. Aliases on read-only data are confusing and may lead to
errors, but aliases on data you’re writing are a time-bomb waiting to explode.
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MIPS L2 caches are always physically indexed and tagged, so they don’t
suffer from aliases.9

Cache aliases crept into the MIPS world by accident. The original R4000
CPU was—as described above—alias-safe so long as you used the external L2
cache. But it turned out that the R4000 was a valuable component in smaller,
cheaper systems that did without the L2. That exposed the aliases, but the desire
for 64-bit MIPS CPUs to conquer the world overruled caution, and the alias
problem was redefined as something for system software to work around.

Aliases can’t arise between any pair of translations where the alternative vir-
tual addresses produce the same cache index. With 4-KB pages, the low 12 bits
of the cache index are guaranteed to be equal; it’s only necessary to ensure that
any two alternative program addresses for any physical page are separated by a
multiple of the largest likely L1 cache set size. If your OS is careful when creating
multiple virtual mappings to the same page and makes sure that the virtual page
addresses are a multiple of (say) 64 KB apart, it’s hard to imagine that you’ll ever
have any trouble.10

So it’s possible to avoid aliases, so long as the OS is careful about where it
puts multiple views of the same physical data. Unfortunately, Linux is a portable
OS being actively developed by people who don’t know (or much care) about
problems that afflict MIPS CPUs but not any common desktop or server system.
So the Linux kernel avoids most aliases, but attempts to live with others.

Simple operating systems either won’t have multiply mapped pages or will
be able to work within such a constraint. But cache aliases are a source of lurk-
ing trouble and bugs for operating systems, and it would be good if hardware
designers remembered that this is really a bug that was made into a feature for
pragmatic reasons 15 years ago.

9. CPUs with on-chip L2 cache controllers can use some bits in the L2 cache to keep track of cache
fetches into the L1 cache; R4000 and R4400 CPUs used this to detect cache aliases and take
a special exception to allow system software to resolve the problem. But this tradition doesn’t
seem to have been carried on in later MIPS CPUs.

10. Although CPUs get relentlessly bigger and faster with every year that passes, it’s unlikely that
L1 cache set sizes will get bigger than the current 16-KB record seen in 64-KB four-way set-
associative caches. L1 caches run at the full CPU clock rate, and smaller is faster; in the future,
more highly integrated CPUs will go for on-chip L2 caches instead.
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5 Exceptions, Interrupts,
and Initialization

In the MIPS architecture interrupts, traps, system calls, and everything else
that can disrupt the normal flow of execution are called exceptions and are

handled by a single mechanism. What sort of events are they?

External events: Some event outside the CPU core—that is, from some
real “wire” input signal. These are interrupts.1 Interrupts are used to
direct the attention of the CPU to some external event: an essential fea-
ture of an OS that attends to more than one different event at a time.

Interrupts are the only exception conditions that arise from something
independent of the CPU’s normal instruction stream. Since you can’t
avoid interrupts just by being careful, there have to be software mecha-
nisms to inhibit the effect of interrupts when necessary.

Memory translation exceptions: These happen when an address needs to
be translated, but no valid translation is available to the hardware or
perhaps on a write to a write-protected page.

The OS must decide whether such an exception is an error or not. If the
exception is a symptom of an application program stepping outside its
permitted address space, it will be fixed by terminating the application
to protect the rest of the system. The more common benign memory
translation exceptions can be used to initiate operating system functions
as complex as a complete demand-paged virtual memory system or as
simple as extending the space available for a stack.

Other unusual program conditions for the kernel to fix: Notable among
these are conditions resulting from floating-point instructions, where the

1. There are some more obscure noninterrupt external events like bus errors reported on a
read—for now, just assume that they are a special sort of interrupt.
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hardware is unable to cope with some difficult and rare combination of
operation and operands and is seeking the services of a software emulator.

This category is fuzzy, since different kernels have different ideas about
what they’re willing to fix. An unaligned load may be an error on one
system and something to be handled in software on another.

Program or hardware-detected errors: This includes nonexistent instru-
ctions, instructions that are illegal at user-privilege level, coprocessor
instructions executed with the appropriate SR flag disabled, integer
overflow, address alignment errors, and accesses outside kuseg in user
mode.

Data integrity problems: Many MIPS CPUs continually check data on the
bus or data coming from the cache for a per-byte parity or for word-
wide error-correcting code. Cache or parity errors generate an exception
in CPUs that support data checking.

System calls and traps: These are instructions whose whole purpose is to
generate recognizable exceptions; they are used to build software facil-
ities in a secure way (system calls, conditional traps planted by careful
code, and breakpoints).

Some things do not cause exceptions, though you’d expect them to. For
example, you will have to use other mechanisms to detect bus errors on write
cycles. That’s because most modern systems queue up writes: Any write-
associated error would happen much too late to relate to the instruction that
caused it. Systems that do inform you about errors on writes must use some
outside-the-CPU hardware, probably signaled with an interrupt.

In this chapter, we’ll look at how MIPS CPUs decide to take exceptions and
what the software has to do to handle them cleanly. We’ll explain why MIPS
exceptions are called “precise,” discuss exception entry points, and discuss some
software conventions.

Hardware interrupts from outside the CPU are the most common exceptions
for embedded applications, the most time critical, and the ones most likely to
cause subtle bugs. Special problems can arise with a nested exception, one that
happens before you have finished handling an earlier exception.

The way that a MIPS CPU starts up after system reset is implemented as a
kind of exception and borrows functions from exceptions—so that’s described
in this chapter too.

At the end of the chapter, we’ll look at a couple of related subjects: how to
emulate an instruction (as needed by an instruction set extension mechanism)
and how to build semaphores to provide robust task-to-task communication in
the face of interrupts. Chapter 14 describes in some detail how interrupts are
handled in a real, grown-up OS for MIPS.



5.1 Precise Exceptions 107

5.1 Precise Exceptions

You will see the phrase precise exceptions used in the MIPS documentation. It is
a useful feature, but to understand why, you need to meet its alternative.

In a CPU tuned for the best performance by pipelining (or by more compli-
cated tricks for overlapping instruction execution), the architecture’s sequen-
tial model of execution is an illusion maintained by clever hardware. Unless the
hardware is designed cleverly, exceptions can cause this illusion to unravel.

When an exception suspends its thread of execution, a pipelined CPU has
several instructions in different phases of completion. Since we want to be able
to return from the exception and carry on without disruption to the interrupted
flow of execution, each instruction in the pipeline must be either completed or
made as though we never saw it.2 Moreover, we need to be able to remember
which instruction falls in each of those categories.

A CPU architecture features precise exceptions when it prescribes a solution
to this problem that makes life as easy as possible for the software. In a precise-
exception CPU, on any exception we are pointed at one instruction (the excep-
tion victim). All instructions preceding the exception victim in execution
sequence are complete; but it’s as if the exception victim and any successors
were never started.3 When exceptions are precise, the software that handles
exceptions can ignore all the timing effects of the CPU’s implementation.

The MIPS architecture comes close to prescribing that all exceptions are
precise. Here are the ingredients:

Unambiguous proof of guilt: After any exception, the CPU control register
EPC points to the correct place to restart execution after the exception is
dealt with. In most cases, it points to the exception victim, but if the
victim was in a branch delay slot, EPC points to the preceding branch
instruction: Returning to the branch instruction will re-execute the vic-
tim instruction, but returning to the victim would cause the branch to
be ignored. When the victim is in a branch delay slot, the cause register
bit Cause(BD) is set.

It may seem obvious that it should be easy to find the victim, but on
some heavily pipelined CPUs it may not be possible.

Exceptions appear in instruction sequence: This would be obvious for a
nonpipelined CPU, but exceptions can arise at several different stages of

2. You can do something more complicated, where the CPU stores intermediate results and the
exception handler unpicks the tangle and reweaves it, but who needs such complexity?

3. This is not quite the same as saying that the exception victim and subsequent instructions
haven’t done anything. But it does require that, when re-executed after the exception, those
instructions will behave exactly as they would have done if the exception hadn’t happened.
Computer architects say that any side effect must be idempotent—doing it twice is the same
as doing it once.
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execution, creating a potential hazard. For example, if a load
instruction suffers an address exception, this won’t happen until a pipe-
line stage where the address translation would have been complete—and
that’s usually late. If the next instruction hits an address problem on an
instruction fetch (right at the start of the pipeline), the exception event
affecting the second-in-sequence instruction will actually happen first.

To avoid this problem, an exception that is detected early is not acted
on immediately; the event is just noted and passed along the pipeline.
In most CPU designs, one particular pipeline stage is designated as the
place you detect exceptions. If an older instruction’s late-detected event
reaches this finish line while our exception note is making its way down
the pipeline, the exception note just gets discarded. In the case above,
the instruction-fetch address problem is forgotten—it will likely hap-
pen again when we finish handling the victim instruction’s problem and
re-execute the victim and subsequent instructions.

Subsequent instructions nullified: Because of the pipelining, instructions
lying in sequence after the victim at EPC have been started. But you are
guaranteed that no effects produced by these instructions will be visible
in the registers or CPU state, and no effect at all will occur that will pre-
vent execution, properly restarted at EPC, from continuing just as if the
exception had not happened.

The MIPS implementation of precise exceptions is quite costly, because it
limits the scope for pipelining. That’s particularly painful in the FPU, because
floating-point operations often take many pipeline stages to run. The instruc-
tion following a MIPS FP instruction can’t be allowed to commit state (or reach
its own exception-determination point) until the hardware can be sure that the
FP instruction won’t produce an exception.

5.1.1 Nonprecise Exceptions—The Multiplier in Historic MIPS CPUs

MIPS’s original multiply/divide instructions are started by instructions like
mult or div, which take two register operands and feed them into the mul-
tiplier machine. The program then issues an mflo instruction (and sometimes
also mfhi, for a 64-bit result or to obtain the remainder) to get the results back
into a general-purpose register. The CPU stalls on mflo if the computation is
not finished.

In MIPS implementations, a multiply takes 4–10 cycles, but divide may
take 15–30.

By dividing these long-latency instructions into two stages (“launch” and
“get results”), the instruction set encourages the use of a multiply machine sep-
arately pipelined from the regular integer unit. Later CPUs provided a richer set
of instructions, including multiply-accumulate instructions, which give soft-
ware different ways of exploiting the pipeline—see section 8.5.5 for details.
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On modern CPUs conforming to MIPS32/64, the instructions behave
themselves. But older CPUs can show a problem. To make the hardware simpler,
the original architecture allowed a multiply/divide operation to be unstoppable,
even by an exception. That’s not normally a problem, but suppose we have a
code sequence like the following, in which we’re retrieving one multiply unit
result and then immediately firing off another operation:

mflo $8
mult $9, $10

If we take an exception whose restart address is the mflo instruction, then
the first execution of mflo will be nullified under the precise-exception rules,
and the register $8 will be left as though the mflo had never happened. Unfor-
tunately, the mult will already have been started too, and since the multiply
unit knows nothing of the exception it will continue to run. Before the excep-
tion returns, the computation will most likely have finished and the mflo will
now deliver the result of the mult that should have followed it.

We can avoid this problem (inherent in most pre-MIPS32 CPUs), by
interposing at least two4 nonmultiply instructions between the mflo/mfhi on
the one hand and the mult (or any other instruction that will write new values
to hi/lo) on the other.

5.2 When Exceptions Happen

Since exceptions are precise, the programmer’s view of when an exception
happens is unambiguous: the last instruction executed before the exception was
the one before the exception victim. And, if the exception wasn’t an interrupt,
the victim is the instruction that caused it.

On an interrupt in a typical MIPS CPU, the last instruction to be completed
before interrupt processing starts will be the one that has just finished its MEM
stage when the interrupt is detected. The exception victim will be the one that
has just finished its ALU stage. However, take care: MIPS architects don’t make
promises about exact interrupt latencies, and signals may be resynchronized
through one or more clock stages before reaching the CPU core.

5.3 Exception Vectors: Where Exception Handling Starts

Most CISC processors have hardware (or concealed microcode) that analyzes an
exception, dispatching the CPU to different entry points according to what kind
of exception happened. When even interrupts are handled at different entry

4. Why two? It just happens to be enough to avoid the mult being started on all pre-MIPS32
CPUs.



110 Chapter 5—Exceptions, Interrupts, and Initialization

points according to the interrupt input signal(s) activated, that’s called vectored
interrupts. Historically, MIPS CPUs did very little of this. If that seems a serious
omission, consider the following.

First, vectored interrupts are not as useful in practice as we might hope. In
most operating systems, interrupt handlers share code (for saving registers and
such like), and it is common for CISC microcode to spend time dispatching to
different interrupt entry points, where OS software loads a code number and
spends a little more time jumping back to a common handler.

Second, it’s difficult to envision much exception analysis being done by pure
hardware rather than microcode; on a RISC CPU, ordinary code is fast enough
to be used in preference.

Here and elsewhere, you should bear in mind just how fast CPUs of the RISC
generation are compared with their peripherals. A useful interrupt routine is
going to have to read/write some external registers, and on an early 21st-century
CPU, that external bus cycle is likely to take 50–200 internal clock cycles. It’s
easy to write interrupt dispatch code on a MIPS CPU that will be faster than
a single peripheral access, so this is unlikely to be a performance bottleneck.
That’s probably emphasized by the fact that a vectored interrupt option in the
2003 revision of MIPS32 has found little use yet.

However, even in MIPS not all exceptions were ever equal, and differences
have grown as the architecture has developed. So we can make some
distinctions:

TLB refill of user-privilege address: There is one particularly frequent
exception in a protected OS, related to the address translation system (see
Chapter 6). The TLB hardware only holds a modest number of address
translations, and in a heavily used system running a virtual memory
OS, it’s common for the application program to run on to an address
whose translation is not recorded in the TLB—an event called a TLB
miss (because the TLB is used as a software-managed cache).

The use of software to handle this condition was controversial when
RISC CPUs were introduced, and MIPS CPUs provide significant sup-
port for a preferred scheme for TLB refill. The hardware helps out enough
that the exception handler for the preferred refill scheme can run in as
few as 13 clock cycles.

As part of this, common classes of TLB refill are given an entry point
different from all other exceptions, so that the finely tuned refill code
doesn’t have to waste time figuring out what kind of exception has
happened.

TLB refill for 64-bit address spaces: Memory translation for tasks wanting
to take advantage of the larger program address space available on 64-bit
CPUs uses a slightly different register layout and a different TLB refill
routine; MIPS calls this an XTLB refill (“X” for extended, I guess). Again,
a desire to keep this very efficient makes a separate entry point useful.
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Uncached alternative entry points: For good performance on exceptions,
the interrupt entry point must be in cached memory, but this is highly
undesirable during system bootstrap; from reset or power-up, the caches
are unusable until initialized. If you want a robust and self-diagnosing
start-up sequence, you have to use uncached read-only memory entry
points for exceptions detected in early bootstrap. In MIPS CPUs there
is no uncached “mode”—there are uncached program memory regions
instead—so there’s a mode bit SR(BEV) that reallocates the exception
entry points into the uncached, start-up-safe kseg1 region.

Parity/ECC error: MIPS32 CPUs may detect a data error (usually in data
arriving from main memory, but often not noticed until it’s used from
cache) and take a trap. It would be silly to vector through a cached loca-
tion to handle a cache error, so regardless of the state of SR(BEV) the
cache error exception entry point is in uncached space.

Reset: For many purposes, it makes sense to see reset as another
exception, particularly when many CPUs use the same entry point for
cold reset (where the CPU is completely reconfigured; indistinguishable
from power-up) and warm reset (where the software is completely reini-
tialized). In fact, nonmaskable interrupt (NMI) turns out to be a slightly
weaker version of warm reset, differing only in that it waits for the cur-
rent instruction and any pending load/store to finish before taking effect.

Interrupt: As an option in MIPS32 (and some earlier CPUs from IDT
and PMC-Sierra), you can set the CPU to dispatch interrupt exceptions
to a separate entry point. This is convenient, though little used: Perhaps
software authors can’t bring themselves to special-case their OS for a
feature that is not universally available.

Further, in some of these CPUs you can enable vectored interrupt
operation—multiple entry points to be used by different interrupts. This
is a more substantial change; as explained elsewhere in this chapter, the
MIPS tradition was that interrupts were only prioritized in software.
But if you have two active interrupts and have to choose an interrupt
entry point, the hardware must decide which has the higher priority.
This change is therefore significantly more disruptive to software, since
the software loses control over interrupt priority; your OS maintainer
and hardware engineers will have to liaise closely.

All exception entry points lie in untranslated regions of the MIPS memory
map, in kseg1 for uncached entry points and in kseg0 for cached ones. The
uncached entry points used when SR(BEV) is set are fixed, but when SR(BEV)
is clear, the EBase register can be programmed to shift all the entry points—
together—to some other block. It’s particularly useful to be able to move the
interrupt base when your CPU is part of a multiprocessor system sharing the
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TABLE 5.1 Exception Entry Points

Memory region Entry point Exceptions handled here

On-chip debug 0xFF20.0200 EJTAG debug, when mapped to “probe”
memory. See section 12.1 for some notes on
the EJTAG on-chip debug system.

0xBFC0.0480 EJTAG debug, when using normal ROM
memory.

Reset (ROM-only) 0xBFC0.0000 Reset and NMI entry point.

ROM entry points
(when SR(BEV) is
one)

0xBFC0.0400 Dedicated to interrupts—only used when
Cause(IV) is set, not available in all CPUs.

0xBFC0.0380 All others.

0xBFC0.0300 Cache Error.

0xBFC0.0200 Simple TLB Refill (SR(EXL) is zero).

“RAM” entry points
(SR(BEV) is zero)

BASE+0x200+... Multiple interrupt entry points—seven more
in VI mode, 62 in EIC mode.

BASE+0x200 Interrupt special (Cause(IV) is one).

BASE+0x180 All others.

BASE+0x100 Cache error—in RAM but always through
uncached kseg1 window.

BASE+0x000 Simple TLB Refill (SR(EXL) is zero).

kseg0 memory but wants to have separate exception entry points from the other
CPUs in the system.5

In these areas the nominal 32-bit addresses given in Table 5.1 extend to a
64-bit memory map by sign extension: The program address 0x8000.0000 in
the 32-bit view is the same as 0xFFFF.FFFF.8000.0000 in the 64-bit view.

Table 5.1 describes the entry points with just 32-bit addresses—you need
to accept that BASE stands for the exception base address programmed by the
EBase register.

Presumably the default 128-byte (0x80) gap between the original exception
vectors occurs because the original MIPS architects felt that 32 instructions
would be enough to code the basic exception routine, saving a branch instruc-
tion without wasting too much memory! Modern programmers are rarely so
frugal.

5. The EBase register was introduced in Release 2 of the MIPS32/64 specification.
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Here’s what a MIPS CPU does when it decides to take an exception:

1. It sets up EPC to point to the restart location.

2. It sets SR(EXL), which forces the CPU into kernel (high-privilege) mode
and disables interrupts.

3. Cause is set up so that software can see the reason for the exception. On
address exceptions, BadVAddr is also set. Memory management system
exceptions set up some of the MMU registers too; more details are given
in Chapter 6.

4. The CPU then starts fetching instructions from the exception entry point,
and everything else is up to software.

Very short exception routines can run entirely with SR(EXL) set (in
exception mode, as we’ll sometimes say) and need never touch the rest of SR.
For more conventional exception handlers, which save state and pass control
over to more complex software, exception level provides a cover under which
system software can save essential state—including the old SR value—in safety.

With a couple of tweaks this mechanism can allow a minimal nested
exception within the primitive TLB miss handler, but we’ll talk more about how
that’s done when we get to it.

5.4 Exception Handling: Basics

Any MIPS exception handler routine has to go through the same stages:

Bootstrapping: On entry to the exception handler, very little of the state
of the interrupted program has been saved, so the first job is to make
yourself enough room to do whatever it is you want without overwriting
something vital to the software that has just been interrupted.

Almost inevitably, this is done by using the k0 and k1 registers (which
are conventionally reserved for the use of low-level exception handling
code) to reference a piece of memory that can be used for other register
saves.

Dispatching different exceptions: Consult Cause(ExcCode), whose pos-
sible values are listed in Table 3.2. It tells you why the exception happened,
and allows an OS to define separate functions for the different causes.

Constructing the exception processing environment: Complex exception-
handling routines will probably be written in a high-level language, and
you will want to be able to use standard library routines. You will have to
provide a piece of stack memory that isn’t being used by any other piece
of software and save the values of any CPU registers that might be both
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important to the interrupted program and that called subroutines are
allowed to change.

Some operating systems may do this before dispatching different
exceptions.

Processing the exception: You can do whatever you like now.

Preparing to return: The high-level function is usually called as a subrou-
tine and therefore returns into the low-level dispatch code. Here, saved
registers are restored, and the CPU is returned to its safe (kernel mode,
exceptions off) state by changing SR back to its postexception value.

Returning from an exception: The end-of-exception processing is
another area where the CPU has changed, and its description follows
in section 5.5.

5.5 Returning from an Exception

The return of control to the exception victim and the change (if required) back
from kernel to a lower-privilege level must be done at the same time (“atomi-
cally,” in the jargon of computer science). It would be a security hole if you ran
even one instruction of application code at kernel-privilege level; on the other
hand, the attempt to run a kernel instruction with user privileges would lead to
a fatal exception.

MIPS CPUs have an instruction, eret, that does the whole job; it both
clears the SR(EXL) bit and returns control to the address stored in EPC.6

5.6 Nesting Exceptions

In many cases, you will want to permit (or will not be able to avoid) further
exceptions occurring within your exception processing routine; these are called
nested exceptions.

Naïvely done, this would cause chaos; vital state from the interrupted
program is held in EPC and SR, and you might expect another excep-
tion to overwrite them. Before you permit anything but a very peculiar
nested exception, you must save those registers’ contents. Moreover, once
exceptions are re-enabled, you can no longer rely on the reserved-for-
exception-handler general-purpose registers k0 and k1.

6. Very early MIPS I CPUs had a more complex scheme relying on a two-level stack to save and
restore preexception values of the SR(IE,KU) fields. The switch back to preexception mode was
done by an instruction called rfe, which had to be run in the delay slot of the jr that took you
back to the interrupted program.
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An exception handler that is going to survive a nested exception must use
some memory locations to save register values. The data structure used is often
called an exception frame; multiple exception frames from nested exceptions are
usually arranged on a stack.

Stack resources are consumed by each exception, so arbitrarily deep nesting
of exceptions cannot be tolerated. Most systems award each kind of exception
a priority level and arrange that while an exception is being processed, only
higher-priority exceptions are permitted. Such systems need have only as many
exception frames as there are priority levels.

You can avoid all exceptions; interrupts can be individually masked by
software to conform to your priority rules, masked all at once with the SR(IE)
bit, or implicitly masked (for later CPUs) by the exception-level bit. Other
kinds of exceptions can be avoided by appropriate software discipline. For
example, privilege violations can’t happen in kernel mode (used by most excep-
tion processing software), and programs can avoid the possibility of addressing
errors and TLB misses. It’s essential to do so when processing higher-priority
exceptions.

5.7 An Exception Routine

The following MIPS32 code fragment is as simple as an exception routine can
be. It does nothing except increment a counter on each exception:

.set noreorder

.set noat
xcptgen:

la k0,xcptcount # get address of counter
lw k1,0(k0) # load counter
addu k1,1 # increment counter
sw k1,0(k0) # store counter
eret # return to program
.set at
.set reorder

This doesn’t look very useful: Whichever condition caused the exception
will still probably be active on its return, so it might just go round and round.
And the counter xcptcount had better be in kseg0 so that you can’t get a TLB
Miss exception when you read or write it.

5.8 Interrupts

The MIPS exception mechanism is general purpose, but democratically
speaking there are two exception types that happen far more often than all the
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rest put together. One is the TLB miss when an application running under a
memory-mapped OS like UNIX steps outside the (limited) boundaries of the
on-chip translation table; we mentioned that before and will come back to it in
Chapter 6. The other popular exceptions are interrupts, occurring when a device
outside the CPU wants attention. Since we’re dealing with an outside world that
won’t wait for us, interrupt service time is often critical.

Embedded-system MIPS users are going to be most concerned about
interrupts, which is why they get a special section. We’ll talk about the following:

Interrupt resources in MIPS CPUs: This describes what you’ve got to work
with.

Implementing interrupt priority: All interrupts are equal to MIPS CPUs,
but in your system you probably want to attend to some of them before
the others.

Critical regions, disabling interrupts, and semaphores: It’s often necessary
to prevent an interrupt from occurring during critical operations, but
there are particular difficulties about doing so on MIPS CPUs. We look
at solutions.

5.8.1 Interrupt Resources in MIPS CPUs

MIPS CPUs have a set of eight independent7 interrupt bits in their Cause
register. On most CPUs you’ll find five or six of these are signals from exter-
nal logic into the CPU, while two of them are purely software accessible. The
on-chip counter/timer (made of the Count and Compare registers, described
in section 3.3.5) will be wired to one of them; it’s sometimes possible to share
the counter/timer interrupt with an external device, but rarely a good idea to
do so.

An active level on any input signal is sensed in each cycle and will cause an
exception if enabled.

The CPU’s willingness to respond to an interrupt is affected by bits in SR.
There are three relevant fields:

The global interrupt enable bit SR(IE) must be set to 1, or no interrupt
will be serviced.

TheSR(EXL) (exception level) andSR(ERL) (error level) bits will inhibit
interrupts if set (as one of them will be immediately after any exception).

The status register also has eight individual interrupt mask bits SR(IM),
one for each interrupt bit in Cause. Each SR(IM) bit should be set to 1
to enable the corresponding interrupt so that programs can determine
exactly which interrupts can happen and which cannot.

7. Not so independent if you’re using EIC mode; see section 5.8.5.
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What Are the Software Interrupt Bits For?

Why on earth should the CPU provide 2 bits in the
Cause register that, when set, immediately cause
an interrupt unless masked?
The clue is in “unless masked.” Typically this is used
as a mechanism for high-priority interrupt routines to
flag actions that will be performed by lower-priority
interrupt routines once the system has dealt with all
high-priority business. As the high-priority process-
ing completes, the software will open up the inter-

rupt mask, and the pending software interrupt will
occur.
There is no absolute reason why the same effect
should not be simulated by system software (using
flags in memory, for example) but the soft inter-
rupt bits are convenient because they fit in with an
interrupt-handling mechanism that already has to be
provided, at very low hardware cost.

To discover which interrupt inputs are currently active, you look inside the
Cause register. Note that these are exactly that—current levels—and do not
necessarily correspond to the signal pattern that caused the interrupt excep-
tion in the first place. The active input levels in Cause(IP) and the masks
in SR(IM) are helpfully aligned to the same bit positions, in case you want to
“and” them together. The software interrupts are at the lowest positions, and
the hardware interrupts are arranged in increasing order.

In architectural terms, all interrupts are equal.8 When an interrupt exception
is taken, an older CPU uses the “general” exception entry point—though MIPS
32/64 CPUs and some other modern CPUs offer an optional distinct exception
entry point reserved for interrupts, which can save a few cycles. You can select
this with the Cause(IV) register bit.

Interrupt processing proper begins after you have received an exception and
discovered from Cause(ExcCode) that it was a hardware interrupt. Consult-
ing Cause(IP), we can find which interrupt is active and thus which device is
signaling us. Here is the usual sequence:

Consult the Cause register IP field and logically “and” it with the cur-
rent interrupt masks in SR(IM) to obtain a bit map of active, enabled
interrupt requests. There may be more than one, any of which would
have caused the interrupt.

Select one active, enabled interrupt for attention. Most OSs assign the
different inputs to fixed priorities and deal with the highest priority first,
but it is all decided by the software.

You need to save the old interrupt mask bits in SR(IM), but you probably
already saved the whole SR register in the main exception routine.

Change SR(IM) to ensure that the current interrupt and all interrupts
your software regards as being of equal or lesser priority are inhibited.

8. That’s not quite true in vectored interrupt and “EIC mode,” described in section 5.8.5, but
they’re not widely used.
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If you haven’t already done it in the main exception routine, save the
state (user registers, etc.) required for nested exception processing.

Now change your CPU state to that appropriate to the higher-level part of
the interrupt handler, where typically some nested interrupts and excep-
tions are permitted.

In all cases, set the global interrupt enable bit SR(IE) to allow higher-
priority interrupts to be processed. You’ll also need to change the CPU
privilege-level field SR(KSU) to keep the CPU in kernel mode as you
clear exception level and, of course, clear SR(EXL) itself to leave excep-
tion mode and expose the changes made in the status register.

Call your interrupt routine.

On return you’ll need to disable interrupts again so you can restore the
preinterrupt values of registers and resume execution of the interrupted
task. To do that you’ll set SR(EXL). But in practice you’re likely to do this
implicitly when you restore the just-after-exception value of the whole
SR register, before getting into your end-of-exception sequence.

When making changes to SR, you need to be careful about changes whose
effect is delayed due to the operation of the pipeline—“CP0 hazards.” See
section 3.4 for more details and how to program around the hazards.

5.8.2 Implementing Interrupt Priority in Software

The MIPS CPU (until you use the new vectored interrupt facilities) has a simple-
minded approach to interrupt priority; all interrupts are equal.

If your system implements an interrupt priority scheme, then:

At all times the software maintains a well-defined interrupt priority level
(IPL) at which the CPU is running. Every interrupt source is allocated to
one of these levels.

If the CPU is at the lowest IPL, any interrupt is permitted. This is the
state in which normal applications run.

If the CPU is at the highest IPL, then all interrupts are barred.

Not only are interrupt handlers run with the IPL set to the level appropriate
to their particular interrupt cause, but there’s provision for programmers to
raise and lower the IPL. Those parts of the application side of a device driver
that communicate with the hardware or the interrupt handler will often need
to prevent device interrupts in their critical regions, so the programmer will
temporarily raise the IPL to match that of the device’s interrupt input.

In such a system, high-IPL interrupts can continue to be enabled without
affecting the lower-IPL code, so we’ve got the chance to offer better interrupt
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response time to some interrupts, usually in exchange for a promise that their
interrupt handlers will run to completion in a short time.

Most UNIX systems have between four and six IPLs.
While there are other ways of doing it, the simplest schemes have the

following characteristics:

Fixed priorities: At any IPL, interrupts assigned to that and lower IPLs are
barred, but interrupts of higher IPLs are enabled. Different interrupts at
the same IPL are typically scheduled first come, first served.

IPL relates to code being run: Any given piece of code always executes at
the same IPL.

Simple nested scheduling (above IPL 0): Except at the lowest level, any
interrupted code will be returned to as soon as there are no more active
interrupts at a higher level. At the lowest level there’s quite likely a sched-
uler that shares the CPU out among various tasks, and it’s common to
take the opportunity to reschedule after a period of interrupt activity.9

On a MIPS CPU a transition between interrupt levels must (at least) be
accompanied by a change in the status register SR, since that register contains
all the interrupt control bits. On some systems, interrupt level transitions will
require doing something to external interrupt control hardware, and most OSs
have some global variables to change, but we don’t care about that here; for now
we’ll characterize an IPL by a particular setting of the SR interrupt fields.

In the MIPS architecture SR (like all coprocessor registers) is not directly
accessible for bit setting and clearing. Any change in the IPL, therefore,
requires a piece of code that reads, modifies, and writes back the SR in
separate operations:

mfc0 t0, SR
1:

or t0, things_to_set
and t0, ˜(things_to_clear)

2:
mtc0 t0, SR
ehb

(The last instruction, ehb, is a hazard barrier instruction; see section 3.4.)
In general, this piece of code may itself be interrupted, and a problem

arises: Suppose we take an interrupt somewhere between label 1 and 2 and
that interrupt routine itself causes a change in SR? Then when we write our

9. Linux systems that reschedule after an interrupt (even when the interrupted task was working in
the kernel) are called pre-emptive, and with the 2004 v2.6 version pre-emption became standard
for Linux.
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own altered value of SR at label 2, we’ll lose the change made by the interrupt
routine.

It turns out that we can only get away with the code fragment above—some
version of which is pretty much universal in MIPS implementations of OSs—in
systems where we can rely on the IPL being constant in any particular piece of
code (and where we don’t make any other running changes to SR). With those
conditions, even if we get interrupted in the middle of our read-modify-write
sequence, it will do no harm; when the interrupt returns it will do so with the
same IPL, and therefore the same SR value, as before.

Where this assumption breaks down, we need the following discussion.

5.8.3 Atomicity and Atomic Changes to SR

In systems with more than one thread of control—including a single application
with interrupt handlers—you will quite often find yourself doing something
during which you don’t want to be caught halfway. In more formal language,
you may want a set of changes to be made atomically, so that some cooperating
task or interrupt routine in the system will see either none of them made or all
of them, but never anything in between.10 The code implementing the atomic
change is sometimes called a critical region.

On a uniprocessor that runs multiple threads in software, a thread switch
that surprises the current thread can only happen as the consequence of some
interrupt or other. So in a uniprocessor system, any critical region can be simply
protected by disabling all interrupts around it; this is crude but effective.

But as we saw above, there’s a problem: The interrupt-disabling sequence
(requiring a read-modify-write sequence on SR) is itself not guaranteed to be
atomic. I know of four ways of fixing this impasse and one way to avoid it.

You can fix it if you know that all CPUs running your software implement
MIPS32 Release 2: In that case, you can use the di instruction instead of the
mfc0. di atomically clears the SR(IE) bit, returning the original value of SR in
a general-purpose register.11 But until MIPS32 Release 2 compliance becomes
the rule rather than the exception, you may need to look further.

Amoregeneralfixis to insist thatnointerruptmaychangethevalueofSRheld
by any interruptible code; this requires that interrupt routines always restore SR
before returning, just as they’re expected to restore the state of all the user-level
registers. If so, the nonatomic RMW sequence above doesn’t matter; even if an
interruptgetsin,theoldvalueofSRyou’reusingwillstillbecorrect.Thisapproach
isgenerallyusedinUNIX-likeOSkernelsforMIPSandgoeswellwiththeinterrupt
priority system in which every piece of code is associated with a fixed IPL.

10. An old saying goes: “Never show fools and children things half done”—I take it as read that
computers and their software are foolish and childish.

11. There’s an ei too for enabling interrupts, but don’t use it—restore the di-returned value of SR
instead, and your “disable interrupts” code will not malfunction if you accidentally invoke it
when interrupts were already disabled.
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But sometimes this restriction is too much. For example, when you’ve sent
the last waiting byte on a byte-at-a-time output port, you’d like to disable the
ready-to-send interrupt (to avoid eternal interrupts) until you have some more
data to send. And again, some systems like to rotate priorities between different
interrupts to ensure a fair distribution of interrupt service attention.

Another solution is to use a system call to disable interrupts (probably you’d
define the system call as taking separate bit-set and bit-clear parameters and get
it to update the status register accordingly). Since a syscall instruction works
by causing an exception, it disables interrupts atomically. Under this protection
your bit-set and bit-clear can proceed cheerfully. When the system call excep-
tion handler returns, the global interrupt enable status is restored (once again
atomically).

A system call sounds pretty heavyweight, but it actually doesn’t need to take
long to run; however, you will have to untangle this system call from the rest of
the system’s exception-dispatching code.

The third solution—which all substantial systems should use for at least
some critical regions—is to use the load-linked and store-conditional instruc-
tions to build critical regions without disabling interrupts at all, as described
below. Unlike anything described above, that mechanism extends correctly to
multiprocessor or hardware-multithreading systems.

5.8.4 Critical Regions with Interrupts Enabled: Semaphores the
MIPS Way

A semaphore12 is a coding convention to implement critical regions (though
extended semaphores can do more tricks than that). The semaphore is a shared
memory location used by concurrently running processes to arrange that some
resource is only accessed by one of them at once.

Each atomic chunk of code has the following structure:13

wait(sem);

/* do your atomic thing */

signal(sem);

Think of the semaphore as having two values: 1 meaning “in use” and 0
meaning “available.” The signal() is simple; it sets the semaphore to 0.14

12. A simple semaphore is also called a mutex and informally just called a “lock.”

13. Dijkstra formulated these ideas back in the 1970s and named it a “semaphore” from a railway-
signaling analogy. Hoare set them in the wider context of “cooperating parallel processes”
and called essentially the same functions wait() and signal()—and that’s what we’ve used.
Dijkstra’s original names are p() and v(), respectively. You can understand why he called them
“p” and “v” quite easily, if you speak Dutch.

14. For a thread-to-thread semaphore in an OS, signal() also has to do something to “wake up”
any other thread that was waiting on the semaphore.
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wait() checks for the variable to have the value 0 and won’t continue until
it does. It then sets the variable to 1 and returns. That should be easy, but you
can see that it’s essential that the process of checking the value of sem and set-
ting it again is itself atomic. High-level atomicity (for threads calling wait()) is
dependent on being able to build low-level atomicity, where a test-and-set oper-
ation can operate correctly in the face of interrupts (or, on a multiprocessor, in
the face of access by other CPUs).

Most mature CPU families have some special instruction for this: 680x0
CPUs—and many others—have an atomic test-and-set instruction; x86 CPUs
have an “exchange register with memory” operation that can be made atomic
with a prefix “lock” instruction.

For large multiprocessor systems this kind of test-and-set process becomes
expensive; essentially, all shared memory access must be stopped while first the
semaphore user obtains the value and completes the test-and-set operation,
and, second, the set operation percolates through to every cached copy in the
system. This doesn’t scale well to large multiprocessors, because you’re holding
up lots of probably unrelated traffic just to make sure you held up the occasional
thing that mattered.

It’s much more efficient to allow the test-and-set operation to run without a
prior guarantee of atomicity so that the “set” succeeds only if it was atomic. Soft-
ware needs to be told whether the set succeeded: Then unsuccessful test-and-set
sequences can be hidden inside the wait() function and retried as necessary.15

This is what MIPS has, using thell (load-linked) andsc (store-conditional)
instructions in sequence. sc will only write the addressed location if the hard-
ware confirms that there has been no competing access since the last ll and will
leave a 1/0 value in a register to indicate success or failure.

In most implementations this information is pessimistic: Sometimes sc
will fail even though the location has not been touched; CPUs will fail
the sc when there’s been any exception serviced since the ll,16 and most
multiprocessors will fail on any write to the same “cache line”-sized block
of memory. It’s only important that the sc should usually succeed when
there’s been no competing access and that it always fails when there has
been one such.

Here’s wait() for the binary semaphore sem:

wait:
la t0, sem

TryAgain:
ll t1, 0(t0)
bne t1, zero, WaitForSem

15. Of course, you’d better make sure that there are no circumstances where it ends up retrying
forever—but with other kinds of semaphores, you always have to make sure a waiting task
comes back sometime.

16. To be precise, if an eret has been executed.
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li t1, 1
sc t1, 0(t0)
beq t1, zero, TryAgain
/* got the semaphore... */
jr ra

ll/sc was invented for multiprocessors, but even in a uniprocessor sys-
tem, this kind of operation can be valuable, because it does not involve shutting
out interrupts. It avoids the interrupt-disabling problem described above and
contributes to a coordinated effort to reduce worst-case interrupt latency, very
desirable in embedded systems.

5.8.5 Vectored and EIC Interrupts in MIPS32/64 CPUs

Release 2 of the MIPS32 specification—first seen in the 4KE and 24K family
CPU cores from MIPS Technologies—adds two new features that can make
interrupt handling more efficient. The savings are modest and probably
wouldn’t be important in a substantial OS, but MIPS CPUs are also used
in very low level embedded environments where these kinds of improve-
ments are very welcome. Those features are vectored interrupts and a way
of providing a large number of distinguishable interrupts to the CPU, called
EIC mode.

If you switch on the vectored interrupt feature, an interrupt exception will
start at one of eight addresses according to the interrupt input signal that caused
it. That’s slightly ambiguous: There’s nothing to stop two interrupts being active
at once, so the hardware uses the highest-numbered interrupt signal, which
is both active and enabled. Vectored interrupts are set up by programming
IntCtl(VS), which gives you a few choices as to the spacing between the dif-
ferent entry points (a zero causes all the interrupts to use the same entry point,
as was traditional).

Embedded systems often have a very large number of interrupt events to
signal, far beyond the six hardware inputs of traditional MIPS CPUs. In EIC
mode, those six formerly independent signals become a 6-bit binary number:
Zero means no interrupt, but that leaves 63 distinct interrupt codes. In EIC
mode, each nonzero code has its own interrupt entry point, allowing an
appropriately designed interrupt controller to dispatch the CPU directly to han-
dle up to 63 events.

Vectored interrupts (whether with traditional or EIC signaling) are likely
to be most helpful in circumstances where one or two interrupt events in your
system are particularly frequent or time-critical. The small number of cycles
saved are likely to be lost in fitting into the interrupt-handling discipline of a
more sophisticated OS, so don’t be surprised to find that your favorite OS does
not use these features.
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5.8.6 Shadow Registers

Even with interrupt vectors, an interrupt routine is burdened with the need
to avoid trashing the register values of the code it interrupted, and must load
addresses for itself before it can do any useful work.

Release 2 of the MIPS32/64 specification permits CPUs to provide one or
more distinct sets of general-purpose registers: The extra register sets are called
shadow registers. Shadow registers can be used for any kind of exception but are
most useful for interrupts.

An interrupt handler using a shadow register set has no need to save the
interrupted program’s register values and may keep its own state between invo-
cations in its own registers (if more than one interrupt handler uses the shadow
set, they’d better agree who gets to use which register).

An interrupt handler using vectored interrupts and a shadow register
set can be unburdened by housekeeping and can run phenomenally fast.
But again, that advantage can be lost by the discipline of an OS (in
particular because the OS is likely to disable all interrupts for periods of
time that far exceed our superfast interrupt handler’s run time). Some
applications that would benefit from shadow registers might get the same
kind of benefit more cleanly by using a multithreading CPU, but that’s a
much bigger story—see Appendix A.

5.9 Starting Up

In terms of its software-visible effect on the CPU, reset is almost the
same as an exception, though one from which we’re not going to return.
In the original MIPS architecture, this is mostly a matter of economy
of implementation effort and documentation, but later CPUs have offered
several different levels of reset, from a cold reset through to a nonmaskable
interrupt. In MIPS, reset and exception conditions shade imperceptibly
into each other.

We’re recycling mechanisms from regular exceptions, following reset EPC
points to the instruction that was being executed when reset was detected, and
most register values are preserved. However, reset disrupts normal operation,
and a register being loaded or a cache location being stored to or refilled at the
moment reset occurred may be trashed.

It is possible to use the preservation of state through reset to implement
some useful postmortem debugging, but your hardware engineer needs to help;
the CPU cannot tell you whether reset occurred to a running system or from
power-up. But postmortem debugging is an exercise for the talented reader; we
will focus on starting up the system from scratch.

The CPU responds to reset by starting to fetch instructions from 0xBFC0.

0000. This is physical address 0x1FC0.0000 in the uncached kseg1 region.
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Following reset, enough of the CPU’s control register state is defined that the
CPU can execute uncached instructions. “Enough state” is interpreted
minimally; note the following points:

Only three things are guaranteed inSR: The CPU is in kernel mode; inter-
rupts are disabled; and exceptions will vector through the uncached entry
points—that is, SR(BEV) = 1. In modern CPUs, the first two conditions
(and more beside) are typically guaranteed by setting the exception-mode
bit SR(EXL), and this is implied by treating reset as an exception.

The caches will be in a random, nonsensical state, so a cached load might
return rubbish without reading memory.

The TLB will be in a random state and must not be accessed until initial-
ized (in some CPUs the hardware has only minimal protection against
the possibility that there are duplicate matches in the TLB, and the result
could be a TLB shutdown, which can be amended only by a further reset).

The traditional start-up sequence is as follows:

1. Branch to the main ROM code. Why do a branch now?

The uncached exception entry points start at 0xBFC0.0100, which
wouldn’t leave enough space for start-up code to get to a “natural
break”—so we’re going to have to do a branch soon, anyway.

The branch is a very simple test to see if the CPU is functioning and
is successfully reading instructions. If something terrible goes wrong
with the hardware, the MIPS CPU is most likely to keep fetching
instructions in sequence (and next most likely to get permanent
exceptions).

If you use test equipment that can track the addresses of CPU reads
and writes, it will show the CPU’s uncached instruction fetches from
reset; if the CPU starts up and branches to the right place, you have
strong evidence that the CPU is getting mostly correct data from
the ROM.

By contrast, if your ROM program plows straight in and fiddles with
SR, strange and undiagnosable consequences may result from simple
faults.

2. Set the status register to some known and sensible state. Now you can
load and store reliably in uncached space.

3. You will probably have to run using registers only until you have initial-
ized and (most likely) run a quick check on the integrity of some RAM
memory. This will be slow (we’re still running uncached from ROM),
so you will probably confine your initialization and check to a chunk of
memory big enough for the ROM program’s data.
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4. You will probably have to make some contact with the outside world
(a console port or diagnostic register) so you can report any problem
with the initialization process.

5. You can now assign yourself some stack and set up enough registers to
be able to call a standard C routine.

6. Now you can initialize the caches and run in comfort. Some systems can
run code from ROM cached and some can’t; on most MIPS CPUs, a
memory supplying the cache must be able to provide 4/8-word bursts,
and your ROM subsystem may or may not oblige.

5.9.1 Probing and Recognizing Your CPU

You can identify your CPU implementation number and a manufacturer-
defined revision level from the PRId(Imp) and PRId(Rev) fields. However,
it’s best to rely on this information as little as possible; if you rely on PRId, you
guarantee that you’ll have to change your program for any future CPU, even
though there are no new features that cause trouble for your program.

Whenever you can probe for a feature directly, do so. Where you can’t
figure out a reliable direct probe, then for CPUs that are MIPS32/64-compliant,
there’s a good deal of useful information encoded in the various Config reg-
isters described in section 3.3.7. Only after exhausting all other options should
you consider relying on PRId.

Nonetheless, your boot ROM and diagnostic software should certainly
display PRId in some readable form. And should you ever need to include a
truly unpleasant software workaround for a hardware bug, it’s good practice to
make it conditional on PRId, so your workaround is not used on future, fixed,
hardware.

Since we’ve recommended that you probe for individual features, here are
some examples of how you could do so:

Have we got FP hardware? Your MIPS32/64 CPU should tell you
through the Config1(FP) register bit. For older CPUs one recom-
mended technique is to set SR(CU1) to enable coprocessor 1 oper-
ations and to use a cfc1 instruction from coprocessor 1 register 0,
which is defined to hold the revision ID. A nonzero value in the Proc-
essorID field (bits 8–15) indicates the presence of FPU hardware—
you’ll most often see the same value as in the PRId(Imp) field.
A skeptical programmer17 will probably follow this up by checking that
it is possible to store and retrieve data from the FPU registers. Unless
your system supports unconditional use of the floating-point unit, don’t
forget to reset SR(CU1) afterward.

17. I assume, Gentle Reader, that this is you.
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Cache size: On a MIPS32/64-compliant CPU, it probably is better to rely
on the values encoded in the configuration registers Config1-2. But
you can also deduce the size by reading and writing cache tags and look-
ing for when the cache size wraps around.

Have we got a TLB? That’s memory translation hardware. The Config
(MT) bit tells you whether you have it. But you could also read and write
values to Index or look for evidence of a continuously counting Random
register. If it looks promising, you may want to check that you can store
and retrieve data in TLB entries.

CPU clock rate: It is often useful to work out your clock rate. You can
do this by running a loop of known length, cached, that will take a
fixed large number of CPU cycles and then comparing with “before”
and “after” values of a counter outside the CPU that increments at
known speed. Do make sure that you are really running cached, or
you will get strange results—remember that some hardware can’t run
cached out of ROM.

The Linux kernel does this when it boots and reports a number called
BogoMIPS, to emphasize that any relationship between the number and
CPU performance is bogus.

If your CPU is compliant to MIPS32/64 Release 2 (the 2003 specification),
the rdhwr instruction gives you access to the divider between the main
CPU clock and the speed with which the Count register increments. It’s
simpler to compare the counter speed with some external reference.

Some maintenance engineer will bless you one day if you make the CPU ID,
clock rate, and cache sizes available, perhaps as part of a sign-on message.

5.9.2 Bootstrap Sequences

Start-up code suffers from the clash of two opposing but desirable goals. On
the one hand, it’s robust to make minimal assumptions about the integrity of
the hardware and to attempt to check each subsystem before using it (think of
climbing a ladder and trying to check each rung before putting your weight on
it). On the other hand, it’s desirable to minimize the amount of tricky assembly
code. Bootstrap sequences are almost never performance sensitive, so an early
change to a high-level language is desirable. But high-level language code tends
to require more subsystems to be operational.

After you have dealt with the MIPS-specific hurdles (like setting up SR so
that you can at least perform loads and stores), the major question is how soon
you can make some read/write memory available to the program, which is essen-
tial for calling functions written in C.

Sometimes diagnostic suites include bizarre things like the code in the orig-
inal PC BIOS, which tests each 8086 instruction in turn. This seems to me like
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chaining your bicycle to itself to foil thieves. If any subsystem is implemented
inside the same chip as the CPU, you don’t lose much by trusting it.

5.9.3 Starting Up an Application

To be able to start a C application (presumably with its instructions coming
safely from ROM) you need writable memory, for three reasons.

First, you need stack space. Assign a large enough piece of writable memory
and initialize the sp register to its upper limit (aligned to an eight-byte bound-
ary). Working out how large the stack should be can be difficult: A generous
guess will be more robust.

Then you may need some initialized data. Normally, m= the C data area
is initialized by the program loader to set up any variables that have been
allocated values. Most compilation systems that purport to be usable for
embedded applications permit read-only data (implicit strings and data items
declared const) to be managed in a separate segment of object code and
put into ROM memory.

Initialized writable data can be used only if your compilation system and
runtime system cooperate to arrange to copy writable data initializations from
ROM into RAM before calling main().

Last, C programs use a different segment of memory for all static and
extern data items that are not explicitly initialized—an area sometimes called
“BSS,” for reasons long lost. Such variables should be cleared to zero, which is
readily achieved by zeroing the whole data section before starting the program.

If your program is built carefully, that’s enough. However, it can get more
complicated: Take care that your MIPS program is not built to use the global
pointer register gp to speed access to nonstack variables, or you’ll need to do
more initialization.

5.10 Emulating Instructions

Sometimes an exception is used to invoke a software handler that will stand in
for the exception victim instruction, as when you are using software to imple-
ment a floating-point operation on a CPU that doesn’t support FP in hardware.
Debuggers and other system tools may sometimes want to do this too.

To emulate an instruction, you need to find it, decode it, and find its
operands. A MIPS instruction’s operands were in registers, and by now those
preexception register values have been put away in an exception frame some-
where. Armed with those values, you do the operation in software and patch
the results back into the exception frame copy of the appropriate result reg-
ister. You then need to fiddle with the stored exception return address so
as to step over the emulated instruction and then return. We’ll go through
these step by step.
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Finding the exception-causing instruction is easy; it’s usually pointed to by
EPC, unless it was in a branch delay slot, in which case Cause(BD) is set and
the exception victim is at the address EPC + 4.

To decode the instruction, you need some kind of reverse-assembly table.
A big decode-oriented table of MIPS instructions is part of the widely available
GNU debugger gdb, where it’s used to generate disassembly listings. So long as
the GNU license conditions aren’t a problem for you, that will save you time
and effort.

To find the operands, you’ll need to know the location and layout of the
exception frame, which is dependent on your particular OS (or exception-
handling software, if it’s too humble to be called an OS).

You’ll have to figure out for yourself how to do the operation, and once again
you need to be able to get at the exception frame, to put the results back in the
saved copy of the right register.

There’s a trap for the unwary in incrementing the stored EPC value to step
over the instruction you’ve emulated. If your emulated instruction was in a
branch delay slot, you can’t just return to the “next” instruction—that would
be as if the branch was not taken, and you don’t know that.

So when your emulation candidate is in a branch delay slot, you also have to
emulate the branch instruction, testing for whether the branch should be taken
or not. If the branch should be taken, you need to compute its target and return
straight there from the exception.

Fortunately, all MIPS branch instructions are simple and free of side effects.
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Chapter

6 Low-level Memory
Management and the TLB

We’ve tended to introduce most topics in this book from the bottom, which
is perhaps natural in a book about low-level computer architecture. But—

unless you’re already pretty familiar with a virtual memory system and how
it’s used by an OS—you’re recommended to turn now to section 14.4, which
describes how virtual memory management works in Linux. Once that makes
some sense to you, come back here for hardware details and to see how the
hardware can be made to work in other contexts.

When we’re thinking top-down, the hardware is often called a memory-
management unit or MMU. When we’re looking bottom-up, we focus on the
main hardware item, known as the TLB (for “translation lookaside buffer,”
which is unlikely to help much).

6.1 The TLB/MMU Hardware and What It Does

The TLB is the hardware that translates an address used by your program
(program addresses or virtual addresses) to the physical address, which accesses
memory. The OS’s control over memory translation is the key to all software
security features.

On MIPS CPUs (and all modern CPUs), translation operates on 4-Kbyte1

chunks called pages. The 12-bit address within the page is simply passed on from
virtual address to physical address.

Each entry in the table has the virtual address of a page (the VPN
for virtual page number), and a physical page address (PFN for page frame
number). When a program presents a virtual address, it is compared with

1. Page sizes bigger than 4 Kbytes are supported by MIPS hardware and, with memory so cheap, a
bigger basic page size might be advantageous to software, but the 4-Kbyte habit is proving very
hard to kick. Much larger page sizes are occasionally used for special translations.
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PageMaskASID GVPN2 PFN PFN

output (pair of physical pages) input (8 K of virtual space)

Flags
CDV

Flags
CDV

EntryHi PageMask EntryLo0 EntryLo1

FIGURE 6.1 A TLB entry.

each VPN in the TLB, and if it matches an entry the corresponding PFN
is delivered. The TLB is what is called an associative or content-addressable
memory—an entry is selected not by an index but by its contents. It’s a
fairly complex piece of logic, where each entry has a built-in compara-
tor, and complexity and performance scale badly. So the TLB typically has
between 16 and 64 entries.

A set of flag bits is stored and returned with each PFN and allows the OS to
designate a page as read-only or to specify how data from that page might be
cached.

Most modern MIPS CPUs (and all MIPS32/64 CPUs) double up, with each
TLB entry holding two independent physical addresses corresponding to an
adjacent pair of virtual pages.

Figure 6.1 shows one TLB entry. The fields are labeled with the names of
the CP0 registers used when loading and reading TLB entries in software, as
described in the next section.

When you’re running a real, complicated OS, the software rapidly covers
more ground than can be accommodated by the TLB’s modest set of trans-
lations. That’s fixed by maintaining the TLB as a software-managed cache
of recently used translations. When a needed translation isn’t in the TLB,
that generates an exception and the exception handler should figure out and
install the correct translation. It’s hard to believe this can work efficiently,
but it does.

6.2 TLB/MMU Registers Described

Like everything else in a MIPS CPU, MMU control is effected by a rather small
number of extra instructions and a set of registers in the coprocessor 0 set.
Table 6.1 lists the control registers, and we’ll get around to the instructions in
section 6.3. All TLB entries being written or read are staged through the registers
EntryHi, EntryLo0-1, and PageMask.
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TABLE 6.1 CPU Control Registers for Memory Management

CP0
Register register
mnemonic number Description

EntryHi 10 Together these registers hold everything needed for a TLB entry. All reads
and writes to the TLB must be staged through them. EntryHi holds the
VPN and ASID; in MIPS32/64 CPUs, each entry maps two consecutive
VPNs to different physical pages, so the PFN and access permission flags
are specified independently for the two pages by registers called
EntryLo0 and EntryLo1.
The field EntryHi(ASID) does double duty, since it remembers the
currently active ASID.
EntryHi grows to 64 bits in 64-bit CPUs but in such a way as to preserve
the illusion of a 32-bit layout for software that doesn’t need long
addresses.
PageMask can be used to create entries that map pages bigger than 4 KB;
see section 6.2.1. Some CPUs support smaller page sizes, but that’s barely
mentioned in this book.

EntryLo0-1 2–3

PageMask 5

Index 0 This determines which TLB entry will be read/written by appropriate
instructions.

Random 1 This pseudorandom value (actually a free-running counter) is used by a
tlbwr to write a new TLB entry into a randomly selected location. Saves
time when processing TLB refill traps for software that likes the idea of
random replacement (there is probably no viable alternative).

Context 4 These are convenience registers, provided to speed up the processing of
TLB refill traps. The high-order bits are read/write; the low-order bits are
taken from the VPN of the address that couldn’t be translated.
The register fields are laid out so that, if you use the favored arrangement
of memory-held copies of memory translation records, then following a
TLB refill trap Context will contain a pointer to the page table record
needed to map the offending address. See section 6.2.4.
XContext does the same job for traps from processes using more than
32 bits of effective address space; a straightforward extension of the
Context layout to larger spaces would be unworkable because of the size
of the resulting data structures. Some 64-bit CPU software is happy with
32-bit virtual address spaces; but for when that’s not enough, 64-bit CPUs
are equipped with “mode bits” SR(UX), SR(KX), which can be set to
invoke an alternative TLB refill handler; in turn that handler can use
XContext to support a huge but manageable page table format.

XContext 20
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6.2.1 TLB Key Fields—EntryHi and PageMask

Figure 6.2 shows these registers, which, with EntryLo (described below), are
the programmer’s only view of a TLB entry. The diagram shows both the
MIPS32 and MIPS64 versions of EntryHi, with these fields:

VPN2 (virtual page number): These are the high-order bits of a pro-
gram address (with the low, in-page bits 0–13 omitted). Bits 0–12
would be the in-page address, but bit 13 of the program address isn’t
looked up either: Each entry is going to map a pair of 4-KB pages,
and bit 13 will automatically select between the two possible output
values.

Following a refill exception, this field is set up automatically to match the
program address that could not be translated. When you want to write
a different TLB entry, or attempt a TLB probe, you have to set it up by
hand.

The MIPS64 version ofEntryHi allows for bigger virtual address regions
than any implemented so far—to as large as 262 bits, though current
CPUs typically only implement 240 bits. The implemented bits of VPN2
go up far enough to cope, and, in fact, you find out how much virtual
space you’ve got through this register. If you write all-ones to EntryHi
(Fill/VPN2) and then read it back, the valid bits of EntryHi(VPN2)
will be those that read back as 1.

In use, higher bits of VPN2 than are used by your CPU must be written
as all ones or all zeros, matching the most significant bit of the R field.
Equivalently, the higher bits are all 1 when accessing kernel-only address
spaces and all 0 otherwise.

If you are only using the 32-bit instruction set, this will happen auto-
matically, because when you work this way all register values contain the
64-bit sign extension of a 32-bit number. Therefore, 32-bit software run-
ning on 64-bit hardware can pretend it has a 32-bit EntryHi layout.

63 62 61 13 12 8 7 0

R Fill / VPN2 0 ASID

31 13 12 8 7 0

VPN2 0 ASID

31 29 28 13 12 0

0 Mask 0

EntryHi (MIPS64)

EntryHi (MIPS32)

PageMask

FIGURE 6.2 EntryHi and PageMask register fields.
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Note also there are a few unused zero bits below the VPN2 field; in fact
they’re not always unused—some CPUs can be configured to support a
1-KB page size, in which case VPN2 and the corresponding mask field
grow downward by 2 bits.

ASID (address space identifier): This is normally left holding the oper-
ating system’s idea of the current address space. This is not changed by
exceptions, so after a refill exception, this will still have the right value in
it for the currently running process.

An OS using multiple address spaces will maintain this field to the cur-
rent address space. But because it is tucked into EntryHi, you have to
be careful when using tlbr to inspect TLB entries; that operation over-
writes the whole of EntryHi, so you will have to restore the correct
current ASID value afterward.

R: (64-bit version only) This is an address region selector. But you can
consistently regard this field as just more bits of EntryHi(VPN2); it’s
just the highest-order bits of the 64-bit MIPS virtual address. However,
if you remember the 64-bit extended-memory map (see Figure 2.2 in
section 2.8), you can see that these high-order bits select memory regions
with different access privileges:

R Region
value name Brief description

0 xuseg User-mode accessible space in low
virtual memory

1 xsseg Supervisor-mode accessible space
(supervisor mode is optional)

2 xkphys Kernel-only large windows on
physical memory (cached and
uncached)

3 xkseg Kernel-mode space (includes MIPS32
compatibility segments)

The R bits are unlike the high bits of VPN2 because they can indeed take
on different values—an implementation-defined number of high-order
bits of EntryHi(VPN2) may only be all ones or all zeros.

The PageMask register allows you to set up TLB fields that map larger
pages. The PageMask(Mask) field represents part of the TLB entry, and
1 bits have the effect of causing the corresponding bit of the virtual address
to be ignored when matching the TLB entry (and causing that bit to be
carried unchanged to the resulting physical address), effectively matching a
larger page size.
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No MIPS CPU permits arbitrary bit patterns in PageMask(Mask). Most
allow page sizes between 4 KB and 16 MB in ×4 steps:

PageMask bits

24–21 20–17 16–13 Page size

0000 0000 0000 4 KB

0000 0000 0011 16 KB

0000 0000 1111 64 KB

0000 0011 1111 256 KB

0000 1111 1111 1 MB

0011 1111 1111 4 MB

1111 1111 1111 16 MB

At least one older MIPS CPU supports only 4-KB and 16-MB pages but uses the
standard encodings for those sizes; you’re recommended to do some probing to
see which values “stick” in PageMask.

If your CPU is able to support 1-KB pages, you’ll have 2 extra bits on the
bottom of PageMask, whose setting follows the same pattern and is an exercise
for the reader.

6.2.2 TLB Output Fields—EntryLo0-1

Figure 6.3 shows both the 64- and 32-bit versions of EntryLo, whose fields are
as follows:

PFN: These are the high-order bits of the physical address to which
values matching the entry field corresponding to EntryHi(VPN2)s will
be translated. The active width of this field depends on the physical mem-
ory space supported by your CPU. MIPS32 CPUs are quite often attached
to external interfaces limited to 232 bytes range, but the MIPS32 version
ofEntryLo can potentially support as much as a 238 bytes physical range
(the 26-bit PFN provides 226 pages, each 4 KB or 212 bytes in size).

63 55 54 6 5 3

(MIPS64) 0 PFN C D V G

31 6 5 3 2 1 0

2 1 0

(MIPS32) PFN C D V G

FIGURE 6.3 EntryLo0-1 register fields.



6.2 TLB/MMU Registers Described 137

C: A 3-bit field originally defined for cache-coherent multiprocessor
systems to set the “cache algorithm” (or “cache coherency attribute”—
some manuals call this field CCA). An OS will typically know that some
pages will not need to have changes tracked automatically through mul-
tiple caches—pages known to be used only by one CPU, or known to be
read-only, don’t need so much care. It can make the system more effi-
cient to turn off the cache snooping and interaction for accesses to these
pages, and this field is used by the OS to note that the page is, for example,
cacheable but doesn’t need coherency management (“cacheable nonco-
herent”).

But the field has also been used in CPUs aimed at embedded applica-
tions, when it selects how the cache works—for example, marking some
particular page to be managed “write-through” (that is, all writes made
there are sent straight to main memory as well as to any cached copy).

The only universally supported values of this field denote “uncached”
(2) and “cacheable noncoherent” (3).

D (dirty): This functions as a write-enable bit. Set 1 to allow writes, 0 to
cause any store using this translation to be trapped. See section 14.4.7
for an explanation of the term dirty.

V (valid): If set 0, any use of an address matching this entry will cause an
exception. Used either to mark a page that is not available for access (in
a true virtual memory system) or to mark one EntryLo part of a paired
translation as not available.

G (global): When the G bit in a TLB entry is set, that TLB entry will match
solely on the VPN field, regardless of whether the TLB entry’s ASID
field matches the value in EntryHi. That provides an efficient mech-
anism to implement parts of the address space that are shared between
all processes. Note that there is really only one “G” bit in a TLB entry,
although there are two EntryLo registers: bad things will happen if you
have different values in EntryLo0(G) and EntryLo1(G).

Fields called 0 and unused PFN bits: These fields always return zero, but
unlike many reserved fields, they do not need to be written as zero (noth-
ing happens regardless of the data written). This is important; it means
that the memory-resident data used to generate EntryLo when refill-
ing the TLB can contain some software-interpreted data in these fields,
which the TLB hardware will ignore without the need to spend precious
CPU cycles masking it out.

6.2.3 Selecting a TLB Entry—Index, Random, and Wired Registers

The Index register is used to pick a particular TLB entry—they run from zero
up to the number of entries less one. You set Indexwhen you deliberately want
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to read or write a particular entry, and Index is also set automatically when you
do a software search for a TLB entry using tlbp.

Its low bits hold the TLB index.2 Not many bits are needed, since no MIPS
CPU has yet had a TLB with more than 128 entries. The high bit (bit 31) is
magic, being set by tlbp when the probe fails to finds a matching entry. Bit 31
is a good choice—because it makes the value appear negative, it’s easy to
test for.

Randomholds an index into the TLB that counts (downward, if that’s impor-
tant to you) with each instruction the CPU executes. It acts as an index into the
TLB for the write-entry instruction tlbwr, facilitating a random replacement
strategy when you need to write a new TLB entry.

You never have to read or write the Random register in normal use.
The hardware sets the Random field to its maximum value—the highest-
numbered entry in the TLB—on reset, and it decrements every clock period
until it reaches a floor value, when it wraps back to its maximum and starts
again.

TLB entries from 0 upward whose index is less than the floor value are
therefore immune from random replacement, and an OS can use those slots
for permanent translation entries—they are referred to as wired in MIPS OS
documentation. The Wired register allows you to specify that floor and thus to
determine the number of wired entries. When you write Wired, the Random
register is reset to point to the top of the TLB.

6.2.4 Page-Table Access Helpers—Context and XContext

When the CPU takes an exception because a translation isn’t in the TLB, the
virtual address whose translation wasn’t available is already in BadVAddr. The
page-resolution address is also reflected in EntryHi(VPN2), which is thereby
preset to exactly the value needed to create a new entry to translate the missed
address.

But to further speed the processing of this exception, the Context or
XContext register repackages the page-resolution address in a format that can
act as a ready-made pointer to a memory-based page table.

MIPS32 CPUs have just the Context register, which helps out the TLB
refill process for 32-bit virtual address spaces; MIPS64 CPUs add the XContext
register, to be used when using a larger address space (up to 40 bits).

The registers (both MIPS32 and MIPS64 versions) are shown in Figure 6.4.
Note that XContext is the only register in which the MIPS64 defi-

nition does not exactly define field boundaries: the XContext(BadVPN2)
field grows on CPUs supporting virtual address regions bigger than 240

bits and pushes the R and PTEBase fields left (the latter is squashed to fit).

2. Ancient R2000-compatible CPUs had a different register layout, with the index offset, starting
from bit 8 upward. You’re unlikely to meet one of those.
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31 23 22 4 3 0

Context (MIPS32) PTEBase BadVPN2 0

63 23 22 4 3 0

Context (MIPS64) PTEBase BadVPN2 0

63 33 32 31 30 4 3  0

XContext PTEBase R BadVPN2 0

FIGURE 6.4 Fields in the MIPS32 and MIPS64 Context registers.

Section 6.2.1, which describes Figure 6.2, explains how to find out how
many bits are used in your CPU. The fields are:

Context(PTEBase): This field just stores what you put in it. To exploit
the register as its designers intended, write in the high-order bits of an
(appropriately aligned) starting address of a memory-resident page
table. The starting address must be picked to have zeros in bits 22 and
downward—that’s a 4-MB boundary. While it would be grossly ineffi-
cient to provide that alignment in physical or unmapped memory, the
intention is that this table should be put in the kseg2 mapped region.
See below for how this works.

Context(BadVPN2)/XContext(BadVPN2): Following a TLB-related
exception, this holds the page address, which is just the high-order bits
of BadVAddr.

Why the “2” in the name? Recall that in the MIPS32/MIPS64 TLB, each
entry maps an adjacent pair of virtual-address pages onto two independ-
ent physical pages.

The BadVPN2 value starts at bit 4, so as to precalculate a pointer into
a table of 16-byte entries whose base address is in PTEBase. If the OS
maintains this table so that the entry implicitly accessed by a particu-
lar virtual page address contains exactly the right EntryLo0-1 data to
create a TLB entry translating that page, then you minimize the work a
TLB miss exception handler has to carry out; you can see that in
section 6.5. If you’re only translating 32-bit addresses and don’t need too
many bits of software-only state in the page table, you could get by with
an eight-byte page-table entry. This turns out to be one of the reasons
why Linux doesn’t use the Context registers in the prescribed manner.

The XContext(BadVPN2) field may be larger than is shown in
Figure 6.4 if your CPU can handle more than 240 bits of user virtual
address space. When that happens, the R and PTEBase fields are pushed
along to make space.



140 Chapter 6—Low-level Memory Management and the TLB

XContext(PTEBase): The page table base for 64-bit address regions
must be aligned so that all the bits below those specified by XContext
(PTEBase) are zero: That’s 8 GB aligned. That sounds intolerable, but
there is a suitable large, mapped, kernel-only-accessible region (“xkseg”)
in the basic MIPS64 memory map.

XContext(R): TLB misses can come from any mapped region of the
CPU’s memory map, not just from user space. All regions lie within one
overarching 64-bit space, but are much smaller than is required to pack
it full (you might like to refer to Figure 2.2 in section 2.8). Usable 64-bit
virtual addresses are divided into four “xk. . . ” segments within which
you can use a 62-bit in-segment address.

So as to save space in XContext, the miss address as shown here is kept as
a separate 40-bit in-region page address (BadVPN2) and a 2-bit mapped-
region selector XContext(R), defined as follows:

R Region
value name Brief description

0 xuseg User-mode accessible space in low
virtual memory

1 xsseg Supervisor-mode accessible space
(supervisor mode is optional)

2 Would correspond to unmapped
segments, not used

3 xkseg Kernel-mode mapped space
(including old kseg2)

Note that not all operating systems use Context/XContext as originally
envisaged—notably, Linux doesn’t. We’ll discuss why later.

6.3 TLB/MMU Control Instructions

The instructions:

tlbr # read TLB entry at index
tlbwi # write TLB entry at index

move MMU data between the TLB entry selected by the Index register and the
EntryHi and EntryLo0-1 registers.

You won’t often read a TLB entry; when you do, remember that you’ll have
overwritten the EntryHi(ASID) field, which the OS should maintain to select
the address space of the currently running process. So put it back again.
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The instruction:

tlbwr # write TLB entry selected by Random

copies the contents of EntryHi (including its ASID field, of course), EntryLo,
and PageMask into the TLB entry indexed by the Random register—this saves
time if you are adopting a random replacement policy. In practice, tlbwr will
be used to write a new TLB entry in a TLB refill exception handler, but tlbwi
will be used anywhere else.

The instruction:

tlbp # TLB lookup

searches the TLB for an entry whose virtual page number and ASID matches
those currently in EntryHi and stores the index of that entry in the Index
register. Bit 31 of Index is set if nothing matches—this makes the value look
negative, which is easy to test.

If more than one entry matches, anything might happen. This is a horrible
error and is never supposed to happen: Software should be very careful never
to install a second translation for any address.

Note that tlbp does not fetch data from the TLB; you have to run a
subsequent tlbr instruction to do that.

In most CPUs the TLB is internally pipelined so that translation can proceed
efficiently. Management/diagnostic operations like this may not be able to fit in
with the standard pipeline flow, so there may be hazards if instructions using
translated addresses are run too soon after TLB maintenance instructions. See
section 3.4 on CP0 hazards, but to avoid tricky corner cases you normally per-
form TLB maintenance with software executed in an untranslated region such
as kseg0.

6.4 Programming the TLB

TLB entries are set up by writing the required fields into EntryHi and
EntryLo, then using a tlbwr or tlbwi instruction to copy that entry into
the TLB proper.

When you are handling a TLB refill exception, you will find that EntryHi
has been set up for you already.

Be very careful not to create two entries that will match the same program
address/ASID pair. If the TLB contains duplicate entries, an attempt to translate
such an address, or probe for it, has the potential to damage the CPU chip. Some
CPUs protect themselves in these circumstances by a TLB shutdown, which
shows up as the SR(TS) bit being set. The TLB will now match nothing until a
hardware reset.
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System software often won’t need to read TLB entries at all. But if you
need to read them, you can find the TLB entry matching some particular
program address using tlbp to set up the Index register. Don’t forget to
save EntryHi and restore it afterward—the EntryHi(ASID) field is likely
to be important.

Use a tlbr to read the TLB entry into EntryHi and EntryLo0-1.
You’ll see references in the CPU documentation to separate “ITLB” and

“DTLB” (or sometimes collectively “uTLB”—the “u” is for “micro”) structures.
The micro-TLBs perform translation for instruction and data addresses, respec-
tively; these are tiny hardware-managed caches of translations, whose opera-
tion is completely transparent to software—they are automatically invalidated
whenever you write an entry to the main TLB.

6.4.1 How Refill Happens

When a program makes an access in any of the translated address regions
(normally kuseg for application programs under a protected OS and kseg2 for
kernel-privilege mappings), and no translation record is present, the CPU takes
a TLB refill exception.

The TLB can only map a fraction of the physical memory range of a modern
server or workstation. Large OSs maintain some kind of memory-held page
table that holds a large number of page translations and uses the TLB as a cache
of recently used translations. For efficiency, it’s common to arrange that the
page table will be an array of ready-to-use TLB entries; for even more efficiency,
you can set locate and structure the table so that you can use the Context or
XContext register as a pointer into it.

Since MIPS systems usually run OS code in the untranslated kseg0 memory
region, the common situation will be a miss by a user-privilege program. Several
hardwarefeaturesareprovided,withtheaimofspeedinguptheexceptionhandler
in this common case. First, these refill exceptions are vectored through a low-
memory address used for no other exception.3 Second, a series of cunning tricks
allows the memory-held page table to be located in kernel virtual memory (the
kseg2 region or its 64-bit alternative) so that physical memory space is not needed
for the parts of the page table that map “holes” in the process’s address map.

And to top it off, the Context or XContext register can be used to give
immediate access to the right entry from a memory-held page table.

We’ll work through this process in section 6.5. But before we get too far into
it, we should note that use of all these features is not compulsory. In a smaller
system the TLB can be used to produce a fixed or rarely changing translation
from program (virtual) to physical addresses; in these cases it won’t even need
to be a cache.

Even some big virtual memory OSs implemented for MIPS have not used
the “standard” page table—notably Linux. It would be quite against the spirit of

3. On the original MIPS architecture, this is the only event deemed worthy of its own entry point.
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the way the Linux kernel uses memory, because the Linux kernel address map
is the same for all processes. See section 14.4.8 for how it’s done.

6.4.2 Using ASIDs

By setting up TLB entries with a particular ASID setting and with the Entry
Lo0-1(G) bit set 0, those entries will only ever be used when the CPU’s then-
current EntryHi(ASID) register field matches the TLB entry’s value. Since
EntryHi (ASID) is an 8-bit field, that allows you to map up to 256 different
address spaces simultaneously, without requiring that you clear out the TLB on
a context change. If you do run out of ASIDs, you will have to pick some process
that you can completely throw out of the TLB. Once you’ve discarded all its
mappings, you can revoke its ASID value and reapply to some other process.

6.4.3 The Random Register and Wired Entries

The hardware offers you no way of finding out which TLB entries have been
used most recently. When you are using the TLB as a cache and you need to
install a new mapping, the only practicable strategy is to replace an entry at
random. The CPU makes this easy for you by maintaining the Random register,
which counts (down, actually) with every processor cycle.

Random replacement sounds horribly inefficient; you may end up discard-
ing the translation entry that has been in heaviest use recently and that will
almost certainly be needed again very soon. But in fact this doesn’t happen so
often as to be a real problem when you have a reasonable number of possible
victims to choose from.

However, it can be very useful to have some TLB entries that are guaranteed
to stay there until you choose to remove them. These may be useful to map
pages that you know will be required very often, but they are really important
because they allow you to map pages and guarantee that no refill exception will
be generated on them.

The stable TLB entries are described as wired: They’re the entries whose
index is lower than whatever value you programmed into the Wired regis-
ter. The TLB itself does nothing special about these entries; the magic is in the
Random register, which never takes values 0 through “wired-1”; it counts down
but then steps directly from “wired” to its maximum value. So conventional
random replacement leaves TLB entries 0 through “wired-1” unaffected, and
entries written there will stay until explicitly removed.

6.5 Hardware-Friendly Page Tables and Refill Mechanism

There’s a particular translation mechanism that the MIPS architects undoubt-
edly had in mind for user addresses in a UNIX-like OS. It relies upon building a
page table in memory for each address space. The page table consists of a linear
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array of entries, indexed by the VPN, whose format is matched to the bitfields
of the EntryLo register. The paired TLBs need 2 × 64-bit entries, 16 bytes per
entry.

That minimizes the load on the critical refill exception handler but opens
up other problems. Since each 8 KB of user address space takes 16 bytes of table
space, the entire 2 GB of user space needs a 4-MB table, which is an embarrass-
ingly large chunk of data.4 Of course, most user address spaces are only filled
at the bottom (with code and data) and at the top (with a downward growing
stack) with a huge gap in between. The solution MIPS adopted is inspired by
DEC’s VAX architecture, and is to locate the page table itself in virtual memory
in a kernel-mapped (kseg2 or xkseg) region. This neatly solves two problems at
once:

It saves physical memory: Since the unused gap in the middle of the
page table will never be referenced, no physical memory need actually
be allocated for those entries.

It provides an easy mechanism for remapping a new user page table when
changing context, without having to find enough virtual addresses in the
OS to map all the page tables at once. Instead, you have a different ker-
nel memory map for each different address space, and when you change
the ASID value, the kseg2 pointer to the page table is now automatically
remapped onto the correct page table. It’s nearly magic.

The MIPS architecture supports this kind of linear page table in the form of
the Context register (or XContext for extended addressing in 64-bit CPUs).

If you make your page table start at a 4-MB boundary (since it is in virtual
memory, any gap created won’t use up physical memory space) and set up the
Context PTEBase field with the high-order bits of the page table starting the
address, then, following a user refill exception, the Context register will con-
tain the address of the entry you need for the refill with no further calculation
needed.

So far so good: But this scheme seems to lead to a fatal vicious circle, where
a TLB refill exception handler may itself get a TLB refill exception, because the
kseg2 mapping for the page table isn’t in the TLB. But we can fix that, too.

If a nested TLB refill exception happens, it happens with the CPU already in
exception mode. In MIPS CPUs, a TLB refill from exception mode is directed to
the general exception entry point, where it will be detected and can be handled
specially.

Moreover, an exception from exception mode behaves strangely: It does not
change the restart locationEPC, so when the “inner” exception returns, it returns
straight to the nonexception TLB miss point. It’s rather as if the hardware

4. And of course this is for a 32-bit virtual address space; 64-bit CPUs using larger address spaces
need vast tables.
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started processing one exception, then changed its mind and processed another:
but the second exception is no longer nested, it has usurped the first one. We’ll
see how that works when we look at an example.

6.5.1 TLB Miss Handling

A TLB miss exception always uses a dedicated entry point unless the CPU is
already handling an exception—that is, unless SR(EXL) is set.

Here is the code for a TLB miss handler for a MIPS32 CPU (or a MIPS64
CPU handling translations for a 32-bit address space):

.set noreorder

.set noat
TLBmiss32:

mfc0 k1,C0_CONTEXT # (1)
lw k0,0(k1) # (2)
lw k1,8(k1) # (3)
mtc0 k0,C0_ENTRYLO0 # (4)
mtc0 k1,C0_ENTRYLO1 # (5)
ehb # (6)
tlbwr # (7)
eret # (8)
.set at
.set reorder

Following is a line-by-line analysis of the code:

(1) The k0-1 general-purpose registers are conventionally reserved for the
use of low-level exception handlers; we can just go ahead and use them.

(2–5) There are a pair of physical-side (EntryLo) descriptions in each
TLB entry (you might like to glance back at the TLB entry diagram,
Figure 6.1). The layout of the MIPS32/64 Context register shown
in Figure 6.4 reserves 16 bytes for each paired entry (eight bytes of
space for each physical page), even though MIPS32’s EntryLo0-1
are 32-bit registers. This is for compatibility with the 64-bit page
table and to provide some spare fields in the page table to keep
software-only information.

Interleaving thelw/mtc0 sequences here will save time: Few MIPS CPUs
can keep going without pause if you use loaded data in the very next
instruction.

These loads are vulnerable to a nested TLB miss if the kseg2 address’s
translation is not in the page table. We’ll talk about that later.
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(6) It’s no good writing the entry with tlbwr until it will get the right data
from EntryLo1. The MIPS32 architecture does not guarantee this will
be ready for the immediately following instruction, but it does guaran-
tee that the sequence will be safe if the instructions are separated by an
ehb (execution hazard barrier) instruction—see section 3.4 for more
information about hazard barriers.

(7) This is random replacement of a translation pair as discussed.

(8) MIPS32 (and all MIPS CPUs later than MIPS I) have the eret instruc-
tion, which returns from the exception to the address in EPC and unsets
SR(EXL).

So what happens when you get another TLB miss? The miss from excep-
tion level invokes not the special high-speed handler but the general-purpose
exception entry point. We’re already in exception mode, so we don’t alter the
exception return register EPC.

The Cause register and the address-exception registers (BadVAddr,
EntryHi, and even Context and XContext) will relate to the TLB miss
on the page table address in kseg2. But EPC still points back at the instruction
that caused the original TLB miss.

The exception handler will fix up the kseg2 page table miss (so long as this
was a legal address) and the general exception handler will return into the user
program. Of course, we haven’t done anything about the translation for the
user address that originally caused the user-space TLB miss, so it will immedi-
ately miss again. But the second time around, the page table translation will be
available and the user miss handler will complete successfully. Neat.

6.5.2 XTLB Miss Handler

MIPS64 CPUs have two special entry points. One—shared with MIPS32
CPUs—is used to handle translations for processes using only 32 bits of address
space; an additional entry point is provided for programs marked as using the
bigger address spaces available with 64-bit pointers.

The status register has three fields, SR(UX), SR(SX), and SR(KX), that
select which exception handler to use based on the CPU privilege level at the
time of the failed translation.5

With the appropriate status bit set (SR(UX) for user mode), a TLB miss
exception uses a different vector, where we should have a routine that will reload
translations for a huge address space. The handler code (of an XTLB miss han-
dler for a CPU with 64-bit address space) looks much like the 32-bit version,

5. SR(UX) doubles up as something of a “64-bit mode” bit for user programs; when it’s zero, 64-bit
integer instructions are not available to a user program. But SR(SX,KX) are used only to select
the TLB refill routine.
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except for the 64-bit-wide registers and the use of the XContext register in
place of Context:

.set noreorder

.set noat
TLBmissR4K:

dmfc0 k1,C0_XCONTEXT
ld k0,0(k1)
ld k1,8(k1)
dmtc0 k0,C0_ENTRYLO0
dmtc0 k1,C0_ENTRYLO1
ehb
tlbwr
eret
.set at
.set reorder

Note, though, that the resulting page table structure in kernel virtual
memory is far bigger and will undoubtedly be in the giant xkseg region.

I should remind you again that this system is not compulsory, and in
fact is not used by the MIPS version of Linux (which is overwhelmingly the
most popular translated-address OS for MIPS applications). It’s a rather deeply
ingrained design choice in the Linux kernel that the kernel’s own code and
data are not remapped by a context switch, but exactly that is required for the
kseg2/xkseg page table trick described here. See section 14.4.8 for how
it’s done.

6.6 Everyday Use of the MIPS TLB

If you’re using a full-scale OS like Linux, then it will use the TLB behind your
back, and you’ll rarely notice. With a less ambitious OS or runtime system, you
may wonder whether it’s useful. But, because the MIPS TLB provides a general-
purpose address translation service, there are a number of ways you might take
advantage of it.

The TLB mechanism permits you to translate addresses (at page granular-
ity) from any mapped address to any physical address and therefore to relo-
cate regions of program space to any location in your machine’s address map.
There’s no need to support a TLB refill exception or a separate memory-held
page table if your mapping requirements are modest enough that you can
accommodate all the translations you need in the TLB.

The TLB also allows you to define some address as temporarily or per-
manently unavailable, so that accesses to those locations will cause an excep-
tion that can be used to run some operating system service routine. By using
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user-privilege programs you can give some software access only to those
addresses you want it to have, and by using address space IDs in the trans-
lation entries, you can efficiently manage multiple mutually inaccessible user
programs. You can write-protect some parts of memory.

The applications for this are endless, but here’s a list to indicate the
range:

Accessing inconvenient physical address ranges: Hardware registers for
a MIPS system are most conveniently located in the physical address
range 0–512 MB, where you can access them with a corresponding
pointer from the kseg1 region. But where the hardware can’t stay
within this desirable area, you can map an arbitrary page of higher
physical memory into a convenient mapped area, such as kseg2. The
TLB flags for this translation should be set to ensure uncached access,
but then the program can be written exactly as though the address
was in the convenient place.

Memory resources for an exception routine: Suppose you’d like to run an
exception handler without using the reserved k0/k1 registers to save
context. If so, you’d have trouble, because a MIPS CPU normally has
nowhere to save any registers without overwriting at least one of these.

You can do loads or stores using the zero register as a base address,
but with a positive offset these addresses are located in the first 32 KB
of kuseg, and with a negative offset they are located in the last 32 KB
of kseg2. Without the TLB, these go nowhere. With the TLB, you
could map one or more pages in this region into read/write mem-
ory and then use zero-based stores to save context and rescue your
exception handler.

Extendable stacks and heaps in a non-VM system: Even when you don’t
have a disk and have no intention of supporting full demand paging, it
can still be useful to grow an application’s stack and heap on demand
while monitoring its growth. In this case you’ll need the TLB to map
the stack/heap addresses, and you’ll use TLB miss events to decide
whether to allocate more memory or whether the application is out
of control.

Emulating hardware: If you have hardware that is sometimes present and
sometimes not, then accessing registers through a mapped region can
connect directly to the hardware in properly equipped systems and
invoke a software handler on others.

The main idea is that the TLB, with all the ingenuity of a specification that
fits so well into a big OS, is a useful, straightforward general resource for
programmers.
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6.7 Memory Management in a Simpler OS

An OS designed for use off the desktop is generally called a real-time OS
(RTOS), hijacking a term that once meant something about real time.6 The
UNIX-like system outlined in the first part of this chapter has all the elements
you’re likely to find in a smaller OS, but many RTOSs are much simpler.

Some OS products you might meet up with are VxWorks from Wind River
Systems, Thread/X from Express Logic, and Nucleus from Mentor (following
their acquisition of Accelerated Technology). All provide multiple threads run-
ning in a single address space. There is no task-to-task protection—software
running on these is assumed to be a single tightly integrated application. In
many cases the OS run time is really quite small, and much of the supplier’s
effort is devoted to providing developers with build, debug, and profiling
tools.

The jury is still out on whether it’s worth using a more sophisticated OS
such as Linux for many different kinds of embedded systems. You get a richer
programming environment, task-to-task protection that can be very valuable
when integrating a system, and probably cleaner interfaces. Is that worth devot-
ing extra memory and CPU power to, and losing a degree of control over timing,
for the benefits of the cleverer system? Builders of TV set-top boxes, DVD play-
ers, and domestic network routers have found Linux worthwhile: Other systems
(not necessarily of very different complexity) are still habitually using simpler
systems.

And of course Linux is open source. Sometimes it’s just good that there are
no license fees; perhaps, more importantly, if your system doesn’t work because
of an OS bug, open source means you can fix it yourself or commission any of
a number of experts to fix it for you—right away. It’s paradoxical, but the more
successful a commercial OS becomes, the harder it is to find someone to fix it
on a reasonable schedule.

But for now, as a developer, you may be faced with almost anything.
When you’re trying to understand a new memory management system, the
first thing is to figure out the memory maps, both the virtual map pre-
sented to application software and the physical map of the system. It’s the
simple-minded virtual address map that makes UNIX memory management
relatively straightforward to describe. But operating systems targeted at
embedded applications do not usually have their roots in hardware with
memory management, and the process memory map often has the fossils
of unmapped memory maps hidden inside it. The use of a pencil, paper,
and patience will sort it out.

6. Real “real-time” involves programming to deadlines and is hard and interesting but very much
a minority pursuit.
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Chapter

7 Floating-Point Support

In 1987, the MIPS FPU set a new benchmark for microprocessor math
performance in affordable workstations. Unlike the CPU, which was mostly

a rather straightforward implementation relying on its basic architecture for its
performance, the FPU was a heroic silicon design bristling with innovation and
ingenuity.

Later on, the MIPS FPU was pulled onward by Silicon Graphics’s need for
math performance that would once have been the preserve of supercomputers.
The use of floating-point computations in embedded systems has grown fairly
slowly; but the trend toward FP is a classic trade-off of clever hardware that
makes software simpler and more maintainable, and that trade-off (over time)
only goes one way. Some day all “main application” processors will require
floating point.

7.1 A Basic Description of Floating Point

Floating-point math retains a great deal of mystery. You probably have a very
clear idea of what it is for, but you may be hazy about the details. This section
describes the various components of the data and what they mean. In so doing
we are bound to tell most of you things you already know; please skip ahead but
keep an eye on the text!

People who deal with numbers that may be very large or very small are used
to using exponential (scientific) notation; for example, the distance from the
earth to the sun is:

93 × 106 miles

The number is defined by 93, the mantissa, and 6, the exponent.
The same distance can be written:

9.3 × 107 miles

151
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Numerical analysts like to use the second form; a decimal exponent with a
mantissa between 1.0 and 9.999. . . is called normalized.1 The normalized form is
useful for computer representation, since we don’t have to keep separate infor-
mation about the position of the decimal point.

Computer-held floating-point numbers are an exponential form, but in base
2 instead of base 10. Both mantissa and exponent are held as binary fields. Just
changing the exponent into a power of 2, the distance quoted above is:

1.38580799102783203125 × 226 miles

The mantissa can be expressed as a binary “decimal,” which is just like a real
decimal; for example:

1.38580799102783203125 = 1 + 3 × 1

10
+ 8 × 1

100
+ 5 × 1

1000
+ · · ·

is the same value as binary:

1.01100010110001000101 = 1 + 0 × 1

2
+ 1 × 1

4
+ 1 × 1

8
+ · · ·

However, neither the mantissa nor the exponent are stored just like this in
standard formats—and to understand why, we need to review a little history.

7.2 The IEEE 754 Standard and Its Background

Because floating point deals with the approximate representations of numbers
(in the same way as decimals do), computer implementations used to differ
in the details of their behavior with regard to very small or large numbers.
This meant that numerical routines, identically coded, might behave differently.
In some sense these differences shouldn’t have mattered: You only got differ-
ent answers in circumstances where no implementation could really produce a
“correct” answer.

The use of calculators shows the irritating consequences of this: If you take
the square root of a whole number and square it, you will rarely get back the
whole number you put in, but rather something with lots of nines.

Numerical routines are intrinsically hard to write and hard to prove correct.
Many heavily used functions (common trigonometric operations, for example)
are calculated by repeated approximation. Such a routine might reliably con-
verge to the correct result on one CPU and loop forever on another when fed a
difficult value.

The ANSI/IEEE 754 Standard—1985 IEEE Standard for Binary Floating
Point Arithmetic (usually referred to simply as IEEE 754)—was introduced to
bring order to this situation. The standard defines exactly which result will be

1. In this form the mantissa may also be called “the fractional part” or “fraction”—it’s certainly
easier to remember.
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produced by a small class of basic operations, even under extreme situations,
ensuring that programmers can obtain identical results from identical inputs
regardless of which machine they are using. Its approach is to require as much
precision as is possible within each supported data format.

Perhaps IEEE 754 has too many options, but it is a huge improvement on the
chaos that motivated it; since it became a real international standard in 1985, it
has become the basis for all new implementations.

The operations regulated by IEEE 754 include every operation that
MIPS FPUs can do in hardware, plus some that must be emulated by software.
IEEE 754 legislates the following:

Rounding and precision of results: Even results of the simplest operations
may not be representable as finite fractions; for example, in decimals:

1

3
= 0.33333 . . .

is infinitely recurring and can’t be written precisely. IEEE 754 allows
the user to choose between four options: round up, round down, round
toward zero, or round to nearest. The rounded result is what would have
been achieved by computing with infinite precision and then rounding.
This would leave an ambiguity in round to nearest when the infinite-
precision result is exactly halfway between two representable forms; the
rules provide that in this case you should pick the value whose least
significant bit is zero.

When is a result exceptional? IEEE 754 has its own meaning for the word
exception. A computation can produce a result that is:

– Nonsense, such as the square root of −1 (“invalid”)

– “Infinite,” resulting from an explicit or implicit division by zero

– Too big to represent (“overflow”)

– So small that its representation becomes problematic and precision is
lost (“underflow”)

– Not perfectly represented, like 1
3 (“inexact”)—needless to say, for

most purposes the nearest approximation is acceptable

All of these are bundled together and described as exceptional results.

Action taken when an operation produces an exception result: For each
class of exceptional results listed above, the user can choose between the
following:

– The user can have the computation interrupted and the user pro-
gram signaled in some OS- and language-dependent manner. Partly
because the standard doesn’t actually define a language binding for
user exceptions, they’re pretty much never used. Some FORTRAN
compiler systems are wired to cause a fatal error invalid or infinite
results.
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– Most often, the user program doesn’t want to know about the IEEE
exception. In this case, the standard specifies which value should then
be produced. Overflows and division by zero generate infinity (with
a positive and negative type); invalid operations generate NaN (not
a number) in two flavors called “quiet” and “signaling.” Very small
numbers get a “denormalized” representation that loses precision and
fades gradually into zero.

The standard also defines the result when operations are carried out
on exceptional values. Infinities and NaNs necessarily produce further
NaNs and infinities, but while a quiet NaN as operand will not trigger
the exception-reporting mechanism, a signaling NaN causes a new
exception whenever it is used.

Most programs leave the IEEE exception reporting off but do rely on the
system producing the correct exceptional values.

7.3 How IEEE Floating-Point Numbers Are Stored

IEEE recommends a number of different binary formats for encoding floating-
point numbers, at several different sizes. But all of them have some common
ingenious features, which are built on the experience of implementers in the
early chaotic years.2

The first thing is that the exponent is not stored as a signed binary number,
but biased so that the exponent field is always positive: The exponent value 1
represents the tiniest (most negative) legitimate exponent value; for the 64-bit
IEEE format the exponent field is 11 bits long and can hold numbers from 0
to 2,047. The exponent values 0 and 2,047 (all ones, in binary) are kept back
for special purposes we’ll come to in a moment, so we can represent a range of
exponents from −1,022 to +1,023.

For a number:
mantissa × 2exponent

we actually store the binary representation of:

exponent + 1,023

in the exponent field.
The biased exponent (together with careful ordering of the fields) has the

useful effect of ensuring that FP comparisons (equality, greater than, less than,
etc.) have the same result as is obtained from comparing two signed integers

2. IEEE 754 is a model of how good standardization should be done; a fair period of chaotic
experimentation allowed identifiably good practice to evolve, and it was then standardized by a
small committee of strong-minded users (numerical programmers in this case), who well under-
stood the technology. However, the ecology of standards committees, while a fascinating study,
is a bit off the point.



7.3 How IEEE Floating-Point Numbers Are Stored 155

composed of the same bits. FP compare operations can therefore be provided
by cheap, fast, and familiar logic.

7.3.1 IEEE Mantissa and Normalization

The IEEE format uses a single sign bit separate from the mantissa (0 for positive,
1 for negative). So the stored mantissa only has to represent positive numbers.
All properly represented numbers in IEEE format are normalized, so:

1 ≤ mantissa < 2

This means that the most significant bit of the mantissa (the single binary digit
before the point) is always a 1, so we don’t actually need to store it. The IEEE
standard calls this the hidden bit.

So now the number 93,000,000, whose normalized representation has a
binary mantissa of 1.01100010110001000101 and a binary exponent of 26, is
represented in IEEE 64-bit format by setting the fields:

mantissafield = 01100010110001000101000 . . .

exponentfield = 1049 = 10000011001

Looking at it the other way, a 64-bit IEEE number with an exponent field
of E and a mantissa field of m represents the number f, where:

f = 1.m × 2E−1023

(provided that you accept that 1.m represents the binary fraction with 1 before
the point and the mantissa field contents after it).

7.3.2 Reserved Exponent Values for Use with Strange Values

The smallest and biggest exponent field values are used to represent otherwise-
illegal quantities.

E == 0 is used to represent zero (with a zero mantissa) and denormalized
forms, for numbers too small to represent in the standard form. The denormal-
ized number with E zero and mantissa m represents f, where:

f = 0.m × 2−1022

As denormalized numbers get smaller, precision is progressively lost. No
MIPS FPU built to date is able to cope with either generating denormalized
results or computing with them, and operations creating or involving them
will be punted to the software exception handler. Modern MIPS FPUs can
be configured to replace a denormalized result with a zero and keep going.
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E == 111. . . 1 (i.e., the binary representation of 2,047 in the 11-bit field used
for an IEEE double) is used to represent the following:

With the mantissa zero, it is the illegal values +inf, −inf (distinguished
by the usual sign bit).

With the mantissa nonzero, it is a NaN. For MIPS, the most signifi-
cant bit of the mantissa determines whether the NaN is quiet (MS bit 0)
or signaling (MS bit 1). This choice is not part of the IEEE standard
and is opposite to the convention used by most other IEEE-compatible
architectures.3

7.3.3 MIPS FP Data Formats

The MIPS architecture uses two FP formats recommended by IEEE 754:

Single precision: These are fitted into 32 bits of storage. Compilers for
MIPS use single precision for float variables.

Double precision: These use 64 bits of storage. C compilers use double
precision for C double types.

The memory and register layout is shown in Figure 7.1, with some examples
of how the data works out. Note that the float representation can’t hold a
number as big as 93,000,000 exactly.

The way that the two words making up a double are ordered in memory
(most significant bits first, or least significant bits first) is dependent on the
CPU’s endianness—discussed to the point of exhaustion in section 10.2. It is
always consistent with the endianness of the integer unit.

The C structure definition below defines the fields of the two FP types for
a MIPS CPU (this works on most MIPS toolchains, but note that, in general,
C structure layout is dependent on a particular compiler and not just on the
target CPU):

#if BYTE_ORDER == BIG_ENDIAN

struct ieee754dp_konst {

unsigned sign:1;

unsigned bexp:11;

unsigned manthi:20; /* cannot get 52 bits into ... */

unsigned mantlo:32; /* ... a regular C bitfield */

};

3. I believe only HP Precision makes the same choice as MIPS, suggesting some intellectual
inheritance. Arbitrary 1/0 choices are the mitochondrial DNA of computer technology.
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SignDouble MantissaExponent
31 30 019 0 3120

High-order word Low-order word

0 000 0001 1010 1011 0001 0110 0010 0010 1000 0000 ....

0 000 0000 0000 0000 0000 0000 0000 0000 0000 ....

0 111 1111 1111 0000 0000 0000 0000 0000 0000 ....

1 111 1111 1111 0000 0000 0000 0000 0000 0000 ....

x 111 1111 1111 0xxx xxxx xxxx xxxx xxxx xxxx ....

x

93000000
0

+Infinity
– Infinity

Quiet NaN
Signaling NaN 111 1111 1111 1xxx xxxx xxxx xxxx xxxx ....

SignSingle MantissaExponent
31 30 02223

0 0001 1010 101 1000 1011 0001 0001

0 0000 0000 000 0000 0000 0000 0000

0 1111 1111 000 0000 0000 0000 0000

1 1111 1111 000 0000 0000 0000 0000

x 1111 1111 0xx xxxx xxxx xxxx xxxx

x

93000000
0

+Infinity
– Infinity

Quiet NaN
Signaling NaN 1111 1111 1xx xxxx xxxx xxxx xxxx

FIGURE 7.1 Floating-point data formats.

struct ieee754sp_konst {

unsigned sign:1;

unsigned bexp:8;

unsigned mant:23;

};

#else /* little-endian */

struct ieee754dp_konst {

unsigned mantlo:32;

unsigned manthi:20;

unsigned bexp:11;

unsigned sign:1;

};

struct ieee754sp_konst {

unsigned mant:23;

unsigned bexp:8;

unsigned sign:1;

};

#endif
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7.4 MIPS Implementation of IEEE 754

IEEE 754 is quite demanding and sets two major problems. First, building in the
ability to detect exceptional results makes pipelining harder. You might want to
do this to implement the IEEE exception signaling mechanism, but the deeper
reason is to be able to detect certain cases where the hardware cannot produce
the correct result and needs help.

If the user opts to be told when an IEEE exceptional result is produced,
then to be useful this should happen synchronously;4 after the trap, the user
will want to see all previous instructions complete and all FP registers still in
the preinstruction state and will want to be sure that no subsequent instruction
has had any effect.

In the MIPS architecture, hardware traps (as noted in section 5.1) were
traditionally like this. This does limit the opportunities for pipelining FP
operations, because you cannot commit the following instruction until the
hardware can be sure that the FP operation will not produce a trap. To avoid
adding to the execution time, an FP operation must decide to trap or not in the
first clock phase after the operands are fetched. For most kinds of exceptional
results, the FPU can guess reliably and stop the pipeline for any calculation that
might trap;5 however, if you configure the FPU to signal IEEE inexact excep-
tional results, all FP pipelining is inhibited and everything slows down. You
probably won’t do that.

The second big problem regarding IEEE 754 is the use of exceptional
results, particularly with denormalized numbers—which are legitimate oper-
ands. Chip designs like the MIPS FPU are highly structured pieces of logic,
and the exceptional results don’t fit in well. Where correct operation is beyond
the hardware, it traps with an unimplemented operation code in the
Cause(ExcCode) field. This immediately makes an exception handler com-
pulsory for FP applications. Modern MIPS CPUs often include one or more
implementation-dependent option bits in the FCSR control/status register,
which you can set when you’re prepared to trade strict IEEE 754 compliance
either for performance or—more likely—to avoid “unimplemented operation”
traps in corner cases.

4. Elsewhere in this book and in the MIPS documentation you will see exactly this condition
referred to as a “precise exception.” But since both “precise” and “exception” are used to mean
different things by the IEEE standard, we will instead talk about a “synchronous trap.” Sorry for
any confusion.

5. Some CPUs may use heuristics for this that sometimes stop the pipeline for an operation that
in the end does not trap; that’s only a performance issue and is not important if they don’t do
it often.
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7.4.1 Need for FP Trap Handler and Emulator in All MIPS CPUs

The MIPS architecture does not prescribe exactly which calculations will be
performed without software intervention. A complete software floating-point
emulator is mandatory for serious FP code.

In practice, the FPU traps only on a very small proportion of the calculations
that your program is likely to produce. Simple uses of floating point are quite
likely never to produce anything that the hardware can’t handle.

A good rule of thumb, which seems to cover the right cases, follows:

MIPS FPUs take the unimplemented trap whenever an operation should
produce any IEEE exception or exceptional result other than inexact and
overflow. For overflow, the hardware will generate an infinity or a largest-
possible value (depending on the current rounding mode). The FPU
hardware will not accept or produce denormalized numbers or NaNs.

MIPS FPUs (other than the very earliest ones) offer you a non-IEEE
optional mode for underflow, where a denormalized (tiny) result can be
automatically written as zero.

The unimplemented trap is a MIPS architecture implementation trick
and is quite different from the IEEE exceptions, which are standardized con-
ditions. You can run a program and ignore IEEE exceptions, and offend-
ing instructions will produce well-defined exceptional values; but you can’t
ignore the unimplemented trap without producing results that are nonsense.

7.5 Floating-Point Registers

MIPS CPUs have 32 floating-point registers, usually referred to as $f0–$f31.
With the exception of some really old (MIPS I) CPUs, each is a 64-bit register
capable of holding a double-precision value.

The very first MIPS CPUs had only 16 registers. Well, in a sense they had
32 32-bit registers, but each even/odd-numbered pair made up a unit for math
(including double-precision math, of course). The odd-numbered registers are
only referenced when doing loads, stores, and moves between floating-point
and integer registers.6 If you tell the assembler you’re building code for an old
CPU, it synthesizes double-width move and load/store operations from a pair
of machine instructions; you need never see the odd-numbered registers when
writing MIPS I–compatible code.

6. It may be worth stressing that the role of the odd-numbered registers is not affected by the
CPU’s endianness.
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TABLE 7.1 FP Register Usage Conventions

ABI

o32 n32 n64

function return values $f0, $f2

argument registers $f12, $f14 $f12–$f19

saved over function call
(suitable for register
variables)

evens $f20–$f30 $f24–$f31

temporaries (not saved
over function call, or
“caller-saved”)

evens $f4–$f10,
$f16, $f18

evens $f4–$f10,
$f16, $f18, all
odds $f1–$f31

$f1, $f3–$f11,
$f20–$f23

MIPS I has been gone a long time, but later CPUs are fitted with a
“compatibility bit” in SR(FR)—leave it zero and you get MIPS I opera-
tion. There is still quite a lot of software out there that works that way.
It seems like a no-brainer to prefer more FP registers—but this is not a
personal choice; you need to check what your compiler will support, and
the entire system (including all libraries and other imported code) needs to
be consistent in its register usage.

It’s also worth pointing out that MIPS FP registers sometimes get used for
storing and manipulating signed integer data (32 or 64 bits). In particular, when
a program does conversion between integer and FP data, those conversion oper-
ations operate entirely within the FPU—integer data in FP registers is converted
to floating-point data in FP registers.

7.5.1 Conventional Names and Uses of Floating-Point Registers

Like the general-purpose registers, the MIPS calling conventions add a whole
bunch of rules about register use that have nothing to do with the hardware;
they tell you which FP registers are used for passing arguments, which register
values are expected to be preserved over function calls, and so on. Table 7.1
shows these for the three most common ABIs. An ABI (Application Binary
Interface) is a comprehensive statement of conventions that allow modules—
perhaps compiled with different toolchains—to be successfully glued together
into a program and run under a conforming operating system. We’ll talk more
about ABIs in section 11.2; for now, it’s enough to say that the o32 convention
is stuck with the 16-register arrangement of old MIPS I CPUs, and the n32 and
n64 conventions (despite the former name) are usable only on 64-bit CPUs.

The division of functions is much the same as for the integer registers,
without the special cases. But it’s much messier, because of the history of non-
existent odd-numbered registers.
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7.6 Floating-Point Exceptions/Interrupts

When a floating-point operation can’t produce the right result, or has been
asked to trap on some or all of the IEEE exceptional results, it takes a MIPS
exception, as described in Chapter 5, and the Cause register descriptions dis-
cussed in section 3.3.2.

The floating-point exceptions are always precise: At the point you arrive
at the exception handler, the exception-causing instruction and any instruc-
tion later in sequence will appear never to have happened. EPC will point to
the correct place to restart the instruction. As described in Chapter 5, EPC will
either point to the offending instruction or to a branch instruction immedi-
ately preceding it. If it is the branch instruction, the status register SR(BD) will
be set.

7.7 Floating-Point Control: The Control/Status Register

Information about the FPU hardware and the controls to change optional
behavior are provided as coprocessor control registers, accessed with ctc1 and
cfc1 instructions, which move data to and from the control registers, respec-
tively (into and out of GP registers, of course).

TABLE 7.2 FP Control Register Summary

Conventional
name

CP1 ctrl
reg No.

Description

FCSR 31 Extensive control register—the only FPU control register on historical
MIPS CPUs. Contains all the control bits. But, in practice, some of
them are more conveniently accessed through FCCR, FEXR, and FENR;
see below.

FIR 0 FP implementation register: read-only information about the
capability of this FPU, described in the next section.

FCCR 25

FEXR 26

FENR 28

These partial views of FCSR are better structured and allow you to
update fields without interfering with the operation of independent
bits. However, they’re unlikely to be available on any CPU not
claiming full compliance with MIPS32/64.
FCCR has FP condition codes, FEXR contains the IEEE exceptional-
condition information (cause and flag bits) you read, and FENR has
the (writable) IEEE exceptional-condition enables.



162 Chapter 7—Floating-Point Support

The most commonly seen of them, the floating-point control/status register
FCSR,7 brings together informational and control fields relating to user options
about floating-point operations. Information about the capabilities of the hard-
ware and who built it are found in the implementation/revision register FCR0,
described in the next section.

Using FCSR had become a bit of a nightmare because of the mix of readable
and writable fields: So in MIPS32/64 CPUs there are three auxiliary registers
providing more digestible views: FCCR, FEXR, and FENR.

That makes a fair number of registers, so refer to Table 7.2.
The following are notes regarding Figure 7.2. The field marked 0 will read,

and should be written, as zero.

FCC7-1, FCC0: These are condition bits, set by FP compare instruc-
tions and tested by conditional branches. FCC0 was there first and used
to be called FCSR(C)—but all modern MIPS FPUs provide all 8 bits.
The FCCR register—if your CPU provides it—does you the service of
bringing all the condition bits together.

Note that here, as elsewhere, the floating-point implementation cuts
across the RISC principles we talked about in Chapter 1. There are a
number of reasons for this:

– The original FPU was a separate chip. The conditional branches that
tested FP conditions had to execute inside the integer unit (it was
responsible for finding the address of the branch target), so they were
remote from the FP registers. A single condition bit corresponds to a
single hardware signal.

31 25 24 23 22 21 20 18 17 16 12 11 7 6  2 1 0

FCSR FCC7-1 FS FO FN 0 E Cause RM

31 18 17 16 12 11 7 6  2 1 0

FEXR 0 E Cause 0 0

31 12 11 7 6 3 2 1 0

FENR 0 0 FS RM

31 8 7 0

FCCR 0 FCC7- 0

FCC0 Enables

Enables

Flags

Flags

FIGURE 7.2 FPU control/status register fields.

7. In times past FCSR was referred to as FCR31, but I prefer the mnemonic acronym.
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– FP operations are just too computationally demanding to be carried
out in one clock cycle, so the kind of simple pipeline that works so
well on the integer side won’t deliver the best performance.

Both branch and test instructions have an additional 3-bit field that
specifies which of 8 possible condition bits they will set or test. On a
MIPS III or earlier CPU, there was only one condition bit, and all such
fields will be zero. The extra condition bits are valuable for software-
pipelining conditional FP code; see section 8.5.7.

FS/FO/FN: These settings affect how the CPU behaves in the face of a
number too small for the standard floating-point representation (a
denormalized number). If you set any of them, your system is no longer
IEEE754-compliant, but you will avoid some “unimplemented” traps.

If your CPU is MIPS32/64-compliant, it will have all of these. If not, it will
implement FS, but you should check your CPU manual for the others.

FS (flush to zero) causes a result that would be too small for the standard
representation (a denormalized result) to be quietly replaced with zero.
Since no known MIPS FPU hardware can generate the right answer for
you, this avoids a (slow) trap to emulation software.

FO (flush override) in conjunction with FS detects denormalized oper-
ands and internally replaces them with zero. Setting FS alone will not
avoid a trap if the inputs are denormalized.

FN (flush to nearest) in conjunction with FS, improves accuracy some-
what by forcing denormalized numbers to the closest normalized value
(which will sometimes be the smallest representable number, instead of
zero).

E: Following an FPU trap, this bit will be set to mark an unimplemented
instruction exception.8

This bit will be set and an interrupt raised whenever there really is no
instruction like this that the FPU will perform (but the instruction is a
coprocessor 1 encoding) or whenever the FPU is not confident that it
can produce an IEEE 754 correct result and/or exception signaling on
this operation, using these operands.

For whatever reason, when E is set, you should arrange for the offending
instruction to be re-executed by a software emulator.

Any FPU operation that takes an “unimplemented” exception will leave
the destination register unaffected and the FP Cause bits undefined.

Cause/Enables/Flags: Each of these is a 5-bit field, one bit for each
IEEE exception type:

V bit 4 Invalid operation (e.g., square root of –1)

Z bit 3 Divide by zero

8. The MIPS documentation looks slightly different because it treats this as part of the Cause field.
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O bit 2 Overflow, result is too large to represent

U bit 1 Underflow, result is too small to represent

I bit 0 Inexact (rarely used—even 1/div 3 is inexact in binary)

The three different fields work as follows:

– Cause: Bits are set (by hardware or emulation software) according
to the result of the last completed FP instruction. It’s easiest to read
them in FEXR.

– Enables: If one of these bits is set when an operation produces an
exceptional result that would have set the corresponding Cause bit,
then the CPU will trap so that software can do whatever is necessary
to report the exceptional result. You can set up these bits in either
FCSR or FENR.

– Flags: Bits are “sticky” versions of the Cause bits and are the logical
“or” of the exceptional results that have occurred since the register
was last cleared. The Flags bits can only be zeroed again by writing
FCSR or FEXR.

RM (rounding mode): This is required by IEEE 754. The values are as
shown in Table 7.3.

Most systems define RN as the default behavior. You’ll probably never
use anything else.

The architecture promises you that if an operation doesn’t set the FCSR(E)
bit but does set one of the Cause bits, then both the Cause bit setting and the
result produced (if the corresponding Enable bit is off) are in accordance with
the IEEE 754 Standard.

TABLE 7.3 Rounding Modes Encoded in FP Control Registers

RM value Description

0 RN (round to nearest): Round a result to the nearest
representable value; if the result is exactly halfway between
two representable values, round to zero.

1 RZ (round toward zero): Round a result to the closest
representable value whose absolute value is less than or
equal to the infinitely accurate result.

2 RP (round up, or toward +infinity): Round a result to the
next representable value up.

3 RN (round down, or toward −infinity): Round a result to
the next representable value down.
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MIPS FPUs rely on software emulation (i.e., use the unimplemented trap)
for several purposes:

Any operation that is given a denormalized operand or underflows (pro-
duces a denormalized result) will trap to the emulator. The emulator
itself must test whether the enable underflow bit is set and either cause
an IEEE-compliant exception or produce the correct result.

Operations that should produce the invalid trap are correctly identi-
fied, so if the IEEE exception is enabled, the emulator need do noth-
ing. But if the IEEE invalid exception is disabled, the software emulator
is invoked, because the hardware is unable to generate the appropriate
result (usually a quiet NaN).

Exactly the same is done with a signaling NaN operand.

Most FP hardware can handle overflow on regular arithmetic (produc-
ing either the extreme finite value or a signed infinity, depending on the
rounding mode). But the software emulator is needed to implement a
convert-to-integer operation that overflows.

The Cause bits are undefined after an unimplemented operation traps to
the emulator.

It is normal practice to provide a full emulator (capable of delivering IEEE-
compatible arithmetic on a CPU with no FPU fitted) to back up the FPU hard-
ware. If your system provides less than this, it is hard to figure out where it’s
safe to leave functions out.

7.8 Floating-Point Implementation Register

Consult the read-only FIR register after you check Config1(FP) to find out
whether you really have a floating-point unit: FIR’s fields show you what it can
do, and (occasionally) what revision it is—see Figure 7.3.

Then the fields are:

FC (full convert range): The hardware will complete any conversion
operation (between floating-point types or between floating-point and

31 25 24 23 22 21 20 19 18 17 16 15 8 7 0

FIR 0 FC 0 F64 L W 3D P S S ProcessorID RevisionD

FIGURE 7.3 FPU implementation/revision register.
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integer types) without running out of bits and causing an “unimple-
mented” exception.

F64: This indicates that there are 32 full double-precision FP registers—
that is, this is not an old MIPS I style floating-point unit.

L/W/D/S: Individual bit flags show whether this CPU implements 64-bit
integer (L), 32-bit integer (W), 64-bit FP double (D), and 32-bit FP single
(S) operations. If it doesn’t run all of these, you’re going to need some
unusual software support.

3D/PS: Indicate the availability of two optional instruction set exten-
sions. PS means you have paired-single SIMD versions of all arithmetic
operations, marked with a .ps suffix: Each does two operations simul-
taneously on a pair of single-precision values packed into a register. See
section 7.10.

3D indicates that you have the MIPS-3D instruction set extension avail-
able to you. This is a small extension and only useful if you already have
paired-single, so it’s also described in section 7.10.

ProcessorID: Typically this returns the same value as the integer-side
processor ID in the coprocessor zero PRId register. Perhaps more
usefully, it should only ever read nonzero if there really is FPU hard-
ware available to your program. Before you read it or succeed in run-
ning any floating-point operation, you or your OS needs to switch on
the “coprocessor 1” enable SR(CU1) in the CP0 “status” register.

Revision: This field is at the whim of implementers; it is probably
useful to make this field visible to commissioning or test engineers, and
you might test it when implementing some bug workaround. Otherwise,
software should studiously ignore it.

7.9 Guide to FP Instructions

This section mentions all standard FP instructions, categorized by their
function. Optional instructions in the “paired-single” and MIPS-3D extensions
are in the next section.

FP instructions are listed in mnemonic order in Table 8.4, and their binary
encodings are listed with all other MIPS instructions in Table 8.6.

We’ve divided the instructions up into the following categories:

Load/store: Moving data directly between FP registers and memory.

Move between registers: Data movement between FP and general-purpose
registers.

Three-operand arithmetic operations: The regular add, multiply, and so on.
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Multiply-add operations: Fancy (and distinctly non-RISC) high-
performance instructions, not available in MIPS III and earlier.

Sign changing: Simple operations, separated out because their dumb
implementation means no IEEE exceptions.

Conversion operations: Conversion between single, double, and integer
values.

Conditional branch and test instructions: Where the FP unit meets the
integer pipeline again.

7.9.1 Load/Store

These operations load or store 32 or 64 bits of memory in or out of an FP
register. On loads and stores, note the following points:

The data is unconverted and uninspected, so no FP exception will occur
even if it does not represent a valid FP value.

MIPS I style 32-bit FPUs only do math operations on the even-numbered
registers. Load/store of an odd-numbered register gives you access to the
other half of 64-bit values.

MIPS I and MIPS II CPUs are permitted to take an extra clock before
FP load data is valid; they are not allowed to interlock any use of that
data (the same rule applies to data being loaded into general-purpose
registers). The compiler and/or assembler will usually take care of this for
you, but on these old CPUs it is invalid for an FP load to be immediately
followed by an instruction using the loaded value.

When writing assembly, the “synthetic” form of the instruction
(e.g.,l.d) is preferred to the native machine instructionldc1); the “syn-
thetic” form is easier to read and can be used for all CPUs. The assem-
bly may use multiple instructions for CPUs that don’t implement the
machine instruction. You can use a synthetic load/store operation with
any addressing mode that the assembler can understand (as described in
section 9.4).

The address for an FP load/store operation must be aligned to the size of
the object being loaded—on a four-byte boundary for single-precision
or word values or an eight-byte boundary for double-precision or 64-bit
integer types.

In machine instruction descriptions, (disp is a signed 16-bit quantity, and
“*” is the C operator that dereferences a pointer):

lwc1 fd, disp(s) fd = *(s + disp);

swc1 fs, disp(s) *(s + disp) = fs;
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All MIPS64/MIPS32-compliant FPUs known to me have 64-bit
loads/stores:

ldc1 fd, disp(s) fd = (double)*(s + disp);

sdc1 fs, disp(s) *(s + disp) = (double)fs;

MIPS32/64 adds indexed addressing, with two registers:

lwxc1 fd, i(s) fd = *(s + i);

swxc1 fs, i(s) *(s + i) = fs;

ldxc1 fd, i(s) fd = (double)*(s + i);

sdxc1 fs, i(s) *(s + i) = (double)fs;

But, in fact, you don’t have to remember any of these when you’re writing
assembly. Instead, “addr” can be any address mode the assembler understands:

l.d fd, addr fd = (double)*addr;

l.s fd, addr fd = (float)*addr;

s.d fs, addr (double)*addr = fs;

s.s fs, addr (float)*addr = fs;

The assembler will generate the appropriate instructions, including allow-
ing a choice of valid address modes. Double-precision loads on a 32-bit CPU
will assemble to two load instructions.

7.9.2 Move between Registers

When data is copied between integer and floating-point registers, no data
conversion is done and no exception results from any value. But when data
is moved between floating-point registers, you need to specify the particular
floating-point data type, and an attempt to move a value that has no sense
in that type—while it won’t produce an exception—will not necessarily copy
all the bits correctly. This makes it possible for FPUs that use a different (per-
haps higher-precision) internal representation for FP data to implement move
instructions without the overhead of back-converting the data.

Even on a MIPS I FPU these instructions can specify the odd-numbered FP
registers:

Between integer and FP registers:

mtc1 s, fd fd = s; /* 32b uninterpreted */

mfc1 d, fs d = fs;

dmtc1 s, fd fd = (long long) s; /* 64 bits */

dmfc1 d, fs d = (long long) fs;
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Between FP registers:

mov.d fd,fs fd = fs;

/* move 64b between register pairs */

mov.s fd,fs fd = fs; /* 32b between registers */

Conditional moves (missing from MIPS III and earlier)—the .s versions
are omitted to save space:

movt.d fd,fs,cc if (fpcondition(cc)) fd = fs;

movf.d fd,fs,cc if (!fpcondition(cc)) fd = fs;

movz.d fd,fs,t if (t == 0) fd = fs;

/* t is an integer register */

movn.d fd,fs,t if (t != 0) fd = fs;

The FP condition code called fpcondition(cc) is a hard-to-avoid
forward reference; you’ll see more in section 7.9.7. If you want to know why
conditional move instructions are useful, see section 8.5.3.

7.9.3 Three-Operand Arithmetic Operations

Note the following points:

All arithmetic operations can cause any IEEE exception type and may
result in an unimplemented trap if the hardware is not happy with the
operands.

All these instructions come in single-precision (32-bit, C float)
and double-precision (64-bit, C double) versions; the instructions
are distinguished by “.s” or “.d” on the op-code. We’ll only show the
double-precision version. Note that you can’t mix formats: Both source
values and the result will all be either single or double. To mix singles
and doubles you need to use explicit conversion operations.

In all ISA versions:

add.d fd,fs1,fs2 fd = fs1 + fs2;

div.d fd,fs1,fs2 fd = fs1 / fs2;

mul.d fd,fs1,fs2 fd = fs1 × fs2;

sub.d fd,fs1,fs2 fd = fs1 - fs2;

Not in MIPS III and earlier CPUs, fast but not quite IEEE accurate—
the error may be as much as that represented by the lowest 2 bits of the
mantissa (2 ULPs).

recip.dfd,fs fd = 1/fs;

rsqrt.dfd,fs fd = 1/(squarerootof(fs));
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7.9.4 Multiply-Add Operations

These were added after MIPS III in response to Silicon Graphics’ interest in
achieving supercomputer-like performance in very high end graphics systems
(related to the 1995 SGI acquisition of Cray Research, Inc.). IBM’s PowerPC chips
seemed to get excellent FP performance out of their multiply-add, too. Although
it’s against RISC principles to have a single instruction doing two jobs, a com-
bined multiply-add is widely used in common repetitive FP operations (typically
the manipulation of matrices or vectors). Moreover, it saves a significant amount
of time by avoiding the intermediate rounding and renormalization step that
IEEE mandates when a result gets written back into a register.

Multiply-add comes in various forms, all of which take three register oper-
ands and an independent result register:

madd.d fd,fs1,fs2,fs3 fd = fs2 × fs3 + fs1;

msub.d fd,fs1,fs2,fs3 fd = fs2 × fs3 - fs1;

nmadd.d fd,fs1,fs2,fs3 fd = -(fs2 × fs3 + fs1);

nmsub.d fd,fs1,fs2,fs3 fd = -(fs2 × fs3 - fs1);

IEEE 754 does not rule specifically for multiply-add operations, so to
conform to the standard the result produced should be identical to that coming
out of a two-instruction multiply-then-add sequence—tricky! Since every FP
operation may involve some rounding, this also means that IEEE 754 mandates
somewhat poorer precision for multiply-add than could be achieved.

7.9.5 Unary (Sign-Changing) Operations

Although nominally arithmetic functions, these operations only change the
sign bit and so can’t produce most IEEE exceptions. They can produce an invalid
trap if fed with a signaling NaN value. They are as follows:

abs.d fd,fs fd = abs(fs)

neg.d fd,fs fd = -fs

7.9.6 Conversion Operations

Note that “convert from single to double” is written “cvt.d.s”—and, as usual,
the destination register is specified first. Conversion operators work between
data in the FP registers: When converting data from CPU integer registers, the
move from FP to CPU registers must be coded separately from the conversion
operation. Conversion operations can result in any IEEE exception that makes
sense in the context.

Originally, all this was done by the one family of instructions:

cvt.x.y fd, fs
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where x and y specify the destination and source format, respectively, as one of
the following:

s C float, MIPS/IEEE single, 32-bit floating point

d C double, MIPS/IEEE double, 64-bit floating point

w C int, MIPS “word,” 32-bit integer

l C long long, MIPS “long,” 64-bit integer (64-bit CPUs only)

The instructions are as follows:

cvt.s.d fd,fs /* double fs -> float, leave in fd */

cvt.w.s fd,fs /* float fs -> int, leave in fd */

cvt.d.l fd,fs /* long long fs -> double, leave in fd */

There’s more than one reasonable way of converting from floating point to
integer formats, and the result depends on the current rounding mode (as set
up in the FCSR register, described in section 7.7). But FP calculations quite often
want to round to the integer explicitly (for example, the ceiling operator rounds
upward), and it’s a nuisance trying to generate code to modify and restore FCSR.
So except for the earliest MIPS I CPUs, conversions that do explicit rounding
are available and often more useful:

Conversions to integer with explicit rounding:

round.x.y fd,fs /* round to nearest */

trunc.x.y fd,fs /* round toward zero */

ceil.x.y fd,fs /* round up */

floor.x.y fd,fs /* round down */

These instructions are only valid with x representing an integer format.

7.9.7 Conditional Branch and Test Instructions

The FP branch and test instructions are separate. We’ll discuss the test instruc-
tions below—they have names like c.le.s, and they compare two FP values
and set the FPU condition bit accordingly.

The branch instructions, therefore, just have to test whether the condition
bit is true (set) or false (zero). They can optionally specify which condition bit
to use:

bc1t label if (fpcondition(0)) branch-to-label;

bc1t cc, label if (fpcondition(cc)) branch-to-label;

bc1f label if (!fpcondition(0)) branch-to-label;

bc1f cc, label if (!fpcondition(cc)) branch-to-label;
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Like all MIPS branch instructions, each of these has a “branch-likely”
variant:9

bc1tl label /* branch-likely form of bc1t ... */

bc1fl label

Like the CPU’s other instructions called branch, the targetlabel is encoded
as a 16-bit signed word displacement from the next instruction plus one
(pipelining works in strange ways). If labelwas more than 128 KB away, you’d
be in trouble and you would have to resort to a jr instruction.

MIPS CPUs up to and including MIPS III had only one FP condition bit,
called “C,” in the FP control/status register FCSR. Mainstream CPUs have
7 extra condition bits, called FCC7-1. If you leave the cc specification out of
branch or compare instructions, you implicitly pick the old “C” bit, which has
the honorary title of FCC0. That’s compatible with older instruction set
versions. (See section 8.5.7 if you’re interested in why this extension was intro-
duced.) In all the instruction sets, cc is optional.

But before you can branch, you have to set the condition bit appropriately.
The comparison operators are as follows:

c.cond.d fs1,fs2 /* compare fs1 and fs2 and set FCC(0) */

c.cond.d cc,fs1,fs2 /* compare fs1 and fs2; set FCC(cc) */

In these instructions, cond can be a mnemonic for any of 16 conditions.
The mnemonic is sometimes meaningful (eq) and sometimes more mysterious
(ult). Why so many? It turns out that when you’re comparing FP values there
are four mutually incompatible outcomes:

fs1 < fs2

fs1 == fs2

fs1 > fs2

unordered (fs1, fs2)11

The IEEE standard defines “unordered” as true when either of the operands
is an IEEE NaN value.

It turns out we can always synthesize “greater than” from “less than or equal
to” by reversing the order of the operands and/or inverting the test, so we have
three outcomes to allow for. MIPS provides instructions to test for any “or”
combination of the three conditions. On top of that, each test comes in two
flavors, one that takes an “invalid” trap if the operands are unordered and one
that never takes such a trap.

9. See section 8.5.4 for more on “likely” branches.
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TABLE 7.4 FP Test Instructions

Mnemonic

“C” bit is set if. . . No trap Trap

always false f sf

unordered(fs1,fs2) un ngle

fs1 == fs2 eq seq

fs1 == fs2 || unordered(fs1,fs2) ueq ngl

fs1 < fs2 olt lt

fs1 < fs2 || unordered(fs1,fs2) ult nge

fs1 < fs2 || fs1 == fs2 ole le

fs1 < fs2 || fs1 == fs2 || unordered(fs1,fs2) ule ngt

We don’t have to provide tests for conditions like “not equal”; we test for
equality, but then use a bc1f rather than a bc1t branch. Table 7.4 tabulates all
the available instruction names:

In many CPU implementations, the compare instruction produces its result
too late for a branch instruction to run without delay in the immediately fol-
lowing instruction. In MIPS III and earlier CPUs the branch instruction may
misfire if run directly after the test. A compiler or assembler supporting older
CPUs should generate an appropriate delay, inserting a nop if required.

7.10 Paired-Single Floating-Point Instructions and the
MIPS-3D ASE

A floating-point unit compliant with MIPS32/64 may choose to implement
paired-single instructions. The base of this extension is a set of arithmetic
operations that work on pairs of IEEE single-precision values, each packed into
a single 64-bit register, and do two operations in parallel on each half.

That sounds like it means building a whole new FPU. But it turns out that it
really isn’t too costly to tinker with the double-precision FPU to provide paired-
single operations—at least for the “one-pass” operations like add, multiply,
multiply-add, tests, moves, and so on.

We’ll use fs and ft as source registers and fd as a destination. We’ll find
it convenient to say that if fs is an FP register containing a paired-single value,
then fs.upper and fs.lower stand for the single-precision values in the
higher-numbered and lower-numbered bits, respectively.

To find out if your CPU implements paired-single instructions, see whether
the FIR(PS) bit is set.
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7.10.1 Exceptions on Paired-Single Instructions

Usually, in the circumstances where you want to use paired-single instructions,
you probably will take pains to prevent exceptions. But if either of the two
floating-point instructions causes an exception, then the instruction trips an
exception: If either of the two instructions needs a MIPS trap, then you take a
MIPS “exception” and both halves of the instruction are rolled back as if they’d
never started. An exception is delivered with no indication of whether it applies
to the upper or lower computation, or both.

7.10.2 Paired-Single Three-Operand Arithmetic, Multiply-Add,
Sign-Changing, and Nonconditional Move Operations

These all do exactly the same as the corresponding single-precision (.s)
version, except they do it twice. That is, an add.ps fd,fs,ft instruction is:

fd.upper = fs.upper + ft.upper;

fd.lower = fs.lower + ft.lower;

These are SIMD instructions (single-instruction, multiple-data) and are
very useful for vector-type operations: They get two operations done in the
time of one.

However, not all instructions are available in .ps form:

Implemented, same mnemonic as single-precision operation: add, sub,
mul, abs, mov, and neg.

Not available in paired-single: all the round-in-a-particular-way opera-
tors round, trunc, ceil, floor. They probably didn’t seem important
enough in vectorizable applications.

Divide, reciprocal, and square-root—corresponding to div.s,
recip.s, sqrt.s, and rsqrt—are not available in paired form (those
functions are typically implemented with iterative algorithms, which
can’t be simply done two-at-once).

The MIPS-3D extension, where available, adds instructions that can
calculate a reciprocal or reciprocal square-root in just two steps. Those
instructions are available for PS values too. See section 7.10.5.

The integer-conversion instructions round, trunc, ceil, and floor
are not provided. The result of such an operation would be a paired-
word, double-integer format, and inventing a whole new data type for
such purposes seems excessive.
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7.10.3 Paired-Single Conversion Operations

To build a paired-single value from two single-precision values use
cvt.ps.s fd,fs,ft, which does:

fd.upper = fs;

fd.lower = ft;

To extract a single-precision value from either the upper or lower position of
a pair use cvt.s.pl fd,fs (fd = fs.lower;) or cvt.s.pu fd,fs
(fd = fs.upper;).

To repack paired-single values into a new paired single, you have a choice
of four instructions. One of these instructions picks one single value from each
of two paired-single registers, and repacks them into a new pair:

pll.ps fd,fs fd.upper = fs.lower;

fd.lower = ft.lower;

plu.ps fd,fs fd.upper = fs.lower;

fd.lower = ft.upper;

pul.ps fd,fs fd.upper = fs.upper;

fd.lower = ft.lower;

puu.ps fd,fs fd.upper = fs.upper;

fd.lower = ft.upper;

alnv.ps fd,fs,ft,s packs together two single-precision values into a
paired-single. Its main role—in conjunction with the unaligned load instruc-
tion luxc1—is to help software load and pack an array of single-precision
values two at a time, even though the memory alignment of the array is such as
to get the pairs the wrong way round.

For the purposes of this instruction, it’s helpful to think of paired-single
values as packing together singles called “a” and “b,” where “a” has the lowest
address when the data is stored in memory (the association of “a” and “b” with
bit numbers in the register changes with endianness).

The value of the low 3 bits of the general-purpose register s may only be 0
or 4 (s is typically the pointer used to load a pair of values from memory)—any
value other than 4 will lead to an exception. So it’s like this:

if ((s & 7) == 0) {

fd.a = fs.a; fd.b = fs.b;

}

else {

/* s & 7 == 4 */

fd.a = fs.b; fd.b = ft.a;

}
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7.10.4 Paired-Single Test and Conditional Move Instructions

Since there are two values in each paired-single register, each compare instruc-
tion sets two condition bits. You specify an even-numbered condition bit, and
the instruction will use it and the next-up odd-numbered condition bit. So if
you write c.eq.ps 2,fs,ft, that implies:

fcc2 = (fs.upper == ft.upper) ? 1: 0;

fcc3 = (fs.lower == ft.lower) ? 1: 0;

If you can’t remember what all the mysterious tests are, see Table 7.4.
MIPS-3D (see below) includes some branch instructions that test more than

one condition code at a time, which may be useful.
The conditional move instructions, movf.ps and movt.ps, test two FP

condition codes and do two independent move-if-true operations on the upper
and lower halves of the destination, so:

movt.ps fd,fs,2 if (fcc2) fd.upper = fs.upper;

if (fcc3) fd.lower = fs.lower;

Contrastingly, movn.ps and movz.ps do their move conditionally on the
value of an integer register and treat both halves the same.

7.10.5 MIPS-3D Instructions

The MIPS-3D ASE (instruction set extension) adds a handful of instructions
that are judged to make the paired-single floating-point extension more effi-
cient at high-quality 3D graphics coordinate calculations.

Floating-point “reduction add/multiply” (add/multiply pair):

Adds or multiplies the pairs inside a register. In true SIMD style, it will
add or multiply the pairs inside two different registers at once:

addr.ps fd,fs,ft does:

fd.upper = fs.upper + fs.lower;

fd.lower = ft.upper + ft.lower;

And mulr.ps fd,fs,ft does:

fd.upper = fs.upper * fs.lower;

fd.lower = ft.upper * ft.lower;
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Comparison operations on absolute values (i.e., ignoring sign bit):

There are a complete set of cabs.xx.x operations:

cabs.eq.d
cabs.eq.ps
cabs.eq.s
cabs.f.d
cabs.f.ps
cabs.f.s
cabs.le.d
cabs.le.ps
cabs.le.s
cabs.lt.d
cabs.lt.ps
cabs.lt.s

cabs.nge.d
cabs.nge.ps
cabs.nge.s
cabs.ngl.d
cabs.ngl.ps
cabs.ngl.s
cabs.ngle.ps
cabs.ngt.d
cabs.ngt.ps
cabs.ngt.s
cabs.ole.d
cabs.ole.ps

cabs.ole.s
cabs.olt.d
cabs.olt.ps
cabs.olt.s
cabs.seq.d
cabs.seq.ps
cabs.seq.s
cabs.sf.d
cabs.sf.ps
cabs.sf.s
cabs.ueq.d
cabs.ueq.ps

cabs.ueq.s
cabs.ule.d
cabs.ule.ps
cabs.ule.s
cabs.ult.d
cabs.ult.ps
cabs.ult.s
cabs.un.d
cabs.un.ps
cabs.un.s

Branch instructions testing multiple condition codes:

bc1any2f, bc1any2t, bc1any4f, and bc1any4t test the OR of some
number of conditions before branching. You might write bc1any2f N,
offset with N being the condition code number between 0 and 6.

The tests performed are:

Instruction Branch test

bc1any2f 2,target if (!fcc2 || !fcc3) goto target

bc1any2t 2,target if (fcc2 || fcc3) goto target

bc1any4f 4,target if (!fcc4 || !fcc5 ||

!fcc6 || !fcc7)

goto target

bc1any4t 4,target if (fcc4 || fcc5 || fcc6 ||

fcc7)

goto target

Reciprocal and square-root calculations: This is motivated mostly by the
lack of divide, reciprocal, and square-root operations for paired-single
(although single- and double-precision versions of these instructions
are included).

recip1 fd,fs is a quick-and-dirty approximation to a reciprocal. It’s
as good as can be done reasonably cheaply without an “under-the-hood”
iterative process—iterative processes don’t convert well to paired-single
SIMD. It’s a much worse approximation than you could get with the stan-
dard recip.s or recip.d instructions, even though those aren’t IEEE
accurate. The operation of recip1 is unaffected by the current rounding
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mode (though it does respect the flags that control generation and use
of tiny “denormalized” values).

recip2 fd,fs,ft is not anything like a reciprocal—it’s a custom
multiply-add that computes 1--(fs*ft) without you needing to load
a register with a constant 1. That function is picked because it means that
this three-instruction sequence refines recip1’s guess:

recip1.s f1, f0 # f1 =˜ 1/f0
recip2.s f2, f1, f0 # f2 = f0 * (error in f1)
madd.s f1, f1, f1, f2 # f1 = f1 - f2*f1, a better guess

That’s enough to produce a good result in single precision (you can’t
refine it further and reach IEEE accuracy without handling some least
significant bits separately, which is a much longer computation). A fur-
ther recip2/madd sequence is necessary to get the best available result
for double precision.

But the really nice thing about this is that the corresponding paired-
single calculation just works, producing an excellent pair of reciprocals
for three instructions:

recip1.ps f1, f0
recip2.ps f2, f1, f0
madd.ps f1, f1, f1, f2

Thersqrt1/rsqrt2 instructions use a similar approach. In this case the
error function computed by rsqrt2 fd,fs,ft is (1--fs*ft)/2.

This time you need an additional multiplication to produce an excellent
paired-single value (though again, not IEEE exact):

rsqrt1.ps f1,f0
mul.ps f2,f1,f0
rsqrt2.ps f3, f2, f1
madd.ps f1, f1, f1, f3

Again, getting a good-quality double-precision value requires an addi-
tional refinement step.

Convert between paired-integer and paired-single values:

Since integer/floating-point conversions have always been done strictly
in floating-point registers, once you’ve got paired-single it seems to make
sense to have paired-32-bit-integer support too: But it isn’t in the origi-
nal paired-single instruction set.

To convert a packed pair of 32-bit integers to a paired-single (convert-
ing both fields at once) use cvt.ps.pw fd,fs; the reverse operation
converts a paired-single to a packed pair of words and is cvt.pw.ps fd,fs.
In both cases, the current rounding mode determines how approximate
results are rounded.
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7.11 Instruction Timing Requirements

Normal FP arithmetic instructions are interlocked, and there is no need to
interpose nops or to reorganize code for correctness. To get the best perform-
ance, the compiler should lay out FP instructions to make the best use of over-
lapped execution of integer instructions and of the FP pipeline—but that needs
to be sensitive to the details of a particular CPU implementation.

In some older CPUs (not compliant to MIPS32/64) some other interac-
tions are not interlocked, and for correct operation, programs must avoid cer-
tain sequences of instructions. In this case, your compiler, your assembler, or
(in the end) you, the programmer, must take care about the timing of the
following:

Operations on the FP control and status register: When altering FCSR,
take care with the pipeline. Its fields can affect any FP operation, which
might be running in parallel. Make sure that at the point you write FCSR
there are no FP operations live (started, but whose results have not yet
been collected). The register is probably written late, too, so it’s wise to
allow one or two instructions to separate the ctc1 rs, FCSR from an
affected computational instruction.

Moves between FP and general-purpose registers: These complete late, and
if the subsequent instruction uses the value, you’ll normally lose a cycle
or two. On MIPS II and earlier CPUs you are required to avoid the
dependency.

FP register loads: Like integer loads, these take effect late. The value can’t
be used in the following instruction.

Test condition and branch: The test of the FP condition bit using thebc1t,
bc1f instructions must be carefully coded, because the condition bit is
tested a clock cycle earlier than you might expect. So the conditional
branch cannot immediately follow a test instruction.

7.12 Instruction Timing for Speed

All MIPS FPUs take more than one clock cycle for most arithmetic instructions;
hence, the pipelining becomes visible. The pipeline can show up in three ways:

Hazards: These occur where the software must ensure the separation of
instructions to work correctly. There are no hazards of any kind visible
to user-level FP code on a MIPS32/64 CPU.

Even in older CPUs there are no hazards between FP instructions caused
by FP data.
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Interlocks: These occur where the hardware will protect you by delaying
use of an operand until it is ready. Knowledgeable rearrangement of the
code will improve performance.

Visible pipelining: This occurs where the hardware is prepared to start
one operation before another has completed (provided there are no data
dependencies). Compilers, and determined assembly programmers, can
write code that works the hardware to the limit by keeping the
pipeline full.

Modern MIPS FPUs are often fully pipelined, allowing a new FP mul-
tiply, add, or multiply-add operation to start on every clock (it may be
every second clock for double-precision operations). But if you use the
result of one of those instructions in the next instruction in sequence,
you’ll hold up your program: With 2006-era CPUs, that’s likely to be by
four or five clock times. In other language, FP multiplication has a one-
or two-clock repeat rate but a four- or five-clock latency. If you can avoid
using FP results until they’re ready, your program will go faster.

With floating point, multiply is generally as fast as addition and subtraction.
Divide and square-root instructions are much slower; if you need to repeatedly
divide by the same number, it makes sense to compute a reciprocal and multiply
by it instead.

7.13 Initialization and Enabling on Demand

From reset, you will normally have initialized the CPU’s SR register to disable all
optional coprocessors, which includes the FPU (coprocessor 1). The SR(CU1)
bit has to be set for the FPU to work. All modern CPUs have 32 64-bit FP reg-
isters, but have a MIPS I compatibility mode, when SR(FR) is zero, where only
even-numbered registers can be used for math.

You should read the FPU implementation register; if it reads zero, no FP is
fitted and you should run the system with CU1 off.

Once CU1 is switched on, you should set up the control/status register FCSR
with your choice of rounding modes and trap enables. Anything except round
to nearest and all traps disabled is uncommon. There’s also the choice of setting
the SR(FS) bit to cause very small results to be returned as zero, saving a trap
to the emulator. This is not IEEE compatible, but the hardware can’t produce
the specified denormalized result.

Once the FPU is operating, you need to ensure that the FP registers are saved
and restored during interrupts and context switches. Since this is (relatively)
time consuming, you can optimize this, as some operating systems do, by doing
“lazy context switching,” like this:
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Leave the FPU disabled by default when running a new task. Since the
task cannot now access the FPU, you don’t have to save and restore
registers when scheduling or parking it.

On a CU1-unusable trap, mark the task as an FP user and enable the FP
before returning to it.

Disable FP operations while in the kernel or in any software called directly
or indirectly from an interrupt routine. Then you can avoid saving FP
registers on an interrupt; instead, FP registers need to be saved and resto-
red only when you are context-switching to or from an FP-using task.

7.14 Floating-Point Emulation

Some low-cost MIPS CPUs and cores omit the FPU. Floating-point functions
for these processors are provided by software and are perhaps 50–300 times
slower than the hardware. Software FP is useful for systems where floating point
is employed in some rarely used routines.

There are two approaches:

Soft float: Some compilers can be requested to implement floating-point
operations with software. FP arithmetic operations are likely to be imple-
mented with a hidden library function, but housekeeping tasks such as
moves, loads, and stores can be handled in line.

Trap and emulate: The compiler can produce the regular FP instruction
set. The CPU will then take a trap on each FP instruction that is caught
by the FP emulator. The emulator decodes the instruction and performs
the requested operation in software. Part of the emulator’s job will be
emulating the FP register set in memory.

As described here, a runtime emulator is also required to back up FP hard-
ware for very small operands or obscure operations; since the architecture is
deliberately vague about the limits of the hardware’s responsibility, the
emulator is usually complete. However, it will be written to ensure exact IEEE
compatibility and is only expected to be called occasionally, so it will probably
be coded for correctness rather than speed.

Compiled-in floating point is much more efficient; the emulator has a high
overhead on each instruction from the trap handler, instruction decoder, and
emulated register file. But of course you have to recompile the world to take
advantage of it.

There may still be some compilers that don’t offer soft float operation: The
history of the MIPS architecture is in workstations, where FP hardware was
mandatory.
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Chapter

8 Complete Guide to the
MIPS Instruction Set

Chapters 8 and 9 are written for the programmer who wants to
understand or generate assembly code (whether in person or indirectly

because you’re writing or fixing a compiler). While Chapter 9 discusses real
assembly language programming, this chapter only concerns itself with assem-
bly language instructions; broadly speaking, you can skip Chapter 9 if you only
want to read disassembly listings. We begin with a simple piece of MIPS code
and an overview.

8.1 A Simple Example

This is an implementation of the C library function strcmp(1), which com-
pares two character strings and returns zero on equal, a positive value if the
first string is greater (in string order) than the second, and a negative value
otherwise. Here’s a naïve C algorithm:

int strcmp (char *str1, char *str2)

{

char c1, c2;

do {

c1 = *str1++;

c2 = *str2++;

} while (c1 != 0 && c2 != 0 && c1 == c2);

return c1 - c2; /* clever: 0, +ve or -ve as required */

}

183
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In assembly code the two arguments of the C function arrive in the registers
called a0 and a1. (See Table 2.1 if you’ve forgotten about the naming conven-
tions for registers; the MIPS standard calling convention is described in detail
in section 11.2.1.) A simple subroutine like this one is free to use the tempo-
rary registers t0 and so on without saving and restoring their values, so they’re
the obvious choices for temporaries. The function returns a value, which by
convention needs to be in the register v0 at the time we return. So let’s have a
go at it:

strcmp:
1:

lbu t0, 0(a0)
addu a0, a0, 1
lbu t1, 0(a1)
addu a1, a1, 1

beq t0, zero,.t01 # end of first string?
beq t1, zero,.t01 # end of second string?
beq t0, t1, 1b

.t01:
subu v0, t0, t1
j ra

We will examine it from the top:

Labels: strcmp is a familiar named label, which in assembly can define
a function entry point, an intermediate branch, or even a data storage
location.

.t01 is a legitimate label; the full-stop “.” character is legal in labels and
must not be confused with a C name elsewhere in your program.

1: is a numeric label, which many assemblers will accept as a local label.
You can have as many labels called “1” as you like in a program; “1f ”
refers to the next one in sequence and “1b” the previous one. This is very
useful, since it avoids inventing unique names for labels only used locally.

Register names: The “dollar-free” names shown here are common usage,
but they require that the assembly code be passed through some kind
of macro processor before getting to the real MIPS assembler; typically,
the C preprocessor is used and most toolkits have ways to make this
straightforward.

It would hardly be worth writing a function such as this in assembly; the
compiler will probably do a better job. But we’ll see later (in section 9.1) how
much more clever we could have been.
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8.2 Assembly Instructions and What They Mean

This section consists of a long list of all legal assembly instruction names
(mnemonics) in most MIPS assemblers, up to and including the MIPS64
(Release 2) instruction set. After some agonizing and experimentation, I decided
that this table should contain a mixture of real machine operations and the
assembler’s synthesized instructions. So for each instruction we’ll list the
following:

Assembly format: How the instruction is written.

Machine instructions generated: For assembly instructions that are aliases
for machine code or expanded into a sequence of machine instructions,
we’ll put a “=>” to show a macro expansion and list typical instructions
in an expansion.

Function: A description of what the instruction does, in pseudo-C code,
which is meant to combine precision with brevity. C typecasts, where
used, are necessary.

Not every possible combination of instruction and operands is listed,
because it gets too long. So we won’t list the following:

Two-operand forms of three-operand instructions: For example, MIPS
assemblers allow you to write:

addu $1, $2 # $1 = $1 + $2

which would otherwise have to be written as:

addu $1, $1, $2

You can do that pretty much anywhere it makes sense.

All possible load/store address formats (addr): MIPS machine instructions
always generate addresses for load/store operations using just the con-
tents of a register plus a 16-bit signed displacement,1 written, for
example, lw $1,14($2). MIPS assemblers support quite a few other
addressing mode formats; notablylw $1,thing, which loads data from
the location whose assembly code label (or external C name) is “thing.”
See section 9.4 for details; note that all of these modes are quietly avail-
able to any assembly instruction that specifies a memory address. We’ll
just write lw t,addr for the assembly instruction and the base+
displacement format for the machine code.

1. Someone always has to break things; there are some register+register address formats but only
for load/stores with floating-point registers. This is done in deference to the importance of
multidimensional-array organizations in floating-point codes.
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The la (load address) instruction provided by the assembler uses the
same addressing-mode syntax, even though it loads or stores nothing—it
just generates the address value in the destination register.

When synthesizing some address formats (particularly on stores) the
assembler needs a scratch register and quietly uses at. Programmers
working in code where the implicit use of a register might matter (in an
interrupt handler that hasn’t yet saved all preinterrupt register values,
for instance) need to take care: The GNU assembler has a .set noat
directive that prevents it.

Immediate versions of instructions: A constant value embedded within an
instruction is, by ancient convention, called an immediate value. MIPS
assembly language lets you specify the last source operand as a constant.
MIPS CPUs offer some real hardware instructions supporting immedi-
ates of up to 16 bits in size for some operations, but you’re recommended
to write the “root” mnemonic instead. Names like addui are recognized
by the assembler as legal mnemonics; but probably only compilers gen-
erating assembly intermediate code should ever do so, and you’ll see
these “immediate” forms when we’re discussing machine instructions
(Table 8.6, for example) and in disassembly listings.

In assembly language you’re not limited to 16 bits, and you don’t have
to remember which of the “immediate” forms uses signed or unsigned
values; if you write an arbitrary constant, the assembler will synthesize
away, as described in section 9.3.2.

Once again, the assembler may need to use the temporary register at for
some complicated cases.

8.2.1 U and Non-U Mnemonics

Before we get started, there’s a particularly confusing thing about the way
instruction mnemonics are written. A “u” suffix on the assembly mnemonic
is usually read as “unsigned.” But that’s not always what it means (at least, not
without a big stretch of your powers of imagination). There are a number of
subtly different meanings for a “u” suffix, depending on context:

Overflow trap versus no trap: In most arithmetic operations, U denotes
“no overflow test.” Unsuffixed arithmetic operations like add cause a
CPU exception if the result overflows into bit 31 (the sign bit when we’re
thinking of integers as signed). The suffixed variant addu produces
exactly the same result for all combinations of operands but never takes
an exception.

C and C++ do not support integer overflow exceptions and always
use the “u” form—it has nothing to do with whether a variable is
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signed or unsigned. You should always use addu and so on unless
you really know why not.

Set if: The universal test operations slt (set if less than) and sltu (set
if less than, unsigned) have to produce genuinely different results when
operands are interpreted as negative numbers.

Multiply and divide: Integer multiply operations produce a result with
twice the precision of the operands, and that means that they need to
produce genuinely different results for signed and unsigned inputs;
hence, there are two instructions: mult and multu. Note that the low
part of the result, left in the lo register, will be the same for both the
signed and the unsigned version; it’s the way that overflows into hi are
handled that differs.

Integer divide instructions are also sign dependent (think about dividing
0xFFFF.FFFE by 2), so there’s a div and a divu. The same variation
exists for shift-right instructions (shift-right by one is really just divide
by two), but this was obviously a U too far; the shift instructions are
called sra (shift-right arithmetic, suitable for signed numbers) and srl
(shift-right logical). The world is indeed a wonderful place.

Partial-register loads: Loads of less-than-register-size chunks of data must
decide what to do with the excess bits in the register. For the unsigned
instructions, such as lbu, the byte value is loaded into the register and
the remaining bits are cleared to zero (we say that the value has been
zero-extended). If the byte value represented a signed number, its top bit
would tell us if it was negative. In this case, we’ll translate to the corre-
sponding register-sized representation by filling the remaining bits of the
register with copies of the sign bit, using the instruction lb. That’s called
sign-extending.

8.2.2 Divide Mnemonics

In machine code for integer multiply and divide, there are separate initiation
and result-collecting instructions. The assembler likes to cover this up,
generating macro expansions for a three-operand format and doing a divide-
by-zero check at the same time. This would be OK except that unfortunately
the assembly macro name for divide is div, which is also the name for the basic
machine code instruction. That means you need a trick to write a machine code
divide instruction in assembly; a three-operand assembly divide with zero as
the destination should just produce the machine start-divide operation and
nothing else.

Some toolchains have offered a better way out of this mess, by defining new
mnemonicsdivd (divide direct) to mean just the hardware operation and divo
(divide with overflow check) for the complicated macro. This didn’t catch on,
but you may see it in some codes.
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8.2.3 Inventory of Instructions

In the assembly descriptions we use the conventions given in Table 8.1.
Table 8.2 gives a full inventory of the instruction descriptions in mnemonic
order.

TABLE 8.1 Conventions Used in Instruction Tables

Word Used for

s, t CPU registers used as operands.

d CPU register that receives the result.

j “Immediate” constant.

label The name of an entry point in the instruction stream.

shf For shift/rotate/extract/insert instructions, this is the amount of the
implied shift operation, in bits.

sz For extract/insert instructions, this is the size of the field being
manipulated, in bits.

offs A signed 16-bit PC-relative word offset representing the distance in
words (one word per instruction) to a label.

addr One of a number of different legitimate data address expressions
usable when writing load/store (or load address) instructions in
assembly. (See section 9.4 for a description of how the assembler
implements the various options.)

at The assembly temporary register, which is really $1.

zero This register, $0, always contains a zero value.

ra The return address register $31.

hilo The double-precision integer multiply result formed by concatenating
hi and lo. Each of hi and lo holds the same number of bits as a
machine register, so hilo can hold a 64-bit integer on a 32-bit
machine and a 128-bit result on a 64-bit machine.

MAXNEG32BIT The most negative number representable in twos complement
arithmetic, 32- and 64-bit, respectively. It’s a feature of twos
complement numbers that the positive number −MAXNEG32BIT is
not representable in 32 bits.

MAXNEG64BIT

cd Coprocessor register that is written by instruction.

cs Coprocessor register that is read by instruction.
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TABLE 8.1 continued

Word Used for

exception(CAUSE, code) Take a CPU trap; CAUSE determines the setting of the
Cause(ExcCode) register field. “code” is a value not interpreted by
the hardware, but rather one encoded in a don’t-care field of the
instruction, where system software can find it by reading the
instruction. Not every such instruction sets a “code” value, so
sometimes we’ll leave it out.

exception(CAUSE)

const31..16 Denotes the number obtained by just using bits 31 through 16 of the
binary number “const.” The MIPS books use a similar convention.

TABLE 8.2 Assembly Instructions in Alphabetical Order

Assembly/Machine Code Description

abs d,s =>
sra $at,s,31
xor d,s,$at
subu d,d,$at

d = s < 0 ? -s: s;

add d,s,j =>
addi d,s,j

Traps on overflow, rare

d = s + (signed)j;

add d,s,t Traps on overflow, rare

d = s + t;

addu d,s,j =>
addiu d,s,j

You can also write this with j outside the range -32768≤j<32768, but the

code generated gets more complicated.

d = s + (signed)j;

addu d,s,t d = s + t;

and d,s,j =>
andi d,s,j

For 0 ≤ j < 65535—for larger numbers, extra instructions will be generated.

d = s & (unsigned) j;

and d,s,t d = s & t;

b label =>
beq

$zero,$zero,offs

goto label;

bal label =>
bgezal $zero,offs

Function call (limited range but PC-relative addressing). Note that the

return address that is left in ra is that of the next instruction but one: The

next instruction in memory order is in the branch delay slot and gets

executed before the function is invoked.
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TABLE 8.2 continued

Assembly/Machine Code Description

bc0f label

bc0fl label

bc0t label

bc0tl label

Branch on coprocessor 0 condition. On old CPUs, this tested the state of a

CPU input pin. No longer part of MIPS32 or MIPS64.

bc1f $fccN,label

bc1fl $fccN,label

bc1t $fccN,label

bc1tl $fccN,label

Branch on floating-point (coprocessor 1) condition set/true (t) or

clear/false (f); described in section 7.9.7. Modern FPUs have multiple FP

condition bits, selected by N = 0..7. Older code only uses condition bit 0,

and then the “$fccN,” can be omitted.

The suffix “l” in bc1fl and so on indicates a branch-likely instruction;

see section 8.5.4 for details, but note that the MIPS32/64 specifications

deprecate branch-likely, and recommend programmers and compilers not

to generate the instruction on code that may be ported to more than one

implementation of the MIPS architecture.

bc1any2f $fccN,label

bc1any2t $fccN,label

bc1any4f $fccN,label

bc1any4t $fccN,label

MIPS-3D instructions, which branch on the “OR” of two or four

conditions. See section 7.10.4.

bc2f label

bc2fl label

bc2t label

bc2tl label

Branch on coprocessor 2 condition. Useful only if a CPU uses the CP2

instruction set or offers an external pin. See bc1f and so on above for

details.

beq s,t,label if (s == t) goto label;

beql s,t,label Deprecated branch-likely variants of conditional branch above.

The delay slot instruction is only executed if the branch is taken; see

section 8.5.4.

beqz s,label =>
beq s,$zero,offs

if (s == 0) goto label;

beqzl Branch-likely variant of beqz; see section 8.5.4.

bge s,t,label =>
slt at,s,t
beq at,$zero,offs

if ((signed) s ≥ (signed) t) goto label;

bgel s,t,label =>
slt at,s,t
beql at,$zero,offs

“Likely” form of bge, even though that instruction is itself a macro. Deeply

deprecated, even though the assembler supports it. See section 8.5.4.
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bgeu s,t,label =>
sltu at,s,t
beq at,$zero,offs

if ((unsigned) s ≥ (unsigned) t)

goto label;

bgez s,label if (s ≥ 0) goto label;

bgezal s,label If (s ≥ 0) call to "label()." But note that the “return address” is

unconditionally saved in the register ra ($31).

bgezall s,label Deprecated branch-likely variant; see section 8.5.4. It’s hard to see what this

instruction is good for.

bgezl s,label Deprecated branch-likely variant; see section 8.5.4.

bgt s,t,label =>
slt at,t,s
bne at,$zero,offs

if ((signed) s > (signed) t)

goto label;

bgtu s,t,label =>
slt at,t,s
beq at,$zero,offs

if ((unsigned) s > (unsigned) t)

goto label;

bgtz s,label if (s > 0) goto label;

bgtzl s,label Deprecated branch-likely version of bgtz; see section 8.5.4.

ble s,t,label =>
sltu at,t,s
beq at,$zero,offs

if ((signed) s ≤ (signed) t)

goto label;

bleu s,t,label =>
sltu at,t,s
beq at,$zero,offs

if ((unsigned) s ≤ (unsigned) t)

goto label;

blez s,label if (s ≤ 0) goto label;

blezl s,label Deprecated branch-likely variant of blez; see section 8.5.4.

blt s,t,label =>
slt at,s,t
bne at,$zero,offs

if ((signed) s < (signed) t)

goto label;

bltl s,t,label Deprecated branch-likely macro; see section 8.5.4.

bltu s,t,label =>
sltu at,s,t
bne at,$zero,offs

if ((unsigned) s < (unsigned) t)

goto label;

bltz s,label if (s < 0) goto label;
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bltzal s,label If s < 0 call function at label. But the “return address” is unconditionally

saved in the register ra ($31), whether the function call is taken or not.

if (s < 0) label();

bltzall s,label Bizarre branch-likely variant; see section 8.5.4.

bltzl s,label Deprecated branch-likely variant; see section 8.5.4.

bne s,t,label if (s != t) goto label;

bnel s,t,label Deprecated branch-likely variant; see section 8.5.4.

bnez s,label if (s != 0) goto label;

bnezl s,t,label Deprecated branch-likely variant; see section 8.5.4.

break code Breakpoint instruction for debuggers. The value code has no hardware

effect, but the breakpoint exception routine can retrieve it by reading the

exception-causing instruction.

cache k,addr Do something to a cache line, as described in section 4.9. Not implemented

on very old MIPS CPUs, where cache management relies on CPU-dependent

tricks.

cfc1 t,cs

cfc2 t,cs

Move data from coprocessor control register cs to general-purpose register

t. Only useful for a coprocessor that uses the auxiliary control register set, as

the floating-point unit (coprocessor 1) does. The cfc0 instruction is not

part of the MIPS32 specification.

ctc1 t,cs

ctc2 t,cs

Move data from general-purpose register t to coprocessor control register

cs.

clo d,s Count leading (high-order) one bits in s considered as a 32-bit word.

clz d,s Count leading (high-order) zero bits in s considered as a 32-bit word.

dabs d,s =>
dsra at,s,31
xor d,s,at
dsub d,d,at

64-bit version

d = s < 0: -s: s;

dadd d,s,t 64-bit version; but this one traps on overflow, and is used rarely.

d = s + t;

daddi d,s,j 64-bit add with overflow trap, rare

d = s + j;

daddiu d,s,j 64-bit add immediate, more often written with a daddu mnemonic.

d = s + j;
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daddu d,s,t 64-bit

d = s + t;

dclo d,s Count leading ones in s starting at bit 63 of register.

dclz d,s Count leading zeros in s starting at bit 63 of register.

ddiv $zero,s,t =>
ddiv s,t

Plain 64-bit hardware divide instruction, because we specified $zero as the

destination.

lo = (long long) s / (long long) t;

hi = (long long) s % (long long) t;

ddiv d,s,t =>
teq t,$zero,0x7
ddiv $zero,s,t
daddiu $at,$zero,-1
bne t,$at,1f
daddiu $at,$zero,1
dsll32 $at,$at,31
teq $t1,$at,0x6

1:
mflo d

64-bit signed divide with divide-by-zero and overflow check.

lo = (long long) s / (long long) t;

hi = (long long) s % (long long) t;

if (t == 0) exception (BREAK, 7);

if (t == -1 && s = MAXNEG64BIT)

/* result overflows */

exception (BREAK, 6);

d = lo;

ddivu $zero,s,t =>
ddivu s,t

Plain unsigned 64-bit hardware divide instruction.

lo = (unsigned long long) s / (unsigned long long) t;

hi = (unsigned long long) s % (unsigned long long) t;

ddivu d,s,t =>
teq t,$zero,0x7
ddivu s,t
mflo d

64-bit unsigned divide with divide-by-zero check.

lo = (unsigned long long) s / (unsigned long long) t;

hi = (unsigned long long) s % (unsigned long long) t;

if (t == 0) exception(BREAK,7);

d = lo;

deret Return from EJTAG debug exception. Control passes to the instruction at the

location found in the CP0 register DEPC, and the debug mode bit is cleared.

The instruction sequentially after deret is not run (there is no delay-slot

instruction). There’s more about EJTAG in section 12.1.

dext d,s,shf,sz Extract bitfield from 64-bit register. shf is the distance the field needs to be

shifted so it starts at bit 0 in s, and sz is the number of bits in the field.

s = d(sz+shf)..shf;

dext d,s,shf,sz =>
dextm d,s,shf,sz

dext d,s,shf,sz =>
dextu d,s,shf,sz

The assembler gives you a dextm or dextu machine code as required when

shf or sz is more than 32 bits. In all normal circumstances, just code dext
and let the assembler handle it.
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dextm d,s,shf,sz Machine instruction to encode dext when sz is 32 or more.

dextu d,s,shf,sz Machine instruction to encode dext when shf is 32 or more.

di d Disable interrupts. Clears the global interrupt enable bit in the status

register (SR(IE), see section 3.3.1), leaving the original value of SR in d.

This operation is atomic; the alternative read/modify/write sequence can be

interrupted in the middle with confusing results.

dins d,s,shf,sz Insert bitfield into 64-bit register. The data to insert forms the low bits of s.

shf is the distance the data needs to be shifted left, and sz is the width of

the field in bits.

d = d63..(shf+sz) | s(sz)..0 | (shf > 0 ?

d(shf-1)..0: 0);

dins d,s,shf,sz =>
dinsm d,s,shf,sz

dins d,s,shf,sz =>
dinsu d,s,shf,sz

The assembler gives you a dinsm or dinsu machine code as required

when shf or sz is more than 32 bits. In all normal circumstances, just

code dins and let the assembler handle it.

dinsm d,s,shf,sz Machine instruction to encode dins when sz is 32 or more.

dinsu d,s,shf,sz Machine instruction to encode dins when shf is 32 or more.

div $zero,s,t =>
div s,t

Plain signed 32-bit hardware divide; the assembler doesn’t insert any

divide-by-zero or overflow checks when the destination register is $zero.

lo = s / t;

hi = s % t;

div d,s,t =>
teq t,$zero,0x7
div $zero,s,t
li $at,-1
bne t,$at,1f
lui $at,0x8000
teq s,$at,0x6

1f:
mflo d

Signed 32-bit division with exceptions generated by divide-by-zero and

overflow conditions:

if (t == 0)

exception(BREAK,7); /* divide by zero */

lo = s/t; hi = s%t;

if (t == -1 && s == MAXNEG32BIT)

exception(BREAK, 6); /* result overflows */

d = lo;

divu $zero,s,t =>
divu s,t

/* $zero as destination means no checks */

lo = s/t;

hi = s % t;
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divu d,s,t =>
teq t,$zero,0x7
divu s,t
mflo d

Unsigned divide, but take an exception if you divide by zero:

if (t == 0) exception(BREAK,7);

lo = (unsigned) s / (unsigned) t;

hi = (unsigned) s % (unsigned) t;

d = lo;

dla t,addr =>
# various ...

Load 64-bit address; see section 9.4.

dli t,const =>
# biggest case:
lui t,const63..48
ori t,const47..32
dsll t,16
ori t,const31..16
dsll t,16
ori t,const15..0

Load 64-bit constant. Separate mnemonic from li required only for values

between 0x8000.0000 and 0xFFFF.FFFF, where 32=>64-bit

transition rules require li to flood the high-order 32 bits with ones.

dmadd16 s,t Found only on NEC’s Vr41xx family CPUs.

(long long)lo = (long long)lo + ((short)s *

(short)t);

dmfc1 t,fs

dmfc2 t,fs

Move 64 bits from coprocessor register cs to general-purpose register t.

Only needed and implemented, of course, for coprocessors with 64-bit

registers. dmfc1 is for floating-point unit registers; dmfc2 is exceedingly

rare.

dmtc1 t,cs

dmtc2 t,cs

Move 64 bits from general-purpose register t to coprocessor register cs.

Comments as for dmfc1 above.

dmul d,s,t =>
dmultu s,t
mflo d

64-bit signed multiply instruction; the product of s and t is computed as a

128-bit value, with no overflow possible.

There’s no machine-level single instruction that does a three-register 64-bit

multiply, although there is such an instruction (mul) for 32-bit operands.

hilo = s * t; /* with 128-bit precision */

d = lo;

dmulo d,s,t =>
dmult s,t
mflo d
dsra d,d,63
mfhi $at
tne d,$at,0x6
mflo d

Signed multiply, take an exception on overflow.

hilo = s * t; /* with 128-bit precision */

if ((lo≥0 && hi!=0) || (lo<0 &&@hi!=-1))

exception(BREAK, 6);

d = lo;
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dmulou d,s,t =>
dmultu s,t
mfhi $at
mflo d
tne $at,$zero,0x6

Unsigned multiply, take an exception on overflow.

hilo = (long long) s * (long long) t;

if (hi != 0)

exception(BREAK,6);

d = lo;

dmult s,t Real machine-level 64-bit signed integer multiply instruction, result in

hilo.

hilo = (long long) s * (long long) t;

dmultu s,t Unsigned version of real machine-level 64-bit integer multiply.

hilo = (unsigned long long) s * (unsigned long

long) t;

dneg d,s =>
dsub d,$zero,s

Unitary negate, which traps on overflow—you probably want dnegu,

below.

(long long) d = -(long long) s; /* trap on

overflow */

dnegu d,s =>
dsubu d,$zero,s

(long long) d = -(long long) s;

drem d,s,t =>
teq t,$zero,0x7
ddiv $zero,s,t
daddiu $at,$zero,-1
bne t,$at,1f
daddiu $at,$zero,1
dsll $at,$at,63
teq s,$at,0x6

1f:
mfhi d

64-bit signed integer remainder, with overflow checks.

if (t == 0) exception(BREAK,7);

if (s == MAXNEG64BIT && t == -1)

exception(BREAK,6); /* overflow */

d = (long long) s % (long long) t;

dremu d,s,t =>
teq t,$zero,0x7
ddivu $zero,s,t
mfhi d

64-bit unsigned integer remainder, with overflow check.

if (t == 0) exception(BREAK, 7);

d = (unsigned long long)s % (unsigned long long)t;

dret Out-of-date return-from-exception instruction, used on now-obsolete

R6000 CPU and some “MIPS II” followers.

drol d,s,t =>
dnegu $at,t
drotrv d,s,$at

64-bit rotate left, where rotate amount is a variable.

d = (s <<t) | ((unsigned long long)s>>(64-t));
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drol d,s,j =>
drotr d,s,64-j

64-bit rotate left by a constant amount.

d = (s <<j) | ((unsigned long long)s>>(64-j));

dror d,s,t =>
drotrv d,s,t

64-bit rotate right, where rotate amount is a variable.

d = ((unsigned long long)s>>t) | (s<<(64-t));

dror d,s,j =>
drotr d,s,j

64-bit rotate right by a constant amount less than 32 positions.

d = ((unsigned long long)s>>j) | (s<<(64-j));

dror d,s,j =>
drotr32 d,s,j

64-bit rotate right by a constant amount of 32 positions or more.

d = ((unsigned long long)s>>j) | (s<<(64-j));

dsbh d,t Swap each pair of bytes in the register (there are four pairs in a 64-bit

register).

dshd d,t Swap each pair of halfwords (16-bit chunks) in the register (there are two

pairs in a 64-bit register).

dsll d,s,t =>
dsllv d,s,t

64-bit shift left by variable shift amount.

d = (long long)s << (t % 64);

dsllv d,s,t You can write the name of the machine-code shift-left-by-amount-in-

register instruction like this, but it’s better to just write dsll.

dsll d,s,shf 64-bit shift-left by a constant less than 32.

d = (long long) s <<shf;

dsll d,s,shf =>
dsll32 d,s,shf-32

64-bit shift-left by a constant of 32 or more.

d = (long long) s <<shf /* 32 ≤ shf < 63 */

dsra d,s,t =>
drsav d,s,t

64-bit shift-right: C semantics for shift-right signed, or an arithmetic

shift—as bits shift down, the top of the register is filled with copies of bit 63,

which gives you a correct implementation of signed divide by a power

of two.

d = (signed long long) s >>(t%64);

dsra d,s,shf 64-bit shift-right arithmetic by a constant (for “arithmetic” see

dsra d,s,t above). Where the constant is less than 32, this is a machine

instruction with the same name.

d = (signed long long) s >>(t%64);

dsra d,s,shf =>
dsra32 d,s,shf-32

As above, for 32 ≤ shf < 63. You probably don’t want to ever write

dsra32.
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dsrl d,s,t =>
dsrlv d,s,t

Shift-right logical—that means zeros are drawn in at top, consistent with C

semantics for unsigned integers. This is the variable-shift-amount version.

d = (long long unsigned) s >>(t%64)

dsrl d,s,shf Shift-right by a constant, a constant less than 32.

d = (long long unsigned) s >>shf%32;

dsrl d,s,shf =>
dsrl32 d,s,shf-32

As above, when shf is 32 or more.

dsub d,s,t 64-bit subtract, which takes exception on overflow: rare.

d = s - t;

dsubu d,s,t d = s - t; /* 64-bit */

ehb Execution hazard barrier—an instruction when you need to be sure that

any coprocessor zero side effects of previous instructions have completed

before any subsequent instructions get to do anything. See section 8.5.10.

ei d Enable interrupts—well, at least unconditionally set the global interrupt

enable bit in the status register (SR(IE), see section 3.3.1). The old value

of SR is left in d. This operation is atomic. It’s an analog of the (more

useful) di instruction above.

eret Return from exception: a privileged-mode instruction. Clears the

SR(EXL) bit and branches to the location saved in EPC. See section 5.5.

ext d,s,shf,sz Extract bitfield from 32-bit register. shf is the distance the field needs to

be shifted so it starts at bit 0 in s, and sz is the number of bits in the field.

mask = (2**sz - 1) << shf;

d = (s & mask) >> shf;

ins d,s,shf,sz Insert bitfield into 32-bit register. The data to insert forms the low bits of s.

shf is the distance the data needs to be shifted left, and sz is the width of

the field in bits.

mask = (2**sz - 1) << shf;

d = (d & m̃ask) | ((s << shf) & mask);

j label The basic “go-to” instruction. Note that it’s limited to reaching

instructions within a 228-byte “page.”

goto label;

j r =>
jr r

Jump to the instruction pointed to by register r. This is the only way of

transferring control to an arbitrary address, since all the

address-in-instruction formats span less than 32 bits.
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jal label Subroutine call, with return address in $ra ($31). Note that the return

address is the next instruction but one—as is usual with MIPS branches,

the immediately following instruction position is the branch delay slot, and

the instruction there is always executed before you reach the subroutine.

jal d,addr =>
la $at,addr
jalr d,$at

Like function call, but leaves the return address in the register d instead of

the usual $31. Synthesized with jalr. It’s cheating to use the instruction

la in the machine code expansion, as la is itself a macro—but it means

we can avoid explaining addressing modes here (see section 9.4 instead).

jalr d,s Variant of jal d,addr above, when the address syntax is just another

register s. You can write jal or jalr.

jal s =>
jalr $ra,s

If you specify just one register, that’s the address to call, and the return

address is put in the usual $ra.

la d,addr =>
# many options

Load address—always a synthesized instruction, which may produce very

different code sequences according to how addr is written. More about

this in section 9.4.

lb d,addr 8-bit load, sign-extend to fill register.

For this and all load/store instructions, you can write addr in many

ways—see section 9.4—but the load/store instruction can only compute an

address with a register and signed 16-bit offset.

d = *((signed char *) addr);

lbu d,addr 8-bit load, zero-extend to fill register.

d = *((unsigned char *)addr);

ld d,addr 64-bit load: exception if address is not eight-byte-aligned.

d = *((long long *)addr);

ldc1 fd,addr 64-bit load of coprocessor 1 (floating-point) register. More often written as

l.d, see section 8.3.

ldc2 fd,addr 64-bit load of coprocessor 2 register, if coprocessor 2 is used and is 64 bits

wide.

ldl d,addr
ldr d,addr

Load double “left/right”—used as a pair, these instructions implement a

64-bit unaligned load uld; see below and section 2.5.2.

ldxc1 fd,s(t) 64-bit load of coprocessor 1 (floating-point) register, with two-register

“indexed” addressing. More often written as l.d, see section 8.3.

fd = *((double *)(t+b));
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lh d,addr 16-bit load, sign-extend to fill register.

t = *((signed short *)addr);

lhu d,addr 16-bit load, zero-extend to fill register.

t = *((unsigned short *)addr);

li d,j =>
ori d,$zero,j

Load register with constant value (an “immediate”). This expansion is for

0 ≤ j ≤ 65535.

li d,j =>
addiu d,$zero,j

This one is for −32768 ≤ j < 0.

li d,j =>
lui d,hi16(j)
ori d,d,lo16(j)

This one is for any other value of j that is representable as a 32-bit integer.

ll t,addr
lld t,addr

Load-linked. Load 32 bits/64 bits, respectively, with link side effects; used

together with sc or scd to implement a lockless semaphore (see

section 8.5.2).

lui t,u Load upper immediate (constant u is sign-extended into 64-bit registers).

t = u <<16;

lw t,addr 32-bit load, sign-extended for 64-bit CPUs.

t = *((int *)(addr));

lwc1 fd,addr Load FP single to FP register file—more often written l.s. See section 8.3.

lwc2 cd,addr 32-bit load to coprocessor2 register, if implemented. Rare.

lwl t,addr

lwr t,addr

Load word left/right. See ulw below and section 2.5.2 for how these

instructions work together to perform an unaligned 32-bit load operation.

lwu t,addr 32-bit zero-extending load, only found on 64-bit CPUs.

t = (unsigned long long)*((unsigned int *)addr);

lwxc1 fd,t(b) Load 32-bit FP value using indexed (register+register) address. More often

written as l.s, see section 8.3.

fd = *((float *)(t+b));

mad s,t 32-bit integer multiply-accumulate, standard in MIPS32. The two registers

are multiplied with full precision and accumulated:

hilo = hilo + ((long long) s * (long long) t);

madu s,t Same but unsigned:

hilo = hilo+((unsigned long long)s *

(unsigned long long)t);
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madd d,s,t
maddu d,s,t

Integer multiply-accumulate with integral write of result to a general

register (signed and unsigned versions). The general-register write is only

implemented by Toshiba 3900 series cores, with this unique name. But note

that in the case where d is actually zero, this is compatible with the

MIPS32 standard mad/madu.

hilo += (long long) s * (long long) t;

d = lo;

madd16 s,t NEC Vr4100-specific integer multiply-accumulate; handles only 16-bit

operands:

lo = lo + ((short)s * (short)t);

mfc0 t,cs

mfc1 t,fs

mfc2 t,cs

Move 32 bits of data from coprocessor register cs into general-purpose

register t—if cs is 64 bits wide, that will be the low-numbered bits.

mfc0 is vital for access to the CPU control registers, mfc1 for putting

floating-point unit data back into integer registers. mfc2 is only useful if

coprocessor 2 is implemented, which is rare.

mfhc1 t,cs

mfhc2 t,fs

Move the higher 32 bits of the 64-bit coprocessor register cs or fs into

general-purpose register t.

Provided only when a MIPS32 integer unit is partnered by a 64-bit,

otherwise MIPS64-compatible coprocessor. For example, MIPS

Technologies’ 24Kf core has a 64-bit floating-point unit.

mfhi d

mflo d

Move integer multiply unit results to general-purpose register d. lo
contains the result of a division, the least significant 32 bits of the result of a

mul, or the least significant 64 bits of the result of a dmul. hi contains the

remainder of a division or the most significant bits of a multiplication.

These instructions are always interlocked; even on the earliest CPUs, the

hardware waits for any incomplete multiply/divide to finish.

move d,s =>
or d,s,$zero

d = s;

movf d,s,$fccN A variety of conditional-move instructions—more about them in

section 8.5.3.

if (!fcc(N)) d = s;

movn d,s,t if (t) d = s;

movt d,s,$fccN if (fcc(N)) d = s;

movt.d fd,fs,N

movt.s fd,fs,N

Double- and single-precision versions.

if (fcc(N)) fd = fs;

movz d,s,t if (!t) d = s;
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msub s,t

msubu s,t

The negative version of integer multiply/accumulate, in signed and

unsigned versions.

hilo = hilo - ((long long) s * (long long) t);

mtc0 t,cd

mtc1 t,fd

mtc2 t,cd

Move 32 bits from general-purpose register t to coprocessor register cd.

Note that this instruction doesn’t obey the usual convention of writing the

destination register first.

mtc0 is for the CPU control registers, mtc1 is for putting integer data into

floating-point registers (although they’re more often loaded directly from

memory), and mtc2 is implemented only if the CPU uses coprocessor

2 instructions (very rare).

If the coprocessor register is 64 bits wide, the data is loaded into the low

bits, but the state of the high 32 bits is not defined.

mthc1 t,cd

mthc2 t,fd

Move 32 bits from general-purpose register t to the higher bits of 64-bit

coprocessor register cd, while leaving the low bits unchanged.

Provided only when a MIPS32 integer unit is partnered by a 64-bit,

otherwise MIPS64-compatible coprocessor—for example, MIPS

Technologies’ 32-bit 24Kf core has a 64-bit floating-point unit.

mthi s

mtlo s

Move contents of general-purpose register s into the multiply-unit result

registers hi and lo, respectively. This may not seem useful, but they are

required to restore the CPU state when returning from an exception.

mul d,s,t Genuine three-register 32-bit integer multiply, defined in MIPS32 and

available on some earlier CPUs. The full-precision result is still delivered to

the internal hilo register. There is no unsigned version.

hilo = (long long) s * (long long) t;

d = lo;

mul d,s,t =>
mult s,t
mflo d

Three-register multiply can be synthesized when the assembler is

generating a pre-MIPS32 instruction set.

mulo d,s,t =>
mult s,t
mflo d
sra d,d,31
mfhi $at
tne d,$at,0x6
mflo d

32-bit signed multiply with overflow check.

Overflow is detected by the case where hi does not simply contain the

sign-extension of lo.

hilo = (signed)s * (signed)t;

if ((lo≥0 && hi!=0) || (s<0) && hi!=-1)

exception(BREAK, 6);

mulou d,s,t =>
multu s,t
mfhi $at
mflo d
tne $at,$zero,0x6

32-bit unsigned multiply with overflow check:

hilo = (unsigned)s * (unsigned)t;

if (hi != 0)

exception(BREAK, 6);
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TABLE 8.2 continued

Assembly/Machine Code Description

mult s,t hilo = (signed)s * (signed)t;

multu s,t hilo = (unsigned)s * (unsigned)t;

neg d,s =>
sub d,$zero,s

This version traps on overflow and is very rarely used.

d = -s;

negu d,s =>
subu d,$zero,s

No overflow: C always generates this.

d = -s;

nop =>
sll $zero,$zero,$zero

No-op, instruction code == 0.

nor d,s,t Like all bitwise operations, there’s no need for a separate op-code for 64-bit

CPUs.

d = ˜(s | t);

not d,s =>
nor d,s,$zero

d = ˜s;

nudge addr
nudgex s(t)

Shortcuts for prefetch instructions pref nudge and prefx nudge,

see below and section 8.5.8

or d,s,t d = s | t;

ori t,r,j OR with a constant. Machine instruction, but more often written as

or d,s,j:

d = s | (unsigned) j;

pref hint,addr

prefx hint,t(b)

Prefetch instruction for memory reference optimization. A program that

knows in advance it may need data can arrange for it to be brought into the

cache early, with no real side effects. Implementations are always entitled to

treat pref as a no-op.

hint defines which sort of prefetch this is; see section 8.5.8.

prefx is only available with floating-point, where it matches the

register+register address mode available for floating-point load/store

instructions.

r2u s LSI ATMizer-II only; converts to strange floating-point format. Result

appears in lo.

radd s,t LSI ATMizer-II only; strange floating-point add. Result appears in lo.

rdhwr d,$cs Read hardware register: allows unprivileged user-mode software to read

one of a set of CPU registers. See section 8.5.12.

rdpgpr d,s Read register from previous shadow set—see section 5.8.6.
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TABLE 8.2 continued

Assembly/Machine Code Description

rem d,s,t =>
teq t,$zero,0x7
div $zero,s,t
li $at,-1
bne t,$at,1f
lui $at,0x8000
teq s,$at,0x6 1f:
mfhi d

Signed integer remainder, with divide-by-zero and overflow checks:

if (t==0) exception(BREAK, 7);

if (t==-1 && s==MAXNEG32BIT)

exception(BREAK, 6);

d = s % t;

remu d,s,t =>
teq t,$zero,0x7
divu $zero,s,t
mfhi d

Unsigned integer remainder, with divide-by-zero check:

if (t==0) exception(BREAK, 7);

d = (unsigned)s % (unsigned)t;

rfe Pre-MIPS32 (in fact, MIPS I-only) instruction to restore CPU state when

returning from exception. Now obsolete and not described further here.

rmul s,t LSI ATMizer-II only; strange floating-point multiply. Result appears in lo.

rol d,s,shf =>
rotr d,s,32-shf

Rotate left by constant. rotr was new with MIPS32R2; for older ISAs, this

will be synthesized to something longer.

d = (s<<shf) | ((unsigned)s>>(32-shf));

rol d,s,t =>
negu $at,t
rotrv d,s,$at

Rotate left. Instruction sets prior to MIPS32R2 lacked the rotate-right

machine instruction; for older instruction sets, it will be synthesized to a

longer sequence.

d = (s<<t) | ((unsigned)s>>(32-t));

ror d,s,shf =>
rotr d,s,shf

Rotate right by constant. Will be synthesized for instruction sets earlier

than MIPS32R2.

d = ((unsigned)s>>shf) | (s<<(32-shf));

ror d,s,t =>
rotrv d,s,t

Rotate right by variable amount. Will be synthesized for instruction sets

earlier than MIPS32R2.

d = ((unsigned)s>>t) | (s<<(32-t));

rotr d,s,shf Rotate-right by immediate: machine code, only available in MIPS32R2.

rotrv d,s,t Rotate-right by variable amount: machine code, only available in

MIPS32R2.

rsub s,t LSI ATMizer-II only; strange floating-point multiply. Result appears in lo.

sb t,addr *((char *)addr) = t;

sc t,addr

scd t,addr

Store word/double conditional; explained in section 8.5.2.



8.2 Assembly Instructions and What They Mean 205

TABLE 8.2 continued

Assembly/Machine Code Description

sd t,addr Will take an exception if addr is not eight-byte aligned.

*((long long *)addr) = t;

sdbbp c Debug breakpoint instruction—different from a break because it drops

straight into debug mode, not just exception mode. The optional c is just

encoded into the instruction, where a debugger could read it.

Note that there have been two different encodings used for this

instruction—the obsolete one is now associated only with the Toshiba

R3900 core and its descendants.

See description of EJTAG debug unit in section 12.1.

sdc1 ft,addr Store floating-point double register to memory; more often called s.d.

sdc2 cs, addr Store contents of 64-bit coprocessor 2 register to memory.

sdl t,addr

sdr t,addr

Store double left/right; see section 2.5.2 for an explanation.

sdxc1 fs,t(b) Indexed FP store double (both t and b are registers), usually written s.d.

*((double *)(t+b)) = fs;

seb d,s In-register sign-extend, byte to register:

d = (long long)(signed char)(s & 0xff);

seh d,s In-register sign-extend, halfword to register:

d = (long long)(signed short)(s & 0xffff);

seq d,s,t =>
xor d,s,t
sltiu d,d,1

First of set of “set if ” assembly mnemonics, built by analogy to the real

machine instruction slt.

d = (s == t) ? 1 : 0;

sge d,s,t =>
slt d,s,t
xori d,d,1

d = ((signed)s ≥ (signed)t) ? 1 : 0;

sgeu d,s,t =>
sltu d,s,t
xori d,d,1

d = ((unsigned)s ≥ (unsigned)t) ? 1 : 0;

sgt d,s,t =>
slt d,t,s

d = ((signed)s > (signed)t) ? 1 : 0;

sgtu d,s,t =>
sltu d,t,s

d = ((unsigned)s > (unsigned)t) ? 1 : 0;

sh t,addr Store halfword:

*((short *)addr) = t;
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TABLE 8.2 continued

Assembly/Machine Code Description

sle d,s,t =>
slt d,t,s
xori d,d,1

d = ((signed)s ≤ (signed)t) ? 1 : 0;

sleu d,s,t =>
sltu d,t,s
xori d,d,1

d = ((unsigned)s ≤ (unsigned)t) ? 1 : 0;

sll d,s,shf d = s <<shf; /* 0 ≤ shf < 32 */

sll d,t,s =>
sllv d,t,s

sllv d,t,s

d = t <<(s % 32);

slt d,s,t d = ((signed) s < (signed) t) ? 1 : 0;

slt d,s,j =>
slti d,s,j

slti d,s,j

/* j constant */

d = ((signed) s < (signed) j) ? 1 : 0;

sltiu d,s,j /* j constant */

d = ((unsigned) s < (unsigned) j) ? 1 : 0;

sltu d,s,t d = ((unsigned) s < (unsigned) t) ? 1 : 0;

sne d,s,t =>
xor d,s,t

sltu d,$zero,d

d = (s != t) ? 1 : 0;

sra d,s,shf 32-bit shift-right by a constant. C semantics for shift-right signed, an

arithmetic shift—as bits shift down the top of the register is filled with

copies of bit 31, which gives you a correct implementation of signed divide

by a power of 2.

d = (signed) s >>shf;

sra d,s,t =>
srav d,s,t

32-bit shift-right arithmetic, by a variable shift amount:

d = (signed) s >>(t%32)

srl d,s,shf 32-bit shift-right logical: like a C shift of an unsigned quantity, where zeros

are shifted in from the top:

d = (unsigned) s >>shf;

srl d,s,t =>
slrv d,s,t

32-bit shift-right logical, shift amount in register.

d = (unsigned) s >>(t % 32);
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TABLE 8.2 continued

Assembly/Machine Code Description

ssnop =>
sll $zero,$zero,1

“Superscalar” no-op; a no-op, but one that no CPU should issue in the

same clock cycle as other instructions. Used for mystical timing purposes.

standby Enter one of the power-down modes, for NEC Vr4100 family CPU only;

wait—see below—is a more widely used instruction.

sub d,s,t Trap on overflow, little used.

d = s - t;

subu d,s,j =>
addiu d,s,-j

d = s - j;

subu d,s,t d = s - t;

suspend Enter a Vr4100 CPU’s power-down modes.

sw t,addr Store word.

*((int *)addr) = t;

swc1 ft,addr Floating-point store single; more often written s.s.

swc2 ft,addr Store 32-bit data from coprocessor 2 register, rare.

swl t,addr
swr t,addr

Store word left/right; see section 2.5.2.

swxc1 fs,t(b) Store floating-point single using indexed (two-register) addressing; usually

written with s.s.

*((float *)(t + b)) = fs;

sync Load/store barrier, mainly for multiprocessors; see section 8.5.9.

synci addr Synchronize I-cache with D-cache: Run instruction for each

cache-line-sized block after writing instructions but before executing them.

See section 8.5.11.

syscall B Cause a “system call” exception.

exception(SYSCALL, B);

teq s,t Conditional trap instruction: generate a TRAP exception if the appropriate

condition is satisfied; this one is.

if (s == t) exception(TRAP);

teq s,j =>
teqi s,j

if (s == j) exception(TRAP);

tge s,t if ((signed) s ≥ (signed) t) exception(TRAP);

tge s,j =>
tgei s,j

if ((signed) s ≥ (signed) j) exception(TRAP);
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TABLE 8.2 continued

Assembly/Machine Code Description

tgeu s,t if ((unsigned) s ≥ (unsigned) t) exception(TRAP);

tgeu s,j =>
tgeiu s,j

if ((unsigned) s ≥ (unsigned) j) exception(TRAP);

tlbp TLB maintenance; see Chapter 6.

If the virtual page number currently in EntryLo matches a TLB entry,

sets Index to that entry. Otherwise sets Index to the illegal value

0x8000.0000 (top bit set).

tlbr TLB maintenance; see Chapter 6.

Copies information from the TLB entry selected by Index into the

registers EntryLo, EntryHi1, EntryHi0, and PageMask.

tlbwi

tlbwr

TLB maintenance; see Chapter 6.

Writes the TLB entry selected by Index (instruction tlbwi) or Random
(instruction tlbwr), respectively, using data from EntryLo,

EntryHi1, EntryHi0, and PageMask.

tlt s,t More conditional traps:

if ((signed) s < (signed) t) exception(TRAP);

tlt s,j =>
tlti s,j

if ((signed) s < (signed) j) exception(TRAP);

tltu s,t if ((unsigned) s < (unsigned) t) exception(TRAP);

tltu s,j =>
tltiu s,j

if ((unsigned) s < (unsigned) j) exception(TRAP);

tne s,t if (t != s) exception(TRAP);

tne s,j =>
tnei s,j

if (t != j) exception(TRAP);

u2r s LSI ATMizer-II only; converts unsigned to strange floating point. Result

appears in lo.

udi0 d,r,s,uc
through

udi15 d,r,s,uc

Builds an instruction in that corner of the instruction encoding reserved

for user-defined instructions. Such instructions can use three

general-purpose instructions, and have a subsidiary 5-bit op-code uc,

which is available to the user logic.

uld d,addr =>
ldl d,addr
ldr d,addr+7

Unaligned load double, synthesized from load-left and load-right as

detailed in section 2.5.2 (shown for big-endian only).
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TABLE 8.2 continued

Assembly/Machine Code Description

ulh d,addr =>
lb d,addr
lbu at,addr+1
sll d,d,8
or d,d,at

Unaligned load halfword and sign-extend. This is the big-endian expansion

(the little-endian version is left as an excercise for the reader). The

expansion may be more complex, depending on addressing mode.

ulhu d,addr =>
lbu d,addr
lbu at,addr+1
sll d,d,8
or d,d,at

Unaligned load halfword and zero-extend.

ulw d,addr =>
lwl d,addr
lwr d,addr+3

Load word unaligned; sign-extend if 64 bits (shown for big-endian only).

See section 2.5.2.

usd d,addr =>
sdl d,addr
sdr d,addr+7

Unaligned store double.

ush addr =>
sb d,addr+1
srl d,d,8
sb d,addr

Unaligned store half.

usw s,addr =>
swl s,addr
swr s,addr+3

Store word unaligned; see section 2.5.2.

wait MIPS32 instruction to enter some kind of power-down state. Usually

implemented by suspending execution until an interrupt is detected.

Software should not assume that the suspension will always happen or that

waking up from wait necessarily indicates an unmasked interrupt–wait
should be called from an idle loop.

wrpgpr cd, t Write to a register in the previous shadow register set; see section 5.8.6 for

details.

wsbh 32-bit byte-swap within each of the two halfwords. This is a 32-bit

instruction; on a 64-bit CPU the top half of the register is left filled with the

sign extension of bit 31.

wsbh works well together with bit-rotates to perform many forms of byte

reorganization in a small number of instructions.

xor d,s,t d = sˆt;

xor d,s,j =>
xori d,s,j

d = s ˆ j;
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8.3 Floating-Point Instructions

There’s a reasonable set of MIPS floating-point instructions (see Tables 8.3
and 8.4), but they quickly develop their own complications. Note the following
points:

Every FP instruction comes in a single-precision version and
a double-precision version, distinguished by .s or .d in the
mnemonic.

If you have the paired-single extension, as described in section 7.10,
there will even be .ps versions of instructions, which do exactly the
same thing as the single-precision version, but twice. Paired-single
instructions that aren’t just .ps versions of instructions in the big
table are listed there, but will just refer you to the descriptions in
section 7.10.

To save space and avoid making your eyes water, Table 8.4 only lists single-
precision versions, so long as exactly the same description serves for both
versions.

The basic FP encodings and instruction results conform to the IEEE 754
standard. Where the hardware can’t produce the value required by
IEEE 754, the default behavior is to take an exception so a software emu-
lator can fill in the gaps to produce complete compliance to the
standard.

FP computational and type conversion instructions can cause excep-
tions. This is true both in the IEEE sense, where they detect conditions
that a programmer may be interested in, and in a low-level architec-
ture sense: MIPS FP hardware, if faced with a combination of operands
and an operation it can’t do correctly, will take an FP “unimplemented”
exception with the aim of getting a software emulator to carry out the
FP operation for it.

Data movement instructions (loads, stores, and moves between reg-
isters) don’t ever cause exceptions. The neg.s, neg.d, abs.s, or
abs.d instructions just flip the sign bit without inspecting the
contents: The only condition that leads to a trap is that a “signal-
ing NaN” operand to these instructions produces an IEEE “invalid”
exception.
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TABLE 8.3 Floating-Point Register and Identifier Conventions

Word Used for

fs, ft Floating-point register operands.

fd Floating-point register that receives the result.

fdhi, fdlo Pair of adjacent FP registers in a 32-bit processor, used
together to store an FP double. Use of the high-order
(odd-numbered) register is implicit in normal arithmetic
instructions.

$fccN One of the floating-point condition bits, found in the FCSR
register and that is tested by instructions like bc1t. There’s
been evolution here; the MIPS I–III ISAs have only 1
condition bit, but modern FPUs have 8. An instruction that
omits to specify which condition bit to use will quietly use
the original “zeroth” one.

fcc(N) The same thing, as seen in C code.

upper, lower The higher and lower values in an FP register holding a
paired-single value, as discussed in section 7.10.

TABLE 8.4 Floating-Point Instruction Descriptions in Mnemonic Order

Assembly
code Function

abs.s fd,fs fd = (fs < 0) ? -fs: fs

add.s fd,fs,ft fd = fs + ft;

addr.ps fd,fs,ft /* MIPS 3D "reduction add", see Section 7.10 */

fd.upper = fs.upper + fs.lower;

fd.lower = ft.upper + ft.lower;

alnv.ps fd,fs,ft,rs Pack single-precision values into a paired-single, in either of the two possible

ways as directed by the value of rs.

bc1f $fccN,label
bc1fl $fccN,label
bc1t $fccN,label
bc1tl $fccN,label

Several branch-on-FP-condition instructions, all found in Table 8.2.

bc1any2f $fccN,label
bc1any2t $fccN,label
bc1any4f $fccN,label
bc1any4t $fccN,label

MIPS-3D instructions that branch on the “OR” of two or four conditions.

See section 7.10.4.
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TABLE 8.4 continued

Assembly
code Function

c.eq.s $fccN,fs,ft
c.f.s $fccN,fs,ft
c.le.s $fccN,fs,ft
c.lt.s $fccN,fs,ft
c.nge.s $fccN,fs,ft
c.ngl.s $fccN,fs,ft
c.ngt.s $fccN,fs,ft
c.ole.s $fccN,fs,ft
c.olt.s $fccN,fs,ft
c.seq.s $fccN,fs,ft
c.sf.s $fccN,fs,ft
c.ueq.s $fccN,fs,ft
c.ule.s $fccN,fs,ft
c.ult.s $fccN,fs,ft
c.un.s $fccN,fs,ft

FP compare instructions, which compare fs and ft and store a result in FP

condition bit $fccN. They are described at length in section 7.9.7.

cabs.xx.s $fccN,fs,ft MIPS-3D extension instructions to compare the absolute value of two FP

values and store the result. The possible tests expressed by “xx” are the same

as for the c.xx.s instructions listed above.

ceil.l.d fd,fs
ceil.l.s fd,fs

Convert FP to equal or next-higher signed 64-bit integer value.

ceil.w.d fd,fs
ceil.w.s fd,fs

Convert FP to equal or next-higher signed 32-bit integer value.

cfc1 rt, fs Copy data between a floating-point control register and a general-purpose

register (“f ” is from FP, “t” is to FP). Used for the FCSR register and so on

described in section 7.7.ctc1 rs, fd

cvt.d.l fd,fs Floating-point type conversions, where the types d, l, s, and w (double,

long, float, and int, respectively) are the destination and source type in that

order.

Where the conversion is losing precision, the current rounding mode from

FCSR(RM) is used to determine how the approximation is done. For integer

conversions where the desired approximation is specific to the algorithm,

you’re better off writing instructions like floor.w.s and so on.

cvt.d.s fd,fs
cvt.d.w fd,fs

cvt.l.d fd,fs
cvt.l.s fd,fs

cvt.s.d fd,fs

cvt.s.l fd,fs

cvt.s.w fd,fs
cvt.w.d fd,fs
cvt.w.s fd,fs
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TABLE 8.4 continued

Assembly
code Function

cvt.ps.s fd, fs, ft Packs two single-precision values into a paired-single, see section 7.10.

cvt.ps.pw fd, fs, ft MIPS-3D instruction that converts two halves, each representing a 32-bit

integer, to paired-single; see section 7.10.4.

cvt.pw.ps fd, fs, ft MIPS-3D instruction that converts both halves of a paired-single to integers

at once; see section 7.10.4.

cvt.s.pl fd, fs, ft Unpacks half of a paired-single into a conventional single-precision value,

see section 7.10.cvt.s.pu fd, fs, ft

div.s fd,fs,ft fd = fs/ft;

dmfc1 rd,fs Move 64-bit value from floating point (coprocessor 1) to integer register with

no conversion.

dmtc1 rs,fd Move 64-bit value from integer to floating-point (coprocessor 1) register

with no conversion or validity check.

floor.l.d fd,fs
floor.l.s fd,fs

Convert FP to equal or next-lower 64-bit integer value.

floor.w.d fd,fs
floor.w.s fd,fs

Convert FP to equal or next-lower 32-bit integer value.

l.d fd,addr =>
ldc1 fd,addr

Load FP double, must be eight-byte aligned.

fd = *((double *)(o+b));

l.s fd,addr =>
lwc1 fd,addr

Load FP single, must be four-byte aligned.

fd = *((float *)(o+b));

ldc1 fd, disp(b) Deprecated equivalent of l.d.

l.d fd, t(b) =>
ldxc1 fd,t(b)

Indexed load to floating-point register. Best to write with the l.d form.

Note that the role of the two registers is not quite symmetrical—b is

expected to hold an address and t an offset, and it’s an offense for (b+t) to

end up in a different section of the overall MIPS address map than b
(defined by the top 2 bits of the 64-bit address).

fd = *((double *) (b+t));

li.s fd,const
li.d fd,const

Load floating-point constant, commonly synthesized by placing the constant

in a memory location and loading it.

luxc1 fd, i(b) Double-indexed load-double, exactly like ldxc1 except that if the address

turns out to be misaligned, no exception is taken and the load happens from

the address obtained by zeroing the bottom 3 bits of the effective address.

Used together with alnv to handle misaligned pairs of single-precision

values—see the description of alnv in section 7.10.



214 Chapter 8—Complete Guide to the MIPS Instruction Set

TABLE 8.4 continued

Assembly
code Function

lwc1 fd, disp(b) Deprecated equivalent of l.s.

lwxc1 fd, i(b) Explicit double-indexed load instruction; usually better to use l.s with the

appropriate address mode. See note on ldxc1, above.

madd.s fd,fr,fs,ft fd = fr + fs*ft;

mfc1 rs,fd Move 32-bit value from floating point (coprocessor 1) to integer register with

no conversion.

mfhc1 rs,fd Move 32-bit value from the high 32 bits of a floating-point (coprocessor 1)

register to an integer register. Useful for 32-bit integer CPUs with 64-bit

FPUs.

mov.s fd,fs fd = fs;

movf.s fd,fs,N if (!fcc(N)) fd = fs;

movn.s fd,fs,t if (t != 0) fd = fs; /* t is a GPR */

movt.s fd,fs,N if (fcc(N)) fd = fs;

movz.s fd,fs,t if (t == 0) fd = fs; /* t is a GPR */

msub.s fd,fr,fs,ft fd = fs*ft - fr;

mtc1 rs,fd Move 32-bit value from integer to floating-point (coprocessor 1) register

with no conversion or validity check.

mthc1 rs,fd Move 32-bit value from integer to the high 32 bits of a floating-point

(coprocessor 1) register. Mainly useful for a 32-bit integer CPU with a full

64-bit FPU (the great majority of MIPS CPUs are 64-bit ones).

mul.s fd,fs,ft fd = fs*ft;

mulr.ps fd,fs /* MIPS-3D "Reduction Add", see Section 7.10.4 */

fd.upper = fs.upper * fs.lower;

fd.lower = ft.upper * ft.lower;

neg.s fd,fs fd = -fs;

nmadd.s fd,fr,fs,ft fd = -(fs*ft + fr);

nmsub.s fd,fr,fs,ft fd = -(fr - fs*ft);
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TABLE 8.4 continued

Assembly
code Function

pll.ps fd, fs, ft Repack paired-single, see section 7.10.

plu.ps fd, fs, ft

pul.ps fd, fs, ft

puu.ps fd, fs, ft

prefx hint, i(b) Register/register address mode cache prefetch instruction. Only available

with floating point (where the same address mode is used for

ldxc1/sdxc1). But it’s also listed in the integer instruction table. See

section 8.5.8 for how it works.

pul.ps fd, fs, ft Repeated in alphabetical sequence—see pll above.

puu.ps fd, fs, ft

recip.s fd,fs Fast reciprocal. Not IEEE accurate, but only wrong by one unit in the least

significant place.

fd = 1/fs;

recip1.s fd,fs MIPS-3D—recip1 is a quick-and-dirty reciprocal approximation, and

recip2 is a special multiply-add that does a reciprocal refinement step. See

section 7.10.4
recip2.s fd,fs,ft

round.l.d fd,fs
round.l.s fd,fs

Convert FP to equal or closest 64-bit integer value.

round.w.d fd,fs
round.w.s fd,fs

Convert FP to equal or closest 32-bit integer value.

rsqrt.s fd,fs Fast and fairly accurate (not wrong by more than 2 bits in the least significant

place) but not IEEE accurate.

fd = sqrt(1/fs);

rsqrt1.s fd,fs MIPS-3D—recip1 is a quick-and-dirty square-root approximation, and

rsqrt2 is a special multiply-add that does a square root refinement step.

See section 7.10.4.
rsqrt2.s fd,fs,ft

s.d ft,addr =>
sdc1 ft,addr

FP store double; address must be eight-byte aligned. Will be synthesized to

two swc1 instructions on a CPU with a 32-bit FPU.

*((double *)addr) = ft;
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TABLE 8.4 continued

Assembly
code Function

s.s ft,addr =>
swc1 ft,addr

FP store single; address must be four-byte aligned.

*((float *)addr) = ft;

sdc1 fd, disp(b) Deprecated equivalent to s.d.

sdxc1 fd, i(b) Explicit double-indexed store double—see notes on ldxc1, above; usually

better to write s.d with an appropriate addressing mode.

sqrt.s fd,fs fd = sqrt(fs); /* IEEE compliant */

sub.s fd,fs,ft fd = fs - ft;

suxc1 fd, i(b) Double-indexed store, exactly like sdxc1 except that no exception results

from a misaligned address. The store proceeds, but to the address rounded

down to an eight-byte boundary.

swc1 fd, disp(b) Deprecated equivalent to s.s.

swxc1 fd, i(b) Explicit double-indexed store of 32-bit FP value; usually better to write s.s
with an appropriate addressing mode. See notes on ldxc1 above.

trunc.l.d fd,fs
trunc.l.s fd,fs

Convert FP to equal or next-nearest-to-zero 64-bit integer value.

trunc.w.d fd,fs
trunc.w.s fd,fs

Convert FP to equal or next-nearest-to-zero 32-bit integer value.

8.4 Differences in MIPS32/64 Release 1

The MIPS32/64 specifications were updated in 2003 to “Revision 2,” which
is what is described here. So all this section needs to do is to provide a
summary of what isn’t in CPUs that are compliant to Revision 1 of the
specifications.

8.4.1 Regular Instructions Added in Release 2

The instructions listed here include a few defined for the second release of the
MIPS32/64 specifications in 2003. They’re listed here mostly for the benefit of
those using CPUs compliant to the first release of the specifications, which won’t
have these instructions.
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Extract and Insert bitfield

The ext and ins instructions (and 64-bit variants dext, dextm, dextu, dins,
dinsm, and dinsu) make access to fixed bitfields more efficient (the field size
and offset are built into these two-register instructions).

Word Reorganization—Rotate, Byte-extend, and Swap Assistance

In response to requirements to do more register-to-register data reorganization
(a particular concern in networking applications), there are new:

Bit rotate instructions: Prior to MIPS32/64R2, MIPS had only shift
instructions. Now there are rotr (rotate amount encoded in instruc-
tion) and rotrv (rotate amount specified by a source register), with
64-bit drotr and drotrv variants.

Sign-extend byte or halfword: You can always sign-extend by a shift-left
followed by a shift-right-arithmetic, but the instructions seb, seh are
register-to-register operations that sign-extend a byte/halfword,
respectively.

Byte swap within halfwords: wsbh seems a bit of an odd instruction, but
in combination with a rotate, it allows most useful byte reorganizations
within a 32-bit word to be accomplished in one or two instructions.

Provide for 64-bit FPU (and CP2) on 32-bit CPUs

It had become evident that when a 32-bit CPU was equipped with floating-
point hardware, it was often sensible to make that a full 64-bit FPU. While
MIPS32/64 release 1 left that possible, there was no way to get full 64-bit
values between general-purpose registers and FP registers without passing them
through memory. The mfhc1/mthc1 instructions do that job, copying the high
half of a value from and to FP registers—the existing mfc1/mtc1 instructions
already handle the low half.

Revision 2 also defines mfhc2/mthc2, which do the same job for any 64-bit
coprocessor 2 a CPU may define.

Read Hardware Register

rdhwr provides user-mode read-only access to some CPU-specific informa-
tion, see section 8.5.12.

Make Newly Written Instructions Visible

The synci instruction does all the cache manipulation necessary to make any
instructions you just wrote into memory reliably visible for instruction fetch
through the I-cache. Unlike older cache instructions, it is not privileged and is
available for user-mode programs. See section 8.5.11.
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8.4.2 Privileged Instructions Added in Release 2

There are just a couple of changes in the privileged (kernel-only) instruc-
tion set.

Atomic Interrupt Disable/Enable

Prior to Release 2, there was no atomic way of disabling all interrupts in a MIPS
CPU: The required RMW sequence on the SR register could itself be interrupted.
You could make that safe by OS discipline (see section 5.8.3), but now you have
a genuine atomic instruction.

di disables interrupts (clearing SR(IE)) in a single atomic step. It returns
the old value of SR in its target register, so you generally enable interrupts again
by using an mtc0 with the saved value. But for reasons of instruction set sym-
metry, R2 also defines an ei instruction, which atomically sets SR(IE).

Shadow Register Support

Shadow registers are one or more duplicate sets of GP registers, which you may
choose to use in an exception handler, most often in an interrupt handler. The
R2 specification provides different ways you can use them, as described in
section 5.8.6.

The new instructions involved are rdpgpr/wrpgpr, which, respectively,
read from and write to a register in some register set other than the current one.

8.5 Peculiar Instructions and Their Purposes

MIPS has never avoided innovation, and the instruction set contains features
whose ingenuity might go unheeded (and unused) because they are hard to
understand and have not been well explained. This section discusses those
features.

8.5.1 Load Left/Load Right: Unaligned Load and Store

Any CPU is going to be more efficient if frequently used data as arranged in
memory is aligned on memory boundaries that fit the hardware. For a machine
with a 32-bit bus, this favors 32-bit data items that are stored on an aligned
32-bit boundary; similarly, a 64-bit bus favors 64-bit data items stored on an
aligned 64-bit boundary.

If a CPU must fetch or store unaligned data that crosses the normal storage-
width boundary, it must do a double operation. RISC pipeline simplicity will
not let the CPU perform two operations for one instruction, so an unaligned
transfer will take at least two instructions.
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The ultimate RISC attitude is that we’ve got byte-sized operations and that
any unaligned operation you like can be built out of those. If a piece of data
(formatted as a four- or eight-byte integer value) might be unaligned, the pro-
grammer/compiler can always read it as a sequence of byte values and then use
shift/mask operations to build it up in a register. The sequence for a word-
sized load looks something like this (assuming a big-endian CPU, and without
optimizing for the load delay in the CPU pipeline):

lbu rt,o(b)
sll rt,rt,24
lbu rtmp,o+1(b)
sll rtmp,rtmp,16
or rt,rt,rtmp
lbu rtmp,o+2(b)
sll rtmp,rtmp,8
or rt,rt,rtmp
lbu rtmp,o+3(b)
or rt,rt,rtmp

That’s 10 instructions, four loads, and requires a temporary register. It is
likely to be quite a performance hit if you do it a lot.

The MIPS solution to this is a pair of instructions, each of which can
obtain as much of the unaligned word as fits into an aligned word-sized
chunk of memory. The instructions invented for the MIPS instruction set
have names like load left and load right: A pair of them is enough to
do an unaligned load/store (word or double size) operation. They were
mentioned in section 2.5.2.

The hardware that accesses the memory (or cache) transfers four or eight
bytes of aligned data. Partial-word stores are implemented either by a hardware
signal that instructs the memory controller to leave certain bytes unchanged
or by a read-modify-write (RMW) sequence on the entire word/doubleword.
MIPS CPUs mostly have RMW hardware available for writes to the data cache,
but don’t do that for memory—the memory controller must implement partial-
word writes for itself.

We said that there need to be two instructions, because there are two bus
cycles. The 32-bit instructions are lwl and lwr, for “load word left” and “load
word right”; the 64-bit instructions are ldl and ldr, for “load double left”
and “load double right.” The “left” instruction deals with the high-order bits
of the unaligned integer, and the “right” instruction fetches the low-order bits
(“left” is used in the same sense as in “shift-left”). Because the instructions are
defined in terms of more significant and less significant bits, but must deal with
a byte-addressed memory, their detailed use depends on the endianness of the
CPU (see section 10.2). A big-endian CPU keeps more significant bits earlier, in
lower byte addresses, and a little-endian CPU keeps more significant bits later,
in higher addresses.
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FIGURE 8.1 Unaligned load double on a big-endian CPU.

Figure 8.1 is an attempt to show what’s happening for a big-endian CPU
when the unaligned pseudo-operation uld d, 0(b) is coded as:

ldl d, 0(b)
ldr d, 7(b)

The address value in b can, of course, be arbitrarily aligned (an unaligned
value would cause an exception in the conventional ld instruction). So what’s
going on in Figure 8.1?
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ldl d, 0(b): The 0 offset marks the lowest-addressed byte of the
unaligned doubleword, and since we’re big-endian that’s the 8 most sig-
nificant bits. ldl is looking for bits to load into the left (most significant
bits) of the register, so it takes the addressed byte and then the ones after it
in memory to the end of the word. They’re going up in memory address,
so they’re going down in significance; they want to be butted up against
the high-numbered end of the register, as shown.

ldr d, 7(b): The 7 is a bit odd, but it points at the highest-addressed
byte of the doubleword—b+8 would point at the first byte of the
next doubleword, of course. ldr is concerned with the rightmost,
least significant bits; it takes the remaining bytes of our original data
and butts them against the low-numbered bits of the register, and
the job’s done.

If you’re skeptical about whether this works for words in any alignment,
go ahead and try it. Note that in the case where the address is, in fact, correctly
aligned (so the data could have been loaded with a conventional ld instruction),
uld loads the same data twice; this is not particularly interesting but usually
harmless.

The situation can get more confusing for people who are used to little-
endian integer ordering, because they often write data structures with the least
significant bits to the left. Once you’ve done that, the “left” in the instruction
name becomes “right” on the picture (though it’s still movement toward more
significant bits).

On a little-endian CPU the roles of ldl/ldr are exchanged, and the code
sequence is:

ldr d, 0(b)
ldl d, 7(b)

Figure 8.2 shows you what happens: the most significant bits are reluc-
tantly kept on the left, so it’s the mirror image of the diagram I’d naturally have
drawn.

With these figures in front of us, we can try to formulate an exact description
of what the instructions do:

Load/store left: Find the addressed byte and enclosing word (or double-
word, for 64-bit operations). Operate on the addressed byte and any
more bytes between it and the least significant end of that memory word
(higher-byte addresses for big-endian and lower-byte addresses for little-
endian).

Load: Grab all those bytes and shift them to higher bit numbers until
they’re up against the top of the register. Leave any lower-bit-numbered
byte positions within the register unchanged.
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FIGURE 8.2 Unaligned load double on a little-endian CPU.

Store: Replace those bytes with as many bytes of the register as there’s
room for, starting at the most significant byte in the register.

Load/store right: Find the addressed byte and enclosing word/double-
word. Operate on the addressed byte and any more bytes between it and
the most significant end of that memory word (lower-byte addresses for
big-endian and higher-byte addresses for little-endian).
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Load: Grab all those bytes and shift them to lower bit numbers until
they’re down against the bottom of the register. Leave any higher-bit-
numbered byte positions within the register unchanged.

Store: Replace those bytes with as many bytes of the register as there’s
room for, starting with the least significant byte in the register.

The load/store left/right instructions do not require the memory controller
to offer selective operations on arbitrary groups of bytes within a word; the
active byte lanes are always together at one end of a word or doubleword.

Note that these instructions do not perform all possible realignments;
there’s no special support for unaligned load half (which has to be implemented
with byte loads, shifts, masks, and combines).

8.5.2 Load-Linked/Store-Conditional

The instructions ll (load-linked) and sc (store-conditional) provide an
alternative to the atomic test-and-set sequence that is part of most traditional
instruction sets. They provide a test-and-set sequence that operates without any
guarantee of atomicity but that succeeds (and tells you it’s succeeded) only if
it turned out to be atomic. That seems more complicated, but ll/sc scale well
with increasingly large multiprocessors with relatively “distant” shared memory
(while atomic operations scale badly).

See section 5.8.4 for what they’re for and how they’re used. But here’s how
they work. The instruction ll d, o(b) performs a 32-bit load from the usual
base+offset address. But as a side effect, it remembers that a load-link has hap-
pened (setting an otherwise invisible linked status bit inside the CPU). It also
keeps the address of the load in the register LLAddr.

A subsequent sc t,o(b) first checks whether it can be sure that the read-
modify-write sequence that began with the last-executedllwill complete atom-
ically. If it can be sure, then the value of t is stored into the location, and the
“true” value 1 is returned in t. If it can’t be sure that the operation was atomic,
no store happens and t is set 0.

CAUTION! The test for atomicity is unlikely to be exhaustive. The instruction may fail
when the memory location has not, in fact, been changed, because the
CPU detected some condition where it might have been changed.

There are two reasons why sc could fail. The first is that the CPU took an
exception somewhere between executing the ll and the sc. Its exception han-
dler, or a task switch triggered by the exception, might have done something
nonatomic.

The second type of failure happens only in a multiprocessor, when another
CPU has written the memory location or one near it (commonly in the same
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line, but some implementations may monitor the whole memory translation
page). For efficiency reasons, this detector is only enabled when both partici-
pating CPUs have agreed to map this data as a shared area—strictly, if the other
CPU has completed a coherent store to the sensitive block.

Let’s emphasize again: The failure of the sc is not proof that some other task
or CPU has in fact written the variable, it just says that might have happened and
you should check; implementations are encouraged to trade off a fair number
of false warnings against simplicity or performance.

Multiprocessor CPUs must keep track of the address used by the last ll, and
they keep it in the coprocessor 0 register LLAddr, where software can read and
write it. But the only reasons to read and write this register are diagnostic; on
a CPU without multiprocessor features, it is redundant. You’re recommended
not to rely on its existence.

Here’s a brief example: an “atomic” increment routine that matches the
Linux kernel’s atomic inc(&mycount) call. Concurrent threads—possibly
on different CPUs—can call this knowing that each call will increment the
value by 1:

atomic_inc:
ll v0, 0(a0) # a0 has pointer to ’mycount’
addu v0, 1
sc v0, 0(a0)
beq v0, zero, atomic_inc # retry if sc fails
nop
jr ra
nop

NEC omitted ll/sc instructions from its Vr41xx CPU family, probably
unaware that uniprocessors can benefit from these instructions too.

8.5.3 Conditional Move Instructions

A conditional move instruction copies data from one register to another, but
only if some condition is satisfied—otherwise, it does nothing. They were fea-
tured in other RISC architectures (ARM may have been first) before making a
MIPS debut with the MIPS IV instruction set (first implemented in the R8000,
R10000, and R5000 in 1995–1996). Conditional moves allow compilers to gen-
erate code with fewer conditional branches—which is good, because condi-
tional branches are bad for pipeline efficiency.

CPUs built with the simple five-stage pipeline described in Chapter 1 don’t
have much trouble with branches; the branch delay slot instruction is usually
executed, and the CPU then moves straight to the branch target. With these
simple CPUs, most branches are free (provided the branch delay slot contains
a useful instruction) and the others cost only one clock cycle.
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But more extravagant implementations of the MIPS ISA may lose many
instruction-execution opportunities while waiting for the branch condition
to be resolved and the target instruction to be fetched. The long-pipeline
R4400, for example, always pays a two-clock-cycle penalty on every taken
branch. In the highly superscalar R10000 (which can issue four instructions
per clock cycle) you might lose seven instruction issue opportunities waiting
for the branch condition to be resolved. To reduce the effect of this, the
R10000 has special branch prediction circuits that guess the branch outcome
and run ahead accordingly, while keeping the ability to back off from those
speculative instructions. This is quite complicated: If the compiler can reduce
the frequency with which it relies on the complicated features, it will run
faster.

How do conditional move instructions get rid of branches? Consider a piece
of code generating the minimum of two values:

n = (a < b) ? a: b;

Assuming that the compiler has managed to get all the variables into reg-
isters, this would normally compile to a sequence like the following (this is
logical assembly language sequence, before making pipeline adjustments for
delay slots):

slt t0, a, b
move n, a
bne zero, t0, 1f
move n, b

1:

can be replaced with:

slt t0, a, b
move n, a
movz n, b, t0

Although the conditional move instruction movz looks strange, its role in
the pipeline is exactly like any other register/register computational instruc-
tion. A branch has been removed and our highly pipelined CPU will go
faster.

8.5.4 Branch-Likely

Another pipeline optimization, this one introduced with MIPS II, is branch-
likely.
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Note that these instructions are hard to implement efficiently on machines
with particularly sophisticated pipelines, so the MIPS32 specification depre-
cates their use in portable code.

Compilers are generally reasonably successful in filling branch delay slots,
but they have the hardest time at the end of small loops. Such loop-closing
branches are the most frequently executed, so nops in their delay slots are sig-
nificant; however, the loop body is often full of dependent code that can’t be
reorganized.

The branch-likely instruction nullifies the branch delay slot instruction
when the branch is not taken. An instruction is nullified by preventing its write-
back stage from happening—and in MIPS, that’s as if the instruction had never
been executed. By executing the delay slot instruction only when the branch is
taken, the delay slot instruction becomes part of the next go around the loop.

So any loop:

loop:
first
second
...
blez t0, loop
nop

can be transformed to:

loop:
first

loop2:
second
...
blezl t0, loop2
first

This means we can fill the branch delay slot on loops almost all the time,
greatly reducing the number of nops actually executed.

You’ll see it implied in some manufacturers’ documentation that branch-
likely instructions, by eliminating nops, make programs smaller; this is a mis-
understanding. You can see from the example that the nop is typically replaced
by a duplicated instruction, so there’s no gain in program size. The gain is in
speed.

8.5.5 Integer Multiply-Accumulate and Multiply-Add Instructions

Many multimedia algorithms include calculations that are basically a sum of
products. In the inner loops of something like a JPEG image decoder, the
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calculation is intensive enough to keep the CPU’s arithmetic units fully utilized.
The calculations break down into a series of multiply-accumulate operations,
each of which looks like this:

a = a + b*c;

Although the RISC principles described in Chapter 1 suggest that it might
be better to build this calculation out of simple, separate functions, this may
be a deserved exception. Multiply is a multiple-clock-cycle operation, leaving a
simple RISC with the problem of scheduling the subsequent (quick) add. If you
attempt the add too early, the machine stalls; if you leave it until too late, you
don’t keep the critical arithmetic units busy. In a floating-point unit, there’s an
additional advantage in that some housekeeping associated with every instruc-
tion can be shared between the multiply and add stages.

Before they were defined by MIPS32/64, multiply-accumulate operations
were vendor-specific extensions. MIPS32/64 was able to bless the compatible
operations already implemented on IDT, Toshiba, and QED CPUs. They oper-
ate in the independently clocked integer multiply unit and so are all multiply-
accumulate operations,2 accumulating in the multiply unit output registers lo
and hi. Confusingly, all vendors have called their instructions mad or madd
rather than “mac.”

8.5.6 Floating-Point Multiply-Add Instructions

All the arguments above apply to floating-point calculations too, though the
critical applications here are 3D graphics transformations and heavy-duty
matrix math. In a floating-point unit, there’s an additional benefit—some
housekeeping (normalization and rounding) associated with every nontrivial
FP instruction can be shared between the multiply and add stages.

The multiply-add at the heart of most PowerPC floating-point units has cer-
tainly produced some very impressive figures, which was obviously an influence
on MIPS’s adoption of these operations.

The floating-point operations madd, msub, nmadd, and nmsub are genuine
four-operand multiply-add instructions, performing operations such as:

a = b + c*d;

They’re aimed at large graphics/numeric-intensive applications on SGI
workstations and heavyweight numerical processing in SGI’s range of super-
computers. But they do not always produce exactly the same result as is

2. Toshiba’s R3900 and some other CPUs have a three-operand multiply-add, but even there the
addend is constrained to come from lo/hi. The IDT and QED CPUs offer a two-operand
instruction that is identical to Toshiba’s in the special case where the destination register is $0.



228 Chapter 8—Complete Guide to the MIPS Instruction Set

mandated by the IEEE 754 standard for a sequence of multiply-then-add
(because the combined instructions do not round the product before doing the
add, the combined instructions are excessively precise).

8.5.7 Multiple FP Condition Bits

Prior to MIPS IV, all tests on floating-point numbers communicated with the
main instruction set through a single condition bit, which was set explicitly by
compare instructions and tested explicitly by special conditional branch
instructions. The architecture grew like this because in the early days the
floating-point unit was a separate chip, and the FP condition bit was imple-
mented with a signal wire that passed into the main CPU.

The trouble with the single bit is that it creates dependencies that reduce the
potential for launching multiple instructions in parallel. There is an unavoid-
able write-to-read dependency between the compare instruction that creates
a condition and the branch instruction that tests it, while there’s an avoid-
able read-to-write interaction where a subsequent compare instruction must
be delayed until the branch has seen and acted on its previous value.

FP array calculations benefit from a compilation technique called software
pipelining, where a loop is unrolled and the computations of successive loop
iterations are deliberately interleaved to make maximum use of multiple FP
units. But if something in the loop body requires a test and branch, the single
condition unit will make this impossible; hence, multiple conditions can make
a big difference.

Modern FPUs provide 8 bits, not just 1; compare and FP conditional branch
instructions specify which condition bit should be used. Older compilers
set reserved fields to zero, so old code will run correctly using just condition
code zero.

8.5.8 Prefetch

pref provides a way for a program to signal the cache/memory system that
data is going to be needed soon. Implementations that take advantage of this
can prefetch the data into a cache. It’s not really clear how many applications
can foresee what references are likely to cause cache misses; prefetch is use-
ful for large-array arithmetic functions, however, where chunks of data can be
prefetched in one loop iteration so as to be ready for the next go-around.

The first argument to pref is a small-integer coded “hint” about how the
program intends to use the data. A range of values that have been implemented
in some MIPS32/64 CPUs is shown in Table 8.5.

If the CPU does not understand a hint, it is likely to treat it either as a
prefetch with a “load” hint or ignore it altogether. In general, CPUs are free
to ignore pref completely, treating it as a nop, so although an optimization
using hints is aimed at one particular CPU, it should not break any other.
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TABLE 8.5 Prefetch Hint Codes

Value / MIPS name What might happen When to use it

0 - load Read the cache line into the
D-cache if not present.

When you expect to read the
data soon. Use “store” hint if
you also expect to modify it.

1 - store

4 - load streamed Do something to avoid overwriting
whole cache with a stream of data
items, each used only “once.”
Perhaps use just one cache way.

For data that you expect to
process sequentially and can
afford to discard from the
cache once processed.

5 - store streamed

6 - load retained Opposite of streamed (so perhaps
use any other cache way).

For data that you expect to use
more than once and that may
be subject to competition from
streamed data.

7 - store retained

25 - writeback invalidate/
nudge

If the line is in the cache, invalidate
it (writing it back first if it was
dirty).

When you know you’ve
finished with the data and
want to make sure it loses in
any future competition for
cache resources.

30 - PrepareForStore If the line is not in the cache, create
a cache line—but instead of reading
it from memory, fill it with zeros
and mark it as dirty.
If the line is already in the cache, do
nothing—this operation cannot be
relied upon to zero the line.

When you know you will
overwrite the whole line, so
reading the old data from
memory is unnecessary.
A recycled line is zero-filled
only because its former
contents could have belonged
to a sensitive application—
allowing them to be visible to
the new owner would be a
security breach.

Some MIPS CPUs implement a nonblocking load in which execution
continues after a load cache miss, just so long as the load target register is not ref-
erenced. However, the pref instruction is more useful for longer-range predic-
tion of memory accesses (and becoming a no-op in CPUs that don’t implement
it is more benign than blocking on a load a program has deliberately performed
early).

8.5.9 Sync: A Memory Barrier for Loads and Stores

Suppose we have a program that consists of a number of cooperating sequen-
tial tasks, each running on a different “processor” and sharing memory. We’re
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probably talking about a multiprocessor using sophisticated cache coherency
algorithms, but the cache management is not relevant right now. And the same
issues can arise when the other “processor” is an I/O controller using DMA.

Any task’s robust shared memory algorithm will be dependent on when
shared data is accessed by other tasks: Did they read that data before I changed
it? Have they changed it yet?

Since each task is strictly sequential, why is this a problem? It turns out
that the problem occurs because CPU tuning features often interfere with
the logical sequence of memory operations; by definition, this interference
must be invisible to the program itself, but it will show up when viewed
from outside. There can be good reasons for breaking natural sequence. For
optimum memory performance, reads—where the CPU is stalled waiting for
data—should overtake pending writes. As long as the CPU stores both the
address and data on a write, it may defer the write for a while. If a CPU does
that, it had better check that the overtaking read is not for a location for which
a write is pending; that can be done.

Another example is when a CPU that implements nonblocking loads ends
up with two reads active simultaneously; for best performance the memory
system should be allowed to choose which one to complete first.

CPUs that allow neither of these changes of sequence, performing all reads
and writes in program order, are called strongly ordered. Many MIPS CPUs,
when configured as uniprocessors, are strongly ordered. But there are excep-
tions: Even some early R3000 systems would allow reads to overtake pending
writes (after checking that the read was not for any pending-write location).

A sync instruction defines a load/store barrier. You are guaranteed that all
load/stores initiated before the sync will be seen before any load/store initiated
afterward.

Note that in a multiprocessor, we have to insist that the phrase “be seen”
means “be seen by any task in the system that correctly implements the shared
memory caching system.” This is usually done by ensuring that sync produces
a reordering barrier for transactions between the CPU and the cache/memory/
bus subsystem.

There are limitations. There is no guarantee about the relative timing of
load/stores and the execution of the sync itself; it merely separates load/stores
before the instruction from those after. sync is not guaranteed to help out with
the problem of ensuring some timing relationship between the CPU’s program
execution and external writes, which we mention in section 10.4.

And inside a system syncworks only on certain access types (uncached and
coherent cached accesses). Much “normal” cached memory is noncoherent; any
data space that is known not to be shared is safe, and so is anything that is
read-only to the sharing tasks.

sync does not need to do anything on CPUs that are strongly ordered; in
such cases it may be a nop.

However, it’s not unusual for sync to be much stronger than it needs to be;
consult your CPU’s manual.
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8.5.10 Hazard Barrier Instructions

It’s commonplace for one instruction to use a result obtained by its immediate
predecessor. In a pipelined processor you’d normally read the second instruc-
tion’s operand from the register file before its predecessor’s value had been writ-
ten back. That’s not a problem, because MIPS instructions only pass data in
registers, and data going to and from the general-purpose and floating-point
registers is extensively bypassed—that is, the hardware detects the dependency
and arranges to forward the data directly to the second instruction, just as it
needs it.

However, this isn’t done (in general) for CP0 registers. If you write a field
of a CP0 register, it may affect subsequent instructions, and the MIPS rules do
not guarantee how long that might take.

There are two kinds of hazards. The most obvious is where the dependent
instruction uses the value provided by the first: That’s called an exception hazard.

But a more troublesome case is where the write changes some CPU state
so as to affect even the fetch of subsequent instructions: That’s the case, for
example, with a CP0 write that changes the memory translation setup. Those
are called instruction hazards.

Traditionally, MIPS CPUs left the kernel/low-level software engineer with
the job of designing sequences that are guaranteed to run correctly, usually by
adding a sufficient number of nop or ssnop3 instructions between the write
and the dependent instruction.

From Release 2 of the MIPS32 specification, though, this is replaced by
hazard barrier instructions. eret, jr.hb, and jalr.hb are barriers to all side
effects, including execution hazards, while ehb (a kind of no-op on steroids)
deals, with less overhead, with exception hazards.

For a longer discussion of hazards and barriers, see section 3.4.

Porting Software to Use the New Instructions

If you know your software will only ever run on a MIPS32 Release 2 or higher
CPU, then that’s great. But to maintain software that has to continue running
on older CPUs, you’re guaranteed that:

ehb is a no-op: On all previous CPUs. You can create software that con-
tinues to work on old CPUs but is also safe on all future MIPS32/64-
compliant CPUs: Just substitute an ehb for the last no-op in your
sequence of “enough no-ops.”

jr.hb and jalr.hb: Are decoded as plain jump-register and call-by-register
instructions on earlier CPUs. Again, provided you already had enough
no-ops for your worst-case older CPU, your system should now be safe
on MIPS32/64 Release 2 CPUs.

3. ssnop is a special sort of no-op that is guaranteed to occupy a whole issue cycle by itself on a
CPU that is capable of issuing more than one instruction per clock cycle.
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8.5.11 Synci: Cache Management for Instruction Writers

A program that loads another program into memory is actually writing the D-
side cache. The instructions it has loaded can’t be executed until they reach the
I-cache. MIPS CPUs have no logic to join up the two caches (both caches are
performance-critical, so it probably doesn’t make much sense to add logic for
this purpose, which would be rarely used).

After the instructions have been written, the loader should arrange to write
back any containing D-cache line and invalidate any locations already in the
I-cache. You can certainly do that with cache instructions, as described in
section 4.6—but those instructions are only available in kernel mode, and a
loader writing instructions for the use of its own process need not be privileged
software.

So, in the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
which does the whole job for a cache-line-sized chunk of the memory you just
loaded: That is, it arranges a D-cache write-back and an I-cache invalidate.

To employ synci at user level, you need to know the size of a cache line,
and that can be obtained with a rdhwr SYNCI Step from one of the standard
“hardware registers” described in the next section.

8.5.12 Read Hardware Register

rdhwr provides useful information about the hardware directly to unprivileged
(user-mode) software.

The MIPS32/64 specification defines four registers so far. The OS can
control access to each register individually through a bitmask in the CP0 reg-
ister HWREna (set bit 0 to enable register 0 and so on.) HWREna is cleared to all
zeros on reset, so software has to explicitly enable user access. Privileged code
can always read everything, irrespective of zeros in HWREna.

The four registers are:

CPUNum (0): Number of the CPU on which the program is currently
running. This comes directly from the coprocessor 0 EBase(CPUNum)
field.

SYNCI Step (1): The effective size of an L1 cache line.4

The line size is important to user programs, because they can now do
things to the caches using the synci instruction to make instructions
you’ve written visible for execution. ThenSYNCI Step tells you the “step
size”—the address increment between successive syncis required to
cover all the instructions in a range.

IfSYNCI Step returns zero, that means that you don’t need to use synci
at all.

4. Strictly, it’s the lesser of the I-cache and D-cache line size, but it’s most unusual to make them
different.
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CC (2): User-mode read-only access to the CP0 Count register, for high-
resolution counting. Which wouldn’t be much good without . . .

CCRes (3): Tells you how fast Count counts. It’s a divider from the pipe-
line clock (if you read a value of “2,” then Count increments every
two cycles, at half the pipeline clock rate).

8.6 Instruction Encodings

All MIPS instructions defined by Release 2 of the MIPS32/64 ISA (and a
judicious choice of different instructions defined by architectural variants) are
listed in order of encoding in Table 8.6. Subsections 8.6.2 and 8.6.3 provide
further notes on the material in this table.

Most MIPS manuals say there are only three instruction formats used.
I daresay this corresponds to some reality in the original internal design of the
chip, but it never looked like that to the user, to whom it appears that different
instructions use the fields for quite different purposes. Newer instructions use
more complex encodings.

Table 8.6 tells you the binary encoding and the mnemonic of the instruction
in assembly code.

The column headed “ISA not MIPS32?” identifies instructions that are not
implemented by all MIPS32-compliant CPUs: Entries in this column include
“R2” for instructions not required until MIPS32/64 Revision 2, “MIPS64” for
instructions only required for 64-bit CPUs, “EJTAG” for instructions associated
with the debug unit, “3D” and “PS” for the related MIPS-3D and paired-single
optional extensions to floating point, and “not in MIPS32/64” for instructions
that were in MIPS I but are now obsolete. Occasionally, this last column will
have the name of a specific CPU that offers a special instruction.

8.6.1 Fields in the Instruction Encoding Table

The following notes describe the fields in Table 8.6.

Field 31–26 The primary op-code “op,” which is 6 bits long. Instructions that
are having trouble fitting in 32 bits (like the “long” j and jal
instructions or arithmetic with a 16-bit constant) have a unique
“op” field. Other instructions come in groups that share an “op”
value, distinguished by other fields.

Field 5–0 Subcode field used for the three-register arithmetical/logical
group of instructions (major op-code zero).

Field 25–21 Yet another extended op-code field, this time used by coproc-
essor-type instructions.

s, t, w Fields identifying source registers. Occasionally we’ll use rs, rt
when you might not be sure it was a general-purpose register.
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o(b), offset “o” is a signed offset that fits in a 16-bit field; “b” is a general-
purpose base register whose contents are added to “o” to yield
an address for a load or store instruction.

d The destination register, to be changed by this instruction. Occa-
sionally we’ll write rd to remind you it’s a general-purpose
register.

shf How far to shift, used in shift-by-constant instructions.

broffset A signed 16-bit PC-relative word offset representing the distance
in words (one word per instruction) to a label. Offset zero is the
delay slot instruction after the branch, so a branch-to-self has an
offset of –1.

target A 26-bit word address to be jumped to (it corresponds to a
28-bit byte address, which is always word-aligned). The long
jump j instruction is rarely used, so this format is pretty much
exclusively for function calls (jal).

The high-order 4 bits of the target address can’t be specified
by this instruction and are taken from the address of the jump
instruction. This means that these instructions can reach any-
where in the 256-MB region around the instructions’ location.
To jump further, use a jr (jump register) instruction.

constant A 16-bit integer constant for immediate arithmetic or logic oper-
ations. It’s interpreted as signed or unsigned according to the
instruction context.

cs/cd Coprocessor register as source or destination, respectively. Each
coprocessor section of the instruction set may have up to 32 data
registers and up to 32 control registers.

fr/fs/ft Floating-point unit source registers.

fd Floating-point destination register (written by the instruction).

N/M Selector for FP condition code—“N” when it’s being read, and
“M” when it’s being written by a compare instruction. The field
is zero in older instruction sets that have only one FP condi-
tion code, and since older assembly code won’t have the field
present, you can write the instruction without it and get the
zeroth condition code.

hint A hint for the prefetch instruction, described in section 8.5.8.

cachop This is used with the cache instruction and encodes an opera-
tion to be performed on the cache entry discovered by the
instruction’s address. See Table 4.2 in section 4.9.
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TABLE 8.6 Machine Instructions in Order of Encoding

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

0 0 0 0 0 0 nop

0 0 0 0 1 0 ssnop

0 0 w d shf 0 sll d,w,shf

0 s N 0 d 0 1 movf d,s,N

0 s N 1 d 0 1 movt d,s,N

0 0 w d shf 2 srl d,w,shf

0 1 w d shf 2 rotr d,w,shf R2

0 0 w d shf 3 sra d,w,shf

0 s t d 0 4 sllv d,t,s

0 s t d 0 6 srlv d,t,s

0 s t d 1 6 rotrv d,t,s R2

0 s t d 0 7 srav d,t,s

0 s 0 0 0 8 jr s

0 s 0 0 16 8 jr.hb s

0 s 0 31 0 9 jalr s

0 s 0 d 0 9 jalr d,s

0 s 0 d 16 9 jalr.hb d,s

0 s t d 0 10 movz d,s,t

0 s t d 0 11 movn d,s,t

0 code 12 syscall code

0 code × 13 break code

0 code × 14 sdbbp code R3900

0 0 0 0 0 15 sync

0 0 0 d 0 16 mfhi d
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

0 s 0 0 0 17 mthi s

0 0 0 d 0 18 mflo d

0 s 0 0 0 19 mtlo s

0 s t d 0 20 dsllv d,t,s MIPS64

0 s t d 0 22 dsrlv d,t,s MIPS64

0 s t d 1 22 drotrv d,t,s MIPS64R2

0 s t d 0 23 dsrav d,t,s MIPS64

0 s t 0 0 24 mult s,t

0 s t 0 0 25 multu s,t

0 s t 0 0 26 div s,t

0 s t 0 0 27 divu s,t

0 s t 0 0 28 dmult s,t MIPS64

0 s t 0 0 29 dmultu s,t MIPS64

0 s t 0 0 30 ddiv s,t MIPS64

0 s t 0 0 31 ddivu s,t MIPS64

0 s t d 0 32 add d,s,t

0 s t d 0 33 addu d,s,t

0 s t d 0 34 sub d,s,t

0 s t d 0 35 subu d,s,t

0 s t d 0 36 and d,s,t

0 s t d 0 37 or d,s,t

0 s t d 0 38 xor d,s,t

0 s t d 0 39 nor d,s,t

0 s t 0 0 40 madd16 s,t Vr4100

0 s t 0 0 41 dmadd16 s,t Vr4100

0 s t d 0 42 slt d,s,t
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

0 s t d 0 43 sltu d,s,t

0 s t d 0 44 dadd d,s,t MIPS64

0 s t d 0 45 daddu d,s,t MIPS64

0 s t d 0 46 dsub d,s,t MIPS64

0 s t d 0 47 dsubu d,s,t MIPS64

0 s t × 48 tge s,t

0 s t × 49 tgeu s,t

0 s t × 50 tlt s,t

0 s t × 51 tltu s,t

0 s t × 52 teq s,t

0 s t × 54 tne s,t

0 0 w d shf 56 dsll d,w,shf MIPS64

0 0 w d shf 58 dsrl d,w,shf MIPS64

1 0 w d shf 58 drotr d,w,shf MIPS64R2

0 0 w d shf 59 dsra d,w,shf MIPS64

0 0 w d shf 60 dsll32 d,w,shf MIPS64

0 0 w d shf 62 dsrl32 d,w,shf MIPS64

0 0 w d shf 63 dsra32 d,w,shf MIPS64

1 s 0 broffset bltz s,p

1 s 1 broffset bgez s,p

1 s 2 broffset bltzl s,p

1 s 3 broffset bgezl s,p

1 s 8 constant tgei s,j

1 s 9 constant tgeiu s,j

1 s 10 constant tlti s,j
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

1 s 11 constant tltiu s,j

1 s 12 constant teqi s,j

1 s 14 constant tnei s,j

1 s 16 broffset bltzal s,p

1 s 17 broffset bgezal s,p

1 s 18 broffset bltzall s,p

1 s 19 broffset bgezall s,p

1 b 31 o synci, o(b) R2

2 target j target

3 target jal target

4 s t broffset beq s,t,p

5 s t broffset bne s,t,p

6 s 0 broffset blez s,p

7 s 0 broffset bgtz s,p

8 s d (signed) const addi d,s,const

9 s d (signed) const addiu d,s,const

10 s d (signed) const slti d,s,const

11 s d (signed) const sltiu d,s,const

12 s d (unsigned) const andi d,s,const

13 s d (unsigned) const ori d,s,const

14 s d (unsigned) const xori d,s,const

15 0 d (unsigned) const lui d,const
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

16 0 t cs 0 0 mfc0 t,cs

16 1 t cs 0 0 dmfc0 t,cs MIPS64

16 2 t cs 0 0 cfc0 t,cs

16 4 t cd 0 0 mtc0 t,cd

16 5 t cd 0 0 dmtc0 t,cd MIPS64

16 10 xt d 0 0 rdpgpr d,xt R2

16 11 t 12 0 0 di t R2

16 11 t 12 0 32 ei t R2

16 14 t xd 0 0 wrpgpr xd,t R2

16 16 0 0 0 1 tlbr

16 16 0 0 0 2 tlbwi

16 16 0 0 0 6 tlbwr

16 16 0 0 0 8 tlbp

16 16 0 0 0 16 rfe MIPS I only

16 16 0 0 0 24 eret

16 16 0 0 0 31 dret MIPS II only

16 16 0 0 0 31 deret EJTAG

16 16 0 0 0 33 standby Vr4100

16 16 0 0 0 34 suspend Vr4100

16 8 0 broffset bc0f p Not in MIPS32/64

16 8 1 broffset bc0t p Not in MIPS32/64

16 8 2 broffset bc0fl p Not in MIPS32/64

16 8 3 broffset bc0tl p Not in MIPS32/64
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

17 0 t fs 0 0 mfc1 t,fs

17 1 t fs 0 0 dmfc1 t,fs MIPS64

17 2 t cs 0 0 cfc1 t,cs

17 3 t fs 0 0 mfhc1 t,fs R2

17 4 t cs 0 0 mtc1 t,cs

17 5 t cs 0 0 dmtc1 t,cs MIPS64

17 6 t cs 0 0 ctc1 t,cs

17 7 t fs 0 0 mthc1 t,fs R2

17 8 N 0 broffset bc1f N,p

17 8 N 1 broffset bc1t N,p

17 8 N 2 broffset bc1fl N,p

17 8 N 3 broffset bc1tl N,p

17 9 N 0 broffset bc1any2f N,p 3D

17 9 N 1 broffset bc1any2t N,p 3D

17 10 N 0 broffset bc1any4f N,p 3D

17 10 N 1 broffset bc1any4t N,p 3D

17 16 ft fs fd 0 add.s fd,fs,ft

17 17 ft fs fd 0 add.d fd,fs,ft

17 22 ft fs fd 0 add.ps fd,fs,ft PS

17 16 ft fs fd 1 sub.s fd,fs,ft

17 17 ft fs fd 1 sub.d fd,fs,ft

17 22 ft fs fd 1 sub.ps fd,fs,ft PS

17 16 ft fs fd 2 mul.s fd,fs,ft

17 17 ft fs fd 2 mul.d fd,fs,ft

17 22 ft fs fd 2 mul.ps fd,fs,ft PS

17 16 ft fs fd 3 div.s fd,fs,ft
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

17 17 ft fs fd 3 div.d fd,fs,ft

17 16 0 fs fd 4 sqrt.s fd,fs

17 17 0 fs fd 4 sqrt.d fd,fs

17 16 0 fs fd 5 abs.s fd,fs

17 17 0 fs fd 5 abs.d fd,fs

17 22 0 fs fd 5 abs.ps fd,fs PS

17 16 0 fs fd 6 mov.s fd,fs

17 17 0 fs fd 6 mov.d fd,fs

17 22 0 fs fd 6 mov.ps fd,fs PS

17 16 0 fs fd 7 neg.s fd,fs

17 17 0 fs fd 7 neg.d fd,fs

17 22 0 fs fd 7 neg.ps fd,fs PS

17 16 0 fs fd 8 round.l.s fd,fs MIPS64

17 17 0 fs fd 8 round.l.d fd,fs MIPS64

17 16 0 fs fd 9 trunc.l.s fd,fs MIPS64

17 17 0 fs fd 9 trunc.l.d fd,fs MIPS64

17 16 0 fs fd 10 ceil.l.s fd,fs MIPS64

17 17 0 fs fd 10 ceil.l.d fd,fs MIPS64

17 16 0 fs fd 11 floor.l.s fd,fs MIPS64

17 17 0 fs fd 11 floor.l.d fd,fs MIPS64

17 16 0 fs fd 12 round.w.s fd,fs

17 17 0 fs fd 12 round.w.d fd,fs

17 16 0 fs fd 13 trunc.w.s fd,fs

17 17 0 fs fd 13 trunc.w.d fd,fs

17 16 0 fs fd 14 ceil.w.s fd,fs

17 17 0 fs fd 14 ceil.w.d fd,fs

17 16 0 fs fd 15 floor.w.s fd,fs

17 17 0 fs fd 15 floor.w.d fd,fs
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

17 16 N 0 fs fd 17 movf.s fd,fs,N

17 17 N 0 fs fd 17 movf.d fd,fs,N

17 22 N 0 fs fd 17 movf.ps fd,fs,N PS

17 16 N 1 fs fd 17 movt.s fd,fs,N

17 17 N 1 fs fd 17 movt.d fd,fs,N

17 16 t fs fd 18 movz.s fd,fs,t

17 17 t fs fd 18 movz.d fd,fs,t

17 22 t fs fd 18 movz.ps fd,fs,t PS

17 16 t fs fd 19 movn.s fd,fs,t

17 17 t fs fd 19 movn.d fd,fs,t

17 22 t fs fd 19 movn.ps fd,fs,t PS

17 16 0 fs fd 21 recip.s fd,fs

17 17 0 fs fd 21 recip.d fd,fs

17 16 0 fs fd 22 rsqrt.s fd,fs

17 17 0 fs fd 22 rsqrt.d fd,fs

17 22 0 fs fd 24 addr.ps fd,fs 3D

17 22 0 fs fd 26 mulr.ps fd,fs 3D

17 17 0 fs fd 28 recip2.d fd,fs 3D

17 22 0 fs fd 28 recip2.ps fd,fs 3D

17 17 0 fs fd 29 recip1.d fd,fs 3D

17 22 0 fs fd 29 recip1.ps fd,fs 3D

17 17 0 fs fd 30 rsqrt1.d fd,fs 3D

17 22 0 fs fd 30 rsqrt1.ps fd,fs 3D

17 17 0 fs fd 31 rsqrt2.d fd,fs 3D

17 22 0 fs fd 31 rsqrt2.ps fd,fs 3D
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

17 17 0 fs fd 32 cvt.s.d fd,fs

17 20 0 fs fd 32 cvt.s.w fd,fs

17 21 0 fs fd 32 cvt.s.l fd,fs MIPS64

17 22 0 fs fd 32 cvt.s.pu fd,fs PS

17 16 0 fs fd 33 cvt.d.s fd,fs

17 20 0 fs fd 33 cvt.d.w fd,fs

17 21 0 fs fd 33 cvt.d.l fd,fs MIPS64

17 16 0 fs fd 36 cvt.w.s fd,fs

17 17 0 fs fd 36 cvt.w.d fd,fs

17 22 0 fs fd 36 cvt.pw.ps fd,fs 3D

17 16 0 fs fd 37 cvt.l.s fd,fs MIPS64

17 17 0 fs fd 37 cvt.l.d fd,fs MIPS64

17 16 0 fs fd 38 cvt.ps.s fd,fs PS

17 20 0 fs fd 38 cvt.ps.pw fd,fs 3D

17 21 0 fs fd 38 cvt.ps.pw.l fd,fs PS

17 22 0 fs fd 40 cvt.s.pl fd,fs PS

17 22 0 fs fd 44 pll.ps.ps fd,fs PS

17 22 0 fs fd 45 plu.ps.ps fd,fs PS

17 22 0 fs fd 46 pul.ps.ps fd,fs PS

17 22 0 fs fd 47 puu.ps.ps fd,fs PS

17 16 ft fs M 0 48 c.f.s M,fs,ft

17 17 ft fs M 0 48 c.f.d M,fs,ft

17 22 ft fs M 0 48 c.f.ps M,fs,ft PS

17 16 ft fs M 0 49 c.un.s M,fs,ft

17 17 ft fs M 0 49 c.un.d M,fs,ft

17 22 ft fs M 0 49 c.un.ps M,fs,ft PS
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

17 16 ft fs M 0 50 c.eq.s M,fs,ft

17 17 ft fs M 0 50 c.eq.d M,fs,ft

17 22 ft fs M 0 50 c.eq.ps M,fs,ft PS

17 16 ft fs M 0 51 c.ueq.s M,fs,ft

17 17 ft fs M 0 51 c.ueq.d M,fs,ft

17 22 ft fs M 0 51 c.ueq.ps M,fs,ft PS

17 16 ft fs M 0 52 c.olt.s M,fs,ft

17 17 ft fs M 0 52 c.olt.d M,fs,ft

17 22 ft fs M 0 52 c.olt.ps M,fs,ft PS

17 16 ft fs M 0 53 c.ult.s M,fs,ft

17 17 ft fs M 0 53 c.ult.d M,fs,ft

17 22 ft fs M 0 53 c.ult.ps M,fs,ft PS

17 16 ft fs M 0 54 c.ole.s M,fs,ft

17 17 ft fs M 0 54 c.ole.d M,fs,ft

17 22 ft fs M 0 54 c.ole.ps M,fs,ft PS

17 16 ft fs M 0 55 c.ule.s M,fs,ft

17 17 ft fs M 0 55 c.ule.d M,fs,ft

17 22 ft fs M 0 55 c.ule.ps M,fs,ft PS

17 16 ft fs M 0 56 c.sf.s M,fs,ft

17 17 ft fs M 0 56 c.sf.d M,fs,ft

17 22 ft fs M 0 56 c.sf.ps M,fs,ft PS

17 16 ft fs M 0 57 c.ngle.s M,fs,ft PS

17 17 ft fs M 0 57 c.ngle.d M,fs,ft PS

17 22 ft fs M 0 57 c.ngle.ps M,fs,ft PS

17 16 ft fs M 0 58 c.seq.s M,fs,ft

17 17 ft fs M 0 58 c.seq.d M,fs,ft
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

17 22 ft fs M 0 58 c.seq.ps M,fs,ft PS

17 16 ft fs M 0 59 c.ngl.s M,fs,ft

17 17 ft fs M 0 59 c.ngl.d M,fs,ft

17 22 ft fs M 0 59 c.ngl.ps M,fs,ft PS

17 16 ft fs M 0 60 c.lt.s M,fs,ft

17 17 ft fs M 0 60 c.lt.d M,fs,ft

17 22 ft fs M 0 60 c.lt.ps M,fs,ft PS

17 16 ft fs M 0 61 c.nge.s M,fs,ft

17 17 ft fs M 0 61 c.nge.d M,fs,ft

17 22 ft fs M 0 61 c.nge.ps M,fs,ft PS

17 16 ft fs M 0 62 c.le.s M,fs,ft

17 17 ft fs M 0 62 c.le.d M,fs,ft

17 22 ft fs M 0 62 c.le.ps M,fs,ft PS

17 16 ft fs M 0 63 c.ngt.s M,fs,ft

17 17 ft fs M 0 63 c.ngt.d M,fs,ft

17 22 ft fs M 0 63 c.ngt.ps M,fs,ft PS

17 16 ft fs M 1 48 cabs.f.s M,fs,ft 3D

17 17 ft fs M 1 48 cabs.f.d M,fs,ft 3D

17 22 ft fs M 1 48 cabs.f.ps M,fs,ft 3D

17 16 ft fs M 1 49 cabs.un.s M,fs,ft 3D

17 17 ft fs M 1 49 cabs.un.d M,fs,ft 3D

17 22 ft fs M 1 49 cabs.un.ps M,fs,ft 3D

17 16 ft fs M 1 50 cabs.eq.s M,fs,ft 3D

17 17 ft fs M 1 50 cabs.eq.d M,fs,ft 3D

17 22 ft fs M 1 50 cabs.eq.ps M,fs,ft 3D
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

17 16 ft fs M 1 51 cabs.ueq.s M,fs,ft 3D

17 17 ft fs M 1 51 cabs.ueq.d M,fs,ft 3D

17 22 ft fs M 1 51 cabs.ueq.ps M,fs,ft 3D

17 16 ft fs M 1 52 cabs.olt.s M,fs,ft 3D

17 17 ft fs M 1 52 cabs.olt.d M,fs,ft 3D

17 22 ft fs M 1 52 cabs.olt.ps M,fs,ft 3D

17 16 ft fs M 1 53 cabs.ult.s M,fs,ft 3D

17 17 ft fs M 1 53 cabs.ult.d M,fs,ft 3D

17 22 ft fs M 1 53 cabs.ult.ps M,fs,ft 3D

17 16 ft fs M 1 54 cabs.ole.s M,fs,ft 3D

17 17 ft fs M 1 54 cabs.ole.d M,fs,ft 3D

17 22 ft fs M 1 54 cabs.ole.ps M,fs,ft 3D

17 16 ft fs M 1 55 cabs.ule.s M,fs,ft 3D

17 17 ft fs M 1 55 cabs.ule.d M,fs,ft 3D

17 22 ft fs M 1 55 cabs.ule.ps M,fs,ft 3D

17 16 ft fs M 1 56 cabs.sf.s M,fs,ft 3D

17 17 ft fs M 1 56 cabs.sf.d M,fs,ft 3D

17 22 ft fs M 1 56 cabs.sf.ps M,fs,ft 3D

17 22 ft fs M 1 57 cabs.ngle.ps M,fs,ft 3D

17 16 ft fs M 1 58 cabs.seq.s M,fs,ft 3D

17 17 ft fs M 1 58 cabs.seq.d M,fs,ft 3D

17 22 ft fs M 1 58 cabs.seq.ps M,fs,ft 3D

17 16 ft fs M 1 59 cabs.ngl.s M,fs,ft 3D

17 17 ft fs M 1 59 cabs.ngl.d M,fs,ft 3D

17 22 ft fs M 1 59 cabs.ngl.ps M,fs,ft 3D

17 16 ft fs M 1 60 cabs.lt.s M,fs,ft 3D

17 17 ft fs M 1 60 cabs.lt.d M,fs,ft 3D

17 22 ft fs M 1 60 cabs.lt.ps M,fs,ft 3D
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

17 16 ft fs M 1 61 cabs.nge.s M,fs,ft 3D

17 17 ft fs M 1 61 cabs.nge.d M,fs,ft 3D

17 22 ft fs M 1 61 cabs.nge.ps M,fs,ft 3D

17 16 ft fs M 1 62 cabs.le.s M,fs,ft 3D

17 17 ft fs M 1 62 cabs.le.d M,fs,ft 3D

17 22 ft fs M 1 62 cabs.le.ps M,fs,ft 3D

17 16 ft fs M 1 63 cabs.ngt.s M,fs,ft 3D

17 17 ft fs M 1 63 cabs.ngt.d M,fs,ft 3D

17 22 ft fs M 1 63 cabs.ngt.ps M,fs,ft 3D

18 0 t cs 0 0 mfc2 t,cs

18 1 t cs 0 0 dmfc2 t,cs MIPS64

18 2 t cs 0 0 cfc2 t,cs

18 3 t cs 0 0 mfhc2 t,cs R2

18 4 t cs 0 0 mtc2 t,cs

18 5 t cs 0 0 dmtc2 t,cs MIPS64

18 6 t cs 0 0 ctc2 t,cs

18 7 t cs 0 0 mthc2 t,cs R2

18 8 0 broffset bc2f p

18 8 1 broffset bc2t p

18 8 2 broffset bc2fl p

18 8 3 broffset bc2tl p

19 b t 0 fd 0 lwxc1 fd,t(b)

19 b t 0 fd 1 ldxc1 fd,t(b)

19 b t fs 0 8 swxc1 fs,t(b)

19 b t fs 0 9 sdxc1 fs,t(b)

19 b t hint 0 15 prefx hint,t(b) MIPS64 or R2
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

19 s ft fs fd 30 alnv.ps fd,fs,ft,s MIPS64 or R2

19 fr ft fs fd 32 madd.s fd,fr,fs,ft

19 fr ft fs fd 33 madd.d fd,fr,fs,ft

19 fr ft fs fd 38 madd.ps fd,fr,fs,ft PS

19 fr ft fs fd 40 msub.s fd,fr,fs,ft

19 fr ft fs fd 41 msub.d fd,fr,fs,ft

19 fr ft fs fd 46 msub.ps fd,fr,fs,ft PS

19 fr ft fs fd 48 nmadd.s fd,fr,fs,ft

19 fr ft fs fd 49 nmadd.d fd,fr,fs,ft

19 fr ft fs fd 54 nmadd.ps fd,fr,fs,ft PS

19 fr ft fs fd 56 nmsub.s fd,fr,fs,ft

19 fr ft fs fd 57 nmsub.d fd,fr,fs,ft

19 fr ft fs fd 62 nmsub.ps fd,fr,fs,ft PS

20 s t broffset beql s,t,p

21 s t broffset bnel s,t,p

22 s 0 broffset blezl s,p

23 s 0 broffset bgtzl s,p

24 s d (signed) const daddi d,s,const MIPS64

25 s d (signed) const daddiu d,s,const MIPS64

26 b t offset ldl t,o(b) MIPS64

27 b t offset ldr t,o(b) MIPS64
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TABLE 8.6 continued

31 26 25 21 20181716 15 11 10 8 7 6 5 0 Assembly name ISA not MIPS32?

28 s t 0 0 0 madd s,t

28 s t d 0 0 mad d,s,t R3900

28 s t 0 0 1 maddu s,t

28 s t d 0 2 mul d,s,t

28 s t 0 0 4 msub s,t

28 s t 0 0 5 msubu s,t

28 s s d 0 32 clz d,s

28 s s d 0 33 clo d,s

28 s s d 0 36 dclz d,s

28 s s d 0 37 dclo d,s

28 code 63 sdbbp code EJTAG

29 target jalx target MIPS16e

31 s t sz pos 0 ext t,s,pos,sz R2

31 s t sz pos 1 dextm t,s,pos,sz MIPS64R2

31 s t sz pos 2 dextu t,s,pos,sz MIPS64R2

31 s t sz pos 3 dext t,s,pos,sz MIPS64R2

31 s t sz pos 4 ins t,s,pos,sz R2

31 s t sz pos 5 dinsm t,s,pos,sz MIPS64R2

31 s t sz pos 6 dinsu t,s,pos,sz MIPS64R2

31 s t sz pos 7 dins t,s,pos,sz MIPS64R2

31 0 t d 2 32 wsbh d,t R2

31 0 t d 16 32 seb d,t R2

31 0 t d 24 32 seh d,t R2

31 0 t d 2 36 dsbh d,t MIPS64R2

31 0 t d 5 36 dshd d,t MIPS64R2
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TABLE 8.6 continued
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31 0 t hwr 0 59 rdhwr t,hwr R2

32 b t offset lb t,o(b)

33 b t offset lh t,o(b)

34 b t offset lwl t,o(b)

35 b t offset lw t,o(b)

36 b t offset lbu t,o(b)

37 b t offset lhu t,o(b)

38 b t offset lwr t,o(b)

39 b t offset lwu t,o(b) MIPS64

40 b t offset sb t,o(b)

41 b t offset sh t,o(b)

42 b t offset swl t,o(b)

43 b t offset sw t,o(b)

44 b t offset sdl t,o(b) MIPS64

45 b t offset sdr t,o(b) MIPS64

46 b t offset swr t,o(b)

47 b op offset cache op,o(b)

48 b t offset ll t,o(b)

49 b ft offset l.s t,o(b)

50 b cd offset lwc2 cd,o(b)

51 b hint offset pref hint,o(b)

52 b t offset lld t,o(b) MIPS64

53 b ft offset l.d ft,o(b)

54 b cd offset ldc2 cd,o(b)

55 b t offset ld t,o(b) MIPS64

56 b t offset sc t,o(b)



8.6 Instruction Encodings 251

TABLE 8.6 continued
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57 b ft offset s.s ft,o(b)

57 b ft offset swc1 ft,o(b)

58 b cs offset swc2 cs,o(b)

60 b t offset scd t,o(b) MIPS64

61 b ft offset s.d ft,o(b)

61 b ft offset sdc1 ft,o(b)

62 b cs offset sdc2 cs,o(b)

63 b t offset sd t,o(b) MIPS64

8.6.2 Notes on the Instruction Encoding Table

Instruction aliases: Mostly, we have suppressed all but one possible
mnemonic for the same instruction, but occasionally we leave them in.
Instructions such as nop and l.s are so ubiquitous that it seems simpler
to include them than to leave them out.

Coprocessor instructions: Instructions that were once defined but are no
longer have been expunged. Coprocessor 3 was never used by any MIPS I
CPU and is not compatible with a MIPS32/64 floating-point unit—and
some of what would be standard coprocessor op-codes, including
memory loads, have been recycled for different uses.

8.6.3 Encodings and Simple Implementation

If you look at the encodings of the instructions, you can sometimes see how the
CPU is designed. Although there are variable encodings, fields that are required
very early in the pipeline are encoded in a totally regular way:

Source registers are always in the same place, so that the CPU can fetch
two operands from the integer register file without any conditional deco-
ding. In some instructions, both registers will not be needed, but since
the register file is designed to provide two source values on every clock
cycle, nothing has been lost.

The 16-bit constant is always in the same place, permitting the appro-
priate instruction bits to be fed directly into the ALU’s input multiplexer
without conditional shifts.
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8.7 Instructions by Functional Group

We’ve divided the instruction set into reasonable chunks, in this order:

No-op

Register/register moves: widely used, if not exciting; includes conditional
moves

Load constant: integer immediate values and addresses

Arithmetical/logical instructions

Integer multiply, divide, and remainder

Integer multiply-accumulate

Loads and stores

Jumps, subroutine calls, and branches

Breakpoint and trap

CP0 functions: instructions for CPU control

Floating point

Limited user-mode access to “under the hood” features: rdhwr and
synci

8.7.1 No-op

nop: The MIPS instruction set is rich in nops, since any instruction with zero
as a destination is guaranteed to do nothing. The favored one is sll zero,
zero,0, whose binary encoding is a zero-valued word.

ssnop: Another no-op, whose encoding implies sll zero,zero,1.
This instruction must not be issued simultaneously with any other, so is

guaranteed to take at least one cycle period to run. This is irrelevant to simple-
pipeline CPUs, but can be useful for enforced programmed delays on more
sophisticated implementations.

8.7.2 Register/Register Moves

move: Usually implemented with an or with the $zero register. A few CPUs—
where for some reason adding is better supported than logical operations—use
addu.

Conditional Move

Useful branch-minimizing alternative (see section 8.5.3).

movf, movt: Conditional move of integer register, testing floating-point
condition code.
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movn, movz: Conditional move of integer register, subject to state of another
register.

8.7.3 Load Constant

dla, la: Macro instructions to load the address of some labeled location or
variable in the program. You only need dla when using 64-bit pointers (which
you’ll only do in big UNIX-like systems). These instructions accept the same
addressing modes as do all loads and stores (even though they do quite different
things with them).

dli, li: Load constant immediate. dli is the 64-bit version, not supported
by all toolchains, and is only needed to load unsigned numbers too big to fit
in 32 bits. This is a macro whose length varies according to the size of the
constant.

lui: Load upper immediate. The 16-bit constant is loaded into bits 16–31 of a
register, with bits 32–63 (if applicable) set equal to bit 31 and bits 0–15 cleared.
This instruction is one-half of the pair of machine instructions that load an
arbitrary 32-bit constant. Assembly programmers will probably never write this
explicitly; it is used implicitly for macros like li (load immediate), la (load
address), and above all for implementing useful addressing modes.

8.7.4 Arithmetical/Logical

The arithmetical/logical instructions are further broken down into the follow-
ing types:

Add

add, addi, dadd, daddi: Obscure and rarely used alternate forms of addu,
which trap when the result would overflow. Probably of use to COBOL
compilers.

addu, addiu, daddu, daddiu: Addition, with separate 32-bit and 64-bit ver-
sions. Here and throughout the instruction set, 64-bit versions of instructions
are marked with a leading “d” (for doubleword); also, you don’t need to specify
the “immediate” mnemonic—you just feed the assembler a constant. If the con-
stant you need can’t be represented in the 16-bit field provided in the instruc-
tion, then the assembler will produce a sequence of instructions.

dsub, sub: Subtract variants that trap on overflow.

dsubu, subu: Regular 64- and 32-bit subtraction (there isn’t a subtract-
immediate, of course, because the constant in add-immediate can be negative).
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Miscellaneous Arithmetic

abs, dabs: Absolute value; expands to set and branch (or conditional move if
there is one).

dneg, neg, dnegu, negu: Unary negate; mnemonics without U will trap on
overflow.

Bitwise Logical Instructions

and, andi, or, ori, xor, xori, nor: Three-operand bitwise logical opera-
tions. Don’t write the “immediate” types—the assembler will generate them
automatically when fed a constant operand. Note that there’s no nori
instruction.

not: Two-operand instruction implemented with nor.

Shifts and Rotates

drol, dror, rol, ror: Rotate right and left; expand to a four-instruction
sequence.

dsll, dsll32, dsllv: 64-bit (double) shift-left, bringing zeros into low bits.
The three different instructions provide for different ways of specifying the shift
amount: by a constant 0–31 bits, by a constant 32–63 bits, or by using the low
6 bits of the contents of another register. Assembly programmers should just
write the dsll mnemonic.

dsra, dsra32, dsrav: 64-bit (double) shift-right arithmetic. This is “arith-
metic” in that it propagates copies of bit 63—the sign bit—into high bits. That
means it implements a correct division by a power of 2 when applied to
signed 64-bit integer data. Always write the dsra mnemonic; the
assembler will choose the instruction format according to how the shift amount
is specified.

dsrl, dsrl32, dsrlv: 64-bit (double) shift-right logical. This is “logical” in
that it brings zeros into high bits. Although there are three different instruc-
tions, assembly programmers should always use the dsrl mnemonic; the
assembler will choose the instruction format according to how the shift amount
is specified.

sll, sllv: 32-bit shift-left. You only need to write the sll mnemonic.

sra,srav: Shift-right arithmetic (propagating the sign bit). Always write sra.

srl,srlv: Shift-right logical (bringing zeros into high bits). Always write srl.

Set if. . .

slt, slti, sltiu, sltu: Hardware instructions, which write a 1 if the
condition is satisfied and a 0 otherwise. Write slt or sltu.
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seq, sge, sgeu, sgt, sgtu, sle, sleu, sne: Macro instructions to set the
destination according to more complex conditions.

8.7.5 Integer Multiply, Divide, and Remainder

The integer multiply and divide machine instructions are unusual, because the
MIPS multiplier is a separate unit not built into the normal pipeline and takes
much longer to produce results than regular integer instructions. Machine
instructions are available to fire off a multiply or divide, which then proceeds
in parallel with the instructions.

The same multiply unit provides integer multiply-accumulate and multiply-
add instructions (see section 8.7.6.)

As a result of being handled by a separate unit, multiply/divide instructions
don’t include overflow or divide-by-zero tests (they can’t cause
exceptions because they are running asynchronously) and don’t usually deliver
their results into general-purpose registers (it would complicate the pipeline by
fighting a later instruction for the ability to write the register file). Instead, mul-
tiply/divide results appear in the two separate registers hi and lo. You can only
access these values with the two special instructions mfhi and mflo. Even in
the earliest MIPS CPUs, the result registers are interlocked: If you try to read
the result before it is ready, the CPU will stall until the data arrives.

However, when you write the usual assembly mnemonics for multiply/
divide, the assembler will generate a sequence of instructions that simulate a
three-operand instruction and perform overflow checking. A div (signed
divide) may expand into as many as 13 instructions. The extra instructions
are usually placed between the div, which starts the divide, and the mflo,
which retrieves the result. The extra instructions look inefficient, but they run in
parallel with the hardware divider; the divide itself takes 7–75 cycles on most
MIPS CPUs.

MIPS Inc.’s assembler will convert constant multiplication and division/
remainder by constant powers of 2 into the appropriate shifts, masks, and so on.
But the assembler found in most toolchains is likely to leave this to the compiler.

By a less-than-obvious convention, a multiply or divide written with the
destination register zero (as in div zero,s,t) will give you the raw machine
instruction.5 It is then up to you to fetch the result from hi and/or lo and to
do any checking you need.

Following is the comprehensive list of multiply/divide instructions.

ddiv, ddivu, div, divu: Three-operand macro instruction for integer
division, with 64-/32-bit and signed/unsigned options. All trap on divide-by-
zero; signed types trap on overflow. Use destination zero to obtain just the
divide-start instruction.

5. Some toolkits interpret special mnemonics, mult for multiplication and divd for division, for
the machine instructions. However, specifying zero as the destination, though bizarre, is more
portable.
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ddivd, ddivdu, divd, divdu: Mnemonics for raw machine instruction
provided by some toolchains. It is better to use ddiv zero,... instead.

divo, divou: Explicit name for divide with overflow check, but really just the
same as writing div, divu.

dmul, mul: Three-operand 64-/32-bit multiply instruction. There is no over-
flow check; as a result, there doesn’t need to be an unsigned version of the
macro—the truncated result is the same for signed and unsigned interpreta-
tion. Assemblers will expand it into an equivalent macro if they know they are
assembling for pre-MIPS32 CPUs that don’t implement it.

mulo, mulou, dmulo, dmulou: Multiply macros that trap if the result over-
flows beyond what will fit in one general-purpose register.

dmult, dmultu, mult, multu: The machine instruction that starts off a mul-
tiply, with signed/unsigned and 32-/64-bit variants. The result never overflows,
because there’s 64 and 128 bits’ worth of result, respectively. The least significant
part of a result gets stored in lo and the most significant part in hi.

drem, dremu, rem, remu: Remainder operations, implemented as a divide fol-
lowed by mfhi. The remainder is kept in the hi register.

mfhi, mflo, mthi, mtlo: Move from hi and so on. These are instructions for
accessing the integer multiply/divide unit result registers hi and lo. You won’t
write the mflo/ mfhi instructions in regular code if you stick to the synthetic
mul and div instructions, which retrieve result data for themselves.

MIPS integer multiply, mult or multu, always produces a result with twice
the bit length of the general-purpose registers, eliminating the possibility of
overflow. The high-order and low-order register-sized pieces of the result are
returned in hi and lo, respectively.

Divide operations put the result in lo and the integer remainder inhi.mthi
and mtlo are used only when restoring the CPU state after an exception.

8.7.6 Integer Multiply-Accumulate

Some MIPS CPUs have various forms of integer multiply-accumulate instruc-
tions—none of them in a MIPS standard instruction set. All these instructions
take two general-purpose registers and accumulate into lo and hi. As usual,
“u” denotes an unsigned variant, but otherwise the mnemonic (and instruction
code) is specific to a particular CPU implementation.

dmadd16, madd16: Specific to NEC Vr4100, these variants gain speed by only
accepting 16-bit operands, making them of very limited use to a C compiler.
dmadd16 accumulates a 64-bit result in the 64-bit lo register.

mad, madu: Found in Toshiba R3900, IDT R4640/4650, and QED CPUs, these
take two 32-bit operands and accumulate a 64-bit result split between the lo
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andhi registers. The Toshiba R3900 allows a three-operand version,madd,s,t,
in which the accumulated value is also transferred to the general-purpose
register d.

8.7.7 Loads and Stores

This subsection lists all the assembler’s integer load/store instructions and any-
thing else that addresses memory. Note the following points:

There are separate instructions for the different data widths supported:
8 bit (byte), 16 bit (halfword), 32 bit (word), and 64 bit (doubleword).

For data types smaller than the machine register, there’s a choice of zero-
extending (“u” suffix for unsigned) or sign-extending the operation.

All the instructions listed here may be written with any addressing mode
the assembler supports (see section 9.4).

A store instruction is written with the source register first and the address
register second to match the syntax for loads; this breaks the general rule
that in MIPS instructions the destination is first.

Machine load instructions require that the data be naturally aligned (half-
words on a two-byte boundary, words on a four-byte boundary, double-
words on an eight-byte boundary). But the assembler supports a com-
plete set of macro instructions for loading data that may be unaligned,
and these instructions have a “u” prefix (for unaligned).

All data structures that are declared as part of a standard C program will
be aligned correctly. But you may meet unaligned data from addresses
computed at run time, data structures declared using a nonstandard
language extension, data read in from a foreign file, and so on.

All load instructions deliver their result at least one clock cycle later in the
pipeline than computational instructions. For any MIPS CPU, efficiency
is maximized by filling the load delay slot with a useful but nondepend-
ent instruction.

In the oldest (MIPS I) CPUs the programmer was required to ensure a
one-clock delay after a load: Assemblers recognizing MIPS I CPUs will
automatically do that by inserting a nop if necessary.

Following is a list of the instructions.

lb, lbu: Load byte then sign-extend or zero-extend, respectively, to fill the
whole register.

ld: Load doubleword (64 bits). This machine instruction is available only on
64-bit CPUs, but assemblers for 32-bit targets will often implement it as a macro
instruction that loads 64 bits from memory into two consecutive integer regis-
ters. This is probably a really bad idea, but someone wanted some compatibility.
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ldl, ldr, lwl, lwr, sdl, sdr, swl, swr: Load/store left/right, in word/
doubleword versions. Used in pairs to implement unaligned load/store oper-
ations like ulw, though you can always do it for yourself (see section 8.5.1).

lh, lhu: Load halfword (16 bits), then sign-extend or zero-extend to fill the
register.

ll,lld,sc,scd: Load-linked and store-conditional (32- and 64-bit versions);
strange instructions for semaphores (see section 8.5.2).

lw, lwu: Load word (32 bits), then sign-extend or zero-extend to fill the regis-
ter. lwu is found only in 64-bit CPUs.

pref, prefx: Prefetch data into the cache (see section 8.5.8). This is not avail-
able on MIPS III and earlier CPUs and may be a no-op. While pref takes the
usual addressing modes, prefx adds a register+register mode implemented in
a single instruction.

sb: Store byte (8 bits).

sd: Store doubleword (64 bits). This may be a macro (storing two consecutive
integer registers into a 64-bit memory location) for 32-bit CPUs.

sh: Store halfword (16 bits).

sw: Store word (32 bits).

uld, ulh, ulhu, ulw, usd, ush, usw: Unaligned load/store macros. The dou-
bleword and word versions are implemented as macro instructions using the
special load left/load right instructions; halfword operations are built as byte
memory accesses, shifts, and ors. Note that normal delay slot rules do not apply
between the constituent load left/load right of an unaligned operation; the pipe-
line is designed to let them run head to tail. More on unaligned loads and how
they’re used in section 2.5.2.

Floating-Point Load and Store

l.d, l.s, s.d, s.s: Load/store double (64-bit format) and single (32-bit
format). Alignment is required, and no unaligned versions are given here. On
32-bit CPUs, l.d and s.d are two-instruction macros that load/store two
32-bit chunks of memory into/from consecutive FP registers (see section 7.5).
These instructions are also called ldc1, lwc1, sdc1, and swc1 (load/store
word/double to coprocessor 1), but don’t write them like that.

ldxc1, lwxc1, sdxc1, swxc1: Base register + offset register addressing mode
loads and stores. In the instruction ldxc1 fd, i(b), the full address must lie
in the same program memory region as is pointed to by the base register b or
bad things might happen.

If your toolkit will accept syntax like l.d fd,i(b), then use it.
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8.7.8 Jumps, Subroutine Calls, and Branches

The MIPS architecture follows Motorola nomenclature for these instructions,
as follows:

PC-relative instructions are called “branch” and absolute-addressed
instructions “jump”; the operation mnemonics begin with b or j.

A subroutine call is “jump and link” or “branch and link,” and the mne-
monics end . . .al.

All the branch instructions, even branch and link, are conditional, test-
ing one or two registers. Unconditional versions can be and are readily
synthesized—for example, beq $0, $0, label.

j: This instruction transfers control unconditionally to an absolute address.
Actually, j doesn’t quite manage a 32-bit address: The top 4 address bits of the
target are not defined by the instruction, and the top 4 bits of the current PC
value are used instead. Most of the time this doesn’t matter; 28 bits still gives a
maximum code size of 256 MB.

To reach a long way away, you must use the jr (jump to register) instruc-
tion, which is also used for computed jumps. You can write the j mnemonic
with a register, but it’s quite popular not to do so.

jal, jalr: These implement a direct and indirect subroutine call. As well as
jumping to the specified address, they store the return address (the instruction’s
own address + 8) in register ra, which is the alias for $31.6 Why add eight to
the program counter? Remember that jump instructions, like branches, always
execute the immediately following branch delay slot instruction, so the return
address needs to be the instruction after the branch delay slot. Subroutine return
is done with a jump to register, most often jr ra.

PC-relative subroutine calls can use the bal, bgezal, and bltzal instruc-
tions. The conditional branch-and-link instructions save their return address
into ra even when the condition is false, which can be useful when doing a
computation using the current instruction’s address.

b: Unconditional PC-relative (though relatively short-range) branch.

bal: PC-relative function call.

bc0f, bc0fl, bc0t, bc0tl, bc2f, bc2fl, bc2t, bc2tl: Branches that test
the coprocessor 0 or coprocessor 2 condition bit, neither of which exist on most
modern CPUs. On older CPUs, these test an input pin.

6. In fact the jalr machine instruction allows you to specify a register other than $31 to receive
the return address, but this is seldom useful, and the assembler will automatically put in $31 if
you do not specify one.
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bc1f, bc1fl, bc1t, bc1tl: Branch on floating-point condition bit (multiple
in later CPUs).

beq, beql, beqz, beqzl, bge, bgel, bgeu, bgeul, bgez, bgezl, bgt, bgtl,
bgtu,bgtul,bgtz,bgtzl,ble,blel,bleu,bleul,blez,blezl,blt,bltl,
bltu, bltul, bltz, bltzl, bne, bnel, bnez, bnezl: A comprehensive set of
two- and one-operand compare-and-branch instructions, most of them macros.

bgezal, bgezall, bltzal, bltzall: Raw machine instructions for condi-
tional function calls, if you ever need to do such a thing.

8.7.9 Breakpoint and Trap

break: Causes an exception of type “break.” It is used in traps from assembler-
synthesized code and by debuggers.

sdbbp: Breakpoint instruction that generates an EJTAG exception, as described
in section 12.1.

syscall: Causes an exception type conventionally used for system calls.

teq, teqi, tge, tgei, tgeiu, tgeu, tlt, tlti, tltiu, tltu, tne, tnei:
Conditional exception, testing various one- and two-operand conditions. These
are for compilers and interpreters that want to implement runtime checks to
array bounds and so on.

8.7.10 CP0 Functions

CP0 functions can be classified under the following types:

Move To/From

cfc0, ctc0: Move data in and out of CP0 control registers, of which there are
none in any MIPS CPUs defined to date. But there may be such registers one
day soon.

mfc0, mtc0, dmfc0, dmtc0: Move data between CP0 registers and general-
purpose registers.

cfc2, ctc2, dmfc2, dmtc2, mfc2, mtc2: Instructions for coprocessor 2, if
implemented. It has not often been done.

Special Instructions for CPU Control

eret: Return from exception (see Chapter 5).

dret: Return from exception (R6000 version). This instruction is obsolete and
not described in this book.
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rfe: Exception-end instruction from MIPS I—essentially obsolete. Curiously,
rfe only restores the status register and relies on being placed in the branch
delay slot of a jr instruction, which carries you back to the restart location.

cache: The polymorphic cache control instruction, as described in section 4.9.

sync: Memory access synchronizer for CPUs that might perform load/stores
out of order (see section 8.5.9). Unlike all the other instructions in this section,
it does not use CP0 encoding and is legal in a user-privilege program.

tlbp,tlbr,tlbwi,tlbwr: Instructions to control the TLB, or memory trans-
lation hardware (see section 6.3).

standby, suspend: Enter power-down mode (NEC Vr4100 CPUs).

8.7.11 Floating Point

Floating-point instructions are listed in section 8.3.

8.7.12 Limited User-Mode Access to “Under the Hood” Features

rdhwr (read hardware register): Allows a user-privilege program to read a few
snippets of information that would normally only be visible to a kernel. See
section 8.5.12.

synci: User-privilege instruction. It specifies an address like any load/store,
and it affects the cache-line-sized, aligned piece of memory that holds the
addressed byte. Use it when writing instructions for subsequent execution.
synci does what is necessary to ensure that the CPU will correctly execute
any instructions that the program previously wrote in this chunk of memory
(often that means a write-back from the L1 D-cache and an invalidate of any
previously held I-cache contents).

sync: Load/store barrier, listed here to emphasize that it’s not just a kernel-
privileged instruction. It’s described in section 8.5.9.
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Chapter

9 Reading MIPS
Assembly Language

This chapter aims to help you read MIPS assembly code—specifically, that
written for the MIPS version of the GNU as assembly program, since this

is by far the most widely used assembler for MIPS these days.
Since this is just an introduction, we’ll be working here with common 32-bit

MIPS instructions that have been part of the ISA for many years, dating all the
way back to MIPS I and MIPS II.

This chapter won’t teach you how to write assembly code—that could easily
fill another book, all by itself. The vast majority of readers will likely do all their
programming in C, and will only occasionally run into an existing assembly
file that they need to understand and perhaps modify in a small way; if your
use of MIPS assembly goes much beyond this, you’ll need to have a look at the
documentation that comes with your MIPS toolchain.

Learning to read MIPS assembly means more than just gaining familiarity
with the list of machine instructions. There are several reasons why this is so:

MIPS assemblers provide a large number of extra macro instructions,
so the assembly instruction set is much more extensive than the list of
machine instructions. The list in the previous chapter includes all the
macro instructions recognized by the GNU toolchain’s assembler,1 as
well as the machine instructions that are recognized directly by the CPU
hardware.

MIPS assemblers recognize and interpret a set of special keywords called
“directives” or “pseudo-ops” that are used to manage their behavior. For
example, particular keywords are used to mark the start and end of pro-
gram functions; to control instruction ordering and optimization; and
so on.

1. At least, those recognized by a summer-2005 snapshot of the assembler as maintained by MIPS
Technologies, which was perhaps a little ahead of the public archives at that time.
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It’s almost universal practice (though not compulsory) to pass assembly
source files as written by a human programmer through the C preproc-
essor before handing them to the assembler itself. Used appropriately,
this can make for much more readable source files, in which items such
as machine registers are referenced by names that convey meaning to the
human programmer; the task of converting these names to the less read-
able forms required by the assembler itself is best left to the toolchain.

Many programmers find it helpful to follow a simple convention: an
assembly source file that’s fed to the preprocessor as input is given a name
suffixed with “.S,” and the preprocessed version generated as output is
given the same name suffixed with “.s”; this makes it easier to manage
the two forms of assembly source files.

Before you read too much further, you may find it useful to go back and
refresh your memory of Chapter 2, which describes the low-level machine
instruction set, data types, addressing modes, and conventional register usage.
Even if you’re already familiar with that material, it may still be helpful to insert
an extra bookmark there so you can easily refer back to it as we continue.

9.1 A Simple Example

We’ll use the same example as in Chapter 8: an implementation of the C library
function strcmp(1). But this time we’ll include essential elements of assem-
bly syntax and also show some hand-optimized and -scheduled code. The algo-
rithm shown is somewhat cleverer than a naive strcmp() function; we’ll start
with this code—still in C—in a form that has all the operations separated out
to make them easier to play with, as follows:

int

strcmp (char *a0, char *a1)

{

char t0, t1;

while (1) {

t0 = a0[0];

a0 += 1;

t1 = a1[0];

a1 += 1;

if (t0 == 0)

break;

if (t0 != t1)

break;

}

return (t0 - t1);

}
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The execution time for the code in this initial form will suffer because of the
two conditional branches (corresponding to the two if() statements) and the
two loads (corresponding to the two array-indexing operations) that appear in
each iteration of the loop; each of these branches and loads introduces a delay
slot, and there just isn’t enough work in the body of the loop to fill all them.
Furthermore, as the code works its way along a pair of strings, it’s forced to take
a loop-closing branch on every pair of bytes compared (corresponding to the
closing brace of the while() statement).

We can make useful improvements to this code before we even begin trans-
lating it into assembly. The biggest change is to unroll the loop so that it per-
forms two comparisons per iteration; we can also move one of the loads down to
the tail of the loop. With these changes, the delay slot for every load and branch
can be filled with useful work:

int strcmp (char *a0, char *a1) {

char t0, t1, t2;

/* first load moved to loop end,

so load for first iteration here */

t0 = a0[0];

while (1) {

/* first byte */

t1 = a1[0];

if (t0 == 0)

break;

a0 += 2;

if (t0 != t1)

break;

/* second byte */

t2 = a0[-1]; /* we already incremented a0 */

t1 = a1[1]; /* didn’t increment a1 yet */

if (t2 == 0)

/* label t21 in assembler */

return t2-t1;

a1 += 2;

if (t1 != t2)

/* label t21 in assembler */

return t2-t1;

t0 = a0[0];

}

/* label t01 in assembler */

return t0-t1;

}
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Now that we’ve eliminated the basic inefficiencies from the code, let’s
translate it into MIPS assembly:

#include <mips/asm.h>
#include <mips/regdef.h>

LEAF(strcmp)
.set noreorder
lbu t0, 0(a0)

1: lbu t1, 0(a1)
beq t0, zero,.t01 # load delay slot
addu a0, a0, 2 # branch delay slot
bne t0, t1, .t01
lbu t2, -1(a0) # branch delay slot
lbu t1, 1(a1) # load delay slot
beq t2, zero,.t21
addu a1, a1, 2 # branch delay slot
beq t2, t1, 1b
lbu t0, 0(a0) # branch delay slot

.t21: j ra
subu v0, t2, t1 # branch delay slot

.t01: j ra
subu v0, t0, t1 # branch delay slot
.set reorder

END(strcmp)

The comments in the example above help to clarify the way the instructions
are scheduled; but before taking a closer look at that, we should explain the
many new constructs that appear in the example above. Let’s examine them in
the order they appear:

#include: This file takes advantage of the C preprocessor cpp to give mne-
monic names to constants and of defining simple text-substitution
macros. Here cpp is being used to put two header files in line before sub-
mitting the text to the assembler; mips/asm.h defines the macros LEAF
and END (discussed further below), and mips/regdef.h defines the
conventional register names like t0 and a0, as described in section 2.2.1.

Macros: We’re using two macros defined in mips/asm.h, LEAF and
END. Here is the basic definition for LEAF:

#define LEAF(name) \
.text; \
.globl name; \
.ent name; \

name:
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LEAF is used to define a simple subroutine (one that calls no other
subroutine and hence is a “leaf ” on the calling tree—see section 11.2.9).
Nonleaf functions have to do much more work saving variables, return-
ing addresses, and so on. Unless you’re involved in very specialized pro-
gramming, it’s unlikely that you’ll ever need to write a nonleaf function
in assembly—it will almost certainly make better sense to write it in C,
perhaps with a call to a leaf function that encapsulates any work that
really needs to be coded in assembly. Note the following:

– .text tells the assembler that until further notice, it should direct
any code that it subsequently produces into the section of the object
file called “.text”; object files compiled from C use this same name for
the section that holds all the code.

– .globl declares “name” as global, to be included in the module’s
symbol table as a name that should be unique throughout the whole
program. This mimics what the C compiler does to function names
(unless they are marked static).

– .ent has no effect on the code produced but tells the assembler to
mark this point as the beginning of a function called “name” and to
use that information in debug records.

– name makes “name” a label for this point in the assembler’s output
and marks the place where a subroutine call to function “name” will
start.

END defines two more assembly items:

#define END(name) \
.size name,.-name; \
.end name

– .sizemeans that in the symbol table, “name” will now be listed with
a size that corresponds to the number of bytes of instructions used.

– .end delimits the function for debug purposes.

.set directives:

These are used to tell the assembler how to do its work. By default, MIPS
assemblers try to fill branch and load delay slots automatically by reorder-
ing the instructions around them (but don’t worry—the assembler never
moves instructions around in ways that are unsafe; it leaves delay slots
unfilled if it can’t find a safe rearrangement). Most of the time this is
helpful, because it means you don’t have to worry about filling delay slots
as you write your assembly files.

But what if we need to retain precise control over instruction ordering,
as in the case of a heavily used library function? This is the purpose
of the .set noreorder directive: It tells the assembler to suppress its
reordering capabilities until the next time it encounters a corresponding
.set reorder directive.
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For the section of code enclosed between this pair of directives, we’re
telling the assembler to put the op-codes it generates into the object file
in the same order as the instructions are written.

Labels: “1:” is a numeric label, which most assemblers will accept as a
local label. You can have as many labels called “1” as you like in a pro-
gram; a reference to “1f ” (forward) will get the next one in sequence and
“1b” (back) the previous one. That’s very useful.

Instructions: You’ll notice some unexpected sequences, since the .set
noreorder exposes the underlying branch delay slots, and leaves us
to ensure (for efficiency) that load data is never used by the following
instruction.

For example, note the use of register t2 in the second half of the unrolled
loop. It’s necessary to use a second register because the lbu t2,-1(a0)
is in the delay slot of the preceding branch instruction and therefore must
not overwrite t0—if the branch is taken, the code at its target will make
use of the value in t0.

9.2 Syntax Overview

Working through the preceding example showed you how most of the impor-
tant assembly directives are used in practice, and should also have helped you
get used to the way MIPS instructions are written in assembly source files. Now
we’ll summarize these things a bit more systematically. If you’ve used an assem-
bler on a UNIX-like system before, then the main ideas should already be rea-
sonably familiar.

9.2.1 Layout, Delimiters, and Identifiers

For this, you need to be familiar with C. But when you’re reading assembly code,
note that:

Assembly code is line oriented, and an end-of-line delimits an instruc-
tion or directive. You can have more than one instruction/directive on
each line, however, as long as they are separated by semicolon (“;”) char-
acters.

All text from a “#” to the end of the line is a comment and is ignored.
But don’t put a “#” in the leftmost column: The C preprocessor cpp treats
such lines specially and gets confused, and you will probably want to use
cpp. If you know your code is going to be run through cpp, you can use
C-style comments: /* . . .*/. These can span multiple lines if you like.

Identifiers for labels and variables can be anything that’s legal in C but
can also contain “$” and “.”.
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In code you can use a number (decimal between 1 and 99) as a label.
Conventional textual labels must be unique in the file, but you can use
the same number as many times as you like. In a branch instruction,
“1f ” (forward) refers to the next “1:” label in the code, and “1b” (back)
refers to the previous “1:” label. This device saves you inventing pointless
names for little branches and loops. Reserve named labels for subroutine
entry points or for exceptionally big jumps.

It’s strongly recommended that you use MIPS conventional register
names as summarized in Table 2.1; to do this, you should pass your
source through the C preprocessor and #include a file probably called
mips/regdef.h. If you choose not to use the preprocessor, remember
that the assembler expects general-purpose register names to be written
in the form “dollar-number,” such as $3 to specify GP register 3, and
that the GP register numbers run from 0 through 31.

There is no direct analog of C’s “pointer” operator. But when the assem-
bler is expecting a pointer-size value a label (or any other relocatable
symbol) is replaced with its address. The identifier “.” (dot) represents
the address of the current instruction or data declaration. You can even
do some limited arithmetic with these things.

Character constants and strings can be defined as in C.

9.3 General Rules for Instructions

MIPS assemblers typically allow some convenient shortcuts. You can provide
fewer operands than the machine instruction needs, and the assembler will
interpret that as a two-operand form. Or you can specify a constant, where
the machine instruction needs a register, and the assembler will infer that you
wanted the immediate variant of the instruction. This section summarizes the
common cases.

9.3.1 Computational Instructions: Three-, Two-, and One-Register

MIPS computational machine instructions are three-register operations, that
is, they are arithmetic or logical functions with two inputs and one output. For
example:

d = s + t

is written as addu d,s,t.
We mentioned as well that any or all of the register operands may be iden-

tical. To produce a CISC-style two-operand instruction you just have to use
the destination register as a source operand. The assembler will do this for you
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automatically if you omit s: It will treat addu d,s in exactly the same way as
addu d,d,s.

Unary operations like neg, not are always synthesized from one or more
of the three-register instructions. The assembler expects a maximum of two
operands for these instructions, so negu d,s is the same as subu d,zero,s
and not d will be assembled as nor d,zero,d.

Probably the most common register-to-register operation is move d,s. The
assembler implements this ubiquitous instruction as or d,zero,s.

9.3.2 Immediates: Computational Instructions with Constants

In assembly or machine language, a constant value encoded within an instruc-
tion is called an immediate value. Many of the MIPS arithmetical and logical
operations have an alternative form that uses a 16-bit immediate in place of
t. The immediate value is first sign-extended or zero-extended to 32 bits; the
choice of how it’s extended depends on the operation, but in general arithmeti-
cal operations sign-extend and logical operations zero-extend.

Although an immediate operand produces a different machine instruction
from its three-register version (e.g., addiu instead of addu), there is no need
for the programmer to write this explicitly. The assembler checks whether the
final operand is a register or an immediate and chooses the correct machine
instruction accordingly:

addu $2, $4, 64 => addiu $2, $4, 64

If an immediate value is too large to fit into the 16-bit field in the machine
instruction, then the assembler helps out again. It automatically loads the con-
stant into the assembler temporary register at/$1 and then uses it to perform
the operation:

addu $4, 0x12345 => li at, 0x12345
addu $4, $4, at

Note the li (load immediate) instruction, which you won’t find in the
machine’s instruction set; li is a heavily used macro instruction that loads an
arbitrary 32-bit integer value into a register without the programmer having to
worry about how it gets there—the assembler automatically chooses the best
way to code the operation, according to the properties of the integer value.

When the 32-bit value lies between ±32 K, the assembler can use a single
addiu with $0; when bits 16–31 are all zero, it can use ori; when bits 0–15
are all zero, it will use lui; and when none of these is possible, it will choose a
lui/ori pair:

li $3, -5 => addiu $3, $0, -5
li $4, 0x8000 => ori $4, $0, 0x8000
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li $5, 0x120000 => lui $5, 0x12
li $6, 0x12345 => lui $6, 0x1

ori $6, $6, 0x2345

Assembly instructions that expand into multiple machine instructions are
troublesome if you’re using .set noreorder directives to take control of
managing branch delay slots. If you write a multi-instruction macro in a delay
slot, the assembler should warn you.

9.3.3 Regarding 64-Bit and 32-Bit Instructions

We saw earlier that the extension of the MIPS architecture to 64 bits
(section 2.7.3) paid careful attention to ensuring that the behavior of MIPS32
programs remains unchanged, even if they’re run on MIPS64 machines; in
MIPS64 machines, the execution of MIPS32 instructions always leaves the upper
32 bits of any GP register set either to all ones or all zeros (reflecting the value
of bit 31).

Many 32-bit instructions carry over directly to 64-bit systems—all bitwise
logical operations, for example—but arithmetic functions don’t. Adds, sub-
tracts, shifts, multiplies, and divides all need new versions. The new instructions
are named by prefixing the old mnemonic with d (double): For example, the
32-bit addition instruction addu is augmented by the new instruction daddu,
which does full 64-bit-precision arithmetic. A leading “d” in an instruction
mnemonic generally means “double.”

9.4 Addressing Modes

As noted previously, the hardware supports only one addressing mode, base
reg+offset, where offset is in the range −32768 to 32767. However, the assembler
will synthesize code to access data at addresses specified in various other ways:

Direct: A data label or external variable name supplied by you

Direct+index: An offset from a labeled location specified with a register

Constant: Just a large number, interpreted as an absolute 32-bit address

Register indirect: Just register+offset with an offset of zero

When these methods are combined with the assembler’s willingness to do
simple constant arithmetic at compile time and the use of a macro processor,
you are able to do most of what you might want. Here are some examples:

Instruction Expands to

lw $2, ($3) => lw $2, 0($3)
lw $2, 8+4($3) => lw $2, 12($3)
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lw $2, addr => lui at, %hi(addr)
lw $2, %lo(addr)(at)

sw $2, addr($3) => lui at, %hi(addr)
addu at, at, $3
sw $2, %lo(addr)(at)

The symbol addr in the above examples can be any of the following:

A relocatable symbol—the name of a label or variable (whether in this
module or elsewhere)

A relocatable symbol ± a constant expression (the assembler/linker can
handle this at system build time)

A 32-bit constant expression (e.g., the absolute address of a device reg-
ister)

The constructs %hi() and %lo() represent the high and low 16 bits of the
address. This is not quite the straightforward division into low and high half-
words that it looks, because the 16-bit offset field of an lw is interpreted as
signed. So if the addr value is such that bit 15 is a 1, then the %lo(addr) value
will act as negative, and we need to increment %hi(addr) to compensate:

addr %hi(addr) %lo(addr)

0x1234.5678 0x1234 0x5678

0x1000.8000 0x1001 0x8000

The la (load address) macro instruction provides a similar service for
addresses to that provided for integer constants by li:

la $2, 4($3) => addiu $2, $3, 4

la $2, addr => lui at, %hi(addr)
addiu $2, at, %lo(addr)

la $2, addr($3) => lui at, %hi(addr)
addiu $2, at, %lo(addr)
addu $2, $2, $3

In principle, la could avoid messing around with apparently negative
%lo( ) values by using an ori instruction. But load/store instructions have
a signed 16-bit address offset, and as a result the linker is already equipped
with the ability to fix up addresses into two parts that can be added correctly.
So la uses the add instruction to avoid the linker having to understand two
different fix-up types.
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9.4.1 Gp-Relative Addressing

A consequence of the way the MIPS instruction set is crammed into 32-bit
operations is that accesses to compiled-in locations usually require at least two
instructions, for example:

lw $2, addr => lui at, %hi(addr)
lw $2, %lo(addr)(at)

In programs that make a lot of use of global or static data, this can make the
compiled code significantly fatter and slower.

Early MIPS compilers introduced a fix for this, which has been carried into
most MIPS toolchains. It’s usually called gp-relative addressing. This technique
requires the cooperation of the compiler, assembler, linker, and start-up code to
pool all of the “small” variables and constants into a single memory region; then
it sets register $28 (known as the global pointer or gp register) to point to the
middle of this region. (The linker creates a special symbol, gp, whose address
is the middle of this region. The address of gp must then be loaded into the gp
register by the start-up code, before any load or store instructions are used.) So
long as all the variables together take up no more than 64 KB of space, all the
data items are now within 32 KB of the midpoint, so a load turns into:

lw $2, addr => lw $2, addr - _gp(at)

The problem is that the compiler and assembler must decide which vari-
ables can be accessed via gp at the time the individual modules are compiled.
The usual test is to include all objects of less than a certain size (eight bytes
is the usual default). This limit can usually be controlled by the “-G n” com-
piler/assembler option; specifying “-G 0” will switch this optimization off alto-
gether.

While it is a useful trick, there are some pitfalls to watch out for. You must
take special care when writing assembly code to declare global data items con-
sistently and correctly:

Writable, initialized small data items must be put explicitly into the
.sdata section.

Global common data must be consistently declared with the correct size:

.comm smallobj, 4

.comm bigobj, 100

Small external variables should also be explicitly declared:

.extern smallext, 4

Most assemblers will not act on a declaration unless it precedes the use
of the variable.
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In C, you must declare global variables correctly in all modules that use
them. For external arrays, either omit the size, like this:

extern int extarray[];

or give the correct size:

int cmnarray[NARRAY];

Sometimes the way programs are run means this method can’t be used.
Some real-time operating systems (and many PROM monitors) are built with
a separately linked chunk of code implementing the kernel, and applications
invoke kernel functions with long-range subroutine calls. There’s no cost-
effective method by which you could switch back and forth between the two
different values of gp that will be used by the application and OS, respectively.
In this case either the applications or the OS (but not necessarily both) must be
built with -G 0.

When the -G 0 option has been used for compilation of any set of modules,
it is usually essential that all libraries linked in with them should be compiled
that way. If the linker is confronted with modules that disagree on whether a
named variable should be put in the small or regular data sections, it’s likely to
give you peculiar and unhelpful error messages.

9.5 Object File and Memory Layout

This chapter concludes with a brief look at the way programs are typically laid
out in system memory and notes some important points about the relationship
between the memory layout and the object files produced by the toolchain. It’s
very useful to have a basic understanding of the way your code should appear
after it’s loaded into the system’s memory, especially if you’re going to face the
task of getting MIPS code to run for the first time on newly developed system
hardware.

The conventional code and data sections defined by MIPS conventions are
illustrated (for ROMable programs) in Figure 9.1.

Within an assembly program the sections are selected as described in the
groupings that follow.

.text, .rdata, and .data

Simply put the appropriate section name before the data or instructions, as
shown in this example:

.rdata
msg:.asciiz "Hello world!\n"
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.rdata
Read-only data

.text
Program code

etext

_ftext

ROM

Stack
Grows down from top of memory

Heap
Grows up toward stack

end

RAM

.bss
Uninitialized writable data

.sbss
Uninitialized writable small data _fbss

edata.lit8
64-bit floating-point constants

.lit4
32-bit floating-point constants

.sdata
Writable small data

.data
Writable data _fdata

Exception vectors

FIGURE 9.1 ROMable program’s object code segments and typical memory layout.

.data
table:

.word 1

.word 2

.word 3

.text
func:sub sp, 64

...

.lit4 and .lit8 Sections: Floating-Point Implicit Constants

You can’t write these section names as directives. They are read-only data sec-
tions created implicitly by the assembler to hold floating-point constants that
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are given as arguments to the li.s or li.d macro instructions. Some
assemblers and linkers will save space by combining identical constants.

.lit4 and .lit8 may be included in the “small data” region if the appli-
cation is built to use gp-relative addressing.

.bss, .comm, and .lcomm Data

This section name is also not used as a directive. It is used to collect all static or
global uninitialized data declared in C modules. It’s a feature of C that multiple
same-named definitions in different modules are acceptable so long as not more
than one of them is initialized, and the .bss section is often used for data that
is not initialized anywhere. FORTRAN programmers would recognize this as
what is called common data—that’s where the name of the directive comes from.

You always have to specify a size for the data (in bytes). When the program is
linked, the item will get enough space for the largest size. If any module declares
it in an initialized data section, all the sizes are used and that definition is used:

.comm dbgflag, 4 # global common variable, 4 bytes

.lcomm sum, 4 # local common variable, 8 bytes

.lcomm array, 100 # local common variable, 100 bytes

“Uninitialized” is actually a misnomer. In C, static or global variables that
are not explicitly initialized should be set to zero before the program starts—a
job for the operating system or start-up code.

.sdata, Small Data, and .sbss

These sections are used as alternatives to the .data and .bss sections above by
toolchains that want to separate out smaller data objects. Toolchains for MIPS
processors do this because the resulting small-object section is compact enough
to allow an efficient access mechanism that relies on maintaining a data pointer
in a reserved register gp, as described in section 9.4.1.

Note that the .sbss is not a legal directive; the toolchain allocates a data
item to the .sbss section if the item is declared with .comm or .lcomm and is
of size smaller than the -G threshold value fed to the assembly program.

The implicit-constant sections .lit4 and .lit8 may be included in the
small data region, according to the threshold setting.

When gp-relative addressing is used, gp will be initialized to point some-
where close to the midpoint of the “small data” region.

.section

Start an arbitrarily named section and supply control flags (which are object
code specific and probably toolkit specific). See your toolkit manuals, and always
use the specific section name directives for the common sections.
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9.5.1 Practical Program Layout, Including Stack and Heap

The program layout illustrated in Figure 9.1 is suitable in most practical systems
in which the code is stored in ROM and runs on a bare CPU (that is, without the
services of any intermediate software such as an operating system). The read-
only sections are likely to be located in an area of memory remote from the
read/write sections.

The stack and heap are significant as areas of the system’s address space, but
it’s important to understand that they’re not known to the assembler or linker
in the same way as, for example, the .text or .data sections. Typically, the stack
and the heap are initialized and maintained by the runtime system. The stack
is defined by setting the sp register to the top of available memory (aligned
to an eight-byte boundary). The heap is defined by a global pointer variable
used by functions such as malloc() functions; it’s often initialized to the end
symbol, which the linker has calculated as the highest location used by declared
variables.

Special Symbols

Figure 9.1 also shows a number of special symbols that are automatically defined
by the linker to allow programs to discover the start and end of their various
sections. They are descended from conventions that grew up in UNIX-like OSs,
and some are peculiar to the MIPS environment. Your toolkit might or might
not define all of them; those marked with a

√
in the following list are pretty

certain to be there:

Symbol Standard? Value

ftext Start of text (code) segment

etext
√

End of text (code) segment

fdata Start of initialized data segment

edata
√

End of initialized data segment

fbss Start of uninitialized data segment

end
√

End of uninitialized data segment
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Chapter

10 Porting Software to the
MIPS Architecture

Very few projects require absolutely all of their software to be created from
scratch; the vast majority make use of at least some code that already

exists—at the application level, in the operating system, or both. You may well
find, however, that the existing code you’d like to use in your MIPS system was
originally developed for some other microprocessor family. Of course, at a min-
imum, you’ll need to recompile the source code to create a new set of binaries for
MIPS; but as we’ll see, the task may be more complicated than that. Portability
refers to the ease with which a piece of software can be transferred successfully
and correctly to a new environment, particularly a new instruction set. Port-
ing a substantial body of software is rarely easy, and the level of difficulty tends
to rise sharply if the software in question is (or includes) an OS or OS-related
software such as device drivers.

High-level software (Linux application code or the like) will typically have
been written with at least some notion of portability and will quite probably
have been used in several environments already, so there’s a reasonable likeli-
hood that you’ll be able to recompile it without having to make changes. Low-
level software—perhaps a large portion of the source code, for some embedded
systems—is more troublesome. Software that has been developed exclusively in
just one particular environment is especially likely to present portability prob-
lems, since its creators may not have recognized any particular need to avoid or
resolve them. The object of this chapter is to draw your attention to areas that
are particularly likely to cause problems when you’re porting software to MIPS.

The parts of a system that drive the lowest-level hardware are inevitably
nonportable; embedded systems are typically subject to significant design
upgrades every couple of years or so, and it’s just not reasonable (and cer-
tainly not cost effective) to insist that the original hardware/software interfaces
be preserved throughout such changes.

279
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10.1 Low-Level Software for MIPS Applications: A Checklist of
Frequently Encountered Problems

The following are problems that have come up fairly frequently:

Endianness: The computer world is divided into little- and big-endian
camps, and a gulf of incomprehension falls between them. Most
MIPS CPUs can be set up to run either big-endian or little-endian;
but even if you already know which way your MIPS system will be
configured, it’s strongly recommended that you make sure you under-
stand this issue thoroughly. It’s caught out many experienced devel-
opers before you, and it will catch out some more. Read about it in
section 10.2.

Data layout and alignment in memory: Your program may make
unportable assumptions about the memory layout of data declared in
C. It’s almost always unportable to use C struct declarations to map
input files or data received through a communication link, for example.
Danger can lurk in a program that employs multiple views of private
data with differently typed pointers or unions.

However, data layout goes together with a description of other conven-
tions (for register use, argument passing, and stack handling) and you’ll
find that in the next chapter: If you need to take a peek ahead, it’s in
section 11.1.

Need for explicit cache management: You may find that code you’d like to
reuse was developed for a microprocessor that didn’t implement caches
at all, or one that used a CPU with caches that are “invisible” to soft-
ware (almost all side effects of caching in PC-compatible processors are
hidden by clever hardware, for instance). But most MIPS CPUs keep
their hardware simple by letting some side effects remain visible and
making software responsible for cache management; we’ll describe what
this means in section 10.3.

Memory access ordering and reordering: In many modern embedded or
consumer systems, data moving around the system may pass through a
chain of subsystems as it moves from its source to its final destination.
Those subsystems may themselves encapsulate a lot of complicated
hardware, and may present you with unexpected problems. For exam-
ple, pieces of information passed between the CPU and I/O devices
may be forced to wait in queues, incurring variable amounts of delay;
or they may be separated into several independent traffic streams, so
the order in which they arrive at their respective destinations can’t
be guaranteed to match the order in which they were originally sent.
Typical problems and solutions are discussed in section 10.4.
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Writing it in C: This is not so much a problem as an opportunity. But
there are things you can do in C (and probably should do in preference
to writing assembly code) that are fairly MIPS-specific. This section talks
about inline assembly, using memory-mapped registers, and a ragbag of
possible pitfalls using MIPS.

10.2 Endianness: Words, Bytes, and Bit Order

The word endianness was introduced to computer science by Danny Cohen
(Cohen 1980). In an article of rare humor and readability, Cohen observed that
computer architectures had divided up into two camps, based on an arbitrary
choice of the way in which byte addressing and integer definitions are related
in communications systems.

In Jonathan Swift’s Gulliver’s Travels, the “little-endians” and “big-endians”
fought a war over the correct end at which to start eating a boiled egg. Swift
was satirizing 18th-century religious disputes, and neither of his sides can see
that their difference is entirely arbitrary. Cohen’s joke was appreciated, and the
word has stuck. The problem is not just relevant to communications; it has
implications for portability too.

Computer programs are always dealing with sequence and order of differ-
ent types of data: iterating in order over the characters in a string, the words in
an array, or the bits in a binary representation. C programmers live with a per-
vasive assumption that all these variables are stored in a memory that is itself
visible as a sequence of bytes—memcpy() will copy any data type. And C’s I/O
system models all I/O operations as bytes; you can also read() and write()

any chunk of memory containing any data type.
So one computer can write out some data, and another computer can read

it; suddenly, we’re interested in whether the second computer can understand
what the first one wrote.

We understand that we need to be careful with padding and alignment
(details in section 11.1). And it’s probably too much to expect that complex
data types like floating-point numbers will always transfer intact. But we’d hope
at least to see simple twos complement integers coming across OK; the curse
of endianness is that they don’t. The 32-bit integer whose hexadecimal value
was written as 0x1234.5678 quite often reads in as 0x7856.3412—it’s been
“byte-swapped.” To understand why, let’s go back a bit.

10.2.1 Bits, Bytes, Words, and Integers

A 32-bit binary integer is represented by a sequence of bits, with each bit hav-
ing a different significance. The least significant bit is “ones,” then “twos,” then
“fours”—just as a decimal representation is “ones,” “tens,” and “hundreds.”
When your memory is byte-addressable, your 32-bit integer occupies four bytes.
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MS ...
Bit 0 7 8 15 16 23 24

32-bit integer
16-bit integer #0 16-bit integer #1

byte #0 byte #1 byte #2 byte #3

LS
31

FIGURE 10.1 IBM (consistent big-endian) view.

There are two reasonable choices about how the integer and bytewise view tie
up: Some computers put the least significant (LS) bits “first” (that is, in lower-
addressed memory bytes) and some put the most significant (MS) bit first—
and Cohen called them little-endian and big-endian, respectively. When I first
got to know about computers in 1976, DEC’s minicomputers were little-endian
and IBM mainframes were big-endian; neither camp was about to give way.

It’s worth stressing that the curse of choice only appeared once you could
address bytes. Pioneering computers through to the late 1960s were generally
organized around a single word size: Instructions, integers, and memory width
were all the same word size. Such a computer has no endianness: It has word
order in memory and bit order inside words, and those are unrelated.

Just as with opening a boiled egg, both camps have good arguments.
We’re used to writing decimals with the most significant digits to the left,

and (reading left to right as usual) we say numbers that way: Shakespeare might
have said “four and twenty,” but we say “twenty-four.” So if you write down
numbers, it’s natural to put the most significant bits first. Bytes first appeared
as a convenient way of packing characters into words, before memory was byte
addressable. A 1970s vintage IBM programmer had spent most of his or her
career poring over vast dump listings, and each set of characters represented a
word, which was a number. Little-endian numbers look ridiculous. They were
instinctive big-endians. But with numbers written MS to the left and byte
addresses increasing in the same direction, it would have been inconsistent to
have numbered the bits from right to left: So IBM labeled the MS bit of a word
bit 0. Their world looked like Figure 10.1.

But it’s also natural to number the bits according to their arithmetic
significance within integer data types—that is, to assign bit number n to
the position that has arithmetic significance 2n. It’s then consistent to store
bits 0–7 in byte 0, and you’ve become a little-endian. Having words appear
backward in dumps is a shame, but the little-endian view made particular
sense to people who’d gotten used to thinking of memory as a big array of
bytes. Intel, in particular, is little-endian. So its words, bytes, and bits look
like Figure 10.2.

You’ll notice that these diagrams have exactly the same contents: only the
MS/LS are interchanged, as well as the order of the fields. IBM big-endians see
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Bit 0 7 8 15 16 23 24

byte #0 byte #1 byte #2 byte #3
16-bit integer #0 16-bit integer #1

32-bit integer
LS ...

31

MS

FIGURE 10.2 Consistent (Intel) little-endian view.

words broken into bytes, while little-endians see bytes built into words. Both
these systems seemed unarguably right to different people: There’s lots of merit
in both, but you have to choose.

But let’s get back to our observation about the problem above. Our mangled
word started as 0x1234.5678, which is 00010010 00110100 01010110

01111000 in binary. If you transfer it naively to a system with the opposite
endianness, you’d surely expect to see all the bits reversed. In that case you’d
receive the number 00011110 01101010 00101100 01001000, which is
hex 0x1E6A.2C48. But we said we’d read hex 0x7856.3412.

It’s true that complete bit reversal could arise in some circumstances; there
are communication links that send the MS bit first, and some that send the LS
bit first. But sometime in the 1970s 8-bit bytes emerged as a universal base unit
both inside computers and in computer communications systems (where they
were called “octets”). Typically, communication systems build all their messages
out of bytes, and only the lowest-level hardware engineers know which bit goes
first.

Meanwhile, every microprocessor system got to use 8-bit peripheral con-
trollers (wider controllers were reserved for the high-end stuff), and all those
peripherals have 8-bit ports numbered 0 through 7, and the most significant
bit is 7. Somehow, without a shot apparently fired, every byte was little-endian,
and has been ever since.

Early microprocessor systems were 8-bit CPUs on 8-bit buses with 8-bit
memory systems, so they had no endianness. Intel’s 8086 was a 16-bit little-
endian system. When Motorola introduced the 68000 microprocessor around
1978, they greatly admired IBM’s mainframe architecture. Either in admi-
ration for IBM or to differentiate themselves from Intel, they thought they
should be big-endians too. But Motorola couldn’t oppose the prevailing bits-
within-bytes convention—every 8-bit Motorola peripheral would have had to
be connected to a 68000 with its data bus bit-twisted. As a result, the 68000
family looks like Figure 10.3, with the bits and bytes numbered in opposite
directions.

The 68000 and its successors went on to be used for most successful UNIX
servers and workstations (notably with Sun). When MIPS and other RISCs
emerged in the 1980s, their designers needed to woo system designers with the
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MS ... LS
Bit 31 24 23 16 15 8 7 0

32-bit integer
16-bit integer #0 16-bit integer #1

byte #0 byte #1 byte #2 byte #3

FIGURE 10.3 Inconsistent big-endian view as founded by the 68000 family.

right endianness, so they designed CPUs that could swing either way. But from
the 68000 onward, big-endian has meant 68000-style big-endian, with bits and
bytes going opposite ways. When you set up a MIPS CPU to be big-endian, it
looks like Figure 10.3. And that’s where the trouble really starts.

One small difficulty comes when you read hardware manuals for your CPU
and see register diagrams. Everyone’s convinced that registers are (first and
foremost) 32-bit integers, so they’re invariably drawn with the MS bit (bit 31,
remember) first. This has some consequences for programmers and hardware
designers alike. That picture motivates the difference between “shift-left” and
“shift-right” instructions, determines the bit-number arguments of bitfield
instructions, and even refers to the labeling of the bitfields that make up MIPS
instructions.

Once you get over that, there is serious software trouble when porting soft-
ware or moving data between incompatible machines; there is hardware trouble
when connecting incompatible components or buses. We’ll take the software
and hardware problems separately.

10.2.2 Software and Endianness

Here’s a software-oriented definition of endianness: A CPU/compiler system
where the lowest addressed byte of a multibyte integer holds the least significant
bits is called little-endian; a system where the lowest addressed byte of a multi-
byte integer holds the most significant bits is called big-endian. You can very
easily find out which sort of CPU you have by running a piece of deliberately
nonportable code:

#include<stdio.h>

main ()

{

union {

int as_int;

short as_short[2];
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char as_char[4];

} either;

either.as_int = 0x12345678;

if (sizeof(int) == 4 && either.as_char[0] == 0x78) {

printf ("Little endian\n");

}

else if (sizeof(int) == 4 && either.as_char[0] == 0x12) {

printf ("Big endian\n");

}

else {

printf ("Confused\n");

}

}

Strictly speaking, software endianness is an attribute of the compiler
toolchain, which could always—if it worked hard enough—produce the effect
of either endianness. But on a byte-addressable CPU like MIPS with native
32-bit arithmetic it would be unreasonably inefficient to buck the hardware;
thus we talk of the endianness of the CPU.

Of course, the question of byte layout within the address space applies to
other data types besides integers; it affects any item that occupies more than
a single byte, such as floating-point data types, text strings, and even the 32-
bit op-codes that represent machine instructions. For some of these noninteger
data types, the idea of arithmetic significance applies only in a limited way, and
for others it has no meaning at all.

When a language deals in software-constructed data types bigger than
the hardware can manage, then their endianness is purely an issue of soft-
ware convention—they can be constructed with either endianness. I hope
that modern compiler writers appreciate that it’s a good idea to be consistent
with the hardware’s own convention.

Endianness and Program Portability

So long as binary data items are never imported into an application from else-
where, and so long as you avoid accessing the same piece of data under two
different integer types (as we deliberately did above), your CPU’s endianness
is invisible (and your code is portable). Modern C compilers will try to watch
out for you: If you do this by accident, you’ll probably get a compiler error or
warning.

You may not be able to live within those limitations, however; you may
have to deal with foreign data delivered into your system from elsewhere, or
with memory-mapped hardware registers. For either of these, you need to know
exactly how your compiler accesses memory.
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Bit 31 24 23 16 15 8 7 0
as_int

as_short[0] as_short[1]

as_char[0] as_char[1] as_char[2] as_char[3]

Byte offset 0 1 2 3

FIGURE 10.4 Typical big-endian’s picture.

Byte offset 0 1 2 3

Bit 0 7 8 15 16 23 24 31
as_int

as_short[0] as_short[1]

as_char[0] as_char[1] as_char[2] as_char[3]

FIGURE 10.5 Little-endian’s picture.

This all seems fairly harmless, but experience shows that of all data-mapping
problems, endianness is uniquely confusing. I think this is because it is diffi-
cult even to describe the problem without taking a side. The origin of the two
alternatives lies in two different ways of drawing the pictures and describing the
data; both are natural in different contexts.

As we saw above, big-endians typically draw their pictures organized around
words. So that gives us a big-endian picture of the data structure we used in
Figure 10.4. It would look a lot prettier with the IBM convention of labeling the
MS bit as bit 0, but that’s no longer done.

But little-endians are likely to emphasize a software-oriented, abstract
view of computer memory as an array of bytes. So the same data structure
looks like Figure 10.5. Little-endians don’t think of computer data as primarily
numeric, so they tend to put all the low numbers (bits, bytes, or whatever) on
the left.

It’s very difficult to achieve a real grasp of endianness without drawing
pictures, but many people find themselves struggling to set aside the conven-
tions they’re used to; for example, if you’re used to numbering the bits from
right to left, it can take a real effort of will to number them from left to right
(a picture of a little-endian structure as drawn by someone with big-endian
habits can look very illogical). This is the essence of the subject’s capacity to con-
fuse: It’s difficult even to think about an unfamiliar convention without getting
caught up in the ones you know.
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10.2.3 Hardware and Endianness

We saw previously that a CPU’s native endianness only shows up when it offers
direct support both for word-length numbers and a finer-resolution, byte-sized
memory system. Similarly, your hardware system acquires a recognizable
endianness when a byte-addressed system is wired up with buses that are mul-
tiple bytes wide.

When you transfer multibyte data across the bus, each byte of that data has
its own individual address. If the lowest-address byte in the data travels on the
eight bus lines (“byte lane”) with the lowest bit numbers, the bus is little-endian.
But if the lowest-address byte in the data travels on the byte lane with the highest
bit numbers, the bus is big-endian.

There’s no necessary connection between the “native” endianness of a CPU
and the endianness of its system interface considered as a bus. However, I don’t
know of any CPUs where the software and interface endianness are different, so
we can talk about “the endianness of a CPU” and mean both internal organi-
zation and system interface.

Byte-addressable CPUs announce themselves as either big- or little-endian
every time they transfer data. Intel and DEC CPUs are little-endian; Motorola
680x0 and IBM CPUs are big-endian. MIPS CPUs can be either, as configured
from power-up; most other RISCs have followed the MIPS lead and chosen to
make endianness configurable—a boon when updating an existing system with
a new CPU.

Hardware engineers can hardly be blamed for connecting up different buses
by matching up the bit numbers. But trouble strikes when your system includes
buses, CPUs, or peripherals whose endianness doesn’t match. In this case the
choice is not a happy one; the system designer must choose the lesser of two
evils:

Bit number consistent/byte sequence scrambled: Most obviously, the
designer can wire up the two buses according to their bit numbers, which
will have the effect of preserving bit numbering within aligned “words.”
But since the relationship between bit numbers and bytes-within-words
is different on the two buses, the two sides will see the sequence of bytes
in memory differently.

Any data that is not of bus-width size and bus-width aligned will get
mangled when transferred between the connected buses, with bytes
swapped within each bus-width-sized unit. This looks and feels worse
than the software problem. With wrong-endianness data in software,
you have no problem finding data type boundaries; it’s just that the data
doesn’t make sense. With this hardware problem the boundaries are
scrambled too (unless the data are, by chance, aligned on bus-width
“word” boundaries).

There’s a catch here. If the data being passed across the interface is always
aligned word-length integers, then bit-number-consistent wiring will
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conceal the endianness difference, avoiding the need for software
conversion of integers. But hardware engineers very rarely know exactly
which data will be passed across an interface over the lifetime of a system,
so be cautious.

Byte address consistent/integers scrambled: The designer can decide to pre-
serve byte addressing by connecting byte lanes that correspond to the
same byte-within-word address, even though the bit-numbering of the
data lines in the byte lane doesn’t match at all. Then at least the whole
system can agree on the data seen as an array of bytes.

However, there are presumably going to be components with mismatched
software endianness in the system. So your consistent byte addressing
is guaranteed to expose their disagreement about the representation of
multibyte integers. And—in particular—even a bus-width-aligned inte-
ger (the “natural” unit of transfer) will appear byte-swapped when moved
to the other endianness.

For most purposes, byte address scrambling is much more harmful, and
we’d recommend “byte address consistent” wiring. When dealing with data
representation and transfer problems, programmers will usually fall back on
C’s basic model of memory as an array of bytes, with other data types built up
from that. When your assumptions about memory order don’t work out, it’s
very hard to see what’s going on.

Unfortunately, a bit number consistent/byte address scrambled connection
looks much more natural on a schematic; it can be very hard to persuade hard-
ware engineers to do the right thing.

Not every connection in a system matters. Suppose we have a 32-bit-wide
memory system bolted directly to a CPU. The CPU’s system interface may
not include a byte-within-word address—the address bus does not specify
address bits 1 and 0. Instead, many CPUs have four “byte enables,” which
show that data is being transferred on particular byte lanes. The memory
array is wired to the whole bus, and on a write the byte enables tell the
memory array which of four possible byte locations within the word will
actually get written. Internally, the CPU associates each of the byte lanes with
a byte-within-word address, but that has no effect on the operation of the
memory system. Effectively, the memory/CPU combination acts together and
inherits the endianness of the CPU; where byte-within-word 0 actually goes in
memory doesn’t matter, so long as the CPU can read it back again.1

It’s very important not to be seduced by this helpful characteristic of a
RAM memory into believing that there’s no intrinsic endianness in a simple

1. Hardware-familiarized engineers will recognize that this is a consequence of a more general rule:
It’s a property of a writable memory array that it continues to work despite arbitrary permu-
tations of the address and data lines to it. It doesn’t matter where any particular data goes, so
long as when you feed the matching read address into the array you get back the same data you
originally wrote.
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CPU/RAM system. You can spot the endianness of any transfer on a wide bus.
Here’s a sample list of conditions in which you can’t just ignore the CPU’s
endianness when building a memory system:

If your system uses firmware that’s preprogrammed into ROM memory,
the hardware address and byte lane connection assignments within
the system need to match those assumed in the way the ROM was
programmed, and the data contained in the ROM needs to match the
CPU’s configured endianness. In effect, the contents of the ROM are
being delivered into your system from somewhere outside it. If the code
is to be executed directly from the ROM, it’s especially important to
get the endianness right, because it’s impossible for the CPU to apply
any corrective software byte-swapping to the op-codes as it fetches
them.

When a DMA device gets to transfer data directly into memory, then its
notions of ordering will matter.

When a CPU interface does not in fact use byte enables, but instead issues
byte-within-word addresses with a byte-width code (quite common for
MIPS CPUs), then at least the hardware that decodes the CPU’s read
and write requests must know which endianness the CPU is using. This
can be particularly tricky if the CPU allows endianness to be software-
configured.

The next section is for you to tell your hardware engineer about how to
set up a byte address consistent system—and even how to make that system
configurable with the CPU, if some of your users might set up the MIPS CPU
both ways.

Wiring Endianness-Inconsistent Buses

Suppose we’ve got a 64-bit MIPS CPU configured big-endian, and we need to
connect it to a little-endian 32-bit bus such as PCI.

Figure 10.6 shows how we’d wire up the data buses to achieve the recom-
mended outcome of consistent byte addresses as seen by the big-endian CPU
and the little-endian bus.

The numbers called “byte lane” show the byte-within-bus-width part of the
address of the byte data traveling there. Writing in the byte lane numbers is the
key to getting one of these connections right.

Since the CPU bus is 64 bits wide and the PCI bus 32 bits, you need to be
able to connect each half of the wide bus to the narrow bus according to the
“word” address—that’s address bit 2, since address bits 1 and 0 are the byte-
within-32-bit-word address. The CPU’s 64-bit bus is big-endian, so its high-
numbered bits carry the lower addresses, as you can see from the byte lane
numbers.
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FIGURE 10.6 Wiring a big-endian CPU to a little-endian bus.

You may find yourself staring at the numbering of the connections around
the bus switch for quite some time before they really make sense. Such are the
joys of endianness.

And note that I only showed data. PCI is a multiplexed bus, and in some
clock cycles those “byte lanes” are carrying an address. In address cycles, PCI
bus wire 31 is carrying the most significant bit of the address. The address-time
connection from your MIPS-based system should not be swapped.

Wiring an Endianness-Configurable Connection

Suppose you want to build a board or bus switch device that allows you to
configure a MIPS CPU to run with either endianness. How can we generalize
the advice above?



10.2 Endianness: Words, Bytes, and Bit Order 291

We’d suggest that, if you can persuade your hardware designer, you should
put a programmable byte lane swapper between the CPU and the I/O system.
The way this works is shown diagrammatically in Figure 10.7; note that this is
only a 32-bit configurable interface and it’s an exercise for you to generalize it
to a 64-bit CPU connection.

We call this a byte lane swapper, not a byte swapper, to emphasize that
it does not alter its behavior on a per-transfer basis, and in particular to
indicate that it is not switched on and off for transfers of different sizes.
There are circumstances where it can be switched on and off for transfers to
different address regions—mapping some part of the system as bit number
consistent/byte address scrambled—but that’s for you to make work.
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FIGURE 10.7 Byte lane swapper.
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What a byte lane swapper does achieve is to ensure that whether your CPU
is set up to be big- or little-endian, the relationship between the CPU and the
now mismatched external bus or device can still be one where byte sequnce is
preserved.

You normally won’t put the byte-lane swapper between the CPU and its
local memory—this is just as well, because the CPU/local memory connection
is fast and wide, which would make the byte swapper expensive.

As mentioned above, so long as you can decode the CPU’s system inter-
face successfully, you can treat the CPU/local memory as a unit and install
the byte swapper between the CPU/memory unit and the rest of the system.
In this case, the relationship between bit number and byte order inside the
local memory changes with the CPU, but this fact is not visible from the
rest of the world.

False Cures and False Prophets for Endianness Problems

Every design team facing up to endianness for the first time goes through the
stage of thinking that the troubles reflect a hardware deficiency to be solved. It’s
never that simple. Here are a few examples.

Configurable I/O controllers: Some newer I/O devices and system con-
trollers can themselves be configured into big-endian and little-endian
modes. You’re going to have to read the manual very carefully before
using such a feature, particularly if you mean to use it not as a static
(design time) option but rather as a jumper (reset time) option.

It is quite common for such a feature to affect only bulk data transfers,
leaving the programmer to handle other endianness issues, such as access
to bit-coded device registers or shared memory control fields. Also, the
controller designer probably didn’t have the benefit of this book—and
confusion about endianness is widespread.

Hardware that byte-swaps according to transfer type: If you’re design-
ing in some byte-swap hardware, it seems appealing to try to solve
the whole problem. If we just swapped byte data to preserve its
addresses, but left words alone, couldn’t we prevent the whole soft-
ware problem? The answer is no, there aren’t any hardware fixes for
the software problem. For example, many of the transfers in a real
system are of data cache lines. They may contain an arbitrary mix-
ture of data sizes and alignments; if you think about it for a moment,
you’ll see that there simply isn’t any way to know where the bound-
aries are, which means there’s no way to determine the required swap
configuration.

Conditional byte-swapping just adds confusion. Anything more than
unconditional byte lane swapping is snake oil.
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10.2.4 Bi-endian Software for a MIPS CPU

You may want to create binary code that will run correctly on MIPS CPUs
with either endianness—probably for a particular board that may be run either
way or to create a portable device driver that may run on boards of either
configuration. It’s a bit tricky, and you will probably only do a tiny part of your
bootstrap code like this, but here are some guidelines.

The MIPS CPU doesn’t have to do too much to change endianness. The only
parts of the instruction set that recognize objects smaller than 32 bits are partial-
word loads and stores. On a MIPS CPU with a 32-bit bus, the instruction:

lbu t0, 1(zero)

takes the byte at byte program address 1, loads it into the least significant bits
(0 through 7) of register t0, and fills the rest of the register with zero bits. This
description is endianness independent. However, in big-endian mode the data
loaded into the register will be taken from bits 16–23 of the CPU data bus; in
little-endian mode, the byte is loaded from bits 8–15 of the CPU data bus.

Inside the MIPS CPU, there’s data-steering hardware that the CPU uses
to direct all the active bytes in a transfer from their respective byte lanes
at the interface to the correct positions within the internal registers. This
steering logic has to accommodate all permutations of load size, address,
and alignment (including the load/store left/right instructions described in
section 8.5.1).

It is the change in the relationship between the active byte lane and the
address on partial-word loads and stores that characterizes the MIPS CPU’s
endianness. When you reconfigure your MIPS CPU’s endianness, it’s that steer-
ing logic between data and register whose behavior changes.

Complementing the chip’s configurability, most MIPS toolchains can pro-
duce code of either endianness, based on a command-line option.

If you set a MIPS CPU to the wrong endianness for its system, then a couple
of things will happen.

First, if you change nothing else, the software will crash quickly, because on
any partial-word write the memory system will pick up garbage data from the
wrong part of the CPU bus. At the same time as reconfiguring the CPU, we’d
better reconfigure the logic that decodes CPU cycles.2

If you fix that, you’ll find that the CPU’s view of byte addressing becomes
scrambled with respect to the rest of the system; in terms of the description
above, we’ve implicitly opted for a connection that keeps the bit numbers con-
sistent, rather than the byte addresses.

Of course, data written by the CPU after a change of endianness will seem
fine to the CPU itself; if we allow changes of endianness only at reset time, then
volatile memory that is private to the CPU won’t give us any trouble.

2. There are some CPU interfaces where partial-word transfers are signaled with independent byte
lane enable signals, and in that case this problem doesn’t happen.
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FIGURE 10.8 Garbled string storage when mixing modes; see text.

Note also that the CPU’s view of bit numbering within aligned bus-width
words continues to match the rest of the system. This is the choice we described
earlier as bit number consistent and that we suggested you should generally
avoid. But in this particular case it has a useful side effect, because MIPS instruc-
tions are encoded as bitfields in 32-bit words. An instruction ROM that makes
sense to a big-endian CPU will make sense to a little-endian CPU too, allow-
ing us to share a bootstrap. Nothing works perfectly—in this case, any data in
the ROM that doesn’t consist of aligned 32-bit words will be scrambled. Many
years ago, Algorithmics’ MIPS boards had just enough bi-endian code in their
boot ROM to detect that the main ROM program does not match the CPU’s
endianness and to print the helpful message:

Emergency - wrong endianness configured.

The word Emergency is held as a C string, null-terminated. You should
now know enough to understand why the ROM start-up code contains the
enigmatic lines:

.align 4

.ascii "remEcneg\000\000\000y"

That’s what the string Emergency (with its standard C terminating null and
two bytes of essential padding) looks like when viewed with the wrong endian-
ness. It would be even worse if it didn’t start on a four-byte-aligned location.
Figure 10.8 (drawn from the point of view of a confirmed big-endian) shows
what is going on.

You’ve seen that writing bi-endian code is possible, but be aware that when
you’re ready to load it into ROM, you’ll be asking your tools to do something
they weren’t designed to handle. Typically, big-endian tools pack instruction
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words into the bytes of a load file with the most significant bits first, and little-
endian tools work the other way around. You’ll need to think carefully about
the result you need to achieve, and examine the files you generate to make sure
everything went according to plan.

10.2.5 Portability and Endianness-Independent Code

By a fairly well-respected convention, most MIPS toolchains define the symbol
BYTE ORDER as follows:

#if BYTE_ORDER == BIG_ENDIAN

/* big-endian version... */

#else

/* little-endian version... */

#endif

So if you really need to, you can put in different code to handle each case. But
it’s better—wherever possible—to write endianness-independent code. Partic-
ularly in a well-controlled situation (such as when writing code for a MIPS
system that may be initialized with the CPU in either mode), you can get rid
of a lot of dependencies by good thinking.

All data references that pick up data from an external source or device are
potentially endianness dependent. But according to how your system is wired,
you may be able to produce code that works both ways. There are only two ways
of wiring the wrong endianness together: One preserves byte addresses and the
other bit numbers. For some particular peripheral register access in a particular
range of systems, there’s a good chance that the endianness change consistently
sticks to one of these.

If your device is typically mapped to be byte address compatible, then you
should program it strictly with byte operations. If ever, for reasons of efficiency
or necessity, you want to transfer more than one byte at a time, you need to
write endianness-conditional code that packs or unpacks that data.

If your device is compatible at the word (32-bit) level—for example, it con-
sists of registers wired (by however devious and indirect a route) to a fixed set
of MIPS data bus bits—then program it with bus-width read/write operations.
That will be 32-bit or 64-bit loads and stores. If the device registers are not wired
to MIPS data bus bits starting at 0, you’ll probably want to shift the data after a
read and before a write. For example, 8-bit registers on a 32-bit bus in a system
originally conceived as big-endian are commonly wired via bits 31–24.

10.2.6 Endianness and Foreign Data

This chapter is about programming, not a treatise on I/O and communi-
cations, so we’ll keep this section brief. Any data that is not initialized in
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your code, chosen libraries, and OS is foreign. It may be data you read
from some memory-mapped piece of hardware, data put into memory by
DMA, data in a preprogrammed ROM that isn’t part of your program, or
you may be trying to interpret a byte stream obtained from an “abstract”
I/O device under your OS.

The first stage is to figure out what this data looks like in memory; with
C, that can usually be accomplished by mapping out what its contents are as
an array of unsigned char. Even if you know your data and compiler well
enough to guess which C structure will successfully map to the data, fall back to
the array of bytes when something is not as you expect; it’s far too easy to miss
what is really going on if your data structure is incorrect.

Apart from endianness, the data may consist of data types that are not
supported by your compiler/CPU; it may have similar types but with com-
pletely different encodings; it may have familiar data but be incorrectly
aligned; or, falling under this section’s domain, it may have the wrong
endianness.

If the chain along which the data has reached you has preserved byte order
at each stage, the worst that will happen is that integer data will be represented
with an opposite order, and it’s easy enough to build a “swap” macro to restore
the two, four, or eight bytes of an integer value.

But if the data has passed over a bit number consistent/byte address scram-
bled interface, it can be more difficult. In these circumstances, you need to
locate the boundaries corresponding to the width of the bus where the data
got swapped; then, taking groups of bytes within those boundaries, swap them
without regard to the underlying data type. If you do it right, the result should
now make sense, with the correct byte sequence, although you may still need
to cope with the usual problems in the data—including, possibly, the need to
swap multibyte integer data again.

10.3 Trouble with Visible Caches

In section 4.6, you learned about the operations you can use to get your caches
initialized and operating correctly. This section alerts you to some of the prob-
lems that can come up and explains what you can do to deal with them.

Most of the time, the caches are completely invisible to software, serving
only to accelerate the system as they should. But especially if you need to deal
with DMA controllers and the like, it can be helpful to think of the caches as
independent buffer memories, as shown in Figure 10.9.3

It’s important to remember that transfers between cache and memory always
work with blocks of memory that fit the cache line structure—typically 16- or
32-byte-aligned blocks—so the cache may read or write a block because the

3. For MIPS CPUs with simple write-through data caches, the path labeled “write-back” in the
figure doesn’t exist.
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CPU makes direct reference to just one of the byte addresses contained within
it; even if the CPU never touches any of the other bytes in the cache line, it’ll
still include all the bytes in the next transfer of that cache line.

In an ideal system, we could always be certain that the state of the mem-
ory is up-to-date with all the operations requested by the CPU, and that
every valid cache line contains an exact copy of the appropriate memory
location. Unfortunately, practical systems can’t always live up to this ideal.
We’ll assume that you initialize your caches after any reset, and that you
avoid (rather than try to live with) the dreaded cache aliases described in
section 4.12. Starting from those assumptions, how does a real system’s
behavior fall short of the ideal?

Stale data in the cache: When your CPU writes to memory in cached
space, it updates the cached copy (and may also write memory at the
same time). But if a a memory location is updated in any other way, any
cached copies of its contents continue to hold the old value, and are now
out-of-date. That can happen when a DMA controller writes data. Or,
when the CPU writes new instructions for itself, the I-cache may con-
tinue to hold whatever was at the same location before. It’s important
for programmers to realize that the hardware generally doesn’t deal with
these conditions automatically.

Stale data in memory: When the CPU writes some data into a (write-
back) cache line, that data is not immediately copied to memory. If the
data is read later by the CPU, it gets the cached copy and is fine; but if
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something that isn’t the CPU reads memory, it may get the old value.
That can happen to an outbound DMA transfer.

The software weapons you have to fight problems caused by visible caches
are a couple of standard subroutines that allow you to clean up cache/memory
inconsistency, built on MIPS cache instructions. They operate on cache loca-
tions corresponding to a specified area of memory and can write-back up-to-
date cache data or invalidate cache locations (or both).

Well, of course, you can always map data uncached. In fact, there are some
circumstances when you will do just that: Some network device controllers,
for example, have a memory-resident control structure where they read and
write bytes and bit flags, and it’s a lot easier if you map that control struc-
ture uncached. The same is true, of course, of memory-mapped I/O registers,
where you need total control over what gets read and written. You can do that
by accessing those registers through pointers in kseg1 or some other uncached
space; if you use cached space for I/O, bad things will happen!

If (unusually) you need to use the TLB to map hardware register accesses,
you can mark the page translation as uncached. That’s useful if someone has
built hardware whose I/O registers are not in the low 512 MB of the physical
memory space.

It’s possible that you might want to map a memory-like device (a graphics
frame buffer, perhaps) through cached space so as to benefit from the speed of
the block reads and writes that the CPU only uses to implement cache refills
and write-backs. But you’d have to explicitly manage the cache by invalidation
and write-back on every such access. Some embedded CPUs provide strange and
wonderful cache options that can be useful for that kind of hardware—check
your manual.

10.3.1 Cache Management and DMA Data

This is a common source of errors, and the most experienced programmers will
sometimes get caught out. Don’t let that worry you too much: Provided you
think clearly and carefully about what you’re trying to achieve, you’ll be able
to get your caches to behave as they should while your DMA transfers work
smoothly and efficiently.

When a DMA device puts data into memory, for example, on receipt of
network data, most MIPS systems don’t update the caches—even though some
cache lines may currently be holding addresses within the region just updated
by the DMA transfer. If the CPU subsequently reads the information in those
cache lines, it’ll pick up the old, stale version in the cache; as far as the CPU can
tell, that’s still marked valid, and there’s no indication that the memory has a
newer version.

To avoid this, your software must actively invalidate any caches’ lines that
fall within the address range covered by your DMA buffer, before there’s any
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chance that the CPU will try to refer to them again. This is much easier to
manage if you round out all your DMA buffers so they start and end exactly
at cache line boundaries.

For outbound transfers, before you allow a DMA device to transfer data from
memory—such as a packet that you’re sending out via a network interface—you
must make absolutely sure that none of the data to be sent is still just sitting in
the cache. After your software has finished writing out the information to be
transferred by DMA, it must force the write-back of all cache lines currently
holding information within the address range that the DMA controller will use
for the transfer. Only then can you safely initiate the DMA transfer.

On some MIPS CPUs, you can avoid the need for explicit write-back oper-
ations by configuring your caches to use write-through rather than write-back
behavior, but this cure is really worse than the disease — write-through tends
to be much slower overall and will also raise your system’s power consumption.

You really can get rid of the explicit invalidations and write-backs by access-
ing all the memory used for all DMA transfers via an uncached address region.
This isn’t recommended either, because it’ll almost certainly degrade your sys-
tem’s overall performance far more than you’d like. Even if your software’s access
to the buffers is purely sequential, caching the DMA buffer regions will mean
that information gets read and written in efficient cache-line-sized bursts rather
than single transfers. The best general advice is to cache everything, with only
the following exceptions:

I/O device registers: Perhaps obvious, but worth pointing out. MIPS has
no dedicated input/output instructions, so all device registers must be
mapped somewhere in the address space, and very strange things will
happen if you accidentally let them be cached.

DMA descriptor arrays: Sophisticated DMA controllers share con-
trol/status information with the CPU using small descriptor data struc-
tures held in memory. Typically, the CPU uses these to create a long list of
information to be transferred, and only then tells the DMA controller to
begin its work. If your system uses descriptors, you’ll want to access the
memory region that contains them through an uncached address region.

A portable OS like Linux must deal with a range of caches from the most
sophisticated and invisible to the crude and simple, so it has a fairly well-defined
API (set of stable function calls) for driver writers to use and some terse docu-
mentation on how to use them. See section 15.1.1.

10.3.2 Cache Management and Writing Instructions:
Self-Modifying Code

If your code ever tries to write instructions into memory, then execute them,
you’ll need to make sure you allow for cache behavior.
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This can surprise you on two levels. First, if you have a write-back
D-cache, the instructions that your program writes out may not find their way
to main memory until something triggers a write-back of the relevant cache
lines. The instructions that your program wrote out could just be sitting in the
D-cache at the time you try to execute them, and the CPU’s fetches simply can’t
access them there. So the first step is to do write-back operations on the cache
lines at which you write the instructions; that at least ensures they reach main
memory.

The second surprise (regardless of which type of D-cache you have) is
that even after writing out the new instructions to some region of main
memory, your CPU’s I-cache may still hold copies of the information that
used to be held in those addresses. Before you tell the CPU to execute the
newly written instructions, it’s essential that your software first invalidates
all the lines in the I-cache that contain information at the affected address
range.

Of course, you could avoid the need for these explicit write-back and inval-
idate operations by writing and then executing the new instructions within an
uncached address region; but that gives up the advantages of caching and is
almost always a mistake.

The general-purpose cache management instructions described in
section 4.9 are CP0 instructions, only usable by kernel-privilege software. That
doesn’t matter when cache operations are related to DMA operations, which
are also entirely kernel matters. But it does matter with applications like writ-
ing instructions and executing them (think of a modern application using a
“just-in-time” interpreted/translated language).

So MIPS32/64 provides the synci instruction, which does a D-side write-
back and an I-side invalidate of one cache-line-sized piece of your new code.
Find out how in section 8.5.11.

10.3.3 Cache Management and Uncached or Write-Through Data

If you mix cached and uncached references that map to the same physical range
of addresses, you need to think about what this means for the caches. Uncached
writes will update only the copy of a given address in main memory, possibly
leaving what’s now a stale copy of that location’s contents in the D-cache—or the
I-cache. Uncached loads will pick up whatever they find in main memory—even
if that information is, in fact, stale with respect to an up-to-date copy present
only in cache.

Careful use of cached and uncached references to the same physical region
may be useful, or even necessary, in the low-level code that brings your sys-
tem into a known state following a reset. But for running code, you probably
don’t want to do that. For each region of physical memory, decide whether your
software should access it cached or uncached, then be absolutely consistent in
treating it that way.
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10.3.4 Cache Aliases and Page Coloring

There’s more about the hardware origin of cache aliases in section 4.12. The
problem occurs with L1 caches that are virtually indexed but physically tagged,
and where the index range is big enough to span two or more page sizes. The
index range is the size of one “set” of the cache, so with common 4-KB pages
you can get aliases in an 8-KB direct-mapped cache or a 32-KB four-way
set-associative cache.

The “page color” of a location is the value of those one or more virtual
address bits that choose a page-sized chunk within the appropriate cache set.
Two virtual pointers to the same physical data can produce an alias only if they
have a different page color. So long as all pointers to the same data have the same
color, all is well—all the data, even though at different virtual addresses, will be
stored in the same physical portion of the cache and will be correctly identified
by the (common) physical tag.

It’s quite common in Linux (for example) for a physical page to be accessi-
ble at multiple virtual locations (shared libraries are routinely shared between
programs at different virtual addresses).

Most of the time, the OS is able to overalign virtual address choices for shared
data—the sharing processes may not use the same address, but we’ll make sure
their different virtual addresses are a multiple of, say, 64 KB apart, so the different
virtual addresses have the same color. That takes up a bit more virtual memory,
but virtual memory is fairly cheap.

It’s easy to think that cache aliases are harmless so long as the data is “read-
only” (it must have been written once, but that was before there were aliases to
it): We don’t care if there are multiple copies of a read-only page. But they’re only
mostly harmless. It is possible to tolerate aliases to read-only data, particularly in
the I-cache: But you need to make sure that cache management software is aware
that data that has been invalidated at one virtual address may still be cached at
another.

With the widespread use of virtual-memory OSs (particularly Linux) in the
embedded and consumer computing markets, MIPS CPUs are increasingly
being built so that cache aliases can’t happen. It’s about time this long-lasting
bug was fixed.

Whatever you need to do, the cache primitive operations required for a
MIPS32/64 CPU are described in section 4.9.1.

10.4 Memory Access Ordering and Reordering

Programmers tend to think of their code executing in a well-behaved sequence:
The CPU looks at an instruction, updates the state of the system in the appro-
priate ways, then goes on to the next instruction. But our program can run
faster if we allow the CPU to break out of this purely sequential form of exe-
cution, so that operations aren’t necessarily constrained to take place in strict
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program order. This is particularly true of the read and write transactions
performed at the processor’s interface, triggered by its execution of load and
store instructions.

From the CPU’s point of view, a store requires only an outbound write
request: Present the memory address and data, and leave the memory controller
to get on with it. Practical memory and I/O devices are relatively slow, and in
the time the write is completed the CPU may be able to run tens or hundreds of
instructions.

Reads are different, of course: They require two-way communication
in the form of an outbound request and an inbound response. When the
CPU needs to know the contents of a memory location or a device regis-
ter, there’s probably not much it can do until the system responds with the
information.

In the quest for higher performance, that means we want to make reads
as fast as possible, even at the expense of making writes somewhat slower.
Taking this thinking a step further, we can even make write requests wait in a
queue, and pass any subsequent read requests to memory ahead of the buffered
writes. From the CPU’s point of view, this is a big advantage; by starting the
read transaction immediately, it gets the response back as soon as possible.
The writes will have to be done sometime, and the queue is of finite size: But
it’s likely that after this read is done there will be a period while the CPU is
running from cache. And if the queue fills up, we’ll just have to stop while
some writes happen: That’s certainly no worse than if we’d done the writes in
sequence.

You can probably see a problem here: Some programs may write a location
and then read it back again. If the read overtakes the write, we may get stale data
from memory and our program will malfunction. Most of the time we can fix it
with extra hardware that checks an outgoing read request against the addresses
of entries in the write queue and doesn’t allow the read to overtake a matching
write.4

In systems where tasks that could be really concurrent (that is, they might be
running on different CPUs) share variables, the problem of ordering reads and
writes becomes more dangerous. It’s true that much of the time the tasks have
no expectation of mutual ordering. Ordering matters when the tasks are deliber-
ately using shared memory for synchronization and communication, but in this
case the software will be using carefully crafted OS synchronization operations
(locks and semaphores, for example).

But there are some shared-memory communication tricks—often good,
cheap, efficient ones—that don’t need so many semaphores or locks but are
disrupted by arbitrary cycle reordering. Suppose, for example, we have two

4. You could, in some circumstances, return data from the write buffer to fulfill the read. But we
don’t have to invent anything to allow the read to wait and then go to memory.
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tasks: one is writing a data structure, the other is reading it. They use the data
structure in turn, as shown in Figure 10.10.

For correct operation, we need to know that when the reader sees the updated
value in the key field, we can guarantee that all the other updates will be visible
to the reader as well.

Unless we discard all the performance advantages of decoupling reads and
writes from the CPU, it’s not practical for hardware to conceal all ordering issues
from the programmer. The MIPS architecture provides the sync instruction for
this purpose: You’re assured that (for all participants in the shared
memory) all accesses made before the sync will precede those made afterward.
It’s worth dwelling on the limited nature of that promise: It only relates to order-
ing, and only as seen by participants in uncached or cache-coherent memory
accesses.

To make the example above reliable on a suitable system, the writer should
include sync just before writing keyfield, and the reader should have a sync
just after reading keyfield. See section 8.5.9 for details. But there’s a lot more
to this subject; if you’re building such a system, you’re strongly recommended
to use an OS that provides suitable synchronization mechanisms, and read up
on this subject.

Different architectures make different promises about ordering. At one
extreme, you can require all CPU and system designers to contrive that all the
writes and reads made by one CPU appear to be in exactly the same order from
the viewpoint of another CPU: That’s called “strongly ordered.” There are
weaker promises too (such as “all writes remain in order”); but the MIPS archi-
tecture takes the radical position that no guarantees are made at all.

Writing task Reading task

keyfield = WAITINGFORWRITE;

... ...

/* update entries */

keyfield = WRITEDONE;

sendsignaltoreader();

while (keyfield != WRITEDONE) {
waitforsignalfromwriter();

}
/* read entries */

...

FIGURE 10.10 Tasks sharing a data structure.
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10.4.1 Ordering and Write Buffers

Let’s escape from the lofty theory and describe something rather more practical.
The idea of holding outbound requests in a write buffer turns out to work espe-
cially well in practice because of the way store instructions tend to be bunched
together. For a CPU running compiled MIPS code, it’s typical to find that only
about 10 percentage of the instructions executed are stores; but these accesses
tend to come in bursts—for example, when a function prologue saves a group
of register values.

Most of the time the operation of the write buffer is completely transpar-
ent to software. But there are some special situations in which the programmer
needs to be aware of what’s happening:

Timing relations for I/O register accesses: This affects all MIPS CPUs. After
the CPU executes a store to update an I/O device register, the outbound
write request is liable to incur some delay in the write buffer, on its way
to the device. Other events, such as inbound interrupts, may take place
after the CPU executes the store instruction, but before the write request
takes effect within the I/O device. This can lead to surprising behavior:
For example, the CPU may receive an interrupt from a device “after” you
have told it not to generate interrupts. To give another example: If an I/O
device needs some software-implemented delay to recover after a write,
you must ensure that the write buffer is empty before you start counting
out that delay— ensuring also that the CPU waits while the write buffer
empties. It’s good practice to define a subroutine that does this job, and
it’s traditionally given the name wbflush(). See section 10.4.2 for hints
on implementing it.

Reads overtaking writes: The MIPS32/64 architecture permits this behav-
ior, discussed above. If your software is to be robust and portable, it should
not assume that read and write order is preserved. Where you need to
guarantee that two cycles happen in some particular order, you need the
sync instruction described in section 8.5.9.

Byte gathering: Some write buffers watch for partial-word writes within
the same memory word (or even writes within the same cache line) and
will combine those partial writes into a single operation.

To avoid unpleasant symptoms when uncached writes are combined into
a word-width, it’s a good idea to map your I/O registers such that each
register is in a separate word location (i.e., 8-bit registers should be at
least four bytes apart).

10.4.2 Implementing wbflush

Most write queues can be emptied out by performing an uncached store to
any location and then performing an operation that reads the same data back.
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A write queue certainly can’t permit the read to overtake the write—it would
return stale data. Put a sync instruction between the write and the read, and
that should be effective on any system compliant with MIPS32/64.

This is effective, but not necessarily efficient; you can minimize the over-
head by loading from the fastest memory available. Perhaps your system offers
something system-specific but faster. Use it after reading the following note!

CAUTION! Write buffers are often implemented within the CPU, but may also be imple-
mented outside it; any system controller or memory interface that boasts of
a write-posting feature introduces another level of write buffering to your sys-
tem. Write buffers outside the CPU can give you just the same sort of trouble
as those inside it. Take care to find out where all the write buffers are located
in your system, and to allow for them in your programming.

10.5 Writing it in C

You probably already write almost everything in C or in C++. MIPS’s lack of spe-
cial I/O instructions means that I/O register accesses are just normal loads and
stores with appropriately chosen addresses; that’s convenient, but I/O
register accesses are usually somewhat constrained, so you need to make sure
the compiler doesn’t get too clever. MIPS’s use of large numbers of CP0 reg-
isters also means that OS code can benefit from well-chosen use of C asm()

operations.

10.5.1 Wrapping Assembly Code with the GNU C Compiler

The GNU C Compiler (“GCC”) allows you to enclose snippets of assembly code
within C source files. GCC’s feature is particularly powerful, but other modern
compilers probably could support the example here. But their syntax is probably
quite different, so we’ll just discuss GCC here.

If you want low-level control over something that extends beyond a handful
of machine instructions, such as a library function that carries out some clever
computation, you’ll really need to get to grips with writing pure MIPS assembly;
but if you just want to insert a short sequence that consists of one or a few spe-
cific MIPS instructions, the asm() directive can achieve the desired result quite
simply. Better still, you can leave it to the compiler to manage the selection of
registers according to its own conventions.

As an example, the following code makes GCC use the three-operand form
of multiply, available on more recent MIPS CPUs. If you just use the normal C
language * multiplication operator, the work could end up being done by the
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original form of the multiply instruction that accepts only two source operands,
implicitly sending its double-length result to the hi/lo register pair.5

The C function mymul() is exactly like the three-operand mul and delivers
the less significant half of the double-length result; the more significant half is
simply discarded, and it’s up to you to ensure that overflows are either avoided
or irrelevant.

static int __inline__ mymul(int a, int b)

{

int p;

asm("mul %0, %1, %2"

: "=r" (p)

: "r" (a), "r" (b)

);

return p;

}

The function itself is declared inline, which instructs the compiler that
a use of this function should be replaced by a copy of its logic (which
permits local register optimization to apply). Adding static means that
the function need not be published for other modules to use, so no binary
of the function itself will be generated. It very often makes sense to wrap
an asm() like this: You’d probably usually then put the whole definition
in an include file. You could use a C preprocessor macro, but the inlined
function is a bit cleaner.

The declarations inside the asm() parentheses tell GCC to emit a MIPS mul
line to the assembler with three operands on the command line—one will be the
output and two will be inputs.

On the line below, we tell GCC about operand %0, the product: first, that this
value will be write-only (meaning that there’s no need to preserve its original
value) with the “=” modifier; the “r” tells GCC that it’s free to choose any of
the general-purpose registers to hold this value. Finally, we tell GCC that the
operand we wrote as %0 corresponds to the C variable p.

On the third line of the asm() construct, we tell GCC about operands %1
and%2. Again, we allow GCC to put these in any of the general-purpose registers,
and tell it that they correspond to the C variables a and b.

At the end of the example function, the result we obtained from the multiply
instruction is returned to the C caller.

GCC allows considerable control over the specification of the operands; you
can tell it that certain values are both read and written and that certain hardware

5. At the time of writing there are versions of GCC in circulation that will use MIPS32’s three-
operand mul instruction—but this makes for a good example.
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registers are left with meaningless values as a side effect of a particular assembly
sequence. You can dig out the details from the MIPS-specific sections of the GCC
manual.

10.5.2 Memory-Mapped I/O Registers and “Volatile”

Most of you will be writing code that accesses I/O registers in C—you certainly
shouldn’t be using assembly code in the absence of any pressing need to do so,
and since all I/O registers in MIPS must be memory-mapped, it is never difficult
to access them from C. Having said that, you should keep in mind that as com-
pilers advance, or if you make significant use of C++, it can become harder to
predict exactly the low-level instruction sequences that’ll end up in your code.
Here are some well-worn hints.

I might write a piece of code that is intended to poll the status register of a
serial port and to send a character when it’s ready:

unsigned char *usart_sr = (unsigned char *) 0xBFF00000;

unsigned char *usart_data = (unsigned char *) 0xBFF20000;

#define TX_RDY 0x40

void putc (ch)

char ch;

{

while ((*usart_sr & TX_RDY) == 0)

;

*usart_data = ch;

}

I’d be upset if this sent two characters and then looped forever, but that
would be quite likely to happen. The compiler sees the memory-mapped I/O
reference implied by *usart sr as a loop-invariant fetch; there are no stores in
the while loop so it seems safe to pull the load out of the loop. Your compiler
has recognized that your C program is equivalent to:

void putc (ch)

char ch;

{

tmp = (*usart_sr & TX_RDY);

while (tmp)

;

*usart_data = ch;

}
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You could prevent this particular problem by defining your registers as follows:

volatile unsigned char *usart_sr =

(unsigned char *) 0xBFF00000;

volatile unsigned char *usart_data =

(unsigned char *) 0xBFF20000;

A similar situation can exist if you examine a variable that is modified by an
interrupt or other exception handler. Again, declaring the variable as volatile
should fix the problem.

I won’t guarantee that this will always work: The C bible describes the
operation of volatile as implementation dependent. I suspect, though, that
compilers that ignore the volatile keyword are implicitly not allowed to opti-
mize away loads.

Many programmers have trouble using volatile. The thing to remember
is that it behaves just like any other C type modifier—just like unsigned in the
example above. You need to avoid syndromes like this:

typedef char * devptr;

volatile devptr mypointer;

You’ve now told the compiler that it must keep loading the pointer value
from the variable devptr, but you’ve said nothing about the behavior of the
register you’re using it to point at. It would be more useful to write the code like
this:

typedef volatile char * devptr;

devptr mypointer;

Once you’ve dealt with this, the most common reason that optimized code
breaks will be that you have tried to drive the hardware too fast. There are often
timing constraints associated with reads and writes of hardware registers, and
you’ll often have to deliberately slow your code to fit in.

What’s the main lesson of this section? While it’s easier to write and
maintain hardware driver code in C than in assembly, it’s important to
use this option responsibly. In particular, you’ll need to understand enough
about the way the toolchain converts your high-level source code into low-
level machine instructions to make sure you get the system behavior that
you intended.

10.5.3 Miscellaneous Issues When Writing C for MIPS Applications

Negative pointers: When running simple unmapped code on a MIPS CPU,
all pointers are in the kseg0 or kseg1 areas, so any data pointer’s 32-bit
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value has the top bit set and looks “negative.” Unmapped programs on
most other architectures are dealing with physical addresses, which are
usually a lot smaller than 2 GB!

Such pointer values could cause trouble when pointer values are being
compared, if the pointer were implicitly converted to a signed integer
type. Any implicit conversions between integer and pointer types (quite
common in C) should be made explicit and should specify an unsigned
integer type (you should use unsigned long for this).

Most compilers will warn about pointer-to-integer conversions, though
you may have to specify an option.

Signed versus unsigned characters: In early C compilers, the char type
used for strings was usually equivalent to signed char; this is consistent
with the convention for larger integer values. However, as soon as you
have to deal with character encodings using more than 7-bit values, this
is dangerous when converting or comparing. Modern compilers usually
make char equivalent to unsigned char instead.

If you discover that your old program depends on the default sign-
extension of char types, good compilers offer an option that will restore
the traditional convention.

Moving from 16-bit int: A significant number of programs are being
moved up from 16-bit x86 or other CPUs where the standard int is
a 16-bit value. Such programs may rely, much more subtly than you
think, on the limited size and overflow characteristics of 16-bit val-
ues. Although you can get correct operation by translating such types
into short, that will be inefficient. In most cases you can let vari-
ables quietly pick up the MIPS int size of 32 bits, but you should
be particularly aware of places where signed comparisons are used to
catch 16-bit overflow.

Programming that depends on the stack: Some kind of function invoca-
tion stack and data stack are implicit in C’s block structure.
Despite the MIPS hardware’s complete lack of stack support, MIPS
C compilers implement a fairly conventional stack structure. Even so,
if your program thinks it knows what the stack looks like, it won’t be
portable. If possible, don’t just replace the old assumptions with new
ones: Two of the most common motivations for stack abuse are now
satisfied with respectable and standards-conforming macro/library
operations, which may tackle what your software was trying to do
before:

– stdargs: Use this include-file-based macro package to implement
routines with a variable number of parameters whose type need not
be predefined at compile time.

– alloca(): To allocate memory at run time, use this library func-
tion, which is “on the stack” in the sense that it will be automatically
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freed when the function allocating the memory returns. Some compil-
ers implement alloca() as a built-in function that actually extends
the stack; otherwise, there are pure-library implementations available.
But don’t assume that such memory is actually at an address with some
connection with the stack.



Chapter

11 MIPS Software
Standards (ABIs)

For most of this book we’ve described the MIPS architecture from the per-
spective of how the hardware looks to a programmer. In this chapter, we’re

going to describe some standards about how MIPS binary programs should be
created to make them compatible with each other.

These standards are designed around characteristics of the hardware, but
are often just arbitrary—it has to be done some way, and there’s an advantage
if every toolchain does it the same. We’ve met one of those standards already:
the register usage conventions described way back in section 2.2.

In this chapter, we’re going to look at how compilers represent data for MIPS
programs, at argument passing for functions, and at the use of the stack. In all
cases, we’ll draw all our examples from the C language, though essentially the
same conventions apply to other languages. Data representation and function
linkage are aspects of a formal standard called an ABI (Application Binary Inter-
face), and we’re describing the conventions used in the ABI, sometimes called
o32. But the ABI document also specifies the encoding of object files (formats
like ELF used to hold binary programs and libraries), and you won’t find that in
this book.

Linux requires more conventions to allow applications to be dynamically
linked together out of incomplete programs and shared libraries. We’ll describe
that in Chapter 16.

The organization of the data is profoundly affected by the CPU’s endian-
ness, which was described at length in section 10.2.

The most important ABIs in MIPS history are:

o32: Grew from traditional MIPS conventions (“o” for old), and
described in detail here. o32 is still pretty much universally used by
embedded toolchains and for 32-bit Linux.

n64: New formal ABI for 64-bit programs on 64-bit CPUs running under
Silicon Graphics’ Irix operating system. SGI’s 64-bit model makes both
pointers and C long integer types into 64-bit data items. However, n64

311
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also changes the conventions for using registers and the rules for
passing parameters; because it puts more arguments in registers, it
improves performance slightly.

n32: A partner ABI to n64, this is really for “32-bit” programs on 64-bit
CPUs. It is mostly the same as n64, except for having pointers and the C
long data type implemented as 32 bits. That can be useful—for appli-
cations where a 32-bit memory space is already spacious, 64-bit pointers
represent nothing but extra overhead.

11.1 Data Representations and Alignment

When you define data in C, the data you get in memory is compilation-target
dependent.1 Moreover, while it’s “nonportable” to assume you have a particular
layout, nonportable C is often a more maintainable way of defining a fixed data
layout than anything else at your disposal.

The data layout chosen is constrained by what the hardware will do. MIPS
CPUs can only load multibyte data that is “naturally” aligned—a four-byte quan-
tity only from a four-byte boundary, and so on—but many CISC architectures
don’t have this restriction. The MIPS compiler attempts to ensure that data lands
in the right place; this requires far-reaching (and not always obvious) behaviors.

For the purposes of this section, memory is taken as an array of unsigned
8-bit quantities, whose index is the virtual address. For all known MIPS archi-
tecture CPUs, this corresponds to a C definition unsigned char [].

Like all the modern computers I know of, MIPS uses twos-complement rep-
resentation for signed integers—so in any data size “-1” is represented by binary
all-ones. The overwhelming advantage of twos-complement numbers is that
the basic arithmetic operations (add, subtract, multiply, divide) have the same
implementation for signed and unsigned data types.2

C integer data types come in signed and unsigned versions, which are
always the same size and alignment. When you don’t specify which, you typi-
cally get a signed int, long, or long long but often an unsigned char.3

11.1.1 Sizes of Basic Types

Table 11.1 lists fundamental C data types and how they’re implemented for
MIPS architecture CPUs. We’ll come back to the long and pointer types a bit
later—their size changes according to which ABI you use.

1. Strictly speaking, it’s also compiler dependent, but in practice MIPS compilers all comply with
the conventions described in this section.

2. At least, until the result has greater precision than the operands.

3. This is an ANSI C feature. In early C char was also signed by default. Most compilers allow
you to change the default for char with a command-line flag—useful when recompiling old
software.
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TABLE 11.1 Data Types and Memory Representations

C type Assm Name Size (bytes)

char byte 1

short half 2

int word 4

long long dword 8

float word 4

double dword 8

The assembler does not distinguish storage definitions for integer and
floating-point data types.

11.1.2 Size of “long” and Pointer Types

We left those out of the table, because they come out differently in the different
ABIs. But they’re also always the same as something else.

So for o32, n32 (and any plausible ABI to be used on 32-bit CPUs), long is
implemented just like an int; for the 64-bit n64 ABI long is implemented just
like a long long.

And in all cases a pointer is always stored just like an unsigned long; the
MIPS architecture always boasts a simple “flat” address space.

11.1.3 Alignment Requirements

All these primitive data types can only be directly handled by standard MIPS
instructions if they are naturally aligned: that is, a two-byte datum starts at an
address that is even (zero modulo 2), a four-byte datum starts at an address
that is zero modulo 4, and an eight-byte datum starts at an address that is zero
modulo 8.4

11.1.4 Memory Layout of Basic Types and How It Changes
with Endianness

Figure 11.1 shows how each basic type is laid out in our byte-addressed memory;
the arrangement is different for big-endian and little-endian software.

4. For MIPS32 CPUs using only 32-bit registers and data paths, eight-byte data types are not
handled by any machine instruction, and the eight-byte alignment restriction is not strictly
necessary. However, it is still imposed in all known ABIs.



314 Chapter 11—MIPS Software Standards (ABIs)

char

short

int

long long

float

double

07

1623

4855 31

1623

mantissasign exp

07

815

2431

5663

2431

5663 4855 31

mantissasign exp

relative byte address

char

short

int

long long

float

double

mantissa signexp

mantissa signexp

relative byte address

Big
–

Endian
Little

–
Endian

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

15

47

15

47

8

40

8

40

7

39

7

39

0

32

0

32

24

24

23

23

16

16

15

15

8

8

7

7

0

0

0

0

0

0

0

0

7

7

7

7

7

7

8

8

8

8

8

15

15

15

15

15

16

16

16

16

23

23

23

23

24

24

24

24

31

31

31

31

32

32

39

39

40

40

47

47

48

48

55

55

56

56

63

63

FIGURE 11.1 C data types in memory.

I’ve given in to the temptation to reverse the bits between the two
endianness layouts. For memory addressing purposes, this is meaningless;
bytes are indivisible 8-bit objects. However, reversing the bit numbers makes
the bitwise depiction of the fields of floating-point numbers easier to absorb
(and prettier).

Each of these data types is naturally aligned, as described previously.
“Endianness” can be a troubling subject and is discussed at length in

section 10.2.
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11.1.5 Memory Layout of Structure and Array Types and Alignment

Complex types are built by concatenating simple types but inserting unused
(“padding”) bytes between items, so as to respect the alignment rules.5

It’s worth giving a couple of examples. Here’s the byte offsets of data items
in a struct mixed:

struct mixed {

char c; /* byte 0 */

/* bytes 1-7 are ‘‘padding’’ */

double d; /* bytes 8-15 */

short s; /* bytes 16-17 */

};

It’s worth stressing that the byte offsets of the fields of constructed data
types (other than those using C bitfields, see section 11.1.6) are unaffected by
endianness.

A data structure or array is aligned in memory to the largest alignment
boundary required by any data type inside it. So a struct mixed will start
on an eight-byte boundary; and that means that if you build an array of these
structures you will need padding between each array element. C compilers
provide for this by “tail padding” the structure to make it usable for an array, so
sizeof(struct mixed) == 24 and the structure should really be
annotated:

struct mixed {

char c; /* byte 0 */

/* bytes 1-7 are ‘‘padding’’ */

double d; /* bytes 8-15 */

short s; /* bytes 16-17 */

/* bytes 18-23 are ‘‘tail padding’’ */

};

Just to remind you: The size and alignment requirement of pointer and
long data types can be four or eight, depending on whether you’re exploiting
64-bit operations.

11.1.6 Bitfields in Structures

C allows you to define structures that pack several short “bitfield” members
into one or more locations of a standard integer type. This is a useful feature

5. Some compiler systems provide mechanisms to alter the alignment rules for particular data
definitions. This allows you to model more possible data patterns with C data declarations, and
the compiler will generate appropriate code (with some loss of efficiency) to handle the resulting
unaligned basic data types. There are some hints in section 11.1.7.
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FIGURE 11.2 Bitfields from the big-endian viewpoint.

for emulation, for hardware interfacing, and perhaps for defining dense data
structures, but it is fairly incomplete. Bitfield definitions are nominally CPU
dependent (but so is everything) but also genuinely endianness dependent.

You may recall that in section 7.9.3 we used a bitfield structure to map the
fields of a single-precision IEEE floating-point value (a C float) stored in
memory. An FP single value is multibyte, so you should probably expect this
definition to be endianness dependent. The big-endian version looked like this:

struct ieee754sp_konst {

unsigned sign:1;

unsigned bexp:8;

unsigned mant:23;

};

C bitfields are always packed—that is, the fields are not padded out to yield
any particular alignment. But compilers reject bitfields that span the boundaries
of the C type used to hold them (in the example, that’s an unsigned, which is
short for unsigned int).

The structure and mapping for a big-endian CPU is shown in Figure 11.2
(using a typical big-endian’s picture); a little-endian version is shown in
Figure 11.3.

The C compiler insists that, even for bitfields, items declared first in the
structure occupy lower addresses: When you’re little-endian, you need to turn
the declaration backward:

struct ieee754sp_konst {

unsigned mant:23;

unsigned bexp:8;

unsigned sign:1;

};

To see why that works, you can see from Figure 11.3 that in little-endian
mode the compiler packs bits into structures starting from low-numbered bits.

Does this make sense? Certainly some; if you tried to implement
bitfields in a less endianness-dependent way, then in the following example
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struct fourbytes would have a memory layout different from struct

fouroctets- and that doesn’t seem reasonable:

\nopagebreak

struct fourbytes {

signed char a; signed char b; signed char c;

signed char d;

}

struct fouroctets {

int a:8; int b:8; int c:8; int d:8;

}

It’s probably not surprising that the CPU’s endianness shows up when look-
ing inside a floating-point number; we said earlier that accessing the same data
with different C types often showed up the CPU’s nature. But it reminds us that
endianness remains a real and pervasive issue, even when there’s no foreign data
or hardware to manage.

A field can only be packed inside one storage unit of its defined type; if we
try to define a structure for a MIPS double-precision floating-point number,
the mantissa field contains part of two 32-bit int storage units and can’t be
defined in one go. The best we can do is something like this:

struct ieee754dp_konst {

unsigned sign:1;

unsigned bexp:11;

unsigned manthi:20; /* cannot get 52 bits into... */

unsigned mantlo:32; /* .. a regular C bitfield */

};

You’re permitted to leave out the name of the field definition, so you don’t
have to invent names for fields that are just there for padding.

With GNU C or other modern compilers, we could have used an unsigned

long long bitfield and defined the double-precision floating-point register in
one go. But the ANSI C specification does not require compilers to support
long long.
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The full alignment rules for bitfields are a little complicated:

As we said above, a bitfield must reside entirely in a storage unit that is
appropriate for its declared type. Thus, a bitfield never crosses its unit
boundary.

Bitfields can share a storage unit with other struct/union members,
including members that are not bitfields (to pack together, the adjacent
structure member must be of a smaller integer type).

Structures generally inherit their own alignment requirement from the
alignment requirement of their most demanding type. Named bitfields
will cause the structure to be aligned (at least) as well as the type requires.

Unnamed fields—regardless of their defined type—only force the stor-
age unit or overall structure alignment to that of the smallest integer type
that can accommodate that many bits.

You might want to be able to force subsequent structure members to
occupy a new storage unit. In some compilers you can do that with an
unnamed zero-width field. Zero-width fields are otherwise illegal (or at
least pointless).

You now know everything you need to map C data declarations to memory
in a manner compatible with the various ABIs.

11.1.7 Unaligned Data from C

Sometimes the alignment rules that help make MIPS CPUs efficient are a nui-
sance, because you’d like to force your C structure to represent an exact byte-
for-byte memory layout, perhaps to match some data from another application.

The GNU C compiler (and most other good ones) allows you to control
the alignment used to find a location for any data, whether simple variable or
complex structure. In the GNU C dialect, attribute (( packed ))

in a declaration will cause all normal alignment requirements to be ignored and
the data packed, while attribute (( aligned(16) )) insists on a
16-byte alignment—greater than that used for any standard data type by a MIPS
compiler.6

By a judicious mixture of both attributes, you can set out a data structure
any way you like (individual aligned () controls inside a packed structure
alignment as specified).

The ANSI standard has a slightly less powerful and flexible syntax for data
structures, though not for basic types (but because it’s a standard, it’s quite
likely to work across different compilers): You use a preprocessor-like directive.

6. While the compiler will respect your wishes for a very large alignment, sometimes the linker or
other later part of the toolchain may not do so—go carefully.
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So if you bracket a data declaration starting with a #pragma pack(2) line, the
compiler will use no more than a two-byte alignment for those items. Put in a
#pragma pack() to restore normal behavior.

So, for example:

int unalignedload (ptr)

void *ptr;

{

#pragma pack (1)

/* define what you like here, with no assumptions about alignment */

struct unaligned {

int conts;

} *ip;

#pragma pack ()

/* back to default behavior */

ip = (struct unaligned *) ptr;

/* can now generate an unaligned load of int size */

return ip->conts;

}

11.2 Argument Passing and Stack Conventions for MIPS ABIs

The compilers for C and all common compiled languages build programs out
of many modules, compiled separately. To work together with each other and
with the operating system, the compiled code of a module relies on conven-
tions (enforced by compilers, and therefore mandatory for assembly language
programmers) about register usage, stack construction, argument passing, and
so on.

Some of you may not be writing in C or C++. If your programming is in Java
or some other high-level language that is wholly or partially interpreted, then
there will be nothing directly relevant to you here. I have written this section
only in terms of C code (I don’t understand other languages well enough, and
in any case I can’t figure out where I should stop).

This section will cover the stack, subroutine linkage, and argument pass-
ing, and how those are managed for MIPS code so as to do everything the pro-
grammer needs in a reasonably efficient way. Overall conventions about register
use were introduced in section 2.2.1, and a description of how the compiler
packages up data for a MIPS CPU was in section 11.1.
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11.2.1 The Stack, Subroutine Linkage, and Parameter Passing

From the very start of MIPS’ existence in the early 1980s, there was a set of
conventions about how to pass arguments to functions (this is C-speak for “pass
parameters to subroutines”) and about how to return values from functions.

These conventions follow logically from an underlying principle: All argu-
ments are allocated space in a data structure on the stack, but the contents that
belong to the first few stack locations are in fact passed in CPU registers—the
corresponding memory locations are left undefined. In practice, this means
that for most calls, the arguments are all passed in registers; however, the stack
data structure (even when nothing is put in it) is the best starting point for
understanding the process.

We’ll describe the argument passing and stack features of the o32 stan-
dard in some detail, and then summarize the changes with n32 and n64 in
section 11.2.8.

There has been much discussion about improving these standards: o32 is
very old, and programming habits have changed since its invention. We hope
something good comes out of all these discussions—but at the time of writing
(Spring 2006) and for the forseeable future, you will be using o32 compilers for
embedded applications on 32-bit MIPS CPUs, and you won’t lose a lot.

11.2.2 Stack Argument Structure in o32

The MIPS hardware does not directly support a stack, but the semantics of C
pretty much mandate it. o32 has a stack that is grown downward, and the cur-
rent stack bottom is kept in register sp (an alias for $29). Any OS that is pro-
viding protection and security will make no assumptions about the user’s stack,
and the value of sp doesn’t really matter except at the point where a function
is called. But it is conventional to keep sp at or below the lowest stack location
your function has used.

At the point where a function is called, sp must be eight-byte-aligned,
matching the alignment of the largest basic types—a long long integer or
a floating-point double. The eight-byte alignment is not required by 32-bit
MIPS integer hardware, but it’s essential for compatibility with CPUs with 64-
bit registers, and thus part of the rules. Subroutines fit in with this by always
adjusting the stack pointer by a multiple of eight.7

To call a subroutine according to the MIPS standard, the caller creates a data
structure on the stack to hold the arguments, starting at the location that sp is
pointing at. The first argument (leftmost in the C source) is lowest in memory.
Each argument occupies at least one word (32 bits); 64-bit values like floating-
point double and long long must be aligned on an eight-byte boundary (as
are data structures that contain a 64-bit scalar field). The argument structure
really does look like a C struct, but there are some more rules.

7. SGI’s n32 and n64 standards call for the stack to be maintained with 16-byte alignment.
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First, you should allocate a minimum of 16 bytes of argument space for any
call, even if the arguments would fit in less.8

In the absence of a function prototype, C rules require that any simple inte-
ger argument smaller than an int (that is, any char or short) is “promoted”
to an int and passed as a 32-bit object. That’s just done for arguments that
are simple data types: It doesn’t apply to a partial-word field inside a struct
argument.

11.2.3 Using Registers to Pass Arguments

Any arguments allocated to the first 16 bytes (four words) of the argument
structure are passed in registers a0-3 ($4-$7), and the caller can and does leave
the first 16 bytes of the structure undefined. The stack-held structure must still
be reserved; the called function is entitled to save a0-3 back into memory if it
needs to, and is entitled to do so completely blind, without knowing how many
arguments there are, or of what type.

It’s inefficient to carry floating-point (FP) values in integer registers, so
there’s a special test used to identify some function arguments that can be passed
in FP registers instead.

The criteria for deciding when and how to use FP registers look peculiar.
Old-fashioned C had no built-in mechanism for checking that the caller and
callee agreed on the type of each argument to a function. To help programmers
survive this, the caller converted arguments to fixed types: int for integer values
and double for floating point. There was no way of saving a programmer who
confused floating-point and integer arguments, but at least some possibilities
for chaos were averted.

Modern C compilers use function prototypes available when the calling
function is being compiled, and the prototypes define all the argument types.
But even with function prototypes, there are routines—notably the familiar
printf()—where the type of argument is unknown at compile time;
printf() discovers the number and type of its arguments at run time.

MIPS made the following rules. Unless the first argument is a floating-point
type, no arguments can be passed in FP registers. This is a kludge that ensures
that traditional functions like printf() still work: Its first argument is a
pointer, so all arguments are allocated to integer registers, and printf() will
be able to find all its argument data regardless of the argument type. The rule is
also not going to make common math functions inefficient, because they mostly
take only FP arguments.

Where the first argument is a floating-point type, it will be passed in an FP
register, and in this case so will any other FP types that fit in the first 16 bytes
of the argument structure. Two doubles occupy 16 bytes, so only two FP reg-
isters are defined for arguments—fa0 and fa1, or $f12 and $f14. Evidently

8. Why? See section 11.2.3.
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nobody thought that functions explicitly defined to have lots of single-precision
arguments were frequent enough to make another rule.

One of the worst faults caused by the age of o32 is that its use of registers is
compatible with the very earliest MIPS floating-point units, which used only the
even-numbered registers to hold floating-point values. Double-precision values
quietly extended into the adjacent odd-numbered register; the odd-numbered
registers were used only when reading or writing FP values from memory, or
from integer registers. o32’s resulting register conventions do not quite prevent
software from using all 32 registers in later CPUs, but they don’t make for great
efficiency.

Another peculiarity is that if you define a function that returns a structure
type that is too big to be returned in the two registers normally used, then the
return-value convention involves the invention of a pointer as the implicit first
argument before the first (visible) argument (see section 11.2.7).

If you’re faced with writing an assembly routine with anything but a simple
and obvious calling convention, it’s probably worth building a dummy function
in C and compiling it with the “-S” option to produce an assembly file you can
use as a template.

11.2.4 Examples from the C Library

Here is a code example:

thesame = strncmp("bear", "bearer", 4);

We’ll draw out the argument structure and the registers separately (see
Figure 11.4), though in this case no argument data goes into memory; later,
we’ll see examples where it does.9

There are fewer than 16 bytes of arguments, so they all fit in registers.
That seems a ridiculously complex way of deciding to put three arguments

into the usual registers! But let’s try something a bit more tricky from the math
library:

double ldexp (double, int);

y = ldexp(x, 23); /* y = x * (2**23) */

Figure 11.5 shows the corresponding structure and register values.

9. After much mental struggle, I decided it was best to have the arguments ordered top to bottom
in these figures. Because the stack grows down, that means memory addresses increase down the
page, which is opposite from how I’ve drawn memory elsewhere in the book.
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address of "bear"

Contents

undefined

address of "bearer"undefined

4undefined

undefinedundefined

Contents

sp+0

sp+4

sp+8

sp+12

Stack Position

a0

a1

a2

a3

Register

FIGURE 11.4 Argument passing for strncmp(), three non-FP operands.

(double) x

Contents

undefined

23undefined

undefinedundefined

Contents

$f12

$f13

a2

a3

Register

sp+0

sp+4

sp+8

sp+12

Stack Position

FIGURE 11.5 Argument passing for ldexp(): floating-point argument.

11.2.5 An Exotic Example: Passing Structures

C allows you to use structure types as arguments (it is much more common
practice to pass pointers to structures instead, but the language supports both).
To fit in with the MIPS rules, the structure being passed just becomes part of the
argument structure, where its internal layout is exactly like its regular memory
image. Inside a C structure, byte and halfword fields are packed together into
single words of memory, so when we use a register to pass the data that concep-
tually belongs to the stack-resident structure, we have to pack the register with
data to mimic the arrangement of data in memory.

So, if we have:

struct thing {

char letter;

short count;

int value;

} = {"z", 46, 100000};

(void) processthing (thing);

then the arguments shown in in Figure 11.6 will be generated.
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Contents

undefined

100000undefined

Contents

"z" x 46sp+0

sp+4

Stack Position

a0

a1

Register

FIGURE 11.6 Arguments when passing a structure type.

MIPS C structures are laid out with fields so their memory order matches
the order of definition (though padded where necessary to conform to the align-
ment rules), so the placement of fields inside the register follows the byte order
exposed by load/store instructions, which differ according to the CPU’s endi-
anness. The layout in Figure 11.6 is inspired by a big-endian CPU, when the
char value in the structure should end up in the most significant 8 bits of the
argument register but is packed together with the short.

If you really want to pass structure types as arguments, and they must con-
tain partial-word data types, you should try this out and see whether your com-
piler gets it right.

11.2.6 Passing a Variable Number of Arguments

Functions for which the number and type of arguments are determined only at
run time stress conventions to their limits. Consider this example:

printf ("length = %f, width = %f, num = %d\n", 1.414, 1.0, 12);

The rules above allow us to see that the argument structure and register
contents will be as shown in Figure 11.7.

There are two things to note. First, the padding at sp+4 is required to get
correct alignment of the double values (the C rule is that floating-point argu-
ments are always passed as double unless you explicitly decide otherwise with a
typecast or function prototype). Note that padding to an eight-byte boundary
can cause one of the standard argument registers to be skipped.

Second, because the first argument is not a floating-point value, the rules
tell us not to use any FP registers for arguments. So the data for the second
argument (coded as it would be in memory) is loaded into the two registers
a2 and a3.

This is much more useful than it looks!
The printf() subroutine is defined with the stdarg.h macro package,

which provides a portable cover for the register and stack manipulation involved
in accessing an unpredictable number of operands of unpredictable types. The
printf() routine picks off the arguments by taking the address of the first or
second argument and advancing through memory up the argument structure
to find further arguments.



11.2 Argument Passing and Stack Conventions for MIPS ABIs 325

(double) 1.414

Contents

undefined

(double) 1.0

format pointerundefined

12

undefinedundefined

Contents

sp+8

sp+12

sp+16

sp+20

sp+0

sp+24

sp+4

Stack Position

a2

a3

a0

a1

Register

FIGURE 11.7 Argument passing for printf().

To make this work, we need to persuade the C compiler working on the
printf() routine to store registers a0 through a3 into their shadow locations
in the argument structure. Some compilers will see you taking the address of
an argument and take the hint; ANSI C compilers should react to “. . . ” in the
function definition; others may need some horrible “pragma,” which will be
decently concealed by the macro package.

Now you can see why it was necessary to put the double value into the
integer registers; that way stdarg and the compiler can just store the registers
a0–a3 into the first 16 bytes of the argument structure, regardless of the type
or number of the arguments.

11.2.7 Returning a Value from a Function

An integer or pointer return value will be in register v0 ($2). By MIPS conven-
tion, register v1 ($3) is reserved too, even though many compilers don’t use
it. However, expect it to be used in 32-bit code for returning long long (64-
bit integer) values. There seems to be some debate about whether a structure
value that occupies five to eight bytes might be returned using both registers:
GNU C always uses a pointer to return bigger-than-register structures, but the
specification is ambiguous.

Any floating-point result comes back in register $f0 (implicitly using $f1
in a 32-bit CPU, if the value is double precision).

If a function is declared in C as returning a structure value that is too big
to fit into the return registers v0 and v1, something else has to be done. In this
case, the caller makes room on its stack for an anonymous structure variable,
and a pointer to that structure is prepended to the explicit arguments; the called
function copies its return value to the template. Following the normal rules for
arguments, the implicit first argument will be in register a0 when the function
is called. On return, v0 points to the returned structure too.
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11.2.8 Evolving Register-Use Standards: SGIs n32 and n64

For the purposes of this section (calling conventions and integer register usage)
the n32 and n64 ABIs are identical.10 The n32/n64 ABIs are applicable only to
MIPS III CPUs, which have 64-bit registers.

Despite the significant attempts to keep the register conventions similar, o32
and n32/n64 are deeply incompatible, and functions compiled in different ways
will not link together successfully. The following points summarize the n32/n64
rules:

Up to eight arguments can be passed in registers.

Argument slots and therefore argument registers are 64 bits in size.
Shorter integer arguments are promoted to a 64-bit size, exactly as they
would if loaded into a register.

The caller does not allocate stack space for arguments passed in registers.

Any floating-point value that ends up occupying one of the first eight
argument slots by itself is passed in an FP register. That even includes
aligned double fields in arrays and structures, so long as the field isn’t in
aunion and isn’t a variable argument to printf() or a similar variable-
argument function.

n32 and n64 recognize 16-byte basic objects (such as long double

floating-point), and such objects are 16-byte aligned. That also means
that the stack must be realigned to a multiple of 16 bytes for each func-
tion’s frame.

When life gets complicated (as when passing structures or arrays), the use of
the registers is still figured out from a ghostly argument structure, even though
there is now no stack space reserved for the first eight slots.

The n32/n64 conventions abandon o32’s first-argument-not-FP kludge,
which o32 uses to identify floating-point arguments as special cases for
printf() and so on. The new conventions require that both caller and callee
code be compiled with full knowledge of the number and type of arguments
and therefore that they need function prototypes.

For a function like printf(), where the type of arguments is unknown at
compile time, all the variable arguments are actually passed in integer registers.

The n32/n64 organization has a different set of register-use conventions;
Table 11.2 compares the use of integer registers with the o32 system. There is
only one material difference: Four registers that used to be regarded purely as
temporaries should now be used to pass the fifth through the eighth arguments.

10. Under the n64 convention long and pointer types are compiled as 64-bit objects; with n32 only
long long types are 64 bits.
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TABLE 11.2 Integer Register Usage Evolution in Newer SGI Tools

Register number Name Use

$0 zero Always zero

$1 at Assembly temporary

$2, $3 v0, v1 Return value from function

$4–$7 a0–a3 Arguments

o32 n32/n64

Name Use Name Use

$8–$11 t0–t3 Temporaries a4–a7 Arguments

$12–$15 t4–t7 t0–t3 Temporaries

$24, $25 t8, t9 t8, t9

$16–$23 s0–s7 Saved registers

$26, $27 k0, k1 Reserved for interrupt/trap handler

$28 gp Global pointer

$29 sp Stack pointer

$30 s8/fp Frame pointer if needed (additional
saved register if not)

$31 ra Return address for subroutine

I’m puzzled by the arbitrary and apparently unnecessary reallocation of names
among the temporary registers, but this is how they did it.

You might think that compiled code would suffer from losing four registers
that were previously available for temporary storage, but this is only appear-
ance. All argument registers and the v0 and v1 registers are available for the
compiler to use as temporaries most of the time. Also, the change to n32/n64
has not affected which of the registers are designated as “saved” (i.e., registers
whose value may be assumed to survive a subroutine call).11

The floating-point register conventions (shown in Table 11.3) change more
dramatically; this is not surprising, since the n32/n64 conventions are for later
MIPS CPUs, which have a full 64-bit floating-point unit with 32 fully usable
independent registers.12 While SGI could have interleaved the new registers and

11. This is not quite true. In position-independent code, functions manipulate the gp register to
track a table of data/function addresses (see Chapter 16 for details). In o32, each function could
do what it liked with gp, which meant that you might have to restore the register after each
function call. In n32/n64 the gp register is now defined as “saved.”

12. All MIPS CPUs have a mode switch that makes their FP behavior totally compatible with the
old 32-bit CPUs; n32/n64 assume that the CPU is running with that switch off.
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TABLE 11.3 FP Register Usage with o32 and n32/n64 Conventions

Register number o32 use

$f0, $f2 Return values; fv1 is used only for the native complex number data
type used by FORTRAN, but not available in C

$f4, $f6, $f8, $f10 Temporaries—functions can use without any need to save

$f12, $f14 Arguments

$f16, $f18 Temporaries

$f20, $f22, $f24,
$f26, $f28, $f30

Saved registers—functions must save and restore any of these registers
they want to write, making them suitable for long-lived values that
persist across function calls

Register number n32 use n64 use

$f0, $f2 Return values—$f2 is used only when returning a structure of exactly
two floating-point values; this is a special case that deals with
FORTRAN complex numbers

$f1, $f3 Temporaries

$f4–$f10

$f12–$f19 Arguments

$f20–$f23 Evens (from $f20-$f30) are temporary; odds (from
$f21-$f31) are saved

Temporaries

$f24–$f31 Saved registers

maintained some vestiges of compatibility, the company decided instead to tear
up most of the existing rules and start again.

In addition to the larger number of arguments that can be passed in regis-
ters, the n32/n64 standard doesn’t make any rules dependent on whether the
first argument is a floating-point type. Instead, arguments are allocated to reg-
isters according to their position in the argument list. So, to repeat one of the
examples used above:

double ldexp (double, int);

y = ldexp(x, 23); /* y = x * (2**23) */

In n64, the double argument will be in the FP register $f12 and the integer
value 23 (“sign-extended” to 64 bits) will be in $a1, the integer register that
carries an argument in the second slot. No stack space will be reserved for these
arguments.
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Although n32/n64 can handle an arbitrary mix of floating-point and other
values and still put any double types that are in the first eight arguments in FP
registers, there are some careful rules. Any argument that is touched by a union
(and that therefore might not really be a double) is excluded and so are any of
the variable arguments of a variable-number-of-arguments function. Since the
function itself and any callers must make the same decision (or things won’t
work), this depends on having correct function prototypes. Mostly, these days,
that’s a reasonable assumption.

11.2.9 Stack Layouts, Stack Frames, and Helping Debuggers

Figure 11.8 gives a diagrammatic view of the stack frame of a MIPS function.
(We’re back to having the stack growing down, with higher memory

this function’s
stack frame

space for building arguments
for nested calls

FP register save area

GPR save area

local stack variables
and temporaries

sp on entry

sp while running

Fr
am

e 
si

ze

called function frame

calling function frame

higher addresses

lower addresses

more arguments as required

four 32–bit argument slots

FIGURE 11.8 Stack frame for a nonleaf function.
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at the top.) You should recognize the slots reserved for the first four words
of the function’s arguments as required by the traditional MIPS function call-
ing convention—newer calling conventions will only provide any space they
actually need.

The gray areas of the diagram show stack space used by the function itself;
the white area, above the bold line, belongs to the caller. All the gray components
of the stack frame are optional, and some functions need none of them; such
a simple function does not need to do anything to the stack. We’ll see some of
those in the examples through the rest of the chapter.

Apart from the arguments (whose layout must be agreed with the caller),
the stack structure is private to the function. The only reason we need a stan-
dard arrangement is for debugging and diagnostic tools, which want to be able
to navigate the stack. If we interrupt a running program for debugging, we’d
very much like to be able to run backward up the stack, displaying a list of the
functions that have been called on the way to our breakpoint, and the arguments
passed to those functions. Moreover, we’d like to be able to step the debugger
context back up the stack a few positions and in that context to discover the
value of variables—even if that piece of code was maintaining the variable’s
data in a register, as optimizing compilers should.

To perform this analysis, the debugger must know a standard stack layout
and must be fed information that allows it to see the size of each stack frame
component and the internal layout of each of those components. If a function
somewhere up the stack saved the value of s0 in order to use it, the debugger
needs to know where to find the saved value.

In CISC architectures, there is often a complex function call instruction that
maintains a stack frame similar to that in Figure 11.8 but with an additional
frame pointer register that corresponds to the position marked “sp on entry”
on our diagram. In such a CPU, the caller’s frame pointer will be stored at some
known stack position, allowing a debugger to skip up the stack by analyzing a
simple linked list. But in a MIPS CPU, all this extra runtime work is eliminated;
most of the time, a compiler knows how much to decrement the stack pointer
at the head of a function and how much to increment it before return.

So in the minimal MIPS stack frame, where is a debugger to find out where
data is stored? Some debuggers are quite heroic and will even interpret the first
few instructions of a function to find how large the stack frame is and to locate
the stored return address. But most toolchains pass at least some stack frame
information in the object code, written there by suitable assembly directives.

Since the mixture of directives is quite dependent on the toolkit, it’s worth
defining prologue and epilogue macros that both save you from having to
remember the details and make it easier to change to another toolkit if you need
to. Most toolkits will come with some macros ready to use; you’ll see simple ones
called LEAF and NESTED used in the following examples.

We’ve made no attempt to provide details of the underlying assembly direc-
tives for debugging: sorry. Your best bet is probably to compile some code and
study the assembly output of the compiler.
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We can divide up functions into three classes and prescribe three different
approaches, which will probably cover everything you need.

Leaf Functions

Functions that contain no calls to other functions are called leaf functions. They
don’t have to worry about setting up argument structures and can safely main-
tain data in the nonpreserved registers t0–t7, a0–a3, and v0 and v1. They can
use the stack for storage if they feel like it but can and should leave the return
address in register ra and return directly to it.13

Most functions that you may write in assembly for tuning reasons or as con-
venience functions for accessing features not visible in C will be leaf functions;
many of them will use no stack space at all. The declaration of such a function
is very simple, for example:

#include <mips/asm.h>
#include <mips/regdef.h>

LEAF(myleaf)
...
<your code goes here>
...
j ra

END(myleaf)

Most toolchains can pass your assembly source code through the C macro
preprocessor before assembling it—UNIX-like tools decide based on the file-
name extension. The files mips/asm.h and mips/regdef.h include useful
macros (like LEAF and END, shown above) for declaring global functions and
data; they also allow you to use the software register names, for example, a0
instead of $4.

The LEAF and END macros package together whatever you have to tell the
assembler to help the debugger navigate your function: They don’t contribute
anything else except the function name.

Nonleaf Functions

Nonleaf functions are those that contain calls to other functions. Normally, the
function starts with code (the function prologue) to reset sp to the low-water
mark of its use inside the function; that low-water mark will be the base of the
argument structure for the nested function call. We’ll also need stack space to

13. Storing the return address somewhere else may work perfectly well, but the debugger won’t be
able to find it.
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save the incoming values of any of the “saved” registers s0–s8 that the function
uses. Stack locations must also be reserved for ra, automatic (i.e., stack-based
local) variables, and any further registers whose value this function needs to
preserve over its own calls. (If the values of the argument registers a0–a3 need
to be preserved, they can be saved into their standard positions on the argument
structure.)

Note that since sp is set only once (in the function prologue), all stack-held
locations can be referenced by fixed offsets from sp.

To illustrate this, we will define a fairly trivial C module. But the function
nonleaf() will take five arguments (so it will need to pass at least one argu-
ment on the stack), it will call another function with five arguments, and one
of those arguments will be a pointer to a stack location. That should show you
enough to get the feel for how the ABI works.

extern nested (int a, int b, int c, int d, int *e);

extern nonleaf (int a, int b, int c, int d, int e)

{

nested(d, b, c, a, &e);

}

This will give you a stack structure similar to that shown in Table 11.4.

TABLE 11.4 Stack Layout for nonleaf()

48 e

44 (reserved for c/a3)

40 (reserved for b/a2)

36 (reserved for a/a1)

sp on entry => 32 (reserved for a/a0)

28 (pad to 8 bytes)

24 saved ra

20 (pad to 8 bytes)

16 &e

12 (reserved for a/a3)

8 (reserved for c/a2)

4 (reserved for b/a1)

sp running => 0 (reserved for d/a0)
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You can see where argument slots are reserved, but not used, because the
corresponding arguments are in registers. You can also see where padding is
introduced, because the lowest saved register and the bottom of the running
stackframe must both be aligned to eight bytes.

Compile nonleaf.c to assembly code with the GNU C compiler and
we get:

.file 1 "nonleaf.c"

.section .mdebug.abi32

.previous

.text

.align 2

.globl nonleaf

.set nomips16

.ent nonleaf
nonleaf:
.frame $sp,32,$31 # vars= 0, regs= 1/0, args= 24, gp= 0
.mask 0x80000000,-8
.fmask 0x00000000,0
.set noreorder
.set nomacro

addiu $sp,$sp,-32
sw $31,24($sp)
move $2,$4
addiu $3,$sp,48
sw $3,16($sp)
move $4,$7
jal nested
move $7,$2

lw $31,24($sp)
j $31
addiu $sp,$sp,32

.set macro

.set reorder

.end nonleaf

.ident "GCC: (GNU) 3.4.4 mipssde-6.03.01-20051114"
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We’ll probably need to walk through that in sections.

.file 1 "nonleaf.c"

.section .mdebug.abi32

.previous

The start of the file is housekeeping information for very basic debug (if
we’d compiled the file with the “–g” flag, we’d have got a lot more debugging
information). No further explanation, sorry!

.text

.align 2

.globl nonleaf

.ent nonleaf
nonleaf:

Object code and linkage housekeeping. We’re generating code so it will go
in the .text section of the object file, and the function entry point name is a
global symbol that is also an entry point. And there is the entry point label, too.

.frame $sp,32,$31 # vars= 0, regs= 1/0, args= 24, gp= 0

.mask 0x80000000,-8

.fmask 0x00000000,0

Information about the stack. We’ll generate a 32-byte stack frame for this
function, as seen in Table 11.4. The only register to be saved is $31, the return
address. That shows up in the .mask as bit 31 of a bit map of saved registers,
and that -8 indicates the position of the stack block used for saving GP registers.
.fmask does the same job for FP registers: There aren’t any FP registers used
here, so it’s zero.

.set noreorder

.set nomacro

Those two are telling the assembler that the compiler is taking charge here.
The assembler is not to move instructions around to fill branch delay slots, or to
interpret “macro instructions” (ones that expand to more than one instruction
in machine code).

It’s about time we got on with some code:

addiu $sp,$sp,-32
sw $31,24($sp)
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Adjust the stack pointer and save the return address from the call to
nonleaf().

move $2,$4 # remember ’a’ for later
addiu $3,$sp,48
sw $3,16($sp) # put &e in argument slot
move $4,$7 # first argument is ’d’
jal nested
move $7,$2 # in delay slot, third argument is ’a’

Adjust the arguments and call nested().

lw $31,24($sp)
j $31
addiu $sp,$sp,32

Retrieve the return address and return. Restore the stack pointer in the delay
slot.

.set macro

.set reorder

.end nonleaf

.ident "GCC: (GNU) 3.4.4 mipssde-6.03.01-20051114"

Re-enable all the assembly things you turned off, and include a string to
identify the compiler build.

Frame Pointers for More Complex Stack Requirements

In the stack frames described above, the compiler has been able to manage the
stack with just one reserved register, sp. Those of you who are familiar with
other architectures will know that they often use two stack maintenance regis-
ters: a stack pointer (sp) to mark the stack low-water point and a frame pointer
to point to the data structures created by the function prologue. However, so
long as the compiler can allocate all the stack space needed by the function in
the function prologue code, it should be able to decrement sp in the prologue
and leave it pointing to a constant stack offset for the life of the function. If so,
everything on the local stack frame is at a compile-time-known offset from sp,
and no frame pointer is needed. But sometimes you want to mess with the stack
pointer at run time: Figure 11.9 shows how MIPS allocates a frame pointer to
cope with this need.

What leads to an unpredictable stack pointer? In some languages, and even
in some extensions to C, dynamic variables can be created whose size varies at
run time. And many C compilers can allocate stack space on demand through the
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four 32–bit argument slots

more arguments as required

this function’s
stack frame

space for building arguments
for nested calls

FP register save area

GPR save area

local stack variables
and temporaries

sp while running

called function frame

calling function frame

higher addresses

lower addresses

fp while running

saved here
old value of fp/s8

FIGURE 11.9 Stack frame using separate frame pointer register.

useful built-in function alloca().14 In this case the function prologue grabs
another register, s8 (which has a regular alias of fp), and sets it to the incoming
value of sp.

Since fp (in its other guise as s8) is one of the saved registers, the pro-
logue must also save its old value, which is done just as if we were using s8
as a subroutine variable. In a function compiled with a frame pointer, all local
stack frame references are made via fp, so if the compiler needs to lower
sp to make space for variables of runtime-computed size, it can go right
ahead.

14. Actually, some implementations of alloca() don’t just make space on the local stack, and
some are pure library functions (which means that you never need go without alloca() for
portability reasons). But compilers that implement alloca() using stack space make code that
goes faster.
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Note that if the function has a nested call that uses so many arguments that
it needs to pass data on the stack, that will be done with relation to sp.

One ingenious feature of this trick is that neither the caller of a frame pointer
function, nor anything called by it, sees it as anything special. Functions it calls
are obliged to preserve the value of fp because it’s a callee-saved register; and
the callee-visible part of the stack frame looks like it should.

Assembly buffs may enjoy the observation that when you create space with
alloca(), the address returned is actually a bit higher than sp, since the com-
piler has still reserved space for the largest argument structure required by any
function call.

Some tools also employ an fp-based stack frame when the size of the local
variables grows so large that some stack frame objects are too far from sp to
be accessed in a single MIPS load/store instruction (with its ±32-KB offset
limit).

11.2.10 Variable Number of Arguments and stdargs

If you need to build a new function that takes a variable number of arguments,
use your toolkit’s stdarg.hmacro package (compulsory for ANSI compatibil-
ity). The macro package delivers the macros—or possibly functions—
va start(), va end(), and va arg(). To see how they’re used, look at how
the one package implements printf():

int printf(const char *format,... )

{

va_list arg;

int n;

va_start(arg, format);

n = vfprintf(stdout, format, arg);

va_end(arg);

return n;

}

Once we’ve called va start(), we can extract any argument we like. So
somewhere in the middle of the code that implements the format conversions
for printf(), you’ll see the following code used to pick up the next argument,
supposing it to be a double-precision floating-point type:

...

d = va_arg(ap, double);

...

Never try to build an assembly function that takes a variable number of
arguments—it isn’t worth the portability hassle.



This Page Intentionally Left Blank



Chapter

12
Debugging MIPS
Designs—Debug and
Profiling Features

When you build a low-cost, low-power embedded device or consumer
gizmo, it makes sense to squeeze out every feature that doesn’t contribute

to the final application.
Or does it?
In marketing terms, the way to make money out of these kinds of devices

is to be there first: As the devices become familiar, prices drop rapidly (as has
happened with DVD players, for example). Product lifetimes are short, so devel-
opment timescales must be compressed.

There’s a tension here: A cut-to-the-bone hardware system is a hostile base
for development and test. The economics of SoC chips offers a way out. Most
SoCs can accommodate a few percent more transistors used for predefined func-
tions with no impact on production cost, because the transistor count is limited
by the difficulty of designing circuits and making reasonably sure the chip will
work first time. If the suppliers of SoC components can include development
aids without passing on much risk to the SoC builder, everyone might win.

So modern MIPS CPUs come with a certain amount of hardware aimed
to help developers. Different builders will resolve the competing requirements
differently, so—unfortunately for developers and development tool creators—
these features are optional and may not be present on your system. But it’s a
definite trend in the last few years to include more of them.

Developers benefit from three different kinds of information about their
system, which can be reasonably divided into “debug,” “trace,” and “profile”
information.

Debug—The Exact State of the System

To correct your logical errors about how the system should work, it’s very help-
ful to be able to dig down and see exactly what is happening, sometimes at the
lowest level (instruction by instruction).

339
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This is the job of a software debugger. To be usable in a complex system, the
debugger needs access to your software source, as well as binary, and must be
able to correlate the two. Correlating debug events with source code is a large
problem we shall ignore here, except to point out that such a debugger can’t
reside entirely in an embedded system under test, so the debugger needs some
kind of host-target connection. At the CPU level, a debugger needs access to the
program’s memory and in-CPU state, as well as the ability to control execution
by arranging traps to debugger software to happen at appropriate points.

MIPS specifications define an on-CPU debug help unit under the name of
EJTAG, described below. But MIPS CPUs also retain pre-EJTAG features, which
linger because they’re more familiar and easier for some kinds of debug software
to use, and we’ll mention them too.

Trace—What Just Happened?

To make sense of where the system is, it’s useful to have some kind of overview
about how it progressed (for example) from “correct” to wrong behavior. The
whole system state is unmanageably huge, and it’s difficult to know which state
will be important until afterward. But for a CPU, it’s certainly interesting to
look into the instructions it recently executed.

When the CPU is running as fast as billions of instructions per second, it’s
a challenge to save enough of that information to cover enough time at enough
level of detail, and to get it off-chip fast enough to avoid either stopping the
CPU or losing some trace information.

The system used in MIPS CPUs is called PDtrace and is hooked onto the
EJTAG debug block.

Profile—Statistical Information about Behavior over a Period
of Time

If debuggers are provided because programmers can’t hold every possible
detailed implication of their software in their heads, profilers are there because
it’s even more difficult to visualize the behavior of whole subsystems. The mod-
ular programming practices that make it possible to build a correct system insu-
late the programmer from knowledge of exactly what the CPU has to do to
carry out tasks—but for a system of any complexity, that means you’ve only the
vaguest idea whether pressing a button will lead to a satisfactory response or an
unsettling wait.

A software tool that provides statistical information about the large-scale
timing and behavior of a system is called a profiler. And profilers work by instru-
menting the system, counting events over a particular time.

The EJTAG system includes an option called “PC sampling,” which pro-
vides some useful information; but MIPS CPUs also have a number of
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performance counters that are controlled by on-target software. The counters
and their controls are provided as CP0 registers and described further below.

When a developer runs a system for debug, trace, or profiling, the hardware
that provides the low-level information may itself change the behavior of the
system. That isn’t helpful: It’s preferable if development assistance is, as far as
possible, nonintrusive.

We said previously that transistors on your SoC devoted to development
aids are extremely cheap and can be a bargain. What’s harder to provide at low
cost is the connection to your development system, which carries the informa-
tion back for analysis.

In older systems you typically linked the target and host with an extra serial
port or some other piece of system I/O. But more often, it involved a tricky
negotiation with the target system software to share the use of a connector and
device that have some role in the final system.

That’s intrusive: We’d prefer a separate debug connection. Ideally (to reduce
the impact on the system design, and to create a standard that will make the
tools easier to build), it should come directly from the CPU. But the SoC with
the CPU in it is usually at the heart of the system: Transistors may be cheap, but
extra pins are costly.

But here we get lucky; someone else’s problem prompts a solution. Elec-
tronic systems are soldered together, and the soldering process has a signif-
icant defect rate. Modern electronic boards are automatically tested before
being used in products, and a few pins on complex devices are reserved for
that testing. The overwhelmingly chosen test connection standard is JTAG,
so MIPS chose to connect the development subsystem by recycling the JTAG
pins, which are otherwise unused at run time. That’s why the debug unit is
called EJTAG.

However, the debug hardware is still useful to a more traditional debugger—
one running on the target system and communicating using conventional
devices of some kind. A debugger that is deeply enmeshed with a high-level
operating system (for example) is likely to run substantially on the target. See
section 12.1.13 for some notes on what has to be done for an on-target debugger
to use the debug unit.

12.1 The “EJTAG” On-chip Debug Unit

The EJTAG unit is a loosely integrated collection of in-CPU resources used to
build debug and trace tools. As we said above, EJTAG finds pins for a nonin-
trusive host connection (and gets its name) by recycling the JTAG pins already
included in every SoC for chip test.1

1. Though it can be quite useful to provide EJTAG with independent-of-hardware-test pins, if you
can afford it.
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Such a debug unit requires:

Physical communications with the host—usually via some kind of probe
device connected to the debug host by some general-purpose network or
wire. The probe is attached to the SoC’s JTAG pins.

The ability for the host/probe to “remote-control” the CPU. That’s done
by directing the CPU to execute code from a magic dmseg memory region,
where CPU reads and writes are serviced by the probe. dmseg is part of
the special memory window dseg, which opens up in debug mode, as
described in section 12.1.6.

Although the probe is wonderful for providing debug resources to a min-
imal system, the EJTAG resources are quite usable by a pure-software
debugger running on the local CPU. We’ll come back to that later.

A just-for-debug exception. In MIPS EJTAG, this is a special super-
exception marked by a special debug mode flag, so you can use an EJTAG
debugger to debug the whole system, even its own regular exception
handlers. See section 12.1.4.

A number of EJTAG breakpoints, hardware monitors that can be inde-
pendently programmed to match addresses and even data.2 When the
CPU fetches an instruction or reads/writes a location, the fetch or load/
store address and data are compared with any active breakpoints, causing
a debug exception on a match.

There can be a lot of breakpoint control registers, and that would be
difficult to fit into the CP0 register set, so they are memory-mapped into
dmseg (the subregion used for EJTAG registers is called drseg).

You can also get a debug exception from a debug breakpoint instruc-
tion sdbbp, an external signal DINT, or when the EJTAG probe wiggles
a control bit it knows about.3

For profiling rather than debugging, you may have the facility to instruct
the EJTAG unit to take periodic snapshots of the address of the currently
executing instruction (PC sampling) and make those samples available
to the EJTAG probe, as described in section 12.1.12.

Powerful debug facilities can be built on these foundations.

2. Software engineers habitually use “breakpoint” to mean a debug-support instruction, and
it’s often been more helpful to call the hardware monitors “watchpoints.” But all EJTAG
documentation calls them breakpoints, so we’ll do the same.

3. Or as a rueful colleague notes, if you inadvertently bump the probe wihile debugging a
system.
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12.1.1 EJTAG History

Back in the stone age of microprocessors (before 1980) fine-grain debug could
be available from an in-circuit emulator (ICE). An ICE was a plug-in replace-
ment for your CPU with a large and proprietary cable leading to a rack full of
electronics. The ICE executed instructions just like a CPU, but could be stopped
and interrogated.

The ICE approach worked because microprocessors were expensive and
fragile, so it was often worth attaching them through a chip socket rather than
soldering them in—just as PC processors these days are so expensive that it
makes sense not to solder them to the motherboard.

It was always difficult to get the complex circuitry of the ICE to run as fast
as the simpler CPU chip, and as microprocessors got faster that got worse. ICE
boxes started off expensive and got ever more so: Once they cost tens of thou-
sands of dollars, lots of teams found ways of debugging systems without them.
As the 1980s progressed, that undermined the market for ICE boxes.

So the ICE manufacturers needed something like EJTAG. With an on-chip
debug unit, the critical paths (which might have made the CPU slower) were
local, so the system could run at full speed. The probe you needed to make the
connection and the complex host software that ran it were the sort of things they
knew how to make. That was good, but they ran into a problem: They either had
to sell the tiny probe and software for $10,000, or change their business model
to sell more units at lower prices. Technological change is easy, but institutional
change is not; for the most part, the ICE manufacturers tried to keep their prices
up and were bypassed.

It was LSI Logic that first incorporated on-chip debug units in their pio-
neering system-on-chip MIPS CPUs. With the help of some ICE manufactur-
ers, they developed the EJTAG specification much as it is now. But these days
probes cost less than $1,000 and attach to the software debugger of your choice.

12.1.2 How the Probe Controls the CPU

The probe gets control when the CPU fetches an instruction from the dmseg
region. It sounds like you have to wait for the CPU’s software to volunteer for
this, but in fact:

In response to your debugger start-up your probe will use its JTAG con-
nection to set an internal flag, which moves the debug exception entry
point to 0xFF20.0200—in dmseg.

The probe can cause a debug breakpoint directly or by setting up a hard-
ware breakpoint and waiting for the software to trip it.

Your probe can send an EJTAGBOOT command (more about commands
in the next section) and then, after the next CPU reset, the CPU will read
instructionsfromdmseg.Infact,acollectionoffeaturesallowsyoutoreboot
theCPUandtakecompletecontrol,evendownloadingnewsoftwareviathe
JTAGlink.
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Once the probe is feeding the CPU with instructions, it can get the CPU to
do anything. In particular, it can send it an instruction sequence that will read
data (whether from a CPU register or from memory) and write it back to the
probe via dmseg space.

12.1.3 Debug Communications through JTAG

Your host computer connects to the system under test through a small black
box, the probe. The chip’s JTAG pins give the probe access to special registers
inside the CPU.

The JTAG standard was invented by chip-makers to make it easier to test
circuit boards, and most complex chips already find room for the JTAG pins;
subverting them for software debug is easier than fighting for new pins. In the
1970s (when JTAG was born) every extra transistor was a significant cost. So
JTAG is designed to minimize the complexity of the logic that receives it, which
is basically a shift register.4

There’s a control/data enable input, a data-in line, and a data-out line. The
control register is sent command codes, most of which just select between dif-
ferent data registers. JTAG command codes are called “instructions” but are
often used interchangeably with the names of the data registers—a recipe for
confusion when you’re talking to software engineers.

But the net effect of this very simple hardware is that JTAG provides a way
to read and/or write one of a number of registers internal to the EJTAG unit.
The EJTAG unit provides a number of instructions the probe can use to deal
with the CPU, and they’re summarized in Table 12.1.

12.1.4 Debug Mode

Debug mode is a special CPU state, much like exception mode (but more so).
The CPU goes into debug mode when it takes any debug exception—which
can be caused by an sddbp instruction, a hit on an EJTAG breakpoint register,
from the external “debug interrupt” signal DINT, or single-stepping (the latter is
peculiar and described briefly below). Debug mode state is visible and control-
lable through the CP0 register bit Debug(DM)—there’s more on EJTAG’s CP0
registers in section 12.1.7. Debug mode (like exception mode) implicitly dis-
ables all normal interrupts. The address map changes in debug mode to give you
access to the dseg region, described below. Quite a lot of exceptions just won’t
happen in debug mode; those that do run peculiarly—see the next section.

4. For those who don’t know, a shift register is a 1-bit-wide store accessed serially. As a bit is clocked
in, all other bits are moved up one position to make space for it. In hardware, shift registers are
often also wired in parallel (that is, the state of all the bits is reflected on a collection of wires).
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TABLE 12.1 JTAG Instructions for the EJTAG Unit

JTAG “instruction” Description

IDCODE Reads out the MIPS CPU and revision—not very
interesting for software, not described further here.

ImpCode Reads bitfield showing which EJTAG options are
implemented.

EJTAG ADDRESS
EJTAG DATA

(Read/write) together, allow the probe to provide
or accept data in response to instruction fetches
and data reads/writes in the magic dmseg region
described in section 12.1.6.

EJTAG CONTROL Package of flags and control fields for the probe to
read and write.

EJTAGBOOT
NORMALBOOT

The EJTAGBOOT instruction causes the next CPU
reset to reboot from the probe; it’s controlled by
EJTAG CONTROL bits called ProbEn, ProbTrap,
and EjtagBrk, but you’ll need to read a more
detailed manual to find out more.
The NORMALBOOT instruction reverts to the normal
CPU bootstrap.

FASTDATA Special access used to accelerate multiword data
transfers with probe. The probe reads/writes the
33-bit register formed of EJTAG CONTROL(PrAcc)
with EJTAG DATA.

TCBCONTROLA
TCBCONTROLB
TCBADDRESS

Access registers used to control “PDtrace”
instruction trace output, if available. See
section 12.3, but these JTAG-accessible registers are
not detailed.

A CPU with a suitable probe attached can be set up so the debug exception
entry point is in the dmseg region, running instructions provided by the probe
itself. With no probe attached, the debug exception entry point is in the ROM
(for an overview of all MIPS exception entry points, see Table 5.1.)

Exceptions in Debug Mode

A software debugger is likely to be coded to avoid causing exceptions (it will test
addresses in software, for example, rather than risk address or TLB exceptions).
So it’s reasonable that in debug mode, many conditions that would normally
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cause an exception are ignored: interrupts, debug exceptions (other than that
caused by executing sdbbp), and many others.

But a few exceptions occurring in debug mode are turned into nested debug
exceptions—a facility that is probably mostly valuable to debuggers using the
EJTAG probe.

On such a nested debug exception the CPU jumps to the debug exception
entry point, remaining in debug mode. The Debug(DExcCode) field records
the cause of the nested exception, and DEPC records the debug-mode-code
restart address. This will not be survivable for the debugger unless it saved a
copy of the original DEPC soon after entering debug mode, but it probably did
that! To return from a nested debug exception, you don’t use deret (which
would inappropriately take you out of debug mode); you grab the address out
of DEPC and use a jr instruction.

12.1.5 Single-Stepping

When the single-step bit Debug(SSt) is set and control returns from debug
mode with a deret, the instruction selected by DERET will be executed in non-
debug context;5 then a debug exception will be taken on the very next instruc-
tion to be fetched in sequence.

Since one instruction is run in normal mode, it can lead to a nondebug
exception; in that case the “very next instruction in sequence” will be the first
instruction of the exception handler, and you’ll get a single-step debug excep-
tion whose DEPC points at the exception handler.

12.1.6 The dseg Memory Decode Region

EJTAG needs to use memory space both to accommodate its numerous break-
point management registers (too many for CP0) and for its probe-mapped com-
munication space. This memory space pops into existence near the top of the
CPU’s virtual address map when the CPU is in debug mode, as shown in
Table 12.2.

In the table you can see that:

dseg: Is the whole debug-mode-only memory area, which appears over-
laying part of the upper kernel-accessible mapped area (kseg2) when the
CPU is in debug mode. It’s possible for debug-mode software to read
the kseg2-mapped locations “underneath” by setting Debug(LSNM)—
but a debug-friendly OS should probably avoid using this corner of the
memory map for other purposes.

5. If DERET points to a branch instruction, both the branch and branch-delay instruction will be
executed normally.
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TABLE 12.2 EJTAG Debug Memory Region Map(dseg)

Virtual address Region/subregions Location/register Virtual address

0xC000.0000 0xE000.0000

0xFF1F.FFFF 0xFF1F.FFFF

0xFF20.0000 0xFF20.0000
0xFF20.000F 0xFF20.000F

fastdata

0xFF20.0010 0xFF20.0010

0xFF20.0200 debug entry 0xFF20.0200

0xFF2F.FFFF 0xFF2F.FFFF

dmseg

0xFF30.0000 DCR register 0xFF30.0000

0xFF30.1000 IBS register 0xFF30.1000

I-breakpoint #1 regs
0xFF30.1100 IBA1 0xFF30.1100
0xFF30.1108 IBM1 0xFF30.1108
0xFF30.1110 IBASID1 0xFF30.1110
0xFF30.1118 IBC1 0xFF30.1118

I-breakpoint #2 regs
0xFF30.1200 IBA2 0xFF30.1200
0xFF30.1208 IBM2 0xFF30.1208
0xFF30.1210 IBASID2 0xFF30.1210
0xFF30.1218 IBC2 0xFF30.1218

same for next two
...

0xFF30.2000 DBS register 0xFF30.2000

D-breakpoint #1 regs
0xFF30.2100 DBA1 0xFF30.2100
0xFF30.2108 DBM1 0xFF30.2108
0xFF30.2110 DBASID1 0xFF30.2110
0xFF30.2118 DBC1 0xFF30.2118
0xFF30.2120 DBV1 0xFF30.2120
0xFF30.2124 DBVHi1 0xFF30.2124

D-breakpoint #2 regs
0xFF30.2200 DBA2 0xFF30.2200
0xFF30.2208 DBM2 0xFF30.2208
0xFF30.2210 DBASID2 0xFF30.2210
0xFF30.2218 DBC2 0xFF30.2218
0xFF30.2220 DBV2 0xFF30.2220
0xFF30.2224 DBVHi2 0xFF30.2224

0xFF30.2228 0xFF30.2228
0xFF3F.FFFF 0xFF3F.FFFF

drseg

dseg

kseg2

0xFF40.0000 0xFF40.0000

0xFFFF.FFFF 0xFFFF.FFFF
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dmseg: Is the memory region where reads and writes are implemented
by the probe. But if no active probe is plugged in, or if DCR(PE) is clear,
then accesses here cause reads and writes to be handled like regular kseg2
accesses.

drseg: Is where the debug unit’s main register banks are accessed. Accesses
to drseg don’t go off CPU. Registers in “drseg” are word-wide, and should
be accessed only with word-wide (32-bit) loads and stores.

fastdata: Is a corner of dmseg where probe-mapped reads and writes use
a more JTAG-efficient block-mode probe protocol, reducing the amount
of JTAG traffic and allowing for faster data transfer. There are no details
about how it’s done in this book.

debug entry: Is the debug exception entry point. Because it lies in dmseg,
the debug code can be implemented wholly in probe memory, allowing
you to debug a system that has no physical memory reserved for debug.

If there’s no probe-supplied debug exception handler—a condition noti-
fied by the probe itself using the EJTAG CONTROL(ProbTrap) bit—the
debugger entry point will be at 0xBFC0.0480 (near the other uncached-
space exception entry points).

12.1.7 EJTAG CP0 Registers, Particularly Debug

In normal circumstances (specifically, when not in debug mode), the only
software-visible part of the debug unit is its set of three CP0 registers:

Debug has configuration and control bits and is detailed below.

DEPC keeps the restart address from the last debug exception (automat-
ically used by the deret instruction).

DSAVE is a CP0 register that is just 32 bits of read/write space. It’s avail-
able for a debug exception handler that needs to save the value of a first
general-purpose register, so that it can use that register as an address base
to save all the others.

Debug is the most complicated and interesting. It has so many fields defined
that we’ve taken them in three groups: debug exception cause bits in Figure 12.1,
information about regular exceptions that are pending (they want to happen
but can’t because you’re in debug mode) in Figure 12.2, and everything else.
The “everything else” category includes the most important fields, as shown in
Figure 12.3.

The fields in Figure 12.3 (the most important fields) are:

DBD: Tells you that the debug exception happened in a branch delay
slot. Then DEPC points to the branch instruction, which is usually
the right place to restart.
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31 20 19 18 17 6 5 4  3 2 1 0

Debug DDBSImpr DDBLImpr DINT DIB DDBS DDBL DBp DSS

FIGURE 12.1 Exception cause bits in the debug register.

DM: Debug mode—set on debug exception from user mode, cleared
by deret. Not writable here.

NoDCR: Read-only—0 if the dseg region is implemented. It’s not clear
what kind of EJTAG unit you’d have if this was 1.

LSNM: Set this to 1 if you want dseg to disappear, even in debug mode, so
you can access the memory locations it otherwise overlays. This
makes most of the EJTAG unit’s control system unavailable, so
will probably only be done around a particular load/store.

Doze: Before the debug exception, CPU was in some kind of reduced
power mode.

Halt: Before the debug exception, the CPU was stopped—probably
asleep after a wait instruction.

CountDM: Set to 1 if, and only if, the Count register continues to run in debug
mode. Sometimes this may be writable, so you get to choose: Oth-
erwise this is a read-only bit that tells you what your CPU does.

IEXI: Set to 1 to defer imprecise exceptions. Set by default on entry to
debug mode, cleared on exit, but writable. The deferred exception
will come back when and if this bit is cleared: Until then you can
see that it happened by looking at the pending bits shown in
Figure 12.2.

EJTAGver: Read-only—tells you which revision of the specification this
implementation conforms to. Known legal values are:

0 Version 2.0 and earlier

1 Version 2.5

2 Version 2.6

3 Version 3.1

DExcCode: Cause of any nondebug exception you just handled from within
debug mode—following first entry to debug mode, this field is
undefined. The value will be one of those defined for Cause
(ExcCode) and is listed in Table 3.2.

NoSSt: Read-only—reads 1 if single-step is not implemented. Single-step
is usually available, so this usually reads zero.

SSt: Set this flag to 1 to enable single-step.
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31 25 24 23 22 21 20 0

Debug IBusEP MCheckP CacheEP DBusEP

FIGURE 12.2 Debug register—exception-pending flags.

31 30 29 28 27 26 25 24 21 20 19 18 17 15 14 10 9 8 7 6 5  0

DBD DM NoDCR LSNM Doze Halt CountDM pending IEXI cause EJTAGver DExcCode NoSSt SSt OffLine 0 cause

FIGURE 12.3 Fields in the EJTAG debug register.

OffLine: Often not implemented in single-threaded CPUs, in which case it
just reads zero.

If implemented, you can set it to 1 to stop the CPU (or the CPU
thread in a multithreading CPU) from running instructions
except in debug mode. This is intended to allow a debugger to
shut down some processors/threads in a multiprocessor/multi-
threading system, while still leaving those processors/threads to
run in debug mode. The condition can only be cleared in debug
mode, so if you do a deret with it set, nothing else will happen
until and unless you get an externally initiated debug interrupt.

The fields in Figure 12.1 are:

DDBSImpr,DDBLImpr: Imprecise store/load breakpoint, respectively—see
section 12.1.11. DEPC probably points to an instruction some time
later in sequence than the store/load that triggered the breakpoint.
The debugger or user (or both) have to cope as best they can.

DINT: Debug interrupt caused by pulse on EJTAG pin.

DIB: We hit an instruction breakpoint.

DDBS: We hit a precise store breakpoint.

DDBL: We hit a precise load breakpoint.

DBp: We hit any sort of debug breakpoint (often found together with one
of the above).

DSS: This was a single-step exception.

The “pending” flags (Figure 12.2) record exception conditions caused by
instructions run in debug mode but that have not happened yet because they
are imprecise and Debug(IEXI) is set. The exceptions remain pending and the
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bits remain set untilDebug(IEXI) is cleared explicitly or implicitly by a deret,
when the exception is delivered and the corresponding pending bit is cleared.

The individual bits relate to different exception reasons:

IBusEP: Bus error on instruction fetch.

MCheckP: Machine check (usually an illegal TLB update).

CacheEP: Parity/ECC error detected when reading from cache.

DBusEP: Bus error reported on some external read.

On any particular CPU, some of these bits will be always zero, because the
corresponding exception is always precise (and precise exceptions are always
dealt with immediately).

12.1.8 The DCR (Debug Control) Memory-Mapped Register

In addition to the CP0 Debug register, there are more EJTAG controls and flags
in a register called DCR, which is memory-mapped through the debug-only
drseg memory region at location 0xFF30.0000, so is only accessible if the CPU
is in debug mode. The fields are in Figure 12.4.

Many of the fields in DCR are shared with the probe through one of the
JTAG-accessible registers.

The fields are:

ENM: (Read-only) reports CPU endianness (1 == big).

DB/IB: (Read-only) 1 if EJTAG data/instruction hardware breakpoints are
available, respectively. It seems hard to see why you’d build an EJTAG
unit without any breakpoints.

PCS, PCR: PCS reads 1 if the “PC sampling” feature is available. When it is,
PCR is a 3-bit field defining the sampling frequency as one sample
every 25+PCR cycles. See section 12.1.12 for details.

INTE/NMIE: Set DCR(INTE) to zero to disable interrupts in nondebug mode
(it’s a separate bit from the various nondebug-mode visible inter-
rupt enables). The idea is that the debugger might want to run kernel
subroutines (perhaps to discover OS-related information) without
losing control because interrupts start up again.

31 30 29 28 18 17 16 15 10 9 8 6 5  4 3 2 1 0

DCR 0 ENM 0 DB IB 0 PCS PRC 0 INTE NMIE NMIP SRE PE

FIGURE 12.4 Fields in the memory-mapped DCR (debug control) register.
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DCR(NMIE) Masks nonmaskable interrupt in nondebug mode
(a nice paradox).

Both the DCR(INTE,NMIE) bits are “1” from reset.

NMIP: (Read-only) tells you that a nonmaskable interrupt is pending, and
will happen when you leave debug mode (and according to DCR
(NMIE) as above).

SRE: If implemented, write this zero to prevent a soft-reset.

PE: (Read-only) software-readable version of the probe-controlled enable
bit. When set, debug exceptions are redirected to probe-controlled
dmseg memory locations.

12.1.9 EJTAG Breakpoint Hardware

EJTAG breakpoints have hardware that monitors instruction fetch, load, and
store accesses from the CPU. If you set a breakpoint, then an access that matches
it for address (and possibly matches data, too, if so specified) will cause a debug
exception.

Instruction and data breakpoints are separate. The EJTAG specification per-
mits a unit to be built with no breakpoint hardware (though that wouldn’t be
much use), but it seems common to have between two and six of them. The
breakpoints:

Work only on virtual addresses, not physical addresses. However, you can
restrict the breakpoint to a single address space by specifying an ASID
value to match. Where the operating system is using multiple address
spaces, the debugger will have to work with the OS to make that useful.

Use a bitwise address mask to permit a degree of fuzzy matching.

Breakpoint hits can be made conditional on the data value read or write.
But data-sensitive tests may lead to an exception that is imprecise—by the
time the data is available for matching, it’s too late to prevent subsequent
instructions from having some effect. See section 5.1 if you want to know
more about precise and imprecise exceptions.

There are one overall I-side and one D-side control registers, mapped into
the drseg region, accessible only when in debug mode at the addresses shown
in Table 12.2. They’re called IBS and DBS. They are as shown in Figure 12.5.

31 30 29 28 27 24 23 12 0

DBS/IBS 0 NoSVM NoLVM BCN 0 BS1-0ASIDsup

FIGURE 12.5 Fields in the IBS/DBS (EJTAG breakpoint status) registers.



12.1 The “EJTAG” On-chip Debug Unit 353

The fields in Figure 12.5 are:

ASIDsup: Is 1 if the breakpoints can use ASID matching to distinguish
addresses from different address spaces. It’s hard to imagine any
modern debug unit lacking that facility.

NoSVM,NoLVM: Are 1 if you can’t qualify a breakpoint by the data value on
stores/load, respectively. Only valid in the DBS register.

BCN: The number of hardware breakpoints available. There are separate
I- and D-side breakpoints.

BS1-0: Bitfields showing breakpoints that have been matched. Debug soft-
ware has to clear down a bit after a breakpoint is detected. The size of
the field depends on the number of breakpoints provided on either
the I- or D-side.

Then, each EJTAG hardware breakpoint (“n” is 0–3 to select a particular
breakpoint) is set up through four to six separate registers:

IBCn, DBCn: Breakpoint control register shown in Figure 12.6.

IBAn, DBAn: Breakpoint address.

IBAMm, DBAMn: Bitwise mask for breakpoint address comparison. A “1” in
the mask marks an address bit that will be excluded from comparison,
so set this register to zero for exact matching.

Ingeniously, IBAMm(0) corresponds to the slightly bogus instruction
address bit zero, used to track whether the CPU is running
MIPS16 instructions, and allows you to determine that an instruc-
tion breakpoint may happen only in MIPS16 (or non-MIPS16) mode.

IBASIDn, DBASIDn: Specifies an 8-bit ASID, which may be compared
against the current EntryHi(ASID) field to filter breakpoints
so that they only happen to a program in the right address space
(typically corresponding to one Linux process, for example). The
ASID check can be enabled or disabled using IBCn(ASIDuse) or
DBCn (ASIDuse), respectively—see Figure 12.6 and its notes.

The higher 24 bits of each of these registers are always zero.

31 24 23 22 14 13 12 11 4 3  2  1 0

DBCn/IBCn 0 BAI7-0 NoSB NoLB BLM7-0 0 TE 0 BEASIDuse

FIGURE 12.6 Fields in the hardware breakpoint control registers (IBCn,DBCn.)
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DBVn, DBVHin: The value to be matched on load/store breakpoints. DBCHin
defines bits 31–64 to be matched for 64-bit load/stores. A JTAG hard-
ware breakpoint for a real 64-bit CPU would have 64-bit DBVn reg-
isters, so wouldn’t need DBVHin—they’re provided because some
32-bit CPUs implement 64-bit load or store for a double-precision
coprocessor, perhaps a floating-point unit.

Note that you can disable data matching (to get an address-only
data breakpoint) by setting the value byte-lane comparison mask
DBCn (BLM) to all 1s.

So now let’s look at the control registers in Figure 12.6.
The fields are:

ASIDuse: Set 1 to compare the ASID as well as the address.

The BAI7-0, NoSB, NoLB, and BLM7-0 fields are applicable only to D-side
(DBCn) breakpoints:

BAI7-0: Byte (lane) access ignore—which sounds mysterious. But this is
really an address filter.

When you set a data breakpoint, you probably want to break on any
access to the data of interest. You don’t usually want to make the
break conditional on whether the access is done with a load byte,
load word, or even load-word-left: But the obvious way of setting up
the address match for a breakpoint has that effect.

To make sure you catch any access to a location, you can use the
address mask to disable subdoubleword address matching and then
use DBCn(BAI) to mark the bytes of interest inside the doubleword:
well, except that zero bits mark the bytes of interest, and 1 bits mark
the bytes to ignore (hence the mnemonic).

The DBCn(BAI) bits are numbered by the byte-lane within the
32- or 64-bit data bus; so be careful, the relationship between the
byte address of a datum and its byte lane is endianness-sensitive.

NoSB, NoLB: Set 0 to enable6 breakpoint on store/load, respectively.

BLM7-0: A per-byte mask for data comparison. A zero bit means compare this
byte, a 1 bit means to ignore its value. Set this field all-1s to disable
the data match.

The remaining fields are applicable to both I- and D-side breakpoints:

TE: Set 1 to use as trigger for PDtrace instruction tracing, as described in
section 12.3.

6. “1-to-enable” would feel more logical. The advantage of using 0-to-enable here is that the zero
value means you will break on either read or write, which is a better default than “never break
at all.”



12.1 The “EJTAG” On-chip Debug Unit 355

BE: Set 1 to activate breakpoint. This fields resets to zero to avoid spuri-
ous breakpoints caused by random register settings: Don’t forget to
set it!

12.1.10 Understanding Breakpoint Conditions

There are a lot of different fields and settings that are involved in determining
when a hardware breakpoint detects its condition and causes an exception.

In all cases, there will be no break if you’re in debug mode already . . . but
then, for a break to happen, all the following must be true:

1. The breakpoint control register enable bit IBAn(BE)/DBAn(BE) is set.

2. The address generated by the program for instruction fetch, load, or store
matches those bits of the breakpoint’s address register IBAn/DBAn for
which the corresponding address-mask register bits in IBAn/DBAn are
zero.

3. Either the IBCn(ASIDuse)/DBCn(ASIDuse) is zero (so we don’t care
which address space we’re matching against) or the address-space ID
of the running program, EntryHi(ASID), is equal to the value in
IBASIDn/DBASIDn.

That’s all for instruction breakpoints, but for data-side breakpoints you
need to distinguish loads and stores and can distinguish accesses by subdou-
bleword address too:

4. It’s a load and DBCn(NoLB) is zero, or it’s a store and DBCn(NoSB) is
zero.

5. The load or the store touches at least one byte within doubleword for
which the corresponding DBCn(BAI) bit is zero.

If you didn’t want to compare the load/store value, then you would set
DBCn(BLM) to all-ones, and you’re done. But if you also want to consider the
value, then you have data compare conditions:

6. The data loaded or stored, as it would appear on the system bus, matches
the 64-bit contents of DBVHin, with DBVn in each of those 8-bit groups
for which the corresponding bit in DBCn(BLM) is zero.

That’s it. It’s quite complicated, but logical.
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12.1.11 Imprecise Debug Breaks

Instruction breakpoints, and data breakpoints filtering only on address condi-
tions, break with DEPC pointing to the matching instruction. More accurately,
such exceptions are “precise exceptions,” in the sense discussed in section 5.1.

Most exceptions in MIPS architecture CPUs are precise. But many MIPS
CPUs optimize loads and stores by permitting the CPU to run on at least until
it needs to use the data from a load, so data breakpoints that filter on the data
value are imprecise. The debug exception will happen to whichever instruction
(typically later in the instruction stream) is running when the hardware detects
the match. The debugging software must cope as best it can.

12.1.12 PC Sampling with EJTAG

A valuable trick available with recent revisions of the EJTAG specification and
probes, PC sampling provides a nonintrusive way to collect statistical informa-
tion about the activity of a running system. You can find out whether your CPU
offers this facility by looking at the appropriate bit in DCR(PCS).

PC sampling hardware snapshots the current PC periodically and stores that
value where it can be retrieved by a debug probe. It’s then up to software to
construct a histogram of samples over a period of time, which (statistically)
allows a programmer to see where the CPU has spent most cycles. Not only is
this useful, but it’s also familiar: Systems have used intrusive interrupt-based PC
sampling for many years, so there are tools (GNU/Linux gprof, for example)
that can readily interpret this sort of data.

When PC sampling is configured into your CPU, it runs continuously. It
doesn’t even stop when the CPU is hanging on a wait instruction (time spent
waiting is still time you might want to measure). On a typical implementation,
you might choose to sample as often as once per 32 cycles or as rarely as once
per 4,096 cycles. Since it runs continuously, it’s a good thing that from reset the
sampling period defaults to its maximum.

At every sampling point, the address of the instruction completing in that
cycle (or if none completes, the address of the next instruction to complete)
is deposited in a JTAG-accessible register. Sampling rate is controlled by a field
in DCR.

The hardware stores not only 32 bits of the instruction address, but also the
then-current ASID (so you can interpret the virtual PC) and an always written
1 “new” bit, which a probe can use to avoid double-counting the same sample.

12.1.13 Using EJTAG without a Probe

The EJTAG unit can be used by a conventional debugger, which runs entirely
on the target system, and, in particular, it can be used to build debug facilities
inside an OS kernel. But because it was invented primarily to be used via a probe,
there are a few issues to work around:
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Handling debug exceptions: Without a probe plugged in and enabled, the
debug exception entry point is in the ROM area of the uncached kseg1
region, at 0xBFC0.0480 (if you need to check for the presence of an
enabled probe you can read DCR(PE)). You’ll need to put code at that
entry point that will transfer control into your debug exception handler,
which may well be built into your OS kernel.

Calling into debug mode inside the kernel: You can’t just switch on debug
mode: It’s available only through a debug exception. But you need to
be in debug mode to see the dmseg memory region, and thus to access
things like breakpoint control registers. So for your software-only debug-
ger, you will need a way of invoking debugger support routines in debug
mode.

That requires a debug-exception version of a “system call” using a planted
sdbbp instruction. The debug exception handler will need to distinguish
those debugger system calls from other debug exceptions—most likely by
looking at the return address in DEPC. Debugger system call arguments
can be in general-purpose registers.

Similarly, you can’t just switch off debug mode—to get out of debug
mode you need to excecute a deret.

In some cases you’ll probably want to execute most of the debugger in
ordinary kernel mode: So after a brief excursion into debug mode follow-
ing a breakpoint match or debug instruction, the debug-mode software
can patch up the normal CP0 registers to simulate a more conventional
exception.

Virtual-address-only breakpoints: Note that (unlike the non-EJTAG
CP0 “watchpoints”) all EJTAG breakpoints operate on virtual addresses,
optionally qualified by the address space ID (ASID).

Handling debug breaks from exception mode or other “illegal” places:
This looks like quite a problem when you first meet it. Debug break-
points are exceptions, but because they’re “super-exceptions” they don’t
play by the rules of the rest of the kernel. But it’s really the same prob-
lem as that discussed previously. It’s likely that a local debugger program
using EJTAG will mostly not run in debug-exception mode. So the debug
exception handler will run in exception mode while it saves state, then
store the return address somewhere safe and use a faked-up deret to
drop into normal high-privilege (kernel) mode.

Sometimes, though, a debug exception entry point can be from some-
where dangerous—most obviously, from code already running in nor-
mal exception mode. The debugger receiving such an exception has to
tread carefully, and probably can’t just invoke ordinary kernel-mode
routines. Debugger authors need to figure out how far they want to go
in allowing debug through exception.
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12.2 Pre-EJTAG Debug Support—Break Instruction and
CPO Watchpoints

The MIPS architecture existed without the EJTAG debug unit for quite a while,
so it has more conventional debug facilities. Those include the break instruc-
tion, which simply causes an exception while having lots of uninterpreted bits
that can be given significance to debug software.

But many CPUs also implement up to four hardware watchpoints, controlled
by a handful of CP0 registers. Each watchpoint specifies a virtual address that
may be checked against each instruction-fetch, load, or store operation, and can
cause an exception if the load/store address matches.

Not all debuggers make use of the hardware watchpoints; some may ignore
them altogether, and other debuggers use EJTAG facilities.

As compared with EJTAG breakpoints, the watchpoints don’t have fuzzy
address matching; they aren’t ever data-sensitive; and CP0 watchpoints may
work on both I- and D-side (there are flags to control which any particular
watchpoint is sensitive to). And of course they cause just a normal exception
when tripped, so may not be used to debug through exception handlers.

A watchpoint condition can match when the CPU is already in exception
state (when SR(EXL)—or an equivalent bit for error or debug exceptions—
is already set). It would cause unhelpful chaos to take the exception at this
point, so it’s deferred until later. The fact that the exception wanted to hap-
pen is recorded in the Cause(WP) bit, and a watchpoint exception will happen
after the CPU returns to normal operation.

The watchpoint registers are shown in Figure 12.7.
Watchpoint addresses are maintained only to the nearest doubleword (eight

bytes), so only address bits 31–3 need be matched. On 64-bit CPUs, WatchLo
grows to 64 bits to be able to define a complete virtual address.

The other register fields are as follows:

WatchLo(I,R,W): Enables the watchpoint check—on instruction fetches if
WatchLo(I) = 1, on loads if WatchLo(R) = 1, or on stores if
WatchLo(W) = 1. Any combination of those bits is legal.

63 32 31 30 29 24 23 16 15 12 11 3 2 1  0

WatchLo (64-bit CPUs only) VAddr I R W

WatchHi M G  0 ASID 0 Mask I R W

FIGURE 12.7 Layout of the WatchLo and WatchHi registers.
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WatchHi(M): Read-only continuation bit—if this reads 1, then there is at
least one more pair of watch registers available.

WatchHi(G): Global—set this bit 1 to match addresses regardless of the cur-
rent ASID setting, see below.

WatchHi(ASID): Set this field (with WatchHi(G) zero) to match only
accesses made in this particular address space. Operating systems
using the MIPS TLB maintain their address space in EntryHi
(ASID), as described in Chapter 6.

WatchHi(Mask): Any “1” bit set in this field makes the corresponding bit
of WatchLo(VAddr) a don’t-care, allowing you to trap accesses to
an aligned power of 2 region of memory of any size from 8 to 2,048
bytes.

WatchHi(I,R,W): You read these fields after a watch exception to find out
whether the exception was triggered by an I-fetch, read, or write,
respectively. Software must clear these fields to make them useful
again, and these bits are implemented as “write-one-to-clear”—that
is, you clear WatchHi(R) by writing a value to WatchHi, which has
a 1 in bit position 1. That’s done so that you can conveniently clear
any of the bits you’ve seen by reading WatchHi and then writing the
same value back again.

12.3 PDtrace

PDtrace is an add-on to the EJTAG debug unit (described earlier in this chapter)
that can keep track of program execution for later reconstruction. The execu-
tion trace may be kept in an on-chip memory or played out in real time to a
probe, using slightly exotic high-speed signaling techniques.

The earliest trace facilities record only the execution address (the PC), but
PDtrace systems may also allow you to keep track of load/store addresses and
even data values.

You don’t need very much data to trace execution. The analysis program is
assumed to have a copy of the system’s complete binary, so when execution is
sequential you only need know how far the CPU got through a sequence; when
a conditional branch is met, you only need to know whether the condition was
met or not. The trace needs to record a full address, though, on an instruction
like jump-register.

Tracing to an on-chip memory is simple and fast; but practical on-chip trace
buffers are very small, so you can only record a short period of program run
time.

When you trace to a probe, there is likely to be a lot of trace memory (tens
or hundreds of MBytes). But it requires a few pins on the package to connect
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the trace data lines. When trace data is generated too fast for the link (which is
likely to happen), you either have to slow the CPU until the link catches up or
discard some of the trace.

EJTAG breakpoints are reused to provide fine-grain control for trace,
switching the flow on and off dynamically when you hit particular breakpoint
conditions.

PDtrace is almost exclusively of interest to probe suppliers and as such isn’t
documented further here. Manuals are available from MIPS Technologies Inc.
(www.mips.com.).

12.4 Performance Counters

Performance counters are there to let software and hardware engineers find out
more about what the system is doing for tuning (and occasionally for debug).
Each counter increments on a selected one of a number of events that your
particular CPU chooses to instrument.

Modern CPUs typically have a couple of performance counters. Most
can count some common useful things: elapsed cycles, instructions completed,
cache misses, and so on. Bear in mind that CPU designs are difficult to build
and validate, and that with “peripheral” functions like performance counting
the events offered are likely to be those that are easy to count. What’s easy to
count is not always exactly what seems natural to a software engineer, so always
treat the event description with care and skepticism. Before you really believe
what something is counting, it’s sensible to experiment with how the counter
behaves in controlled conditions.

Each 32-bit counter is accompanied by a control register, which will be as
shown in Figure 12.8, where:

M: A continuation bit; if it reads 1, then there’s another performance
counter control/count pair after this one.

W: Reads 1 if your counter register is 64 bits. It probably won’t be!

Event: Determines which event to count—the list will depend entirely on
your CPU, and you’ll need to read that manual.

31 30 29 11 10 5

M W  0 Event IE U S  K EXL

4 3 2 1 0

FIGURE 12.8 Layout of the PerfCtl register.
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IE: Set to cause an interrupt when the counter “overflows” into its bit 31.
This can be used to implement an extended count but is more often
used (by presetting the counter appropriately) to notify software after
a certain number of events have happened.

U, S, K, EXL: Count events in User mode, Supervisor mode, Kernel mode,
and Exception mode (i.e., when SR(EXL) is set), respectively. You
can set any combination of these bits.
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Chapter

13 GNU/Linux from Eight
Miles High

Why should a book about computer architecture devote several chapters to
a particular operating system?

Well, this is what a CPU is for. A CPU “architecture” is the description of
what a useful CPU does, and a useful CPU runs programs under the control of
an operating system. Although many operating systems run on MIPS, the great
thing about Linux is that it’s public. Anyone can download the source code, so
anyone can see how it works.

Any operating system is just a bunch of programs. Ingenious programs,
and—perhaps more than most software—built on a set of ideas that have been
refined and figured out over the years. An operating system is supposed to be
particularly reliable (doesn’t crash) and secure (doesn’t let some program do
things the OS hasn’t been told to let it do).

Correct usage sees “Linux” as the name of the operating system kernel
originally written by Linus Torvalds, a kernel whose subsequent history is, well,
history. Most of the (much larger) rest of the system came from projects organ-
ized under the “GNU” banner of the Free Software Foundation. Everybody
sometimes forgets and calls the whole thing “Linux.”

Both sides of this process emerged as a reaction to the seminal work on the
UNIX operating system developed by Bell Laboratories in the 1970s. Probably
because Bell saw it as of no commercial value, it distributed the software widely
to academic institutions under terms that were then unprecedently “open.” But
it wasn’t “open source”—many programmers worked on UNIX at university,
only to find that their contributions were either lost or were now owned by Bell
Labs (and their many successors). Frustration with this process eventually drove
people to write “really free” replacements.

The last key part was the kernel. Kernels are quite difficult programs, but
the delay was cultural: OS kernels were seen as something for academic groups,
and those groups wanted to go beyond UNIX, not to recreate it. The post-UNIX
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fashion was for a small, modular operating system built of clearly separated
components, but no OS built on that basis ever found a significant user base.1

Linux won out because it was a much more pragmatic project. Linus and
his fellow developers wanted something that worked (on x86 desktops, in the
first instance). When the Linux kernel was in competition with offshoots of
the finally free BSD4.4 system, BSD protagonists insisted with some justifica-
tion on their superior engineering. But the Linux community had arrived at an
understanding of a far more “open” development style. Linux evolved quickly.
Sometimes, it evolved quickly because Linux people were perfectly happy to
adapt BSD code. It wasn’t long before Linux triumphed, and the engineering
got better, too.

13.1 Components

To get to grips with any artifact you need to attach some good working meaning
to the terms used by its experts, and you are particularly likely to be confused by
terms you already know, but with not quite the same meaning. The UNIX/Linux
heritage is long enough that there are lots of magic words:

Thread: The best general definition of “thread” I know is “a set of com-
puter instructions being run in the order specified by the programmer.”

The Linux kernel has an explicit notion of a thread (for each thread
there’s a struct thread struct). It’s almost the same thing, but by
the terms of my definition a low-level interrupt handler (for example) is
a distinct thread that happens to have borrowed the environment of the
interrupted thread to run with. Both definitions are valuable, and we’ll
say “Linux thread” when necessary.

Linux loves threads (there are currently 134 on the desktop machine I’m
typing this on). Most of those threads correspond to an active applica-
tion program—but there are quite a few special-purpose threads that run
only in the kernel, and some applications have multiple threads.

One of the kernel’s basic jobs is scheduling—picking which Linux thread
to run next. See the bullet on the scheduler, below.

File: A named chunk of data. In GNU/Linux, most of the interactions a
program makes with the world beyond its process are done by reading
and writing files. Files can just be things you write data to and get it back
later. But there are also special files that lead to device drivers: Read one

1. Some claim that Windows/NT—and therefore most modern versions of Microsoft Windows—
has a microkernel. That may be true, but it certainly lost any claims to be small or modular on
its way to world domination.
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of those and the data comes from a keyboard, write another and your
data is interpreted as digital audio and sent out to a loudspeaker. The
Linux kernel likes to avoid too many new system calls, so special /proc
files are also used to allow applications to get information about the
kernel.

User mode and system calls: Linux applications run in user mode, the
lower-privilege state of MIPS CPUs. In user mode, the software can’t
directly access the parts of the address space where the kernel lives, and all
the locations it can address are mapped to pages the kernel has agreed to
let the application play with. In user mode, you can’t run the coprocessor-
zero CPU control instructions.

GNU/Linux application code that runs in user mode is frequently
referred to as userland.

To obtain any service from the kernel (most often, to read or write a file)
the application makes a system call. A system call is a deliberately planted
exception, interpreted by the kernel’s exception handler. The exception
switches to high-privilege mode.

Through the system call, Linux application threads run quite happily in
the kernel in high-privilege mode (but of course they’re running trusted
code there). When it’s done, the return from exception code involves
an eret, which makes sure that the change back to user mode and the
return to user mode code are done simultaneously.

Interrupt context: Linux tries not to disable interrupts too much. When
Linux is running, at any moment there’s an active thread on a CPU:2 So
an interrupt borrows what appears to be the context of that thread until
it finishes its business and returns. Code called from an interrupt han-
dler is in interrupt context, and there are many things such code should
not do. It can’t do anything that might have to wait for some other soft-
ware activity, for example. If your keyboard input routine is going to log
all keystrokes to a file,3 then you can’t do that by calling the file output
routine from the interrupt handler.

There are decent ways to do that: You can get the keyboard interrupt to
arrange to wake some Linux thread that obtains and logs the input, for
example.

Interrupt service routine (ISR): The lowest-level interrupt code in the
device driver is generally called an ISR. In Linux you’re encouraged to
keep this code short: If there’s lots of work to do, you can consider using
some kind of “bottom half,” as described in the next chapter.

2. Even if the kernel is waiting in a power-down mode, there’s a thread that is executing the wait
instruction.

3. Perhaps not a good idea from a security point of view, but still . . .
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The scheduler: A kernel subroutine. The OS maintains a list of threads
that are ready to run (they’re not blocked on an incomplete I/O transfer,
for example), and that list is in priority order. The priority is dynamic,
and is recalculated periodically—mostly to ensure that long-running
computations don’t hog the CPU and prevent it from responding to
events. Applications can lower their own priority to volunteer for a life
in the background but can’t usually raise it.

After any interrupt is handled, the scheduler will be called. If the sched-
uler finds another thread is more worthy of running, it parks the current
thread and runs the winner.

Older Linux kernels were not preemptive: once a thread was running in
the kernel it was allowed to run until it either volunteered for rescheduling
(by waiting on something) or until control was just about to pass back
into userland—only then would the kernel contemplate a thread switch.

A nonpreemtive kernel is easier to program. Your kernel code sequence
might have to worry about interrupt handlers running unexpectedly
while it was in flight, but you knew it could never be unexpectedly caught
halfway through something by some other mainstream kernel code. But
it led to excessive delays and inadequate responsiveness.

The luxurious freedom from interference from parallel threads is lost
when you have an SMP kernel (where two CPUs are simultaneously
threading the same kernel). To make the SMP kernel work properly, hun-
dreds of possible interactions need to be tracked down and protected
with appropriate locks. The SMP locks are (in almost all cases) exactly
where you need them to be to permit the scheduler to stop a running
kernel thread and run another: That’s called kernel preemption.

It’s now an important kernel programming discipline to recognize code
sequences where preemption must be temporarily inhibited. The macros
used to mark the start and end of that code have definitions that change
according to kernel configuration to work correctly on uniprocessor or
SMP systems.

Memory map/address space: The map of memory locations available to a
particular Linux thread. The address space of a thread is defined through
a mm struct, pointed to by the thread.

For Linux OS ported to the MIPS architecture (hereinafter, “Linux/
MIPS”) on a 32-bit processor, the high half of the address space
(addresses with bit 31 set) can be read and written only in kernel-privilege
mode. The kernel code/data is normally in the corner of this, known
as kseg0, which means the kernel itself does not depend on addresses
translated through the TLB.

The user part of the address space is mapped differently for each
application—only threads that collaborate in an explicitly multithreaded
application share the user address space (i.e., they point to the same
mm struct). But all Linux threads share the same kernel map.
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A thread running a conventional single-threaded application runs in an
address space that is distinct from all other threads and is exactly what
older UNIX-like systems called a “process.”

At any given time, much of an application’s address space may not in
fact be mapped, or even not represented by any data present in physi-
cal memory at all. An attempt to access that will cause a TLB exception,
which will be handled by the OS, which will load any missing data and
set up an appropriate mapping before it returns to the application. That
is, of course, virtual memory.

Thread group: The collection of threads within the same memory map is
called a thread group. Where a group has two or more members, those
threads are cooperating to run the same program. The thread group is
another good approximation in Linux to what is called a “process” in old
UNIX systems.

High memory: Physical memory above 512 MB (whether real read/write
memory or memory-mapped I/O locations) is not directly accessible
through the kseg0 (cached) or kseg1 (uncached) windows. On a 32-bit
CPU physical addresses above the low 512 MB are “high memory” in
the Linux sense and can only be accessed through TLB mappings. With
a MIPS CPU, you can create a few permanent mappings by defining
“wired” TLB entries, protected from replacement. But Linux tries to
avoid using resources that will quickly run out, so mainstream kernel
code avoids wired entries completely. For Linux/MIPS, high-memory
mappings are maintained dynamically by TLB entries created on
demand.

Libraries and applications: Long ago, applications running on UNIX-like
systems were monolithic pieces of code, which were loaded as required.
You built them by compiling some source code and gluing in some
library functions—prebuilt binaries provided with your toolchain.

But there are two things wrong with that. One is that the library code
is often bigger than the application that attaches to it, bloating all the
programs. The other is that if a supplier fixes a bug in a library function,
you don’t get full benefit from the fix until every software maintainer
rebuilds his or her application.

Instead, the application is built without the library functions. The names
of the missing libraries are built into the application, so the loader can
find the required libraries and stitch them in when the application is
loaded. So long as the library continues to provide identical functions,
everything should be fine (there’s a library version–tracking system to
allow libraries to evolve functionally, too, but that’s beyond our scope).

That carries a penalty. When you link a program at load time out of
pieces (each of which may get separately updated), the exact address
of the components is unpredictable at build time. You can’t predict in
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advance which locations will be available for loading a particular library.
The runtime loader can do no better than to load each library in the next
space available, so even the starting address for a library is unpredictable.
A library binary has to be position-independent code or PIC—it must run
correctly wherever its code and data are positioned in virtual address
space.

We’ll discuss PIC code and the construction of application memory
spaces in Chapter 16.

13.2 Layering in the Kernel

From one point of view, the kernel is a set of subroutines called from excep-
tion handlers. The raw post-exception “exception mode” environment on a
MIPS CPU is all-powerful and very low-overhead but tricky to program. So
with each entry to the kernel you get something like a foreshortened bootstrap
process, as each “layer” constructs the environment necessary for the next one.
Moreover, as you exit from the kernel you pass through the same layers again,
in reverse order, passing briefly through exception mode again before the final
eret which returns you to userland.

Different environments in the kernel are built by more or less elaborate soft-
ware which makes up for the limitations of the exception handler environment.
Let’s list a few starting at the bottom, as the kernel is entered:

13.2.1 MIPS CPU in Exception Mode

Immediately after taking an exception, the CPU has SR(EXL) set—it’s in excep-
tion mode. Exception mode forces the CPU into kernel-privilege mode and dis-
ables interrupts, regardless of the setting of other SR bits. Moreover, the CPU
cannot take a nested exception in exception mode except in a very peculiar way.4

The first few instructions of an exception handler usually save the values of
the CPU’s general-purpose registers, whose values are likely to be important to
the software that was running before the exception. They’re saved on the kernel
stack of the process that was running when the interrupt hit. It’s in the nature
of MIPS that the store operations that save the register require you to use at least
one general-purpose register first, which is why the registers called k0 and k1
are reserved for the use of exception handlers.

The handler also saves the values of some key CP0 registers: SR will be
changed in the next section of the exception handler, but the whole at-exception
value should be kept intact for when we return. Once that’s done, we’re ready to
leave exception mode by changing SR, though we are going to leave interrupts
disabled.

4. There are some cunning tricks in MIPS history that exploit the peculiar behavior of an exception
from exception mode—but Linux doesn’t use any of them.
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A CISC CPU like an x86 has no equivalent of exception mode; the
work done in MIPS exception mode is done by hardware (really by invisible
microcode). An x86 arrives at an interrupt or trap handler with registers
already saved.

The software run in MIPS exception mode can be seen as producing a
virtual machine that looks after saving the interrupted user program’s state
immediately after an exception and then restores it while preparing for the
eret, which will take us back again. Programmers need to be very careful what
they do in exception mode. Exceptions are largely beyond the control of the
software locks that make the kernel thread-safe, so exception code may only
interact very carefully with the rest of the kernel.

In the particular case of the exception used to implement a system call,
it’s not really necessary to save GP registers at all (so long as the exception
handler doesn’t overwrite the s0–s8 “saved” registers, that is). In a system
call or any noninterrupt exception, you can call straight out to code running
in thread context.

Some particularly simple exception handlers never leave exception mode.
Such code doesn’t even have to save the registers (it just avoids using most
of them). An example is the “TLB refill” exception handler described in
section 14.4.8.

It’s also possible—though currently unusual—to have an interrupt handler
that runs briefly at exception level, does its minimal business, and returns. But
such an interrupt handler has no real visibility at the OS level, and at some point
will have to cause a Linux-recognized interrupt to get higher-level software
working on its data.

13.2.2 MIPS CPU with Some or All Interrupts Off

As we’ll see in the next chapter, an interrupt routine exits exception mode but
continues to run with at least some interrupts disabled.

Running with all interrupts disabled is a costly but effective way of getting a
single CPU to be nonpreemptive (the longest time software spends with inter-
rupts disabled determines your worst-case interrupt latency, and every device
driver with a real-time constraint must budget for it). And of course it doesn’t
prevent re-entrance where there’s a second CPU at work.

The simplest, shortest kind of ISR may opt to run to completion without
ever re-enabling interrupts—Linux can support this and calls it a fast inter-
rupt handler. You get that behavior by setting the flag SA INTERRUPT when
registering the ISR. But most run for a while with higher-priority interrupts
enabled.

Potentially, you can get a stack of interrupts interrupting interrupts. Infinite
recursion (and stack overflow and an inevitable crash) can’t happen because
Linux makes sure you can stack up at most one entry at each distinct interrupt
level. The amount of data saved at each level must be small enough that the
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maximum stack of interrupt save information will not overfill a thread’s kernel
stack.

13.2.3 Interrupt Context

After an interrupt, even after the interrupt handler has re-enabled most inter-
rupts and built a full C environment, interrupt code is still limited because
it’s borrowing the state (and kernel stack) of whichever thread happened to
be interrupted.

Servicing an interrupt is someone’s business, certainly, but it has no system-
atic relationship with the thread that is executing when the interrupt happens.
An interrupt borrows the kernel stack of its victim thread and runs parasiti-
cally on that thread’s environment. The software is in interrupt context, and to
prevent unreasonable disruption, interrupt-context code is restricted in what it
can do.

One vital job done by the kernel is the scheduler, which determines which
thread the OS should run next. The scheduler is a subroutine, called by a thread;
in some cases it’s called by a thread in interrupt context. Once the interrupt-
context part of an interrupt handler can get to the point where the hardware’s
immediate needs are met, it can (and often does) schedule a thread that will
complete the interrupt-handling job, this time in thread context.

13.2.4 Executing the Kernel in Thread Context

You can arrive in the kernel in thread context either when an application has
made a voluntary system call or a forced call for resources on a virtual memory
exception (and the system call or VM exception has emerged from its lower
layers), or as a result of a reschedule—which is, in turn, always either caused
by an interrupt or by another thread voluntarily rescheduling itself because it’s
waiting for some event.

System calls are a sort of “subroutine call with security checks.” But a range
of other exceptions—notably virtual memory maintenance exceptions—are
very much the same, even though the application didn’t know this particular
system call was necessary until it got the exception.

Not every thread is an application thread. Special threads with no attached
application can be used to schedule work in the kernel in process context for
device management and other kernel functions.

Thread context is the “normal” state of the kernel, and much effort is spent
making sure that most kernel execution time is spent in this mode. An inter-
rupt handler’s “bottom half ” code, which is scheduled into a work queue (see
section 14.1), is in thread context, for example.
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14 How Hardware and
Software Work Together

Let me tell you a story . . .
Well, in fact let me tell you several stories illustrating how the MIPS hard-

ware provides the low-level features that prop up the Linux kernel.

The life and times of an interrupt: What happens when some piece of
hardware signals the CPU that it needs attention? Interrupts can cause
chaos when an interrupt-scheduled piece of code interrupts another code
halfway through some larger operation, so that leads on to a section on
threads, critical regions, and atomicity.

What happens on a system call: After a userland application program calls
a kernel subroutine, what happens and how is that kept secure?

How addresses get translated in Linux/MIPS: A fairly long story of virtual
memory and how the MIPS hardware serves the Linux memory map.

14.1 The Life and Times of an Interrupt

It all starts when something happens in the real world: Maybe you tapped a key
on the keyboard.

The device controller hardware picks up the data and activates an interrupt
signal. That wends its way—probably via various pieces of hardware outside
the CPU, which are all different and not interesting right now—until it shows
up as the activation of one of the CPU’s interrupt signals, most often one of
Int0-5*.

The CPU hardware polls those inputs on every clock cycle. The Linux kernel
sometimes disables interrupts, but not often; most often, the CPU is receptive.
The CPU responds by taking an interrupt exception the next time it’s ready to
fetch an instruction.

371
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It’s sometimes difficult to get across just how fast this happens. A 500-MHz
MIPS CPU presented with an interrupt will fetch the first instruction of the
exception handler (if in cache) within 3 to 4 clocks: That’s 8 nanoseconds. Sea-
soned low-level programmers know that you can’t depend on an 8-ns interrupt
latency in any system, so we’ll discuss below what gets in the way.

As the CPU fetches instructions from the exception entry point, it also flips
on the exception state bit SR(EXL), which will make it insensitive to further
interrupts and puts it in kernel-privilege mode. It will go to the general excep-
tion entry point, at 0x8000.0180.1

The general exception handler inspects the Cause register and in particu-
lar the Cause(ExcCode) field: That has a zero value, showing that this was
an interrupt exception. The Cause(IP7-2) field shows which interrupt input
lines are active, and SR(IM7-2) shows which of these are currently sensitized.
There ought to be at least one active, enabled interrupt; the software calculates
a number corresponding to the number of the active interrupt input that will
become Linux’s irq number.2

Before calling out into something more like generic code, the main excep-
tion handler saves all the integer register values3—they belong to the thread
that was just interrupted and they will need to be restored before that thread is
allowed to continue, somewhere in the system’s future. The values are saved on
the kernel stack of the thread that was running when the interrupt happened,
and the stack pointer is set accordingly. Some key CP0 register values are saved
too; those include SR, EPC, and Cause.

With the SR(EXL) bit set, we’re not really ready to call routines in the main
kernel. In this state we can’t take another exception,4 so we have to be careful
to steer clear of any mapped addresses, for example.

Now that we have saved registers and established a stack we can change
SR, clearing SR(EXL) but also clearing SR(IE) to avoid taking a second
interrupt—after all, the interrupt signal we responded to is still active.

Now we’re ready to call out to do IRQ(). It’s a machine-dependent rou-
tine but written in C, with a fairly well standardized flow. do IRQ() is passed a
structure full of register values as a parameter. Its job is to selectively disable this
interrupt in particular and acknowledge any interrupt management hardware
that needs a confirmation that the interrupt has been serviced.

1. Of course, it can’t be that simple; some MIPS CPUs now provide a dedicated interrupt-exception
entry point, and some will even go to a different entry point according to which interrupt signal
was asserted. But we’ll keep it simple—many OSs still do.

2. In many cases, the exception handler may consult system-dependent external registers to refine
the information about the interrupt number.

3. Some MIPS CPUs can avoid this overhead for very low level interrupt handlers using shadow
registers, as described in section 5.8.6.

4. This is not quite inevitable. The MIPS architecture has some carefully designed corners that
make it possible to nest exceptions in carefully controlled conditions. But Linux doesn’t use
them.
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Assuming there is a device ISR (interrupt service routine) registered on this
irq number, do IRQ() calls on to handle IRQ event(). It’s undesirable to
run for long with all interrupts disabled; some other device out there may need
fast response to its interrupt. But we’re now into an area where it all depends
on the nature of the device whose interrupt we’re handling. If this handler is
known to be very short and efficient (SA INTERRUPT set), we can just go ahead
and run it with all interrupts disabled; if it’s going to take longer, then we’ll
re-enable interrupts in general—do IRQ() has disabled the particular inter-
rupt we’re handling.

Multiple interrupt handlers can be registered for this one irq number; if so,
they’re called in turn.

Once the interrupt handlers are finished, handle IRQ event() disables
interrupts again and returns (that’s what do IRQ() expects). After some more
opportunity for machine-dependent tidying up, that calls ret from intr()

to unwind the interrupt exception.
Before finally returning from the interrupt, we check whether something

that happened in an ISR means that we should call the scheduler. Linux has a
global flag, needs resched, for this purpose; the code is not quite so simple
as that because rescheduling from a thread interrupted in kernel mode (kernel
preemption) may cause trouble. In fact, if the interrupted thread was execut-
ing with kernel privilege—as shown by the saved value of SR(KSU)—we won’t
reschedule if the global preemt count is nonzero.

If the system doesn’t schedule another thread, we just carry on and return
from the interrupt. We restore all the saved register values. In particular, we
restore the postexception value of SR to take us back into exception mode, and
we restore EPC, which holds the restart location. Then we just run a MIPS eret.

If the system does schedule another thread, then our interrupted thread is
parked exactly as it is, teetering on the edge of returning from the interrupt.
When our interrupt-victim thread is selected to run again, it will burst out,
back to whatever it was doing when interrupted.

Some device drivers just grab a little data from the device and send it up to
the next level; others may do quite a lot of processing at interrupt time. But ISRs
should not run for too long in interrupt context. Even after we’ve re-enabled
other interrupts, the driver has unconditionally seized the attention of the CPU
without the OS scheduler getting to apply its policies. Where there’s more than
a few tens of instructions’ worth of work to do in the ISR, it would be better
to defer that interrupt processing until the scheduler can decide whether there
may be something more vital to do.

Linux traditionally splits the ISR into a “top half,” run at interrupt time,
and a “bottom half,” deferred until after a rescheduling opportunity.5 Modern

5. The name could be confusing. Linux used to have a subsystem called “bottom half ” and with
functions whose names started “bh,” but that’s obsolete and was finally omitted from the 2.6
kernel. But we still use “bottom half ” as a generic term for work moved out of the interrupt
handler.
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Linux kernels have a system called softirq, which can arrange to run one of 32
functions; a couple of very demanding devices have their own softirq bottom
halves, but most share a more flexible system called tasklets, built on top of
softirqs.

Both of these are implemented in machine-independent code and are ways
to arrange that a secondary interrupt handler will run soon after the real ISR
returns.

A tasklet is ultimately called from the interrupt handler and can’t do any-
thing that might cause the unrelated interrupt-victim thread to sleep. Tasklet
code must not do anything that might need waiting for. But there’s always more
than one way to do it. An ISR can also put extra driver tasks on a work queue.
The work queue is serviced by a regular kernel thread, and work queue functions
can do anything, even operations that might make the thread sleep.

Since this is all machine-independent, we won’t dwell on the details here;
it’s described well in Love, 2004.

14.1.1 High-Performance Interrupt Handling and Linux

Compared with a lightweight OS, there’s a fair amount of extra overhead in
a Linux ISR. Linux unconditionally saves all registers and makes several lev-
els of function calls (for example, isolating interrupt controller handling in
do IRQ()). It’s possible to do useful work in a MIPS interrupt handler that
never leaves exception mode (that is, it keeps SR(EXL) set)—but that’s not
directly supported by conventional Linux. It’s possible to build a MIPS OS that
is careful never to disable all interrupts for more than a handful of instructions,
but Linux relies on disabling all interrupts at the CPU to avoid interrupts at
uncomfortable places.

There are several efforts out there to make Linux more responsive to inter-
rupts. While reducing the worst-case interrupt latency—the time it takes from
the hardware interrupt being asserted to the ISR being entered—is important,
it’s not the whole job. To be responsive, the system also has to be prompt about
scheduling the thread that is concerned with the input or output.

One project (the “low-latency patches” project) is evolutionary, aiming to
improve average performance by a patient and diligent process of refining
kernel locking/preemption control. Some of the low-latency work is in the
mainstream 2.6+ Linux kernel.

Other projects (various kinds of “real-time” Linux) are revolutionary,
commonly jacking up the Linux OS so that it doesn’t see real interrupts at all.
Interrupts are handled underneath by a sort of RTOS, of which the whole Linux
kernel is but one thread. When Linux disables interrupts, it doesn’t really dis-
able hardware interrupts; it just prevents Linux ISRs from being scheduled by
the RTOS layer.

It’s worth noting that these two approaches are complementary—there’s no
reason not to pursue both.
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14.2 Threads, Critical Regions, and Atomicity

A thread in Linux has to be aware that the data it’s manipulating may also be
getting attention from other, concurrent, activity. One of the main difficulties
encountered in implementing a multitasking OS is finding and protecting all
such sequences. The concurrent activity can come from:

Code run by another CPU: In a real multiprocessor system

Code run in interrupt context: That is, code run on this same CPU as a
result of an interrupt

Code run by another thread that preempts this one: More subtle, this is
code run by some other kernel thread which (no doubt as a result of
some interrupt) got scheduled over ours

The problem arises when a sequence of operations on data will be self-
consistent when completed, but transiently creates some inconsistent state
that other software cannot safely interpret or operate on. What software wants
is the ability to mark a data transformation as atomic: Any outside view should
either see the whole change made, or none of it. Linux provides a small range
of simple atomic operations: Those operations can be specially implemented
for a particular architecture, if the architecture offers some particularly neat
way of doing them. But to make complex operations atomic, Linux uses locks.6

A lock is a ticket to operate on a particular chunk of data, and so long as all
software accessing the data cooperates, only one thread will get to work on it at
once. Any contending accessor will be held when they try to acquire the lock for
the data.

The piece of code that does the want-to-be atomic sequence of operations
on the data is called a critical region. So what we’ll do is to get anyone wanting
to access contended data to do something like this:

acquire_lock(contended_data_marker)

/* do your stuff in the critical region */

release_lock(contended_data_marker)

Every time this code is called, there’s some time spent in those acquire and
release operations, however they are implemented. When contention actually
happens, the thread arriving at the acquire point and finding the lock currently
unavailable must be held up, and the other thread arriving at the release must
somehow pass the message on that it’s now OK to continue.

6. A lock is a particularly simple form of what is called a semaphore in the more general case—but
it probably helps to start with Linux’s simpler and more minimal definition.
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When the contender is known to be running on a separate CPU and the
critical region consists of a handful of instructions, it may make most sense
to get the temporarily frustrated acquirer to spin in a loop watching for the
condition to clear. That’s a spinlock, and Linux provides them for SMP.

When the contender could be a separate thread on the same CPU, you can’t
spin (while the waiting thread spins, the thread holding the lock could not be
rescheduled, never gets to finish and release the lock, so we’re all deadlocked for-
ever). So you need a more heavyweight lock, where a thread that fails to acquire
the lock marks itself as not currently runnable and calls the OS scheduler. More-
over, the release lock() routine must arrange that any other thread wait-
ing for the lock is told it can have another go. The code that suspends and
wakes Linux threads is not CPU dependent. But the code that tests the lock
state and sets the lock in the common uncontended case depends on an atomic
test-and-set operation, whose implementation is done with special MIPS tricks,
described below.

Where the contender might be in interrupt context (called, ultimately, from
the interrupt entry point and borrowing the context of some randomly chosen
interrupted thread to do so), Linux depends on disabling the relevant interrupt
during the critical region. And since it’s difficult to mask just one interrupt,
that often means disabling all interrupts around the critical region. As men-
tioned previously, code called in interrupt context is expected to be disciplined
and avoid doing things that will cause trouble. In fact, interrupt handlers are
expected to have only simple, stylized interactions with the rest of the kernel.

What does the MIPS architecture bring to help implement simple atomic
operations and locks?

14.2.1 MIPS architecture and atomic operations

MIPS has the load-linked/store-conditional pair. You use them to implement
an arbitrary read-modify-write sequence on a variable (just read using ll and
write using sc). The sequence is not atomic, in itself. But the store will do noth-
ing unless it is certain that the sequence did run atomically, and sc returns a
value the software can test. If the test shows the sc failed, the software can retry
the RMW sequence until it finally does succeed.

These instructions were invented primarily for multiprocessor systems, as
an alternative to a guaranteed-atomic RMW operation. They’re a good choice
there, because they avoid the overhead of a system-wide atomic transaction,
which can stop every memory access in a large multiprocessor to make sure
none of those accesses touch the data of interest.

The implementation is fairly simple. ll sets a per-CPU link bit and (for
multiprocessor or hardware multithreading) records the load address so the
CPU can monitor accesses to it. scwill succeed—doing the store and returning
a “1” value—only if the link bit is still set. The CPU must clear the link bit if
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it detects that the variable is (or may have been) updated by some unrelated
software. In a multiprocessor system, the external-access detection is imple-
mented by the snooping logic that keeps the caches coherent. But within a single
CPU, the link is broken by any exception.7

Linux’s atomic inc(&mycount) uses the instructions to do an atomic
increment of any integer variable:

atomic_inc:
ll v0, 0(a0) # a0 has pointer to ’mycount’
addu v0, 1
sc v0, 0(a0)
beq v0, zero, atomic_inc
nop
jr ra
nop

If you emerge from this routine, you emerge having added 1 to mycount in
a sequence that—it is guaranteed—was not interfered with by any SMP part-
ner CPU, a local interrupt allowing other software to run, or another thread
running on a hardware-multithreaded machine. It is possible for the routine
to spin for a period of time if it is continually frustrated by external writes or
interrupts, but—because the sequence between the ll andsc is very short—it’s
extraordinarily unlikely to have to try as many as three times.

You can probably see from the above that the ll/sc test is not suitable for
use on very complicated operations, where the load and store are far apart. If
you wait long enough, all links are broken.

14.2.2 Linux Spinlocks

Spinlocks use an atomic test-and-set operation to implement the simplest,
cheapest locking primitive that protects multiple CPUs from each other. It’s
an exercise for the reader to track down how ll/sc can be used to construct an
efficient spinlock.

Unlike the atomic operations themselves, spinlocks are quite useless on
uniprocessor (that is, single-threaded uniprocessor) systems.

Historically, Linux kernels were built to be SMP-safe before kernel preemp-
tion was permitted. “Kernel preemption” is when an interrupt causes a thread
running in the kernel to be descheduled and another one run. It’s quite possible
to build a Linux system in which a thread in the kernel runs either until its time-
slice expires, it sleeps voluntarily (waiting some event), or it attempts to return

7. In most implementations, the link bit is in fact cleared by the eret instruction, which is essential
to return from the exception.
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to user mode. In fact, standard Linux kernels before 2.6 did that and were still
more responsive than a contemporary Windows system with a background task
running. But kernel preemption is better still, if you can make it work
properly.

Along the road to the 2.6 release of the kernel, George Anzinger observed
that almost all the critical regions that need software protection from kernel
preemption also needed protection from SMP concurrency, so these regions
are already delimited by spinlock operations. Spinlocks are macros, so they
can be disabled (and will compile away to nothing) for a uniprocessor system.
When a 2.6+ kernel is built with the CONFIG PREEMPT configuration defined,
the spinlock operations gain the side effect of disabling preemption between
their acquire and release.

Well, that was nearly it. “Almost all” is a dangerous phrase. Just occasion-
ally, a piece of data manipulation is inherently SMP-safe (most obviously when
it addresses per-CPU data) so it doesn’t need spinlocks, but it does need defense
against preemption, since other kernel code on the same CPU is accessing
the same data. Making the 2.6 kernel reliable with kernel preemption still
required a fair amount of patient combing through code and even more patient
debugging.

14.3 What Happens on a System Call

A system call is “just” a subroutine implemented by the kernel for a user-space
program. Some system calls just return information known in the kernel but
not outside (the accurate time of day, for example).

But there are two reasons why it’s more difficult than that. The first has to
do with security—the kernel is supposed to be robust in the face of faulty or
malicious application code.

The second reason has to do with stability. The Linux kernel should be able
to run applications built for it, but should also be able to run any application
built for the same or a compatible architecture at any time in the past. A sys-
tem call, once defined, may only be removed after a lot of argument, work, and
waiting.

But back to security. Since the system call will run in kernel mode, the entry
to kernel mode must be controlled. For the MIPS architecture that’s done with
a software-triggered exception from the syscall instruction, which arrives in
the kernel exception handler with a distinctive code (8 or “Sys”) in the CPU’s
Cause(ExcCode) register field. The lowest-level exception handler will con-
sult that field to decide what to do next and will switch into the kernel’s system
call handler.

That’s just a single entry point: The application sets a numeric argument
to select which of several hundred different syscall functions should be called.
Syscall values are architecture-specific: The MIPS system call number for a func-
tion may not be the same as the x86 number for the same function.
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System call arguments are passed in registers, as far as possible. It’s good
to avoid unnecessary copies between user- and kernel-space. In the 32-bit
MIPS system:

The syscall number is put in v0.

Arguments are passed as required by the “o32” ABI. Most of the time,
that means that up to four arguments are passed in the registers a0–
a3; but there are corner cases where something else happens, and it’s all
explained in section 11.2.1.8

Although the kernel uses something like o32 to define how arguments are
passed into system calls, that does not mean that userland programs are
obliged to use o32. Good programming practice requires that userland
calls to the OS should always pass through the C runtime library or its
equivalent, so that the system call interface need only be maintained in
one place. The library can translate from any ABI to the o32-like syscall
standard, and that’s done when running 32-bit software on 64-bit MIPS
Linux.

The return value of the syscall is usually in v0. But the pipe(2) system
call returns an array of two 32-bit file descriptors, and it uses v0 and
v1—perhaps one day another system call will do the same.9

All system calls that can ever fail return a summary status (0 for good,
nonzero for bad) in a3.

In keeping with the calling conventions, the syscall preserves the values
of those registers that o32 defines as surviving function calls.

Making sure the kernel implementation of a system call is safe involves a
healthy dose of paranoia. Array indexes, pointers, and buffer lengths must be
checked. Not all application programs are permitted to do everything, and the
code for a system call must check the caller’s “capabilities” when required (most
of the time, a process running for the root super-user can do anything).

The kernel code running a system call is in process context—the least restric-
tive context for kernel code. System call code can do things that may require the
thread to sleep while some I/O event happens, or can access virtual memory
that may need to be paged in.

When copying data in and out, you’re dependent on pointers provided by
the application, and they may be garbage. If we use a bad pointer, we’ll get an
exception, which could crash the kernel—not acceptable.

So copying inputs from user space or outputs to user space can be done
safely with functions copy to user()/copy from user(), provided for that

8. Many of the darkest corners of argument passing don’t affect the kernel, because it doesn’t deal
in floating-point values or pass or return structures by value.

9. I hear a chorus of “Over our dead bodies!” from the kernel maintainers.
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purpose. If the user did pass a bad address, that will cause a kernel exception.
The kernel, though, maintains a list of the functions10 that are trusted to do
dangerous things: copy to user() and copy from user() are on that list.
When the exception handler sees that the exception restart address is in one of
these functions, it returns to a carefully constructed error handler. The appli-
cation will be sent a rude signal, but the kernel survives.

Return from a system call is done by a return through the end of the
syscall exception handler, which ends with an eret. The important thing
is that the change back to user mode and return to the user instruction space
happen together.

14.4 How Addresses Get Translated in Linux/MIPS Systems

Before getting down to how it’s done, we should get an overview of the job.
Figure 14.1 sketches out the memory map seen by a Linux thread on a

32-bit Linux/MIPS system.11 The map has to fit onto what the hardware does,
so user-accessible memory is necessarily in the bottom half of the map.

Useful things to remember:

Where kernel is built to run: The MIPS Linux kernel’s code and data
are built to run in kseg0; virtual addresses from 0x8000.0000 upward.
Addresses in this region are just a window onto the low 512 Mbytes of
physical memory, requiring no TLB management.

Exception entry points: In most MIPS CPUs to date, these are hard-wired
near the bottom of kseg0. The latest CPUs may provide the EBase
register to allow them to be relocated (see section 3.3.8), mainly so that
multiple memory-sharing CPUs can use different exception handlers
without the trouble of special-casing memory decoding. In the Linux
kernel, even when there are multiple CPUs, they should all run the same
exception-handling code, so this is unlikely to be used for Linux.

Where user programs are built to run: MIPS Linux applications (which are
run in low-privilege “user mode”) have virtual addresses from 0 through
07FFF.FFFF. Addresses in this region are accessible in user mode and
translated through the TLB.

The main program of an application is built to run starting somewhere
near zero. Not quite zero—one or more pages from virtual address
zero are never mapped, so that an attempt to use a null pointer will
be caught as a memory-management error. The library components of
an application, though, are loaded incrementally into user space at load

10. It’s actually a list of instruction address ranges.

11. The 64-bit Linux/MIPS map is built on the same principles, but the more complicated hardware
map—see Figure 2.2—makes it relatively confusing.
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FIGURE 14.1 Memory map for a Linux thread.

time or even later. That’s possible because a library component is built to
be position-independent (see Chapter 16) and is adjusted to fit the place
that the loader finds for it.

User stack and heap: An application’s stack is initially set to the top of
user-accessible memory (about 2 GB up in virtual space) and grows down.
The OS detects accesses to not-yet-mapped memory near the lowest stack
entries it has allocated and automatically maps more pages to let the stack
grow.

Meanwhile, new shared libraries or explicit user data allocated with
malloc() and its descendants are growing up from the bottom of the
user space. So long as the sum of all these remains less than 2 GB, all is
well: This restriction is rarely onerous in any but the biggest servers.

Physical memory up to 512 MB: Can be accessed cached through kseg0
and uncached through kseg1. Historically, the Linux kernel assumed it
had direct access to all the physical memory of the machine. For smaller
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MIPS systems that use 512 MB or less of physical memory range, that’s
true; in this case, all memory is directly accessible (cached) in kseg0 and
(uncached) in kseg1.

Physical memory over 512 MB is “high memory”: Now, 512 MB is no
longer enough, even for embedded systems. Linux has an architecture-
independent concept of high memory—physical memory that requires
special, architecture-dependent handling, and for a 32-bit Linux/MIPS
system physical memory above 512 MB is high memory. When we need
to access it, we’ll create appropriate translation entries and have them
copied into the TLB on demand.

Early MIPS CPUs sought applications in UNIX workstations and servers,
so the MIPS memory-management hardware was conceived as the minimum
hardware that could hope to provide memory management for BSD UNIX. The
BSD UNIX system was the first UNIX OS to provide real paged virtual memory
on the DEC VAX minicomputer. The VAX was in many ways the model for
the 32-bit paged-translation virtual-memory architectures that have dominated
computing ever since; perhaps it’s not surprising that there are some echoes of
the VAX memory-management organization in MIPS. But this is a RISC, and
the MIPS hardware does much less. In particular, many problems that the VAX
(or an x86) solves with microcode are left to software by the MIPS system.

In this chapter, we’ll start close to where MIPS started, with the require-
ments of a basic UNIX-like OS and its virtual memory system; but this time the
OS is Linux.

We’ll show how the essence of the MIPS hardware is a reasonable response
to that requirement. For real nuts and bolts details, refer to Chapter 6.

14.4.1 What’s Memory Translation For?

Memory translation hardware (while we’re being general we’ll call it MMU for
memory management unit) serves several distinct purposes:12

Hiding and protection: User-privilege programs can only access data
whose program address is in the kuseg memory region (lower program
addresses). Such a program can only get at the memory regions that the
OS allows.

Moreover, each page can be individually specified as writable or write
protected; the OS can even stop a program from accidentally overwriting
its code.

Allocating contiguous memory to programs: With the MMU, the OS can
build contiguous program space out of physically scattered pages of

12. Given just how much the MMU contributes, it’s remarkable that a fairly workable minimal
Linux system (ucLinux) can be built without it—but that’s another story.
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memory, allowing us to allocate memory from a simple pool of fixed-size
pages.

Extending the address range: Some CPUs can’t directly access their full
potential physical memory range. MIPS32 CPUs, despite their genuine
32-bit architecture, arrange their address map so that the unmapped
address space windows kseg0 and kseg1 (which don’t depend on the
MMU tables to translate addresses) are windows onto the first 512 MB of
physical memory. If you need a memory map that extends further, you
must go through the MMU.

Making the memory map suit your program: With the MMU, your pro-
gram can use the addresses that suit it. In a big OS, there may be many
copies of the same program running, and it’s much easier for them all to
be using the same program addresses.

Demand paging: Programs can run as if all the memory resources they
needed were already allocated, but the OS can actually give them out only
as needed. A program accessing an unallocated memory region will get
an exception that the OS can process; the OS then loads appropriate data
into memory and lets the program continue.

In theory (and sometimes in computer science textbooks), it says that
demand paging is useful because it allows you to run a larger program
than will fit into physical memory. This is true, if you’ve got a lot of time
to spare, but in reality if a program really needs to use more memory
than is available it will keep displacing bits of itself from memory and
will run very, very slowly.

But demand paging is still very useful, because large programs are filled
with vast hinterlands of code that won’t get run, at least on this execution.
Perhaps your program has built-in support for a data format you’re not
using today; perhaps it has extensive error handling, but those errors are
rare. In a demand-paged system, the chunks of the program that aren’t
used need never be read in. And it will start up fast, which will please an
impatient user.

Relocation: The addresses of program entry points and predeclared data
are fixed at program compile/build time—though this is much less true
for position-independent code, used for all Linux’s shared libraries and
most applications. The MMU allows the program to be run anywhere in
physical memory.

The essence of the Linux memory manager’s job is to provide each program
with its own memory space.

Well, really Linux has separate concepts: Threads are what is scheduled,
and address spaces (memory maps) are the protection units. Many threads
in a thread group can share one address space. The memory translation sys-
tem is obviously interested in address spaces and not in threads. Linux’s
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implementation is that all threads are equal, and all threads have memory-
management data structures. Threads that run in the same address space, in
fact, share most of those data structures.

But for now it will be simpler if we just consider one thread per address
space, and we can use the older word “process” for them both.

If the memory management job is done properly, the fate of each process
is independent of the others (the OS protects itself too): A process can crash
or misbehave without bringing down the whole system. This is obviously a
useful attribute for a university departmental computer running student pro-
grams, but even the most rigorous commercial environment needs to support
experimental or prototype software alongside the tried and tested.

The MMU is not just for big, full virtual memory systems; even small
embedded programs benefit from relocation and more efficient memory allo-
cation. Any system in which you may want to run different programs at differ-
ent times will find it easier if it can map the program’s idea of addresses onto
whatever physical address space is readily available.

Multitasking and separation between various tasks’ address spaces used to
be only for big computers, then migrated into personal computers and small
servers, and are increasingly common in the vanishingly small computers of
consumer devices.

However, few non-Linux embedded OSs use separate address spaces. This
is probably not so much because this would not be useful, but is due to the
lack of consistent features on embedded CPUs and their available operating
systems. And perhaps because once you add separate address spaces to your
system you’re too close to reinventing Linux to make sense!

This is an unexpected bonanza for the MIPS architecture. The minimalism
that was so necessary to make the workstation CPU simple in 1986 is a great
asset to the embedded systems of the early 21st century. Even small applica-
tions, beset by rapidly expanding code size, need to use all known tricks to man-
age software complexity; and the flexible software-based approach pioneered by
MIPS is likely to deliver whatever is needed. A few years ago it was hard to con-
vince CPU vendors addressing the embedded market that the MMU was worth
including; now (in 2006) Linux is everywhere.

14.4.2 Basic Process Layout and Protection

From the OS’s point of view, the low part of memory (kuseg) is a safe “sandbox”
in which the user program can play all it wants. If the program goes wild and
trashes all its own data, that’s no worry to anyone else.

From the application’s point of view, this area is free for use in building
arbitrarily complicated private data structures and to get on with the job.

Inside the user area, within the program’s sandbox, the OS provides more
stack to the program on demand (implicitly, as the stack grows down). It will
also provide a system call to make more data available, starting from the highest
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predeclared data addresses and growing up—systems people call this a heap.
The heap feeds library functions, such as malloc(), that provide your program
with chunks of extra memory.

Stack and heap are supplied in chunks small enough to be reasonably thrifty
with system memory but big enough to avoid too many system calls or excep-
tions. However, on every system call or exception, the OS has a chance to police
the application’s memory consumption. An OS can enforce limits that make
sure the application doesn’t get so large a share of memory as to threaten other
vital activities.

A Linux thread keeps its identity inside the OS kernel, and when it runs in
process context in the kernel (as in a system call) it’s really just calling a careful
subroutine.

The operating system’s own code and data are of course not accessible to
user space programs. On some systems, this is done by putting them in a com-
pletely separate address space; on MIPS, the OS shares the same address space,
and when the CPU is running at the user-program privilege level, access to these
addresses is illegal and will trigger an exception.

Note that while each process’s user space maps to its own private real stor-
age, the privileged space is shared. The OS code and resources are seen at the
same address by all processes—an OS kernel is a multithreaded but single-
address-space system inside—but each process’s user space addresses access its
own separate space. Kernel routines running in process context are trusted to
cooperate safely, but the application need not be trusted at all.

We mentioned that the stack is initialized to the highest permissible user
addresses: That’s done so we can support programs that use a great deal of
memory. The resulting wide spread of addresses in use (with a huge hole in
between) is one characteristic of this address map with which any translation
scheme must cope.

Linux maps application code as read-only to the application, so that code
can be safely shared by threads in different address spaces—after all, it’s com-
mon to have many processes running the same application.

Many systems share not just whole applications but chunks of applications
accessed through library calls (shared libraries). Linux does that through shared
libraries, but we’ll pick up that story later.

14.4.3 Mapping Process Addresses to Real Memory

Which mechanisms are needed to support this model?
We want to be able to run multiple copies of the same application, and

they’d better use different underlying copies of the data. So during program
execution, application addresses are mapped to physical addresses according to
a scheme fixed by the OS when the program is loaded.

Although it would be possible for the OS to rush around patching all the
address translation information whenever we switched contexts from one
process to another, it would be very inefficient. Instead, we award each active
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thread’s memory map an 8-bit number called the address space ID or ASID.
When the hardware finds a translation entry for the address, it looks for a
translation entry that matches the current ASID as well as the address,13 so the
hardware can hold translations for different spaces without getting them mixed
up. Now all the software needs to do when scheduling a thread in a different
address space is to load a new ASID into EntryHi(ASID).

The mapping facility also allows the OS to discriminate between different
parts of the user address space. Some parts of the application space (typically
code) can be mapped read-only, and some parts can be left unmapped and
accesses trapped, meaning that a program that runs amok is likely to be stopped
earlier.

The kernel part of the process’s address space is shared by all processes. The
kernel is built to run at particular addresses, so it mostly doesn’t need a flexible
mapping scheme and can take advantage of the kseg0 region, leaving mem-
ory mapping resources for application use. Some dynamically generated kernel
areas are conveniently built from mapped memory (for example, memory used
to hold kernel loadable modules for device drivers and so on is mapped).

14.4.4 Paged Mapping Preferred

Many exotic schemes have been tried for mapping addresses. Until the mid-1980s
or so, the industry kept thinking there must be a better solution than fixed-
size pages. Fixed-size pages have nothing to do with the needs or behavior of
application programs, after all, and no top-down analysis will ever invent them.

But if the hardware gives programs what they want (chunks of memory in
whichever size is wanted at that moment), available memory rapidly becomes
fragmented into awkward-sized pieces. When we finally make contact with
aliens, their wheelbarrows will have round wheels and their computers will
probably use fixed-size pages.

So all practical systems map memory in pages—fixed-size chunks of mem-
ory. Pages are always a power of 2 bytes big. Small pages might take too
much management (big tables of translations, many translations needed for a
program); big pages may be inefficient, since quite a lot of small objects end
up occupying a whole page. A total of 4 KB is the overwhelmingly popular
compromise for Linux.14

With 4-KB pages, a program/virtual address can be simply partitioned thus:

Virtual page number (VPN) Address within page

nn 12 11 0

13. Actually, we’ll see that some translation entries can be ASID-independent or “global.”

14. The MIPS hardware would be quite happy with bigger pages: 16 KB is the next directly sup-
ported size and is probably a better trade-off for many modern systems. But the page size is
pervasive, with tentacles into the way programs are built; so we almost all still use 4 KB.
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The address-within-page bits don’t need to be translated, so the memory
management hardware only has to cope with translating the high-order
addresses (traditionally called virtual page number or VPN), into the high-
order bits of a physical address (a physical frame number, or PFN—nobody
can remember why it’s not PPN).

14.4.5 What We Really Want

The mapping mechanism must allow a program to use a particular address
within its own process/address space and translate that efficiently into a real
physical address to access memory.

A good way to do this would be to have a table (the page table) containing an
entry for each page in the whole virtual address space, with that entry contain-
ing the correct physical address. This is clearly a fairly large data structure and
is going to have to be stored in main memory. But there are two big problems.

The first is that we now need two references to memory to do any load
or store, and that’s obviously hopeless for performance. You may foresee the
answer to this: We can use a high-speed cache memory to store translation
entries and go to the memory-resident table only when we miss in the cache.
Since each cache entry covers 4 KB of memory space, it’s plausible that we can
get a satisfactorily low miss rate out of a reasonably small cache. (At the time
this scheme was invented, memory caches were rare and were sometimes also
called “lookaside buffers,” so the memory translation cache became a transla-
tion lookaside buffer or TLB; the acronym survives.)

The second problem is the size of the page table; for a 32-bit application
address space split into 4-KB pages, there are a million entries, which will take
at least 4 MB of memory. We really need to find some way to make the table
smaller, or there’ll be no memory left to run the programs.

We’ll defer any discussion of the solution for this, beyond observing that
few real programs use anything like the 4 Gbytes addressable with 32 bits. More
modest programs have huge holes in their program address space, and if we
can invent some scheme that avoids storing all the “nothing here” translation
entries corresponding to the holes, then things are likely to get better.

We’ve now arrived, in essence, at the memory translation system DEC
figured out for its VAX minicomputer, which has been extremely influential
in most subsequent architectures. It’s summarized in Figure 14.2.

The sequence in which the hardware works is something like this:

A virtual address is split into two, with the least significant bits (usually
12 bits) passing through untranslated—so translation is always done in
pages (usually 4 KB).

The more significant bits, or VPN, are concatenated with the currently
running thread’s ASID to form a unique page address.
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FIGURE 14.2 Desirable memory translation system.

We look in the TLB (translation cache) to see if we have a translation
entry for the page. If we do, it gives us the high-order physical address
bits and we’ve got the address to use.

The TLB is a special-purpose store and can match addresses in various
useful ways. It may have a global flag bit that tells it to ignore the value
of ASID for some entries, so that these TLB entries can be used to map
some range of virtual addresses for every thread.

Similarly, the VPN may be stored with some mask bits that cause some
parts of the VPN to be excluded from the match, allowing the TLB entry
to map a larger range of virtual addresses.

Both of these features are available in MIPS MMUs (there’s no variable-
size pages in some very old MIPS CPUs, though).

There are usually extra bits (flags) stored with the PFN that are used to
control which kind of access is allowed—most obviously, to permit reads
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but not writes. We’ll discuss the MIPS architecture’s flags in the next
section.

If there’s no matching entry in the TLB, the system must locate or build
an appropriate entry (using main-memory-resident page table informa-
tion) and load it into the TLB and then run the translation process again.

In the VAX minicomputer, this process was controlled by microcode and
seemed to the programmer to be completely automatic. If you build the
right format of page table in memory and point the hardware at it, all
memory translation just works.

14.4.6 Origins of the MIPS Design

The MIPS designers wanted to figure out a way to offer the same facilities as
the VAX with as little hardware as possible. The microcoded TLB refill was
not acceptable, so they took the brave step of consigning this part of the job
to software.

That means that apart from a register to hold the current ASID, the MMU
hardware is simply a high-speed, fixed-size table of translations. System soft-
ware can (and usually does) use the hardware as a cache of entries from some
kind of comprehensive memory-resident page table, so it makes sense to call
the hardware table a TLB. But there’s nothing in the TLB hardware to make it
a cache, except this: When presented with an address it can’t translate, the TLB
triggers a special exception (TLB refill) to invoke the software routine. Some
care is taken with the details of the TLB design, the associated control registers,
and the refill exception to help the software to be efficient.

The MIPS TLB has always been implemented on chip. The memory transla-
tion step is required even for cached references, so it’s very much on the critical
path of the machine. That meant it had to be small, particularly in the early
days, so it makes up for its small size by being clever.

It’s basically a genuine associative memory. Each entry in an associative
memory consists of a key field and a data field; you present the key and the hard-
ware returns the data of any entry the key matches. Associative memories are
wonderful, but they are expensive in hardware. MIPS TLBs have had between
32 and 64 entries; a store of this size is manageable as a silicon design.

All contemporary CPUs use a TLB in which each entry is doubled up to map
two consecutive VPNs to independently specified physical pages. The paired
entries double the amount of memory that can be mapped by the TLB with
only a little extra logic, without requiring any large-scale rethinking of TLB
management.

You will see the TLB referred to as being fully associative; this emphasizes
that all keys are really compared with the input value in parallel.15

15. The common 32-entry paired TLB would be correctly, if pedantically, described as a 32-way
set-associative store, with two entries per set.
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FIGURE 14.3 TLB entry fields.

The TLB entry is shown schematically in Figure 14.3. For the moment,
we’ll assume that pages are 4 Kbytes in size. The TLB’s key—the input value—
consists of three fields:

VPN2: The page number is just the high-order bits of the virtual address—
the bits left when you take out the 12 low bits that address the
byte within page. The “2” in VPN2 emphasizes that each virtual entry
maps 8 Kbytes because of the doubled output field. Bit 12 of the vir-
tual address selects either the first or the second physical-side entry of
the pair.

PageMask: Controls how much of the virtual address is compared with
the VPN and how much is passed through to the physical address; a
match on fewer bits maps a larger region. A “1” bit causes the corre-
sponding address bit to be ignored. Some MIPS CPUs can be set up to
map as much as 16 MB with a single entry. The most significant ignored
bit is used to select the even or odd entry.

ASID: Marks the translation as belonging to a particular address space,
so this entry will only be matched if the thread presenting the address
has EntryHi(ASID) set equal to this value.

The G bit, if set, disables the ASID match, making the translation entry
apply to all address spaces (so this part of the address map is shared
between all spaces). The ASID is 8 bits: The OS-aware reader will appreci-
ate that even 256 is too small an upper limit for the number of simultane-
ously active processes on a big UNIX system. However, it’s a reasonable
limit so long as “active” in this context is given the special meaning of
“may have translation entries in the TLB.” OS software has to recycle
ASIDs where necessary, which will involve purging the TLB of transla-
tion entries for any processes being downgraded from active. It’s a dirty
business, but so is quite a lot of what OSs have to do; and 256 entries
should be enough to make sure it doesn’t have to be done so often as to
constitute a performance problem.

For programming purposes, it’s easiest if the G bit is kept in the ker-
nel’s page tables with the output-side fields. But when you’re translating,
it belongs to the input side. On MIPS32/64 CPUs, the two output-side
values are AND-ed together to produce the value that is used, but the
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realistic outcome is that you must make sure the G bit is set the same in
both halves.

The TLB’s output side gives you the physical frame number and a small but
sufficient bunch of flags:

Physical frame number (PFN): This is the physical address with the low
bits cut off (the low 12 bits if this is representing a 4-Kbyte page).

Write control bit (D): Set 1 to allow stores to this page to happen. The “D”
comes from this being called the dirty bit; see the next section
for why.

Valid bit (V): If this is 0, the entry is unusable. This seems pretty pointless:
Why have a record loaded into the TLB if you don’t want the translation
to work? There are two reasons. The first is that the entry translates a
pair of virtual pages, and maybe only one of them ought to be there. The
other is that the software routine that refills the TLB is optimized for
speed and doesn’t want to check for special cases. When some further
processing is needed before a program can use a page referred to by the
memory-held table, the memory-held entry can be left marked invalid.
After TLB refill, this will cause a different kind of trap, invoking special
processing without having to put a test in every software refill event.

Cache control (C): This 3-bit field’s primary purpose is to distinguish
cacheable (3) from uncached (2) regions.

But that leaves six other values, used for two somewhat incompatible
purposes: In shared-memory multiprocessor systems, different values
are used to hint whether the memory is shared (when hardware will
have to work hard to keep any cached data consistent across the whole
machine). In “embedded” CPUs, different values select different local
cache management strategies: write-through versus write-back, for exam-
ple. See your CPU manual.

Translating an address is now simple, and we can amplify the description
above:

CPU generates a program address: This might be an instruction fetch, a
load, or store—and it’s one with an address that does not lie in the special
unmapped regions of the MIPS address space.

The low 13 bits are separated off, and the resulting VPN2, together with
the current ASID (EntryHi(ASID)), is looked up in the TLB. The match
is affected by the thePageMask and byGfields of the various TLB entries.

TLB matches key: If there’s no matching entry, we’ll take a TLB refill
exception. But where there is a match, that entry is selected. Bit 12 of
the virtual address selects which physical-side half we’ll use.
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The PFN from the TLB is glued to the low-order bits of the program
address to form a complete physical address.

Valid? The V and D bits are consulted. If it isn’t valid, or a store is being
attempted with D unset, the CPU takes an exception. As with all transla-
tion traps, the BadVAddr register will be filled with the offending
program address; as with any TLB exception, the TLB EntryHi register
will be preloaded with the VPN of the offending address.

The BadVPN2 fields of the convenience registers Context (and XCon-
text on 64-bit CPUs) will be preloaded (in part, as advertised) with
the appropriate bits of the virtual address we failed to translate during
a TLB refill exception. But the specification is less definite about how
those address fields behave in other exceptions. It’s probably a good idea
to stick to BadVAddr in other exceptions.

Cached? If the C bit is set, the CPU looks in the cache for a copy of the
physical location’s data; if it isn’t there, it will be fetched from memory
and a copy left in the cache. Where the C bit is clear, the CPU neither
looks in nor refills the cache.

Of course, the number of entries in the TLB permits you to translate only a
relatively small number of program addresses—a few hundred KB worth. This
is far from enough for most systems. The TLB is almost always going to be used
as a software-maintained cache for a much larger set of translations.

When a program address lookup in the TLB fails, a TLB refill trap is taken.16

System software has the following job:

It figures out whether there is a correct translation; if not, the trap will
invoke the software that handles address errors.

If there is a correct translation, it constructs a TLB entry that will imple-
ment it.

If the TLB is already full (and it almost always is full in running systems),
the software selects an entry that can be discarded.

The software writes the new entry into the TLB.

See section 14.4.8 for how this is done in Linux.

14.4.7 Keeping Track of Modified Pages (Simulating “Dirty” Bits)

An operating system that provides a page for an application program to use
often wants to keep track of whether that page has been modified since the OS
last obtained it (perhaps from disk or network) or saved a copy of it.

16. Should this be called a “TLB miss” (which is what just happened) or a “TLB refill” (which
is what we’re going to do to sort it out)? I’m afraid we probably use both terms in MIPS
documentation.
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Unmodified (“clean”) pages may be quietly discarded, since they can easily be
recovered from a file system if they’re ever needed again.

In OS parlance the modified pages are called “dirty,” and the OS must take
care of them until the application program exits or the dirty page is cleaned by
being saved away to backing store. To help out with this process, it is common
for CISC CPUs to maintain a bit in the memory-resident page table indicating
that a write operation to the page has occurred. The MIPS CPU does not sup-
port this feature, even in the TLB entries. The D bit of the page table (found in
the EntryLo register) is a write-enable and of course is used to flag read-only
pages.

So here’s the trick:

When a writable page is first loaded into memory, you mark its page table
entry with D clear (leaving it read-only).

When any write is attempted to the page, a trap will result; system soft-
ware will recognize this as a legitimate write but will use the event to
set a “modified” bit in the memory resident tables—which, since it’s in
the EntryLo(D) position, permits future writes to be done without an
exception.

You will also want to set the D bit in the TLB entry so that the write can
proceed (but since TLB entries are randomly and unpredictably replaced,
this would be useless as a way of remembering the modified state).

14.4.8 How the Kernel Services a TLB Refill Exception

MIPS’s TLB refill exception has always had its own unique entry point (at least
as long as the CPU wasn’t already in exception mode; in Linux, that would be
a fatal error, and isn’t considered further).

When the exception routine is called, the hardware has set up EntryHi
(VPN2) to the page number of the location we just couldn’t translate: EntryHi
is set exactly to what is required to create a new TLB entry to map the offending
address.

The hardware has also set up a bunch of other address-related fields, but
we’re not going to use any of them.

In particular, we’re not going to use the convenient “MIPS standard” way
of using Context to find the relevant page table entry, which was described
in section 6.2.4. The MIPS standard way requires that a (notionally very long)
linear page table is constructed in kseg2 (it won’t really take up excessive space,
because kseg2 is mapped and the vast empty spaces of the table would never be
mapped to real memory). But Linux really does not like to have the unique-to-
thread-group kernel mappings that would require.

Instead, Linux’s TLB refill page tables are organized as a three-level hierar-
chy of tables (called “global,” “middle,” and just “PTE”). But cunning use of C
macros allows the middle level to disappear completely without changing the
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FIGURE 14.4 Linux two-level page table (32-bit MIPS design).

code—a two-level structure is enough for 32-bit MIPS.17 So you can find the
data for any TLB entry you want—if it exists at all—by following the links, as
shown in Figure 14.4.

This structure is reasonably economical of kernel memory: A largish Linux
program with a 50-MB virtual address space has about 12-K 4-KB pages, each
needing four bytes of PTE: That makes 48 KB or 12 pages. That’s an
underestimate, because the address space components have holes in them, but
a reasonable-size thread group’s mapping needs take only 15 or so pages. Ker-
nel (kseg2) mappings take more, but they’re common to all memory maps, so
there is only one set of PTEs for kernel mappings.

Most 32-bit CPUs are restricted to a 32-bit physical address, too: Where
that’s so, there are six unused high-order bits in the EntryLo0-1 registers.
Linux recycles those to remember some software state about the page table
entries.

This does mean that the TLB refill handler for this 32-bit needs to do two
index calculations and three loads. It’s certainly longer than the tiny instruction

17. However, all three are required for the extended virtual memory space available with 64-bit
MIPS.
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sequence of the original magic MIPS scheme (where the index calculation is
done by magic by the way the Context register works, and the only loads are
from the final page table), but it’s not bad.

You may have noticed that this description is very particular to a certain
sort of MIPS CPU. Do all Linux systems have a unique kernel? Well, no: But
in the current Linux/MIPS kernel certain critical routines—including the TLB
miss exception handler—are binaries generated by table-driven kernel software
during start-up and tailored to the requirements of this particular CPU.

Here, for example, is the TLB miss handler autogenerated for a system based
on a 32-bit MIPS 24-K core:

tlb_refill:
# (1) get base of PGD into k1
lui k1, %hi(pgd_current)

# get miss virtual address (VA)
mfc0 k0, c0_badvaddr # (2) moved up to save a cycle
lw k1, %lo(pgd_current)(k1)
srl k0, k0, 24
sll k0, k0, 2 # (3) shift and mask VA for PGD index
addu k1, k1, k0 # got a pointer to the correct PGD entry

# get VA again, this time from Context register
mfc0 k0, c0_context # (4) moved up to save a cycle
lw k1, 0(k1) # OK, read the PTE pointer

srl k0, k0, 0x1 # (5) Context register designed for 2x64-bit,
# entry, ours are half that size

andi k0, k0, 0xff8 # (6) mask out higher VPN bits etc

addu k1, k1, k0 # pointer to VPE entry

# load the TLB entries
lw k0, 0(k1) # (7) will lose a cycle here
lw k1, 4(k1)

srl k0, k0, 0x6 # (8) shift-out software-only bits
mtc0 k0, c0_entrylo0
srl k1, k1, 0x6 # same for other half
mtc0 k1, c0_entrylo1

ehb # (9) wait for CP0 values to be ready
tlbwr # (10) write into TLB (somewhere)
eret # (11) back to user
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Notes on the TLB Refill Code

(1) In an exception handler, the software convention allows us to use two
registers (k0-1) with impunity. All other general-purpose registers are
still holding application data, and we can’t touch them.

(2, 4, 5) The code is made a little harder to read by the places where one sequence
has been interleaved with the next. That’s done for efficiency: A 24-K
CPU load requires the register base to be ready one clock early, so if you
compute the base in the previous instruction you’ll get a one-clock stall.
At (2) and (4) we found a nondependent instruction to interleave, but at
(5) there isn’t one.

(3) As you can see from Figure 14.4, we want to use the top bits of the virtual
address with the missing translation (which is in BadVaddr) to index the
PGD. Since the PGD has pointers (four bytes) in each entry, we need to
shift the index value by two to get a byte offset. You can’t just do a shift-
right by 22 bits, because you might generate a nonword-aligned pointer,
which is illegal for a MIPS load-word.

(4) See (2, 4, 5).

(5) With only two registers to play with, we can’t keep the original virtual
address. So now we get it again, but this time from the Context register,
which has the low bits of the “VPN2” field we need. For a 64-bit CPU—
where we’d need to keep two 64-bit entries to fill the EntryLo0-1 pair—
it’s just right, with the VPN2 number shifted up by four positions to
index a table of 16-byte entries. But Linux/MIPS for MIPS32 has eight-
byte entries in the PTE table; so we shift it right one place.

(6) The high bits of Context are unwanted, so we mask them out. Even
above the page number, they’re not always zero: SMP Linux systems use
the Context(PTEBase) field, which consists of plain read/write bits, to
store a CPU ID.

(7) See (2, 4, 5).

(8) On systems like this with 32-bit physical addresses, the EntryLo register
only has 26 meaningful bits. Linux uses the other six for software flags,
which we shift away.

(9) This execution hazard barrier ensures that the instructions following
it are delayed until the writes to the CP0 EntryLo0-1 registers are
complete. In many CPUs, the write to the CP0 register from the mtc0
instruction happens in a late pipeline stage.

(10) tlbwrwrites the complete TLB entry to a “random” place in the TLB. In
fact, it gets the index from Random, which just counts continually round
TLB entries, but the timing of TLB misses is random enough that this
works well.
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Note that the TLB contents comprise four CP0 registers: We’ve just
loadedEntryLo0-1,EntryHiwas set up automatically by the TLB miss
exception hardware, and PageMask is maintained by Linux/MIPS at a
constant value meaning 4-KB pages.

(11) eret takes us back to the instruction that suffered the TLB miss, and it
should do better this time. Note that eret is also a CP0 hazard barrier,
and it won’t allow the returned-to user instruction to be fetched until
the tlbwr is complete.

14.4.9 Care and Maintenance of the TLB

The MIPS TLB is “just” a collection of translation entries. Entries get into it
purely by the refill handler’s action. Most entries get overwritten in the same
way, of course. But sometimes the kernel needs to change a page table entry,
and then it’s important to invalidate any copy in the TLB.

For a single entry, we can look up the TLB entry using the virtual address +
ASID of the original entry, doing a tlbp: If the matching entry is there, we can
overwrite that page’s entry with an invalid one.

Sometimes, though, you need to do surgery on a larger scale. The ASID
mechanism allows the TLB to hold entries for 256 different memory maps, but
a Linux system will commonly run more than 256 processes between start-up
and shutdown. So there are times when a whole batch of translations must be
rescinded, because the ASID is going to be recycled for a new process and the
old entries would be damagingly wrong.

There’s no elegant way of doing that. You just have to iterate through all the
TLB entries (index values go in the Index register), read each entry out into
the usual registers, check the ASID value retrieved into EntryHi(ASID), and
invalidate any that match the victim ASID value.

14.4.10 Memory Translation and 64-Bit Pointers

When the MIPS architecture was invented, 32-bit CPUs had been around for
a while, and the largest programs’ data sets were already moving up toward
100 MB—the address space had only 6 bits or so to spare.18 There was therefore
every reason to be reasonably careful with the 32-bit space and not to reduce
it by profligate fragmentation; this is why application programs (running with
user privilege) keep 31 bits’ worth of addressing for themselves.

When the MIPS III instruction set introduced 64-bit registers in 1991, it
was leading the industry and, as we discussed in section 2.7, MIPS was proba-
bly four to six years ahead of real pressure on a 32-bit address boundary. The
doubling of register size only had to yield a few bits of extra address space to

18. Historically, application program demand for memory space seems to have grown at about
3
4 bit per year.
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be remarkably future-proof; it’s been more important to be cautious about the
potentially exploding size of OS data structures than to make efficient use of all
address space.

The limitations to the practical address space resulting from the basic 64-bit
memory map are not going to be reached for a while; they theoretically permit
the mapped user and other spaces to grow to 61 bits without any reorganization.
But so far, a 40-bit user virtual space has been ample. Most other 64-bit Linux
systems have 8-Kbyte pages, but that would be annoying for MIPS. The MIPS
TLB can map either 4 Kbyte or 16 Kbyte in a single entry, but not 8 Kbyte, so
64-bit MIPS kernels use 4-Kbyte pages, with 16-Kbyte pages a desirable option
in some brave future.

If you take a look back at Figure 14.4 and imagine a set of intermediate
(PMD) tables between the PGD and PTEs, you can comfortably resolve a
40-bit virtual address in a three-level table. We’ll leave details to those enthusi-
astic enough to read the source code.



Chapter

15 MIPS Specific Issues in
the Linux Kernel

Much of the Linux kernel is written in portable C, and a great deal of it
is portable to a clean architecture like MIPS with no further trouble.

We looked in the last chapter at the obvious machine-dependent code around
exceptions and memory management. This chapter is looking at other places
where MIPS-specific code is needed.

The first two sections deal with cases where most MIPS CPUs have traded
off programming convenience for hardware simplicity: first, that MIPS caches
often require software management and, second, that the MIPS CP0 (CPU con-
trol) operations sometimes require explicit care with pipeline effects. We’ll take
a quick look at what you need to know about MIPS for a multiprocessor (SMP)
Linux system. And the last section is a glimpse at the use of heroic assembly
code to speed up a heavily used kernel routine.

15.1 Explicit Cache Management

In the x86 CPUs, where Linux was born and grew up, the caches are mostly
invisible, with hardware keeping everything just as if you were talking directly
to memory.

Not so MIPS systems, where many MIPS cores have caches with no extra
“coherence” hardware of any kind. Linux systems must deal with troubles in
several areas.

15.1.1 DMA Device Accesses

DMA controllers write memory (leaving cache contents out-of-date) or read it
(perhaps missing cached data not yet written back). On some systems—
particularly x86 PCs—the DMA controllers find some way to tell the hardware
cache controller about their transfers, and the cache controller automatically

399
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invalidates or writes back cache contents as required to make the whole process
transparent, just as though the CPU was reading and writing raw memory. Such
a system is called “I/O-cache coherent” or more often just “I/O coherent.”

Few MIPS systems are I/O-cache coherent. In most cases, a DMA transfer
will take place without any notification to the cache logic, and the device driver
software must manage the caches to make sure that no stale data in cache or
memory is used.

Linux has a DMA API that exports routines to device drivers that
manage DMA data flow (many of the routines become null in an I/O coher-
ent system). You can read about it in the documentation provided with the
Linux kernel sources, which includes Documentation/DMA-API.txt. In fact,
if you’re writing or porting a device driver, you should read that.

When a driver asks to allocate a buffer, it can choose:

“Consistent” memory: Linux guarantees that “consistent” memory is I/O
coherent, possibly at some cost to performance. On a MIPS CPU this
is likely to be uncached, and the cost to performance is considerable.
But consistent buffers are the best way to handle small memory-resident
control structures for complex device controllers.

Using nonconsistent memory for buffers: Since consistent memory will be
uncached for many MIPS systems, it can lead to very poor performance
to use it for large DMA buffers.

So for most regular DMA, the API offers calls with names like dma

map xx(). They provide buffers suitable for DMA, but the buffers won’t
be I/O coherent unless the system makes univeral coherence cheap.

The kernel memory allocator makes sure the buffer is in a memory region
that DMA can reach, segregates different buffers so they don’t share the
same cache lines, and provides you with an address in a form usable by
the DMA controller.

Since this is not coherent, there are calls that operate on the buffer and do
the necessary cache invalidation or write-back operations before or after
DMA: They are called dma sync xx(), and the API includes instruc-
tions on when and how to call these functions.

For genuinely coherent hardware, the “sync” functions are null.

The language of the API documentation is unfortunate here. There is a
little-used extension to the API whose function names contain the word
“noncoherent,” but you should not use it unless your system is really
strange. A regular MIPS system, even though it is not I/O coherent, can
and should work fine with drivers using the standard API.

This is all moderately straightforward by OS standards. But many driver
developers are working on machines that manage this in hardware, where the
“sync” functions are just stubs. If they forget to call the right sync function at
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the right moment, their software will work: It will work until you port it to
a MIPS machine requiring explicit cache management. So be cautious when
taking driver code from elsewhere. The need to make porting more trouble-
free is the most persuasive argument for adding some level of hardware cache
management in future CPUs.

If you’re interested in peeking into the Linux implementation to see how
the cache synchronization functions are built from MIPS instructions, use sec-
tion 4.6 as a reference.

15.1.2 Writing Instructions for Later Execution

A program that writes instructions for itself can leave the instructions in the
D-cache but not in memory, or can leave stale data in the I-cache where the
instructions ought to be.

This is not a kernel-specific problem: In fact, it’s more likely to be met in
applications such as the “just-in-time” translators used to speed up language
interpreters. It’s beyond the scope of this book to discuss how you might fix this
portably, but any fix for MIPS will be built on the synci instruction. That’s
the ideal: synci was only defined in 2003 with the second revision of the
MIPS32/64 specifications, and many CPUs without the instruction are still
in use. On such CPUs there must be a special system call to do the necessary
D-cache write-back and I-cache invalidation using privileged cache instruc-
tions. You can find out the details of how synci works in section 8.5.11.

15.1.3 Cache/Memory Mapping Problems

Virtual caches (real ones with virtual index and tagging) seem a wonderful free
ride, since the whole cache search process can start earlier and run in parallel
with page-based address translation.

A plain virtual cache must be emptied out whenever there’s a memory map
change, which is intolerable unless the cache is very small. But if you use the
ASID to extend the virtual address, entries from different processes are disam-
biguated.

OS programmers know why virtual caches are a bad idea: The trouble with
virtual caches is that the data in the cache can survive a change to the page
tables. In general, the virtual cache ought to be checked after any mapping is
rescinded. That’s costly, so OS engineers try to minimize updates, miss some
corner case, and end up with bugs.

In a heroic attempt to make Linux work successfully even with virtual caches,
the kernel provides a set of rules and function calls that should be provided as
part of the port to an architecture with troublesome caches. They’re the func-
tions with names starting flush cache xxx() described in the kernel doc-
umentation Documentation/cachetlb.txt. I don’t like the word “flush”
to describe cache operations: It’s been used to mean too many things. So note
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carefully that in the Linux kernel a “cache flush” is something you do to get rid of
cache entries that relate to obsolete memory mappings. In a system where all
caches are physically indexed and tagged, none of these calls needs to do anything.

Fortunately, virtual D-caches are rare on MIPS CPUs. Some recent CPUs
have virtual I-caches: Implement the “flush” functions as described in the doc-
umentation and you should be all right. But L1 caches with physical tags but
virtual indexes are common on MIPS CPUs. They solve the problems described
in this section, but they lead to a different problem called a “cache alias”—
read on.

15.1.4 Cache Aliases

We’re now getting to something more pernicious. MIPS CPU designers were
among the first to realize that the benefits of using the virtual address to index
their cache could be combined with the benefit of using the physical address to
tag it. This can lead to cache aliases—for more explanation, see section 4.12.

The R4000 CPU was the first to use virtually indexed caches. As originally
conceived, the CPU always came with an L2 cache (the cache memory was off-
chip, but the L2 controller is included with the CPU), and it used the L2 cache to
detect L1-cache aliases. If you loaded an alias to a line that was already present
in the L1, the CPU generated an exception, which could be used to clean up.

But the temptation to produce a smaller, cheaper R4000 variant by omit-
ting the L2 cache memory chips and the pins that wired them up proved too
strong. Contemporary UNIX systems had a fairly stylized way of using virtual
memory, which meant that you could control memory allocation to avoid ever
loading an alias. In retrospect we can see that generating aliases is a bug, and
the careful memory management was a workaround for it. But it worked, and
people forgot, and it became a feature.

There are basically two ways to deal with cache aliases.
The first is to try to ensure that whenever a page is shared, all the virtual

references to it have the same “page color” (that means that the references may
be different, but the difference between them is a multiple of the cache set size).
Any data visible twice in same-color pages will be stored at the same cache index
and handled correctly. It’s possible to ensure that all user-space mappings of a
page are of the same color—more on this in section 10.3.4.

But unlike the old BSD systems, Linux provides features where correct page
coloring is impossible. Those will be cases where you have both a user-space
and kernel mapping to the same page (in many cases, on a MIPS kernel, the
kernel “mapping” will be a kseg0 address). So the MIPS port has special code
to detect those cases and clean out any old alias mappings.

The Cache/TLB documentation (that’sDocumentation/cachetlb.txt,
as mentioned in the section above) makes a heroic attempt to deal with cache
aliases as “just another symptom” of virtual caches in general. It provides some
notes on how to configure the kernel to do what it can on page coloring and
how to handle kernel/user-space aliases.



15.3 Multiprocessor Systems and Coherent Caches 403

The work of fixing around cache aliases is never finished. As the years go
past, Linux is expected to offer more exciting facilities. Programmers struggle
to fix the places where aliases can break legitimate code, but as new facilities are
added to the OS, it breaks again. I think the CPU designers are now recognizing
that relying on software workarounds for aliases creates maintenance problems:
Increasingly, new CPUs have at least the D-cache alias-free.

MIPS was a very influential architecture, so some of its competitors faith-
fully copied its mistakes;1 as a result, cache aliases are found in other architec-
tures too.

15.2 CP0 Pipeline Hazards

As we’ve seen in some of the examples above, CP0 operations which are depend-
ent on some CP0 register value need to be done carefully: The pipeline is not
always hidden for these OS-only operations. The OS is where all the CP0 oper-
ations happen, of course.

On a modern CPU (compliant to Release 2 of the MIPS32/MIPS64 speci-
fications), hazard barrier instructions (eret, jalr.hb, and jr.hb) are avail-
able, as described in section 3.4.

On older CPUs, only entry into exception and theeret instruction are guar-
anteed to act as CP0 hazard barriers. So where you’re writing a code sequence
where something depends on the correct completion of a CP0 operation, you
may need to pad the code with a calculated number of no-op instructions (your
CPU may like you to use the ssnop rather than a plain old nop—read the
manual).

The CPU manual for an older CPU should describe the (CPU-specific)
maximum duration of any hazard and let you calculate how many instruction
times might pass before you are safe.

15.3 Multiprocessor Systems and Coherent Caches

In the 1990s, MIPS CPUs were used by SGI and others to build cache-coherent
multiprocessor systems. SGI were not exactly pioneers in this area, but the MIPS
R4000 was one of the first microprocessors designed from the outset to fit into
such a system, and SGI’s large MIPS multiprocessor server/supercomputers were
very successful products.

However, little about this technology is really specific to MIPS, so we’ll be
brief.

The kind of multiprocessor system we’re describing here is one in which all
the CPUs share the same memory and, at least for the main read/write memory,

1. If imitation is the sincerest form of flattery, imitation of an architecture’s mistakes must be
tantamount to hero-worship.
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the same physical address space—that’s an “SMP” system (for Symmetric
MultiProcessing—it’s “symmetric” because all CPUs have the same relationship
with memory and work as peers).

The preferred OS structure for SMP systems is one where the CPUs coop-
erate to run the same Linux kernel. Such a Linux kernel is an explicitly par-
allel program, adapted to be executed by multiple CPUs simultaneously. The
SMP version of the scheduler finds the best next job for any CPU that calls
it, effectively sharing out threads between the pool of available CPUs. That’s a
big upgrade for an OS kernel that started life on x86 desktops, but the prob-
lems posed by multiple CPUs running in parallel are similar to those posed by
multitasking a single CPU.

Back to the hardware. That memory may be built as one giant lump shared
by all CPUs, or distributed so that a CPU is “closer” to some memory regions
than others. But all multiprocessor systems have the problem that the shared
memory has lower performance than a private one: Its total bandwidth is divided
between the CPUs, but—usually more important—the logic that regulates shar-
ing puts delays into the connection and increases memory latency. Performance
would be appalling without large, fast CPU caches.

The trouble with the caches is that while the CPUs execute independently
a lot of the time, they rely on shared memory to coordinate and communicate
with each other. Ideally, the CPU’s individual caches should be invisible: Every
load and store should have exactly the same outcome as if the CPUs were directly
sharing memory (but faster)—such caches are called “coherent.” But with sim-
ple caches (as featured on many MIPS CPUs), that doesn’t happen—CPUs with
a cached copy of data won’t see any change in memory made by some other
CPU, and CPUs may update their cached copy of data without writing back to
memory and giving other CPUs a chance to see it.

What you need is a cache that keeps a copy of memory data in the usual way,
but which automatically recognizes when some other CPU wants to access the
same data, and deals with the situation (most of the time, by quietly invalidating
the local copy). Since relatively few references are to shared code, this can be very
efficient.

It took a while to figure out how to do it. But the system that emerged is
something like this: Memory sharing is managed in units that correspond to
cache lines (typically 32 bytes). Each cache line may be copied in any number
of the caches so long as they’re reading the data; but a cache line that one CPU
is writing is the exclusive property of one cache.

In turn, that’s implemented within each CPU cache by maintaining a well-
defined state for each resident cache line. The bus protocol is organized by spec-
ifying a state machine for each cached line, with state transitions caused by
local CPU reads and writes, and by messages sent between the caches. Coher-
ent systems can be classified by enumerating the permitted states, leading to
terms like MESI, MOSI, and MOESI (from states called modified, owned, exclu-
sive, shared, and invalid). Generally, simpler protocols lead to more expensive
sharing.



15.3 Multiprocessor Systems and Coherent Caches 405

The first practical systems used a single broadcast bus connecting all caches
and main memory, which had the advantage that all participants could see all
transactions (simultaneously, and all in the same order—which turns out to
make things much simpler). Much of the intercache communication could be
achieved by letting the caches “snoop” on cache-memory refill and write-back
operations. That’s why coherent caches are sometimes called “snoopy caches.”

Single-bus systems don’t scale well either to more CPUs or to very high fre-
quencies. Modern systems use more complex networks of cache-to-cache and
cache-to-memory connections; that means you can’t rely on snooping and have
no one place in the system where you can figure out in which order different
requests happened. Much more complicated . . .

At the time of writing in 2006, this technology is migrating to the small-
est systems, where multiple processors on a system-on-chip (SoC) share mem-
ory. Chip-level multiprocessing (CMP) is more attractive than you might think,
because it increases compute power without very high clock rates. The only
known practical design and test methods for SoC don’t deliver very high
frequencies—and, in any case, a 3-GHz processor taking 70 W of electric power
and dissipating it as heat is hardly practical in a consumer device. It’s hard to
build anything on an SoC that behaves like a single snoopable bus. In con-
temporary (2006) SoCs the state of the art is a small cluster of CPUs, whose
mutual coherency is maintained by a piece of logic that couples those CPUs
quite tightly together, implementing a single ordering point. Future SoCs may
use more loosely coupled networks of CPUs, which will need more complicated
cache coherency protocols.

It was difficult to get cache-coherent SMP hardware to work, and then to
work efficiently. Those struggles produced a fair amount of folklore about how
to do things well, and it’s worth getting an introduction to it before you work
with a robust multi-CPU application like the Linux kernel. Here are some head-
line issues:

Selecting pages that don’t need coherent management: Cache coherency
looks after itself, but performance will be better if the OS can tell the
hardware about pages that are not shared and don’t need coherence man-
agement. Read-only pages need no management—they come from
memory, and caches may make as many copies of them as required. No
page is entirely read-only, of course: Data had to be written sometime
and somewhere. But in Linux, instruction pages come close enough to be
worth special handling. The kernel’s own instructions were safely writ-
ten before anything was cached, so they’re OK. Application instruction
pages are generally read in from a file, and at that point all caches must
have any copies invalidated; but after that they’re OK too.

Quite a lot of data is perthread. Process stack is always perthread, and
for single-threaded applications, so is all the user-space data. Unfortu-
nately, while there’s only one CPU interested in a single-threaded proc-
ess at any point in time, an application can migrate from CPU to CPU
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when it’s rescheduled (and if you want a multiprocessor system to work
well, you need few constraints on migration). It’s a matter of judgment
whether the benefit of more relaxed coherency management on known
single-threaded data pages is worthwhile, even though you’ll need to do
some error-prone, manual cache-cleaning when a thread migrates.

Atomicity, critical regions, and multiprocessor locks: SMP systems in which
multiple CPUs run the same code and negotiate shared data structures
don’t work without some attention to making data reads and updates
atomic in the sense found in section 14.2.

The MIPS architecture’s ll/sc (load-linked/store-conditional) instruc-
tions are its primitive building blocks for atomicity and locks and were
designed to scale well to large multiprocessors.

Uncertain memory ordering and memory barriers: In a cache-coherent
multiprocessor, when any CPU writes a memory location, another CPU
reading that location will (sometime a bit later) see it updated. But once
you get away from the systems built round a single common bus, it’s hard
to make sure even that reads and writes stay in the same relative order.
Most of the time that doesn’t matter—the threads running on the dif-
ferent CPUs have to cope with the fact that they don’t know much about
how other threads are progressing. But software using shared memory
to communicate between threads is always vulnerable.

This problem was discussed in section 10.4, which describes the role of
the MIPS sync instruction as a memory barrier.

sync has another life. In many CPUs it has additional or stronger CPU-
family-specific semantics such as “all data has cleared the system inter-
face,” or “wait until all my load and store queues are empty.” Read your
CPU manual to find out.

15.4 Demon Tweaks for a Critical Routine

It’s worth looking quickly at some optimized Linux code to get a feel for how
far it’s worth taking architecture- or CPU-specific tuning.

The clear page() routine is heavily used in the Linux kernel. Pages filled
with zero are directly required for the “uninitialized” portion of application
data spaces, and it’s also used as a way of cleaning ex-application pages to avoid
accidental leakage of data from one application to another (which would violate
the security policy).

This implementation ofclear page()uses several ideas. It unrolls loops—
each iteration of the loop clears a whole cache line (in this case, that’s 32 bytes,
eight words).

It also uses the MIPS-specific pref operation to avoid waiting on cache
traffic. If prefetch really does need to read data from memory, that’s going to
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take a long time compared with the CPU execution rate: So we’ll prefetch a long
way ahead. In this case, “a long way” is 512 bytes, 16 cache lines.

But if the CPU can understand it, the prefetch hint is the specialized
“prefetch for store” version, which makes a cache entry for a line without actu-
ally reading any data in (it relies on the programmer’s promise to overwrite the
whole cache line)—see section 8.5.8.

Here’s the function with added commentary. Bear in mind that PAGE SIZE

is usually 4,096.

#define PREF_AHEAD 512

clear_page:
# the first loop (main_loop) stops short so as not to prefetch off
# end of page
addiu a2, a0, PAGE_SIZE - PREF_AHEAD

main_loop:
# the prefetch. Bring in cache line, but with luck we won’t read
# memory. But if all this CPU offers is a simple prefetch, that
# should work too.
pref Pref_PrepareForStore, PREF_AHEAD(a0)

# now we’re going to do eight stores
sw zero, 0(a0)
sw zero, 4(a0)
sw zero, 8(a0)
sw zero, 12(a0)
addiu a0, a0, 32 # some CPUs choke on too many writes at

# full-speed, so increment the loop pointer
# in the middle to give it a break.

sw zero, -16(a0)
sw zero, -12(a0)
sw zero, -8(a0)
bne a2, a0, main_loop
sw zero, -4(a0) # last store in the branch delay slot

# the second (end) loop does the rest, and has no prefetch which
# would overrun.

addiu a2, a0, PREF_AHEAD
end_loop:
sw zero, 0(a0)
sw zero, 4(a0)
sw zero, 8(a0)
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sw zero, 12(a0)
addiu a0, a0, 32
sw zero, -16(a0)
sw zero, -12(a0)
sw zero,-8(a0)
bne a2, a0, end_loop
sw zero, -4(a0)

jr ra
nop



Chapter

16 Linux Application Code,
PIC, and Libraries

AGNU/Linux thread running an application is reasonably called a program.
Most such applications are bolted together out of previously independent

parts at load time, a process that depends on a rather radical sort of position-
independent code (the PIC of our title). Before we start on it, note that nothing
in the Linux kernel obliges you to compile and build userland program binaries
in any particular way: The kernel makes very few assumptions about what is
going on in user-space.

GNU/Linux programs typically include large quantities of independently
compiled library code, which is shared between multiple processes (running
the same or different programs). There are great advantages in having the appli-
cation “main program” link to the libraries dynamically when the program is
run, rather than building library code into an independent monolithic binary
when you compile it: To take just two of many arguments, dynamic linking
greatly reduces the size of program binaries both on disk and in memory, and
it means you can fix bugs in libraries just by supplying a new library.

Programs and libraries on disk reside in object files, which contain the
precompiled binary, initialized data, and some management information
(including symbol tables and relocation records) that will be required to join
up the program and its libraries.

There’s a sketch of the virtual memory image of a typical application in
Figure 16.1.

The program consists of multiple quasi-independent link units1—one for
the main program and one for each library it uses.

1. There’s no consensus on what to call one of the individual binaries making up a dynamically
linked program. What we’ve called a “link unit” has been called a dynamic shared object (DSO),
an object, or a module. But that’s nothing to do with a C++ object; and the word “module” is
already used to mean what is built in one go by the compiler. So in this section I’m going to use
the neutral phrase “link unit” to remind you that such a binary is the final thing produced at
link time. The library link unit files are usually marked with a “.so” suffix.
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FIGURE 16.1 Linux program memory image.

Each link unit is loaded into a number of chunks of memory (segments),
many of which have initial data provided by chunks of the object file (sections).
But some chunks of memory—notably, those that hold the stack—are created
by the loader.

In Linux, program code is shared (page by page) between all active pro-
grams that incorporate the same link unit. Among the sharers may be programs
with quite different memory maps; the memory image of the code itself must
work regardless of where the code is located in virtual memory. That is, the code
must be position-independent code or PIC. It’s not uncommon to describe code
as “position-independent” just because the branch and call instructions are all
PC-relative: But Linux PIC code is radically position-independent, because its
data may be anywhere, too. All code and data references must go on working
regardless of where the link unit’s segments end up in memory.
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Consequently, when one link unit’s code calls a function or refers to a piece
of data in another link unit, the function or data address (today’s actual value)
has to be computed by the running program. That’s where the GOT (global
offset table) comes in.

Each piece of code has a GOT, defined in the object file. By the time the
dynamic loader has done its work, the GOT contains a pointer2 to each external
function or data structure referred to by any part of the link unit’s code. The
object file of the link unit has no knowledge about these external addresses:
It has a symbol table and tracks GOT entries by a mapping between symbols and
indexes. So you’ll quite often read that the GOT has an entry for each “external
symbol”—which is true, but can be confusing when you’re staring at a loaded
binary. The dynamic loader reads the object files of both link units, allocates
both link units some memory space, then matches symbols to find the right
external addresses to put in the GOT.

We just said that the kernel didn’t care how applications were built, and in
fact the dynamic loader is not part of the kernel. It is itself a Linux link unit,
and the main program refers to it pretty much like any other shared library.
PIC library-sharing applications start up by running the dynamic loader, which
then patches together the rest of the VM image before calling back to the appli-
cation’s main().

16.1 How Link Units Get into a Program

There are three ways to glue a new link unit into a program:

Brought in when the program is loaded: Each link unit, starting with the
main program (the executable), includes a list of other link units that are
to be loaded into virtual memory before main() is called. That
doesn’t mean the programs are actually read into memory, or even that
virtual memory mappings set up: This is still a virtual memory OS, and
much of the program code or data won’t appear until it’s referenced.

Loaded on first reference to subroutine: The dynamic loader defers loading
some link units (“lazy binding”), provided the link unit is a pure library
whose interface consists entirely of function calls and with no externally
visible data.

The loader does that by setting GOT entries relating to a lazily bound link
unit so they call back to a function in the dynamic loader—a
function whose job is to load the missing link unit, fix up the GOT, and
then return control (carefully) to the newly loaded link unit’s function.

2. That’s potentially an oversimplification. You might put anything in the GOT, so long as it permits
the link unit’s code to call external functions or refer to data.
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Link units that are candidates for lazy binding are identified in the
object file.

Loaded explicitly: The dlopen() routine finds a library link unit and
glues it into the program, building a data structure that includes
pointers to the functions the new program will export.

Such a link unit is working very much like a C++ object (the function
pointers are reminiscent of C++ methods)—that’s why link units are
sometimes called dynamic shared objects.

Most of the time, it doesn’t matter in which order you load the various link
units: It will change the memory layout, but each link unit will work wherever
it ends up.

But it’s possible to build programs where the same symbol is provided by
different link units.3 When that happens, the link unit that loaded first “wins”
and provides the variable.

16.2 Global Offset Table (GOT) Organization

The program build process (I refer to compilation and build-time linking)
defines at least one GOT for each link unit, though it’s perfectly legal for there
to be more than one.4 Each function can find its GOT, because it’s at a known
offset from the function entry point (remember, a link unit really is brought
into memory as one rigid piece, so internal offsets are as the compiler made
them).

Each entry in the GOT is—effectively—an absolute pointer to a piece of
data or function entry point5 defined (implicitly or explicitly) as external by
any function in the link unit using this particular GOT. GOT entries depend on
the layout of link units within the program’s address space and are computed
by the dynamic loader as link units are loaded.

Because the binary image of the code (and read-only data) of a link unit
is really shared in an OS like Linux, we can’t do any address-map dependent
fixups on the code when loading it. But GOTs are part of the data, and each
program has its own copy. The pointers in the GOT may be different for each
program that uses the shared link unit.

3. Sometimes this might just be an error causing the load to fail, but some symbols are specifi-
cally marked as permitting multiple definitions (“first definition loaded wins”) with some safety
restrictions.

4. The use of multiple GOTs—one per C module, usually—is the preferred way to deal with large
link units that overflow the 128-KB GOT size (if the GOT grows bigger than this, compilers and
assemblers have to generate longer code sequences to retrieve pointers from the GOT).

5. In some limited circumstances the compiler might “know” the offset between two data items:
In that case, it can make do with one GOT entry for the two items.
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GOT accesses are frequent, so in PIC code the compiler/linker synthesize
code that keeps the gp register pointing to each function’s GOT. The regis-
ter gp is a good choice for the table base, since this use is analogous to the
GP-relative data idea that led to gp being reserved. Old-fashioned GP-relative
data is inherently incompatible with PIC, so there’s no great conflict.

The GOT pointer must be computed and loaded into gp at the beginning
of each function. That’s slightly tricky—this is PIC code, so we don’t know at
compile time where the GOT will be. But the GOT is part of the same link
unit, so the offset from the function’s own entry point to the GOT is known at
compile time.

It makes this computation easier if a remote function “knows” that it’s been
called by address, since it then has a register that already contains the address
of the function, and that saves effort in computing the pointer to its own GOT.
The Linux/MIPS convention is that all PIC calls use t9 to hold the address of
the called function.

Then a function prologue can compute GP in a single step (not necessarily
a single instruction, though):

entrypoint:
addu gp, t9, GOT - entrypoint

Code using a GOT entry to access data in a different link unit knows only the
slot of the GOT where it should find the pointer: The GOT slots are allocated
when the link unit is linked together, but the pointer stored in the GOT is not
fixed until the other link unit is loaded at program load time. So the compiler
must generate code that does a double-indirect, loading a pointer to the external
data:

load:
lw t1, gp(MYSYMBOL_INDEX)
lw t1, (t1)

store:
lw t1, gp(MYSYMBOL_INDEX)
sw t2, (t1)

call:
lw t9, gp(MYFUNCTION_INDEX)
jalr t9

PIC code runs slower than code using fixed addresses, but the benefits of
shared libraries are important enough to make this a price well worth paying.
We mentioned a couple at the beginning of the chapter, but only to get you
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motivated. The advantages are typical of those resulting from any form of late
binding. A more full list might include:

Smaller binaries: As above, your system binaries don’t need to each carry
a copy of the C library. Large and complex libraries often dwarf simple
applications.

Fix a library and you’ve fixed all dependent applications: Some of the most
complex code in the system is in the libraries, so it’s good to have the
same update cycle as for individual binaries, even though individual
systems may have different sets of applications installed.

Creates new options in providing legacy interfaces: When you want to
obsolete some library or kernel function, you can provide a compatibility
library to reimplement it using the new features.

Library layer insulates applications from kernels: This allows applications
and kernels to evolve separately.

In the end, dynamic library code is a somewhat higher-level development
environment than is offered by statically linked C/C++.

There is a downside, apart from the execution overhead of doing all
external calls and data references through the GOT. With dynamic loading,
applications and libraries are entangled in complex webs of dependencies:
It makes installing new software tricky, and removing existing software from
a system even trickier. A robust library search and version-labeling system is
essential. Earlier Windows systems notoriously suffered “DLL hell,” where dif-
feren applications had incompatible requirements of the same library.

Modern systems (Windows and Linux alike) seem to have constructed
dependency database systems that keep track of dependencies robustly. Dynam-
ically linked code is here to stay, and the memory economy means it is important
to any embedded system with a significant amount of application software.
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A MIPS Multithreading

Multithreading hardware was 2004–2005’s “Next Big Thing” in computers.
Not so in 2006: Virtualization looks like this year’s NBT, a crown it last

held around 1975–1980. The crest of the multithreading hype wave has gone
past, and multithreading still looks pretty important.

So let’s attempt to define what it is, and then why it’s useful. We’ll use “mul-
tithreading” without the hyphen, and use the abbreviation “MT” to refer to the
MIPS32/64 architecture extension (the MT ASE).

A.1 What Is Multithreading?

Athreadisasequenceof instructionsexecutedintheorder theprogrammerintended.
That seems a bit simple, really, though it leaves a “thread” as a thing that

is probably pretty tangled (there are muddied paths following the call tree of
subroutines and loops within loops). But when a conventional CPU takes an
interrupt, that isn’t the same thread (at least, not until and unless the inter-
rupt handler returns). And what operating systems variously call “processes,”
“tasks,” or “jobs” are all separate threads.

You only need to define a thread when you intend to have more than one
(otherwise it’s just the program the CPU is running). It’s easy to see why you
might want more than one thread on a timeshared computer where different
users were impatient to get their programs run.

Sometimes you want a computer to run a single program, but one that must
reconcile competing needs to respond. Some problems are inherently concur-
rent. You can (in theory) write an explicit program using some kind of multiway
select call to wait for one of a number of events, figure out the event, and call the
appropriate subroutine. Or maybe you can invent a concurrent programming
language.

415
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But explicitly concurrent programs are very hard to write, and no
concurrent language ever took off. In the 1970s, research into practical ways
to design, write, and test programs that dealt with concurrent events arrived at
a conclusion. Researchers homed in on the idea of using multiple simple threads
that influence each other only through simple, stylized interfaces.

Furious internecine wars were fought over whether those interfaces should
be based on message passing or something simpler like semaphores: The wars
have long since been abandoned, and everybody won. Modern OSs contain a
variety of communication mechanisms, though different programming com-
munities seem to favor different subsets.

The word thread emerged as a term distinct from “process” in order to free
the thread from other baggage: UNIX processes each had their own address
space, but threads were things that might share an address space. The POSIX
standard 1003.1 (known as “PThreads”) proposed a rich cross-OS program-
ming interface for threads that explicitly share code and data, and PThreads
has been substantially accepted by a wide range of modern operating systems.

Which Resources Do You Need to Run Two Threads at Once?

Two complete CPUs will do it, of course. But that seems a lot: What’s the min-
imum you need?

You can get a good clue about this by looking at the information kept about
each thread by a multithreading OS (on a conventional CPU). Look at a thread
when it’s not running, and you’ll find a PC (the address the thread will execute
from when it next starts up) and saved values of all the programmer-visible reg-
isters. For user-privilege programs on MIPS, that’s the general-purpose regis-
ters and the hi/lo accumulator of the multiplier. The OS will need to keep some
kind of identifier as to which thread is running, as well as a flag to say whether
it’s currently holding kernel privilege (as it will be when executing a system call).
A MIPS OS maintaining multiple address spaces will need the ASID value too,
because it’s used by the hardware when translating addresses.

That’s about it: PC, general-purpose registers, thread ID, kernel mode, ASID.
An OS calls this the thread context, and at a minimum each thread must have
its own copy of those registers and fields.

There’s another angle you can take. If you want someone to buy your mul-
tithreading hardware, it helps if your hardware can run existing software. Dual-
processor x86 PC hardware (particularly the closely related x86 small-server
hardware) has been around for a few years, and Microsoft Windows, Linux,
and other UNIX OSs already know how to exploit that hardware. So when
Intel introduced multithreading in its “Hyperthreading” CPUs, it augmented
the hardware so that a system with one multithreading CPU would run soft-
ware built for a dual-CPU system, unchanged. To do the same thing for MIPS,
you’d need to provide separate copies of every register to each “virtual
processor.”
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That’s two different approaches to multithreading. Which should MIPS
adopt? Before we come to that, let’s take a belated look at why it’s worth
doing at all.

A.2 Why Is MT Useful?

Conventional CPUs in 2005–2006 are hitting the “memory wall.” The time
taken to run an instruction has gone down much faster than the time taken
to access memory. How much faster? Intel’s 32-bit x86 CPUs have gone from
running at 16 MHz in 1985 to about 3 GHz in 2005—200 times faster in 20
years. During that time memory access time has dropped too, but by rather less
than a factor of four, from about 180 ns in 1985 to 50 ns now.1

Roughly speaking, that means a memory read that stopped a CPU for four
cycles in 1985 now stops it for 150 cycles. Vast improvements in caching and
clever CPU designs that run as far as possible ahead of the returning data have
covered up the problem, but the scope for further improvement is limited. It’s
normal for a CPU to spend well over half its time idle, waiting for data from
memory.

Embedded systems don’t run at anything like 3 GHz, but they have simpler
caches and CPU designs. Contemporary embedded systems, too, tend to have
CPUs that are stalled out 50 percentage of the time.

There’s another reason why multithreading hardware might be useful for
embedded systems. If you have some very demanding I/O service requirement, a
thread dedicated to that requirement can respond instantly. You can “park” the
thread reading some value from the I/O system, and as soon as the data is ready
it will leap back to life. There’s no interrupt overhead and—more importantly—
potentially no OS overhead. Who says the I/O thread must run the standard OS
code?

So multithreading might be a good thing. How do we do it? And is it a good
bargain? As usual for embedded systems the biggest cost factors are silicon area
and power consumption.

A.3 How to Do Multithreading for MIPS

RISC CPUs like to leave the software in charge, rather than moving policy
decisions into hardware. RISC principles favor flexible and general-purpose
solutions. That motivates a number of features of MIPS MT:

Expose thread registers to each other: This gives the OS total control over
multithreading. mftr and mttr are privileged instructions (“move

1. Memory bandwidth has risen at a much higher rate, but “Money can buy bandwidth. Latency
requires bribing God.”—in this case, technology stands in for money.
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from/to thread register”) that allow OS software to get at the registers
of a different TC. They’re the basis of all cross-thread initialization and
maintenance.

Start up single-threaded: This respects the principle of least surprise for
bootstrap software. OS or bootstrap software can wake more threads
when it feels ready.

Provide both sorts of multithreading: Both minimal-overhead thread
engines and complete “virtual CPUs” can be mixed and matched. The
basic MT feature is the minimal thread engine, known as a TC (inspired
by “thread context”). If we stopped there, everything in the CPU beyond
the immediate thread context would be shared.

Instead, we permit MT CPUs to replicate everything required to make a
MIPS32/64-compliant CPU. One of these CPU-like sets of registers and
other resources is called a VPE: One or more TCs affiliate to the VPE and
share its registers and resources, and the TC(s) in the VPE make a “virtual
processing element,” which leads to the acronym. A CPU can implement
more than one VPE to produce something that looks (to software) like
multiple CPUs.

MIPS Technologies’ first MT product, the 34-K CPU, can have up to five
TCs distributed at will between two VPEs.

Many things can be shared between the VPEs while leaving them
software-equivalent to a MIPS32 CPU, of course: This is not a real dual
CPU, it only looks like one. The caches, main pipeline, control logic,
arithmetic/logic units, and system interface are all shared. The TLB can
either be hard-partitioned between the VPEs, or shared (the shared-TLB
version involves some localized changes to the OS).

Each instruction being run by a machine has a TC number, which selects
its particular context. Whenever the instruction accesses some state—reads or
writes a general-purpose register, for example—it uses its TC number to extend
the register-number field, which is already defined inside the instruction. An
instruction sees a different set of registers depending on the TC number: It’s
very simple, and it just works.

MIPS MT is not quite that simple, because of the TC/VPE trick mentioned
above. So this instruction might be for TC #5 (it uses general-purpose registers
from the fifth bank) or VPE #1 (it gets CP0 registers from the first bank). Again,
this should just work. What’s more complicated, of course, is to get those CPU
resources working, which can’t simply be reduced to registers. But that’s not
architecture, it’s implementation; you’ll have to read CPU manuals for that stuff.

The MT specification doesn’t require it, but effective MT CPUs need to be
able to change threads very quickly, or time lost in thread changes will eat away
at the potential throughput gain. Other things being equal, it will usually be best
to mix threads on as fine grain as is possible: In a single-issue CPU, that means
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issuing an instruction from a different thread in each clock period so long as
more than one thread is ready.

New CP0 Registers for MT

They come in three groups: those provided for each TC, those provided for each
VPE, and a couple that exist per-CPU. The latter are registers that provide an
inventory of the CPU’s resources (how many TCs? how many VPEs? and so on)
and allow you to share them out; they are not described further here.

The per-TC registers include:

TCHalt: A 1-bit register, write 1 to halt the target. With a target TC
halted, its state is stable and it’s safe to write its registers.

TCRestart: The thread “PC”—when the thread is halted, this is the
address of the first instruction it will run when it next runs. When not
halted, it may not make much sense.

TCStatus: Per-TC “legacy” fields—kernel/user status, ASID, and
instruction set options flags (such as the one that enables floating point).

There’s also a flag to indicate that the instruction the thread stopped
before is in a branch delay slot (in which case TCRestart points at the
preceding branch).

TCBind: Contains the ID of the VPE to which this TC is affiliated (writ-
able in a 34-K family CPU), and a read-only ID for this TC.

TCContext: A pure software read/write register, typically used to store
an OS-specific thread ID.

The per-VPE register VPEControl is for control fields you might reason-
ably change during the running of an OS, while VPEConf0-1 have configura-
tion fields you’d most likely set once and then leave alone.

Exceptions and Interrupts

An exception in a single-threaded MIPS architecture CPU is usually quite
disruptive in the pipeline and is commonly implemented by discarding a lot of
execution state (pipelines get flushed and instructions discarded). An exception
on a MIPS MT machine happens within a thread context—and other threads (at
least those on separate VPEs) expect to continue undisturbed. So you’d expect
there to be some difficulties when we redefine exceptions on a multithreading
machine.

Bear in mind that an OS is a program (a set of threads, in fact). It’s likely
not to matter which TC happens to execute some part of it. As we observed at
the beginning of this appendix, each exception handler is a thread in its own
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right. So to run an exception handler, we need to borrow a TC to interrupt its
thread and run this one instead.

There are two types of exceptions. Interrupts are asynchronous—they
happen for reasons unconnected with any particular instruction. But most other
exceptions are synchronous—they’re associated with a particular instruction.
That’s what we’ll look at first.

Synchronous exception handlers are run by the TC whose instruction caused
the exception. The TC immediately ceases work on its normal thread and starts
fetching instructions from the appropriate exception handler.

The MIPS MT ASE requires that once a TC enters exception state, all the
other TCs within the same VPE are suspended. None of the other TC’s instru-
ctions may be executed until the the exception handler leaves exception mode:
that is, until SR(EXL) is cleared either by the eret at the end of the exception
handler or as a result of the exception handler branching off to some less restric-
tively coded part of the OS. It’s already good practice for exception handlers to
minimize the amount of time spent in exception mode, and most OS code does
that.

But if your application needs to maximize concurrency, you should
consider minimizing exceptions—you may be able to use a thread blocked on
an ITC access or yield condition instead. And, of course, arrange that excep-
tion handlers (as soon as they can) save the state necessary that they can drop
back out of exception mode.

MIPS MT and Interrupts

In the MIPS architecture, interrupt management is by CP0 registers (in
particular, Cause and SR). Those registers are replicated per-VPE, not per-TC,
so interrupt masking and steering are managed per-VPE. Even the interrupt
signal wiring into the core is per-VPE.

Each interrupt input may be connected to just one VPE or to all of them,
so which VPE receives an interrupt comes down to how the system is wired
up, but possibly also to the software configuration. If you connect and unmask
an interrupt on multiple VPEs, any number of them may take the interrupt
exception—you probably don’t want that to happen, so either don’t connect or
don’t enable some of them.

The interrupt exception may be taken by any available TC associated with
the VPE.

The MIPS architecture already provides multiple ways to refuse an
interrupt exception. An interrupt to any thread from this VPE can be prevented
by exception mode, a global interrupt-enable flag (which may be zero), and per-
interrupt mask bits: that’s SR(EXL), SR(IE), and SR(IM)—and that list is not
exhaustive.

The MIPS MT specification adds yet another reason not to take an interrupt.
You can now set a new per-TC CP0 register field TCStatus(IXMT) (interrupt
exempt), which will prevent the particular TC from being used for an interrupt
exception.
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Thread Priority Hints

Some application developers express interest in being able to steer the provision
of CPU bandwidth to one thread rather than another. The MIPS MT specifica-
tion provides for this, though it doesn’t say how it should be done. A scheduling
policy manager (often PM) is a piece of logic outside the CPU, customizable for
a particular application, that generates a 2-bit priority for each TC. Inside the
core, a runnable higher-priority TC will always be preferred over a runnable
lower-priority one.

It’s too early to comment on how successful developers will be at using this
scheme.

User-Privilege Dynamic Thread Creation—the Fork Instruction

An interesting but commercially unexplored application of multithreading
hardware is to provide another way of discovering and exploiting parallelism
in sequential algorithms. For example, a loop might be optimized by having
two threads running its odd- and even-numbered iterations, respectively.

If that’s to be done under the aegis of a protected OS, this requires a very
efficient mechanism for firing off a new thread on demand. MIPS MT’s fork
instruction provides such a mechanism.

So fork d,s,t is a user-privileged instruction. If all is well, it starts a
thread on a ready-to-fork TC, which starts execution at the instruction pointed
to by s. The child thread’s d receives the value from the parent’s t.

The OS enables this by maintaining a pool of ready-to-fork but otherwise
idle TCs (they’re distinguished by a flag bit TCStatus(DA)). After the new
thread has done its work in the application, it terminates and returns the TC to
the pool using a yield $0 instruction.2

fork is a forward-looking feature: At the time of writing, no OS yet sup-
ports such a pool of TCs. It’s there so that the MIPS MT architecture can be well
placed as multithreading ideas spread.

A.4 MT in Action

It’s early days yet, but what are people doing with multithreading and, particu-
larly, with MIPS MT?

Broadly speaking, there are two different kinds of systems being explored
and/or developed. One seeks to use modified standard SMP OS code (perhaps
quite lightly modified) to provide something well suited to provide multithread-
ing efficiency to a relatively conventional multiple-thread workload; the other
seeks to build “underneath” the OS to provide a low-level, ultra-responsive
“real-time” environment for novel applications.

2. yield fed with a nonzero value from its source register operand has a quite distinct application.
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SMP Linux

It’s possible to port an SMP Linux to an MT CPU with two or more TCs in the
role of the SMP system’s CPUs. If you’ve got an application that already uses
the Linux implementation of the PThreads threading API (it’s called NPTL),
then you can just drop that application onto such a Linux and have it exploit
multithreading.

SMP systems need locks and semaphores that work between the CPUs, and
for MIPS systems, those are built using the load-linked/store-conditional
instruction pair (ll/sc, described in section 8.5.2). So this wouldn’t work
unless the MT CPU preserved the ll/sc semantics between TCs: It does. The
34-K family hardware does that by keeping track of an address used by an ll
issued by any TC, and breaking the link if any other TC’s store modifies an
address sharing the same doubleword. The link bit is also broken if some man-
agement software takes over the TC and reschedules it by writing its TCRestart
register.

It’s very easy to do the SMP port if the TCs are in separate VPEs, because a
TC alone in a VPE, by design, looks like a separate CPU. But MIPS Technologies
has also demonstrated it using TCs in the same VPE. There are some difficulties
here but they appear not to cause much loss of performance.

It’s important to note, though, that only some applications benefit directly.
You need an application that uses the Linux environment, exploits threading,
and where for significant periods of time there are not only two threads running,
but two threads that divide up the CPU’s efforts fairly evenly between them.

Highly Responsive Programming with MT

Another approach being taken by MT pioneers is to use dedicated TCs to
provide close-to-hardware intelligence, whose response time can be independ-
ent of whatever might be going on in the OS running on another TC in the
other VPE. Such a system promises the best of both worlds: a convenient pro-
gramming environment for the high-level code, but instant response to events
that make the hardware simpler at the low end.

Low-end code on such a system is much in need of efficient synchroniza-
tion mechanisms. Even an I/O read is snail-paced compared with the execution
speed of a microprocessor. MIPS MT defines two mechanisms: yield-on-signal
and gating storage.

The yield instruction, as hinted above, has a double life. When it’s not
doing the opposite of fork to provide user-privilege thread termination, it
provides a way to cause a thread to wait for a hardware event, defined as the
assertion of an external signal sampled into the CPU.

The 34-K CPU can sample any of 15 external signals. A yield instruction
waits until one of any selection of them is asserted, based on an input argument
register whose value is interpreted as a 15-bit vector: A “1” bit makes it sensitive
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to the correspondingly numbered input signal. A low-level thread waiting on a
yield instruction starts instantly when one of its signals is asserted.

But you might want a synchronization mechanism that also transfers data
and is useful between software threads. In that case, the gating storage interface
helps. MIPS MT defines gating storage as a special physical address region where
both load and store instructions become blocking. A thread that reads or writes
a gating storage location blocks on that load or store until data is successfully
transferred. Moreover, an incomplete operation can be terminated (causing any
waiting thread to receive an exception).

The gating storage interface is suitable for hardware interfaces where a high-
speed data flow may be interrupted by error or end-of-block conditions.

The 34-K CPU design is licensed together with a gating storage system called
ITC (for interthread communication memory): It provides software-to-
software communication using “empty/full” storage or short FIFOs. For more
information, look at the CPU manuals from MIPS Technologies.
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Appendix

B
Other Optional
Extensions to the MIPS
Instruction Set

B.1 MIPS16 and MIPS16e ASEs

MIPS16 is an optional instruction set extension that can reduce the size of
binary programs by 30 percent to 40 percent. MIPS16e is the name for the

slightly enhanced version of the original MIPS16 instruction set used on CPUs
that already conform to MIPS32/64. MIPS16 is targeted at applications where
code size is a major concern—which mostly means very low cost systems. While
it will only be used in certain implementations, it is a multivendor standard:
MIPS Technologies, LSI, NEC, and Philips have all produced CPUs that support
MIPS16.

We said back in section 1.2 that what makes MIPS binaries larger than those
for other architectures is not that MIPS instructions do less work, but that they
are larger—each is four bytes in size, in contrast to a typical average of about
three bytes for some CISC architectures.

MIPS16 adds a mode in which the CPU decodes fixed-size 16-bit instruc-
tions. Most MIPS16 instructions expand to one regular MIPS32/64 instruction,
so it’s clear that this will be a rather restricted subset of instructions. The trick
is to make the subset sufficient to encode enough of the program efficiently to
make a substantial impact on the overall program size.

Of course, 16-bit instructions don’t make this a 16-bit instruction set;
MIPS16 CPUs are real MIPS CPUs with either 32- or 64-bit registers and
operations that work on the whole of those registers.

MIPS16 is far from a complete instruction set—there’s neither CPU con-
trol nor floating-point instructions, for example.1 But that’s OK, because every

1. MIPS did not invent the idea of providing an alternate half-size version of just part of the
instruction set; Advanced RISC Machine’s Thumb version of its ARM CPU was out first.
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MIPS16 CPU must also run a complete MIPS ISA. You can run a mixture of
MIPS16 and regular MIPS code; every function call or jump-register instruction
can change the mode.

In MIPS16 it’s convenient and effective to encode the mode as the least
significant bit of an instruction address. MIPS16 instructions have to be even
byte aligned, so bit 0 has no role as part of the instruction pointer; instead, every
jump to an odd address starts MIPS16 execution, and every jump to an even
address returns to regular MIPS. The target address of the MIPS subroutine-
call instruction jal is always word aligned, so a new instruction, jalx, hides
the mode change in the instruction.

To crush the instruction to half size we allocate only 3 bits to choose a reg-
ister for most instructions, allowing free access to only eight general-purpose
registers; also, the 16-bit constant field found in many MIPS instructions gets
squeezed, often to 5 bits. Many MIPS16 instructions only specify two registers,
not three; in addition, there are some special encodings described in the next
section.

B.1.1 Special Encodings and Instructions in the MIPS16 ASE

MIPS16 has two particular weaknesses that will add size back to the program;
the 5-bit immediate field is inadequate to build constants, and there’s not
enough address range on load/store operations. Three new kinds of instructions
and one extra convention help out.

extend is a special MIPS16 instruction consisting of a 5-bit code and an
11-bit field, which is concatenated with the immediate field in the following
instruction to allow an instruction pair to encode a 16-bit immediate. It appears
as an instruction prefix in assembly language.

Loading constants takes extra instructions even in regular MIPS and would
be a huge burden in MIPS16; it’s quicker to put the constants into memory
and load them. MIPS16 adds support for loads relative to the instruction’s own
location (PC-relative loads), allowing constants to be embedded in the code
segment (typically, just before the start of a function). These are the only
MIPS16 instructions that don’t correspond exactly to a normal MIPS
instruction—MIPS has no PC-relative data operations.

Many MIPS load/stores are directed at the stack frame, and $29/sp is prob-
ably the most popular base register. MIPS16 defines a group of instructions
that implicitly use sp, allowing us to encode a function’s stack frame references
without needing a separate register field.

MIPS load instructions always generate a full 32-bit address. Since load-
word instructions are only valid for an address that is a multiple of four, the two
least significant bits are wasted. MIPS16 loads are scaled: The address offset is
shifted left according to the size of the object being loaded/stored, increasing
the address range available from the instruction.
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As an additional escape mechanism, MIPS16 defines instructions that allow
it to do an arbitrary move between one of the eight MIPS16-accessible registers
and any of the 32 MIPS general registers.

B.1.2 The MIPS16 ASE Evaluated

MIPS16 is not a suitable language for assembly coding, and we’re not going to
document it here. It’s intended for compilers. Most programs compiled with
MIPS16 seem to shrink to 60 percent to 70 percent of their MIPS size, which
is more compact than 32-bit CISC architectures, similar to ARM’s Thumb and
reasonably competitive with pure 16-bit CPUs.

There’s no such thing as a free lunch, however; a MIPS16 program will
probably compile into 40 percent to 50 percent more instructions than would be
required for MIPS. That means that running a program through the CPU core
will take 40 percent to 50 percent more clock cycles. However, low-end CPUs
are usually largely memory limited, not core limited, and the smaller MIPS16
program requires less bandwidth to fetch and will promote lower cache miss
rates. Where the caches are small and program memory is narrow, MIPS16 will
close the gap on and possibly overhaul regular MIPS code.

Because of the performance loss, MIPS16 code is not attractive in comput-
ers with large memory resources and wide buses. That’s why it’s an optional
extension.

At the upper end of its range, MIPS16 will find itself in competition with
software compression techniques. A regular MIPS program compressed into
ROM storage with a general-purpose file compression algorithm will be smaller
than the unencoded MIPS16 equivalent and a little larger than the compressed
MIPS16 equivalent;2 if your system has enough volatile memory to be able to
use ROM as a file system and to decompress code into RAM for execution,
software decompression of a full ISA will most likely give you better overall
performance.

There’s also a clear trend toward writing systems that make extensive use
of code written in a byte-coded interpreted language (Java or its successors)
for the bulk of code that is not time critical. That kind of intermediate code is
very small, much more efficient than any machine binary; if only the interpreter
and a few performance-critical routines are left in the native machine ISA, a
tighter instruction set encoding will only affect a small part of the program.
Of course, interpreters (particularly for Java) may themselves be quite large,
but the inexorable increase in application complexity should soon cause that to
dwindle in importance.

I expect to see MIPS16 continuing in use in a small range of power-, size-,
and cost-constrained systems. It was worth inventing and is worth maintaining,
because some of these systems are likely to be produced in huge volumes.

2. Tighter encodings have less redundancy for a compression algorithm to exploit.
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B.2 The MIPS DSP ASE

The MIPS DSP ASE aims to overcome the perceived deficiencies of conven-
tional instruction sets when confronted by multimedia applications. Jobs like
encoding/decoding audio for soft modem or streaming applications or image/
video compression/decompression use mathematically based algorithms that
were once seen as the preserve of special-purpose digital signal processors. At
the computational level, multimedia tasks like this often involve the repeated
application of the same operation to large vectors or arrays of data.

Inside a register-based machine, one good way to accelerate vector opera-
tions is to pack multiple data items into a single machine register and perform
a register-to-register instruction that does the same job on each field of each
of its registers. This is a very explicit form of parallel processing called SIMD
(for “single instruction, multiple data”). The DSP ASE includes quad-byte and
paired-half SIMD operations.

It’s not just about vectors, and the DSP ASE has a bundle of other
features:

Fixed-point fractional data types: It is not yet economical (in terms of
either chip size or power budget) to use floating-point calculations in
these contexts. DSP applications use fixed-point fractions. Such a frac-
tion is just a signed integer but interpreted as the value of that integer
divided by some power of 2. A 32-bit fractional format where the implicit
divisor is 216 (65,536) would be referred to as a Q15.16 format; that’s
because there are 16 bits devoted to fractional precision and 15 bits to
the whole number range (the highest bit does duty as a sign bit and isn’t
counted).

With this notation, Q31.0 is a conventional signed integer, and Q0.31 is a
fraction representing numbers between−1 and 1 (well, nearly 1). It turns
out that Q0.31 is the most popular 32-bit format for DSP applications,
since it won’t overflow when multiplied (except in the corner case where
−1 × −1 leads to the just-too-large value 1). Q0.31 is often abbreviated
to Q31.

The DSP ASE provides support for Q31 and Q15 (signed 16-bit)
fractions.

Saturating arithmetic: It’s not practicable to build in overflow checks to
DSP algorithms—they need to be too fast. Clever algorithms may be
built to be overflow-proof; but not all can be. Often the least worst thing
to do when a calculation overflows is to make the result the most pos-
itive or most negative representable value. Arithmetic that does this is
called saturating—and quite a lot of operations in the DSP ASE saturate
(in many cases there are saturating and nonsaturating versions of what
is otherwise the same instruction).
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Multiplying fractions: If you multiply two Q31 fractions by reusing a
full-precision integer multiplier, then you’ll get a 64-bit result, which
consists of a Q62 result with (in the very highest bit) a second copy of
the sign bit. This is a bit peculiar, so it’s more useful if you always do
a left-shift-by-1 on this value, producing a Q63 format (a more natural
way to use 64 bits). Q15 multiply operations that generate a Q31 value
have to do the shift-left too.

Rounding: Some fractional operations implicitly discard less significant
bits. But you get a better approximation if you bump the result by one
when the discarded bits represent more than a half of the value of a 1 in
the new LS position. That’s what the DSP ASE means by rounding.

Multiply-accumulate sequences with choice of four accumulators: (With
fixed-point types, sometimes saturating).

Modern MIPS32 CPUs like MIPS Technologies’ 24-K CPU already have
quite a slick integer multiply-accumulate operation, but it’s not so effi-
cient when used for fractional and saturating operations.

The sequences are made more usable by having four 64-bit result/
accumulator registers, ac0-3. The old MIPS multiply-divide unit has
just one, accessible as the hi/lo registers. The new ac0 is just the old
hi/lo, with a new name.

The DSP instruction set is nothing like the regular and orthogonal MIPS32
instruction set. It’s a collection of special-case instructions, in many cases aimed
at the known hot-spots of important algorithms.

For a summary of the instructions see the programmer’s manuals for the
34-K or 24-K CPUs, published by MIPS Technologies.

B.3 The MDMX ASE

MDMX is a much older attempt than the DSP ASE at providing DSP-like SIMD
media operations within a MIPS instruction set. MDMX was developed and
promoted by SGI and announced in 1997.

There are substantial differences of approach. MDMX chose to handle
media data in the 64-bit registers of the floating-point unit, while the DSP
ASE uses the general-purpose registers and much of it is built as an extension
to the integer multiply unit. MDMX’s choice is probably better for ultimate
performance and programming convenience, but it costs more silicon.

The introduction of the DSP ASE provides another reason to doubt that
MDMX will achieve significant use in real applications, so we won’t describe it
further here. If there’s ever a third edition of this book, perhaps this is a mistake
we’ll have to correct.
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$f0–$f31 registers: The 32 general-purpose 32-bit floating-point registers.
In MIPS I (32-bit) CPUs, only even-numbered registers can be used for arith-
metic (the odd-numbered registers hold the low-order bits of 64-bit, double-
precision numbers).

$n register: One of the CPU’s 32 general-purpose registers.

a0–a3 register: Aliases for CPU registers $4–$7, conventionally used for pass-
ing the first four words of the arguments to a function.

ABI (application binary interface): A particular standard for building pro-
gram binaries that in turn is supposed to guarantee correct execution on a con-
forming environment. MIPS32 CPUs generally use a standard known as o32,
while for 64-bit operation there’s a choice of n32 and n64. Many embedded
systems rely on only a small subset of the whole ABI.

accumulator: A register specially designated to capture the result of repeated
add/subtract operations. In the MIPS architecture, the multiply unit result
registers hi/lo form an accumulator.

address regions: Refers to the division of the MIPS program address space
into regions called kuseg, kseg0, kseg1, and kseg2. See under individual region
names.

address space: The whole range of addresses as seen by the application pro-
gram. Programs running under a protected OS have their addresses checked
for validity and translated. Since such an OS can run many applications con-
currently, there are many address spaces.

Alchemy Semiconductor: A 1999 start-up company seeded by key Strong-
ARM designers leaving DEC, with a mission to make low-power, medium-
performance, highly integrated MIPS microprocessors. Their success was
predicated on an explosion in “pocket computers,” which didn’t really happen.
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In 2002 Alchemy became part of AMD and in 2006 part of Raza. The AU1xxx
product line is still available for embedded applications.

Algorithmics: The U.K. company, specializing in MIPS technology and tools,
of which I am a partner.

alignment: Positioning of data in a memory with respect to byte-address
boundaries. Data items are called naturally aligned if they start on an address
that is zero modulo their own size. MIPS CPUs require that their machine-
supported data objects are naturally aligned; hence, words (four bytes) must be
on four-byte boundaries, and a floating-point double datum must be on an
eight-byte boundary.

alloca: C library function returning a memory area that will be implicitly freed
on return from the function from which the call is made.

Alpha: The range of RISC CPUs made by Digital Semiconductor; it is the near-
est relative to MIPS.

ALU (arithmetic/logic unit): A term applied to the part of the CPU that does
computational functions.

AMD: A long-standing microelectronics company prominent around 2004 for
building better x86 CPUs than Intel. They’re in here because they have a MIPS
embedded CPU line, acquired as part of Alchemy Semiconductor (see above).

analyzer: See logic analyzer.

Apache group (SVR4.2): An industry group of suppliers of MIPS-architecture
UNIX systems that cooperated on a standard version of the UNIX System
V Release 4.2 operating system and the MIPS ABI standard.

API (application program interface): A procedural interface to some software
function, typically presented as standardized C/C++ function calls. It’s a great
idea, usually spoiled by the fact that capturing useful behavior behind clean
interfaces is a very difficult art.

architecture: See instruction set architecture.

archive: Alternative name for an object code library.

argument: In C terminology, a value passed to a function. Often called a param-
eter in other languages. C arguments are parameters passed by value, if that
helps.

ARM: The U.K.-based company that licenses microprocessor cores to the ARM
architecture. The ARM architecture is almost RISC, though its initial design
trade-offs favored circuit simplicity over pipeline convenience. However, its very
simplicity helped ARM (the company) to be the first viable supplier of 32-bit
synthesizable core CPUs.

ASCII: Used very loosely for the character encoding used by the C language.
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ASE: An application-specific extension to the MIPS architecture. These are
optional extensions defined in add-ons to the MIPS32/64 base architecture. The
presence of an ASE is marked by a flag defined in MIPS32/64, usually a field in
one of the Config CP0 registers.

ASIC (application-specific integrated circuit): A chip specially designed or
adapted for use in a particular circuit.

ASIC-core CPU: See core CPU.

ASID: The address space ID maintained in the CPU register EntryHi. Used
to select a particular set of address translations: Only those translations whose
own ASID field matches the current value will produce valid physical addresses.

assembler, assembly code: Assembler code (sometimes called assembly code
or assembly language) is the human-writable form of a computer’s machine
instructions. The assembler is the program that reads assembly language and
translates it to an executable program, probably through an interim object code.

associative store: A memory that can be looked up by presenting part of the
stored data. It requires a separate comparator for each data field, so large asso-
ciative stores use up prodigious amounts of logic. The MIPS TLB, if fitted, uses
a fully associative memory with between 32 and 64 entries.

associativity: See cache, set-associativity.

asynchronous logic: An asynchronous circuit is one that is not organized
around the transitions of one or a few clock signals. See synchronous logic.

ATMizer: A component made by LSI Logic for ATM network interfacing; it
that has an internal MIPS CPU as just one component inside.

atomic, atomically, atomicity: In computer science jargon, a group of opera-
tions is atomic when either all of them happen or none of them do.

backtrace: See stack backtrace.

BadVAddr register: CPU control register that holds the value of an address
that just caused a trap for some reason (misaligned, inaccessible, TLB miss, etc.).

barrier, hazard: See hazard barrier.

barrier, memory: See entry on the sync instruction.

BAT: An (almost obsolete) option for reusing program memory regions in a
MIPS CPU that has no memory-mapping hardware (TLB).

bcopy: C library function to copy the contents of a chunk of memory.

benchmark: A program that can be run on many different computers, with a
view to finding something about their relative performance. Benchmarks have
evolved from fragments of code intended to measure the speed of some very
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specific task to large suites, which should give some guidance as to the speed at
which a system handles common applications.

Berkeley UNIX: See BSD UNIX.

BEV (boot exception vectors): A bit in the CPU status register that causes traps
to go through a pair of alternate vectors located in uncached (kseg1) mem-
ory. The locations are close to the reset-time start point so that they can both
conveniently be mapped to the same read-only memory.

bias: See floating-point bias.

BiCMOS: A particular technology for building chips, mixing dense and cool
CMOS transistors for internal logic with faster and electrically quieter bipolar
transistors for interface. It was in vogue for CPUs in the late 1980s, but nobody
used it with any great success.

big-endian: Describes an architecture where the most significant part of a
multibyte integer is stored at the lowest byte address; see section 10.2.

bitfield: A part of a word that is interpreted as a collection of individual bits.

block size: See cache line size.

blocking: An operation that stops execution until it completes, the opposite of
nonblocking.

bootstrap: A program or program fragment that is responsible for starting up
from a condition where the state of the CPU or system is uncertain.

branch: In the MIPS instruction set, a PC-relative jump.

branch and link: A PC-relative subroutine call.

branch delay slot: The position in the memory-stored instruction sequence
immediately following a jump/branch instruction. The instruction in the
branch delay slot is always executed before the instruction that is the target of
the branch. It is sometimes necessary to fill the branch delay slot with a nop
instruction.

branch optimization: The process (carried out by the compiler, assembler, or
programmer) of adjusting the memory sequence of instructions so as to make
the best use of branch delay slots.

branch penalty: Many CPUs pause momentarily after taking a branch, because
they have fetched instructions beyond the branch into their pipeline and must
backtrack and refill the pipeline. This delay (in clock cycles) is called the branch
penalty. It’s zero on short-pipeline MIPS chips, but the two-clock-cycle branch
penalty on the long-pipeline R4000 was a significant factor in reducing its
efficiency.
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branch prediction: A CPU implementation technique where simple logic
working at the front end of the pipeline identifies branch instructions and
guesses the branch target. The fetch stages of the pipeline then follow the guess,
rather than always prefetching sequentially. The CPU needs some mechanism
to back out of the guess when it turns out to be wrong.

It turns out that branch prediction works very well, for an acceptable level
of complexity, and it’s employed in all but the simplest 32-bit CPUs.

BrCond3-0: CPU inputs that are directly tested by the coprocessor conditional
branch instructions.

breakpoint: When debugging a program, a breakpoint is an instruction posi-
tion where the debugger will take a trap and return control to the user. Imple-
mented by pasting a break instruction into the instruction sequence under test.

Broadcom Corporation: A prominent manufacturer of chips for computer
networking, mentioned here because own it and produces the SB12xx range of
64-bit MIPS CPUs, typically integrated with many useful networking interfaces.
The SB-12xx designs originated with SiByte, see below.

BSD UNIX: The Berkeley Software Distribution was a variant of the UNIX
operating system originally on the DEC VAX minicomputer. BSD was the first
variant of UNIX to feature a full 32-bit virtual memory kernel and was the basis
for Sun’s original OS. After a protracted argument, BSD version 4.4 was released
as open source (but the argument went on long enough to spark the develop-
ment of Linux as a successor kernel). It’s most modern direct descendant is
Apple’s OS X.

BSS: In a compiled C program, the chunk of memory that holds variables
declared but not explicitly initialized. Corresponds to a segment of object code.
Nobody seems to be able to remember what BSS ever stood for.

Most C compilation systems use the “.bss” name for the data area to which
global variables are assigned that have not been explicitly initialized.

burst read cycles: MIPS CPUs (except for some very early parts) refill their
caches by fetching more than one word at a time from memory (four words is
common) in a burst read cycle.

byte: An 8-bit datum.

byte order: Used to emphasize the ordering of items in memory by byte address.
This seems obvious, but it can get confusing when considering the constituent
parts of words and halfwords.

byte-swap: The action of reversing the order of the constituent bytes within
a word. This may be required when adapting data acquired from a machine of
different endianness.

C preprocessor: The program cpp, typically run as the first pass of the C com-
piler. cpp is responsible for textual substitutions and omissions. It processes
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comments and the useful directives that start with a “#”, like #define,
#include, and #ifdef. Despite its association with C, it is a general-purpose
macro language, which can be, and often is, used with other languages. In this
book, its important non-C application is to preprocess assembly language pro-
grams.

C++: A compiled language retaining much of the syntax and appearance of C,
but offering a range of object-oriented extensions.

cache: A small auxiliary memory, located close to the CPU, that holds copies
of some data recently read from memory. MIPS caches are covered extensively
in Chapter 4.

cache, direct-mapped: A direct-mapped cache has, for any particular loca-
tion in memory, only one slot where it can store the contents of that location.
Direct-mapped caches are particularly liable to become inefficient if a program
happens to make frequent use of two variables in different parts of memory
that happen to require the same cache slot; however, direct-mapped caches are
simple, so they can run at high clock rates. Perhaps more importantly, a direct-
mapped cache requires many less wires to connect its controller and storage,
which makes direct-mapped caches a natural choice for an off-chip cache.

Direct-mapped caches are now rarely encountered in even the simplest
CPUs.

cache, duplicate tags: In cache-coherent multiprocessors, the bus interface
controller must often look at the CPU’s cache—specifically, at the cache tags—
to check whether a particular bus transaction should interact with the data cur-
rently in the cache. Such accesses are costly, either in delays to the CPU if the
bus interface time-slices the tags with the CPU or in hardware and interlocks if
the tags are dual ported. It’s often cheaper to keep a second copy of the cache
information the bus interface is interested in, updated in parallel with the main
cache—the events that cause either to change are bus-visible anyway. The dupli-
cate tags don’t need to be perfect to be useful; if they allow the bus interface to
avoid accessing the CPU’s tags in a high proportion of cases, they’ll still make
the system more efficient.

cache, physical-addressed: A cache that is accessed entirely by using physical
(translated) addresses. Early MIPS CPU caches, and all MIPS L2 caches, are like
this.

cache, set-associative: A cache that has more than one place in the cache where
data from a particular memory location may be stored. You’ll commonly see
two-way set-associative caches, which means there are two cache slots available
for any particular memory data. In effect, there are two caches, searched simul-
taneously, so the system can cope with a situation where two frequently accessed
items are sitting at the same cache index.

A set-associative cache requires wider buses than a direct-mapped cache and
cannot run quite as fast. Early RISCs used direct-mapped caches to save pins
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on the external cache. Although the wide buses are not much of a problem for
on-chip caches, some early integrated CPUs still had direct-mapped caches to
boost the clock frequency. These days, set-associative on-chip caches are usually
preferred for their lower miss rate.

cache, snooping: In a cache, snooping is the action of monitoring the bus
activity of some other device (another CPU or DMA master) to look for
references to data that are held in the cache. Originally, the term “snooping”
was used for caches that could intervene, offering their own version of the data
where it was more up-to-date than the memory data that would otherwise be
obtained by the other master; the word has come to be used for any cache that
monitors bus traffic.

cache, split: A cache that has separate caches for instruction fetches and for
data references.

cache, write-back: A D-cache in which CPU write data is kept in the cache
but not (for the time being) sent to main memory. The cache line is marked as
“dirty.” The data is written back to main memory either when that line in the
cache is needed for data from some other location or when the line is deliber-
ately targeted by a write-back operation.

cache, write-through: A D-cache in which every write operation is made
simultaneously to the cache (if the access hits a cached location) and to mem-
ory. The advantage is that the cache never contains data that is not already in
memory, so cache lines can be freely discarded.

Usually, the data bound for memory can be stored in a write buffer while the
memory system’s (relatively slow) write cycle runs, so the CPU does not have
to wait for the memory write to finish.

Write-through caches work very well as long as the memory cycles fast
enough to absorb writes at something a little higher than the CPU’s average
write rate. That’s rare in modern systems.

cache aliases: In a virtual-memory OS, you can sometimes have the same data
mapped at different locations. This can happen with data shared between two
tasks’ distinct address spaces or with data for which there is a separate applica-
tion and kernel view.

Now, many MIPS CPUs use program (virtual) addresses to index the
cache—it saves time to be able to start the cache search in parallel with translat-
ing the address. But if different program addresses can access the same data, we
could end up with the same data in the cache at two locations—a cache alias. If
we then start writing the locations, that’s going to go horribly wrong.

Cache aliases turn out to be avoidable. The paged address translation used
in MIPS CPUs means that at least 12 low-order addresses are unchanged by
translation, and it turns out that you only use about 15 low-order address bits
to index the biggest likely cache. Kernel software needs to be careful, when



438 MIPS Glossary

generating multiple different addresses for a page, that the pages are allocated
to program addresses where bits 12–15 are the same.

cache coherency: The name for that state of grace where the contents of your
cache will always deliver precisely what your program and the rest of the system
has stored into the cache/memory combination. Many complex techniques and
hardware tricks are deployed in the search for coherency; older MIPS CPUs for
“servers” (like R4000SC or R10000) have clever features in the cache for this. But
such technology is not much used outside the world of large server computers,
as yet.

cache flush: A somewhat ambiguous term; it is worth avoiding. It is never quite
clear whether it means write-back, invalidate, or both.

cache hit: What happens when you look in the cache and find what you were
looking for.

cache index: The cache index is the part of the address that is used to select the
cache location in each set.

cache invalidation: Marks a line of cache data as no longer to be used. There’s
always some kind of valid bit in the control bits of the cache line for this purpose.
It is an essential part of initialization for a MIPS CPU.

cache line size: Each cache slot can hold one or more words of data, and the
chunk of data marked with a single address tag is called a line. Big lines save tag
space and can make for more efficient refill, but big lines waste space by loading
more data you don’t need.

The best line size tends to increase as you get further from the CPU and for
big cache miss penalties. MIPS I CPUs always had one-word data cache lines,
but later CPUs tend to favor four or eight words.

cache miss: What happens when you look in the cache and don’t find what
you are looking for.

cache miss penalty: The time the CPU spends stalled when it misses in the
cache, which depends on the system’s memory response time.

cache profiling: Measuring the cache traffic generated when a particular
program runs, with a view to rearranging the program in memory to mini-
mize the number of cache misses. It is not clear how practicable this is, except
for very small programs or sections of program.

cache refill: The memory read that is used to obtain a cache line of data after a
cache miss. This is first read into the cache, and the CPU then restarts execution,
this time hitting in the cache.

cache set: One chunk of a set-associative cache.

cache simulator: A software tool used for cache profiling.
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cache tag: The information held with the cache line that identifies the main
memory location of the data.

cache write-back: The process that takes the contents of a cache line and copies
them back into the appropriate block of main memory. It’s usually performed
conditionally, because cache lines have a “dirty” flag, which remembers when
they’ve been written since being fetched from memory.

cacheable: Used of an address region or a page defined by the memory trans-
lation system.

CacheErr register: CPU control (coprocessor 0) register in R4000 CPUs and
descendants, full of information for analyzing and fixing cache parity/ECC
errors.

cacheop: The MIPS architecture provides a multipurpose cache instruction
used to initialize and manipulate cache contents.

callee: In a function call, the function that is called.

caller: In a function call, the function where the call instruction is found and
where control returns afterward.

Cause register: CPU control register that, following a trap, tells you which kind
of trap it was. Cause also shows you which external interrupt signals are active.

Cavium Networks: Cavium’s network-specialized computer chips, launched
in 2006, are called Octeon. Each chip contain multiple MIPS64 CPUs.

ceiling: A floating-point-to-integer conversion, rounded to the nearest integer
that is as least as positive. Implemented by the MIPS instruction ceil.

char: C name for a small quantity used to hold character codes. In MIPS CPUs
(and practically always, nowadays) this is a single byte.

CISC: An acronym used to refer to non-RISC architectures. In this book, we
mean architectures like the DEC VAX, Motorola 680x0, and Intel x86 (32-bit
version). All these instruction sets were invented before the great RISC discov-
ery, and all are much harder than a RISC CPU to execute fast.

clock cycle: The period of the CPU’s clock signal. For a RISC CPU, this is the
rate at which successive pipeline stages run.

CMOS: The transistor technology used to make all practical MIPS CPUs.
CMOS chips are denser and use less power per transistor than any other kind,
so they are favored for leading-edge integration. With CPUs, the ability to put
a lot of circuitry into a small space has proven to be the key performance factor,
so all fast CPUs are now CMOS.

coherency: See cache coherency.
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Compare register: CPU control register provided on CPUs for implementing
a timer. Some very old MIPS CPUs did not provide this, but probably not any
you’ll ever meet.

Config register: CPU control register for configuring basic CPU behavior,
standardized on MIPS32/64 CPUs. It has been somewhat standardized since
MIPS III.

console: The putative I/O channel on which messages can be sent for the user
and user input can be read.

const: C data declaration attribute, implying that the data is read-only. It will
often then be packed together with the instructions.

Context register: CPU control register seen only on CPU types with a TLB.
Provides a fast way to process TLB misses on systems using a certain arrange-
ment of page tables.

context switch: The job of changing the software environment from one task
to another in a multitasking OS.

coprocessor: Some part of the CPU, or some other closely coupled machine
part, that executes some particular set of reserved instruction encodings. This
is a MIPS architecture concept that has succeeded in separating optional or
implementation-dependent parts of the instruction set and thus reducing the
changes to the mainstream instruction set. It’s been fairly successful, but the
nomenclature has caused a lot of confusion.

coprocessor condition: Every coprocessor subset of special instructions in the
MIPS architecture gets a single bit for communicating status to the integer CPU,
tested by a bcxt/bcxf instruction. See Chapter 3.

coprocessor conditional branches: The MIPS architecture’s coprocessors can
provide one or more condition bits, and all coprocessors get branches such as
bc1t label that branch according to the sense of the condition.

coprocessor 0: The (rather fuzzily defined) bits of CPU function that are con-
nected with the privileged control instructions for memory mapping, exception
handling, and suchlike.

core CPU: A microprocessor designed to be built in as one component of an
ASIC, making what is sometimes called a “system on a chip.” MIPS CPUs are
increasingly being used as cores.

CorExtend ASE: An instruction set extension, optional on some of MIPS Tech-
nologies’ CPU cores, that makes it relatively easy for chip designers to add and
use new, application-specific, computational instructions.

Count register: Continuously running timer register, available in R4000-like
CPUs and some earlier ones.
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cpp: The C preprocessor program.

CPU core: See core CPU.

CSE (common subexpression elimination): Perhaps the single most
important optimization step for an optimizing compiler, this requires logic to
detect when the compiler is repeating a computation it already carried out with
the same data. Then it can consider storing the first result and reusing it. It’s
particularly important because other compiler transformations can lead to
replicating calculations, and it’s much simpler to tidy up with CSE than to build
somewhat-similar logic into other optimizations.

cycle: Clock cycle.

D-cache: Data cache (MIPS CPUs always have separate instruction and data
caches).

D-TLB: Some MIPS processors have tiny separate translation caches fed from
the main TLB to avoid a resource conflict when translating both instruction and
data addresses. Most MIPS CPUs have an I-side I-TLB, many faster CPUs also
have the D-TLB. Its operation is invisible to software, other than an occasional
extra clock spent fetching main TLB entries.

data dependencies: The relationship between an instruction that produces a
value in a register and a subsequent instruction that wants to use that value.

data path swapper: See byte-swap.

data/instruction cache coherency: The job of keeping the I-cache and D-cache
coherent. No MIPS CPU does this for you; it is vital to invalidate I-cache loca-
tions whenever you write or modify an instruction stream. See cache coherency.

debug mode: A special CPU state, much like exception mode, associated with
the Debug(DM) register bit. You get into debug mode through a debug excep-
tion, and exit it when the debugger program runs a deret. See section 12.1.4.

debug probe: A small box of electronics that connects both to your software-
development host computer and to your CPU’s EJTAG unit and allows you to
debug software on a target system. Such a debugger requires no resources built
into the target beyond the EJTAG unit and interface, so it can be used on the
most stripped-down embedded device.

debugger: A software tool for controlling and interrogating a running
program.

DEC: Digital Equipment Corporation, the most successful manufacturer of
minicomputers through the 1980s. Their PDP-11 and VAX computers ins-
pired UNIX. They had a short but significant involvement with MIPS CPUs
from 1989.
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DECstation: DEC’s trade name for the MIPS-architecture workstations they
produced between 1989 and 1993.

delayed branches: See branch delay slot.

delayed loads: See load delay slot.

demand paging: A process by which a program is loaded incrementally. It
relies on an OS and underlying hardware that can implement virtual memory—
references to thus-far-unloaded parts of the program are caught by the OS,
which reads in the relevant data, maps it so that the program will see it in the
right place, and then returns to the program, re-executing the reference that
failed. It’s called paging because the unit of memory translation and loading is
a fixed-size block called a page.

denormalized: A floating-point number is denormalized when it is holding a
value too small to be represented with the usual precision. The way the IEEE 754
standard is defined means that it is quite hard for hardware to cope directly with
denormalized representations, so MIPS CPUs always trap when presented with
them or asked to compute them.

dereferencing: A fancy term for following a pointer and obtaining the memory
data it points at.

diagnostics: Short for “diagnostic tests,” referring to software written not to
get a job down, but to try to cause, detect, and diagnose problems in the com-
puter and attached hardware. Many features are added to highly integrated
chips to provide handles for diagnostic software.

direct mapped: See cache, direct-mapped.

directive: One of the terms used for the pieces of an assembly program that
don’t generate machine instructions but that tell the assembler what to do—for
example, .globl. They’re also called pseudo-ops.

dirty: In a virtual memory system, this describes the state of a page of mem-
ory that has been written to since it was last fetched from or written back to
secondary storage. Dirty pages must not be lost.

disassembler: A program that takes a binary instruction sequence in memory
and produces a readable listing in assembly mnemonics.

displacement: A value used in an address calculation by being added to some
“base” address. In the common MIPS case, almost every load/store address
is formed from a base address in a register and a 16-bit signed displacement
encoded into the instruction.

DMA (direct memory access): An external device transferring data to or from
memory without CPU intervention.
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double: C and assembly language name for a double-precision (64-bit)
floating-point number.

doubleword: The preferred term for a 64-bit data item (not used for floating-
point) in MIPS architecture descriptions.

download: The act of transferring data from host to target (in case of doubt,
host tends to mean the machine to which the user is connected).

DRAM: Used sloppily to refer to large memory systems (which are usually built
from DRAM components). Sometimes used less sloppily to discuss the typical
attributes of memories built from DRAMs.

dseg, drseg, dmseg: Virtual memory regions (overlapping what would other-
wise be part of kseg2), which are accessible only in debug mode and are used to
map EJTAG debug unit resources for debugger code.

DSP (digital signal processor): A particular style of microprocessor aimed at
applications that process a stream of data, each data item representing some
kind of sampled value ultimately derived from an analog-to-digital converter.
DSPs focus on speed at certain popular analog algorithms: They stress multiply-
accumulate performance. Compared with a general-purpose processor, they
often lack precision, easy programming in high-level language, and the facil-
ities to build basic OS facilities. But the definition of DSP is not much more
firm than that of RISC.

DSP ASE: An extension to the MIPS32/64 architecture that adds a large num-
ber of instructions to help multimedia applications; many of its new operations
are SIMD, saturating, and/or are some kind of multiply-accumulate.

duplicate tags: See cache, duplicate tags.

dword: The MIPS assembly name for a 64-bit integer datum, or doubleword.

dynamic linking: A term for the process by which an application finds and
binds to a subroutine library at run time, immortalized by Microsoft as DLLs.
Most Linux/MIPS systems are based on dynamic linking for user-space appli-
cations.

dynamic variables: An old-fashioned programmer’s term for variables (like
those defined inside C functions) that are really or notionally kept on the stack.

ECC (error-correcting code): Stored data is accompanied by check bits that
are not only effective in diagnosing corruption but permit errors (supposed to
affect only a small number of bits) to be rectified. Some MIPS CPUs use an ECC
that adds 8 check bits to each 64-bit doubleword for data both in the caches and
on the memory bus (and probably in memory too, though that’s a system design
decision).

ECL (emitter-coupled logic): An electrical standard for deciding whether a
signal represents a one or a zero. ECL allows faster transitions and less noise
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susceptibility than the more common standard TTL, but with a penalty in higher
power consumption. It’s now pretty much obsolete. The name describes the
transistor implementation originally used in this sort of chip.

EIC (external interrupt controller) mode: A distinct way of signaling
interrupts to a MIPS CPU available as an option in MIPS32/64. It provides for
up to 63 immediately distinguishable interrupts (very useful for embedded sys-
tems, which often have very large numbers of interrupt sources), but at the cost
of requiring the system designer to hardwire interrupt priority. See IPL, and for
more details see section 5.8.5.

EJTAG: A specification for an on-core debug unit for MIPS32/64 CPUs, usable
by software but even more usable with a debug probe connected through the
JTAG (test interface) pins. See section 12.1.

ELF (executable and linking format): An object code format defined for UNIX
standardization and mandated by the MIPS ABI standard.

emacs: The Swiss Army knife of text editors and the essential tool for real
programmers, emacs (frighteningly) runs the Lisp program of your choice every
time you hit a key. It is indescribably customizable, so with any job you do you
get small and valuable contributions from numerous people who went before
you. This book was written with it.

embedded: Describes a computer system that is part of a larger object that is
not (primarily) seen as a computer. That could be anything from a video games
box to a glass furnace controller.

emulator: See in-circuit emulator; software instruction emulators.

endianness: Whether a machine is big-endian or little-endian. See Chapter 10.

endif: (#endif) The end of a piece of code conditionally included by the magic
of cpp. See also #ifdef.

EntryHi/EntryLo register: CPU control registers implemented only in CPUs
with a TLB. Used to stage data to and from TLB entries.

EPC (exception program counter) register: CPU control register telling you
where to restart the CPU after an exception.

epilogue: See function epilogue.

EPROM (erasable programmable read-only memory): The device most com-
monly used to provide read-only code for system bootstrap; used sloppily here
to mean the location of that read-only code.

errno: The name of the global variable used for reporting I/O errors in most
C libraries.

ErrorEPC register: R4x00 and later CPUs detect cache errors, and, to allow
them to do so even if the CPU is halfway through some critical (but regular)



MIPS Glossary 445

exception handler, the cache-error system has its own separate register for
remembering where to return to. See section 4.9.3.

ExcCode: The bitfield in the Cause register that contains a code showing what
type of exception just occurred.

exception: In the MIPS architecture, an exception is any interrupt or trap that
causes control to be diverted to one of the two trap entry points.

exception, IEEE: See floating-point (IEEE) exception. Alas, this is a different
animal from a MIPS exception.

exception vector, exception entry point: The (virtual) memory address where
the CPU hardware starts executing after an exception. “Exception vector” is
a misuse, really, derived from architectures where entry points are software-
redefinable through a memory-resident table. In MIPS CPUs, the exception
handler entry points may only be changed—all at once—by altering a single
base address in the EBase register.

exception victim: On an exception, the victim is the first instruction in
sequence not to be run (yet) as a result of the exception. For exceptions that
are caused by the CPU’s own activity, the victim is also the instruction that led
to the exception. It’s also normally the point to which control returns after the
exception; but this is not always the case, because of the effect of branch delays.

exceptional value: A floating-point value outside the normal range of
representation (an infinity, NaN for invalid value, and so on). Any calculation
producing such a value could have led to an IEEE 754 exception, if software had
decided to enable the exception.

executable: Describes a file of object code that is ready to run.

exponent: Part of a floating-point number. See Chapter 7.

extended floating point: Not provided by the MIPS hardware, this usually
refers to a floating-point format that uses more than 64 bits of storage (80 bits
is popular).

extern: C data attribute for a variable that is defined in another module.

FastMath: See entry for Intrinsity.

fault, faulting: See page fault.

FCC (floating-point unit condition code): MIPS I through MIPS III CPUs
have only one; higher-numbered ISAs have eight.

FCSR register: The floating-point control/status register, see Chapter 7.

FIFO (first-in, first-out): A queue that temporarily holds data, in which the
items have to come out in the same order they went in.
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fixup: In object code, this is the action of a linker/locator program when it
adjusts addresses in the instruction or data segments to match the location at
which the program will eventually execute.

flag: Used here (and often in computer books) to mean a single-bit field in a
control register.

floating-point bias: An offset added to the exponent of a floating-point num-
ber held in IEEE format to make sure that the exponent is positive for all legit-
imate values.

floating-point condition code/flag: A single bit set by FP compare
instructions, which are communicated back to the main part of the CPU and
tested by bc1t and bc1f instructions.

floating-point emulation trap: A trap taken by the CPU when it cannot imple-
ment a floating-point (coprocessor 1) operation. A software trap handler can
be built that mimics the action of the FPU and returns control, so that appli-
cation software need not know whether FPU hardware is installed or not. The
software routine is likely to be 50–300 times slower.

floating-point (IEEE) exception: The IEEE 754 standard for floating-point
computation considers the possibility that the result can be “exceptional”—a
catch-all term for various kinds of results that some users may not be happy
with. The standard requires that conforming CPUs allow each type of excep-
tion to be caught—and then it gets confusing, because the MIPS mechanism
for catching events in general is also called exception.

floating-point unit (FPU): The name for the part of the MIPS CPU that does
floating-point math. Historically, it was a separate chip.

foo: The ubiquitous name for a junk or worthless file.

FORTRAN: Early computer language favored for scientific and numerical uses,
where its reasonable portability outweighed its appalling flaws.

FP: Floating point.

fp (frame pointer) register: A CPU general-purpose register ($30) sometimes
used conventionally to mark the base address of a stack frame.

fpcond: Another name for the FP condition bit (also known as coprocessor 1
condition bit).

FPU: Floating-point unit.

fraction, fractional part: Part of a floating-point value. (Also called the man-
tissa.) See Chapter 7.

frame, framesize: See stack frame.
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Free Software Foundation: The Lone Rangers of free software, FSF is the
(loose) organization that keeps the copyright of GNU software.

fully associative: See associative store.

function: The C language name for a subroutine, which we use through most
of this book.

function epilogue: In assembly code, the stereotyped sequence of instructions
and directives found at the end of a function and concerned with returning
control to the caller.

function inlining: An optimization offered by advanced compilers, where a
function call is replaced by an interpolated copy of the complete instruction
sequence of the called function. In many architectures this is a big win (for
very small functions) because it eliminates the function-call overhead. In the
MIPS architecture the function-call overhead is negligible, but inlining is still
sometimes valuable because it allows the optimizer to work on the function in
context.

function prologue: In assembly language, a stereotyped set of instructions and
directives that start a function, saving registers and setting up the stack frame.

gcc: The usual name for the GNU C compiler.

gdb: The GNU debugger, partner to GNU C.

global: Old-fashioned programmer’s name for a data item whose name is
known and whose value may be accessed across a whole program. Sloppily
extended to any named data item that is awarded its own storage location—and
that should properly be called static.

global pointer: The MIPS gp register, used in some MIPS programs to provide
efficient access to those C data items defined as static or extern that live at
a fixed program address. See section 2.2.1.

globl: Assembly declaration attribute for data items or code entry points that
are to be visible from outside the module.

GNU: The name of the Free Software Foundation’s project to provide freely
redistributable versions for all the components of a UNIX-like OS (with the
possible exception of the kernel itself).

GNU C compiler: Free product of an extraordinary interaction between
maverick programmer and Free Software Foundation leading light Richard
Stallman and a diverse collection of volunteers from all over the world. GNU
C is the best compiler for MIPS targets unless you’re using a Silicon Graphics
workstation.
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GOT (global offset table): An essential part of the dynamic linking mechanism
used by Linux/MIPS and originally developed under the name MIPS/ABI. See
section 16.2.

gp register: CPU register $28, often used as a pointer to program data. Pro-
gram data that can be linked within ±32 K of the pointer value can be loaded
with a single instruction. Not all toolchains, nor all runtime environments,
support this.

halfword: MIPS architecture name for a 16-bit data type.

hazard: Also called pipeline hazard. A hazard occurs where an instruction
sequence may be unreliable, because the effect of a producer instruction may
in fact not apply reliably to a consumer instruction that is later in program
sequence (typically because the producer’s effect appears late in the pipeline).

It’s only a hazard when the CPU architecture does not insist that the hard-
ware make the effect invisible: It’s possible to define an architecture with no
hazards, at the cost of implementation complexity and (perhaps) loss of per-
formance. In the very oldest MIPS CPUs, there was one hazard visible in user-
privilege programs: An attempt to use data in the instruction immediately
following the load might fail. Modern MIPS CPUs have no hazards in user-
privilege code.

But even new CPUs have hazards associated with CPU control, and those
are discussed in section 3.4.

hazard barrier: An instruction that, when placed between the producer and
consumer of a hazard, ensures that the consumer sees the producer’s effect fully
formed.

heap: Program data space allocated at run time.

Heinrich, Joe: Esteemed author of the definitive MIPS User’s Manual, from
which almost all official MIPS ISA manuals are derived.

Hennessy, John: MIPS’s intellectual father and founding parent, Professor
Hennessy led the original MIPS research project at Stanford University.

hi, lo: the result registers of the MIPS integer multiply unit. Taken together
they act as an accumulator for integer multiply-accumulate operations.

hit: See cache hit.

I-cache: Instruction cache (MIPS CPUs always have separate instruction and
data caches). The I-cache is called upon when the CPU reads instructions.

ICE: See entry for in-circuit emulator.

ICU: Interrupt control unit.

idempotent: A mathematician’s term for an operation that has the same effect
when done twice as done once (and hence also the same effect when done nine
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times or 99). Stirring your coffee is an idempotent operation, but adding sugar
isn’t.

When a pipelined CPU takes an exception, and subsequently returns to the
interrupted task, it’s difficult to make sure that everything gets done exactly
once; if you can make some of the operations idempotent, the system can sur-
vive a spuriously duplicated operation. All MIPS branch instructions, for exam-
ple, are idempotent.

IDT: Integrated Device Technology, Inc., pioneers of MIPS CPUs for embed-
ded applications through the 1980s and 1990s. IDT continues to thrive, but
CPUs are no longer such a significant part of its business.

IEEE: An acronym for the U.S. Institute of Electrical and Electronics Engi-
neers. This professional body has done a lot to promulgate standards in com-
puting. Its work is often more practicable, sensible, and constructive than that
of other standards bodies.

IEEE 754 floating-point standard: An industry standard for the representa-
tion of arithmetic values. This standard mandates the precise behavior of a
group of basic functions, providing a stable base for the development of portable
numeric algorithms.

ifdef, ifndef: #ifdef and #endif bracket conditionally compiled code in
the C language. This feature is actually affected by the C preprocessor and so can
be used in other languages, too.

immediate: In instruction set descriptions, an immediate value is a constant
that is embedded in the code sequence. In assembly language, it is any constant
value.

implementation: Used in opposition to “architecture.” In this book, it most
often means we’re talking about how something is done in some particular
CPU.

in-circuit emulator (ICE): Originally, this meant a device that replaced a CPU
chip with a module that, as well as being able to exactly imitate the behav-
ior of the CPU, provides some means to control execution and examine CPU
internals. Microprocessor ICE units are inevitably based on a version of the
microprocessor chip (often a higher-speed grade).

It is often possible to do development without an ICE—and they are expen-
sive and can prove troublesome.

But these days the acronym is sometimes reused for a debug probe (see
above), which provides similar facilities in a different way.

index, cache: See cache index.

index register: CPU control register used to define which TLB entry’s con-
tents will be read into or written from EntryHi/EntryLo.
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Indy: A relatively low-cost family of workstations made by SGI (Silicon Graph-
ics Inc.) through the 1990s using R4000, R4600, and R5000 64-bit MIPS CPUs.

inexact: Describes a floating-point calculation that has lost precision. Note
that this happens very frequently on the most everyday calculations; for exam-
ple, the number 1

3 has no exact representation. IEEE 754 compliance requires
that MIPS CPUs can trap on an inexact result, but nobody ever turns that
trap on.

infinity: A floating-point data value standing in for any value too big (or too
negative) to represent. IEEE 754 defines how computations with positive and
negative versions of infinity should behave.

inline, inlined, inlining: See function inlining.

instruction scheduling: The process of moving instructions around to exploit
the CPU’s pipelining for maximum performance. On a simple pipelined MIPS
CPU, that usually comes down to making the best use of delay slots. This is done
by the compiler and (sometimes) by the assembler.

instruction set architecture (ISA): The functional description of the CPU,
which defines exactly what it does with any legitimate instruction stream (but
does not have to define how it is implemented). MIPS32/64 is the main ISA
described described in this book.

instruction synthesis by assembly: The MIPS instruction set omits many use-
ful and familiar operations (such as an instruction to load a constant outside the
range ±32 K). Most assemblers for the MIPS architecture will accept instruc-
tions (sometimes called macro instructions) that they implement with a short
sequence of machine instructions.

int: The C name for an integer data type. The language doesn’t define how
many bits are used to implement an int, and this freedom is intended to allow
compilers to choose something that is efficient on the target machine.

interlock: A hardware feature where the execution of one instruction is delayed
until something is ready. There are few interlocks in the MIPS architecture.

interrupt: An external signal that can cause an exception (if not masked).

interrupt mask: A bit-per-interrupt mask, held in the CPU status register, that
determines which interrupt inputs are allowed to cause an interrupt at any given
time.

interrupt priority: See IPL.

interruptible: Generally used of a piece of program where an interrupt can
be tolerated (and where the programmer has therefore allowed interrupts to
occur).
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Intrinsity Semiconductor: Intrinsity announced, built, and demonstrated the
FastMath MIPS32 CPU (with an attached array coprocessor) at up to 2 GHz—
making it the fastest MIPS CPU to date. However, the company was probably
focused more on silicon design methodology than on MIPS CPUs as such.

invalidation: See cache invalidation.

IPL (interrupt priority level): In many architectures, the interrupt inputs have
built-in priority; an interrupt will not take effect during the execution of an
interrupt handler at equal or higher priority. Historically, MIPS hardware did
none of this, leaving priority to the software.

But MIPS32 CPUs using the EIC optional interrupt system communicate
and implement interrupt priority in hardware. See section 5.8.5.

Irix: The operating system (based on UNIX System V) on the Silicon Graphics
workstations/servers.

ISA: Instruction set architecture.

ISR (interrupt service routine): Another name for the software invoked by an
interrupt exception.

issue, instruction: When talking about computer implementations, issue is
the point at which some CPU resources get used to begin doing the operations
associated with some instruction.

I-TLB: A tiny hardware table duplicating information from the TLB that is
used for translating instruction addresses without having to fight the hardware
that is translating data addresses. It was called the “micro-TLB” or “uTLB” in
early MIPS CPUs. It is not visible to software, unless you’re counting time so
carefully that you notice the one-clock pause in execution when an I-fetch has
to access the main TLB.

JPEG: A standard for compressing image data.

JTAG: A standard for connecting electronic components to implement test
functions. The JTAG signals are intended to be daisy-chained through all the
active components in a design, allowing one single point of access for every-
thing. That never quite happened, because small single-function chips don’t
usually support JTAG; but it remains an indispensable part of production test-
ing of circuit boards.

More relevantly to this book, the JTAG signals provide a workable way of
connecting an EJTAG on-chip debug unit to a debug probe.

jump and link (jal) instruction: MIPS instruction set name for a function call,
which puts the return address (the link) into ra.

k0 and k1 registers: Two general-purpose registers that are reserved, by con-
vention, for the use of trap handlers. It is difficult to contrive a trap handler that
does not trash at least one register.
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kernel: The smallest separately compiled unit of an operating system that con-
tains task scheduling functions. Some OSs (like Linux) are monolithic, with big
kernels that do a lot; some are modular, with small kernels surrounded by helper
tasks.

kernel privilege: For a protected CPU, a state where it’s allowed to do any-
thing. That’s usually how it boots up; and in small systems or simple operating
systems, that’s how it stays.

Kernighan, Brian: Coauthor (with Denis Ritchie) of the C Programming
Handbook, and generally held responsible for systematizing the C language. No
programmer should ever read another book about C.

kludge: An engineer’s derogatory expression for a quick-and-dirty fix.

kseg0, kseg1: The unmapped address spaces (actually, they are mapped in the
sense that the resulting physical addresses are in the low 512 MB). kseg0 is for
cached references and kseg1 for uncached references. Standalone programs, or
programs using simple OSs, are likely to run wholly in kseg0/kseg1.

KSU, KU: The kernel/user privilege field in the status register (described in
section 3.3.)

kuseg: The low half of the MIPS program address space, which is accessible by
programs running with user privileges and always translated (in CPUs equipped
with a TLB). See Figure 2.1.

L1, L2, L3 cache: Alternative names for primary, secondary, and tertiary caches,
respectively.

latency: The delay attributable to some unit or other. Memory read latency is
the time taken for memory to deliver some data and is generally a much more
important (and more neglected) parameter than bandwidth.

leaf function: A function that itself contains no other function call. This kind
of function can return directly to the ra register and typically uses no stack
space.

level sensitive: An attribute of a signal (particularly an interrupt signal). MIPS
interrupt inputs are level sensitive; they will cause an interrupt any time they
are active and unmasked.

library: See object code library.

line size: See cache line size.

linker, link-loader: A program that joins together separately compiled object
code modules, resolving external references.

Linux: Properly this is the name of the OS kernel of the “GNU/Linux” oper-
ating system. More in Chapter 13.
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little-endian: An architecture where the least significant part of a multibyte
integer is stored at the lowest byte address; see section 10.2.

ll, load-linked: MIPS32/64’s load-linked, store-conditional instruction pair
provides an efficient way of building atomic operations and other OS building
blocks for both multiprocessor and uniprocessor systems. See section 8.5.5.

LLAddr register: A CPU control (coprocessor 0) register in R4000 and later
CPUs, with no discernible software use outside diagnostics. It holds an address
from a previous load-linked (ll) instruction.

lo, hi registers: Dedicated output registers of the integer multiply/divide unit.
These registers are interlocked—an attempt to copy data from them into a
general-purpose register will be stalled until the multiply/divide can complete.

load delay slot: In the very first commercial MIPS CPUs, the load delay was
not just a penalty, it was a rule: The hardware did not interlock the load value,
and it was software’s responsibility never to use load data in the immediately
following instruction.

The instruction position just after a load was called the load delay slot by
analogy with the branch delay slot (the latter, though, is and has always been
part of the architecture).

The compiler, assembler, or programmer may move code around to try to
make best use of load delay slots, but in the old CPUs sometimes you just had
to put a no-op there.

load/store architecture: Describes an ISA like MIPS, where memory data can
be accessed only by explicit load and store instructions. Many other architec-
tures define instructions (e.g., a stack push, or arithmetic on a memory variable)
that implicitly access memory.

load-to-use penalty, load delay: In most MIPS CPUs, it’s impossible to
provide load data early enough that it can be used without delay by the next
instruction in sequence (even on a cache hit, there’s typically at least a one-
instruction pause if you try to do that).

The delay in CPU cycles that results from using a loaded value immediately
is called the load-to-use delay. Folklore suggests that a load-to-use delay of one
cycle is relatively harmless, two is troublesome, and more than two is probably
a mistake.

loader: A program that takes an object code module and assigns fixed program
addresses to instructions and data in order to make an executable file.

local variable: A named data item accessible only within the module currently
being compiled/assembled.

locality of reference: The tendency of programs to focus a large number of
memory references on a small subset of memory locations (at least in the short
term). It’s what makes caches useful.
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logic analyzer: A piece of test equipment that simultaneously monitors the
logic level (i.e., as 1 or 0) of many signals. It is often used to keep a list of the
addresses of accesses made by a microprocessor.

long: C’s extra-precision integer; for programs compatible with 32-bit MIPS
CPUs, it is 32 bits in size, just like an int. For 64-bit MIPS programs it may
well be 64 bits, but it will generally be the same length as a pointer.

loop unrolling: An optimization used by advanced compilers. Program loops
are compiled to code that can implement several iterations of the loop without
branching out of line. This can be particularly advantageous on implementa-
tions (rare for MIPS) where a long pipeline and instruction prefetching make
taking branches relatively costly. Even on the MIPS architecture, however, loop
unrolling can help. By intermingling code from different loop iterations, you
can improve instruction scheduling.

LRU (least recently used): The optimal replacement algorithm to use when
maintaining a cache is to recycle the space of the least recently used entry. Main-
taining LRU state is complex for large sets, though, so strict LRU is rarely used
for sets of more than four items.

LS: Least significant.

LSI: LSI Logic Corporation, which makes MIPS CPUs—these days, mostly as
ASIC core components to be integrated by their customers into systems on a
chip.

macro: A “word” in a computer language that will be replaced by some pre-
defined textual substitution before compilation/assembly. More specifically, it’s
something defined in a C preprocessor #define statement.

madd: See multiply-add.

mainframe: An old name for a large and expensive computer, rich in storage,
used for data-intensive applications.

mantissa: Part of the representation of a floating-point number. (Also called
fraction or fractional part.) See Chapter 7.

mapped: Term used to describe a range of addresses generated by a program
that will be translated in some nontrivial way before appearing as physical
addresses.

mask: A bitfield used to select part of a data structure with a bitwise logical
“and” operation.

MDMX ASE: An extension to MIPS32/64 (originally older than those).
MDMX uses the FP registers to represent small arrays of integers (of length 8
or 16 bits) and provides arithmetic- and graphics-oriented operations that do
the same thing simultaneously to all the integers in the array. It’s somewhat like
x86’s MMX extension.
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This kind of operation is thought to be useful for accelerating common tasks
in audio and video processing (multimedia). But these days, you’re probably
more likely to see the DSP ASE, which supports the same kind of applications
but uses GP registers.

memcpy(): A function from the standard C library for copying blocks of data.

memory barrier: See sync entry.

micro-TLB, uTLB: Old name for the I-TLB.

microcode: Many CPUs consist of a low-level core (the microengine)
programmed with a wide, obscure machine language (microcode). Instructions
from the official ISA are implemented by microcode subroutines.

During the 1970s, microcode was the favored way of managing the complex-
ity of a CPU design. As better design tools were developed in the 1980s, partic-
ularly better circuit simulators, it became possible to go back to implementing
ISA operations directly in hardware. But many CPUs (particularly CISCs) still
use microcode for complicated or obscure instructions.

minicomputer: A computer “the size of an icebox,” from the 1970s or 1980s.
Such computers could be sold at relatively low prices in the 1970s, within the
budget of individual university departments or small businesses. First UNIX
and then the whole open source movement started on minicomputers, partic-
ularly DEC’s PDP-11.

MiniRISC: An LSI Logic trade name for a series of MIPS CPU cores optimized
for small size.

Minix: A small and simple OS that retains some of UNIX’s features, written
by Andrew Tannenbaum. It’s been most influential as an OS that can be taught
in introductory OS courses. Notably, Linux was written by Linus Torvalds out
of frustration at Minix’s limited ambition.

MIPS: In See MIPS Run, we use this as the name of the architecture. MIPS is a
registered trademark in the U.S. and other countries for architectures, synthe-
sizeable cores, hardware and software created by MIPS Technologies, Inc.

MIPS/ABI: The latest standard for MIPS applications, supported by all UNIX
system vendors using the MIPS architecture in big-endian form.

MIPS Computer Systems, Inc.: The organization that initially commercialized
and promoted the MIPS architecture. Sometimes sloppily used to include its
successor, the MIPS Technologies group within Silicon Graphics.

MIPS silicon vendor: Any company that has built and sold MIPS CPUs or
components containing MIPS CPUs of somewhat original design (that is,
excluding those who have only incorporated someone else’s core CPU). The
roll call includes LSI Logic, IDT, Performance Semiconductor, NEC, Siemens,
Toshiba, NKK, Philips, QED, Sony, SGI, PMC-Sierra, SiByte/Broadcom,
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Alchemy/AMD, Cavium, and Raza. No other CPU architecture could produce
a list of anything like this length.

MIPS System VR3, RISC/OS: These are all ways of referring to the same basic
operating system, a derivative of UNIX System V Release 3. These ports are also
one of the roots of Irix.

MIPS Technologies, Inc.: The MIPS CPU core company, authors of the MIPS32
and MIPS64 architectures, and guardian of all versions of the MIPS architecture
from 1999 to date. MIPS Technologies was formed by a demerger of SGI’s MIPS
CPU operation.

After a brief flirtation with high-end “hard core” MIPS64 designs, MIPS
Technologies has focused on a range of synthesizable core designs. These cores
are now found in a wide range of embedded systems.

MIPS UMIPS 4.3BSD: MIPS Computers’ first operating system, a port of
Berkeley’s BSD4.3 version of UNIX. It’s historically important, since some MIPS
architecture features are oriented specifically to BSD’s requirements.

MIPSEB, MIPSEL: These are the words you use to request big-endian and
little-endian output (respectively) from most MIPS compiler toolchains.

misaligned: Unaligned.

MMU (memory-management unit): The only memory-management hard-
ware provided in the MIPS architecture is the TLB, which can translate program
addresses from any of up to 64 pages into physical addresses.

MS: Most significant.

multiply-add, multiply-accumulate: A single instruction that multiplies two
numbers together and then performs an addition sum. It’s a multiply-
accumulate if there is a dedicated (perhaps oversized) accumulator for the
value, and a multiply-add if the final result can be put in a general-purpose
register.

Such instructions are often a powerful and effective way of encoding numer-
ical algorithms, particularly for floating point. Not all pre-MIPS32 CPUs imple-
ment integer multiply-accumulate; those that do are mostly compatible with
MIPS32/64’s definition.

MIPS32/64 CPUs with floating-point hardware have a full set of floating-
point multiply-add instructions.

The DSP ASE adds some specialized multiply-accumulate instructions.

multiprocessor: A system with multiple processing elements; in practice we’ll
use it only as a synonym for SMP.

multitasking: Describes an OS that supports multiple threads of control. At
the most mundane level, a thread is characterized by a stack and a next-
instruction address, so there needs to be some scheduler in the OS that picks
which task to run next and makes sure that all tasks make progress.
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multithreading hardware: A CPU that can run instructions from multiple
threads in hardware (simultaneously, or at least thoroughly overlapped in the
pipeline). The MIPS32/64 MT ASE specifies a way of doing this for MIPS and
is described in Appendix A.

NaN (not a number): A special floating-point value defined by IEEE 754 as the
value to be returned from operations presented with illegal operands.

naturally aligned: A datum of length n is naturally aligned if its base address
is zero mod n. A word is naturally aligned if it is on a four-byte boundary; a
halfword is naturally aligned if it is on a two-byte boundary; see also alignment.

NEC: The electronics giant was a leading supplier of MIPS CPU chips in the
1990s.

nested exception/interrupt: What happens when you get a MIPS exception
while still executing the exception handler from the last one. This is sometimes
OK.

NKK: The semiconductor division of a large Japanese trading company, NKK
produced some MIPS CPUs (mostly as a second source for IDT) during the
early 1990s.

NMI (nonmaskable interrupt): Available (both as an input signal and as an
event) on R4000 and subsequent components. On MIPS CPUs, it’s not quite
clear whether it’s a nonmaskable interrupt or a very soft reset; there’s no real
difference.

noat, nomacro, noreorder: Assembly language controls, which provide the
programmer with a way of disabling some more complicated things the assem-
bler does and that are not always welcome (the corresponding names without
the “no” switch the features back on again).

.set noat prevents the assembler from translating assembly code into
binary sequences relying on the at/$1 register.

.set nomacro prevents the assembler from translating a single assembly
statement into more than one instruction.

.set noreorder prevents the assembler from juggling the code sequence
to move useful instructions into the branch delay slot.

nonblocking: An operation that you might expect to stop execution until it
completes, but that somehow avoids doing so. So a nonblocking load is one
where the CPU runs on past the load instruction, with the load data retrieved
in the background. The load data is destined to return to a register, and access
to that register for future instructions is interlocked, so the program will block
on the first use of the loaded data, unless it’s already arrived by then.

nonleaf function: A function that somewhere calls another function. Nor-
mally, the compiler will translate them with a function prologue, which saves
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the return address (and possibly other register values) on a stack, and a function
epilogue, which restores these values.

nonvolatile memory: Applied to any memory technology that retains data
with the system power off.

nop, no-op: No operation. On MIPS nop is actually an alias for sllv zero,
zero,zero, which doesn’t have much effect; its binary code is all zeros.

normalize: The action of converting a floating-point value to the normalized
form by shifting the mantissa and modifying the exponent. The IEEE standard
for all except very small numbers is a normalized representation.

nullified: Applied to an instruction that, although it has been issued and will
continue through the pipeline, will not be allowed to have any effect—its write-
back is suppressed and it’s not allowed to cause an exception. Where the
instruction is one that “never should have been executed” (perhaps it was a
result of incorrect speculation), this is sometimes referred to as a “pipeline
bubble.”

In general, instructions never have any irrevocable effect until late in the
pipeline, usually somewhere around where load data from a cache hit should
arrive. In early simple-pipeline CPUs, instructions are only nullified when they
follow an instruction that gets an exception. Later CPUs use the trick more
widely—for example, to implement the “likely” variants of branch instructions.

NVRAM: Nonvolatile RAM, used rather generically to refer to any writable
storage that is preserved while the system is powered down.

objdump: Typical name for a utility program that decodes and prints infor-
mation from an object file.

object code: A special file format containing compiled program source and
data in a form that can be quickly and easily converted to executable format.

object code library: A file holding several (separately compiled) modules of
object code, together with an index showing which public function or variable
names are exported by each module. The system linker can accept libraries as
well as simple object modules, and will link only those modules from the library
that are required to satisfy external references from the supplied modules.

octal: Base 8 notation for binary numbers, traditionally written with a leading
zero. In fact, an integer written with a leading zero will most likely be interpreted
as octal by the assembler.

OOO, out-of-order: An implementation technique for CPUs. OOO CPUs
fetch instructions in order, but instruction execution proceeds (so long as crit-
ical queues don’t fill up) in data-flow order, as operands become available. To
provide the correct, sequential, semantics such CPUs must ensure that com-
pleted instructions retire in order and that all side effects of any instructions in
flight can be undone.
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That sounds very complicated, but data-flow order allows many more
instructions to be executed in parallel, and the resulting performance gains are
so high that this technique is universally used by very high end CPUs. OOO
implementations for the embedded or synthesizable core CPU space have not
happened yet, but it seems inevitable that they will. The MIPS architecture’s
clean register-to-register organization and lack of condition codes make OOO
a little easier.

op-code: The field of the binary representation of an instruction that is con-
stant for a given instruction mnemonic, excluding register selectors, embedded
constants, and so on.

operand: A value used by an operation.

optimizer: The part of a compiler that transforms one correct representation
of a program into a different equivalent representation that (it is to be hoped)
is either smaller or likely to run faster.

OS: Operating system.

overflow: When the result of an operation is too big to be represented in the
output format.

padding: Spaces left in memory data structures and representations that are
caused by the compiler’s need to align data to the boundaries the hardware
prefers.

page: A chunk of memory, usually some power-of-two bytes in size and nat-
urally aligned, that is the unit of memory handled by the address translation
system. Most MIPS operating systems deal in 4-KB fixed-size pages, but the
hardware is sometimes capable of mixing translations with a number of differ-
ent page sizes.

page color: The color of a page is the value of 1 to 4 low bits of the virtual
page address. In a virtually indexed, physically tagged cache (common in MIPS
CPUs) data with the same physical address but whose virtual addresses have
different colors will use different cache locations, producing a cache alias.

However, aliases can be avoided if all mappings to the same physical address
have the same color. In many of the most common situations in which you have
multiple mappings, it is fairly natural for the OS to maintain the same page
color. Unfortunately, in some more obscure situations, it’s more difficult.

page fault: An OS term meaning an event where a program accesses a location
in a page for which there is no valid physical page translation assigned; in such
an OS a page fault is resolved by fetching the appropriate contents, allocating
physical memory, setting up the translation, and restarting the program at the
offending instruction.
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page table: A typical OS’s TLB miss exception handler keeps a large number of
page translations (more or less in ready-to-use TLB entry format) indexed by
the high-order bits of the virtual address. Such a structure is called a page table.

paged: A memory management system (such as MIPS) where fixed-size pages
(in MIPS they are 4 KB in size) are mapped; high bits are translated while the
low bits (11 bits for MIPS) are passed through unchanged.

PageMask register: Register used in the MIPS memory management system;
see Chapter 6.

parameter: When talking about subroutines, some programmers talk about
passing parameters to subroutines and some (following the C programming
manual) talk about passing arguments to functions. They’re talking about the
same thing.

parity: The simplest error check. A redundant “check bit” is added to a byte or
other data item and set so that the total number of 1 bits (including the parity
bit) is made odd (odd parity) or even (even parity).

partial-word, partial-doubleword: A piece of data less than a whole word or
doubleword, but one that the hardware can transfer as a unit. In some MIPS
CPUs this can be between one and seven bytes.

Patterson, David: From the MIPS point of view, he is Professor Hennessy’s
sidekick and coauthor (see Hennessy and Patterson). Outside the MIPS field,
David Patterson is probably just as famous, having led the Berkeley RISC project
from which the SPARC descended.

PC (program counter): Shorthand for the address of the instruction currently
being executed by a CPU.

PC relative: An instruction is PC relative if it uses an address that is encoded
as an offset from the instruction’s own location. PC-relative branches within
modules are convenient, because they need no fixing when the entire module is
shifted in memory; this is a step toward PIC (full position-independent code).

PCI: I/O bus invented for PCs about 1993 and now a universal way of gluing
I/O controllers to computers.

PDP-11: The world’s favorite minicomputer in the 1970s, made by DEC. It
was vastly influential, because good design decisions and superb documenta-
tion made it the best thing for programmers to play with. In particular, Ken
Thompson played with it and made UNIX, and history.

PDtrace: An extension of the EJTAG debug unit that can collect trace informa-
tion, a sequence of addresses in a compressed form that allows external software
to reconstruct the whole execution path of a program. It’s a challenge to store
a reasonable amount of trace information in real time. See section 12.3.
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peephole optimization: A form of optimization that recognizes particular pat-
terns of instruction sequence and replaces them with shorter, simpler patterns.
Peephole optimizations are not terribly important for RISCs, but they are very
important to CISCs, where they provide the principal mechanism by which
compilers can exploit complex instructions.

PFN (physical frame number): The high-order part of the physical address,
which is the output of the paged MMU.

Philips: The diverse European electronic giant has designed and made its own
MIPS cores and continues to use MIPS cores.

physical address: The address that appears on the outer pins of your CPU and
that is passed on to main memory and the I/O system. Not the same as the
program address (virtual address).

physical cache: Short for “cache that is physically indexed and physically
tagged,” meaning that the physical (translated) address is used for both these
functions.

PIC: See position-independent code.

pipeline: The critical architectural feature by which several instructions make
progress in parallel; see section 1.1.

pipeline concealment by assembly: MIPS assembly language does not usu-
ally require the programmer to take account of the pipeline, even though the
machine language does. The assembler moves code around or inserts nops to
prevent unwanted behavior.

pipeline hazard: See hazard.

pipeline stall: See stall.

pipestage: Specifically, one of the (often five) phases of the MIPS pipeline.
More generally, in any pipelined design a pipestage is the logic that affects an
instruction between any two clock-edge boundaries.

pixie, pixprof: Historically influential profiling tools provided with early MIPS
UNIX systems. Used to measure and present the instruction-by-instruction
behavior of programs at high speed. Pixie works by translating the original pro-
gram binary into a version that includes metering instructions that count the
number of times each basic block is executed (a basic block is a section of code
delimited by branches and/or branch targets).

pixprof takes the huge indigestible array of counts produced by a pixie run
and munches them down into useful statistics. One day, perhaps, these tools or
similar ones will be available with other toolkits.

PlayStation: Sony’s 1995 games machine, driven by a 32-bit MIPS microproc-
essor.
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PMC-Sierra: PMC-Sierra is a broad-range networking device company. It
acquired MIPS CPU specialists QED in 2000 and have since built a number
of MIPS products. The QED-derived line of high-performance custom CPUs
continued to the dual-64-bit R9000X2 CPU, and further products use CPU
cores from MIPS Technologies.

porting/portability/portable: Adapting a program designed to work on one
computer to work on another. A readily ported program is portable, and you
can rate programs according to their portability.

position-independent code (PIC): Code that can execute correctly regardless
of where it is positioned in program address space—notably, this is required by
Linux/MIPS applications. See Chapter 16.

A weaker form of PIC can be produced by simply making sure all references
are PC relative.

POSIX: An IEEE standard for the programming interface provided by a
compliant operating system. The whole standard is somewhat cumbersome,
but some subsets (such as the multithreading standard POSIX 1003, known as
PThreads) have become de facto standards.

PostScript: A computing language as well as a digital way of representing a
printed page. A truly brilliant idea, originally from Xerox Parc, which failed to
take over the world mostly because Adobe Systems, Inc., thought it would make
more money by keeping it out of the mass market.

pragma: The C compiler #pragma directive is used to select compiler options
from within the source code. It’s blessed by the ANSI C standard, but it is ugly
and inflexible: GCC tends to evolve so that useful options become language
extensions.

precise exception: Following an exception, all instructions earlier in instruc-
tion sequence than the instruction referenced by EPC are completed, whereas
all instructions later in instruction sequence appear never to have happened.
The MIPS architecture offers precise exceptions.

precision: (Of a data type), the number of bits available for data representa-
tion.

preemption: Preemption is when you stop what you’re doing because some-
thing more important has come up. In a computer system, the ultimate cause
of “something important coming up” must be an interrupt, so a preemptive
OS is one that permits a full reschedule on any interrupt. Old versions of Linux
(but none since 2.6) were not preemptive: If an interrupt happened while code
was running in the kernel, no consequent reschedule would be done until the
interrupted code paused voluntarily or returned voluntarily to user mode.

prefetch: An operation that initiates a fetch of the addressed data into a cache,
but without delaying the running program. If the programmer can arrange to
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do prefetches some way in advance of when the data is really loaded,
performance may be considerably improved.

preprocessor: See C preprocessor.

PRId register: CPU control register (read-only) that tells you the type and
revision number of your CPU. You shouldn’t rely on it for much.

primary (L1) cache: In a system with more than one level of cache, this is the
cache closest to the CPU.

privilege level: CPUs capable of running a secure OS must be able to operate
at two different privilege levels. All known MIPS OSs use just two: kernel and
user. (The supervisor-privilege level is universally ignored.)

User-privilege programs are not allowed to interfere with each other or with
the privileged kernel programs; the privileged programs have just got to work
properly.

privilege violation: A program trying to do what it’s not allowed to, which will
cause an exception. The OS must then decide which punishment to mete out.

probe, debug: See debug probe.

process: A UNIX word for the chunk of computation that corresponds to a
word on the command line or a single application; it combines a thread of con-
trol, a program binary to run, and its own address space in which it can run
safely.

profiling: Running a program with some kind of instrumentation to derive
information about its resource usage and running. That instrumentation can
be pure software, obtained by a periodic interrupt with software assistance, or
pure hardware (as in PDtrace, see above).

program address: The software engineer’s view of addresses, as generated by
the program. Also known as virtual address.

prologue: See function prologue.

PROM (programmable read-only memory): Used sloppily to mean any read-
only program memory. Originally it meant those that are programmable after
manufacture, but hard-programmed (“mask”) ROMs are now rare in systems
of a size that might use MIPS CPUs.

protected OS: An operating system that runs tasks at a low privilege level,
where they can be prevented from doing destructive things.

PTE: A page table entry. On MIPS that’s the software-maintained data used to
construct an entry for the hardware TLB.

PTEBase: Part of the MIPS Context or XContext registers and typically
loaded with a pointer to an in-memory page table of translations ready to be
loaded into the TLB.
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PThreads: See POSIX.

QED: Quantum Effect Devices, Inc., the most prolific MIPS CPU design group
of the 1990s.

quad-precision (128-bit) floating point: Not supported by MIPS hardware,
but defined in the n64 ABI and implemented in software by some compilers. In
C, this is called a long double.

R2000, R3000: The first commercial MIPS CPUs, packaged to use external
static RAMs as L1 cache.

ra register: CPU register $31, conventionally used for the return address from
subroutines. This use is supported by the ISA, in that it is used by the jal
instruction (whose 26-bit target address field leaves it no room to specify which
register should receive the return address value).

RAM (random access memory): Computer memory that can be both read and
written. See ROM.

Random register: A CPU control register present only if there is a TLB. It incre-
ments continually and autonomously and is used for pseudorandom replace-
ment of TLB entries.

Raza Microelectronics, Inc.: A relative newcomer to MIPS companies, Raza
makes the XLR family of multithreaded, multicore MIPS64 CPUs for near-
network applications, which are probably the highest throughput MIPS devices
currently available. Definitely worth watching!

read priority: Because of the write buffer, the CPU package may simultane-
ously want to do a read and a (delayed) write. It is possible, and can boost per-
formance, to do the read first. If the CPU is always waiting for the read data,
the condition is called read priority. But it causes coherency problems when the
location being read is affected by a pending write, so few MIPS CPUs tried it
(LSI’s LR33000 was an exception).

register renaming: A technique for implementing high-performance comput-
ers that permits instructions to be executed out of their normal sequence with-
out this sequence being visible to the programmer. Used (heroically) in the
MIPS R10000.

relocatable object module: A chunk of object code that still contains the
necessary information and records for a program to be able to find and alter
all the offsets and hidden addresses that tie the module to a particular location
in memory.

relocation: The process of patching binary object code to make it runnable at
a different location in memory.

renormalization: After a floating-point calculation, the number is probably
no longer normalized. Renormalization is the process of making it so again.
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reset: Used in this book for the event that happens when you activate the Reset
input to the CPU; this happens at power-on or system reinitialization.

RISC (reduced instruction set computer): Generic term used in this book for
a class of CPU architectures designed for easy pipelining. They were introduced
in the second half of the 1980s.

RMW (read-modify-write): A frequently encountered sequence of actions on
a storage location of any kind. A common fault in any system with multiple
threads occurs when an RMW sequence is interrupted between the read and
write, so the interrupted thread may use an out-of-date value and overwrite an
interrupting thread’s value. That is, an RMW sequence often needs to be atomic.

ROM (read-only memory): A storage device that can’t be written. (More often
these days, it means it can’t be written in normal operation—there’s often some
offline or exceptional means by which it can be reprogrammed.)

rounding mode: Defines the exact behavior of floating-point operations. Con-
figurable through the floating-point status/control register (see Chapter 7).

RTOS (real-time operating system): A much-abused acronym. Effectively,
every OS simpler than Linux is described as an RTOS. A simple OS really built
to help a system work to deadlines is probably called a “hard real-time” OS these
days.

s0–s9 registers: A collection of CPU general-purpose registers ($16–$23 and
$30) conventionally used for variables of function scope. They must be saved
by any function that modifies them.

sandbox: A safely fenced off set of resources (disk, filespace, memory, CPU
time) within which untrusted programs can be safely run. One of the Internet’s
best pieces of jargon.

SandCraft Inc.: A MIPS CPU design house, founded in 1996, that worked on
full-custom CPU designs. It was formed partly by a core of engineers who
worked on the R4300 project at SGI. SandCraft worked on CPUs includ-
ing NEC’s Vr54xx family. SandCraft was acquired in 2003 by Raza Micro-
electronics.

saturating arithmetic: Operations where overflow is handled by generating
the nearest representable value when the unlimited-precision result is outside
the range of the result format. For signed operations, the truncated result will
be either the most positive or most negative representable number, while for
unsigned operations, a result that would be negative is replaced by zero.

For calculations that might overflow, but it’s impractical to code a software
check, this is a much less bad option than the “natural” wrap-around.

sc, store conditional: see load-linked.
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scalar: A simple variable (as distinct from an array or data structure). By anal-
ogy, a CPU that operates on single chunks of data at a time is called scalar. This
term was originally used to distinguish such a CPU from a vector processor,
which can operate on a whole chunk at a time.

scheduler: In a multitasking system, the scheduler is the program that decides
which task to run next.

SDE-MIPS: The Algorithmics toolkit for developing programs for MIPS
targets, built around GNU C.

SDRAM, DDR DRAM (synchronous DRAM): Bulk memory chips with
various kinds of high-bandwidth data interface based on serial data transmis-
sion along data wires.

secondary (L2) cache: In a system with more than one level of cache, this is
the cache second closest to the CPU.

section: The name for the chunks used to separate the code, various kinds of
data, debug information, and so on from a program and to carry them
through the object code. Eventually, you get to decide where in memory each
section ends up.

segment: See kseg0, kseg1.

segmentation: An obsolete approach to memory translation and protection,
where program addresses are modified by being added to a base address. It was
used in the x86, but it hasn’t been needed since the 386.

semaphore: A powerful organizing concept for designing robustly cooperating
multitasking or multiprocessing systems; see section 5.8.4.

.set, assembly language controls: See noat, etc.

set, cache: See cache set.

set-associative: See cache, set-associative.

SGI (Silicon Graphics, Inc.): Dominant supplier of MIPS-powered comput-
ers and guardians of the MIPS architecture during the 1990s. The company is
insolvent at the time of writing.

short: In C, the name for an integer data type at least as big as a char and no
larger than an int. In 32- and 64-bit architectures, a short seems always to be
a 16-bit integer.

SiByte: A CPU design company that created a 64-bit MIPS CPU in the late
1990s. It was acquired by Broadcom, which still uses the SB-12xx CPUs.

signal: A kind of primitive interrupt that is fed to regular programs in a UNIX-
like OS. Improved in Berkeley UNIX and codified by the POSIX working group
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to represent a reasonably clean and simple way of communicating simple events
in a multitasking system.

silicon vendor: In the MIPS world, one of the companies making and selling
MIPS CPUs.

SIMD (single instruction multiple data): SIMD instructions repeat the same
operation on multiple data items. Modern SIMD instructions typically obtain
their multiple operands as “slices” of one wide register.

SmartMIPS ASE: An instruction set extension aimed at “smart cards”—very
low-power CPUs whose biggest task is encryption/decryption. It adds a small
number of computational instructions and some memory-management tweaks
to provide more fine-grain protection for these security-orientated
applications.

SMP (symmetric multiprocessing): The most successful form of large-scale
multi-CPU system, in which a number of CPUs effectively sharing memory
(typically through coherent caches) run the same OS kernel. Linux/MIPS readily
runs on suitable SMP system hardware.

snooping, snoopy: See cache, snooping.

SoC (system on a chip): A complex component built out of multiple
subsystems. Increasingly, that may be multiple subsystems licensed from dif-
ferent components.

soft reset: In digital electronics, reset is that ubiquitous signal asserted to get
everything back to a starting condition. For a CPU, it represents an instant roll
of the karmic wheel—death and rebirth in a few milliseconds. Sometimes you’d
rather reset your CPU in a way that allows it to remember something of its past
life—that’s a “soft reset.” See section 5.9.

software instruction emulators: A program that emulates the operation of a
CPU/memory system. It can be used to check out software too low level to be
compatible with a debugger.

software interrupts: Interrupts invoked by setting bits in the Cause register;
the software interrupt typically happens only when those bits are unmasked.
See section 5.8.

Sony: Consumer electronics company that used MIPS chips in its PlayStations.

source-level debugger: A debugger that interprets current program state in
terms of the source program (instruction lines, variable names, data structures).
Source-level debuggers need access to source code, so when working with
embedded system software, the debugger must run on the host and obtains its
information about the program state from a simple debug monitor running on
the target.
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sp register/stack pointer: CPU register $29, used by convention as a stack
pointer.

SPARC: Sun Microsystems’ RISC CPU architecture. Derived fairly directly
from the University of California at Berkeley RISC project, whereas MIPS came
out of Stanford University. Stanford (on the San Francisco peninsula) is
private and somewhat conservative; Berkeley (across the bay) is public and
radical. There’s a lot of social history in microprocessor design.

sparse address space: Some OS tactics (notably, using an object’s address as a
long-term handle) work only if you have a much larger address space than you
really need, so you can afford to spread things out thinly and allocate space reck-
lessly as a sparse address space. No sparse-address OS has been commercially
successful yet.

speculative execution: A CPU implementation technique in which the CPU
executes instructions before it really knows it should (most commonly, while it’s
still figuring out whether or not a conditional branch should have happened).
Used in high-end MIPS CPUs from R10000 on and increasingly in higher-end
embedded CPUs.

spinlock: A form of low-level semaphore for use by an SMP system. Its char-
acteristic is that a thread that is blocked on the semaphore just goes into a
busy loop checking the lock variable. That makes sense when a lock is typically
acquired for only a small number of cycles.

SR (Status) register: CPU status register, one of the privileged control regis-
ters. Contains control bits for any modes the CPU respects. See section 3.3 for
details.

stack: The last-in, first-out data structure used to record the execution state of
CPUs that are running the most interesting languages.

stack argument structure: A conceptual data structure used in section 11.2.1
to explain how arguments are passed to functions according to the MIPS con-
vention.

stack backtrace: A debugger function that interprets the state of the program
stack to show the nest of function calls that has got to the current position.
Depends wholly on strict stack usage conventions, which assembly programs
must notate with standard directives.

stack frame: The piece of stack used by a particular function.

stack underrun: An error that occurs when you try to pop more off a stack
than was ever put on it.

stale data: Term used for data lying about that has been superseded by a more
recent write. It could be data in memory where a CPU’s cached copy has been
updated but has not yet been written back; it could be data in a cache where the
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memory contents have been replaced by a DMA device and the cache has not
yet been invalidated. Using stale data is a bug.

stall: Condition in which the pipeline is frozen (no instruction state is
advanced) while the CPU waits for some resource to do its thing.

standalone software: Software operating without the benefit of any kind of
operating system or standard runtime environment.

Stanford: The San Francisco–area university where the MIPS academic project
was run by Professor Hennessy and from where the MIPS company was born.

static variable: C terminology for a data item that has a compile-time fixed
place in memory.

Status register: Another name for the SR register, see above.

stdarg: ANSI-approved C macro package that hides the implementation-
dependent details of how to provide for functions with a variable number of
arguments or arguments whose type can only be determined at run time (or
both).

strcmp: C library function that compares two (null-terminated) strings.

strcpy: C library function that copies a (null-terminated) string.

supercomputer: Colloquially, a computer built for performance on numeri-
cal, compute-intensive applications, essentially without regard for cost. That’s
often achieved with relatively exotic architecture features such as vector floating-
point instructions.

superpipelined CPU: If pipelining is a good thing, perhaps it can be made
better by cranking up the clock rate and breaking down individual execution
stages into smaller pieces, each of which can fit into the shrunken clock cycle—
that’s superpipelining.

The MIPS R4000 CPU was slightly superpipelined, breaking each of the
I-fetch and D-cache access stages into two and removing half clock cycles to
get an eight-stage pipeline. However, the longer pipeline leads to increases in
the branch penalty (which can be mitigated by branch prediction) and the load-
to-use penalty.

The R4000 established that over a wide range of RISC-like architectures, you
shouldn’t really use more than five pipeline stages unless you include branch
prediction and tackle the load-to-use penalty in some way.

superscalar: A CPU implementation that can issue more than one instruction
at the same time. The ideal is that enough pipeline stages should be duplicated
to allow a significant number of instructions to execute alongside each other,
giving you “two for the price of one.”

It turns out that, until you embrace the complexity of an OOO organization,
superscalar CPUs offer very modest performance gains on compiled code. They
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may do better with code sequences carefully tailored to the implementation by
heroic programming.

But some classes of instructions (floating point, for example) are rather
cheap to issue and run in parallel, so the trick is cost effective. It has, however,
been more popular than it has deserved.

supervisor-privilege level: Intermediate privilege level between kernel and
user. It’s optional in MIPS32/64, implemented on many MIPS CPUs, but has
never been used. See section 3.3.1.

swapper: See byte-swapper.

sync, memory synchronization barrier: An instruction that allows a pro-
grammer to indicate where the order of reads and writes in a program really
matters. Any read or write preceding the sync instruction in program order
must be carried out before any read or write following the sync.

synchronous logic: Means logic organized as “combinatorial” (pure logic)
stages interposed between successive registers, where each register stores infor-
mation on the transitions of a regular global clock signal. The compilers that
can turn Verilog code into working chip logic are, for most purposes, restricted
to Verilog code that maps onto synchronous logic, and that’s how all known
synthesizable CPUs work.

The reliable synthesis of working asynchronous logic is a frustratingly
difficult goal, which could produce big gains in performance versus power
consumption.

synthesized instructions: See instruction synthesis by assembly.

syscall (system call): An instruction that exists to produce an exception.
The exception acts as a secure subroutine call into the kernel. The syscall
instruction has a spare field, uninterpreted by the hardware, that software can
use to encode different system call types. However, Linux doesn’t use it—it
prefers to distinguish system calls using a value passed in a GP register.

t0–t9 register/temporaries: CPU registers $8–$15 and $24–$25, conven-
tionally used as temporaries; any function can use these registers. The downside
is that the values can’t be guaranteed to survive any function call.

TagHi, TagLo registers: CP0 registers in MIPS32/64; they are staging posts
for cache tag contents. See section 4.9.

TC: In a MIPS MT (multithreading) CPU, a TC is the hardware component
that runs a thread. It has a PC and a set of GP registers.

temporary register: See t0.

tertiary (L3) cache: A third level of cache between L2 and memory.

thrashing: Collapse of a heuristic optimization characterized by a repeated
cycle of failure. “Cache thrashing” is a specific case in which two locations in
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frequent use by a program compete for the same cache storage, repeatedly dis-
placing each other and making the cache ineffective. Much software effort has
been expended in vain trying to construct code that is less susceptible to cache
thrashing, but the problem more or less disappears with set-associative caches.

thread: A thread is a part of a program that runs in the sequence the
programmer intended. It’s the primitive component of a software multitasking
OS, a multiprocessor system, or multithreading CPU hardware.

timer: As a facility for CPUs, a constant-rate counter with some mechanism
to cause an interrupt when the counter reaches some specified value.

TLB (translation lookaside buffer): The associative store that translates pro-
gram to physical page numbers. When the TLB doesn’t contain the translation
entry you need, the CPU takes an exception, and it is up to system software to
load an appropriate entry before returning to re-execute the faulting reference.
See Chapter 6.

TLB, wired entries: The first few TLB entries may be defended from the usual
random replacement policy of the TLB refill handler: Just set the wired register
above zero and the random register will never take a value the same or lower
than wired. Very old MIPS CPUs lack the wired register and always reserved
eight entries.

TLB invalid exception: The exception taken when a TLB entry matches the
address but is marked as not valid.

TLB miss: The exception taken when no TLB entry matches the program
address. Most TLB miss exceptions use a unique, dedicated exception entry
point. This was done because this is by far the most common trap in a hard-
working operating system, and it saves time to avoid the code that must work
out which kind of trap has occurred.

Very old MIPS CPUs used the dedicated exception entry only for TLB misses
from user mode: MIPS32/64 CPUs use it for TLB misses other than misses from
exception mode (a rare but useful special case).

TLB modified exception: The exception taken when a TLB entry matches a
store address, but the entry is not flagged as writable.

TLB probe,tlbp: An instruction used to submit a program address to the TLB
to discover whether it would be translated by any existing entry.

TLB refill: The process of adding a new entry to the TLB following a miss.

toolchain, toolkit: The complete set of tools required to produce runnable
programs starting from source code (compiler, assembler, linker, librarian, etc.).

Toshiba: Japanese chip maker and MIPS licensee. Toshiba has not been promi-
nent as a supplier of CPU components for general sale, but is notable for the
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“Emotion Engine” heart of the Sony PlayStation 2: That’s a 64-bit floating-
point vector processor, which wouldn’t have disgraced a 1980 supercomputer.

translated address or address region: A MIPS program (virtual) address that
is destined to be translated through the TLB (or to cause an error). This includes
the kuseg region, where all user-privilege software must run, as well as the
mapped kernel-privilege region kseg2. The 64-bit CPUs have more translated
regions.

translation lookaside buffer: See TLB.

trap: An exception caused by some internal event affecting a particular instruc-
tion.

trunc: The floating-point instruction trunc rounds a floating-point number
to the next integer toward zero.

TTL: An acronym for transistor-transistor logic, this is a signaling convention
that enables you to decide whether an electrical signal represents 1, 0, or some-
thing in between and undefined. TTL is based on the habits of some early 5V
logic families. TTL signaling has commonly been used in all microprocessor
systems at least up to the late 1990s; its most likely replacement is a slight mod-
ification to fit in with 3.3V power supplies.

two-way set-associative: See cache, set-associative.

UART (universal asynchronous receiver/transmitter): A serial port con-
troller.

Ultrix: DEC’s trade name for their BSD-family operating system running on
MIPS-based DECstation computers. Ultrix ran in the DEC-friendly little-
endian mode, making it binary incompatible with contemporary MIPS work-
stations and servers.

UMIPS: See MIPS UMIPS 4.3BSD.

unaligned access exception: Trap caused by a memory reference (load/store
word or halfword) at a misaligned address.

unaligned data: Data stored in memory but not guaranteed to be on the proper
alignment boundary. Unaligned data can only be accessed reliably by special
code sequences, see section 8.5.1.

uncacheable: Memory areas where CPU reads and writes never search through
or affect the cache. True of the region kseg1 or translated address regions where
the TLB entry is flagged as uncached.

uncached: A CPU read/write that doesn’t search through or write to the cache.

underflow: What happens when a floating-point operation should produce a
result that is too small to represent properly. See also denormalized.
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unified cache: A cache that is searched and updated for all CPU accesses, both
instruction fetches and data references. Essentially all MIPS CPUs use separate
primary I- and D-caches, but most L2 and L3 caches are unified.

unimplemented instruction exception: Exception taken when the CPU does
not recognize the instruction code; it is also used when it cannot successfully
complete a floating-point instruction and wants the software emulator to take
over.

union: A C declaration of an item of data that is going to have alternative
interpretations with different data types. If you store data of one type and read
it back as the other type, the result is highly unportable, in an interesting sort
of way.

uniprocessor: A CPU that doesn’t share its memory with another.

UNIX-like: A system something of the manner of real UNIX, but without any
implication as to copyright or formal standardization. Includes Linux, OSs from
the various OpenBSD and FreeBSD groups, and commercial OSs like Sun’s
Solaris or SGI’s Irix.

unmapped, untranslated: Refers to the kseg0, kseg1 address spaces.

unrolled loop: A loop in a program, transformed by arranging that (most of
the time) the work of more than one iteration of the loop is done between
jumps. It can often make programs go faster; it’s sometimes done automatically
by clever compilers.

user space: The space of user-privilege-accessible addresses (kuseg).

userland: Linux name for the parts of the system that are outside the ker-
nel: libraries and basic application. The userland for the GNU/Linux OS comes
mostly from the GNU project.

user-privilege level: The lowest privilege state for a MIPS CPU, where only the
regular instruction set is usable and program addresses must stay inside kuseg.
An operating system can prevent user-privilege programs from interfering with
each other or the OS.

utlbmiss exception: A TLB miss from user mode. On old MIPS CPUs, the ded-
icated TLB miss exception entry point was only used for exceptions from user
mode.

v0–v1 registers: CPU registers $2–$3, conventionally used to hold values
being returned by functions.

varargs: An old but now deprecated version of stdarg.

VAX: DEC’s groundbreaking 32-bit minicomputer architecture, definitely not
a RISC. The first minicomputer to support virtual memory (hence the “V”).
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vector, vector processor: A processor that has instructions that perform the
same operation on a whole collection of data at a time, mostly floating-point
operations. This is an example of parallel processing characterized as single
instruction, multiple data (SIMD); it was the first kind of parallel processing
to be useful. Number-crunching supercomputers depend on vector processing
for their speed.

vectorizable: A program source that is amenable to automatic loop optimiza-
tion to exploit vector or other SIMD operations is called vectorizable. In prac-
tice, programs usually need to be fairly carefully written to allow that kind of
optimization.

Verilog: A programming language used to describe logic designs for simu-
lation or “synthesis” to real hardware. Most practical modern reusable logic
designs are written in Verilog.

virtual address: See program address.

virtual memory (VM): A way of running an application without actually giv-
ing it all the memory it thinks it needs, but in such a way that it doesn’t know
the difference. You do this by arranging that an attempt to access something
that isn’t really there causes the operating system to be called in. The OS finds
the required memory (be it code or data), changes the mapping so the
application will find it, and then restarts the application at the instruction that
led to the bad access. Bigger OSs (UNIX-like or modern Windows) always use
virtual memory.

VMS: The operating system DEC developed for the VAX minicomputer.

void: A data type used to tidy up C programs, indicating that no value is
available.

volatile: An attribute of declared data in either C or assembly. A volatile vari-
able is one that may not simply behave like memory (i.e., does not simply return
the value last stored in it). In the absence of this attribute, optimizers may
assume that it is unnecessary to reread a value; and if the variable represents
a memory-mapped I/O location you are polling, this will be a mistake.

VPE: In MIPS MT (multithreading), a VPE contains one or more TCs (which
run the programs) and provides a complete set of CP0 registers and the other
resources that make up what looks like a complete MIPS32/64-compatible CPU.

VPN (virtual page number): The part of a program (virtual) address that gets
translated. The low-order bits of the program address (which is the address
within a page, usually a 4-KB page) pass unchanged through to the physical
address.

VxWorks: A real-time OS kernel used in embedded applications, written and
sold by Wind River Systems, Inc.
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WatchHi, WatchLo register: Coprocessor 0 registers that implement a data
watchpoint, available in some R4000-style CPUs.

watchpoint: A debugger feature that will cause the running program to be sus-
pended and control passed back to the user whenever an access is made to the
specified address. NEC’s Vr4300 CPU has one of these.

wbflush: A standard name for a routine/macro that ensures that any queued
external write cycles have left the CPU.

Whitechapel: A briefly flowering UK-based UNIX workstation company that
shipped the first MIPS desktop computers in 1987.

workstation: Used here to mean a desktop computer running a UNIX-like OS.

wraparound: Some memory systems (including the MIPS cache when iso-
lated) have a property that accesses beyond the memory array size; they simply
wrap around and start accessing the memory again at the beginning.

write buffer: A FIFO store that keeps both the address and data of a CPU write
cycle (usually up to four of each). The CPU can continue execution while the
writes are carried out as fast as the memory system will manage. A write buffer
is particularly effective when used with a write-through cache.

write-back cache: See cache, write-back.

write-through cache: See cache, write-through.

XContext register: Coprocessor 0 register associated with the TLB (memory
management hardware). Provides a fast way to process TLB misses on systems
using a certain arrangement of page tables for 64-bit-addressed virtual memory
regions.

zero register: CPU register $0, which is very special: Regardless of what is
written to it, it always returns the value zero.
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ABIs, 311–37
argument passing, 319–37
defined, 311
n32, 312
n64, 311–12
o32, 311
stack conventions, 319–37

Abs instruction, 189, 254
Abs.s instruction, 211
Add instruction, 189, 253
Addresses

inconvenient physical
ranges, 148

physical, 47
process, mapping, 385–86
program, 47, 49
range, extending, 383
user-privilege, 110

Addressing, 24–25
gp-relative, 273–74
modes, 39, 271–74
simple systems, 49

Address space, 47–50
64-bit, 110
memory map, 366–67
program, 48–49

Address translation, 147
Addr.ps instruction, 211
Add.s instruction, 211
Addu instruction, 189
Advanced Computing Envi-

ronment (ACE), 12–13
Advanced Micro Devices

(AMD), 19

Alchemy Semiconductor,
18–19

Alignment
array types and, 315
bitfields, 318
data, 280
loads/stores, 25
requirements, 313

Alnv.ps instruction, 211
ALU (arithmetic/logic unit), 6
And instruction, 189, 254
Application Binary Interfaces.

See ABIs
Applications, starting, 128
Application-Specific Integrated

Circuits (ASICs), 11
Argument passing

for ABIs, 319–37
floating-point argument,

323
registers for, 321–22
structures, 323–24
three non-FP operands, 323
variable number of

arguments, 324–25
Arguments

system calls, 379
variable number of, 337

ASIDs, 390–91
using, 143
value, changing, 144

Assemblers, 263
Assembly language

MIPS, 33

reading, 263–77
syntax overview, 268–69
synthesized instructions

in, 42–43

BadVAddr register, 67
Bal instruction, 189, 259
Bc0 instruction, 190, 259
Bc2f instruction, 190
Bc2t instruction, 190
Bclany instruction, 190, 211
Bclf instruction, 190, 211, 260
Bclt instruction, 190, 211
Beq instruction, 190, 260
Beql instruction, 190
Beqz instruction, 190
Beqzl instruction, 190
Bge instruction, 190
Bgel instruction, 190
Bgeu instruction, 191
Bgezal instruction, 191, 260
Bgezall instruction, 191, 260
Bgez instruction, 191
Bgezl instruction, 191
Bgt instruction, 191
Bgtu instruction, 191
Bgtz instruction, 191
Bgtzl instruction, 191
BiCMOS CPUs, 10
Bi-endian software, 293–95
Big-endian

bitfields, 316
consistent view, 282

481



482 Index

Big-endian (continued)
CPU, wiring to little-endian

bus, 290
inconsistent view, 284
typical picture, 286
See also Endianness

B instruction, 189
Bitfields, 315–18

alignment rules, 318
big-endian viewpoint, 316
little-endian viewpoint, 317

Bitwise logical instructions,
254

Ble instruction, 191
Bleu instruction, 191
Blez instruction, 191
Blezl instruction, 191
Blt instruction, 191
Bltu instruction, 191
Bltzal instruction, 192, 260
Bltzall instruction, 192, 260
Bltz instruction, 191
Bltzl instruction, 192
Bne instruction, 192
Bnel instruction, 192
Bnez instruction, 192
Bnezl instruction, 192
BogoMIPS, 127
Bootstrapping, 113
Bootstrap sequences, 127–28
Branches, 259–60

condition, 25
conditional move

instructions and, 225
delayed, 27, 27–28, 51–52

Branch instructions, 129
Branch-likely, 225–26
Break instruction, 192, 260
Breakpoints, 260

conditions, 355
control registers, 353
data, 352
EJTAG hardware, 352–55
hits, 352
instruction, 352
virtual-address-only, 357

Byte-addressed, 25
Byte gathering, 304
Byte lane

defined, 289
swapper, 291–92

Byte layout, 285

C, data types in memory, 314
C, unaligned data from, 318–19
C, writing in, 281, 305–10

moving from 16-bit into,
309

negative pointers, 308–9
signed versus unsigned

characters, 309
stack-dependence

programming, 309–10
Cabs instruction, 211
Cache aliases, 102–4, 402–3

avoiding, 104
defined, 102
fixing around, 403
illustrated, 103
page coloring and, 301

CacheErr register, 95
Cache instruction, 91–92, 261

defined, 192
Fill, 91
HitInvalidate, 90
HitWritebackInvali-

date, 90
IndexInvalidate, 90
IndexStoreTag, 91, 92, 96
operations available with, 93

Cache management, 79–80,
85–88

DMA data and, 298–99
explicit, 280, 399–403
in hardware, 87
for instruction writers, 232
primitive operations, 90–91
shared memory systems, 88
write-through data and, 300
writing instructions and,

299–300
Cache misses, 5

causes, 100–101
per instruction, 98
reducing number of, 98–99
refill penalty, 98

Caches
address-type operation, 91

CISC architecture, 5
coherent, 86, 403–6
configurations, 88–89
control, 53
data, 5
data flow, 297
D-caches, 6, 402
defined, 4
direct-mapped, 81
efficiency, 98–100
efficiency, reorganizing

software for, 100–102
evolution, 89
function, 79
functioning, 80–83
hit-type operation, 91
index-type operation,

91–92
initialization routines,

96–97
initializing, 91, 92–94
instruction, 5
L1, 88, 89
L2, 88, 89, 90
L3, 88
line size choice, 85
memory region,

invalidating/writing back, 97
physically addressed, 84–85
pipelines and, 4–5
problems, 401–2
programming, 90–97
refill penalty, 98, 99
set-associative, 82, 101
size, 95, 127
split, 85
stale data in, 297
unified, 85
virtually addressed, 84–85
visible, trouble, 296–301
write-back, 83–84
write-through, 83

Cache store, 80
Cache tags, 4, 80

address bits, 94
priority, 96

Cause register, 64–65, 116
defined, 64
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ExcCode, 65, 66–67,
113, 158

fields, 64–65
IV, 117
TLB misses and, 146
See also CPU control

registers
Ceil instruction, 174, 211
Cfc instruction, 192, 260
Cfcl instruction, 211
Chip-level multiprocessing

(CMP), 405
C instruction, 211
CISC (Complex Instruction Set

Computing), 7, 23–28
Clock rate, 127

CPU, 127
raising, 9

Clo instruction, 192
Clz instruction, 192
CMOS chips, 10
Coherent caches, 86

defined, 86
multiprocessor systems and,

403–6
See also Caches

Compare register, 68, 116
Conditional branches, 25
Conditional branch

instructions, 171–72
Conditional move instructions,

224–25
branches and, 225
defined, 224
paired-single test, 176

Condition codes, 24
Config registers, 69–73

Config1-2, 71
Config3, 72
defined, 69
fields, 70–73
MT, 127
See also CPU control

registers
Configurable I/O controllers,

292
Context register, 133, 144

BadVAddr, 139
defined, 138

fields, 139
as pointer, 142
PTEBase, 139

Conversion operations, 170–71
cause, 170
to integer with explicit

rounding, 171
paired-single, 175

Count, 68
CP0, 53–78

functions, 260–61
hazards, 75–78
jobs, 53–54
operation effects, 75
pipeline hazards, 403
registers for multithreading,

419
as system control

coprocessor, 54
CPU control instructions,

55–58
components, 57–58
problems, 52

CPU control registers, 59–75
BadVAddr, 67
Cause, 64–65
Compare, 68
Config, 69–73
Context, 133, 138–39, 144
EBase, 73
EntryHi, 133, 134, 135
EntryLo, 133, 136
EPC, 65
Index, 133, 137–38
IntCtl, 73–74
LLAddr, 75
memory management, 133
PageMask, 133, 135, 136
PRId, 68–69
Random, 127, 133, 138
SR, 60–64
SRSCtl, 74–75
XContext, 133, 138, 140

CPUs
architecture, 363
cache configurations for,

88–89
clock rate, 127
configuration, 53

in exception mode, 368–69
with interrupts off, 369–70
multithread, 100
probe control, 343–44
probing, 126–27
recognizing, 126–27
write-back caches, 83–84
write-through caches, 83

Critical regions, 116
defined, 375
with interrupts enabled,

121–23
Ctc instruction, 192
Cvt instruction, 212–13

Dabs instruction, 192, 254
Daddi instruction, 192
Dadd instruction, 192
Daddiu instruction, 192
Daddu instruction, 193
Data caches, 5
Data types, 39–41

C integer, 312
integer, 39–40
memory requirements,

313
sizes, 312–13

D-cache, 6, 402
Dclo instruction, 193
Dclz instruction, 193
DCR register, 351–52

defined, 351
fields, 351–52

Ddivd instruction, 256
Ddiv instruction, 193, 255
Ddivu instruction, 193, 255
Debug

breaks, imprecise, 356
communications through

JTAG, 344
entry, 348
exceptions, 342
exceptions, handling, 357
function, 339–40

Debug mode, 344–46
calling into, 357
defined, 344
exceptions, 345–46
normal interrupts and, 344
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Debug register, 348–51
defined, 348
exception cause bits, 349
fields, 348–50

Delayed branches, 27–28
Demand paging, 383
DEPC register, 348
Deret instruction, 193
Device drivers, 373
Dext instruction, 193
Dextm instruction, 194
Dextu instruction, 194
Di instruction, 194, 218
Dins instruction, 194
Dinsm instruction, 194
Dinsu instruction, 194
Direct-mapped caches, 81
Direct memory access

(DMA), 86
controllers, 296, 399
descriptor arrays, 299
device accesses, 399–401
into memory, 86
Linux API, 400

Divide mnemonics, 187
Div instruction, 194, 255
Divo instruction, 256
Div.s instruction, 213
Divu instruction, 194, 195, 255
Dla instruction, 195, 253
Dli instruction, 195, 253
Dmadd16 instruction, 195, 256
Dmfc instruction, 195
Dmfcl instruction, 213
Dmseg memory area, 348
Dmtc instruction, 195
Dmul instruction, 195, 256
Dmulo instruction, 195, 256
Dmulou instruction, 196, 256
Dmult instruction, 196, 256
Dmultu instruction, 196, 256
Dneg instruction, 196, 254
Dnegu instruction, 196, 254
Double precision format, 156
Drem instruction, 196, 256
Dremu instruction, 196, 256
Dret instruction, 196, 260
Drol instruction, 196, 197, 254
Dror instruction, 197, 254

Drseg memory area, 348
DSAVE register, 348
Dsbh instruction, 197
Dseg memory area, 346
Dshd instruction, 197
Dsll instruction, 197, 254
Dsllv instruction, 197, 254
DSP, 32
Dsra instruction, 197, 254
Dsrl instruction, 198, 254
Dsub instruction, 198, 253
Dsubu instruction, 198, 253

EBase register, 73, 111
Ehb instruction, 198
EIC

interrupts, 123
mode, 123

Ei instruction, 198
EJTAG

breakpoint hardware,
352–55

breakpoints, 342
CP0 registers, 348–51
debug entry, 348
debug unit, 341
debug unit requirements,

342
defined, 341
dmseg, 348
drseg, 348
dseg, 346
fastdata, 348
history, 343
JTAG instructions for, 345
PC sampling, 340–41, 356
without probe, 356

EJTAG_ADDRESS instruction, 345
EJTAGBOOT instruction, 343, 345
EJTAG_DATA instruction, 345
Emulation

FP, 181
instructions, 128–29

Enabling, on demand, 180–81
Endianness, 280

configurable connection,
290–92

defined, 281
foreign data and, 295–96

hardware and, 287–92
inconsistent buses, 289–90
independent code, 295
memory layout and, 313–14
“native,” 287
problems, false cures, 292
program portability and,

285–86
software and, 284–86

EntryHi register, 133, 134, 135
ASID, 140, 143
fields, 134
higher-order bits, 135
MIPS64 version, 134

EntryLo register, 133, 136
bit fields, 144
fields, 136

EPC register, 65
EPIC (explicitly parallel

instruction computing), 7
Eret instruction, 198, 260
Error-correcting code (ECC),

94, 95
Errors

data, 111
hardware-detect, 106
program, 106

Exception frames, 115
Exception handling, 109–13

basics, 113–14
bootstrapping, 113
debug, 357
dispatching exceptions, 113
exception mode and, 369
minimal, 26
registers, 58–59

Exception mode, 368–69
Exceptions

debug, 342
in debug mode, 345–46
dispatching, 113
entry points, 111, 112, 380
from exception mode, 144
floating-point, 161
in instruction sequence,

107–8
just-for-debug, 342
memory translation, 105
multithreading, 419–20
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nesting, 114–15
nonprecise, 108–9
occurrence, 109
paired-single, 174
precise, 107–9
processing, 114
processing environment,

113–14
recycling mechanisms, 124
returning from, 59, 114
routines, 115
TLB miss, 146
vectors, 109–13

Exception vectors, 109–13
Explicit cache management,

280, 399–403
cache aliases, 402–3
cache/memory mapping

problems, 401–2
DMA device accesses,

399–401
instructions for later

execution, 401
See also Cache management

Exponents
biased, 154
reserved values, 155–56

Extendable stacks, 148
External events, 105
Ext instruction, 198, 217

Fastdata, 348
FASTDATA instruction, 345
Fast interrupt handler, 369
FCCR register, 161
FCSR register, 161, 162, 171
FENR register, 161
FEXR register, 161
FIR register, 161

defined, 165
fields, 165–66
summary, 161
See also Floating-point

registers
First-in first-out (FIFO), 83
Fixed priorities, 119
Floating point

compiled-in, 181

computer-held numbers,
152

control, 161–65
data formats, 156–57
description, 151–52
double precision, 156
emulation, 181
exceptions, 161
hardware, 165
IEEE 754 standard, 152–54
implicit constants, 275–76
instruction categories,

166–67
instructions, 166–73,

210–16
interrupts, 161
multiple, condition bits,

228
multiply-add instructions,

227–28
paired-single instructions,

173–78
single precision, 156
support, 151–81
trap handler, 159
use, 151

Floating-point
computations, 52

Floating-point data, in
memory, 41

Floating-point numbers,
storage, 154–57

Floating-point registers,
159–60

conventional names, 160
FCCR, 161
FCSR, 161, 162, 171
FENR, 161
FEXR, 161
FIR, 161, 165–66
implementation, 165–66
loads, 179
move between, 168
moving between general-

purpose registers, 179
odd-numbered, 168
rounding modes, 164
summary, 161
usage conventions, 160

uses, 160
See also Registers

Floor instruction, 174, 213
Foreign data, endianness and,

295–96
Fork instruction, 421
Frame pointers, 335–37
Functions

leaf, 331
library, 367
nonleaf, 331–35
returning values from, 325

General-purpose registers
behavior, 34
moves between FP registers

and, 179
uses of, 35
See also Registers

Global pointers, 273
GNU C compiler, 317, 333

defined, 305
wrapping assembly code

with, 305–7
GNU/Linux, 363–70

components, 364
files, 364–65
high memory, 367
interrupt context, 365
ISR, 365
libraries and applications,

367–68
memory map/address

space, 366–67
programs, 409
scheduler, 366
system calls, 365
thread group, 367
threads, 364
user mode, 365

GOT (global offset table),
411

accesses, 413
entries, 412
organization, 412–14
pointer, 413

Gp-relative addressing,
273–74
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Hardware
breakpoint, 352–55
byte-swaps, 292
emulating, 148
endianness and, 287–92
FP, 165

Hazards, 179
barrier instructions, 76–77,

231
CP0, 75–78
between CP0 instructions,

77–78
instruction, 77
user, 77

Heap, 277, 385
maintenance, 277
user, 381

Highly integrated multiproces-
sor devices, 19

IDCODE instruction, 345
IEEE 754 standard, 152–54

areas, 153–54
compliance, 158
defined, 152–53
implementation, 158–59
options, 153
See also Floating point

IF (instruction fetch), 6
ImpCode instruction, 345
In-circuit emulator (ICE), 343
Index register, 133, 137–38

automatic setting, 138
defined, 137

Initialization
cache, 91, 92–94, 96–97
on demand, 180–81
stack and heap, 277

Ins instruction, 198, 217
Instruction caches, 5
Instruction encodings, 233–51

machine instructions,
235–51

simple implementation
and, 251

table fields, 233–34
table notes, 251

Instructions, 268
32-bit, 23, 271

64-bit, 271
alphabetical list, 189–209
bitwise logical, 254
branch, 129
computational, 269–71
conditional branch, 171–73
conditional move, 224–25
with constants, 270–71
conversion operations,

170–71
CPU control, 55–58
emulating, 128–29
exceptions, 107–8
floating-point, 166–73,

210–16
general rules, 269–71
hazard barrier, 231
hazards, 76, 77
immediate versions, 186
integer multiply-

accumulate, 256–57
inventory, 188–209
jump, 25
for later execution, 401
load/store, 167–68, 257–58
MIPS, constraints, 23–24
MIPS64, 47
move between registers,

168–69
multiply-add operations, 170
multiply/divide, 255–56
nullified, 108
synthesized, 42–43
table conventions, 188–89
test, 171–73
three-operand, 23–24, 169
timing for speed, 179–80
timing requirements, 179
unary (sign-changing), 170
unsigned, 40
writing, 86
See also specific instructions

IntCtl register, 73–74
Integer data types, 39–40, 282
Integer multiply, 38–39

instruction, 225, 226–27
unit, 38–39

Integer multiply-accumulate
instructions, 256–57

Integrated embedded 32-bit
CPUs, 21

Integrated embedded 64-bit
CPUs, 21

Interlocks, 180
Interrupt handlers

multiple, 373
tasklet called from, 374

Interrupt handling
high-performance, 374
minimal, 26
shadow register, 124
with vectored interrupts,

124
Interrupt priorities, 118–20

fixed, 119
implementing, 116, 118–20

Interrupt resources, 116–18
Interrupts, 59, 111, 115–24,

371–74
bits, 117
context, 365, 370
debug mode and, 344
defined, 116
disabling, 116
EIC, 123
floating-point, 161
hardware, 106
high-IPL, 118
inputs, 117
latency, 123
life and times, 371–74
multithreading, 420
nonmaskable (NMI), 111
off, 369–70
servicing, 370
vectored, 110, 123

Interrupt service routine
(ISR), 365

I/O device registers, 299

Jal instruction, 199, 259
Jalr instruction, 199, 259
J instruction, 198
JTAG

debug communication
through, 344

instructions for EJTAG
unit, 345
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Jump instructions, 25
Jumps, 259
Just-for-debug exception, 342

Kernel, 363–64
executing in thread context,

370
implementation, 379
issues, 399–408
layering, 368–70
privileges, 49–50
TLB refill exception, 393–97

L1 caches, 88, 89
L2 caches, 88, 89

on memory bus, 90
physical indexing/tagging,

102
L3 caches, 88
Labels, 184, 268
La instruction, 199, 253, 272
Lb instruction, 199, 257
Lbu instruction, 199, 257
Ldc instruction, 199
Ldcl instruction, 199, 213
Ld instruction, 199
L.d instruction, 213
Ld instruction, 257
L.d instruction, 258
Ldl instruction, 199, 219,

220, 221
Ldr instruction, 199, 219,

220, 221
Ldxcl instruction, 199, 258
Leaf functions, 331
Least significant (LS) bits, 282
Lh instruction, 200, 258
Lhu instruction, 200, 258
Libraries, 367–68

fixing, 414
layer, 414

Li.d instruction, 213
Li instruction, 200, 253
Link units

defined, 409
in programs, 411–12

Li.s instruction, 213
Little-endian

bitfields, 317

bus, 287, 290
consistent view, 283
picture, 286
See also Endianness

LLAddr register, 75, 223
Ll instruction, 200, 223, 258
Load delay, 28, 52

hiding, 43
shot, 28

Load-linked/store-conditional,
223–24

Loads/stores
alignment, 25
architecture, 6
instructions, 257–58
left, 221–22
right, 222–23
unaligned, 40–41

LSI Logic, 15
L.s instruction, 213, 258
Lui instruction, 200, 253
Luxcl instruction, 213
Lwcl instruction, 214
Lw instruction, 200, 258
Lwl instruction, 200, 219
Lwr instruction, 219
Lwt instruction, 200
Lwu instruction, 200, 258
Lwxcl instruction, 200,

214, 258

Macros, 266–67
Madd16 instruction, 201, 256
Madd instruction, 201, 227
Madd.s instruction, 214
Maddu instruction, 201
Mad instruction, 200, 227, 256
Madu instruction, 200, 256
Mantissa, 155
MDMX, 31–32, 429
Memory

access ordering/reordering,
280, 301–5

barriers, 406
barriers for loads/stores,

229–30
burst bandwidth, 99
C data types in, 314
consistent, 400

contiguous, allocating,
382–83

data layout/alignment, 280
data types in, 39–41
DMA into, 86
floating-point data in, 41
high, 367
layout, 274–76
layout of structure, 315
Linux program usage, 410
nonconsistent, 400
physical, 381–82
references, 24
resources for exception

routine, 148
stale data in, 297–98

Memory management
control registers, 133
in simpler OS, 149
unit control, 53

Memory map, 48
64-bit view, 50, 51
illustrated, 48
I/O registers, 307–8
Linux thread, 381
problems, 401–2
program suitability, 383

Memory translation, 382–84
64-bit pointers and, 397–98
exceptions, 105

Mfc instruction, 201, 260
Mfcl instruction, 214
Mfhc instruction, 201
Mfhcl instruction, 214
Mfhi instruction, 201, 255, 256
Mflo instruction, 201, 255, 256
MIPS

assemblers, 263
assembly language, 33
caches, 5
chips, 8–22
CPUs. See MIPS processors
defined, 2
design origins, 389–92
for embedded systems,

13–14
first CPU cores, 11–12
five-stage pipeline, 5–7
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MIPS (continued)
instruction constraints,

23–24
memory map, 48
multithreading, 415–23
processor control, 53–78
software standards, 311–37

MIPS-3D extension, 174,
176–78

MIPS16, 425–26
as complete instruction set,

425–26
defined, 425
encodings and instructions,

426–27
evaluated, 427

MIPS16e, 31, 425
MIPS32, 30, 45, 46
MIPS32/64

Release 2, added privileged
instructions, 218

Release 2, added regular
instructions, 216

specifications, 216
MIPS64, 30, 45, 46–47

FPUs, 45
instructions, 47

MIPS I, 30
MIPS II, 30, 44
MIPS III, 30, 44
MIPS IV, 30
MIPS V, 30
MIPS architecture, 29–52

64-bit addressing, 46
atomic operations and,

376–77
CISC architecture

comparison, 23–28
growth, 43
ISA, 29
versions, 30

MIPS Computer Systems Inc., 1
MIPS DSP ASE, 428–29

defined, 428
features, 428–29
instruction set, 429

MIPS processors
2 GHz, 20
categories, 21

in consumer electronics, 15
low-power, 17–18
milestones, 22
modern times, 17–20
in network routers/laser

printers, 15–17
R2000, 8
R3000, 8–9
R4000, 12
R5000, 15–16
R6000, 9–11
R10000, 14
RM5200, 16
RM7000, 16–17
Vr4300, 15

MIPS Technologies, 20
MMU (memory management

unit), 382–84
Mnemonics

divide, 187
non-u, 186–87
u, 186–87

Modified pages, 392–93
Most significant (MS) bit, 282
Move instruction, 201, 252
Movf instruction, 201, 252
Movf.s instruction, 214
Movn instruction, 201, 253
Movn.s instruction, 214
Mov.s instruction, 214
Movt instruction, 201, 252
Movt.s instruction, 214
Movz instruction, 201, 225, 253
Movz.s instruction, 214
Msub instruction, 202
Msub.s instruction, 214
Msubu instruction, 202
MT, 32
Mtc instruction, 202
Mtcl instruction, 214
Mthc instruction, 202
Mthcl instruction, 214
Mthi instruction, 202, 256
Mtlo instruction, 202, 256
Mul instruction, 202, 256
Mulo instruction, 202, 256
Mulou instruction, 202, 256
Mulr.ps instruction, 214
Mul.s instruction, 214

Mult instruction, 203, 256
Multiply-add operations, 170,

226–27
floating-point, 227–28
forms, 170
FP performance, 170

Multiprocessor systems
chip-level, 405
coherent caches and, 403–6
locks, 406

Multitasking, 384
Multithreading, 100, 415–23

CP0 registers for, 419
defined, 415
exceptions, 419–20
features, 417–18
highly responsive

programming with,
422–23

interrupts, 420
resource requirement,

416–17
SMP Linux, 422
specification, 418, 420
thread priority hints, 421
user-privilege dynamic

thread creation, 421
uses, 417
using, 417–21

Multu instruction, 203, 256

N32
defined, 312
FP register usage, 328
organization, 326
register-use standards,

326–29
See also ABIs

N64
defined, 311–12
FP register usage, 328
organization, 326
register-use standards,

326–29
See also ABIs

Negative pointers, 308–9
Neg instruction, 203, 254
Neg.s instruction, 214
Negu instruction, 203, 254
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Nested scheduling, 119
Nesting exceptions, 114–15
Nintendo64, 15
Nmadd.s instruction, 214
Nmsub.s instruction, 214
Nonleaf functions, 331–35

calls, 337
defined, 331

Nonmaskable interrupts
(NMIs), 111

Nonprecise exceptions, 108–9
Nop instruction, 76, 203,

226, 252
Nor instruction, 203
NORMALBOOT instruction, 345
Normalization, 152

defined, 152
IEEE mantissa and, 155

Not instruction, 203
Nudge instruction, 203

O32
defined, 311
stack argument structure,

320–21
See also ABIs

Object files, 409
Ordering, 301–5

architectures, 303
strong, 303
write buffers and, 304

Ori instruction, 203, 272
Or instruction, 203

Page coloring, 301
Page mapped preferred, 386–87
PageMask register, 133, 135,

136
arbitrary bit patterns, 136
fields, 134
in TLB field setup, 135

Pages
filled with zero, 406
modified, 392–93
selection not needing

coherent management,
405–6

Page tables
access helpers, 138–40

hardware-friendly, 143–47
memory-held, 142

Paging, demand, 383
Paired-integer value

conversion, 178
Paired-single FP instructions,

173–78
conditional move, 176
conversion operations, 175
defined, 173
exceptions, 174

Paired-single value conversion,
178

Parity bit, 94
PC sampling, 340–41, 342

defined, 340
with EJTAG, 356

PDtrace, 359–60
defined, 340, 359
probe suppliers and, 360
tracing, 359–60

Performance counters, 360–61
PFN (page frame number), 131
Physical addresses, 47
Pipelines, 2–5

branch delays and, 27
caching and, 4–5
CP0 hazards, 403
defined, 2
effective, 4
inefficiency, 3–4
load delays and, 28
MIPS five-stage, 5–7
in RISC microprocessors, 3
visibility, 50–52

Pipelining
software, 228
visible, 180

Pipestages
ALU, 6
defined, 5
IF, 6
MEM, 6
RD, 6
WB, 6

Pll.ps instruction, 215
Plu.ps instruction, 215
Pointers

64-bit, 397–98

frame, 335–37
global, 273
GOT, 413
negative, 308–9
stack, 335
types, 313

Position-independent code
(PIC), 368, 410

Precise exceptions, 107–8,
107–9

causes, 107–8
defined, 107
See also Exceptions

Precision architecture, 10
Prefetch, 228–29
Pref instruction, 203, 228–29,

258
Prefx instruction, 215, 258
PRId register, 68–69

defined, 68
field, 68
Imp, 126
Rev, 126
See also CPU control

registers
Probe

control, 343–44
EJTAG without, 356–57
feeding with CPU with

instructions, 344
tracing to, 359–60

Processes
addresses, mapping, 385–86
layout and protection,

384–85
Profiling, 342
Program addresses, 47, 49
Pul.ps instruction, 215
Puu.ps instruction, 215

Quantum Effect Design
(QED), 13–14, 16

R2u instruction, 203
R2000 processor, 8
R3000 processor, 8–9, 63
R4000 processor, 12, 63
R5000 processor, 15–16
R6000 processor, 9–11
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R10000 processor, 14
Radd instruction, 203
Random register, 127, 133

defined, 138
maintaining, 143

Rdhwr instruction, 127, 203,
217, 232–33, 261

Rdpgpr instruction, 203, 218
RD (read registers), 6
Reads

overtaking writes, 304
two-way communication,

302
Real-time OS (RTOS), 149
Reciprocal calculations, 177–78
Recip.s instruction, 215
Recycling mechanisms, 124
Refill

mechanism, 143–47
occurrence, 142–43
TLB, 392
TLB, code, 396–97
TLB exception, kernel

service, 393–97
Registers, 24, 34–38

after power-up, 58
BadVAddr, 67
behavior, 34
CacheErr, 95
Cause, 64–65, 116, 117
Compare, 68, 116
Config, 69–73
Context, 133, 144
conventional names, 35–38
CPU control, 59–75
data types in, 39–41
DCR, 351–52
Debug, 348–51
DEPC, 348
DSAVE, 348
EBase, 73, 111
EntryHi, 133, 134, 135
EntryLo, 133, 136
EPC, 65
exception-handling, 58–59
FCCR, 161
FCSR, 161, 162, 171
FENR, 161
FEXR, 161

FIR, 161
floating-point, 35, 41,

159–60
general-purpose, 34, 35, 179
Index, 133, 137–38
IntCtl, 73–74
integer multiply unit and,

38–39
I/O device, 299
LLAddr, 75
memory-mapped I/O,

307–8
names, 184
PageMask, 133, 135, 136
passing arguments with,

321–22
PRId, 68–69
Random, 127, 133, 138
shadow, 74, 124
SR, 60–64
SRSCtl, 74–75
status, 125
TagLo, 96
TCRestart, 422
TLB/MMU, 132–40
uses, 35
use standards, 326–29
WatchHi, 358, 359
WatchLo, 358
Wired, 138, 143
XContext, 133, 138,

138–39, 140
zero, 148

Relocation, 383
Rem instruction, 204, 256
Remu instruction, 204, 256
Reset, 124
Rfe instruction, 204, 261
RISC (Reduced Instruction Set

Computing), 7
CPUs, 6, 10
defined, 1–2

RM5200 processor, 16
RM7000 processor, 16–17
Rmul instruction, 204
Rol instruction, 204, 254
ROMable programs, 274, 275
Ror instruction, 204, 254
Rotr instruction, 204

Rotrv instruction, 204
Round instruction, 174
Round.l instruction, 215
Round.w instruction, 215
Rsqrt.s instruction, 215
Rsub instruction, 204

SandCraft, 17
Sb instruction, 204, 258
Scd instruction, 204
Scheduler, 366
Scheduling, nested, 119
Sc instruction, 204, 223, 224
Sdbbp instruction, 205, 260
Sdc instruction, 205
Sdcl instruction, 216
Sddbp instruction, 344
Sd instruction, 205
S.d instruction, 215
Sd instruction, 258
S.d instruction, 258
Sdl instruction, 205
Sdr instruction, 205
Sdxcl instruction, 205, 216,

258
Seb instruction, 205, 217
Seh instruction, 205, 217
Self-modifying code, 299–300
Semaphores, 116, 121–23

defined, 121
values, 121

Seq instruction, 205, 255
Server processors, 21
Set-associative caches

defined, 82
four-way, 101
illustrated, 82
two-way, 82

.set directives, 267–68
Sge instruction, 205
Sgeu instruction, 205
Sgt instruction, 205
Sgtu instruction, 205
Shadow registers, 124
Sh instruction, 205, 258
SiByte, 18
Silicon Graphics, Inc. (SGI), 13

MIPS acquisition, 13
R10000, 14
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Single precision format, 156
Single-stepping, 346
Sle instruction, 206
Sleu instruction, 206
Sll instruction, 206, 254
Slti instruction, 206
Slt instruction, 206, 254
Sltiu instruction, 206
Sltu instruction, 206
SmartMIPS, 32
Sne instruction, 206
Soft float, 181
Software

bi-endian, 293–95
endianness and, 284–86
MIPS standards, 311–37
pipelining, 228
porting to use new

instructions, 231
porting with MIPS

architecture, 279–310
Sony PlayStation, 15
Special symbols, 277
Spinlocks, 376, 377–78
Sqrt.s instruction, 216
Square-root calculations, 177
Sra instruction, 206, 254
Srl instruction, 206, 254
SR register, 60–64

atomic changes, 120–21
atomicity, 120–21
BEV, 111, 125
defined, 60
EXL, 114, 116, 118, 358
fields, 60–64
FS, 180
IE, 115, 116, 118, 218
IM, 116
KSU, 118
KX, 146
SX, 146
UX, 146
See also CPU control

registers
SRSCtl register, 74–75

defined, 74
fields, 74–75

S.s instruction, 216, 258
Ssnop instruction, 76, 207

Stack, 277, 385
ABI conventions, 319–37
argument structure in o32,

320–21
frame, 329, 330, 336, 337
information about, 334
layout, 332
maintenance, 277
pointer, 335
programming dependence,

309–10
user, 381

Stale data, 297–98
in cache, 297
in memory, 297–98

Standby instruction, 207, 261
Stdargs, 337
Stores, unaligned, 40–41
Sub instruction, 207
Subroutine calls, 259
Sub.s instruction, 216
Subu instruction, 207
Suspend instruction, 207, 261
Suxcl instruction, 216
Swc instruction, 207
Swcl instruction, 216
Sw instruction, 207, 258
Swl instruction, 207
Swr instruction, 207
Swxcl instruction, 207, 216,

258
Synci instruction, 92, 207,

217, 232, 261
Sync instruction, 207, 230, 261
Synthesized instructions, 42–43
Syscall instruction, 121, 207,

260
System calls, 106, 365, 370

arguments, 379
defined, 378

System-on-a-chip (SoC), 12, 21

TagLo register, 96
TCBADDRESS instruction, 345
TCBCONTROLA instruction, 345
TCBCONTROLB instruction, 345
TCRestart register, 422
Teq instruction, 207, 260
Test instructions, 173

Tge instruction, 207, 260
Tgeu instruction, 208
Thrashing, 101

avoiding, 102
losses, 101

Threads, 375
defined, 364
groups, 367
memory map, 381

Three-operand arithmetic
operations, 169

TLB
address translation, 147
applications, 148
care/maintenance, 397
chip implementation, 389
control instructions, 140–41
defined, 131, 388
entries, 131, 132, 141–42
entries, fields, 390
entries, selecting, 137–38
everyday use, 147–48
hardware, 131–32
key fields, 134–36
misses, 116
miss exception, 146
miss handling, 145–46
output fields, 136–37
output side, 391
programming, 141–43
refill, 392
refill code, 396–97
refill exceptions, kernel

service, 393–97
refill handler, 394
registers, 132–40

Tlbp instruction, 141, 208, 261
Tlbr instruction, 141, 208, 261
Tlbwi instruction, 208, 261
Tlbwr instruction, 141, 208,

261
Tlt instruction, 208
Tltiu instruction, 208
Tltu instruction, 208
Tne instruction, 208
Translation lookaside buffer.

See TLB
Trap and emulate, 181
Traps, 106, 260
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Trunc instruction, 174
Trunc.l instruction, 216
Trunc.w instruction, 216

U2r instruction, 208
Udi instruction, 208
Uld instruction, 208, 258
Ulh instruction, 209, 258
Ulhu instruction, 209, 258
Ulw instruction, 209, 258
Unaligned transfers, 43
Unary (sign-changing)

operations, 170
Uncached data, 300
Usd instruction, 209, 258
User hazards, 77
Ush instruction, 209, 258
Usw instruction, 209, 258

Vectored interrupts, 123
defined, 110
interrupt handler with, 124

See also Interrupts
Visible pipelining, 180
VLIW (very long instruction

word), 7
VPN (virtual page number),

131
Vr4300 processor, 15
Vx Works, 149

Wait instruction, 209
WatchHi register, 358, 359
WatchLo register, 358
Wbflush(), 304–5
WB (write back), 6
Wired register, 138, 143
Wiring

endianness configurable
connection, 290–92

endianness-inconsistent
buses, 289–90

Write-back caches, 83–84
defined, 84

L1, 89
See also Caches

Write buffers
defined, 83
implementation, 305
ordering and, 304

Write-through caches, 83
Wrpgpr instruction, 209, 218
Wsbh instruction, 209, 217

XContext register, 133
BadVPN2, 139
defined, 138
field boundaries and, 138
as pointer, 142
PTEBase, 140
R, 140

Xor instruction, 209

Yield instruction, 422–23

Zero register, 148, 255




