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Preface

This book is about the Microchip 32-bit PIC32 microcontroller, its hardware, programming it
in C, and interfacing it to sensors and actuators. This book also covers related mechatronics
topics such as motor theory, choosing motor gearing, and practical introductions to digital
signal processing and feedback control. This book is written for:

• Anyone starting out with the Microchip PIC32 32-bit microcontroller.Microchip
documentation can be hard to navigate; this is the book we wish we had when we started!

• The hobbyist ready to explore beyond Arduino. Arduino software and its large user
support community allow you to be up and running quickly with Atmel microcontrollers.
But reliance on Arduino software prevents you from fully exploiting or understanding the
capability of the microcontroller.

• Teachers and students in mechatronics. The exercises, online material, and associated
kit are designed to support introductory, advanced, and flipped or online courses in
mechatronics.

• Anyone interested in mechatronics, actuators, sensors, and practical embedded
control.

Contents

This book was written based on the two-quarter mechatronics sequence at Northwestern
University, ME 333 Introduction to Mechatronics and ME 433 Advanced Mechatronics. In
ME 333, students learn about PIC32 hardware, fundamentals of programming the PIC32 in C,
the use of some basic peripherals, and interfacing the PIC32 with sensors and actuators. In
ME 433, material from the rest of the book is used as reference by groups working on
projects. Students taking the sequence range from sophomores to graduate students. The only
prerequisite is introductory circuit analysis and design; experience in C programming is not
required. While experience in C would allow faster progression through the material, we
decided not to require it, to make the course available to the broad set of students interested in
the material. To partially compensate for the wide range of experience in C (from expert to
none), we begin ME 333 with an intensive two-week introduction to fundamental C concepts
and syntax using the “Crash Course in C” in Appendix A. We also take advantage of student
expertise by facilitating peer mentoring.

xix
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The goals of this book mirror those of the Northwestern mechatronics sequence:

• to provide the beginner a sound introduction to microcontrollers using the example of the
PIC32, a modern 32-bit architecture;

• to do so by first providing an overview of microcontroller hardware, firm in the belief that
microcontroller programming is much more grounded when tightly connected to the
hardware that implements it;

• to provide a clear understanding of the fundamentals of professional PIC32 programming
in C, which builds a foundation for further exploration of the PIC32’s capabilities using
Microchip documentation and other advanced references;

• to provide reference material and sample code on the major peripherals and special
features of the PIC32;

• to instill an understanding of the theory of motor operation and control; and
• to teach how microcontroller peripherals can be used to interface with sensors and motors.

To achieve these goals, the book is divided into five main parts:

1. Quickstart. This part (Chapter 1) allows the student to get up and running with the PIC32
quickly.

2. Fundamentals. After achieving some early success with the quickstart, the five chapters
in Fundamentals (Chapters 2 to 6) examine the PIC32 hardware, the build process in C
and the connection of the code to the hardware, the use of libraries, and two important
topics for real-time embedded computing: interrupts and the time and space efficiency of
code. The time investment in these chapters provides the foundation needed to move
quickly through later chapters and to profit from other reference material, like Microchip’s
PIC32 Reference Manual, Data Sheets, and XC32 C/C++ Compiler User’s Guide.

3. Peripheral Reference. This part (Chapters 7 to 20) gives details on the operation of the
various peripherals on the PIC32, as well as sample code and applications. It is primarily
reference material that can be read in any order, though we recommend the first few
chapters (digital I/O, counter/timers, output compare, and analog input) be covered in
order. The peripheral reference concludes with an introduction to Harmony, Microchip’s
recent framework for high-level programming of PIC32s.

4. Mechatronics. This part (Chapters 21 to 29) focuses on interfacing sensors to a
microcontroller, digital signal processing, feedback control, brushed DC motor theory,
motor sizing and gearing, control by a microcontroller, and other actuators such as
brushless motors, stepper motors, and servo motors.

5. Appendixes. The appendixes cover background topics such as analysis of simple circuits
and an introduction to programming in C. We have our students first get used to writing C
programs on their laptops, and compiling with gcc, before moving on to programming a
microcontroller.
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In ME 333, we cover the crash course in C; the Quickstart; the Fundamentals; select topics
from the Peripheral Reference (digital I/O, counter/timers, output compare/PWM, and analog
input); and simple sensor interfacing, DC motor theory, motor sizing and gearing, and control
of a DC motor from the Mechatronics part. Other chapters are used for reference in ME 433
and other projects that students undertake.

Choices made in this book

We made several choices about how to teach mechatronics in ME 333, and those choices are
reflected in this book. Our choices are based on the desire to expose our students to the topics
they will need to integrate sensors and actuators and microcontrollers professionally, subject
to the constraint that most students will take only one or two courses in mechatronics. Our
choices are based on what we believe to be the smallest building blocks that a mechatronics
engineer needs to know about. For example, we do not attempt to teach microcontroller
architecture at the level that a computer engineer might learn it, since a mechatronics engineer
is not likely to design a microcontroller. On the other hand, we also do not rely on software
and hardware abstractions that keep the budding mechatronics engineer at arm’s length from
concepts needed to progress beyond the level of a hobbyist. With that philosophy in mind,
here are some of the choices made for ME 333 and this book:

• Microcontrollers vs. sensors and actuators.Mechatronics engineering integrates sensors,
actuators, and microcontrollers. Handing a student a microcontroller development board
and sample code potentially allows the course to focus on the sensors and actuators part.
In ME 333, however, we opted to make understanding the hardware and software of the
microcontroller approximately 50% of the course. This choice recognizes the fundamental
role microcontrollers play in mechatronics, and that mechatronics engineers must be
comfortable with programming.

• Choice of microcontroller manufacturer. There are many microcontrollers on the market,
with a wide variety of features. Manufacturers include Microchip, Atmel, Freescale,
Texas Instruments, STMicroelectronics, and many others. In particular, Atmel
microcontrollers are used in Arduino boards. Arduinos are heavily used by hobbyists and
in K-12 and university courses in large part due to the large online user support
community and the wide variety of add-on boards and user-developed software libraries.
In this book, we opt for the commercially popular Microchip PIC microcontrollers, and
we avoid the high-level software abstractions synonymous with Arduino. (Arduinos are
used in other Northwestern courses, particularly those focusing on rapid product
prototyping with little mechatronics design.)

• Choice of a particular microcontroller model.Microchip’s microcontroller line consists
of hundreds of different models, including 8-bit, 16-bit, and 32-bit architectures. We have
chosen a modern 32-bit architecture. And instead of trying to write a book that deals with
all PIC32 models, which includes six different families of PIC32s as of this writing (see
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Appendix C), we focus on one particular model: the PIC32MX795F512H. The reasons
for this choice are (a) it is a powerful chip with plenty of peripherals and memory
(128 KB data RAM and 512 KB program flash), and, more importantly, (b) focusing on a
single chip allows us to be concrete in the details of its operation. This is especially
important when learning how the hardware relates to the software. (One of the reasons
Microchip’s documentation is difficult to read, and is so full of exceptions and special
cases, is that it is written to be general to all PIC32s in the case of the Reference Manual,
or all PIC32s in a specific family in the case of the Data Sheets.) Once the reader has
learned about the operation of a specific PIC32, it is not too difficult to learn about the
differences for a different PIC32 model.

• Programming language: C++ vs. C vs. assembly. C++ is a relatively high-level
language, C is lower level, and assembly is lower still. We choose to program in C
because of the portability of the language, while staying relatively close to the assembly
language level and minimizing abstractions introduced by C++.

• Integrated Development Environment vs. command line.MPLAB X is Microchip’s
Integrated Development Environment (IDE) for developing software for PICs. So why do
we avoid using it in this book? Because we feel that it hides key steps in understanding
how the code you write turns into an executable for the PIC32. In this book, code is
written in a text editor and the C compiler is invoked at the command line. There are no
hidden steps. Once the reader has mastered the material in the first few chapters of this
book, MPLAB will no longer be mysterious.

• Use of the Harmony software vs. ignoring it.Microchip provides an extensive library of
middleware, device drivers, system services, and other software to support all of their
PIC32 models. One goal of this software is to allow you to write programs that are
portable across different PIC32 models. To achieve this, however, a significant amount of
abstraction is introduced, separating the code you write from the actual hardware
implementation. This is bad pedagogically as you learn about the PIC32. Instead, we use
low-level software commands to control the PIC32’s peripherals, reinforcing the hardware
documentation in this book and in the Data Sheet and Reference Manual. Only with the
more complicated peripherals do we use the Harmony software, specifically for USB, in
Chapter 20.

• Sample code vs. writing it yourself. The usual way to learn to program PIC32s is to take
some working sample code and try to modify it to do something else. This is natural,
except that if your modified code fails, you are often left with no idea what to do. In this
book we provide plenty of sample code, but we also focus on the fundamentals of
programming the PIC32 so that you learn to write code from scratch as well as strategies
to debug if things go wrong (Figure 0.1).

The philosophy represented by the choices above can be summed up succinctly: There should
be no magic steps! You should know how and why the code you write works, and how it
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Quickstart

Copying 
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This book
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Figure 0.1
The trajectory of PIC32 programming ability vs. time for the usual “copy and modify” approach vs.

the foundational approach in this book. The crossover should occur at only a few weeks!

connects to the hardware. You should not be simply modifying opaque and abstract code,
compiling with a mysterious IDE, and hoping for the best.

The NU32 development board

The NU32 development board was created to support this book. If you do not have the board,
you can still learn a lot about how a PIC32 works from reading this book. We highly
recommend that you get the NU32 board and the kit of mechatronics parts, however, to allow
you to work through the examples in the book.

In keeping with the “no magic” philosophy, the primary function of the NU32 is to break out
the pins of the PIC32MX795F512H to a solderless prototyping breadboard, to allow easy
wiring to the pins. Otherwise we try to keep the board as bare bones and inexpensive as
possible, leaving external circuits to the reader. To allow you to get up and running as quickly
as possible, though, the board does provide a few devices external to the PIC32: two LEDs
and two buttons for simple user interaction; a 3.3 V regulator (to provide power to the PIC32)
and a 5 V regulator (to provide a commonly needed voltage); a resonator to provide a clock
signal; and a USB-to-UART chip that simplifies communication between the user’s computer
and the PIC32.

The PIC32 on the NU32 comes with a bootloader program pre-installed, allowing you to
program the PIC32 with just a USB cable. The NU32 can also be programmed directly using a
programmer device, like the PICkit 3. This is covered in Chapter 3.6.
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How to use this book in a course

Mechatronics is fundamentally an integrative discipline, requiring knowledge of
microcontrollers, programming, circuit design, sensors, signal processing, feedback control,
and motors. This book contains a practical introduction to these topics.

Recognizing that most students take no more than one or two courses in mechatronics,
however, this book does not delve deeply into the mathematical theory underlying topics such
as linear systems, circuit analysis, signal processing, or control theory.1 Instead, a course
based on this book is meant to motivate further theoretical study in these disciplines by
exposing students to their practical applications.

As a result, students need only a basic background in circuits and programming to be able to
take a course based on this book. At Northwestern, this means that students take ME 333 as
early as their sophomore year. ME 333 is an intense 11-week quarter, covering, in order:

• Appendix A, a Crash Course in C. (Approximately 2 weeks.)
• Chapters 1–6, fundamentals of hardware and software of the PIC32 microcontroller.

(Approximately 3 weeks.)
• Chapters 7–10, covering digital input and output, counter/timers, output compare/PWM,

and analog input. These chapters are primarily used as reference in the context of the
following assignment.

• Chapters 23 and 24, on feedback control and PI control of the brightness of an LED using
a phototransistor for feedback. This project is the students’ first significant project using
the PIC32 for embedded control. It also serves as a warmup for the final project.
(Approximately 2 weeks.)

• Chapter 25 on theory and experimental characterization of a brushed DC motor.
(Approximately 1 week.)

• Introduction to encoders and current sensing in Chapter 21 and all of Chapters 27 and 28
on DC motor control. Chapter 27 introduces all the hardware and software elements of a
professional DC motor control system, including a nested-loop control system with an
outer-loop motion controller and an inner-loop current controller. Chapter 28 is a
chapter-long project that applies the ideas, leading the student through a significant
software design project to develop a motor control system that interfaces with a menu
system in MATLAB. This “capstone” project is motivated by professional motor amplifier
design and integrates the student’s knowledge of the PIC32, C programming, brushed DC
motors, feedback control, and the interfacing of sensors and actuators with a PIC32.
(Approximately 3 weeks.)

1 Because other courses generally do not cover the operation of motors, this book goes into greater detail on motor
theory.
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This is a very full quarter, which would be less intense if students were required to know C
before taking the course.

ME 333 at Northwestern is taught as a flipped class. Students watch videos that support the
text on their own time, then work on assignments and projects during class time while the
instructor and TAs circulate to help answer questions. Students bring their laptops and
portable mechatronics kits to every class. This kit includes an inexpensive function generator
and oscilloscope, the nScope, that uses their laptop as the display. Thus ME 333 does not use a
lab facility; students use the classroom and their own dorm rooms. Students work and learn
together during classes, but each student completes her own assignment individually. The
follow-on course ME 433 focuses on more open-ended mechatronics projects in teams and
makes extensive use of a mechatronics lab that is open to students 24/7.

For a 15-week semester, good additions to the course would be two weeks on different sensor
technologies (Chapter 21) and digital signal processing of sensor data (Chapter 22). Another
week should also be devoted to the final motor control project (Chapter 28), to allow students
to experiment with various extensions. Time permitting, other common actuators (e.g.,
steppers, RC servos, and brushless motors) could be covered in Chapter 29.

For a two-quarter or two-semester sequence, the second course could focus on open-ended
team design projects, similar to ME 433 at Northwestern. The book then serves as a reference.
Other appropriate material includes chapters on communication protocols and supporting
PIC32 peripherals (e.g., UART, SPI, I2C, USB, and CAN).

Website, videos, and flipped classrooms

The book’s website, www.nu32.org, has links to downloadable data sheets, sample code, PCB
layouts and schematics, chapter extensions, errata, and other useful information and updates.
This website also links to short videos that summarize many of the chapters. These videos can
be used to flip a traditional classroom, as in ME 333, allowing students to watch the lectures at
home and to use class time to ask questions and work on projects.

Other PIC32 references

One goal of this book is to organize Microchip reference material in a logical way, for the
beginner. Another goal is to equip the reader to be able to parse Microchip documentation.
This ability allows the reader to continue to develop her PIC32 programming abilities beyond
the limits of this book. The reader should download and have at the ready the first two
references below; the others are optional. The readings are summarized in Figure 0.2.

• The PIC32 Reference Manual. The Reference Manual sections describe software and
hardware for all PIC32 families and models, so they can sometimes be confusing in their

www.nu32.org
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MX5xx/6xx/7xx family
MX5xx/6xx/7xx Family Data Sheet

MIPS32 M4K Readings

Memory Organization
Section of Data Sheet

PIC32MX795F512H

NU32 board
This Book

All PIC32s

PIC32 Family Reference Manual
MPLAB XC32 C Compiler Guide

MPLAB Assembler and Linker Guide
MPLAB Harmony Help

MIPS32 Manuals

MX1xx/2xx family
MX1xx/2xx Family Data Sheet

MIPS32 M4K Readings

MX3xx/4xx family
MX3xx/4xx Family Data Sheet

MIPS32 M4K Readings

MZ family
MZ Family Data Sheets
MIPS32 microAptiv MPU

Readings

MX1xx/2xx/5xx family
MX1xx/2xx/5xx Family Data Sheet
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MX330/350/370/
430/450/470 family

MX330/350/370/430/450/470
Family Data Sheet

MIPS32 M4K Readings

Figure 0.2
Other reference reading and the PIC32s they apply to.

generality. Nevertheless, they are a good source for understanding the functions of the
PIC32 in more detail. Some of the sections, particularly the later ones, focus on the
PIC32MZ family and are not relevant to the PIC32MX795F512H.

• The PIC32MX5xx/6xx/7xx Family Data Sheet. This Data Sheet provides details
specific to the PIC32MX5xx/6xx/7xx family. In particular, the Memory Organization
section of the Data Sheet clarifies which special function registers (SFRs) are included on
the PIC32MX795F512H, and therefore which Reference Manual functions are available
for that model.

• (Optional) The Microchip MPLAB XC32 C Compiler User’s Guide and The
Assembler, Linker, and Utilities User’s Guide. These come with your XC32 C compiler
installation, so no need to download separately.

• (Optional) MPLAB Harmony Help. This documentation, which comes with the
Harmony installation, can be helpful once you start writing more complex code that uses
the Harmony software.

• (Optional) MIPS32 Architecture for Programmers manuals and other MIPS32
documentation. If you are curious about the MIPS32 M4K CPU, which is used on the
PIC32MX795F512H, and its assembly language instruction set, you can find references
online.
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CHAPTER 1

Quickstart

Edit, compile, run, repeat: familiar to generations of C programmers, this mantra applies to
programming in C, regardless of platform. Architecture, program loading, input and output:
these details differ between your computer and the PIC32. Architecture refers to processor
type: your computer’s x86-64 CPU and the PIC32’s MIPS32 CPU understand different
machine code and therefore require different compilers. Your computer’s operating system
allows you to seamlessly run programs; the PIC32’s bootloader writes programs it receives
from your computer to flash memory and executes them when the PIC32 resets.1 You interact
directly with your computer via the screen and keyboard; you interact indirectly with the
PIC32 using a terminal emulator to relay information between your computer and the
microcontroller. As you can see, programming the PIC32 requires attention to details that you
probably ignore when programming your computer.

Armed with an overview of the differences between computer programming and
microcontroller programming, you are ready to get your hands dirty. The rest of this chapter
will guide you through gathering the hardware and installing the software necessary to
program the PIC32. You will then verify your setup by running two programs on the PIC32.
By the end of the chapter, you will be able to compile and run programs for the PIC32
(almost) as easily as you compile and run programs for your computer!

Throughout this book, we will refer to “the PIC32.” Although there are many PIC32 models,
for us “the PIC32” is shorthand for the PIC32MX795F512H. While most of the concepts in
this book apply to many PIC32 models, you should be aware that some of the details differ
between models. (See Appendix C for a discussion of the differences.) Further, we refer to the
PIC32MX795F512H as it is configured on the NU32 development board; in particular, it is
powered by 3.3 V and is clocked by a system clock and a peripheral bus clock at 80 MHz. You
will learn more about these details in Chapter 2.

1 Your computer also has a bootloader. It runs when you turn the computer on and loads the operating system.
Also, operating systems are available for the PIC32, but we will not use them in this book.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00001-9
Copyright © 2016 Elsevier Inc. All rights reserved. 3
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Figure 1.1
A photo of the NU32 development board mounted on a solderless breadboard.

1.1 What You Need

This section explains the hardware and software that you need to program the PIC32. Links to
purchase the hardware and download the free software are provided at the book’s
website, www.nu32.org.

1.1.1 Hardware

Although PIC32 microcontrollers integrate many devices on a single chip, they also require
external circuitry to function. The NU32 development board, shown in Figure 1.1, provides
this circuitry and more: buttons, LEDs, breakout pins, a USB port, and a virtual USB serial
port. The examples in this book assume that you use this board. You will also need the
following hardware:

1. Computer with a USB port. The host computer is used to create PIC32 programs. The
examples in this book work with the Linux, Windows, and Mac operating systems.

2. USB A to mini-B cable. This cable carries signals between the NU32 board and your
computer.

3. AC/DC adapter (6V). This cable provides power to the PIC32 and NU32 board.

1.1.2 Software

Programming the PIC32 requires various software. You should be familiar with some
of the software from programming your computer in C; if not, refer to Appendix A.

www.nu32.org
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For your convenience, we have aggregated the software you need at the book’s website.
You should download and install all of the following software.

1. The command prompt allows you to control your computer using a text-based interface.
This program, cmd.exe on Windows, Terminal on Mac, and bash on Linux, comes with
your operating system so you should not need to install it. See Appendix A for more
information about the command line.

2. A text editor allows you to create text files, such as those containing C source code. See
Appendix A for more information.

3. A native C compiler converts human-readable C source code files into machine code that
your computer can execute. We suggest the free GNU compiler, gcc, which is available
for Windows, Mac, and Linux. See Appendix A for more information.

4. Make simplifies the build process by automatically executing the instructions required to
convert source code into executables. After manually typing all of the commands
necessary create your first program, you will appreciate make.

5. The Microchip XC32 compiler converts C source files into machine code that the PIC32
understands. This compiler is known as a cross compiler because it runs on one processor
architecture (e.g., x86-64 CPU) and creates machine code for another (e.g., MIPS32).
This compiler installation also includes C libraries to help you control PIC32-specific
features. Note where you install the compiler; we will refer to this directory as
<xc32dir>. If you are asked during installation whether you would like to add XC32 to
your path variable, do so.

6. MPLAB Harmony is Microchip’s collection of libraries and drivers that simplify the
task of writing code targeting multiple PIC32 models. We will use this library only in
Chapter 20; however, you should install it now. Note the installation directory, which we
will refer to as <harmony>.

7. The FTDI Virtual COM Port Driver allows you to use a USB port as a “virtual serial
communication (COM) port” to talk to the NU32 board. This driver is already included
with most Linux distributions, but Windows and Mac users may need to install it.

8. A terminal emulator provides a simple interface to a COM port on your computer,
sending keyboard input to the PIC32 and displaying output from the PIC32. For
Linux/Mac, you can use the built-in screen program. For Windows, we recommend you
download PuTTY. Remember where you install PuTTY; we refer to this directory as
<puttyPath>.

9. The PIC32 quickstart code contains source code and other support files to help you
program the PIC32. Download PIC32quickstart.zip from the book’s website, extract it,
and put it in a directory that you create. We will refer to this directory as <PIC32>. In
<PIC32> you will keep the quickstart code, plus all of the PIC32 code you write, so make
sure the directory name makes sense to you. For example, depending on your operating
system, <PIC32> could be /Users/kevin/PIC32 or C:\Users\kevin\Documents\PIC32. In
<PIC32>, you should have the following three files and one directory:
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• nu32utility.c: a program for your computer, used to load PIC32 executable
programs from your computer to the PIC32

• simplePIC.c, talkingPIC.c: PIC32 sample programs that we will test in this chapter
• skeleton: a directory containing

• Makefile: a file that will help us compile future PIC32 programs
• NU32.c, NU32.h: a library of useful functions for the NU32 board
• NU32bootloaded.ld: a linker script used when compiling programs for the PIC32

We will learn more about each of these shortly.

You should now have code in the following directories (if you are a Windows user, you will
also have PuTTY in the directory <puttyPath>):

• <xc32dir>. The Microchip XC32 compiler. You will never modify code in this directory.
Microchip wrote this code, and there is no reason for you to change it. Depending on your
operating system, your <xc32dir> could look something like the following:
• /Applications/microchip/xc32

• C:\Program Files (x86)\Microchip\xc32

• <harmony>. Microchip Harmony. You will never modify code in this directory.
Depending on your operating system, your <harmony> could look something like the
following:
• /Users/kevin/microchip/harmony

• C:\microchip\harmony

• <PIC32>. Where PIC32 quickstart code, and code you will write, is stored, as described
above.

Now that you have installed all of the necessary software, it is time to program the PIC32. By
following these instructions, not only will you run your first PIC32 program, you will also
verify that all of the software and hardware is functioning properly. Do not worry too much
about what all the commands mean, we will explain the details in subsequent chapters.

Notation: Wherever we write <something>, replace it with the value relevant to your computer.
On Windows, use a backslash (\) and on Linux/Mac use a slash (/) to separate the directories
in a path. At the command line, place paths that contain spaces between quotation marks
(i.e., "C:\Program Files"). Enter the text following a > at the command line. Use a single line,
even if the command spans multiple lines in the book.

1.2 Compiling the Bootloader Utility

The bootloader utility, located at <PIC32>/nu32utility.c, sends compiled code to the PIC32.
To use the bootloader utility you must compile it. Navigate to the <PIC32> directory by typing:
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> cd <PIC32>

Verify that <PIC32>/nu32utility.c exists by executing the following command, which lists all
the files in a directory:

• Windows
> dir

• Linux/Mac
> ls

Next, compile the bootloader utility using the native C compiler gcc:

• Windows
> gcc nu32utility.c -o nu32utility -lwinmm

• Linux/Mac
> gcc nu32utility.c -o nu32utility

When you successfully complete this step the executable file nu32utility will be created.
Verify that it exists by listing the files in <PIC32>.

1.3 Compiling Your First Program

The first program you will load onto your PIC32 is <PIC32>/simplePIC.c, which is listed
below. We will scrutinize the source code in Chapter 3, but reading it now will help you
understand how it works. Essentially, after some setup, the code enters an infinite loop that
alternates between delaying and toggling two LEDs. The delay loops infinitely while the
USER button is pressed, stopping the toggling.

Code Sample 1.1 simplePIC.c. Blinking Lights on the NU32, Unless the USER Button
Is Pressed.

#include <xc.h> // Load the proper header for the processor

void delay(void);

int main(void) {
TRISF = 0xFFFC; // Pins 0 and 1 of Port F are LED1 and LED2. Clear

// bits 0 and 1 to zero, for output. Others are inputs.
LATFbits.LATF0 = 0; // Turn LED1 on and LED2 off. These pins sink current
LATFbits.LATF1 = 1; // on the NU32, so "high" (1) = "off" and "low" (0) = "on"

while(1) {
delay();
LATFINV = 0x0003; // toggle LED1 and LED2; same as LATFINV = 0x3;

}
return 0;

}

simplePIC.c
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void delay(void) {
int j;
for (j = 0; j < 1000000; j++) { // number is 1 million
while(!PORTDbits.RD7) {

; // Pin D7 is the USER switch, low (FALSE) if pressed.
}

}
}

To compile this program you will use the xc32-gcc cross compiler, which compiles code for
the PIC32’s MIPS32 processor. This compiler and other Microchip tools are located at
<xc32dir>/<xc32ver>/bin, where <xc32ver> refers to the XC32 version (e.g., v1.40). To find
<xc32ver> list the contents of the Microchip XC32 directory, e.g.,

> ls <xc32dir>

The subdirectory displayed is your <xc32ver> value. If you happen to have installed two or
more versions of XC32, you will always use the most recent version (the largest version
number).

Next you will compile simplePIC.c and create the executable hex file. To do this, you first
create the simplePIC.elf file and then you create the simplePIC.hex file. (This two-step
process will be discussed in greater detail in Chapter 3.) Issue the following commands from
your <PIC32> directory (where simplePIC.c is), being sure to replace the text between the <>

with the values appropriate to your system. Remember, if the paths contain spaces, you must
surround them with quotes (i.e., "C:\Program Files\xc32\v1.40\bin\xc32-gcc").

> <xc32dir>/<xc32ver>/bin/xc32-gcc -mprocessor=32MX795F512H
-o simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c

> <xc32dir>/<xc32ver>/bin/xc32-bin2hex simplePIC.elf

The -Wl is “-W ell” not “-W one.” You can list the contents of <PIC32> to make sure both
simplePIC.elf and simplePIC.hex were created. The hex file contains MIPS32 machine
code in a format that the bootloader understands, allowing it to load your program onto the
PIC32.

If, when you installed XC32, you selected to have XC32 added to your path, then in the two
commands above you could have simply typed

> xc32-gcc -mprocessor=32MX795F512H
-o simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c

> xc32-bin2hex simplePIC.elf

and your operating system would be able to find xc32-gcc and xc32-bin2hex without needing
the full paths to them.
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1.4 Loading Your First Program

Loading a program onto the PIC32 from your computer requires communication between the
two devices. When the PIC32 is powered and connected to a USB port, your computer creates
a new serial communication (COM) port. Depending on your specific system setup, this COM
port will have different names. Therefore, we will determine the name of your COM port
through experimentation. First, with the PIC32 unplugged, execute the following command to
enumerate the current COM ports, and note the names that are listed:

• Windows:
> mode

• Mac:
> ls /dev/tty.*

• Linux:
> ls /dev/ttyUSB*

Next, plug the NU32 board into the wall using the AC adapter, turn the power switch on, and
verify that the red “power” LED illuminates. Connect the USB cable from the NU32’s mini-B
USB jack (next to the power jack) to a USB port on the host computer. Repeat the steps above,
and note that a new COM port appears. If it does not appear, make sure that you installed the
FTDI driver from Section 1.1.2. The name of the port will differ depending on the operating
system; therefore we have listed some typical names:

• Windows: COM4
• Mac: /dev/tty.usbserial-DJ00DV5V
• Linux: /dev/ttyUSB0

Your computer, upon detecting the NU32 board, has created this port. Your programs and the
bootloader use this port to communicate with your computer.

After identifying the COM port, place the PIC32 into program receive mode. Locate the
RESET button and the USER button on the NU32 board (Figure 1.1). The RESET button is
immediately above the USER button on the bottom of the board (the power jack is the board’s
top). Press and hold both buttons, release RESET, and then release USER. After completing
this sequence, the PIC32 will flash LED1, indicating that it has entered program receive mode.

Assuming that you are still in the <PIC32> directory, start the loading process by typing

• Windows
nu32utility <COM> simplePIC.hex

• Linux/Mac
> ./nu32utility <COM> simplePIC.hex
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where <COM> is the name of your COM port.2 After the utility finishes, LED1 and LED2 will
flash back and forth. Hold USER and notice that the LEDs stop flashing. Release USER and
watch the flashing resume. Turn the PIC32 off and then on. The LEDs resume blinking
because you have written the program to the PIC32’s nonvolatile flash memory.
Congratulations, you have successfully programmed the PIC32!

1.5 Using make

As you just witnessed, building an executable for the PIC32 requires several steps.
Fortunately, you can use make to simplify this otherwise tedious and error-prone procedure.
Using make requires a Makefile, which contains instructions for building the executable. We
have provided a Makefile in <PIC32>/skeleton. Prior to using make, you need to modify
<PIC32>/skeleton/Makefile so that it contains the paths and COM port specific to your
system.

Aside from the paths you have already used, you need your terminal emulator’s location,
<termEmu>, and the Harmony version, <harmVer>. On Windows, <termEmu> is
<puttyPath>/putty.exe and for Linux/Mac, <termEmu> is screen. To find Harmony’s version,
<harmVer>, list the contents of the <harmony> directory. Edit <PIC32>/skeleton/Makefile and
update the first five lines as indicated below.

XC32PATH=<xc32dir>/<xc32ver>/bin
HARMONYPATH=<harmony>/<harmVer>
NU32PATH=<PIC32>
PORT=<COM>
TERMEMU=<termEmu>

In the Makefile, do not surround paths with quotation marks, even if they contain spaces.

If your computer has more than one USB port, you should always use the same USB port to
connect your NU32. Otherwise, the name of the COM port may change, requiring you to edit
the Makefile again.

After saving the Makefile, you can use the skeleton directory to easily create new PIC32
programs. The skeleton directory contains not only the Makefile, but also the NU32 library
(NU32.h and NU32.c), and the linker script NU32bootloaded.ld, all of which will be used
extensively throughout the book. The Makefile automatically compiles and links every .c file
in the directory into a single executable; therefore, your project directory should contain all
the C files you need and none that you do not want!

2 Windows: Write the ports as \\.\COMx rather than COMx. Linux: To avoid needing to execute commands as
root, add yourself to the group that owns the COM port (e.g., uucp).
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Each new project you create will have its own directory in <PIC32>, e.g.,
<PIC32>/<projectdir>. We now explain how to use the <PIC32>/skeleton directory to create a
new project, using <PIC32>/talkingPIC.c as an example. For this example, we will name the
project talkingPIC, so <projectdir> is talkingPIC. By following this procedure, you will have
access to the NU32 library and will be able to avoid repeating the previous setup steps. Make
sure you are in the <PIC32> directory, then copy the <PIC32>/skeleton directory to the new
project directory:

• Windows
> mkdir <projectdir>

> copy skeleton\*.* <projectdir>

• Linux/Mac
> cp -R skeleton <projectdir>

Now copy the project source files, in this case just talkingPIC.c, to <PIC32>/<projectdir>,
and change to that directory:

• Windows
> copy talkingPIC.c <projectdir>

> cd <projectdir>

• Linux/Mac
> cp talkingPIC.c <projectdir>

> cd <projectdir>

Before explaining how to use make, we will examine talkingPIC.c, which accepts input
from and prints output to a terminal emulator running on the host computer. These
capabilities facilitate user interaction and debugging. The source code for talkingPIC.c is
listed below:

Code Sample 1.2 talkingPIC.c. The PIC32 Echoes Any Messages Sent to It from the
Host Keyboard Back to the Host Screen.

#include "NU32.h" // constants, funcs for startup and UART

#define MAX_MESSAGE_LENGTH 200

int main(void) {
char message[MAX_MESSAGE_LENGTH];

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
while (1) {

NU32_ReadUART3(message, MAX_MESSAGE_LENGTH); // get message from computer
NU32_WriteUART3(message); // send message back
NU32_WriteUART3("\r\n"); // carriage return and newline
NU32_LED1 = !NU32_LED1; // toggle the LEDs
NU32_LED2 = !NU32_LED2;

}
return 0;

}

talkingPIC.c
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The NU32 library function NU32_ReadUART3 allows the PIC32 to read data sent from your
computer’s terminal emulator. The function NU32_WriteUART3 sends data from your PIC32 to
be displayed by the terminal emulator.

Now that you know how talkingPIC.c works, it is time see it in action. First, make sure you
are in the <projectdir>. Next, build the project using make.

> make

This command compiles and assembles all .c files into .o object files, links them into a single
out.elf file, and turns that out.elf file into an executable out.hex file. You can do a directory
listing to see all of these files.

Next, put the PIC32 into program receive mode (use the RESET and USER buttons) and
execute

> make write

to invoke the bootloader utility nu32utility and program the PIC32 with out.hex. When
LED1 stops flashing, the PIC32 has been programmed.

In summary, to create a new project and program the PIC32, you (1) create the project
directory <PIC32>/<projectdir>; (2) copy the contents of <PIC32>/skeleton to this new
directory; (3) create the source code (talkingPIC.c in this case) in <projectdir>; (4) build the
executable by executing make in <projectdir>; and (5) use the RESET and USER buttons to
put the PIC32 in program receive mode and execute make write from <projectdir>. To modify
the program, you simply edit the source code and repeat steps (4) and (5) above. In fact, you
can skip step (4), since make write also builds the executable before loading it onto the
PIC32.

Now, to communicate with talkingPIC, you must connect to the PIC32 using your terminal
emulator. Recall that the terminal emulator communicates with the PIC32 using <COM>. Enter
the following command:

• Windows
<puttyPath>\putty -serial <COM> -sercfg 230400,R

• Linux/Mac
screen <COM> 230400,crtscts

PuTTY will launch in a new window, whereas screen will use the command prompt window.
The number 230400 in the above commands is the baud, the speed at which the PIC32 and
computer communicate, and the other parameter enables hardware flow control (see
Chapter 11 for details).
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After connecting, press RESET to restart the program. Start typing, and notice that no
characters appear until you hit ENTER. This behavior may seem strange, but it occurs because
the terminal emulator only displays the text it receives from the PIC32. The PIC32 does not
send any text to your computer until it receives a special control character, which you
generate by pressing ENTER.3

For example, if you type Hello! ENTER, the PIC32 will receive Hello!\r, write Hello!\r\n to
the terminal emulator, and wait for more input.

When you are done conversing with the PIC32, you can exit the terminal emulator. To exit
screen type

CTRL-a k y

Note that CTRL and a should be pressed simultaneously. To exit PuTTY make sure the command
prompt window is focused and type

CTRL-c

Rather than memorizing these rather long commands to connect to the serial port, you can use
the Makefile. To connect PuTTY to the PIC32 type

> make putty

To use screen type

> make screen

Your system is now configured for PIC32 programming. Although the build process may seem
opaque, do not worry. For now it is only important that you can successfully compile programs
and load them onto the PIC32. Later chapters will explain the details of the build process.

1.6 Chapter Summary

• To start a new project, copy the <PIC32>/skeleton directory to a new location,
<projectdir>, and add your source code.

• From the directory <projectdir>, use make to build the executable.

3 Depending on the terminal emulator, ENTER may generate a carriage return (\r), newline (\n) or both. The
terminal emulator typically moves the cursor to the leftmost column when it receives a \r and to the next line
when it receives a \n.
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• Put the PIC32 into program receive mode by pressing the USER and RESET buttons
simultaneously, then releasing the RESET button, and finally releasing the USER button.
Then use make write to load your program.

• Use a terminal emulator to communicate with programs running on the PIC32. Typing
make putty or make screen from <projectdir> will launch the appropriate terminal
emulator and connect it to the PIC32.

Further Reading
Embedded computing and mechatronics with the PIC32 microcontroller website. http://www.nu32.org.

http://www.nu32.org


CHAPTER 2

Hardware

Microcontrollers power the modern world: from cars to microwaves to toys. These tiny
microchips integrate every component of a modern computer—a central processing unit
(CPU), random access memory (RAM), nonvolatile memory (flash), and peripherals—into a
single chip. Although microcontrollers have significantly less processing power than their
personal computer counterparts, they are also much smaller, cost less, and use less power.
Additionally, their peripherals—devices that connect the CPU with the physical world—allow
software to interact with circuits directly: flashing lights, moving motors, and reading sensors.

Companies including (but certainly not limited to) Microchip, Atmel, Freescale, Texas
Instruments, and STMicroelectronics manufacture an overwhelming array of microcontrollers
with vastly different specifications. Rather than attempt to discuss microcontrollers generally,
we focus on the PIC32MX795F512H (which we usually abbreviate as PIC32). With a fast
processor, ample memory, and numerous peripherals, the PIC32MX795F512H is excellent for
learning about microcontrollers and completing embedded control projects. Much of what you
learn about the PIC32MX795F512H also applies more generally to the PIC32MX family of
microcontrollers, and the broader concepts translate to microcontrollers more generally.
Appendix C describes the differences between the PIC32MX795F512H and other PIC32
models.

2.1 The PIC32

2.1.1 Pins, Peripherals, and Special Function Registers (SFRs)

The PIC32 requires a supply voltage between 2.3 and 3.6V and features a maximum CPU
clock frequency of 80MHz, 512KB of program memory (flash), and 128KB of data memory
(RAM). Its peripherals include a 10-bit analog-to-digital converter (ADC), many digital I/O
pins, USB 2.0, Ethernet, two CAN modules, four I2C and three SPI synchronous serial
communication modules, six UARTs for asynchronous serial communication, five 16-bit
counter/timers (configurable to give two 32-bit timers and one 16-bit timer), five pulse-width
modulation outputs, and several pins that can generate interrupts based on external signals.
Whew. Do not worry if you do not know what all of these peripherals do, much of this book is
dedicated to explaining them.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00002-0
Copyright © 2016 Elsevier Inc. All rights reserved. 17

http://dx.doi.org/10.1016/B978-0-12-420165-1.00002-0
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Pins connect the peripherals to the outside world. To cram so much functionality into only 64
pins, many serve multiple functions. See the pinout diagram for the PIC32MX795F512H
(Figure 2.1). For example, pin 12 can be an analog input, a comparator input, a change
notification input (which can generate an interrupt when an input changes state), or a digital
input or output.

Table 2.1 summarizes some of the major pin functions. Other pin functions can be found in
the PIC32MX5xx/6xx/7xx Data Sheet.

Figure 2.1
The pinout of the PIC32MX795F512H, the microcontroller used on the NU32 development board.
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Table 2.1: Some of the pin functions on the PIC32

Pin Label Function
ANx (x = 0 to 15) Analog-to-digital (ADC) inputs
AVDD, AVSS Positive supply and ground reference for ADC
CxIN-, CxIN+, CxOUT (x = 1, 2) Comparator negative and positive input and output
CxRX, CxTx (x = 1, 2) CAN receive and transmit pins
CLKI, CLKO Clock input and output (for particular clock modes)
CNx (x = 0 to 18) Change notification; voltage changes on these pins can generate

interrupts
CVREF-, CVREF+, CVREFOUT Comparator reference voltage low and high inputs, output
D+, D- USB communication lines
ENVREG Enable for on-chip voltage regulator that provides 1.8 V to internal core

(on the NU32 board it is set to VDD to enable the regulator)
ICx (x = 1 to 5) Input capture pins for measuring frequencies and pulse widths
INTx (x = 0 to 4) Voltage changes on these pins can generate interrupts
MCLR Master clear reset pin, resets PIC when low
OCx (x = 1 to 5) Output compare pins, usually used to generate pulse trains (pulse-width

modulation) or individual pulses
OCFA, OCFB Fault protection for output compare pins; if a fault occurs, they can be

used to make OC outputs be high impedance (neither high nor low)
OSC1, OSC2 Crystal or resonator connections for different clock modes
PMAx (x = 0 to 15) Parallel master port address
PMDx (x = 0 to 7) Parallel master port data
PMENB, PMRD, PMWR Enable and read/write strobes for parallel master port
Rxy (x = B to G, y = 0 to 15) Digital I/O pins
RTCC Real-time clock alarm output
SCLx, SDAx (x = 1, 3, 4, 5) I2C serial clock and data input/output for I2C synchronous serial

communication modules
SCKx, SDIx, SDOx (x = 2 to 4) Serial clock, serial data in, out for SPI synchronous serial communication

modules
SSx (x = 2 to 4) Slave select (active low) for SPI communication
T1CK Input pin for counter/timer 1 when counting external pulses
UxCTS, UxRTS, UxRX, UxTX
(x = 1 to 6)

UART clear to send, request to send, receive input, and transmit output
for UART modules

VDD Positive voltage supply for peripheral digital logic and I/O pins (3.3 V on
NU32)

VDDCAP Capacitor filter for internal 1.8 V regulator when ENVREG enabled
VDDCORE External 1.8 V supply when ENVREG disabled
VREF-, VREF+ Can be used as negative and positive limit for ADC
VSS Ground for logic and I/O
VBUS Monitors USB bus power
VUSB Power for USB transceiver
USBID USB on-the-go (OTG) detect

See Section 1 of the Data Sheet for more information.
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Which function a particular pin actually serves is determined by Special Function Registers
(SFRs). Each SFR is a 32-bit word that sits at a memory address. The values of the SFR bits, 0
(cleared) or 1 (set), control the functions of the pins as well as other PIC32 behavior.

For example, pin 51 in Figure 2.1 can be OC4 (output compare 4) or RD3 (digital I/O number
3 on port D). If we wanted to use pin 51 as a digital output we would set the SFRs that control
this pin to disable the OC4 functionality and enable RD3 as a digital output. The Data Sheet
explains the memory addresses and meanings of the SFRs. Be careful, because it includes
information for many different PIC32 models. Looking at the Data Sheet section on Output
Compare reveals that the 32-bit SFR named “OC4CON” determines whether OC4 is enabled.
Specifically, for bits numbered 0-31, we see that bit 15 is responsible for enabling or disabling
OC4. We refer to this bit as OC4CON〈15〉. If it is cleared (0), OC4 is disabled, and if it is set
(1), OC4 is enabled. So we clear this bit to 0. (Bits can be “cleared to 0” or simply “cleared,”
or “set to 1” or simply “set.”) Now, referring to the I/O Ports section of the Data Sheet, we see
that the input/output direction of Port D is controlled by the SFR TRISD, and bits 0-11
correspond to RD0-RD11. Bit 3 of the SFR TRISD, i.e., TRISD〈3〉, should be cleared to 0 to
make RD3 (pin 51) a digital output.

According to the Memory Organization section of the Data Sheet, OC4CON〈15〉 is cleared by
default on reset, so it is not necessary for our program to clear OC4CON〈15〉. On the other
hand, TRISD〈3〉 is set to 1 on reset, making pin 51 a digital input by default, so the program
must clear TRISD〈3〉. For safety, all pins are inputs on reset to prevent the PIC32 from
imposing an unwanted voltage on external circuitry.

In addition to setting the behavior of the pins, SFRs are the primary means of communication
between the PIC32’s CPU and its peripherals. You can think of a peripheral, such as a UART
communication peripheral, as an independent circuit on the same chip as the CPU. Your
program, running on the CPU, configures behavior of this circuit (such as the speed of UART
communication) by writing bits to one or more SFRs which are read by the peripheral circuit.
The CPU sends data to the peripheral (e.g., data to be sent by the UART) by writing to SFRs,
and the CPU receives data from the peripheral (e.g., data received by the UART) by reading
SFRs controlled by the peripheral.

We will see and use SFRs repeatedly as we learn about the PIC32.

2.1.2 PIC32 Architecture

Peripherals

Figure 2.2 depicts the PIC32’s architecture. Of course there is a CPU, program memory
(flash), and data memory (RAM). Perhaps most interesting to us, though, are the peripherals,
which make microcontrollers useful for embedded control. We briefly discuss the available
peripherals here; subsequent chapters cover them in detail. The peripherals are listed roughly
in top to bottom, left to right order, as they appear in Figure 2.2.
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Figure 2.2
The PIC32MX5XX/6XX/7XX architecture. The PIC32MX795F512H is missing the digital I/O PORTA

and has only 19 change notification inputs, 3 SPI modules, and 4 I2C modules.

Digital input and output

Digital I/O ports (PORTB to PORTG on the PIC32MX795F512H) allow you to read or output
a digital voltage. A digital I/O pin configured as an input can detect whether the input voltage
is low or high. On the NU32, the PIC32 is powered by 3.3V, so voltages close to 0V are
considered low and those close to 3.3V are considered high. Some input pins can tolerate up
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to 5.5V, while voltages over 3.3V on other pins could damage the PIC32 (see Figure 2.1 for
the pins that can tolerate 5.5V).

A digital I/O pin configured as an output can produce a voltage of 0 or 3.3 V. An output pin
can also be configured as open drain. In this configuration, the pin is connected by an external
pull-up resistor to a voltage of up to 5.5 V. This allows the pin’s output transistor to either sink
current (to pull the voltage down to 0 V) or turn off (allowing the voltage to be pulled up as
high as 5.5 V), increasing the range of output voltages the pin can produce.

Universal Serial Bus

The Universal Serial Bus (USB) is an asynchronous communication protocol heavily used by
computers and other devices. One master communicates with one or more slaves over a
four-line bus: +5 V, ground, D+, and D− (differential data signals). The PIC32 has a single
USB peripheral implementing USB 2.0 full-speed and low-speed options, and can
communicate at theoretical data rates of up to several megabits per second.

Controller area network

Controller area network (CAN) is pervasive in industrial and automotive applications, where
electrical noise can be problematic. CAN allows many devices to communicate over a single
two-wire bus. Data rates of up to 1 megabit per second are possible. The CAN peripheral uses
an external transceiver chip to convert between signals on the bus and signals that the PIC32
can process. The PIC32 contains two CAN modules.

Ethernet

The Ethernet module allows the PIC32 to connect to the Internet. It uses an external physical
layer protocol transceiver (PHY) chip and direct memory access (DMA) to offload the heavy
processing requirements of Ethernet communication from the CPU. The NU32 board does not
include a PHY chip.

DMA controller

The direct memory access (DMA) controller (DMAC) transfers data without involving the
CPU. For example, DMA can allow an external device to dump data through a UART directly
into PIC32 RAM.

In-Circuit Debugger

The In-Circuit Debugger (ICD) is used by Microchip debugging tools to control the PIC32’s
operation during debugging.
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Watchdog timer

If the watchdog timer (WDT) is used by your program, your program must periodically reset a
counter. Otherwise, when the counter reaches a specified value, the PIC32 will reset. The
WDT allows the PIC32 to recover from an unexpected state or infinite loop caused by
software errors.

Change notification

A change notification (CN) pin can be used to generate an interrupt when the input voltage
changes from low to high or vice-versa. The PIC32 has 19 change notification pins (CN0 to
CN18).

Counter/timers

The PIC32 has five 16-bit counters/timers (Timer1 to Timer5). A counter counts the number
of pulses of a signal. If the pulses occur at a regular frequency, the count can be used as a time;
hence timers are just counters with inputs at a fixed frequency. Microchip uniformly refers to
these devices as “timers”, so we adopt that terminology from now on. Each timer can count
from 0 up to 216 − 1, or any preset value less than 216 − 1 that we choose, before rolling over.
Timers can count external events, such as pulses on the T1CK pin, or internal pulses on the
peripheral bus clock. Two 16-bit timers can be configured to make a single 32-bit timer. Two
different pairs of timers can be combined, yielding one 16-bit and two 32-bit timers.

Output compare

The five output compare (OC) pins (OC1 to OC5) are used to generate a single pulse of
specified duration, or a continuous pulse train of specified duty cycle and frequency. They
work with timers to generate pulses with precise timing. Output compare is commonly used to
generate PWM (pulse-width modulated) signals that can control motors or be low-pass filtered
to create a specified analog voltage output. (You cannot output an arbitrary analog voltage
from the PIC32.)

Input capture

The five input capture (IC) pins (IC1 to IC5) store the current time, as measured by a timer,
when an input changes. Thus, this peripheral allows precise measurements of input pulse
widths and signal frequencies.

Serial Peripheral Interface

The PIC32 has three Serial Peripheral Interface (SPI) peripherals (SPI2 to SPI4). The SPI bus
provides a method for synchronous serial communication between a master device (typically a
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microcontroller) and one or more slave devices. The interface typically requires four
communication pins: a clock (SCK), data in (SDI), data out (SDO), and slave select (SS).
Communication can occur at up to tens of megabits per second.

Inter-integrated circuit

The PIC32 has four inter-integrated circuit (I2C) modules (I2C1, I2C3, I2C4, I2C5). I2C
(pronounced “I squared C”) is a synchronous serial communication standard (like SPI) that
allows several devices to communicate over only two wires. Any device can be the master and
control communication at any given time. The maximum data rate is less than for SPI, usually
100 or 400 kilobits per second.

Parallel master port

The parallel master port (PMP) module is used to read data from and write data to external
parallel devices. Parallel communication allows multiple data bits to be transferred
simultaneously, but each bit requires its own wire.

Analog input

The PIC32 has one analog-to-digital converter (ADC), but 16 different pins can be connected
to it, allowing up to 16 analog voltage values (typically sensor inputs) to be monitored. The
ADC can be programmed to continuously read data from a sequence of input pins, or to read a
single value. Input voltages must be between 0 and 3.3 V. The ADC has 10 bits of resolution,
allowing it to distinguish 210 = 1024 different voltage levels. Conversions are theoretically
possible at a maximum rate of 1 million samples per second.

Universal asynchronous receiver/transmitter

The PIC32 has six universal asynchronous receiver transmitter (UART) modules (UART1 to
UART6). These peripherals provide another method for serial communication between two
devices. Unlike synchronous serial protocols such as SPI, the UART has no clock line; rather
the devices communicating each have their own clocks that must operate at the same
frequency. Each of the two devices participating in UART communication has, at minimum, a
receive (RX) and transmit (TX) line. Often request to send (RTS) and clear to send (CTS)
lines are used as well, allowing the devices to coordinate when to send data. Typical data rates
are 9600 bits per second (9600 baud) up to hundreds of thousands of bits per second. The
talkingPIC.c program uses a UART configured to operate at 230,400 baud to communicate
with your computer.

Real-time clock and calendar

The real-time clock and calendar (RTCC) module maintains accurate time, in seconds,
minutes, days, months, and years, over extended periods of time.
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Comparators

The PIC32 has two comparators, each of which compares two analog input voltages and
determines which is larger. A configurable internal voltage reference may be used in the
comparison, or even output to a pin, resulting in a limited-resolution digital-to-analog
converter.

Other components

Note that the peripherals are on two different buses: one is clocked by the system clock
SYSCLK, and the other is clocked by the peripheral bus clock PBCLK. A third clock,
USBCLK, is used for USB communication. The timing generation block that creates these
clock signals and other elements of the architecture in Figure 2.2 are briefly described below.

CPU

The central processing unit runs everything. It fetches program instructions over its
“instruction side” (IS) bus, reads data over its “data side” (DS) bus, executes the instructions,
and writes the results over the DS bus. The CPU can be clocked by SYSCLK at up to 80 MHz,
meaning it can execute one instruction every 12.5 ns. The CPU is capable of multiplying a
32-bit integer by a 16-bit integer in one cycle, or a 32-bit integer by a 32-bit integer in two
cycles. There is no floating point unit (FPU), so floating point math is carried out by software
algorithms, making floating point operations much slower than integer math.

The CPU is the MIPS32® M4K® microprocessor core, licensed from Imagination
Technologies. The CPU operates at 1.8 V (provided by a voltage regulator internal to the
PIC32, as it’s used on the NU32 board). The interrupt controller, discussed below, can notify
the CPU about external events.

Bus matrix

The CPU communicates with other units through the 32-bit bus matrix. Depending on the
memory address specified by the CPU, the CPU can read data from, or write data to, program
memory (flash), data memory (RAM), or SFRs. The memory map is discussed in
Section 2.1.3.

Interrupt controller

The interrupt controller presents “interrupt requests” to the CPU. An interrupt request (IRQ)
may be generated by a variety of sources, such as a changing input on a change notification
pin or by the elapsing of a specified time on one of the timers. If the CPU accepts the request,
it will suspend whatever it is doing and jump to an interrupt service routine (ISR), a function
defined in the program. After completing the ISR, program control returns to where it was
suspended. Interrupts are an extremely important concept in embedded control and are
discussed thoroughly in Chapter 6.
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Memory: Program flash and data RAM

The PIC32 has two types of memory: flash and RAM. Flash is generally more plentiful on
PIC32’s (e.g., 512 KB flash vs. 128 KB RAM on the PIC32MX795F512H), nonvolatile
(meaning that its contents are preserved when powered off, unlike RAM), but slower to read
and write than RAM. Your program is stored in flash memory and your temporary data is
stored in RAM. When you power cycle the PIC32, your program is still there but your data in
RAM is lost.1

Because flash is slow, with a max access speed of 30 MHz for the PIC32MX795F512H,
reading a program instruction from flash may take three CPU cycles when operating at
80 MHz (see Electrical Characteristics in the Data Sheet). The prefetch cache module
(described below) can minimize or eliminate the need for the CPU to wait for program
instructions to load from flash.

Prefetch cache module

You might be familiar with the term cache from your web browser. Your browser’s cache
stores recent documents or pages you have accessed, so the next time you request them, your
browser can provide a local copy immediately, instead of waiting for the download.

The prefetch cache module operates similarly—it stores recently executed program
instructions, which are likely to be executed again soon (as in a program loop), and, in linear
code with no branches, it can even run ahead of the current instruction and predictively
prefetch future instructions into the cache. In both cases, the goal is to have the next
instruction requested by the CPU already in the cache. When the CPU requests an instruction,
the cache is first checked. If the instruction at that memory address is in the cache (a cache
hit), the prefetch module provides the instruction to the CPU immediately. If there is a miss,
the slower load from flash memory begins.

In some cases, the prefetch module can provide the CPU with one instruction per cycle, hiding
the delays due to slow flash access. The module can cache all instructions in small program
loops, so that flash memory does not have to be accessed while executing the loop. For linear
code, the 128-bit wide data path between the prefetch module and flash memory allows the
prefetch module to run ahead of execution despite the slow flash load times.

The prefetch cache module can also store constant data.

Clocks and timing generation

There are three clocks on the PIC32: SYSCLK, PBCLK, and USBCLK. USBCLK is a
48 MHz clock used for USB communication. SYSCLK clocks the CPU at a maximum

1 It is also possible to store program instructions in RAM, and to store data in flash, but we ignore that for now.
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frequency of 80 MHz, adjustable down to 0 Hz. Higher frequency means more calculations
per second but higher power usage (approximately proportional to frequency). PBCLK is used
by many peripherals, and its frequency is set to SYSCLK’s frequency divided by 1, 2, 4, or 8.
You might want to set PBCLK’s frequency lower than SYSCLK’s if you want to save power.
If PBCLK’s frequency is less than SYSCLK’s, then programs with back-to-back peripheral
operations will cause the CPU to wait a few cycles before issuing the second peripheral
command to ensure that the first one has completed.

All clocks are derived either from an oscillator internal to the PIC32 or an external resonator
or oscillator provided by the user. High-speed operation requires an external circuit, so the
NU32 provides an external 8 MHz resonator as a clock source. The NU32 software sets the
PIC32’s configuration bits (see Section 2.1.4) to use a phase-locked loop (PLL) on the PIC32
to multiply this frequency by a factor of 10, generating a SYSCLK of 80 MHz. The PBCLK is
set to the same frequency. The USBCLK is also derived from the 8 MHz resonator by
multiplying the frequency by 6.

2.1.3 The Physical Memory Map

The CPU accesses peripherals, data, and program instructions in the same way: by writing a
memory address to the bus. The PIC32’s memory addresses are 32-bits long, and each address
refers to a byte in the memory map. Thus, the PIC32’s memory map consists of 4 GB (four
gigabytes, or 232 bytes). Of course most of these addresses are meaningless; there are far more
addresses than needed.

The PIC32’s memory map consists of four main components: RAM, flash, peripheral SFRs
that we write to (to control the peripherals or send outputs) or read from (to get sensor input,
for example), and boot flash. Of these, we have not yet seen “boot flash.” This extra flash
memory, 12 KB on the PIC32MX795F512H, contains program instructions that are executed
immediately upon reset.2 The boot flash instructions typically perform PIC32 initialization
and then call the program installed in program flash. For the PIC32 on the NU32 board, the
boot flash contains a “bootloader” program that communicates with your computer when you
load a new program on the PIC32 (see Chapter 3).

The following table illustrates the PIC32’s physical memory map. It consists of a block of
“RAMsize” bytes of RAM (128KB for the PIC32MX795F512H), “flashsize” bytes of flash
(512KB for the PIC32MX795F512H), 1 MB for the peripheral SFRs, and “bootsize” for the
boot flash (12KB for the PIC32MX795F512H):

2 The last four 32-bit words of the boot flash memory region are Device Configuration Registers (see Section
2.1.4).
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Physical Memory Start Address Size (bytes) Region
0x00000000 RAMsize (128 KB) Data RAM
0x1D000000 flashsize (512 KB) Program Flash
0x1F800000 1 MB Peripheral SFRs
0x1FC00000 bootsize (12 KB) Boot Flash

The memory regions are not contiguous. For example, the first address of program flash is
480 MB after the first address of data RAM. An attempt to access an address between the data
RAM segment and the program flash segment would generate an error.

It is also possible to allocate a portion of RAM to hold program instructions.

In Chapter 3, when we discuss programming the PIC32, we will introduce the virtual memory
map and its relationship to the physical memory map.

2.1.4 Configuration Bits

The last four 32-bit words of the boot flash are the Device Configuration Registers,
DEVCFG0 to DEVCFG3, containing the configuration bits. The values in these configuration
bits determine important properties of how the PIC32 will function. You can learn more about
configuration bits in the Special Features section of the Data Sheet. For example, DEVCFG1
and DEVCFG2 contain configuration bits that determine the frequency multiplier converting
the external resonator frequency to the SYSCLK frequency, as well as bits that determine the
ratio between the SYSCLK and PBCLK frequencies. On the NU32 board (below), the
PIC32’s configuration bits were programmed along with the bootloader.

2.2 The NU32 Development Board

The NU32 development board is shown in Figure 1.1, and the pinout is given in Table 2.2. The
NU32 board provides easy breadboard access to most of the PIC32MX795F512H’s 64 pins.
The NU32 acts like a big 60-pin DIP (dual in-line package) chip and plugs into a standard
prototyping breadboard as shown in Figure 1.1. More details and the latest information on the
NU32 can be found on the book’s website.

Beyond simply breaking out the pins, the NU32 provides many features that make it easy to
get started with the PIC32. For example, to power the PIC32, the NU32 provides a barrel jack
that accepts a 1.35 mm inner diameter, 3.5 mm outer diameter center-positive power plug. The
plug should provide 1 A at DC 6 V or more. The PIC32 requires a supply voltage VDD
between 2.3 and 3.6 V, and the NU32 provides a 3.3 V voltage regulator providing a stable
voltage source for the PIC32 and other electronics on board. Since it is often convenient to
have a 5 V supply available, the NU32 also has a 5 V regulator. The power plug’s raw input



Table 2.2: The NU32 pinout (in gray, with power jack at top) with PIC32MX795F512H pin
numbers

Function PIC32 PIC32 Function

GND GND GND GND

3.3 V 3.3 V 3.3 V 3.3 V

5 V 5 V 5 V 5 V

VIN VIN VIN VIN

C1RX/RF0
√

58 F0 GND GND

C1TX/RF1
√

59 F1 G9 8
√

U6RX/U3CTS/PMA2/CN11/RG9

PMD0/RE0
√

60 E0 G8 6
√

SCL4/SDO2/U3TX/PMA3/CN10/RG8

PMD1/RE1
√

61 E1 G7 5
√

SDA4/SDI2/U3RX/PMA4/CN9/RG7

PMD2/RE2
√

62 E2 G6 4
√

SCK2/U6TX/U3RTS/PMA5/CN8/RG6

PMD3/RE3
√

63 E3 MCLR 7
√

MCLR

PMD4/RE4
√

64 E4 D7 55
√

CN16/RD7

PMD5/RE5
√

1 E5 D6 54
√

CN15/RD6

PMD6/RE6
√

2 E6 D5 53
√

PMRD/CN14/RD5

PMD7/RE7
√

3 E7 D4 52
√

OC5/IC5/PMWR/CN13/RD4

AN0/PMA6/CN2/RB0 16 B0 D3 51
√

SCL3/SDO3/U1TX/OC4/RD3

AN1/CN3/RB1 15 B1 D2 50
√

SDA3/SDI3/U1RX/OC3/RD2

AN2/C2IN-/CN4/RB2 14 B2 D1 49
√

SCK3/U4TX/U1RTS/OC2/RD1

AN3/C2IN+/CN5/RB3 13 B3 D0 46
√

OC1/INT0/RD0

AN4/C1IN-/CN6/RB4 12 B4 C14 48 T1CK/CN0/RC14

AN5/C1IN+/CN7/RB5 11 B5 C13 47 CN1/RC13

AN6/OCFA/RB6 17 B6 D11 45
√

IC4/PMA14/INT4/RD11

AN7/RB7 18 B7 D10 44
√

SCL1/IC3/PMA15/INT3/RD10

AN8/C2TX/U5RX/U2CTS/RB8 21 B8 D9 43
√

U4RX/U1CTS/SDA1/IC2/INT2/RD9

AN9/PMA7/RB9 22 B9 D8 42
√

IC1/INT1/RD8

AN10/PMA13/RB10 23 B10 G2 37 D+/RG2

AN11/PMA12/RB11 24 B11 G3 36 D−/RG3

AN12/PMA11/RB12 27 B12 VBUS 34
√

VBUS

AN13/PMA10/RB13 28 B13 F3 33
√

USBID/RF3

AN14/C2RX/SCK4/U5TX/U2RTS/ 29 B14 F4 31
√

SDA5/SDI4/U2RX/PMA9/CN17/RF4

PMA1/RB14

AN15/OCFB/PMA0/CN12/RB15 30 B15 F5 32
√

SCL5/SDO4/U2TX/PMA8/CN18/RF5

Pins marked with a
√

are 5.5 V tolerant. Not all pin functions are listed; see Figure 2.1 or the PIC32 Data Sheet. Board pins
in bold should only be used with care, as they are shared with other functions on the NU32. In particular, the NU32 pins G6,
G7, G8, G9, F0, F1, D7, and MCLR should be considered outputs during normal usage. The value of MCLR is determined by
the MCLR button on the NU32; the value of D7 is determined by the USER button; F0 and F1 are used by the PIC32 as digital
outputs to control LED1 and LED2 on the NU32, respectively; and G6 through G9 are used by the PIC32’s UART3 for
communication with the host computer through the mini-B USB jack.
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voltage Vin and ground, as well as the regulated 3.3 V and 5 V supplies, are made available to
the user as illustrated in Figure 1.1. The power jack is directly connected to the Vin and GND
pins so you could power the NU32 by putting Vin and GND on these pins directly and not
connecting the power jack.

The 3.3 V regulator provides up to 800 mA and the 5 V regulator provides up to 1 A of
current, provided the power supply can source that much current. In practice you should stay
well under each of these limits. For example, you should not plan to draw more than
200-300 mA or so from the NU32. Even if you use a higher-current power supply, such as a
battery, you should respect these limits, as the current has to flow through the relatively thin
traces of the PCB. It is also not recommended to use high voltage supplies greater than 9 V or
so, as the regulators will heat up.

Since motors tend to draw lots of current (even small motors may draw hundreds of milliamps
up to several amps), do not try to power them from the NU32. Use a separate battery or power
supply instead.

In addition to the voltage regulators, the NU32 provides an 8 MHz resonator as the source of
the PIC32’s 80 MHz clock signal. It also has a mini-B USB jack to connect your computer’s
USB port to a USB-to-UART FTDI chip that allows your PIC32 to use its UART to
communicate with your computer.

A USB micro-B jack is provided to allow the PIC32 to speak USB to another external device,
like a smartphone.

The NU32 board also has a power switch which connects or disconnect the input power supply
to the voltage regulators, and two LEDs and two buttons (labeled USER and RESET) allowing
very simple input and output. The two LEDs, LED1 and LED2, are connected at one end by a
resistor to 3.3 V and the other end to digital outputs RF0 and RF1, respectively, so that they
are off when those outputs are high and on when they are low. The USER and RESET buttons
are attached to the digital input RD7 and MCLR pins, respectively, and both buttons are
configured to give 0 V to these inputs when pressed and 3.3 V otherwise. See Figure 2.3.

Because pins RG6 through RG9, RF0, RF1, and RD7 on the PIC32 are used for UART
communication with the host computer, LEDs, and the USER button, other potential functions
of these pins are not available if you would like to use the communication, LEDs, and USER
button. In particular:

• UART6 is unavailable (conflicts with pins RG6 and RG9). Since UART3 is used for
communication with the host computer, this leaves UART1, UART2, UART4, and
UART5 for your programs.

• SPI2 is unavailable (conflicts with pins RG6 and RG7). This leaves SPI3 and SPI4.
• I2C4 is unavailable (conflicts with pins RG7 and RG8). This leaves I2C1, I2C3, and I2C5.
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• The default CAN1 pins C1RX and C1TX cannot be used (they conflict with pins RF0 and
RF1), but the configuration bit FCANIO in DEVCFG3 has been cleared to zero on the
NU32, thereby setting CAN1 to use the alternate pins AC1RX (RF4) and AC1TX (RF5).
Therefore no CAN module is lost.

• Media-independent interface (MII) Ethernet is unavailable (conflicts with pins RD7, RF0,
and RF1). The PIC32 can implement Ethernet communication using either the MII or the
reduced media-independent interface (RMII), and RMII Ethernet communication, which
uses many fewer pins than MII, is still available on the NU32.

• Several change notification and digital I/O pins are unavailable, but many more remain.

In all, very little functionality is unavailable due to connections on the NU32, and advanced
users can find ways to bypass even these limitations.

Although the NU32 comes with a bootloader installed in its flash memory, you have the option
to use a programmer to install a standalone program. The five plated through-holes on the
USB board align with the pins of devices such as the PICkit 3 programmer (Figure 2.4).

RD7

+3.3 V

USER
button,

normally
open

+3.3 V

RF1

LED2

+3.3 V

RF0

LED1

2.2 kΩ 2.2 kΩ2.2 kΩ

Figure 2.3
The NU32 connection of the PIC32 pins RF0, RF1, and RD7 to LED1, LED2, and the USER button,

respectively.

Figure 2.4
Attaching the PICkit 3 programmer to the NU32 board.
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2.3 Chapter Summary

• The PIC32 features a 32-bit data bus and a CPU capable of performing some 32-bit
operations in a single clock cycle.

• In addition to nonvolatile flash program memory and RAM data memory, the PIC32
provides peripherals particularly useful for embedded control, including analog inputs,
digital I/O, PWM outputs, counter/timers, inputs that generate interrupts or measure pulse
widths or frequencies, and pins for a variety of communication protocols, including USB,
Ethernet, CAN, I2C, and SPI.

• The functions performed by the pins and peripherals are determined by Special Function
Registers. SFRs are also used for communication back and forth between the CPU and
peripherals.

• The PIC32 has three main clocks: the SYSCLK that clocks the CPU, the PBCLK that
clocks peripherals, and the USBCLK that clocks USB communication.

• Physical memory addresses are specified by 32 bits. The physical memory map contains
four regions: data RAM, program flash, SFRs, and boot flash. RAM can be accessed in
one clock cycle, while flash access may be slower. The prefetch cache module can be used
to minimize delays in accessing program instructions.

• Four 32-bit configuration words, DEVCFG0 to DEVCFG3, set important behavior of the
PIC32. For example, these configuration bits determine how an external clock frequency
is multiplied or divided to create the PIC32 clocks.

• The NU32 development board provides voltage regulators for power, includes a resonator
for clocking, breaks out the PIC32 pins to a solderless breadboard, provides a couple of
LEDs and buttons for simple input and output, and simplifies communication with the
PIC32 via your computer’s USB port.

2.4 Exercises

You will need to refer to the PIC32MX5XX/6XX/7XX Data Sheet and PIC32 Reference
Manual to answer some questions.

1. Search for a listing of PIC32 products on Microchip’s webpage, showing the
specifications of all the PIC32 models.
a. Find PIC32s that meet the following specs: at least 128 KB of flash, at least 32 KB

of RAM, and at least 80 MHz max CPU speed. What is the cheapest PIC32 that
meets these specs, and what is its volume price? How many ADC, UART, SPI, and
I2C channels does it have? How many timers?

b. What is the cheapest PIC32 overall? How much flash and RAM does it have, and
what is its maximum clock speed?

c. Among all PIC32s with 512 KB flash and 128 KB RAM, which is the cheapest?
How does it differ from the PIC32MX795F512H?
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2. Based on C syntax for bitwise operators and bit-shifting, calculate the following and give
your results in hexadecimal.
a. 0x37 | 0xA8

b. 0x37 & 0xA8

c. ˜0x37

d. 0x37>>3

3. Describe the four functions that pin 12 of the PIC32MX795F512H can have. Is it 5 V
tolerant?

4. Referring to the Data Sheet section on I/O Ports, what is the name of the SFR you have
to modify if you want to change pins on PORTC from output to input?

5. The SFR CM1CON controls comparator behavior. Referring to the Memory
Organization section of the Data Sheet, what is the reset value of CM1CON in
hexadecimal?

6. In one sentence each, without going into detail, explain the basic function of the
following items shown in the PIC32 architecture block diagram Figure 2.2: SYSCLK,
PBCLK, PORTA to PORTG (and indicate which of these can be used for analog input on
the NU32’s PIC32), Timer1 to Timer5, 10-bit ADC, PWM OC1-5, Data RAM, Program
Flash Memory, and Prefetch Cache Module.

7. List the peripherals that are not clocked by PBCLK.
8. If the ADC is measuring values between 0 and 3.3 V, what is the largest voltage

difference that it may not be able to detect? (It’s a 10-bit ADC.)
9. Refer to the Reference Manual chapter on the Prefetch Cache. What is the maximum

size of a program loop, in bytes, that can be completely stored in the cache?
10. Explain why the path between flash memory and the prefetch cache module is 128 bits

wide instead of 32, 64, or 256 bits.
11. Explain how a digital output could be configured to swing between 0 and 4 V, even

though the PIC32 is powered by 3.3 V.
12. PIC32’s have increased their flash and RAM over the years. What is the maximum

amount of flash memory a PIC32 can have before the current choice of base addresses in
the physical memory map (for RAM, flash, peripherals, and boot flash) would have to be
changed? What is the maximum amount of RAM? Give your answers in bytes in
hexadecimal.

13. Examine the Special Features section of the Data Sheet.
a. If you want your PBCLK frequency to be half the frequency of SYSCLK, which bits

of which Device Configuration Register do you have to modify? What values do you
give those bits?

b. Which bit(s) of which SFR set the watchdog timer to be enabled? Which bit(s) set
the postscale that determines the time interval during which the watchdog must be
reset to prevent it from restarting the PIC32? What values would you give these bits
to enable the watchdog and to set the time interval to be the maximum?
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c. The SYSCLK for a PIC32 can be generated several ways, as discussed in the
Oscillator chapter in the Reference Manual and the Oscillator Configuration section
in the Data Sheet. The PIC32 on the NU32 uses the (external) primary oscillator in
HS mode with the phase-locked loop (PLL) module. Which bits of which device
configuration register enable the primary oscillator and turn on the PLL module?

14. Your NU32 board provides four power rails: GND, regulated 3.3 V, regulated 5 V, and
the unregulated input voltage (e.g., 6 V). You plan to put a load from the 5 V output to
ground. If the load is modeled as a resistor, what is the smallest resistance that would be
safe? An approximate answer is fine. In a sentence, explain how you arrived at the
answer.

15. The NU32 could be powered by different voltages. Give a reasonable range of voltages
that could be used, minimum to maximum, and explain the reason for the limits.

16. Two buttons and two LEDs are interfaced to the PIC32 on the NU32. Which pins are
they connected to? Give the actual pin numbers, 1-64, as well as the name of the pin
function as it is used on the NU32. For example, pin 37 on the PIC32MX795F512H
could have the function D+ (USB data line) or RG2 (Port G digital input/output), but
only one of these functions could be active at a given time.

Further Reading
PIC32 family reference manual. Section 03: Memory organization. (2010). Microchip Technology Inc.
PIC32 family reference manual. Section 02: CPU for devices with the M4K core. (2012). Microchip Technology

Inc.
PIC32 family reference manual. Section 32: Configuration. (2013). Microchip Technology Inc.
PIC32MX5XX/6XX/7XX family data sheet. (2013). Microchip Technology Inc.
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Software

In this chapter we explore how a simple C program interacts with the hardware described in
the previous chapter. We begin by introducing the virtual memory map and its relationship
to the physical memory map. We then use the simplePIC.c program from Chapter 1 to explore
the compilation process and the XC32 compiler installation.

3.1 The Virtual Memory Map

In the previous chapter we learned about the PIC32’s physical memory map, which allows the
CPU to access any SFR or any location in data RAM, program flash, or boot flash, using a
32-bit address. The PIC32 does not actually have 232 bytes, or 4 GB, worth of SFRs and
memory; therefore, many physical addresses are invalid.

Rather than use physical addresses (PAs), software refers to memory and SFRs using virtual
addresses (VAs). The fixed mapping translation (FMT) unit in the CPU converts VAs into PAs
using the following formula:

PA = VA & 0x1FFFFFFF

This bitwise AND operation clears the three most significant bits of the address; thus multiple
VAs map to the same PA.

If the mapping from the VA to the PA just discards the first three bits, why bother having
them? Well, the CPU and the prefetch cache module we learned about in the previous chapter
use them. If the first three bits of the virtual address are 0b100 (corresponding to an 8 or 9 as
the most significant hex digit of the VA), then the contents of that memory address can be
cached. If the first three bits are 0b101 (corresponding to an A or B as the most significant hex
digit of the VA), then it cannot be cached. Thus the segment of virtual memory 0x80000000 to
0x9FFFFFFF is cacheable, while the segment 0xA0000000 to 0xBFFFFFFF is noncacheable.
The cacheable segment is called KSEG0 (for “kernel segment”) and the noncacheable
segment is called KSEG1.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00003-2
Copyright © 2016 Elsevier Inc. All rights reserved. 35
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(Left) The 4 GB physical and virtual memory maps are divided into 512 MB segments. The
mapping of the valid physical memory addresses to the virtual memory regions KSEG0 and

KSEG1 is illustrated. We use only KSEG0 and KSEG1, not KSEG2, KSEG3, or the user segment
USEG. (Right) Physical addresses mapped to virtual addresses in cacheable memory (KSEG0) and
noncacheable memory (KSEG1). Note that SFRs are not cacheable. The last four words of boot

flash, 0xBFC02FF0 to 0xBFC02FFF in KSEG1, correspond to the device configuration words
DEVCFG0 to DEVCFG3. Memory regions are not

drawn to scale.

Figure 3.1 illustrates the relationship between the physical and virtual memory maps.
Note that the SFRs are excluded from the KSEG0 cacheable virtual memory segment. SFRs
correspond to physical devices (e.g., peripherals); therefore their values cannot be cached.
Otherwise, the CPU could read outdated SFR values because the state of the SFR
could change between when it was cached and when it was needed by the CPU. For instance,
if port B were configured as a digital input port, the SFR PORTB would contain the current
input values of some pins. The voltage on these pins could change at any time; therefore, the
only way to retrieve a reliable value is to read directly from the SFR rather than from
the cache.

Also note that program flash and data RAM can be accessed using either cacheable or
noncacheable VAs. Typically, you can ignore this detail because the PIC32 will be configured
to access program flash via the cache (since flash memory is slow), and data RAM without the
cache (since RAM is fast).
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Going forward, we will use virtual addresses like 0x9D000000 and 0xBD000000, and you
should realize that these refer to the same physical address. Since virtual addresses start at
0x80000000, and all physical addresses are below 0x20000000, there is no possibility of
confusing whether we are talking about a VA or a PA.

3.2 An Example: simplePIC.c

Let us build the simplePIC.c executable from Chapter 1. For convenience, here is the program
again:

Code Sample 3.1 simplePIC.c. Blinking Lights, Unless the USER Button Is Pressed.

#include <xc.h> // Load the proper header for the processor

void delay(void);

int main(void) {
TRISF = 0xFFFC; // Pins 0 and 1 of Port F are LED1 and LED2. Clear

// bits 0 and 1 to zero, for output. Others are inputs.
LATFbits.LATF0 = 0; // Turn LED1 on and LED2 off. These pins sink current
LATFbits.LATF1 = 1; // on the NU32, so "high" (1) = "off" and "low" (0) = "on"

while(1) {
delay();
LATFINV = 0x0003; // toggle LED1 and LED2; same as LATFINV = 0x3;

}
return 0;

}

void delay(void) {
int j;
for (j = 0; j < 1000000; j++) { // number is 1 million

while(!PORTDbits.RD7) {
; // Pin D7 is the USER switch, low (FALSE) if pressed.

}
}

}

Navigate to the <PIC32> directory. Following the same procedure as in Chapter 1.3, build
simplePIC.hex and load it onto your NU32. We have reprinted the instructions here (you may
need to specify the full path to these commands):

> xc32-gcc -mprocessor=32MX795F512H
-o simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c

> xc32-bin2hex simplePIC.elf
> nu32utility <COM> simplePIC.hex

simplePIC.c
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When you have the program running, the NU32’s two LEDs should alternate on and off and
stop while you press the USER button.

Look at the source code: the program refers to SFRs named TRISF, LATFINV, etc. These
names align with the SFR names in the Data Sheet and Reference Manual sections on
input/output (I/O) ports. We will often consult the Data Sheet and Reference Manual when
programming the PIC32. We will explain the use of these SFRs shortly.

3.3 What Happens When You Build?

First, let us begin to understand what happens when you create simplePIC.hex from
simplePIC.c. Refer to Figure 3.2.

First the preprocessor removes comments and inserts #included header files. It also handles
other preprocessor instructions such as #define. You can have multiple .c C source files and .h

header files, but only one C file is allowed to have a main function. The other files may contain
helper functions. We will learn more about projects with multiple C source files in Chapter 4.

Then the compiler turns the C files into MIPS32 assembly language files, machine
instructions specific to the PIC32’s MIPS32 CPU. Basic C code will not vary between
processor architectures, but assembly language may be completely different. These assembly
files are readable by a text editor, and it is possible to program the PIC32 directly in assembly
language.

The assembler turns the assembly files into machine-level relocatable object code. This code
cannot be inspected with a text editor. The code is called relocatable because the final memory
addresses of the program instructions and data used in the code are not yet specified. The
archiver is a utility that allows you to package several related .o object files into a single .a

library file. We will not be making our own archived libraries, but we will certainly be using
.a libraries that have already been made by Microchip!

Finally, the linker takes one or more object files and combines them into a single executable
file, with all program instructions assigned to specific memory locations. The linker uses a
linker script that has information about the amount of RAM and flash on your particular
PIC32, as well as directions about where in virtual memory to place the data and instructions.
The result is an executable and linkable format (.elf) file, a standard executable file format.
This file contains useful debugging information as well as information that allows tools such as
xc32-objdump to disassemble the file, which converts it back into assembly code (Section 3.8).
This extra information adds up; building simplePIC.c results in a .elf file that is hundreds of
kilobytes! A final step creates a stripped-down .hex file of less than 10 KB. This .hex file is a
representation of your executable suitable for sending to the bootloader program on your
PIC32 (more on this in the next section) that writes the program into flash on your PIC32.
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Executable (*.hex)

Figure 3.2
The “compilation” process.

Although the entire process consists of several steps, it is often referred to as “compiling” for
short. “Building” or “making” is more accurate.

3.4 What Happens When You Reset the PIC32?

Your program is running. You hit the RESET button on the NU32. What happens next?
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First the CPU jumps to the beginning of boot flash, address 0xBFC00000, and starts executing
instructions.1 For the NU32, the boot flash contains the bootloader, a program used to load
other programs onto the PIC32. The bootloader first checks to see if you are pressing the
USER button. If so, it knows that you want to reprogram the PIC32, so it attempts to
communicate with the bootloader utility (nu32utility) on your computer. With
communication established, the bootloader receives the executable .hex file and writes it to
the PIC32’s program flash (see Exercise 2). We refer to the virtual address where your
program is installed as _RESET_ADDR.

Note: The PIC32’s reset address 0xBFC00000 is hardwired and cannot be changed. The
address where the bootloader writes your program, however, can be changed in software.

Now assume that you were not pressing the USER button when you reset the PIC32. In that
case the bootloader jumps to the address _RESET_ADDR and begins executing the program you
previously installed there. Notice that our program, simplePIC.c, is an infinite loop, so it never
stops executing, the desired behavior in embedded control. If a program exits, the PIC32 will
sit in a tight loop, doing nothing until it is reset. (Interrupts, described in Chapter 6, will
continue to execute.)

3.5 Understanding simplePIC.c

Let us return to understanding simplePIC.c. The main function initializes values of TRISF and
LATFbits, then enters an infinite while loop. Each time through the loop it calls delay() and
then assigns a value to LATFINV. The delay function executes a for loop that iterates one
million times. During each iteration it enters a while loop, which checks the value of
(!PORTDbits.RD7). If PORTDbits.RD7 is 0 (FALSE), then the expression
(!PORTDbits.RD7) evaluates to TRUE, and the program remains here, doing nothing except
checking the expression (!PORTDbits.RD7). When this expression evaluates to FALSE, the
while loop exits, and the program continues with the for loop. After the for loop finishes,
control returns to main.

Special function registers (SFRs)

The main difference between simplePIC.c and programs that you may have written for your
computer is how it interacts with the outside world. Rather than via keyboard or mouse,

1 If you are just powering on your PIC32, it will wait a short period while electrical transients die out, clocks
synchronize, etc., before jumping to 0xBFC00000.
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simplePIC.c accesses SFRs like TRISF, LATF, and PORTD, all of which correspond to
peripherals. Specifically, TRISF, LATF, and PORTD refer to the digital I/O ports F and D.
Digital I/O ports allow the PIC32 to read or set the digital voltage on a pin. To discover what
these SFRs control we start by consulting the table in Section 1 of the Data Sheet, which lists
the pinout descriptions. For example, we see that port D, with pins named RD0 to RD11, has
12 pins, and port F, with pins RF0, RF1, RF3, RF4, and RF5, has five pins. Port B has 16 pins,
labeled RB0 to RB15.

We now turn to the Data Sheet section on I/O Ports for more information. We find that TRISF,
short for “tri-state F,” controls the direction, input or output, of the pins on port F. Each port F
pin has a corresponding bit in TRISF. If this bit is 0, the pin is an output. If the bit is a 1, the
pin is an input. (0 =Output and 1 = Input.) We can make some pins inputs and some outputs, or
we can make them all have the same direction.

If you are curious about which direction the pins are by default, you can consult the Memory
Organization section of the Data Sheet. Tables there list the VAs of many of the SFRs, as well
as the values they default to upon reset. There are a lot of SFRs! After some searching, you
will find that TRISF sits at virtual address 0xBF886140, and its default value upon reset is
0x0000003B. (We have reproduced part of this table for you in Figure 3.3.) In binary, this
would be

0x0000003B = 0000 0000 0000 0000 0000 0000 0011 1011.

The four most significant hex digits (two bytes, or 16 bits) are all 0. This is because those bits,
technically, do not exist. Microchip calls them “unimplemented.” No I/O port has more than
16 pins, so we do not need those bits, which are numbered 16-31. (The 32 bits are numbered
0-31.) Of the remaining bits, since the 0th bit (least significant bit) is the rightmost bit, we see
that bits 0, 1, 3, 4, and 5 are 1, while the rest are 0. The bits set to 1 correspond precisely to the
pins we have available, meaning that they are inputs. (The other pins are unimplemented.). I/O
pins are configured as inputs on reset for safety reasons; when we power on the PIC32, each
pin will take its default direction before the program can change it. If an output pin were
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The TRISF SFR, taken from the PIC32 Data Sheet.
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connected to an external circuit that is also trying to control the voltage on the pin, the two
devices would fight each other, with damage to one or the other a possibility. No such
problems arise if the pin is configured as an input by default.

So now we understand that the instruction

TRISF = 0xFFFC;

clears bits 0 and 1, implicitly clears bits 16-31 (which is ignored, since the bits are not
implemented), and sets the rest of the bits to 1. It does not matter that we try to set some
unimplemented bits to 1; those bits are ignored. The result is that port F pins 0 and 1, or RF0
and RF1 for short, are now outputs.

Our PIC32 C compiler allows the use of binary (base 2) representations of unsigned integers
using 0b at the beginning of the number, so if you do not get lost counting bits, you could have
equally written

TRISF = 0b1111111111111100;

or simply

TRISF = 0b111100;

since no bits are implemented after RF5.

Another option would have been to use the instructions

TRISFbits.TRISF0 = 0; TRISFbits.TRISF1 = 0;

This allows us to specify individual bits without affecting the other bits. We see this kind of
notation later in the program, with LATFbits.LATF0 and LATFbits.LATF1, for example.

The two other basic SFRs in this program are LATF and PORTD. Again consulting the I/O
Ports section of the Data Sheet, we see that LATF, short for “latch F,” is used to write values to
the output pins. Thus

LATFbits.LATF1 = 1;

sets pin RF1 high. Finally, PORTD contains the digital inputs on the port D pins. (Notice we
did not configure port D as input; we relied on the fact that it’s the default.) PORTDbits.RD7
is 0 if 0 V is present on pin RD7 and 1 if approximately 3.3 V is present. Note that we use the
latch when writing pins and the port when reading pins, for reasons explained in Chapter 7.
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Pins RF0, RF1, and RD7 on the NU32

Figure 2.3 shows how pins RF0, RF1 and RD7 are wired on the NU32 board. LED1 (LED2) is
on if RF0 (RF1) is 0 and off if it is 1. When the USER button is pressed, RD7 registers a 0,
and otherwise it registers a 1.

The result of these electronics and the simplePIC.c program is that the LEDs flash alternately,
but remain unchanging while you press the USER button.

CLR, SET, and INV SFRs

So far we have ignored the instruction

LATFINV = 0x0003;

Again consulting the Memory Organization section of the Data Sheet, we see that associated
with the SFR LATF are three more SFRs, called LATFCLR, LATFSET, and LATFINV.
(Indeed, many SFRs have corresponding CLR, SET, and INV SFRs.) These SFRs are used to
easily change some of the bits of LATF without affecting the others. A write to these registers
causes a change to LATF’s bits, but only in the bits corresponding to bits on the right-hand
side that have a value of 1. For example,

LATFINV = 0x3; // flips (inverts) bits 0 and 1 of LATF; all others unchanged
LATFINV = 0b11; // same as above
LATFSET = 0x9; // sets bits 0 and 3 of LATF to 1; all others unchanged
LATFCLR = 0x2; // clears bit 1 of LATF to 0; all others unchanged

A nominally less efficient way to toggle bits 0 and 1 of LATF is

LATA5LATFbits.LATF0 = !LATFbits.LATF0; LATFbits.LATF1 = !LATFbits.LATF1;

The compiler, however, sometimes optimizes these instructions into the equivalent more
efficient operation. We shall look at efficiency in Chapter 5. In most cases, the difference
between the methods is negligible so you should access the fields using the bit structures (e.g.,
LATFbits.LATF0) for code clarity.

You can return to the table in the Data Sheet to see the VAs of the CLR, SET, and INV
registers. They are always offset from their base register by 4, 8, and 12 bytes, respectively.
Since LATF is at 0xBF886160, LATFCLR, LATFSET, and LATFINV are at 0xBF886164,
0xBF886168, and 0xBF88616C, respectively.

You should now understand how simplePIC.c works. But we have ignored the fact that we
never declared TRISF, LATFINV, etc., before we started using them. We know you cannot do
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that in C; these variables must be declared somewhere. The only place they could be declared
is in the included file xc.h. We have ignored that #include <xc.h> statement until now. Time
to take a look.2

3.5.1 Down the Rabbit Hole

Where do we find xc.h? The line #include <xc.h> means that the preprocessor will look for
xc.h in directories specified in the include path.

For us, the default include path means that the compiler finds xc.h sitting at

<xc32dir>/<xc32ver>/pic32mx/include/xc.h

You should substitute your install directory in place of <xc32dir>/<xc32ver>.

Including xc.h gives us access to many data types, variables, and constants that Microchip has
provided for our convenience. In particular, it provides variable declarations for SFRs like
TRISF, allowing us to access the SFRs from C.

Before we open xc.h, let us examine the directory structure of the XC32 compiler installation.
There’s a lot here! We certainly do not need to understand it all now, but we should get a sense
of what’s going on. We start at the level of your XC32 install directory and summarize the
important nested directories, without being exhaustive.

1. bin: Contains the actual executable programs that do the compiling, assembling, linking,
etc. For example, xc32-gcc is the C compiler.

2. docs: Some manuals, including the XC32 C Compiler User’s Guide, and other
documentation.

3. examples: Some sample code.
4. lib: Contains some .h header files and .a library archives containing general C object

code.
5. pic32-libs: This directory contains the source code (.c C files, .h header files, and .S

assembly files) needed to create numerous Microchip-provided libraries. These files are
provided for reference and are not included directly in any of your code.

6. pic32mx: This directory has several files we are interested in because many of them end up
in your project.

2 Microchip often changes the software it distributes, so there may be differences in details, but the essence of
what we describe here will be the same.
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a. lib: This directory consists mostly of PIC32 object code and libraries that are linked
with our compiled and assembled source code. For some of these libraries, source
code exists in pic32-libs; for others we have only the object code libraries. Some
important files in this directory include:
- proc/32MX795F512H/crt0_mips32r2.o: The linker combines this object code with

your program’s object code when it creates the .elf file. The linker ensures that
this “C Runtime Startup” code is executed first, since it performs various
initializations your code needs to run, such as initializing the values of global
variables. Different PIC32 models have different versions of this file under the
appropriate proc/<processor> directory. You can find readable assembly source
code at pic32-libs/libpic32/startup/crt0.S.

- libc.a: Implementations of functions that are part of the C standard library.
- libdsp.a: This library contains MIPS implementations of finite and infinite

impulse response filters, the fast Fourier transform, and various vector math
functions.

- proc/32MX795F512H/processor.o: This object file provides the virtual memory
addresses for the PIC32’s SFRs; each specific model has its own processor.o file.
We cannot look at it directly with a text editor, but there are utilities that allow us
to examine it. For example, from the command line you could use the xc32-nm

program in the top-level bin directory to see all the SFR VAs:

> xc32-nm processor.o
bf809040 A AD1CHS
...
bf886140 A TRISF
bf886144 A TRISFCLR
bf88614c A TRISFINV
bf886148 A TRISFSET
...

All of the SFRs are printed out, in alphabetical order, with their corresponding VA.
The spacing between SFRs is four, since there are four bytes (32 bits) in an SFR.
The “A” means that these are absolute addresses. The linker must use these
addresses when making final address assignments because the SFRs are
implemented in hardware and cannot be moved! The listing above indicates that
TRISF is located at VA 0xBF886140, agreeing with the Memory Organization
section of the Data Sheet.

- proc/32MX795F512H/configuration.data: This file describes some constants used
in setting the configuration bits in DEVCFG0 to DEVCFG3 (Chapter 2.1.4). These
bits are set by the bootloader (Section 3.6), so you do not need to worry about them
in your programs. It is possible to use a programmer device to load programs onto
the PIC32 without having a bootloader pre-installed on the PIC32 (that’s how the
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bootloader got there in the first place!), in which case you would need to worry
about these bits. See Section 3.6 for more information about programs that do not
use a bootloader.

b. include: This directory contains several .h header files.
- cp0defs.h: This file defines constants and macros that allow us to access functions

of coprocessor 0 (CP0) on the MIPS32 M4K CPU. In particular, it allows us to
read and set the core timer clock that ticks once every two SYSCLK cycles using
macros like _CP0_GET_COUNT() (see Chapters 5 and 6 for more details). More
information on CP0 can be found in the “CPU for Devices with the M4K Core”
section of the Reference Manual.

- sys/attribs.h: In the directory sys, the file attribs.h defines the macro syntax
__ISR that we will use for interrupt service routines starting in Chapter 6.

- sys/kmem.h: Contains macros for converting between physical and virtual
addresses.

- xc.h: This is the file we include in simplePIC.c. The main purpose of xc.h is to
include the appropriate processor-specific header file, in our case
include/proc/p32mx795f512h.h. It does this by checking if __32MX795F512H_ _ is
defined:

#elif defined(__32MX795F512H__)
#include <proc/p32mx795f512h.h>

If you look at the command for compiling simplePIC.c, you may notice the option
-mprocessor=32MX795F512H. This option defines the constant __32MX795F512H_ _ to
the compiler, allowing xc.h to function properly. This file also defines some
macros for easily inserting some specific assembly instructions directly
from C.

- proc/p32mx795f512h.h: Open this file in your text editor. Whoa! This file is over
40,000 lines long! It must be important. Time to look at it in more detail.

3.5.2 The Header File p32mx795f512h.h

The first 31% of p32mx795f512h.h, about 14,000 lines, consists of code like this, with line
numbers added to the left for reference:

1 extern volatile unsigned int TRISF __attribute__((section("sfrs")));
2 typedef union {
3 struct {
4 unsigned TRISF0:1; // TRISF0 is bit 0 (1 bit long), interpreted as

unsigned int
5 unsigned TRISF1:1; // bits are in order, so the next bit, bit 1, is

TRISF1
6 unsigned TRISF2:1; // TRISF2 doesn’t actually exist (unimplemented)
7 unsigned TRISF3:1;
8 unsigned TRISF4:1;
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9 unsigned TRISF5:1; // later bits are not given names, since they’re
unimplemented

10 };
11 struct {
12 unsigned w:32; // w refers to all 32 bits
13 };
14 } __TRISFbits_t;
15 extern volatile __TRISFbits_t TRISFbits __asm__ ("TRISF") __attribute__

((section("sfrs")));
16 extern volatile unsigned int TRISFCLR __attribute__((section("sfrs")));
17 extern volatile unsigned int TRISFSET __attribute__((section("sfrs")));
18 extern volatile unsigned int TRISFINV __attribute__((section("sfrs")));

The first line, beginning extern, declares the variable TRISF as an unsigned int. The
keyword extern means that no RAM has to be allocated for it; memory to hold the variable
has been allocated for it elsewhere. In a typical C program, memory for the variable has been
allocated by another C file using syntax without the extern, like volatile unsigned int

TRISF;. In this case, however, no RAM has to be allocated for TRISF because it refers to an
SFR, not a word in RAM. The processor.o file actually defines the VA of the symbol TRISF,
as mentioned earlier.

The volatile keyword, applied to all the SFRs, means that the value of this variable could
change without the CPU knowing it. Thus the compiler should generate assembly code to
reload TRISF into the CPU registers every time it is used, rather than assuming that its value is
unchanged just because no C code has modified it.

Finally, the __attribute_ _ syntax tells the linker that TRISF is in the sfrs section of memory.

The next section of code, lines 2-14, defines a new data type called __TRISFbits_t. Next, in
line 15, a variable named TRISFbits is declared of type __TRISFbits_t. Again, since it is an
extern variable, no memory is allocated, and the __asm__ ("TRISF") syntax means that
TRISFbits is at the same VA as TRISF.

It is worth understanding the new data type __TRISFbits_t. It is a union of two structs. The
union means that the two structs share the same memory, a 32-bit word in this case. Each
struct is called a bit field, which gives names to specific groups of bits within the 32-bit word.
Thus declaring a variable TRISFbits of type __TRISFbits_t, and forcing it to be located at the
same VA as TRISF allows us to use syntax like TRISFbits.TRISF0 to refer to bit 0 of
TRISF.

A named set of bits in a bit field need not be one bit long; for example, TRISFbits.w refers to
the entire unsigned int TRISF, created from all 32 bits. The type __RTCALRMbits_t defined
earlier in the file by

typedef union {
struct {

unsigned ARPT:8;
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unsigned AMASK:4;
...

} __RTCALRMbits_t;

has a first field ARPT that is eight bits long and a second field AMASK that is four bits long.
Since RTCALRM is a variable of type __RTCALRMbits_t, a C statement of the form
RTCALRMbits.AMASK = 0xB would put the values 1, 0, 1, 1 in bits 11, 10, 9, 8, respectively,
of RTCALRM.

After the declaration of TRISF and TRISFbits, lines 16-18 contain declarations of
TRISFCLR, TRISFSET, and TRISFINV. These declarations allow simplePIC.c, which uses
these variables, to compile successfully. When the object code of simplePIC.c is linked with
the processor.o object code, references to these variables are resolved to the proper SFR VAs.

With these declarations in p32mx795f512h.h, the simplePIC.c statements

TRISF = 0xFFFC;
LATFINV = 0x0003;
while(!PORTDbits.RD7)

finally make sense; these statements write values to, or read values from, SFRs at VAs
specified by processor.o. You can see that p32mx795f512h.h declares many SFRs, but no
RAM has to be allocated for them; they exist at fixed addresses in the PIC32’s hardware.

The next 9% of p32mx795f512h.h is the extern variable declaration of the same SFRs, without
the bit field types, for assembly language. The VAs of each of the SFRs is given, making this a
handy reference.

Starting at just over 17,000 lines into the file, we see more than 20,000 lines with constant
definitions like the following:

#define _T1CON_TCS_POSITION 0x00000001
#define _T1CON_TCS_MASK 0x00000002
#define _T1CON_TCS_LENGTH 0x00000001

#define _T1CON_TCKPS_POSITION 0x00000004
#define _T1CON_TCKPS_MASK 0x00000030
#define _T1CON_TCKPS_LENGTH 0x00000002

These refer to the Timer1 SFR T1CON. Consulting the information about T1CON in the
Timer1 section of the Data Sheet, we see that bit 1, called TCS, controls whether Timer1’s
clock input comes from the T1CK input pin or from PBCLK. Bits 4 and 5, called TCKPS for
“timer clock prescaler,” control how many times the input clock has to “tick” before Timer1 is
incremented (e.g., TCKPS = 0b10 means there is one clock increment per 64 input ticks). The
constants defined above are for convenience in accessing these bits. The POSITION constants
indicate the least significant bit location in TCS or TCKPS in T1CON—one for TCS and four
for TCKPS. The LENGTH constants indicate that TCS consists of one bit and TCKPS consists of
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two bits. Finally, the MASK constants can be used to determine the values of the bits we care
about. For example:

unsigned int tckpsval = (T1CON & _T1CON_TCKPS_MASK) >> _T1CON_TCKPS_POSITION;
// AND MASKing clears all bits except 5 and 4, which are unchanged and shifted to
// positions 1 and 0, so tckpsval now contains the value T1CONbits.TCKPS

The definitions of the POSITION, LENGTH, and MASK constants take up most of the rest of the file.
Of course, there is also a T1CONbits defined that allows you to access these bits directly (e.g.,
T1CONbits.TCKPS). We recommend that you use this method, as it is typically clearer and
less error prone than performing direct bit manipulations.

At the end, some more constants are defined, like below:

#define _ADC10
#define _ADC10_BASE_ADDRESS 0xBF809000
#define _ADC_IRQ 33
#define _ADC_VECTOR 27

The first is merely a flag indicating to other .h and .c files that the 10-bit ADC is present on
this PIC32. The second indicates the first address of 22 consecutive SFRs related to the ADC
(see the Memory Organization section of the Data Sheet). The third and fourth relate to
interrupts. The PIC32MX’s CPU is capable of being interrupted by up to 96 different events,
such as a change of voltage on an input line or a timer rollover event. Upon receiving these
interrupts, it can call up to 64 different interrupt service routines, each identified by a “vector”
corresponding to its address. These two lines say that the ADC’s “interrupt request” line is 33
(out of 0 to 95), and its corresponding interrupt service routine is at vector 27 (out of 0 to 63).
Interrupts are covered in Chapter 6.

Finally, p32mx795f512h.h concludes by including ppic32mx.h, which contains legacy code that
is no longer needed but remains for backward compatibility with old programs.

3.5.3 Other Microchip Software: Harmony

Installed in your Harmony directory (<harmony>) is an extensive and complex set of libraries
and sample code written by Microchip. Because of the complexity and abstraction it
introduces, we avoid using Harmony functions until Chapter 20, when our programs are
complex enough that low-level access to the peripherals through SFRs becomes more
difficult.3

3 Even though most sample code in the book does not use Harmony, we had you install it and record its installation
directory in the Makefile; this way, your system is prepared for Harmony when we are ready to use it.
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3.5.4 The NU32bootloaded.ld Linker Script

To create the executable .hex file, we needed the C source file simplePIC.c and the linker
script NU32bootloaded.ld. Examining NU32bootloaded.ld with a text editor, we see the
following line near the beginning:

INPUT("processor.o")

This line tells the linker to load the processor.o file specific to your PIC32. This allows the
linker to resolve references to SFRs (declared as extern variables in p32mx795f512h.h) to
actual addresses.

The rest of the NU32bootloaded.ld linker script has information such as the amount of
program flash and data memory available, as well as the virtual addresses where program
elements and global data should be placed. Below is a portion of NU32bootloaded.ld:

_RESET_ADDR = (0xBD000000 + 0x1000 + 0x970);

/*************************************************************************
* NOTE: What is called boot_mem and program_mem below do not directly
* correspond to boot flash and program flash. For instance, here
* kseg0_boot_mem and kseg1_boot_mem both live in program flash memory.
* (We leave the boot flash solely to the bootloader.)
* The boot_mem names below tell the linker where the startup codes should
* go (here, in program flash). The first 0x1000 + 0x970 + 0x490 = 0x1E00 bytes
* of program flash memory is allocated to the interrupt vector table and
* startup codes. The remaining 0x7E200 is allocated to the user’s program.
*************************************************************************/

MEMORY
{

/* interrupt vector table */
exception_mem : ORIGIN = 0x9D000000, LENGTH = 0x1000
/* Start-up code sections; some cacheable, some not */
kseg0_boot_mem : ORIGIN = (0x9D000000 + 0x1000), LENGTH = 0x970
kseg1_boot_mem : ORIGIN = (0xBD000000 + 0x1000 + 0x970), LENGTH =

0x490
/* User’s program is in program flash, kseg0_program_mem, all cacheable */
/* 512 KB flash = 0x80000, or 0x1000 + 0x970 + 0x490 + 0x7E200 */
kseg0_program_mem (rx) : ORIGIN = (0x9D000000 + 0x1000 + 0x970 + 0x490),

LENGTH = 0x7E200
debug_exec_mem : ORIGIN = 0xBFC02000, LENGTH = 0xFF0
/* Device Configuration Registers (configuration bits) */
config3 : ORIGIN = 0xBFC02FF0, LENGTH = 0x4
config2 : ORIGIN = 0xBFC02FF4, LENGTH = 0x4
config1 : ORIGIN = 0xBFC02FF8, LENGTH = 0x4
config0 : ORIGIN = 0xBFC02FFC, LENGTH = 0x4
configsfrs : ORIGIN = 0xBFC02FF0, LENGTH = 0x10
/* all SFRS */
sfrs : ORIGIN = 0xBF800000, LENGTH = 0x100000
/* PIC32MX795F512H has 128 KB RAM, or 0x20000 */
kseg1_data_mem (w!x) : ORIGIN = 0xA0000000, LENGTH = 0x20000

}
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Converting virtual to physical addresses, we see that the cacheable interrupt vector table (we
will learn more about this in Chapter 6) in exception_mem is placed in a memory region of
length 0x1000 bytes beginning at PA 0x1D000000 and running to 0x1D000FFF; cacheable
startup code in kseg0_boot_mem is placed at PAs 0x1D001000 to 0x1D00196F; noncacheable
startup code in kseg1_boot_mem is placed at PAs 0x1D001970 to 0x1D001DFF; and cacheable
program code in kseg0_program_mem is allocated the rest of program flash, PAs 0x1D001E00 to
0x1D07FFFF. This program code includes the code we write plus other code that is linked.

The linker script for the NU32 bootloader placed the bootloader completely in the 12 KB boot
flash with little room to spare. Therefore, the linker script for our bootloaded programs should
place the programs solely in program flash. Therefore, the boot_mem sections above are defined
to be in program flash. The label boot_mem tells the linker where the startup code should be
placed, just as the label kseg0_program_mem tells the linker where the program code should be
placed. (For the bootloader program, kseg0_program_mem was in boot flash.)

If the LENGTH of any given memory region is not large enough to hold all the program
instructions or data for that region, the linker will fail.

Upon reset, the PIC32 always jumps to 0xBFC00000, where the first instruction of the startup
code for the bootloader resides. The bootloader’s final action is to jump to VA 0xBD001970.
Since the first instruction in the startup code for our bootloaded program is installed at the first
address in kseg1_boot_mem, NU32bootloaded.ld must define the ORIGIN of kseg1_boot_mem at
this address. This address is also known as _RESET_ADDR in NU32bootloaded.ld.

3.6 Bootloaded Programs vs. Standalone Programs

Your executable is installed on the PIC32 by another executable: the bootloader. The
bootloader has been pre-installed in the boot flash portion of flash memory using an external
programming tool such as the PICkit 3. The bootloader, which always runs first when the
PIC32 is reset, has already defined some of the behavior of the PIC32, so you did not need to
specify it in simplePIC.c. Particularly, the bootloader performs tasks such as such as enabling
the prefetch cache module, enabling multi-vector interrupts (see Chapter 6), and freeing some
pins to be used as general I/O. The bootloader code also defines the PIC32’s configuration
bits. These bits, which control the PIC32’s low-level behavior, are located in the last four
words of boot flash and are written by the programming tool. When the bootloader was
installed, it also set the configuration bits using XC32-specific commands that begin with
#pragma config. The configuration bits that were set when the bootloader was installed are

#pragma config DEBUG = OFF // Background Debugger disabled
#pragma config FPLLMUL = MUL_20 // PLL Multiplier: Multiply by 20
#pragma config FPLLIDIV = DIV_2 // PLL Input Divider: Divide by 2
#pragma config FPLLODIV = DIV_1 // PLL Output Divider: Divide by 1
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#pragma config FWDTEN = OFF // WD timer: OFF
#pragma config WDTPS = PS4096 // WD period: 4.096 sec
#pragma config POSCMOD = HS // Primary Oscillator Mode: High Speed xtal
#pragma config FNOSC = PRIPLL // Oscillator Selection: Primary oscillator

w/ PLL
#pragma config FPBDIV = DIV_1 // Peripheral Bus Clock: Divide by 1
#pragma config UPLLEN = ON // USB clock uses PLL
#pragma config UPLLIDIV = DIV_2 // Divide 8 MHz input by 2, mult by 12 for

48 MHz
#pragma config FUSBIDIO = ON // USBID controlled by USB peripheral when it

is on
#pragma config FVBUSONIO = ON // VBUSON controlled by USB peripheral when it

is on
#pragma config FSOSCEN = OFF // Disable second osc to get pins back
#pragma config BWP = ON // Boot flash write protect: ON
#pragma config ICESEL = ICS_PGx2 // ICE pins configured on PGx2
#pragma config FCANIO = OFF // Use alternate CAN pins
#pragma config FMIIEN = OFF // Use RMII (not MII) for ethernet
#pragma config FSRSSEL = PRIORITY_6 // Shadow Register Set for interrupt priority 6

The directives above

• disable some debugging features;
• turn the PIC32’s watchdog timer off and set its period (see Chapter 17);
• configure the PIC32’s clock generation circuit to take the external 8 MHz resonator signal,

divide its frequency by 2, input the divided frequency into a phase-locked loop (PLL) that
multiplies the frequency by 20, and divide the PLL’s output frequency by 1, creating a
SYSCLK of 8/2 × 20/1 MHz = 80 MHz;

• set the PBCLK frequency to be SYSCLK divided by 1 (80 MHz);
• use a PLL to generate the 48 MHz USBCLK by first dividing the 8 MHz signal frequency

by 2 before multiplying by a fixed factor of 12;
• allow two pins to be controlled by the USB peripheral when USB is enabled;
• disable the secondary oscillator (this could provide an alternative clock source for

power-saving modes or as a backup);
• prevent the boot flash from being written when a program is running;
• connect the CAN modules to the alternate pins instead of the default pins;
• configure the ethernet module to use the reduced media-independent interface (RMII); and
• set the shadow register set to be used for interrupts of priority level 6 (see Chapter 6).

Remember, these bits are set by the programming tool, so they are only stored when the
bootloader is written to the PIC32; using these commands in a bootloaded program has no
effect. The file pic32-libs/proc/32MX795F512H/configuration.data contains definitions for
the values you can use in the #pragma config directives. The Data Sheet and Configuration
section of the Reference Manual have more details about the configuration bits.

If you decide not to use a bootloader, and instead use a programming tool like the PICkit 3
(Figure 2.4) to install a standalone program, you must set the configuration bits, enable the
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prefetch cache module, perform other configuration tasks, and use the default linker script. If
you use the NU32 library you need not write this code: NU32.c contains the necessary
configuration bit settings (which have no effect for a bootloaded program) and NU32_Startup

performs the necessary setup tasks (which are redundant but harmless for a bootloaded
program).4 To use the default linker script (a copy of which is located at
pic32-libs/proc/32MX795F512H/p32MX795F512H.ld) when you build a program using make

(Chapter 1.5), change the line LINKSCRIPT="NU32bootloaded.ld" to LINKSCRIPT= in the Makefile.

After building a standalone hex file, you must load it onto the PIC32 using a programming
tool. The easiest method for loading a hex file is to use the MPLAB X IDE. In the IDE, create
a new “precompiled” project, selecting your processor model, programming tool, and hex file.
Next, hit “run,” and the hex file will be written to the PIC32. Remember, the PIC32 must be
powered for it to be programmed.

3.7 Build Summary

Recall that what we colloquially refer to as “compiling” actually consists of multiple steps.
You initiated these steps by invoking the compiler, xc32-gcc, at the command line:

> xc32-gcc -mprocessor=32MX795F512H
-o simplePIC.elf -Wl,--script=skeleton/NU32bootloaded.ld simplePIC.c

This step creates the .elf file, which then needs to be converted into a .hex file that the
bootloader understands:

> xc32-bin2hex simplePIC.elf

The compiler requires multiple command line options to work. It accepts arguments, as
detailed in the XC32 Users Manual, and some important ones are displayed by typing
xc32-gcc --help. The arguments we used were

• -mprocessor=32MX795F512H: Tells the compiler what PIC32MX model to target. This also
causes the compiler to define __32MX795F512H_ _ so that the processor model can be
detected in header files such as xc.h.

• -o simplePIC.elf: Specifies that the final output will be named simplePIC.elf.

4 Technically, performing the configuration tasks a second time in NU32 startup wastes an iota of program
memory and computation time, but it allows you to use the same code in both bootloaded and standalone modes
without modification.
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• -Wl: Tells the compiler that what follows are a comma-separated list of options for the
linker.

• --script=skeleton/NU32bootloaded.ld: A linker option that specifies the linker script to
use.

• simplePIC.c: The C files that you want compiled and linked are listed. In this case the
whole program is in just one file.

Another option that may be useful when exploring what the compiler does is –save–temps.
This option will save all of the intermediate files generated during the build process, allowing
you to examine them.

Here is what happens when you build and load simplePIC.c.

• Preprocessing. The preprocessor (xc32-cpp), among other duties, handles include files.
By including xc.h at the beginning of your program, we get access to variables for all the
SFRs. The output of the preprocessor is a .i file, which by default is not saved.

• Compiling. After the preprocessor, the compiler (xc32-gcc) turns your C code into
assembly language specific to the PIC32. For convenience, (xc32-gcc) automatically
invokes the other commands required in the build process. The result of the compilation
step is an assembly language .S file, containing a human-readable version of instructions
specific to a MIPS32 processor. This output is also not saved by default.

• Assembling. The assembler (xc32-as) converts the human-readable assembly code into
object files (.o) that contain machine code. These files cannot be executed directly,
however, because addresses have not been resolved. This step yields simplePIC.o

• Linking. The object code simplePIC.o is linked with the crt0_mips32r2.o C run-time
startup library, which performs functions such as initializing global variables, and the
processor.o object code, which contains the SFR VAs. The linker script
NU32bootloaded.ld provides information to the linker on the allowable absolute virtual
addresses for the program instructions and data, as required by the bootloader and the
specific PIC32 model. Linking yields a self-contained executable in .elf format.

• Hex file. The xc32-bin2hex utility converts .elf files into .hex files. The .hex is a
different format for the executable from the .elf file that the bootloader understands and
can load into the PIC32’s program memory.

• Installing the program. The last step is to use the NU32 bootloader and the host
computer’s bootloader utility to install the executable. By resetting the PIC32 while
holding the USER button, the bootloader enters a mode where it tries to communicate
with the bootload communication utility on the host computer. When it receives the
executable from the host, it writes the program instructions to the virtual memory
addresses specified by the linker. Now every time the PIC32 is reset without holding the
USER button, the bootloader exits and jumps to the newly installed program.
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3.8 Useful Command Line Utilities

The bin directory of the XC32 installation contains several useful command line utilities.
These utilities can be used directly at the command line and many are invoked by the
Makefile. We have already seen the first two of these utilities, as described in Section 3.7:

xc32-gcc The XC32 version of the gcc compiler is used to compile, assemble, and link, creating
the executable .elf file.
xc32-bin2hex Converts a .elf file into a .hex file suitable for placing directly into PIC32 flash
memory.
xc32-ar The archiver can be used to create an archive, list the contents of an archive, or extract
object files from an archive. An archive is a collection of .o files that can be linked into a
program. Example uses include:

xc32-ar -t lib.a // list the object files in lib.a
(in current directory)

xc32-ar -x lib.a code.o // extract code.o from lib.a to the current directory

xc32-as The assembler.
xc32-ld This is the actual linker called by xc32-gcc.
xc32-nm Prints the symbols (e.g., global variables) in an object file. Examples:

xc32-nm processor.o // list the symbols in alphabetical order
xc32-nm -n processor.o // list the symbols in numerical order of their VAs

xc32-objdump Displays the assembly code corresponding to an object or .elf file. This
process is called disassembly. Example:

xc32-objdump -S file.elf > file.dis // send output to the file file.dis

xc32-readelf Displays a lot of information about the .elf file. Example:
xc32-readelf -a filename.elf // output is dominated by SFR definitions

These utilities correspond to standard “GNU binary utilities” of the same name without the
preceding xc32-. To learn the options available for a command called xc32-cmdname, you can
type xc32-cmdname --help or read about them in the XC32 compiler reference manual.

3.9 Chapter Summary

OK, that’s a lot to digest. Do not worry, you can view much of this chapter as reference
material; you do not have to memorize it to program the PIC32!

• Software refers almost exclusively to the virtual memory map. Virtual addresses map
directly to physical addresses by PA=VA & 0x1FFFFFFF.

• Building an executable .hex file from a source file consists of the following steps:
preprocessing, compiling, assembling, linking, and converting the .elf file to a .hex file.
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• Including the file xc.h gives our program access to variables, data types, and constants
that significantly simplify programming by allowing us to access SFRs easily from C code
without needing to specify addresses directly.

• The included file pic32mx/include/proc/p32mx795f512h.h contains variable declarations,
like TRISF, that allow us to read from and write to the SFRs. We have several options for
manipulating these SFRs. For TRISF, for example, we can directly assign the bits with
TRISF=0x3, or we can use bitwise operations like & and |. Many SFRs have associated
CLR, SET, and INV registers which can be used to efficiently clear, set, or invert certain
bits. Finally, particular bits or groups of bits can be accessed using bit fields. For example,
we access bit 3 of TRISF using TRISFbits.TRISF3. The names of the SFRs and bit fields
follow the names in the Data Sheet (particularly the Memory Organization section) and
Reference Manual.

• All programs are linked with pic32mx/lib/proc/32MX795F512H/crt0_mips32r2.o to
produce the final .hex file. This C run-time startup code executes first, doing things like
initializing global variables in RAM, before jumping to the main function. Other linked
object code includes processor.o, with the VAs of the SFRs.

• Upon reset, the PIC32 jumps to the boot flash address 0xBFC00000. For a PIC32 with a
bootloader, the crt0_mips32r2 of the bootloader is installed at this address. When the
bootloader completes, it jumps to an address where the bootloader has previously installed
a bootloaded executable.

• When the bootloader was installed with a device programmer, the programmer set the
Device Configuration Registers. In addition to loading or running executables, the
bootloader enables the prefetch cache module and minimizes the number of CPU wait
cycles for instructions to load from flash.

• A bootloaded program is linked with a custom linker script, like NU32bootloaded.ld, to
make sure the flash addresses for the instructions do not conflict with the bootloader’s,
and to make sure that the program is placed at the address where the bootloader
jumps.

3.10 Exercises
1. Convert the following virtual addresses to physical addresses, and indicate whether the

address is cacheable or not, and whether it resides in RAM, flash, SFRs, or boot flash. (a)
0x80000020. (b) 0xA0000020. (c) 0xBF800001. (d) 0x9FC00111. (e) 0x9D001000.

2. Look at the linker script used with programs for the NU32. Where does the bootloader
install your program in virtual memory? (Hint: look at the _RESET_ADDR.)

3. Refer to the Memory Organization section of the Data Sheet and Figure 2.1.
a. Referring to the Data Sheet, indicate which bits, 0-31, can be used as input/outputs for

each of Ports B through G. For the PIC32MX795F512H in Figure 2.1, indicate which
pin corresponds to bit 0 of port E (this is referred to as RE0).
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b. The SFR INTCON refers to “interrupt control.” Which bits, 0-31, of this SFR are
unimplemented? Of the bits that are implemented, give the numbers of the bits and
their names.

4. Modify simplePIC.c so that both lights are on or off at the same time, instead of opposite
each other. Turn in only the code that changed.

5. Modify simplePIC.c so that the function delay takes an int cycles as an argument. The
for loop in delay executes cycles times, not a fixed value of 1,000,000. Then modify main

so that the first time it calls delay, it passes a value equal to MAXCYCLES. The next time it
calls delay with a value decreased by DELTACYCLES, and so on, until the value is less than
zero, at which time it resets the value to MAXCYCLES. Use #define to define the constants
MAXCYCLES as 1,000,000 and DELTACYCLES as 100,000. Turn in your code.

6. Give the VAs and reset values of the following SFRs. (a) I2C3CON. (b) TRISC.
7. The processor.o file linked with your simplePIC project is much larger than your final

.hex file. Explain how that is possible.
8. The building of a typical PIC32 program makes use of a number of files in the XC32

compiler distribution. Let us look at a few of them.
a. Look at the assembly startup code pic32-libs/libpic32/startup/crt0.S. Although

we are not studying assembly code, the comments help you understand what the
startup code does. Based on the comments, you can see that this code clears the RAM
addresses where uninitialized global variables are stored, for example. Find and list
the line(s) of code that call the user’s main function when the C runtime startup
completes.

b. Using the command xc32-nm -n processor.o, give the names and addresses of the
five SFRs with the highest addresses.

c. Open the file p32mx795f512h.h and go to the declaration of the SFR SPI2STAT and its
associated bit field data type _ _SPI2STATbits_t. How many bit fields are defined?
What are their names and sizes? Do these coincide with the Data Sheet?

9. Give three C commands, using TRISDSET, TRISDCLR, and TRISDINV, that set bits 2
and 3 of TRISD to 1, clear bits 1 and 5, and flip bits 0 and 4.

Further Reading
MPLAB XC32 C/C++ compiler user’s guide. (2012). Microchip Technology Inc.
MPLAB XC32 linker and utilities user guide. (2013). Microchip Technology Inc.
PIC32 family reference manual. Section 32: Configuration. (2013). Microchip Technology Inc.
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Using Libraries

You have used libraries all your life—well, at least as long as you have programmed in C.
Want to display text on the screen? printf. What about determining the length of a string?
strlen. Need to sort an array? qsort. You can find these functions, along with numerous
others, in the C standard library. A library consists of a collection object files (.o), that have
been combined into an archive file (.a): for example, the C standard library libc.a. Using a
library requires you to include the associated header files (.h) and link with the archive file.
The header file (e.g., stdio.h) declares the functions, constants, and data types used by the
library while the archive file contains function implementations. Libraries make it easy to
share code between multiple projects without needing to repeatedly compile the code.

In addition to the C standard library, Microchip provides some other libraries specific to
programming PIC32s. In Chapter 3, we learned about the header file xc.h which includes the
processor-specific header pic32mx795f512h.h, providing us with definitions for the SFRs. The
“archive” file for this library is processor.o.1 Microchip also provides a higher-level
framework called Harmony, which contains libraries and other source code to help you create
code that works with multiple PIC32 models; we use Harmony later in this book.

Libraries can also be distributed as source code: for example, the NU32 library consists of
<PIC32>/skeleton/NU32.h and <PIC32>/skeleton/NU32.c. To use libraries distributed as source
code you must include the library header files, compile your source code and the library code,
and link the resulting object files. You can link as many object files as you want, as long as
they do not declare the same symbols (e.g., two C files in one project cannot both have a main

function).

The NU32 library provides initialization and communication functions for the NU32 board.
The talkingPIC.c code in Chapter 1 uses the NU32 library, as will most of the examples
throughout the book. Let us revisit talkingPIC.c, and examine how it includes libraries during
the build process.

1 The library consists of only one object file so Microchip did not create an archive, which holds multiple object
files.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00004-4
Copyright © 2016 Elsevier Inc. All rights reserved. 59
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4.1 Talking PIC

In the previous chapter, to keep things as simple as possible, we built the executable from
simplePIC.c by directly issuing the xc32-gcc and xc32-bin2hex commands at the command
line. In this chapter, and all future chapters, we use the Makefile with make to build the
executable, as with talkingPIC.c in Chapter 1.

Recall from Chapter 1 that the Makefile compiles and links all .c files in the directory. Since
the project directory <PIC32>/talkingPIC contains NU32.c, this file was compiled along with
talkingPIC.c. To see how this process works, we examine the commands that make issues to
build your project.

Navigate to where you created talkingPIC in Chapter 1 (<PIC32>/talkingPIC). Issue the
following command:

> make clean

This command removes the files created when you originally built the project, so we can start
fresh. Next, issue the make command to build the project. Notice that it issues commands
similar to:

> xc32-gcc -g -O1 -x c -c -mprocessor=32MX795F512H -o talkingPIC.o talkingPIC.c
> xc32-gcc -g -O1 -x c -c -mprocessor=32MX795F512H -o NU32.o NU32.c
> xc32-gcc -mprocessor=32MX795F512H -o out.elf talkingPIC.o NU32.o

-Wl,--script="NU32bootloaded.ld",-Map=out.map
> xc32-bin2hex out.elf
> xc32-objdump -S out.elf > out.dis

The first two commands compile the C files necessary to create talkingPIC using the
following options:

• -g: Include debugging information, extra data added into the object file that helps us to
inspect the generated files later.

• -O1: Sets optimization level one. We discuss optimization in Chapter 5.
• -x c: Tells the compiler to treat input files as C language files. Typically the compiler

can detect the proper language based on the file extension, but we use this here to be
certain.

• -c: Compile and assemble only, do not link. The output of this command is just an object
(.o) file because the linker is not invoked to create an .elf file.

Thus the first two commands create two object files: talkingPIC.o, which contains the
main function, and NU32.o, which includes helper functions that talkingPIC.c calls. The
third command tells the compiler to invoke the linker, because all the “source” files
specified are actually object (.o) files. We do not invoke the linker xc32-ld directly because
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the compiler automatically tells the linker to link against some standard libraries that we
need. Notice that make always names its output out.elf, regardless of what you name the
source files.

Some additional options that make provides to the linker are specified after the Wl flag:

• --script: Tells the linker to use the NU32bootloaded.ld linker script.
• -Map: This option is passed to the linker and tells it to produce a map file, which details the

program’s memory usage. Chapter 5 explains map files.

The next command produces the hex file. The final line, xc32-objdump, disassembles out.elf,
saving the results in out.dis. This file contains interspersed C code and assembly instructions,
allowing you to inspect the assembly instructions that the compiler produces from your C code.

4.2 The NU32 Library

The NU32 library provides several functions that make programming the PIC32 easier. Not
only does talkingPIC.c use this library, but so do most examples in this book. The
<PIC32>/skeleton directory contains the NU32 library files, NU32.c and NU32.h; you copy this
directory to create a new project. The Makefile automatically links all files in the directory,
thus NU32.c will be included in your project. By writing #include "NU32.h" at the beginning of
the program, we can access the library. We list NU32.h below:

Code Sample 4.1 NU32.h. The NU32 Header File.

#ifndef NU32__H__
#define NU32__H__

#include <xc.h> // processor SFR definitions
#include <sys/attribs.h> // __ISR macro

#define NU32_LED1 LATFbits.LATF0 // LED1 on the NU32 board
#define NU32_LED2 LATFbits.LATF1 // LED2 on the NU32 board
#define NU32_USER PORTDbits.RD7 // USER button on the NU32 board
#define NU32_SYS_FREQ 80000000ul // 80 million Hz

void NU32_Startup(void);
void NU32_ReadUART3(char * string, int maxLength);
void NU32_WriteUART3(const char * string);

#endif // NU32__H__

The NU32__H__ include guard, consisting of the first two lines and the last line, ensure that
NU32.h is not included twice when compiling any single C file. The next two lines include
Microchip-provided headers that you would otherwise need to include in most programs. The
next three lines define aliases for SFRs that control the two LEDs (NU32_LED1 and NU32_LED2)

NU32.h
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and the USER button (NU32_USER) on the NU32 board. Using these aliases allows us to write
code like

int button = NU32_USER; // button now has 0 if pressed, 1 if not
NU32_LED1 = 0; // turn LED1 on
NU32_LED2 = 1; // turn LED2 off

which is easier than remembering which PIC32 pin is connected to these devices. The header
also defines the NU32_SYS_FREQ constant, which contains the frequency, in Hz, at which the
PIC32 operates. The rest of NU32.h consists of function prototypes, described below.

void NU32_Startup(void) Call NU32_Startup() at the beginning of main to configure the
PIC32 and the NU32 library. You will learn about the details of this function as the book
progresses, but here is an overview. First, the function configures the prefetch cache module
and flash wait cycles for maximum performance. Next, it configures the PIC32 for multi-vector
interrupt mode. Then it disables JTAG debugging so that the associated pins are available for
other functions. The pins RF0 and RF1 are then configured as digital outputs, to control LED1
and LED2. The function then configures UART3 so that the PIC32 can communicate with your
computer. Configuring UART3 allows you to use NU32_WriteUART3() and NU32_ReadUART3()
to send strings between the PIC32 and the computer. The communication occurs at 230,400
baud (bits per second), with eight data bits, no parity, one stop bit, and hardware flow control
with CTS/RTS. We discuss the details of UART communication in Chapter 11. Finally, it enables
interrupts (see Chapter 6). You may notice that these tasks, such as configuring the prefetch
cache, are also performed by the bootloader. We do this because NU32_Startup() also works
with standalone code, in which case these actions would be required, not redundant.
void NU32_ReadUART3(char * string, int maxLength) This function takes a character array
string and a maximum input length maxLength. It fills string with characters received from
the host via UART3 until a newline \n or carriage return \r is received. If the string exceeds
maxLength, the new characters wrap around to the beginning of the string. Note that this
function will not exit unless it receives a \n or a \r.
Example:

char message[100] = {}, str[100] = {};
int i = 0;
NU32_ReadUART3(message, 100);
sscanf(message, "%s %d", str, &i); // if message is expected to have a string and int

void NU32_WriteUART3(const char * string) This function sends a string over UART3. The
function does not complete until the transmission has finished. Thus, if the host computer is
not reading the UART and asserting flow control, the function will wait to send its data.
Example:

char msg[100] = {};
sprintf(msg,"The value is %d.\r\n",22);
NU32_WriteUART3(msg);

4.3 Bootloaded Programs

Throughout the rest of this book, all C files with a main function will begin with
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#include "NU32.h" // constants, funcs for startup and UART

and the first line of code (other than local variable definitions) in main will be

NU32_Startup();

While other C files and header files might include NU32.h to gain access to its contents and
function prototypes, no file except the C file with the main function should call
NU32_Startup().

For bootloaded programs, the configuration bits are set by the bootloader. However, NU32.c
includes the configuration bit settings. This provides a convenient reference and also allows
you to use the same code for both bootloaded and standalone applications (see Chapter 3.6).

4.4 An LCD Library

Dot matrix LCD screens are inexpensive portable devices that can display information to the
user. LCD screens often come with an integrated controller that simplifies communication
with the LCD. We now discuss a library that allows the PIC32 to control a Hitachi HD44780
(or compatible) LCD controller connected to a 16x2 LCD screen.2 You can purchase the
screen and controller as a pre-built module. The data sheet for this controller is available on
the book’s website.

The HD44780 has 16 pins: ground (GND), power (VCC), contrast (VO), backlight anode (A),
backlight cathode (K), register select (RS), read/write (RW), enable strobe (E), and 8 data pins
(D0-D7). We show the pins below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GND VCC VO RS R/W E D0 D1 D2 D3 D4 D5 D6 D7 A K

Connect the LCD as shown in Figure 4.1.

The LCD is powered by VCC (5 V) and GND. The resistors R1 and R2 determine the LCD’s
brightness and contrast, respectively. Good guesses for these values are R1 = 100 � and
R2 = 1000 �, but you should consult the data sheet and experiment. The remaining pins are
for communication. The R/W pin controls the communication direction. From the PIC32’s
perspective, R/W=0 means write and R/W=1 means read. The RS pin indicates whether the

2 Many LCD controllers are compatible with the HD44780. We used the Samsung KS006U for the examples in
this chapter.
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Figure 4.1
Circuit diagram for the LCD.

PIC32 is sending data (e.g., text) or a command (e.g., clear screen). The pins D0-D7 carry the
actual data between the devices; after setting data on these pins the PIC32 pulses the enable
strobe (E) signal to tell the LCD that the data is ready. For every pulse of E, the LCD receives
or sends eight bits of data simultaneously (in parallel). We delve into this parallel
communication scheme more deeply in Chapter 14, where we discuss the parallel master port
(PMP), the peripheral that coordinates the signals between the PIC32 and the LCD.

Now we present the LCD library by looking at its interface. The LCD controller has many
features, such as the ability to horizontally scroll text, display custom characters, display a
larger font on a single line, and display a cursor. The LCD library contains many functions
that enable access to these features; however, we only discuss the basics.

Code Sample 4.2 LCD.h. The LCD Library Header File.

#ifndef LCD_H
#define LCD_H
// LCD control library for Hitachi HD44780-compatible LCDs.

void LCD_Setup(void); // Initialize the LCD
void LCD_Clear(void); // Clear the screen, return to position (0,0)
void LCD_Move(int line, int col); // Move position to the given line and column
void LCD_WriteChar(char c); // Write a character at the current position
void LCD_WriteString(const char * string); // Write string starting at current position
void LCD_Home(void); // Move to (0,0) and reset any scrolling
void LCD_Entry(int id, int s); // Control display motion after sending a char
void LCD_Display(int d, int c, int b); // Turn display on/off and set cursor settings
void LCD_Shift(int sc, int rl); // Shift the position of the display
void LCD_Function(int n, int f); // Set number of lines (0,1) and the font size
void LCD_CustomChar(unsigned char val, const char data[7]); // Write custom char to CGRAM
void LCD_Write(int rs, unsigned char db70); // Write a command to the LCD
void LCD_CMove(unsigned char addr); // Move to the given address in CGRAM
unsigned char LCD_Read(int rs); // Read a value from the LCD
#endif

LCD.h
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LCD_Setup(void) Initializes the LCD, putting it into two-line mode and clearing the screen.
You should call this at the beginning of main(), after you call NU32_Startup().
LCD_Clear(void) Clears the screen and returns the cursor to line zero, column zero.
LCD_Move(int line, int col) Causes subsequent text to appear at the given line and column.
After calling LCD_Setup(), the LCD has two lines and 16 columns. Remember, just like C
arrays, numbering starts at zero!
LCD_WriteChar(unsigned char s) Write a character to the current cursor position. The cursor
position will then be incremented.
LCD_WriteString(const char * str) Displays the string, starting at the current position.
Remember, the LCD does not understand control characters like ’\n’; you must use LCD_Move
to access the second line.

The program LCDwrite.c uses both the NU32 and LCD libraries to accept a string from your
computer and write it to the LCD. To build the executable, copy the <PIC32>/skeleton

directory and then add the files LCDwrite.c, LCD.c, and LCD.h. After building, loading, and
running the program, open the terminal emulator. You can now converse with your LCD! The
terminal emulator will ask

What do you want to write?

If you respond Echo!!, the LCD prints

Echo!!_________
___Received_1___

where the underscores represent blank spaces. As you send more strings, the Received number
increments. The code is given below.

Code Sample 4.3 LCDwrite.c. Takes Input from the User and Prints It to the LCD
Screen.

#include "NU32.h" // constants, funcs for startup and UART
#include "LCD.h"

#define MSG_LEN 20

int main() {
char msg[MSG_LEN];
int nreceived = 1;

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

LCD_Setup();

while (1) {
NU32_WriteUART3("What do you want to write? ");

LCDwrite.c
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NU32_ReadUART3(msg, MSG_LEN); // get the response
LCD_Clear(); // clear LCD screen
LCD_Move(0,0);
LCD_WriteString(msg); // write msg at row 0 col 0
sprintf(msg, "Received %d", nreceived); // display how many messages received
++nreceived;
LCD_Move(1,3);
LCD_WriteString(msg); // write new msg at row 1 col 3
NU32_WriteUART3("\r\n");

}
return 0;

}

4.5 Microchip Libraries

Microchip provides several libraries for PIC32s. Understanding these libraries is rather
confusing (as we began to see in Chapter 3), partially because they are written to support many
PIC32 models, and partially because of the requirement to maintain backwards compatibility,
so that code written years ago does not become obsolete with new library releases.

Historically, people primarily programmed microcontrollers in assembly language, where the
interaction between the code and the hardware is quite direct: typically the CPU executes one
assembly instruction per clock cycle, without any hidden steps. For complex software
projects, however, assembly language becomes cumbersome because it is processor-specific
and lacks convenient higher-level constructs.

The C language, although still low-level, provides some portability and abstraction. Much of
your C code will work for different microcontrollers with different CPUs, provided you have a
compiler for the particular CPU. Still, if your code directly manipulates a particular SFR that
does not exist on another microcontroller model, portability is broken.

Microchip’s recent software release, Harmony addresses this issue by providing functions that
allow your code to work for many PIC32 models. In a simplified hierarchical view, the user’s
application may call Microchip middleware libraries, which provide a high level of abstraction
and keep the user somewhat insulated from the hardware details. The middleware libraries
may interface with lower-level device drivers. Device drivers may interface with still
lower-level peripheral libraries. These peripheral libraries then, finally, read or write the SFRs
associated with your particular PIC32.

Our philosophy is to stay close to the hardware, similar to assembly language programming,
but with the benefits of the easier higher-level C language. This approach allows you to
directly translate from the PIC32 hardware documentation to C code because the SFRs are
accessed from C using the same names as the hardware documentation. If unsure of how to
access an SFR from C code, open the processor-specific header file
<xc32dir>/<xc32ver>/pic32mx/proc/p32mx795f512h.h, search for the SFR name, and read the
declarations related to that SFR. Overall, we believe that this low-level approach to



Using Libraries 67

programming the PIC32 should provide you with a strong foundation in microcontroller
programming. Additionally, after programming using SFRs directly, you should be able to
understand the documentation for any Microchip-provided software and, if you desire, use it
in your own projects. Finally, we believe that programming at the SFR level translates better
to other microcontrollers: Harmony is Microchip-specific, but concepts such as SFRs are
widespread.

4.6 Your Libraries

Now that you have seen how some libraries function, you can create your own libraries. As
you program, try to think about the interconnections between parts of your code. If you find
that some functions are independent of other functions, you may want to code them in
separate .c and .h files. Splitting projects into multiple files that contain related functions
helps increase program modularity. By leaving some definitions out of the header file and
declaring functions and variables in your C code as static (meaning that they cannot be used
outside the C file), you can hide the implementation details of your code from other code.
Once you divide your code into independent modules, you can think about which of those
modules might be useful in other projects; these files can then be used as libraries.

4.7 Chapter Summary

• A library is a .a archive of .o object files and associated .h header files that give programs
access to function prototypes, constants, macros, data types, and variables associated with
the library. Libraries can also be distributed in source code form and need not be compiled
into archive format prior to being used; in this way they are much like code that you write
and split amongst multiple C files. We often call a “library” a .c file and its associated .h

file.
• For a project with multiple C files, each C file is compiled and assembled independently

with the aid of its included header files. Compiling a C file does not require the actual
definitions of helper functions in other helper C files; only the prototypes are needed. The
function calls are resolved to the proper virtual addresses when the multiple objects are
linked. If multiple object files have functions with the same name, and these functions are
not static (private) to the particular file, the linker will fail.

• The NU32 library provides functions for initializing the PIC32 and communicating with
the host computer. The LCD library provides functions to write to a 16×2 character dot
matrix LCD screen.

4.8 Exercises
1. Identify which functions, constants, and global variables in NU32.c are private to NU32.c

and which are meant to be used in other C files.
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2. You will create your own libraries.
a. Remove the comments from invest.c in Appendix A. Now modify it to work on the

NU32 using the NU32 library. You will need to replace all instances of printf and
scanf with appropriate combinations of sprintf, sscanf, NU32_ReadUART3 and
NU32_WriteUART3. Verify that you can provide data to the PIC32 with your keyboard
and display the results on your computer screen. Turn in your code for all the files,
with comments where you altered the input and output statements.

b. Split invest.c into two C files, main.c and helper.c, and one header file, helper.h.
helper.c contains all functions other than main. Which constants, function prototypes,
data type definitions, etc., should go in each file? Build your project and verify that it
works. For the safety of future helper library users, put an include guard in helper.h.
Turn in your code and a separate paragraph justifying your choice for where to put the
various definitions.

c. Break invest.c into three files: main.c, io.c, and calculate.c. Any function which
handles input or output should be in io.c. Think about which prototypes, data types,
etc., are needed for each C file and come up with a good choice of a set of header files
and how to include them. Again, for safety, use include guards in your header files.
Verify that your code works. Turn in your code and a separate paragraph justifying
your choice of header files.

3. When you try to build and run a program, you could run into (at least) three different
kinds of errors: a compiler error, a linker error, or a run-time error. A compiler or linker
error would prevent the building of an executable, while a run-time error would only
become evident when the program does not behave as expected. Say you are building a
program with no global variables and two C files, exactly one of which has a main()

function. For each of the three types of errors, give simple code that would lead to it.
4. Write a function, void LCD_ClearLine(int ln), that clears a single line of the LCD (either

line zero or line one). You can clear a line by writing enough space (’ ’) characters to
fill it.

5. Write a function, void LCD_print(const char *), that writes a string to the LCD and
interprets control characters. The function should start writing from position (0,0). A
carriage return (’\r’) should reset the cursor to the beginning of the line, and a line feed
(’\n’) should move the cursor to the other line.

Further Reading
32-Bit language tools libraries. (2012). Microchip Technology Inc.
HD44780U (LCD-II) dot matrix liquid crystal display controller/driver. HITACHI.
KS0066U 16COM/40SEG driver and controller for dot matrix LCD. Samsung.
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Time and Space

How long does your program take to execute? How much RAM does it require? How much
flash does it occupy? Fast processing speeds and plentiful memory have reduced the
importance of these questions for programmers of personal computers. After all, if a process
takes a few microseconds longer or uses a few extra megabytes of RAM, the user may not
notice the difference. On embedded systems, however, efficiency is important: processors are
relatively slow, control commands must execute in a timely manner, and RAM and flash are
precious resources. Additionally, specific timing requirements may be imposed on your
system due to physics: for example, you might need to provide commands to a motor at
regular, timely intervals to control it properly. If your code is too slow, it may fail to
accomplish its purpose.

Writing efficient code is a balancing act. Code can be time-efficient (runs fast), RAM-efficient
(uses less RAM), flash-efficient (has a smaller executable size), but perhaps most importantly,
programmer-time-efficient (minimizes the time needed to write and debug the code, or for a
future programmer to understand and modify it). Often these interests compete with each
other. Some XC32 compiler options reflect this trade-off, allowing you to explicitly make
space-time tradeoffs.1 For example, the compiler could “unroll” loops. If a loop is known to
be executed 20 times, for example, instead of using a small piece of code, incrementing a
counter, and checking to see if the count has reached 20, the compiler could simply write the
same block of code 20 times. This may save some execution time (no counter increments, no
conditional tests, no branches) at the expense of using more flash to store the program.

This chapter explains some of the tools available for understanding the time and space
consumed by your program. These tools will not only help you squeeze the most out of your
PIC32; by writing more efficient code you can often choose a less expensive microcontroller.
More importantly, though, you will better understand how your software works.

1 Some options are not available in the free version of the compiler.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00005-6
Copyright © 2016 Elsevier Inc. All rights reserved. 69
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5.1 Compiler Optimization

The XC32 compiler provides five levels of optimization. Their availability depends on
whether you have a license for the free version of the compiler, the Standard version, or the
Pro version:

Version Label Description
All O0 no optimization
All O1 level 1: attempts to reduce both code size and execution time

Standard, Pro O2 level 2: further reduces code size and execution time beyond O1
Pro O3 level 3: maximum optimization for speed
Pro Os maximum optimization for code size

The greater the optimization, the longer it takes the compiler to produce the assembly code.
You can learn more about compiler optimization in the XC32 C/C++ Compiler User’s Guide.

When you issue a make command with the Makefile from the quickstart code, you see that the
compiler is invoked with optimization level O1, using commands like

xc32-gcc -g -O1 -x c ...

-g -O1 -x c are compiler flags set in the variable CFLAGS in the Makefile. The -O1 means that
optimization level 1 is being requested.

In this chapter, we examine the assembly code that the compiler produces from your C code.
The mapping between your C code and the assembly code is relatively direct when no
optimization is used, but is less clear when optimization is invoked. (We will see an example
of this in Section 5.2.3.) To create clearer assembly code, we will find it useful to be able to
make files with no optimization. You can override the compilation flags by specifying the
CFLAGS Makefile variable at the command line:

> make CFLAGS="-g -x c"

or

> make write CFLAGS="-g -x c"

Alternatively, you could edit the Makefile line to remove the -O1 where CFLAGS is defined and
just use make and make write as usual.

In these examples, since no optimization level is specified, the default (no optimization) is
applied. Unless otherwise specified, all examples in this chapter assume that no optimization
is applied.
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5.2 Time and the Disassembly File

5.2.1 Timing Using a Stopwatch (or an Oscilloscope)

A direct way to time something is to toggle a digital output and look at that digital output
using an oscilloscope or stopwatch. For example:

... // digital output RF0 has been high for some time
LATFCLR = 0x1; // clear RF0 to 0 (turn on NU32 LED1)

... // some code you want to time
LATFSET = 0x1; // set RF0 to 1 (turn off LED1)

The time that RF0 is low (or LED1 is on) approximates the execution time of the code.

If the duration is too short to measure with your scope or stopwatch, you could modify the
code to something like

... // digital output RF0 has been high for some time
LATFCLR = 0x1; // clear RF0 to 0 (turn on NU32 LED1)
for (i=0; i<1000000; i++) { // modify 1,000,000 as appropriate for you

... // some code you want to time
}
LATFSET = 0x1; // set RF0 to 1 (turn off LED1)

Then you can divide the total time by 1,000,000.2 Remember, however, that the for loop
introduces additional overhead: for example, instructions to increment the counter and check
the inequality. We will examine the overhead in Section 5.2.3. If the code you want to time
uses only a few assembly instructions, then the time you actually measure will be dominated
by the implementation of the for loop.

5.2.2 Timing Using the Core Timer

A more accurate time can be obtained using a timer onboard the PIC32. The NU32’s PIC32
has six timers: a 32-bit core timer, associated with the MIPS32 CPU, and five 16-bit
peripheral timers. We can use the core timer for pure timing operations, leaving the much
more flexible peripheral timers available for other tasks (see Chapter 8). The core timer
increments once for every two ticks of SYSCLK. For a SYSCLK of 80 MHz, the timer
increments every 25 ns. Because the timer is 32 bits, it rolls over every 232 × 25 ns = 107 s.

2 If you use optimization in compiling your program, however, the compiler might recognize that you are not
doing anything with the results of the loop, and not generate assembly code for the loop at all! You can place a
_nop() macro in the loop to force it to remain. The _nop() inserts a nop assembly instruction that does
nothing but the compiler cannot remove it.
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The include file <cp0defs.h> contains two macros for accessing the core timer:
_CP0_GET_COUNT() and _CP0_SET_COUNT(val). When you include NU32.h, it includes <xc.h>
which, in turn, includes <cp0defs.h>, so you typically already have access to the required
macros. The macro _CP0_GET_COUNT() returns the current core timer count while
_CP0_SET_COUNT(val) sets the count to val.

unsigned int elapsedticks, elapsedns;

_CP0_SET_COUNT(0); // set the core timer counter to 0
... // some code you want to time

elapsedticks = _CP0_GET_COUNT(); // read the core timer
elapsedns = elapsedticks * 25; // duration in ns, for 80 MHz SYSCLK

If the core timer is being used to time different things, do not reset the counter to zero. Instead,
read the value initial at the start of the timing, then the value final at the end, and subtract.

unsigned int initial, final, elapsed;
initial = _CP0_GET_COUNT(); // read the initial time

... // some code you want to time
final = _CP0_GET_COUNT(); // the end duration
elapsed = final - initial; // total elapsed time, in ticks

The above code works even if final is less than initial due to a single timer rollover.3 If the
timer rolls over twice the answer will be incorrect, but your code will have taken longer than
107 s.

5.2.3 Disassembling Your Code

By looking at the assembly code the compiler produces, you can determine approximately
how long your code takes to execute. Fewer instructions mean faster code.

In Chapter 3.5, we claimed that the code

LATFINV = 0x3;

is more efficient than

LATFbits.LATF0 = !LATFbits.LATF0; LATFbits.LATF1 = !LATFbits.LATF1;

3 Unsigned arithmetic actually computes (a� b) mod 2N , where N is the number of bits in the type and �
represents an operator such as + or −. Thus, unsigned subtraction computes the distance between the two
numbers, modulo 2N .
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Let us examine that claim by looking at the assembly code of the following program. This
program delays by executing a for loop 50 million times, then toggles RF1 (LED2 on
the NU32).

Code Sample 5.1 timing.c. RF1 Toggles (LED2 on the NU32 Flashes).

#include "NU32.h" // constants, functions for startup and UART
#define DELAYTIME 50000000 // 50 million

void delay(void);
void toggleLight(void);

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

while(1) {
delay();
toggleLight();

}
}

void delay(void) {
int i;
for (i = 0; i < DELAYTIME; i++) {

; //do nothing
}

}

void toggleLight(void) {
LATFINV = 0x2; // invert LED2 (which is on port F1)
// LATFbits.LATF1 = !LATFbits.LATF1;

}

Put timing.c in a project directory together with the Makefile, NU32.c, NU32.h, and
NU32bootloaded.ld, and nothing else. Then make with no optimization, as described above.
The Makefile automatically disassembles the out.elf file to the file out.dis, but if you wanted
to do it manually, you could type

> xc32-objdump -S out.elf > out.dis

Open out.dis in a text editor. You will see a listing showing the assembly code corresponding
to out.hex. The file interleaves your C code and the assembly code it generated.4 Each
assembly line has the actual virtual address where the assembly instruction is placed in
memory, the 32-bit machine instruction, and the equivalent human-readable (if you know
assembly!) assembly code. Let us look at the segment of the listing corresponding to the
command LATFINV = 0x2. You should see something like

4 Sometimes the output from the xc32-objdump duplicates part of the C code, due to the way in which the C gets
translated into assembly.

timing.c
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LATFINV = 0x2; // invert the LED2 (which is on port F1)
9d00221c: 3c02bf88 lui v0,0xbf88
9d002220: 24030002 li v1,2
9d002224: ac43616c sw v1,24940(v0)

// LATFbits.LATF1 = !LATFbits.LATF1;

We see that the LATFINV = 0x2 instruction has expanded to three assembly statements. Without
going into detail, the li instruction stores the base-10 value 2 (or hex 0x2) in the CPU register
v1, which is then written by the sw command to the memory address corresponding to
LATFINV (v0, or 0xBF88, is bits 16-31 of the address, and the base-10 value 24940, or hex
0x616C, is bits 0-15).5

If instead we comment out the LATFINV = 0x2; command and replace it with the bit
manipulation version, we get the following disassembly:

// LATFINV = 0x2; // invert the LED2 (which is on port F1)
LATFbits.LATF1 = !LATFbits.LATF1;

9d00221c: 3c02bf88 lui v0,0xbf88
9d002220: 8c426160 lw v0,24928(v0)
9d002224: 30420002 andi v0,v0,0x2
9d002228: 2c420001 sltiu v0,v0,1
9d00222c: 304400ff andi a0,v0,0xff
9d002230: 3c03bf88 lui v1,0xbf88
9d002234: 90626160 lbu v0,24928(v1)
9d002238: 7c820844 ins v0,a0,0x1, 0x1
9d00223c: a0626160 sb v0,24928(v1)

The bit manipulation version requires nine assembly statements. Basically the value of LATF
is being copied to a CPU register, manipulated, then stored back in LATF. In contrast, with the
LATFINV syntax, there is no copying the values of LATFINV back and forth.

Although one method of manipulating the SFR bit appears three times slower than the other,
we do not yet know how many CPU cycles each consumes. Assembly instructions are
generally performed in a single clock cycle, but there is still the question of whether the CPU
is getting one instruction per cycle (due to the slow program flash.) We will investigate further
by manipulating the prefetch cache module in Section 5.2.4. For now, though, we time the 50
million iteration delay loop. Here is the disassembly for delay(), with comments added to the
right:

void delay(void) {
9d0021c0: 27bdfff0 addiu sp,sp,-16 // manipulate the stack pointer on ...
9d0021c4: afbe000c sw s8,12(sp) // ... entering the function (see text)
9d0021c8: 03a0f021 move s8,sp

int i;
for (i = 0; i < DELAYTIME; i++) {

9d0021cc: afc00000 sw zero,0(s8) // initialization of i in RAM to 0

5 You can refer to the MIPS32 documentation if interested.
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9d0021d0: 0b400879 j 9d0021e4 // jump to 9d0021e4 (skip adding 1 to i),
9d0021d4: 00000000 nop // but "no operation" executed first
9d0021d8: 8fc20000 lw v0,0(s8) // start of loop; load RAM i into

register v0
9d0021dc: 24420001 addiu v0,v0,1 // add 1 to v0 ...
9d0021e0: afc20000 sw v0,0(s8) // ... and store it to i in RAM
9d0021e4: 8fc30000 lw v1,0(s8) // load i into register v1
9d0021e8: 3c0202fa lui v0,0x2fa // load the upper 16 bits and ...
9d0021ec: 3442f080 ori v0,v0,0xf080 // ... lower 16 bits of 50,000,000

into v0
9d0021f0: 0062102a slt v0,v1,v0 // store "true" (1) in v0 if v1 < v0
9d0021f4: 1440fff8 bnez v0,9d0021d8 // if v0 not equal to 0, branch to top of

loop,
9d0021f8: 00000000 nop // but branch "delay slot" is executed

first
; //do nothing

}
}
9d0021fc: 03c0e821 move sp,s8 // manipulate the stack pointer on exiting
9d002200: 8fbe000c lw s8,12(sp)
9d002204: 27bd0010 addiu sp,sp,16
9d002208: 03e00008 jr ra // jump to return address ra stored by jal,
9d00220c: 00000000 nop // but jump delay slot is executed first

There are nine instructions in the delay loop itself, starting with lw v0,0(s8) and ending with
the next nop. When the LED turns on, these instructions are carried out 50 million times, and
then the LED turns off. (There are additional instructions to set up the loop and increment the
counter, but the duration of these is negligible compared to the 50 million executions of the
loop.) So if one instruction is executed per cycle, we would predict the light to stay on for
approximately 50 million × 9 instructions × 12.5 ns/instruction = 5.625 s. When we time by
a stopwatch, we get about 6.25 s, which implies ten CPU (SYSCLK) cycles per loop. So our
cache module has the CPU executing one assembly instruction almost every cycle.

In the code above there are two “jumps” (j for “jump” to the specified address and jr for
“jump register” to jump to the address in the return address register ra, which was set by the
calling function) and one “branch” (bnez for “branch if not equal to zero”). For MIPS32, the
command after a jump or branch is executed before the jump actually occurs. This next
command is said to be in the “delay slot” for the jump or branch. In all three delay slots in this
code is a nop command, which stands for “no operation.”

You might notice a few ways you could have written the assembly code for the delay function
to use fewer assembly commands. Certainly one of the advantages of coding directly in
assembly is that you have direct control of the processor instructions. The disadvantage, of
course, is that MIPS32 assembly is a much lower-level language than C, requiring
significantly more knowledge of MIPS32 from the programmer. Until you have already
invested a great deal of time learning the assembly language, programming in assembly fails
the “programmer-time-efficient” criterion! (Not to mention that delay() was designed to
waste time, so no need to minimize assembly lines!)
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You may have also noticed, in the disassembly of delay(), the manipulation of the stack
pointer (sp) upon entering and exiting the function. The stack is an area of RAM that holds
temporary local variables and parameters. When a function is called, its parameters and local
variables are “pushed” onto the stack. When the function exits, the local variables are
“popped” off of the stack by moving the stack pointer back to its original position before the
function was called. A stack overflow occurs if there is not enough RAM available for the
stack to hold all the local variables defined in currently-called functions. We will see the stack
again in Section 5.3.

The overhead due to passing parameters and manipulating the stack pointer upon entering and
exiting a function should not discourage you from writing modular code. Function call
overhead should only concern you when you need to squeeze a final few nanoseconds out of
your program execution time.

Finally, if you revert back to the LATFINV method for toggling the LED and compile timing.c

with optimization level 1 (the optimization flag -O1), you see that delay() is optimized to

void delay(void) {
9d00211c: 3c0202fa lui v0,0x2fa // load the upper 16 bits and ...
9d002120: 3442f080 ori v0,v0,0xf080 // ... lower 16 bits of 50,000,000 into v0
9d002124: 2442ffff addiu v0,v0,-1 // subtract 1 from v0

int i;
for (i = 0; i < DELAYTIME; i++) {

9d002128: 1440ffff bnez v0,9d002128 // if v0 !=0, branch back to the same line,
9d00212c: 2442ffff addiu v0,v0,-1 // but before branch, subtract 1 from v0

; //do nothing
}

}
9d002130: 03e00008 jr ra // jump to return address ra stored by jal
9d002134: 00000000 nop // no operation in jump delay slot

No local variables are stored in RAM, and there is no stack pointer manipulation upon
entering and exiting the function. The counter variable is simply stored in a CPU register. The
loop itself has only two lines instead of nine, and it has been designed to count down from
49,999,999 to zero instead of counting up. The branch delay slot is actually used to implement
the counter update instead of having a wasted nop cycle.

More importantly, however, delay() is never called by the assembly code for main in our -O1
optimized code! The compiler has recognized that delay() does not do anything.6 As a result,
the LED toggles so quickly that you cannot see it by eye. The LED just looks dim.7

6 A better optimization would not have produced code for delay at all, reducing flash usage.
7 To prevent delay() from being optimized away, we could have added a “no operation” _nop(); command
inside the delay loop. Or we could have accessed a volatile variable inside the loop. Or we could have polled
the core timer to implement a desired delay.
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5.2.4 The Prefetch Cache Module

In the previous section, we saw that our timing.c program executed approximately one
assembly instruction every clock cycle. We achieved this performance because the bootloader
(and NU32_Startup()) enabled the prefetch cache module and selected the minimum number
of CPU wait cycles for instructions loading from flash.8

We can disable the prefetch cache module to observe its effect on the program timing.c. The
prefetch cache module performs two primary tasks: (1) it keeps recent instructions in the
cache, ready if the CPU requests the instruction at that address again (allowing the cache to
completely store small loops); and, (2) for linear code, it retrieves instructions ahead of the
current execution location, so they are ready when needed (prefetch). We can disable each of
these functions separately, or we can disable both.

Let us start by disabling both. Modify timing.c in Code Sample 5.1 by adding

// Turn off function (1), storing recent instructions in cache
__builtin_mtc0(_CP0_CONFIG, _CP0_CONFIG_SELECT, 0xa4210582);
CHECONCLR = 0x30; // Turn off function (2), prefetch

right after NU32_Startup() in main. Everything else stays the same. The first line modifies a
CPU register, preventing the prefetch cache module from storing recent instructions in cache.
As for the second line, consulting the section on the prefetch cache module in the Reference
Manual, we see that bits 4 and 5 of the SFR CHECON determine whether instructions are
prefetched, and that clearing both bits disables predictive prefetch.

Recompiling timing.c with no compiler optimizations and rerunning, we find that the LED
stays on for approximately 17 s, compared to approximately 6.25 s before. This corresponds to
27 SYSCLK cycles per delay loop, which we saw earlier has nine assembly commands. These
numbers make sense—since the prefetch cache is completely disabled, it takes three CPU
cycles (one request cycle plus two wait cycles) for each instruction to get from flash to the CPU.

If we comment out the second line, so that (1) the cache of recent instructions is off but (2) the
prefetch is enabled, and rerun, we find that the LED stays on for about 8.1 s, or 13 SYSCLK
cycles per loop, a small penalty compared to our original performance of 10 cycles. The
prefetch is able to run ahead to grab future instructions, but it cannot run past the for loop
conditional statement, since it does not know the outcome of the test.

8 The number of “wait cycles” is the number of extra cycles the CPU must wait for instructions to finish loading
from flash if they are not cached. Since the PIC32’s flash operates at a maximum of 30 MHz and the CPU
operates at 80 MHz, the number of wait cycles is configured as two in the bootloader and NU32_Startup(), to
allow three total cycles for a flash instruction to load. Fewer wait cycles would result in errors and more wait
cycles would slow performance unnecessarily.
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Finally, if we comment out the first line but leave the second line uncommented, so that (1) the
cache of recent instructions is on but (2) the prefetch is disabled, we recover our original
performance of approximately 6.25 s or 10 SYSCLK cycles per loop. The reason is that the
entire loop is stored in the cache, so prefetch is not necessary.

5.2.5 Math

For real-time systems, it is often critical to perform mathematical operations as quickly as
possible. Mathematical expressions should be coded to minimize execution time. We will
delve into the speed of various math operations in the Exercises, but here are a few rules of
thumb for efficient math:

• There is no floating point unit on the PIC32MX, so all floating point math is carried out in
software. Integer math is much faster than floating point math. If speed is an issue,
perform all math as integer math, scaling the variables as necessary to maintain precision,
and only convert to floating point when needed.

• Floating point division is slower than multiplication. If you will be dividing by a fixed
value many times, consider taking the reciprocal of the value once and then using
multiplication thereafter.

• Functions such as trigonometric functions, logarithms, square roots, etc. in the math
library are generally slower to evaluate than arithmetic functions. Their use should be
minimized when speed is an issue.

• Partial results should be stored in variables for future use to avoid performing the same
computation multiple times.

5.3 Space and the Map File

The previous section focused on execution time. We now examine how much program
memory (flash) and data memory (RAM) our programs use.

The linker allocates virtual addresses in program flash for all program instructions, and virtual
addresses in data RAM for all global variables. The rest of RAM is allocated to the heap and
the stack.

The heap is memory set aside to hold dynamically allocated memory, as allocated by malloc and
calloc. These functions allow you to, for example, create an array whose length is determined
at runtime, rather than specifying a (possibly space-wasteful) fixed-sized array in advance.

The stack holds temporary local variables used by functions. When a function is called, space
on the stack is allocated for its local variables. When the function exits, the local variables are
discarded and the space is made available again by moving the stack pointer. The stack grows
“down” from the end of RAM—as local variables are “pushed” onto the stack, the stack
pointer address decreases, and when local variables are “popped” off the stack after exiting a
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function, the stack pointer address increases. (See the assembly listing for delay() in timing.c

in Section 5.2.3 for an example of moving the stack pointer when a function is called and
when it exits.)

If your program attempts to put too many local variables on the stack (stack overflow), the error
will not appear until run time. The linker does not catch this error because it does not explicitly
set aside space for temporary local variables; it assumes they will be handled by the stack.

To further examine how memory is allocated, we can ask the linker to create a “map” file
when it creates the .elf file. The map file indicates where instructions are placed in program
memory and where global variables are placed in data memory. Your Makefile automatically
creates an out.map file for you by including the -Map option to the linker command:

> xc32-gcc [details omitted] -Wl,--script="NU32bootloaded.ld",-Map="out.map"

The map file can be opened with a text editor.

Let us examine the out.map file for timing.c as shown in Code Sample 5.1, and compiled with
no optimizations. Here’s an edited portion of this rather large file:

Microchip PIC32 Memory-Usage Report

kseg0 Program-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.text 0x9d001e00 0x2b4 692 App’s exec code
.text.general_exception 0x9d0020b4 0xdc 220
.text 0x9d002190 0xac 172 App’s exec code
.text.main_entry 0x9d00223c 0x54 84
.text._bootstrap_except 0x9d002290 0x48 72
.text._general_exceptio 0x9d0022d8 0x48 72
.vector_default 0x9d002320 0x48 72
.text 0x9d002368 0x5c 92 App’s exec code
.dinit 0x9d0023c4 0x10 16
.text._on_reset 0x9d0023d4 0x8 8
.text._on_bootstrap 0x9d0023dc 0x8 8

Total kseg0_program_mem used : 0x5e4 1508 0.3% of 0x7e200

kseg0 Boot-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------

Total kseg0_boot_mem used : 0 0 <1% of 0x970

Exception-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.app_excpt 0x9d000180 0x10 16 General-Exception
.vector_0 0x9d000200 0x8 8 Interrupt Vector 0
.vector_1 0x9d000220 0x8 8 Interrupt Vector 1
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[[[ ... omitting long list of vectors ...]]]

.vector_51 0x9d000860 0x8 8 Interrupt Vector 51
Total exception_mem used : 0x1b0 432 10.5% of 0x1000

kseg1 Boot-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.reset 0xbd001970 0x1f4 500 Reset handler
.bev_excpt 0xbd001cf0 0x10 16 BEV-Exception

Total kseg1_boot_mem used : 0x204 516 44.2% of 0x490
--------------------------------------------------------------------------
Total Program Memory used : 0x998 2456 0.5% of 0x80000

--------------------------------------------------------------------------

The kseg0 program memory usage report tells us that 1508 (or 0x5e4) bytes are used for the
main part of our program. The first entry is denoted .text, and holds program instructions. It
is the largest single section, using 692 bytes, described as App’s exec code, and installed
starting at VA 0x9d001e00. Searching for this address in the map file, we see that this is the
code for NU32.o, the object code associated with the NU32 library.

Subsequent sections of kseg0 program memory (some also denoted as .text), are packed
tightly and in order of decreasing section size. The next section is .text.general_exception,
which corresponds to a routine that is called when the CPU encounters certain types of
“exceptions” (run-time errors). This code was linked from pic32mx/lib/libpic32.a. The next
.text section, also labeled App’s exec code, is the object code timing.o and is 172 (or 0xac)
bytes long. Searching for timing.o we find the following text:

.text 0x9d002190 0xac
.text 0x9d002190 0xac timing.o

0x9d002190 main
0x9d0021c0 delay
0x9d002210 toggleLight

Our functions main, delay, and toggleLight of timing.o are stored consecutively in memory.
The addresses agree with our disassembly file from Section 5.2.3.

Continuing, the kseg0 boot memory report indicates that no code is placed in this memory
region. The exception memory report indicates that placeholders for instructions corresponding
to interrupts occupy 432 bytes. Finally, the kseg1 boot memory report indicates that the C
runtime startup code installed reset functions that occupy 516 bytes. The address of the .reset

section is the address that the bootloader (already installed in the 12 KB boot flash) jumps to.

In all, 2456 bytes of the 512 KB of program memory are used.

Continuing further in the map file, we see



Time and Space 81

kseg1 Data-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------

Total kseg1_data_mem used : 0 0 <1% of 0x20000
--------------------------------------------------------------------------

Total Data Memory used : 0 0 <1% of 0x20000
--------------------------------------------------------------------------

Dynamic Data-Memory Reservation
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
heap 0xa0000008 0 0 Reserved for heap
stack 0xa0000020 0x1ffd8 131032 Reserved for stack

There are no global variables, so no kseg1 data memory is used. The heap size is zero, so
essentially all data memory is reserved for the stack.

Now let us modify our program by adding some useless global variables, just to see what
happens to the map file. Let us add the following lines just before main:

char my_cat_string[] = "2 cats!";
int my_int = 1;
char my_message_string[] = "Here’s a long message stored in a character array.";
char my_small_string[6], my_big_string[97];

Rebuilding and examining the new map file, we see the following for the data memory report:

kseg1 Data-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.sdata 0xa0000000 0xc 12 Small init data
.sbss 0xa000000c 0x6 6 Small uninit data
.bss 0xa0000014 0x64 100 Uninitialized data
.data 0xa0000078 0x34 52 Initialized data

Total kseg1_data_mem used : 0xaa 170 0.1% of 0x20000
--------------------------------------------------------------------------

Total Data Memory used : 0xaa 170 0.1% of 0x20000
--------------------------------------------------------------------------

Our global variables now occupy 170 bytes of data RAM. The global variables have been
placed in four different data memory sections, depending on whether the variable is small or
large (according to a command line option or xc32-gcc default) and whether it is initialized:

section name data type variables stored there
.sdata small initialized data my_cat_string, my_int
.sbss small uninitialized data my_small_string

.bss larger uninitialized data my_big_string

.data larger initialized data my_message_string
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Searching for the .sdata section further in the map file, we see

.sdata 0xa0000000 0xc timing.o
0xa0000000 my_cat_string
0xa0000008 my_int
0xa000000c _sdata_end = .

Even though the string my_cat_string uses only seven bytes, the variable my_int starts eight
bytes after the start of my_cat_string. This gap occurs because variables are aligned on
four-byte boundaries, meaning that their addresses are evenly divisible by four. Similarly, the
strings my_message_string, my_small_string, and my_big_string occupy memory to the next
four-byte boundary. Due to data alignment, a five-byte string uses the same amount of
memory as an eight-byte string.

Apart from the addition of these sections to the data memory usage report, we see that the
global variables reduce the data memory available for the stack, and the .dinit (global data
initialization, from the C runtime startup code) section of the kseg0 program memory report
has grown to 112 bytes, meaning that our total kseg0 program memory used is now 1604 bytes
instead of 1508.

Now let us change the definition of my_cat_string to put the qualifier const in front of it,
becoming

const char my_cat_string[] = "2 cats!";

This makes the array a constant; my_cat_string cannot be changed later in the program.
Global variables declared with the const qualifier are placed in flash rather than RAM (this
behavior is XC32 specific). Building again and examining the map file, we see the following
changes in kseg0 program memory usage

kseg0 Program-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------

[[[ .dinit has shrunk by 16 bytes; no initialization code for my_cat_string ]]]
.dinit 0x9d00223c 0x60 96

[[[ a new eight-byte section, .rodata, has been added to hold my_cat_string ]]]
.rodata 0x9d002424 0x8 8 Read-only const

and the following change in kseg1 data memory usage

kseg1 Data-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------

[[[ .sdata has shrunk since RAM no longer holds my_cat_string ]]]
.sdata 0xa0000000 0x4 4 Small init data
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The new section in kseg0 program memory, .rodata (read-only data), contains eight bytes to
hold my_cat_string. This constant character array is stored in flash memory at the address
0x9d002424. Correspondingly, the .sdata section in RAM (kseg1 data memory) has dropped
by eight bytes, since the eight-byte my_cat_string is no longer a variable that has to be stored
in RAM. Finally, the .dinit section in flash program memory has shrunk by 16 bytes, since
we no longer need assembly code to initialize my_cat_string.

One last change. Let us move the definition

const char my_cat_string[] = "2 cats!";

inside the main function, so that my_cat_string is now local to main. Building the program
again, we find only one change: one .text section in the kseg0 program memory report has
grown by 24 bytes.

kseg0 Program-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
[[[ this .text section has grown by 24 bytes ]]]

.text 0x9d002190 0xc4 196 App’s exec code

Examining the disassembly file, we see that six lines of assembly code were added in main that
copy the string to RAM. Since this is a local variable, the local copy uses the stack, and
therefore there is no memory allocated for it in the kseg1 data memory report.

Finally, we might wish to reserve some RAM for a heap for dynamic memory allocation using
malloc or calloc. By default, the heap size is set to zero. To set a nonzero heap size, we can
pass a linker option to xc32-gcc:

xc32-gcc [details omitted] -Wl,--script="NU32bootloaded.ld",-Map="out.map",--defsym=_
min_heap_size=4096

This defines a heap of 4 KB. After building, the map file shows

Dynamic Data-Memory Reservation
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
heap 0xa00000a8 0x1000 4096 Reserved for heap
stack 0xa00010c0 0x1ef30 126768 Reserved for stack

The heap is allocated at low RAM addresses, close after the global variables, starting in this
case at address 0xa00000a8. The stack occupies most of the rest of RAM.

For most embedded applications, there is no need to use a heap.
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5.4 Chapter Summary

• The CPU’s core timer increments once every two ticks of the SYSCLK, or every 25 ns for
an 80 MHz SYSCLK. The commands _CP0_SET_COUNT(0) and unsigned int dt =

_CP0_GET_COUNT() can be used to measure the execution time of the code in between to
within a few SYSCLK cycles.

• To generate a disassembly listing at the command line, use xc32-objdump -S

filename.elf > filename.dis.
• With the prefetch cache module fully enabled, your PIC32 should be able to execute an

assembly instruction nearly every cycle. The prefetch allows instructions to be fetched in
advance for linear code, but the prefetch cannot run past conditional statements. For small
loops, the entire loop can be stored in the cache.

• The linker assigns specific program flash VAs to all program instructions and data RAM
VAs to all global variables. The rest of RAM is allocated to the heap, for dynamic
memory allocation, and to the stack, for function parameters and temporary local
variables. The heap is zero bytes by default.

• A map file provides a detailed summary of memory usage. To generate a map file at the
command line, use the -Map option to the linker, e.g.,

xc32-gcc [details omitted] -Wl,-Map="out.map"

• Global variables can be initialized (assigned a value when they are defined) or
uninitialized. Initialized global variables are stored in RAM memory sections .data and
.sdata and uninitialized globals are stored in RAM memory sections .bss and .sbss.
Sections beginning with .s mean that the variables are “small.” When the program is
executed, initialized global variables are assigned their values by C runtime startup code,
and uninitialized global variables are set to zero.

• Global variables are packed tightly at the beginning of data RAM, 0xA0000000. The heap
comes immediately after. The stack begins at the high end of RAM and grows “down”
toward lower RAM addresses. Stack overflow occurs if the stack pointer attempts to move
into an area reserved for the heap or global variables.

5.5 Exercises

Unless otherwise specified, compile with no optimizations for all problems.

1. Describe two examples of how you can write code differently to either make it execute
faster or use less program memory.

2. Compile and run timing.c, Code Sample 5.2, with no optimizations (make CFLAGS="-g

-x c"). With a stopwatch, verify the time taken by the delay loop. Do your results agree
with Section 5.2.3?
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3. To write time-efficient code, it is important to understand that some mathematical
operations are faster than others. We will look at the disassembly of code that performs
simple arithmetic operations on different data types. Create a program with the following
local variables in main:

char c1=5, c2=6, c3;
int i1=5, i2=6, i3;
long long int j1=5, j2=6, j3;
float f1=1.01, f2=2.02, f3;
long double d1=1.01, d2=2.02, d3;

Now write code that performs add, subtract, multiply, and divide for each of the five data
types, i.e., for chars:

c3 = c1+c2;
c3 = c1-c2;
c3 = c1*c2;
c3 = c1/c2;

Build the program with no optimization and look at the disassembly. For each of the
statements, you will notice that some of the assembly code involves simply loading the
variables from RAM into CPU registers and storing the result (also in a register) back to
RAM. Also, while some of the statements are completed by a few assembly commands
in sequence, others result in a jump to a software subroutine to complete the calculation.
(These subroutines are provided with our C installation and included in the linking
process.) Answer the following questions.
a. Which combinations of data types and arithmetic functions result in a jump to a

subroutine? From your disassembly file, copy the C statement and the assembly
commands it expands to (including the jump) for one example.

b. For those statements that do not result in a jump to a subroutine, which
combination(s) of data types and arithmetic functions result in the fewest assembly
commands? From your disassembly, copy the C statement and its assembly
commands for one of these examples. Is the smallest data type, char, involved in it?
If not, what is the purpose of extra assembly command(s) for the char data type vs.
the int data type? (Hint: the assembly command ANDI takes the bitwise AND of the
second argument with the third argument, a constant, and stores the result in the first
argument. Or you may wish to look up a MIPS32 assembly instruction reference.)

c. Fill in the following table. Each cell should have two numbers: the number of
assembly commands for the specified operation and data type, and the ratio of this
number (greater than or equal to 1.0) to the smallest number of assembly commands
in the table. For example, if addition of two ints takes four assembly commands, and
this is the fewest in the table, then the entry in that cell would be 1.0 (4). This has
been filled in below, but you should change it if you get a different result. If a
statement results in a jump to a subroutine, write J in that cell.
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char int long long float long double
+ 1.0 (4)
−
∗
/

d. From the disassembly, find out the name of any math subroutine that has been added
to your assembly code. Now create a map file of the program. Where are the math
subroutines installed in virtual memory? Approximately how much program
memory is used by each of the subroutines? You can use evidence from the
disassembly file and/or the map file. (Hint: You can search backward from the end of
your map file for the name of any math subroutines.)

4. Let us look at the assembly code for bit manipulation. Create a program with the
following local variables:

unsigned int u1=33, u2=17, u3;

and look at the assembly commands for the following statements:

u3 = u1 & u2; // bitwise AND
u3 = u1 | u2; // bitwise OR
u3 = u2 << 4; // shift left 4 spaces, or multiply by 2ˆ4 = 16
u3 = u1 >> 3; // shift right 3 spaces, or divide by 2ˆ3 = 8

How many commands does each use? For unsigned integers, bit-shifting left and
right make for computationally efficient multiplies and divides, respectively, by powers
of 2.

5. Use the core timer to calculate a table similar to that in Exercise 3, except with entries
corresponding to the actual execution time in terms of SYSCLK cycles. So if a
calculation takes 15 cycles, and the fastest calculation is 10 cycles, the entry would be
1.5 (15). This table should contain all 20 entries, even for those that jump to subroutines.
(Note: subroutines often have conditional statements, meaning that the calculation could
terminate faster for some operands than for others. You can report the results for the
variable values given in Exercise 3.)
To minimize uncertainty due to the setup and reading time of the core timer, and the fact
that the timer only increments once every two SYSCLK cycles, each math statement
could be repeated ten or more times (no loops) between setting the timer to zero and
reading the timer. The average number of cycles, rounded down, should be the number
of cycles for each statement. Use the NU32 communication routines, or any other
communication routines, to report the answers back to your computer.

6. Certain math library functions can take quite a bit longer to execute than simple
arithmetic functions. Examples include trigonometric functions, logarithms, square
roots, etc. Make a program with the following local variables:
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float f1=2.07, f2; // four bytes for each float
long double d1=2.07, d2; // eight bytes for each long double

Also be sure to put #include <math.h> at the top of your program to make the math
function prototypes available.
a. Using methods similar to those in Exercise 5, measure how long it takes to perform

each of f2 = cosf(f1), f2 = sqrtf(f1), d2 = cos(d1), and d2 = sqrt(d1).
b. Copy and paste the disassembly from a f2 = cosf(f1) statement and a d2 = cos(d1)

statement into your solution set and compare them. Based on the comparison of the
assembly codes, comment on the advantages and disadvantages of using the
eight-byte long double floating point representation compared to the four-byte float
representation when you compute a cosine with the PIC32 compiler.

c. Make a map file for this program, and search for the references to the math library
libm.a in the map file. There are several libm.a files in your C installation, but which
one was used by the linker when you built your program? Give the directory.

7. Explain what stack overflow is, and give a short code snippet (not a full program) that
would result in stack overflow on your PIC32.

8. In the map file of the original timing.c program, there are several App’s exec code, one
corresponding to timing.o. Explain briefly what each of the others are for. Provide
evidence for your answer from the map file.

9. Create a map file for simplePIC.c from Chapter 3. (a) How many bytes does simplePIC.o
use? (b) Where are the functions main and delay placed in virtual memory? Are
instructions at these locations cacheable? (c) Search the map file for the .reset section.
Where is it in virtual memory? Is it consistent with your NU32bootloaded.ld linker file?
(d) Now augment the program by defining short int, long int, long long int, float,
double, and long double global variables. Provide evidence from the map file indicating
how much memory each data type uses.

10. Assume your program defines a global int array int glob[5000]. Now what is the
maximum size of an array of ints that you can define as a local variable?

11. Provide global variable definitions (not an entire program) so that the map file has data
sections .sdata of 16 bytes, .sbss of 24 bytes, .data of 0 bytes, and .bss of 200 bytes.

12. If you define a global variable and you want to set its initial value, is it “better” to
initialize it when the variable is defined or to initialize it in a function? Explain any pros
and cons.

13. The program readVA.c (Code Sample 5.2) prints out the contents of the 4-byte word at
any virtual address, provided the address is word-aligned (i.e., evenly divisible by four).
This allows you to inspect anything in the virtual memory map (Chapter 3), including the
representations of variables in data RAM, program instructions in flash or boot flash,
SFRs, and configuration bits. You can use code like this in conjunction with the map and
disassembly files to better understand the code produced by a build. Here’s a sample of
the program’s output to the terminal:
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Enter the start VA (e.g., bd001970) and # of 32-bit words to print.
Listing 4 32-bit words starting from address bd001970.
ADDRESS CONTENTS
bd001970 0f40065e
bd001974 00000000
bd001978 401a6000
bd00197c 7f5a04c0

a. Build and run the program. Check its operation by consulting your disassembly file
and confirming that 32-bit program instructions (in flash) listed there match the
output of the program. Confirm that you get the same results whether you reference
the same physical memory address using a cacheable or noncacheable virtual
address. What happens if you specify a virtual address that is not divisible by four?

b. Examine the map file. At what virtual address in RAM is the variable val stored?
Confirm its value using the program.

c. The values of the configuration bits (the four words DEVCFG0 to DEVCFG3, see
Chapter 2.1.4) were set by the preinstalled bootloader. Use the program to print the
values of these device configuration registers.

d. Consulting the map or disassembly file, what is the address of the last instruction in
the program? Use the program to provide a listing of the instructions from a few
addresses before to a few addresses after the last instruction. Addresses that do not
have an instruction were erased when the program was loaded by the bootloader, but
no instructions were written there. Knowing that, and by looking at your program’s
output, what value does an erased flash byte have?

e. Modify the program so the unsigned ints are defined as local to main, so that they
are on the stack. Since val is no longer given a specific address by the linker, you do
not find it in the map file. Use your program to find the address in RAM where val is
stored.

Code Sample 5.2 readVA.c. Code to Inspect the Virtual Memory Map.

#include "NU32.h"
#define MSGLEN 100

// val is an initialized global; you can find it in the memory map with this program
char msg[MSGLEN];
unsigned int *addr;
unsigned int k = 0, nwords = 0, val = 0xf01dab1e;

int main(void) {

NU32_Startup();
while (1) {
sprintf(msg, "Enter the start VA (e.g., bd001970) and # of 32-bit words to print: ");
NU32_WriteUART3(msg);

NU32_ReadUART3(msg,MSGLEN);
sscanf(msg,"%x %d",&addr, &nwords);

readVA.c
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sprintf(msg,"\r\nListing %d 32-bit words starting from VA %08x.\r\n",nwords,addr);
NU32_WriteUART3(msg);

sprintf(msg," ADDRESS CONTENTS\r\n");
NU32_WriteUART3(msg);

for (k = 0; k < nwords; k++) {
sprintf(msg,"%08x %08x\r\n", addr,*addr); // *addr is the 32 bits starting at addr
NU32_WriteUART3(msg);
++addr; // addr is an unsigned int ptr so it increments by 4 bytes

}
}
return 0;

}

// handle cpu exceptions, such as trying to read from a bad memory location
void _general_exception_handler(unsigned cause, unsigned status)
{
unsigned int exccode = (cause & 0x3C) >> 2; // the exccode is reason for the exception
// note: see PIC32 Family Reference Manual Section 03 CPU M4K Core for details
// Look for the Cause register and the Status Register
NU32_WriteUART3("Reset the PIC32 due to general exception.\r\n");
sprintf(msg,"cause 0x%08x (EXCCODE = 0x%02x), status 0x%08x\r\n",cause,exccode,status);
NU32_WriteUART3(msg);
while(1) {

;
}

}

Further Reading
MIPS32 M4K processor core software user’s manual (2.03 ed.). (2008). MIPS Technologies.
PIC32 family reference manual. Section 04: Prefectch cache module. (2011). Microchip Technology Inc.



CHAPTER 6

Interrupts

Interrupts allow the PIC32 to respond to important events, even when performing other tasks.
For example, perhaps the PIC32 is in the midst of a time-consuming calculation when the user
presses a button. If software waited for the calculation to complete before checking the button
state it could introduce a delay or even miss the button press altogether. To avoid this fate, we
can have the button press generate an interrupt, or interrupt request (IRQ). When an IRQ
occurs, the CPU pauses its current computation and jumps to a special routine called an
interrupt service routine (ISR). Once the ISR has completed, the CPU returns to its original
task. Interrupts appear frequently in real-time embedded control systems, and can arise from
many different events. This chapter describes how the PIC32 handles interrupts and how you
can implement your own ISRs.

6.1 Overview

Interrupts can be generated by the processor, peripherals, and external inputs. Example events
include

• a digital input changing its value,
• information arriving on a communication port,
• the completion of a task that a peripheral was executing,
• the elapsing of a specified amount of time.

For example, to guarantee performance in real-time control applications, sensors must be read
and new control signals calculated at a known fixed rate. For a robot arm, a common control
loop frequency is 1 kHz. So we could configure one of the PIC32’s timers to roll over every
80,000 ticks (or 1ms at 12.5 ns per tick). This rollover event generates an interrupt that calls
the feedback control ISR, which reads sensors and produces output. In this case, we would
have to ensure that the control ISR always executes in less than 1 ms (you could measure the
time using the core timer).

Pretend that the PIC32 is controlling a robot arm: a control loop running in a timer ISR holds
the arm at a specified position. When the PIC32 receives data over the UART, a
communication interrupt triggers another ISR, which parses the data and sets a new desired

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00006-8
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angle for the robot arm. What happens if the PIC32 is executing the control ISR when a
communication interrupt occurs? Alternatively, what happens if the PIC32 is executing the
communication ISR and a control interrupt occurs? Each interrupt has a configurable priority
that we can use to decide which ISR receives precedence. If a high priority interrupt occurs
while a low priority ISR is executing, the CPU will jump to the high priority ISR, complete it,
and then return to finish the low priority ISR. If a low priority interrupt occurs while a high
priority ISR is executing, the low priority ISR remains pending until the high priority ISR
finishes executing. When the high priority ISR finishes, the CPU jumps to the low priority
ISR. Mainline code (i.e., any code that is not in an ISR) has the lowest priority and will
usually be preempted by any interrupt.1

So, for our robot arm example, what should the relative priorities of the interrupts be?
Assuming that communication is slow and lacks precise timing requirements, we should give
the control loop (timer) ISR higher priority than the communication (UART) ISR. This
scheme would prevent the control loop ISR from being preempted, helping to ensure the
stability of the robot arm. We would then have to ensure that the control ISR executes fast
enough to allow time for communication and other processes.

Every time an interrupt is generated, the CPU must save the contents of the internal CPU
registers, called the “context,” to the stack (data RAM). It then uses the registers while running
the ISR. After the ISR completes, it copies the context from RAM back to its registers,
restoring the previous CPU state and allowing it to continue where it left off before the
interrupt. The copying of register data back and forth between the registers and RAM is called
“context save and restore.”

6.2 Details

The address of an ISR in virtual memory is determined by the interrupt vector associated with
the IRQ. The CPU of the PIC32MX supports up to 64 unique interrupt vectors (and therefore
64 ISRs). For timing.c in Chapter 5.3, the virtual addresses of the interrupt vectors can be
seen in this edited exception memory listing from the map file (an interrupt is also known as
an “exception”):

.vector_0 0x9d000200 0x8 8 Interrupt Vector 0

.vector_1 0x9d000220 0x8 8 Interrupt Vector 1

[[[ ... snipping long list of vectors ...]]]

.vector_51 0x9d000860 0x8 8 Interrupt Vector 51

1 Interrupts can have the same priority as mainline code, in which case they will never execute, even when enabled.
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If an ISR had been written for the core timer (interrupt vector 0), the code at 0x9D000200
would contain a jump to the location in program memory that actually holds the ISR.

Although the PIC32MX can have only 64 interrupt vectors, it has up to 96 events (or IRQs)
that generate an interrupt. Therefore, some of the IRQs share the same interrupt vector
and ISR.

Before interrupts can be used, the CPU has to be enabled to process them in either “single
vector mode” or “multi-vector mode.” In single vector mode, all interrupts jump to the same
ISR. This is the default setting on reset of the PIC32. In multi-vector mode, different interrupt
vectors are used for different IRQs. We use multi-vector mode, which is set by the bootloader
(and NU32_Startup()).

With interrupts enabled, the CPU jumps to an ISR when three conditions are satisfied: (1) the
specific IRQ has been enabled by setting a bit to 1 in the SFR IECx (one of three Interrupt
Enable Control SFRs, with x equal to 0, 1, or 2); (2) an event causes a 1 to be written to the
corresponding bit of the SFR IFSx (Interrupt Flag Status); and (3) the priority of the interrupt
vector, as represented in the SFR IPCy (one of 16 Interrupt Priority Control SFRs, y = 0 to 15),
is greater than the current priority of the CPU. If the first two conditions are satisfied, but not
the third, the interrupt waits until the CPU’s current priority drops.

The “x” in the IECx and IFSx SFRs above can be 0, 1, or 2, corresponding to (3 SFRs)× (32
bits/SFR) = 96 interrupt sources. The “y” in IPCy takes values 0-15, and each of the IPCy
registers contains the priority level for four different interrupt vectors, i.e., (16 SFRs)× (four
vectors per register) = 64 interrupt vectors. The priority level for each of the 64 vectors is
represented by five bits: three indicating the priority (taking values 0 to 7, or 0b000 to 0b111;
an interrupt with priority of 0 is effectively disabled) and two bits indicating the subpriority
(taking values 0 to 3). Thus each IPCy has 20 relevant bits—five for each of the four interrupt
vectors—and 12 unused bits. For easier access from your code, you can access these SFRs
using the structures IECxbits, IFSxbits, and IPCybits.

The list of interrupt sources (IRQs) and their corresponding bit locations in the IECx and IFSx
SFRs, as well as the bit locations in IPCy of their corresponding interrupt vectors, are given in
Table 6.1, reproduced from the Interrupts section of the Data Sheet. Consulting Table 6.1, we
see that the change notification’s (CN) interrupt has x = 1 (for the IRQ) and y = 6 (for the
vector), so information about this interrupt is stored in IFS1, IEC1, and IPC6. Specifically,
IEC1〈0〉 is its interrupt enable bit, IFS1〈0〉 is its interrupt flag status bit, IPC6〈20:18〉 are the
three priority bits for its interrupt vector, and IPC6〈17:16〉 are the two subpriority bits.

As mentioned earlier, some IRQs share the same vector. For example, IRQs 26, 27, and 28,
each corresponding to UART1 events, all share vector number 24. Priorities and subpriorities
are associated with interrupt vectors, not IRQs.
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Table 6.1: Interrupt IRQ, vector, and bit location

Interrupt Sourcea IRQ Vector Interrupt Bit Location

Number Number Flag Enable Priority Sub-Priority

Highest Natural Order Priority

CT—Core Timer Interrupt 0 0 IFS0<0> IEC0<0> IPC0<4:2> IPC0<1:0>

CS0—Core Software Interrupt 0 1 1 IFS0<1> IEC0<1> IPC0<12:10> IPC0<9:8>

CS1—Core Software Interrupt 1 2 2 IFS0<2> IEC0<2> IPC0<20:18> IPC0<17:16>

INTO—External Interrupt 0 3 3 IFS0<3> IEC0<3> IPC0<28:26> IPC0<25:24>

T1—Timer1 4 4 IFS0<4> IEC0<4> IPC1<4:2> IPC1<1:0>

IC1—Input Capture 1 5 5 IFS0<5> IEC0<5> IPC1<12:10> IPC1<9:8>

OC1—Output Compare 1 6 6 IFS0<6> IEC0<6> IPC1<20:18> IPC1<17:16>

INT1—External Interrupt 1 7 7 IFS0<7> IEC0<7> IPC1<28:26> IPC1<25:24>

T2—Timer2 8 8 IFS0<8> IEC0<8> IPC2<4:2> IPC2<1:0>

IC2—Input Capture 2 9 9 IFS0<9> IEC0<9> IPC2<12:10> IPC2<9:8>

OC2—Output Compare 2 10 10 IFS0<10> IEC0<10> IPC2<20:18> IPC2<17:16>

INT2—External Interrupt 2 11 11 IFS0<11> IEC0<11> IPC2<28:26> IPC2<25:24>

T3—Timer3 12 12 IFS0<12> IEC0<12> IPC3<4:2> IPC3<1:0>

IC3—Input Capture 3 13 13 IFS0<13> IEC0<13> IPC3<12:10> IPC3<9:8>

OC3—Output Compare 3 14 14 IFS0<14> IEC0<14> IPC3<20:18> IPC3<17:16>

INT3—External Interrupt 3 15 15 IFS0<15> IEC0<15> IPC3<28:26> IPC3<25:24>

T4—Timer4 16 16 IFS0<16> IEC0<16> IPC4<4:2> IPC4<1:0>

IC4—Input Capture 4 17 17 IFS0<17> IEC0<17> IPC4<12:10> IPC4<9:8>

OC4—Output Compare 4 18 18 IFS0<18> IEC0<18> IPC4<20:18> IPC4<17:16>

INT4—External Interrupt 4 19 19 IFS0<19> IEC0<19> IPC4<28:26> IPC4<25:24>

T5—Timer5 20 20 IFS0<20> IEC0<20> IPC5<4:2> IPC5<1:0>

IC5—Input Capture 5 21 21 IFS0<21> IEC0<21> IPC5<12:10> IPC5<9:8>

OC5—Output Compare 5 22 22 IFS0<22> IEC0<22> IPC5<20:18> IPC5<17:16>

SPI1E—SPI1 Fault 23 23 IFS0<23> IEC0<23> IPC5<28:26> IPC5<25:24>

SPI1RX—SPI1 Receive Done 24 23 IFS0<24> IEC0<24> IPC5<28:26> IPC5<25:24>

SPI1TX—SPI1 Transfer Done 25 23 IFS0<25> IEC0<25> IPC5<28:26> IPC5<25:24>

U1E—UART1 Error
26 24 IFS0<26> IEC0<26> IPC6<4:2> IPC6<1:0>SPI3E—SPI3 Fault

I2C3B—I2C3 Bus Collision Event
U1RX—UART1 Receiver

27 24 IFS0<27> IEC0<27> IPC6<4:2> IPC6<1:0>SPI3RX—SPI3 Receive Done
I2C3S—I2C3 Slave Event
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U1TX—UART1 Transmitter
28 24 IFS0<28> IEC0<28> IPC6<4:2> IPC6<1:0>SPI3TX—SPI3 Transfer Done

I2C3M—I2C3 Master Event
I2C1B—I2C1 Bus Collision Event 29 25 IFS0<29> IEC0<29> IPC6<12:10> IPC6<9:8>

I2C1S—I2C1 Slave Event 30 25 IFS0<30> IEC0<30> IPC6<12:10> IPC6<9:8>

I2C1M—I2C1 Master Event 31 25 IFS0<31> IEC0<31> IPC6<12:10> IPC6<9:8>

CN—Input Change Interrupt 32 26 IFS1<0> IEC1<0> IPC6<20:18> IPC6<17:16>

AD1—ADC1 Convert Done 33 27 IFS1<1> IEC1<1> IPC6<28:26> IPC6<25:24>

PMP—Parallel Master Port 34 28 IFS1<2> IEC1<2> IPC7<4:2> IPC7<1:0>

CMP1—Comparator Interrupt 35 29 IFS1<3> IEC1<3> IPC7<12:10> IPC7<9:8>

CMP2—Comparator Interrupt 36 30 IFS1<4> IEC1<4> IPC7<20:18> IPC7<17:16>

U3E—UART2A Error
37 31 IFS1<5> IEC1<5> IPC7<28:26> IPC7<25:24>SPI2E—SPI2 Fault

I2C4B—I2C4 Bus Collision Event
U3RX—UART2A Receiver

38 31 IFS1<6> IEC1<6> IPC7<28:26> IPC7<25:24>SPI2RX—SPI2 Receive Done
I2C4S—I2C4 Slave Event
U3TX—UART2A Transmitter

39 31 IFS1<7> IEC1<7> IPC7<28:26> IPC7<25:24>SPI2TX—SPI2 Transfer Done
IC4M—I2C4 Master Event
U2E—UART3A Error

40 32 IFS1<8> IEC1<8> IPC8<4:2> IPC8<1:0>SPI4E—SPI4 Fault
I2C5B—I2C5 Bus Collision Event
U2RX—UART3A Receiver

41 32 IFS1<9> IEC1<9> IPC8<4:2> IPC8<1:0>SPI4RX—SPI4 Receive Done
I2C5S—I2C5 Slave Event
U2TX—UART3A Transmitter

42 32 IFS1<10> IEC1<10> IPC8<4:2> IPC8<1:0>SPI4TX—SPI4 Transfer Done
IC5M—I2C5 Master Event
I2C2B—I2C2 Bus Collision Event 43 33 IFS1<11> IEC1<11> IPC8<12:10> IPC8<9:8>

I2C2S—I2C2 Slave Event 44 33 IFS1<12> IEC1<12> IPC8<12:10> IPC8<9:8>

I2C2M—I2C2 Master Event 45 33 IFS1<13> IEC1<13> IPC8<12:10> IPC8<9:8>

FSCM—Fail-Safe Clock Monitor 46 34 IFS1<14> IEC1<14> IPC8<20:18> IPC8<17:16>

RTCC—Real-Time Clock and Calendar 47 35 IFS1<15> IEC1<15> IPC8<28:26> IPC8<25:24>

DMA0—DMA Channel 0 48 36 IFS1<16> IEC1<16> IPC9<4:2> IPC9<1:0>

DMA1—DMA Channel 1 49 37 IFS1<17> IEC1<17> IPC9<12:10> IPC9<9:8>

Continued
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Table 6.1: (b) Interrupt IRQ, vector, and bit location – Cont’d

Interrupt Sourcea IRQ Vector Interrupt Bit Location

Number Number Flag Enable Priority Sub-Priority

Highest Natural Order Priority

DMA2—DMA Channel 2 50 38 IFS1<18> IEC1<18> IPC9<20:18> IPC9<17:16>

DMA3—DMA Channel 3 51 39 IFS1<19> IEC1<19> IPC9<28:26> IPC9<25:24>

DMA4—DMA Channel 4 52 40 IFS1<20> IEC1<20> IPC10<4:2> IPC10<1:0>

DMA5—DMA Channel 5 53 41 IFS1<21> IEC1<21> IPC10<12:10> IPC10<9:8>

DMA6—DMA Channel 6 54 42 IFS1<22> IEC1<22> IPC10<20:18> IPC10<17:16>

DMA7—DMA Channel 7 55 43 IFS1<23> IEC1<23> IPC10<28:26> IPC10<25:24>

FCE—Flash Control Event 56 44 IFS1<24> IEC1<24> IPC11<4:2> IPC11<1:0>

USB—USB Interrupt 57 45 IFS1<25> IEC1<25> IPC11<12:10> IPC11<9:8>

CAN1—Control Area Network 1 58 46 IFS1<26> IEC1<26> IPC11<20:18> IPC11<17:16>

CAN2—Control Area Network 2 59 47 IFS1<27> IEC1<27> IPC11<28:26> IPC11<25:24>

ETH—Ethernet Interrupt 60 48 IFS1<28> IEC1<28> IPC12<4:2> IPC12<1:0>

IC1E—Input Capture 1 Error 61 5 IFS1<29> IEC1<29> IPC1<12:10> IPC1<9:8>

IC2E—Input Capture 2 Error 62 9 IFS1<30> IEC1<30> IPC2<12:10> IPC2<9:8>

IC3E—Input Capture 3 Error 63 13 IFS1<31> IEC1<31> IPC3<12:10> IPC3<9:8>

IC4E—Input Capture 4 Error 64 17 IFS2<0> IEC2<0> IPC4<12:10> IPC4<9:8>

IC4E—Input Capture 5 Error 65 21 IFS2<1> IEC2<1> IPC5<12:10> IPC5<9:8>

PMPE—Parallel Master Port Error 66 28 IFS2<2> IEC2<2> IPC7<4:2> IPC7<1:0>

U4E—UART4 Error 67 49 IFS2<3> IEC2<3> IPC12<12:10> IPC12<9:8>

U4RX—UART4 Receiver 68 49 IFS2<4> IEC2<4> IPC12<12:10> IPC12<9:8>

U4TX—UART4 Transmitter 69 49 IFS2<5> IEC2<5> IPC12<12:10> IPC12<9:8>

U6E—UART6 Error 70 50 IFS2<6> IEC2<6> IPC12<20:18> IPC12<17:16>

U6RX—UART6 Receiver 71 50 IFS2<7> IEC2<7> IPC12<20:18> IPC12<17:16>

U6TX—UART6 Transmitter 72 50 IFS2<8> IEC2<8> IPC12<20:18> IPC12<17:16>

U5E—UART5 Error 73 51 IFS2<9> IEC2<9> IPC12<28:26> IPC12<25:24>

U5RX—UART5 Receiver 74 51 IFS2<10> IEC2<10> IPC12<28:26> IPC12<25:24>

U5TX—UART5 Transmitter 75 51 IFS2<11> IEC2<11> IPC12<28:26> IPC12<25:24>

(Reserved) — — — — — —

Lowest Natural Order Priority

aNot all interrupt sources are available on all PIC32s.
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If the CPU is currently processing an ISR at a particular priority level, and it receives an
interrupt request for a vector (and therefore ISR) at the same priority, it will complete its
current ISR before servicing the other IRQ, regardless of the subpriority. When the CPU has
multiple IRQs pending at a higher priority than its current operating level, the CPU first
processes the IRQ with the highest priority level. If multiple IRQs sharing the highest priority
are pending, the CPU processes them based on their subpriority. If interrupts have the same
priority and subpriority, then their priority is resolved using the “natural order priority” given
in Table 6.1, where vectors earlier in Table 6.1 have higher priority.

If the priority of an interrupt vector is zero, then the interrupt is effectively disabled.2 There
are seven enabled priority levels.

Every ISR should clear the interrupt flag (clear the appropriate bit of IFSx to zero), indicating
that the interrupt has been serviced. By doing so, after the ISR completes, the CPU is free to
return to the program state when the ISR was called. If the interrupt flag is not cleared, then
the interrupt will be triggered immediately upon exiting the ISR.

When configuring an interrupt, you set a bit in IECx to 1 indicating the interrupt is enabled
(all bits are set to zero upon reset) and assign values to the associated IPCy priority bits.
(These priority bits default to zero upon reset, which will keep the interrupt disabled.) You
generally never write code setting an IFSx bit to 1.3 Instead, when you set up the device that
generates the interrupt (e.g., a UART or timer), you configure it to set the interrupt flag IFSx
upon the appropriate event.

The shadow register set

The PIC32MX’s CPU provides an internal shadow register set (SRS), which is a full extra set
of registers. You can use these extra registers to eliminate the time needed for context save and
restore. When processing an ISR using the SRS, the CPU switches to this extra set of internal
registers. When it finishes the ISR, it switches back to its original register set, without needing
to save and restore them. We see examples using the shadow register set in Section 6.4.

The Device Configuration Register DEVCFG3 determines which priority level is assigned to
the shadow register set. The preprocessor command

#pragma config FSRSSEL = PRIORITY_6

implemented in NU32.c and the NU32 bootloader allows only priority level 6 to use the
shadow register set. To change this setting you need to either use a standalone program or
modify and re-install the bootloader.

2 One reason for giving an interrupt priority zero is to prevent the ISR from triggering while still having the
interrupt source set the IRQ flag, allowing you to monitor the interrupt without it preempting other code.

3 Setting an IFSx bit to one would cause the interrupt to be pending, just as if hardware had set the flag.
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External interrupt inputs

The PIC32 has five digital inputs (INT0 to INT4) that can generate interrupts on rising or
falling signal edges. The flag and enable status bits are IFS0 and IEC0, respectively, at
bits 3, 7, 11, 15, and 19 for INT0, INT1, INT2, INT3, and INT4, respectively. The priority
and subpriority bits are in IPCy〈28:26〉 and IPCy〈25:24〉 for the input INTy. The SFR
INTCON bits 0-4 determine whether the associated interrupt is triggered on a falling edge
(bit cleared to 0) or rising edge (bit set to 1). From C, you can access these bits as
IFS0bits.INTxIF, IEC0bits.INTxIE, IPCxbits.INTxIP, and IPCxbits.INTxIS, where x is 0 to 4.
The interrupt vector number for each external interrupt is stored as the constant
_EXTERNAL_x_VECTOR.

Special Function Registers

The SFRs associated with interrupts are summarized below. We omit some fields: for full
details, consult the Interrupt Controller section of the Data Sheet, the Interrupt IRQ, Vector,
and Bit Location table reproduced earlier (Table 6.1), or the Interrupt section of the Reference
Manual.

INTCON The interrupt control SFR determines the interrupt controller mode and the
behavior of the five external interrupt pins INT0 to INT4.
INTCON〈12〉, or INTCONbits.MVEC: Set to enable multi-vector mode. The

bootloader (and NU32_Startup()) sets this bit, and you will probably always use
this mode.

INTCON〈x〉, for x = 0 to 4, or INTCONbits.INTxEP: Determines whether the given
external interrupt (INTx) triggers on a rising or falling edge.
1 External interrupt pin x triggers on a rising edge.
0 External interrupt pin x triggers on a falling edge.

INTSTAT The interrupt status SFR is read-only and contains information about the latest
IRQ given to the CPU when in single vector mode. We will not need it.

IPTMR The interrupt proximity timer SFR can be used to implement a delay to queue up
interrupt requests before presenting them to the CPU. For example, upon receiving an
interrupt request, the timer starts counting clock cycles, queuing up any subsequent
interrupt requests, until IPTMR cycles have passed. By default, this timer is turned off
by INTCON, and we will leave it that way.

IECx, x = 0, 1, or 2 Three 32-bit interrupt enable control SFRs for up to 96 interrupt sources.
Setting to 1 enables the given interrupt, clearing to 0 disables it.

IFSx, x = 0, 1, or 2 The three 32-bit interrupt flag status SFRs represent the status of up to 96
interrupt sources. Setting to one requests a given interrupt, and clearing to 0 indicates
that no interrupt is requested. Typically, peripherals set the appropriate IFSx bit in
response to an event, and user software clears the IFSx bit from within the ISR. The CPU
services pending interrupts (those whose IFSx and IECx bits are set) in priority order.
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IPCy, y = 0 to 15 Each of the 16 interrupt priority control SFRs contains 5-bit priority and
subpriority values for 4 different interrupt vectors (64 vectors total). Interrupts will not
be serviced unless the CPU’s current priority is less than the interrupt’s priority. When
the CPU services an interrupt, it sets its current priority to that of the interrupt, and when
the ISR completes, its previous priority is restored.

6.3 Steps to Configure and Use an Interrupt

The bootloader (and NU32_Startup()) enables the CPU to receive interrupts, setting
multi-vector mode by setting INTCONbits.MVEC to 1. After being in the correct mode, there
are seven steps to configure and use an interrupt. We recommend your program execute steps
2-7 in the order given below. The details of the syntax are left to the examples in Section 6.4.

1. Write an ISR with a priority level 1-7 using the syntax

void __ISR(vector_number, IPLnXXX) interrupt_name(void) { ... }

where vector_number is the interrupt vector number, n=1 to 7 is the priority, XXX is either
SOFT or SRS, and interrupt_name can be anything but should describe the ISR. SOFT uses
software context save and restore, and SRS uses the shadow register set. (The bootloader
on the NU32 allows only priority level 6 to use the SRS, so if you use the SRS, you
should use the syntax IPL6SRS.) No subpriority is specified in the ISR function. The ISR
should clear the appropriate interrupt flag IFSxbit.

2. Disable interrupts at the CPU to prevent spurious generation of interrupts while you are
configuring. Although interrupts are disabled by default on reset, NU32_Startup() enables
them. To disable all interrupts you can use the special compiler instruction
__builtin_disable_interrupts().

3. Configure the device (e.g., peripheral) to generate interrupts on the appropriate event. This
procedure involves configuring the SFRs of the particular peripheral.

4. Configure the interrupt priority and subpriority in IPCy. The IPCy priority should
match the priority of the ISR defined in Step 1.

5. Clear the interrupt flag status bit to 0 in IFSx.
6. Set the interrupt enable bit to 1 in IECx.
7. Re-enable interrupts at the CPU. You can use the compiler instruction

__builtin_enable_interrupts().

6.4 Sample Code

6.4.1 Core Timer Interrupt

Let us toggle a digital output once per second based on an interrupt from the CPU’s core
timer. First, we store a value in the CPU’s CP0_COMPARE register. Whenever the core timer
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counter equals this value (CP0_COMPARE), an interrupt is generated. In the interrupt service
routine, we reset the core timer counter to 0. Since the core timer runs at half the frequency of
the system clock, setting CP0_COMPARE to 40,000,000 toggles the digital output once per
second.

To view the ISR in action we toggle LED2 on the NU32 board. We shall use priority level 6,
subpriority 0, and the shadow register set.

Code Sample 6.1 INT_core_timer.c. A Core Timer Interrupt Using the Shadow
Register Set.

#include "NU32.h" // constants, funcs for startup and UART
#define CORE_TICKS 40000000 // 40 M ticks (one second)

void __ISR(_CORE_TIMER_VECTOR, IPL6SRS) CoreTimerISR(void) { // step 1: the ISR
IFS0bits.CTIF = 0; // clear CT int flag IFS0<0>, same as IFS0CLR=0x0001
LATFINV = 0x2; // invert pin RF1 only
_CP0_SET_COUNT(0); // set core timer counter to 0
_CP0_SET_COMPARE(CORE_TICKS); // must set CP0_COMPARE again after interrupt

}

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // step 2: disable interrupts at CPU
_CP0_SET_COMPARE(CORE_TICKS); // step 3: CP0_COMPARE register set to 40 M
IPC0bits.CTIP = 6; // step 4: interrupt priority
IPC0bits.CTIS = 0; // step 4: subp is 0, which is the default
IFS0bits.CTIF = 0; // step 5: clear CT interrupt flag
IEC0bits.CTIE = 1; // step 6: enable core timer interrupt
__builtin_enable_interrupts(); // step 7: CPU interrupts enabled

_CP0_SET_COUNT(0); // set core timer counter to 0

while(1) { ; }
return 0;

}

Following our seven steps to use an interrupt, we have:

Step 1. The ISR.

void __ISR(_CORE_TIMER_VECTOR, IPL6SRS) CoreTimerISR(void) { // step 1: the ISR
IFS0bits.CTIF = 0; // clear CT int flag IFS0<0>, same as IFS0CLR=0x0001
...

}

We can name the ISR anything, so we name it CoreTimerISR. The __ISR syntax is
XC32-specific (not a C standard) and tells the compiler and linker that this function should be

INT_core_timer.c
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treated as an interrupt handler.4 The two arguments are the interrupt vector number for the
core timer, called _CORE_TIMER_VECTOR (defined as 0 in p32mx795f512h.h, which agrees with
Table 6.1), and the interrupt priority level. The interrupt priority level is specified using the
syntax IPLnSRS or IPLnSOFT, where n is 1 to 7, SRS indicates that the shadow register set should
be used, and SOFT indicates that software context save and restore should be used. Use IPL6SRS

if you’d like to use the shadow register set, as in this example, since the device configuration
registers on the NU32’s PIC32 specify priority level 6 for the shadow register set. You do not
specify subpriority in the ISR.

The ISR should clear the interrupt flag in IFS0〈0〉 (IFS0bits.CTIF), because, according to the
table of interrupts (Table 6.1), this bit corresponds to the core timer interrupt. We also need to
write to CP0_COMPARE to clear the interrupt, an action specific to the core timer (many
interrupts have peripheral-specific actions that are required to clear the interrupt).

Step 2. Disabling interrupts. Since NU32_Startup() enables interrupts, we disable them
before configuring the core timer interrupt.

__builtin_disable_interrupts(); // step 2: disable interrupts at CPU

Disabling interrupts before configuring the device that generates interrupts is good general
practice, to avoid unwanted interrupts during configuration. In many cases it is not strictly
necessary, however.

Step 3. Configuring the core timer to interrupt.

_CP0_SET_COMPARE(CORE_TICKS); // step 3: CP0_COMPARE register set to 40 M

This line sets the core timer’s CP0_COMPARE value so that an interrupt is generated when
the core timer counter reaches CORE_TICKS. If the interrupt were to be generated by a
peripheral, we would consult the appropriate book chapter or the Reference Manual, to set the
SFRs to generate an IRQ on the appropriate event.

Step 4. Configuring interrupt priority.

IPC0bits.CTIP = 6; // step 4: interrupt priority
IPC0bits.CTIS = 0; // step 4: subp is 0, which is the default

These two commands set the appropriate bits in IPCy (y = 0, according to Table 6.1).
Consulting the file p32mx795f512h.h or the Memory Organization section of the Data Sheet

4 __ISR is a macro defined in <sys/attribs.h>, which NU32.h includes.
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shows us that the core timer’s priority and subpriority bits of IPC0 are called IPC0bits.CTIP
and IPC0bits.CTIS, respectively. Alternatively, we could have used any other means to
manipulate the bits IPC0〈4:2〉 and IPC0〈1:0〉, as indicated in Table 6.1, while leaving all other
bits unchanged. We prefer using the bit-field structs because it is the most readable method.
The priority must agree with the ISR priority. It is unnecessary to set the subpriority, which
defaults to zero.

Step 5. Clearing the interrupt flag status bit.

IFS0bits.CTIF = 0; // step 5: clear CT interrupt flag

This command clears the appropriate bit in IFSx (x = 0 here). A less readable but possibly
more efficient alternative would be IFS0CLR = 1, to clear the zeroth bit of IFS0.

Step 6. Enabling the core timer interrupt.

IEC0bits.CTIE = 1; // step 6: enable core timer interrupt

This command sets the appropriate bit in IECx (x= 0 here). An alternative would be IEC0SET =

1 to set the zeroth bit of IEC0.

Step 7. Re-enable interrupts at the CPU.

__builtin_enable_interrupts(); // step 7: CPU interrupts enabled

This compiler built-in function generates an assembly instruction that allows the CPU to
process interrupts.

6.4.2 External Interrupt

Code Sample 6.2 causes the NU32’s LEDs to illuminate briefly, on a falling edge of external
interrupt input pin INT0. You can find the IRQ associated with INT0, and the flag, enable,
priority, and subpriority bits in Table 6.1. In this example we use interrupt priority level 2,
with software context save and restore.

You can test this program with the NU32 by connecting a wire from the D7/USER pin to the
D0/INT0 pin. Pressing the USER button creates a falling edge on digital input RD7 (see the
wiring diagram in Figure 2.3) and therefore INT0, which causes the LEDs to flash. You might
also notice the issue of switch bounce: when you release the button, nominally creating a
rising edge, you might see the LEDs flash again. The extra flash occurs because of chattering
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when mechanical contact between two conductors is established or broken, causing spurious
rising and falling edges. Reading reliably from mechanical switches requires a debouncing
circuit or software; see Exercise 16.

Code Sample 6.2 INT_ext_int.c. Using an External Interrupt to Flash LEDs on the
NU32.

#include "NU32.h" // constants, funcs for startup and UART

void __ISR(_EXTERNAL_0_VECTOR, IPL2SOFT) Ext0ISR(void) { // step 1: the ISR
NU32_LED1 = 0; // LED1 and LED2 on
NU32_LED2 = 0;
_CP0_SET_COUNT(0);

while(_CP0_GET_COUNT() < 10000000) { ; } // delay for 10 M core ticks, 0.25 s

NU32_LED1 = 1; // LED1 and LED2 off
NU32_LED2 = 1;
IFS0bits.INT0IF = 0; // clear interrupt flag IFS0<3>

}

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init
__builtin_disable_interrupts(); // step 2: disable interrupts
INTCONbits.INT0EP = 0; // step 3: INT0 triggers on falling edge
IPC0bits.INT0IP = 2; // step 4: interrupt priority 2
IPC0bits.INT0IS = 1; // step 4: interrupt priority 1
IFS0bits.INT0IF = 0; // step 5: clear the int flag
IEC0bits.INT0IE = 1; // step 6: enable INT0 by setting IEC0<3>
__builtin_enable_interrupts(); // step 7: enable interrupts

// Connect RD7 (USER button) to INT0 (D0)
while(1) {

; // do nothing, loop forever
}

return 0;
}

6.4.3 Speedup Due to the Shadow Register Set

This example measures the amount of time it takes to enter and exit an ISR using context save
and restore vs. the SRS. We write two identical ISRs; the only difference is that one uses
IPL6SOFT and the other uses IPL6SRS. The two ISRs are based on the external interrupts INT0
and INT1, respectively. To get precise timing, however, we trigger interrupts in software by
setting the appropriate bit of IFS0.

After setting up the interrupts, the program INT_timing.c enters an infinite loop. First the core
timer is reset to zero, then the interrupt flag is set for INT0. The main function then waits until
the ISR clears the flag. First the ISR for INT0 records the core timer counter. Next it toggles
LED2 and clears the interrupt flag. Finally it logs the time again. After the interrupt exits the

INT_ext_int.c
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main function logs the time when control is returned. The timing results are written back to the
host computer over the UART. The ISR for INT1 is timed in a similar manner.

These are the results (which are repeated over and over):

IPL6SOFT in 19 out 26 total 40 time 1000 ns
IPL6SRS in 17 out 24 total 37 time 925 ns

For context save and restore, it takes 19 core clock ticks (about 38 SYSCLK ticks) to begin
executing statements in the ISR; the last ISR statement completes about 7 (14) ticks later; and
finally control is returned to main approximately 40 (80) total ticks, or 1000 ns, after the
interrupt flag is set. For the SRS, the first ISR statement is executed after about 17 (34) ticks;
the ISR runs in an identical 7 (14) ticks; and a total of approximately 37 (74) ticks, or 925 ns,
elapse between the time the interrupt flag is set and control is returned to main.

Although the exact timing may be different for other ISRs and main functions, depending on
the register context that must be saved and restored (which depends on what the code does),
we can make some general observations:

• The ISR is not entered immediately after the flag is set. It takes time to respond to the
interrupt request, and instructions in main may be executed after the flag is set.

• The SRS reduces the time needed to enter and exit the ISR, approximately 75 ns total in
this case.

• Simple ISRs can be completed less than a microsecond after the interrupt event occurs.

The sample code is below. We note that this example also serves to demonstrate different
methods for setting bit fields in ISRs. We hope that after viewing this code you will agree that
using the bit-field structs makes the code easier to read and understand.

Code Sample 6.3 INT_timing.c. Timing the Shadow Register Set vs. Typical Context
Save and Restore.

#include "NU32.h" // constants, funcs for startup and UART
#define DELAYTIME 40000000 // 40 million core clock ticks, or 1 second

void delay(void);

static volatile unsigned int Entered = 0, Exited = 0; // note the qualifier "volatile"

void __ISR(_EXTERNAL_0_VECTOR, IPL6SOFT) Ext0ISR(void) {
Entered = _CP0_GET_COUNT(); // record time ISR begins
IFS0CLR = 1 << 3; // clear the interrupt flag
NU32_LED2 = !NU32_LED2; // turn off LED2
Exited = _CP0_GET_COUNT(); // record time ISR ends

}

void __ISR(_EXTERNAL_1_VECTOR, IPL6SRS) Ext1ISR(void) {
Entered = _CP0_GET_COUNT(); // record time ISR begins

INT_timing.c
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IFS0CLR = 1 << 7; // clear the interrupt flag
NU32_LED2 = !NU32_LED2; // turn on LED2
Exited = _CP0_GET_COUNT(); // record time ISR ends

}

int main(void) {
unsigned int dt = 0;
unsigned int encopy, excopy; // local copies of globals Entered, Exited
char msg[128] = {};

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init
__builtin_disable_interrupts(); // step 2: disable interrupts at CPU
INTCONSET = 0x3; // step 3: INT0 and INT1 trigger on rising edge
IPC0CLR = 31 << 24; // step 4: clear 5 priority and subp bits for INT0
IPC0 |= 24 << 24; // step 4: set INT0 to priority 6 subpriority 0
IPC1CLR = 0x1F << 24; // step 4: clear 5 priority and subp bits for INT1
IPC1 |= 0x18 << 24; // step 4: set INT1 to priority 6 subpriority 0
IFS0bits.INT0IF = 0; // step 5: clear INT0 flag status
IFS0bits.INT1IF = 0; // step 5: clear INT1 flag status
IEC0SET = 0x88; // step 6: enable INT0 and INT1 interrupts
__builtin_enable_interrupts(); // step 7: enable interrupts
while(1) {

delay(); // delay, so results sent back at reasonable rate
_CP0_SET_COUNT(0); // start timing
IFS0bits.INT0IF = 1; // artificially set the INT0 interrupt flag
while(IFS0bits.INT0IF) {

; // wait until the ISR clears the flag
}
dt = _CP0_GET_COUNT(); // get elapsed time
__builtin_disable_interrupts(); // good practice before using vars shared w/ISR
encopy = Entered; // copy the shared variables to local copies ...
excopy = Exited; // ... so the time interrupts are off is short
__builtin_enable_interrupts(); // turn interrupts back on quickly!
sprintf(msg,"IPL6SOFT in %3d out %3d total %3d time %4d ns\r\n"

,encopy,excopy,dt,dt*25);
NU32_WriteUART3(msg); // send times to the host

delay(); // same as above, except for INT1
_CP0_SET_COUNT(0);
IFS0bits.INT1IF = 1; // trigger INT1 interrupt
while(IFS0bits.INT1IF) {

; // wait until the ISR clears the flag
}
dt = _CP0_GET_COUNT();
__builtin_disable_interrupts();
encopy = Entered;
excopy = Exited;
__builtin_enable_interrupts();
sprintf(msg," IPL6SRS in %3d out %3d total %3d time %4d ns\r\n"

,encopy,excopy,dt,dt*25);
NU32_WriteUART3(msg);

}
return 0;

}

void delay() {
_CP0_SET_COUNT(0);
while(_CP0_GET_COUNT() < DELAYTIME) {

;
}

}
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6.4.4 Sharing Variables with ISRs

Code Sample 6.3 was the first to share variables between an ISR and other functions. Namely,
Entered and Exited are used in both ISRs as well as main. Sharing data between ISRs and
mainline code is one area where using global variables is required, even though they should be
generally avoided. We use the static keyword so at least, in a larger project, the variables are
limited in scope to the file in which they are declared.

This code demonstrates two good practices when sharing variables with ISRs:

(1) Using the type qualifier volatile

By putting the qualifier volatile in front of the type in the global variable definition

static volatile unsigned int Entered = 0, Exited = 0;

we tell the compiler that external processes (namely, an ISR that may be triggered at an
unknown time) may read or write the variables at any time. Therefore, any optimizations the
compiler performs should not take shortcuts in generating assembly code associated with a
volatile variable. For example, if you had code of the form

static int i = 0; // global variable shared by functions and an ISR

void myFunc(void) {
i = 1;
// some other code that doesn’t use or affect i
i = 2;
// some code that uses i

}

a compiler running optimizations might not generate any code for i = 1 at all, believing that
the value 1 for i is never used. If an external interrupt triggered during execution of the code
between i = 1 and i = 2, however, and the ISR used the value of i, it would use the wrong
value (perhaps the originally initialized value i = 0).

To correct this problem, the declaration of the global variable i should be

static volatile int i = 0;

The volatile qualifier ensures that the compiler will emit full assembly code for any reads or
writes of i. The compiler does not assume anything about the value of i or whether it is
changed or used by processes that it does not know about. This is why all SFRs are declared as
volatile in p32mx795f512h.h; their values can be changed by processes external to the CPU.
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(2) Enabling and disabling interrupts

Consider a scenario where the mainline code and an ISR share a 64-bit long double variable.
To load the variable into two of the CPU’s 32-bit registers, one assembly instruction first loads
the most significant 32 bits into one register. Then the process is interrupted, the ISR modifies
the variable in RAM, and control returns to the main code. At that point, the next assembly
instruction loads the lower 32 bits of the new value of the long double in RAM into the other
CPU register. Now the CPU registers have neither the correct variable value from before nor
after the ISR.

To prevent data corruption like this, interrupts can be disabled before reading or writing the
shared variables, then re-enabled afterward. If an IRQ is generated during the time that the
CPU is ignoring interrupts, the IRQ will simply wait until the CPU is accepting
interrupts again.

Interrupts should not be disabled for long, as this defeats the purpose of interrupts. In the
sample code, the time that interrupts are disabled is minimized by simply copying the shared
variables to local copies during this period, rather than performing time-consuming operations
with them. This avoids having the interrupts disabled during the sprintf command, which can
take many CPU cycles.

In many cases it is not necessary to disable interrupts before using shared variables. (For
example, it was not necessary in the sample code above.) Determining whether such
precautions are necessary sometimes depends not only on the algorithms you employ but how
those algorithms translate into assembly instructions. Disabling interrupts is usually the
simpler and safer option.5 As long as you limit the code that executes while interrupts are
disabled, you will delay any interrupts that would have occurred by at most a few hundred
nanoseconds; most applications can tolerate such delays.

6.5 Chapter Summary

• The CPU of the PIC32MX supports 96 interrupt requests (IRQs) and 64 interrupt vectors,
and therefore up to 64 interrupt service routines (ISRs). Therefore, some IRQs share the
same ISR. For example, all IRQs related to UART1 (data received, data transmitted, error)
have the same interrupt vector.

• The PIC32 can be configured to operate in single vector mode (all IRQs result in a jump
to the same ISR) or in multi-vector mode. The bootloader (and NU32_Startup()) puts the
NU32 in multi-vector mode.

5 Errors caused by incorrect sharing of data between interrupts and mainline code are called race conditions. Race
conditions are notoriously difficult to discover and fix; they may only appear intermittently because they closely
depend on timing.
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• Priorities and subpriorities are associated with interrupt vectors, and therefore ISRs, not
IRQs. The priority of a vector is defined in an SFR IPCy, y = 0 to 15. In the definition of
the associated ISR, the same priority n should be specified using IPLnSOFT or IPLnSRS.
SOFT indicates that software context save and restore is performed, while SRS means that
the shadow register set is used instead, reducing ISR entry and exit time. The PIC32 on
the NU32 is configured by its device configuration registers to make the SRS available
only at priority level 6, so the SRS can only be used with IPL6SRS.

• When an interrupt is generated, it is serviced immediately if its priority is higher than the
current priority. Otherwise it waits until the current ISR is finished.

• In addition to configuring the CPU to accept interrupts, enabling specific interrupts, and
setting their priority, the specific peripherals (such as counter/timers, UARTs, change
notification pins, etc.) must be configured to generate interrupt requests on the appropriate
events. These configurations are left for the chapters covering those peripherals.

• The seven steps to use an interrupt, after putting the CPU in multi-vector mode, are:
(1) write the ISR; (2) disable interrupts; (3) configure a device or peripheral to generate
interrupts; (4) set the ISR priority and subpriority; (5) clear the interrupt flag; (6) enable
the IRQ; and (7) enable interrupts at the CPU.

• If a variable is shared with an ISR, it is a good idea to (1) define that variable with the type
qualifier volatile (also use static unless you have good reason not to) and (2) turn off
interrupts before reading or writing it if there is a danger the process could be interrupted.
If interrupts are disabled, they should be disabled for as short a period as possible.

6.6 Exercises
1. Interrupts can be used to implement a fixed frequency control loop (e.g., 1 kHz). Another

method for executing code at a fixed frequency is polling: you can keep checking the
core timer, and when some number of ticks has passed, execute the control routine.
Polling can also be used to check for changes on input pins and other events. Give pros
and cons (if any) of using interrupts vs. polling.

2. You are watching TV. Give an analogy to an IRQ and ISR for your mental attention in
this situation. Also give an analogy to polling.

3. What is the relationship between an interrupt vector and an ISR? What is the maximum
number of ISRs that the PIC32 can handle?

4. (a) What happens if an IRQ is generated for an ISR at priority level 4, subpriority level 2
while the CPU is in normal execution (not executing an ISR)? (b) What happens if that
IRQ is generated while the CPU is executing a priority level 2, subpriority level 3 ISR?
(c) What happens if that IRQ is generated while the CPU is executing a priority level 4,
subpriority level 0 ISR? (d) What happens if that IRQ is generated while the CPU is
executing a priority level 6, subpriority level 0 ISR?
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5. An interrupt asks the CPU to stop what it’s doing, attend to something else, and then
return to what it was doing. When the CPU is asked to stop what it’s doing, it needs to
remember “context” of what it was working on, i.e., the values currently stored in the
CPU registers. (a) Assuming no shadow register set, what is the first thing the CPU must
do before executing the ISR and the last thing it must do upon completing the ISR?
(b) How does using the shadow register set change the situation?

6. What is the peripheral and interrupt vector number associated with IRQ 35? What are the
SFRs and bit numbers controlling its interrupt enable, interrupt flag status, and priority
and subpriority? Does IRQ 35 share the interrupt vector with any other IRQ?

7. What peripherals and IRQs are associated with interrupt vector 24? What are the SFRs
and bit numbers controlling the priority and subpriority of the vector and the interrupt
enable and flag status of the associated IRQs?

8. For the problems below, use only the SFRs IECx, IFSx, IPCy, and INTCON, and their
CLR, SET, and INV registers (do not use other registers, nor the bit fields as in
IFS0bits.INT0IF). Give valid C bit manipulation commands to perform the operations
without changing any uninvolved bits. Also indicate, in English, what you are trying to
do, in case you have the right idea but wrong C statements. Do not use any constants
defined in Microchip XC32 files; just use numbers.
a. Enable the Timer2 interrupt, set its flag status to 0, and set its vector’s priority and

subpriority to 5 and 2, respectively.
b. Enable the Real-Time Clock and Calendar interrupt, set its flag status to 0, and set its

vector’s priority and subpriority to 6 and 1, respectively.
c. Enable the UART4 receiver interrupt, set its flag status to 0, and set its vector’s

priority and subpriority to 7 and 3, respectively.
d. Enable the INT2 external input interrupt, set its flag status to 0, set its vector’s

priority and subpriority to 3 and 2, and configure it to trigger on a rising edge.
9. Edit Code Sample 6.3 so that each line correctly uses the “bits” forms of the SFRs.

In other words, the left-hand sides of the statements should use a form similar to that
used in step 5, except using INTCONbits, IPC0bits, and IEC0bits.

10. Consulting the p32mx795f512h.h file, give the names of the constants, and the numerical
values, associated with the following IRQs: (a) Input Capture 5. (b) SPI3 receive done.
(c) USB interrupt.

11. Consulting the p32mx795f512h.h file, give the names of the constants, and the numerical
values, associated with the following interrupt vectors: (a) Input Capture 5. (b) SPI3
receive done. (c) USB interrupt.

12. True or false? When the PIC32 is in single vector interrupt mode, only one IRQ can
trigger an ISR. Explain your answer.

13. Give the numerical value of the SFR INTCON, in hexadecimal, when it is configured for
single vector mode using the shadow register set; and external interrupt input INT3
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triggers on a rising edge while the rest of the external inputs trigger on a falling edge.
The Interrupt Proximity Timer bits are left as the default.

14. So far we have only seen interrupts generated by the core timer and the external interrupt
inputs, because we first have to learn something about the other peripherals to complete
Step 3 of the seven-step interrupt setup procedure. Let us jump ahead and see how the
Change Notification peripheral could be configured in Step 3. Consulting the Reference
Manual chapter on I/O Ports, name the SFR and bit number that has to be manipulated to
enable Change Notification pins to generate interrupts.

15. Build INT_timing.c and open its disassembly file out.dis with a text editor. Starting at
the top of the file, you see the startup code inserted by crt0.o. Continuing down, you see
the “bootstrap exception” section .bev_excpt, which handles any exceptions that might
occur while executing boot code; the “general exception” section .app_excpt, which
handles any serious errors the CPU encounters (such as attempting to access an invalid
memory address) (Table 6.1); and finally the interrupt vector sections, labeled .vector_x,
where x can take values from 0 to 51 (12 of the possible 64 vectors are not used by the
PIC32MX). Each of these exception vectors simply jumps to another address. (Note that
j, jal, and jr are all jump statements in assembly. Jumps are not executed immediately;
the next assembly statement, in the jump delay slot, executes before the jump completes.
The jump j jumps to the address specified. jal jumps to the address specified, usually
corresponding to a function, and stores in a CPU register ra a return address two
instructions [eight bytes] later. jr jumps to an address stored in a register, often ra to
return from a function.)
a. What addresses do the .vector_x sections jump to? What is installed at these

addresses?
b. Find the Ext0ISR and Ext1ISR functions. How many assembly commands are before

the first _CP0_GET_COUNT() command in each function? How many assembly
commands are after the last _CP0_GET_COUNT() command in each function? What is
the purpose of the commands that account for the majority of the difference in the
number of commands? (Note that sw, short for “store word,” copies a 32-bit CPU
register to RAM, and lw, short for “load word,” copies a 32-bit word from RAM to a
CPU register.) Explain why the two functions are different even though their C code
is essentially identical.

16. Modify Code Sample 6.2 so the USER button is debounced. How can you change the
ISR so the LEDs do not flash if the falling edge comes at the beginning of a very brief,
spurious down pulse? Verify that your solution works. (Hint: Any real button press
should last much more than 10 ms, while the mechanical bouncing period of any decent
switch should be much less than 10 ms. See also Chapter B.2.1 for a hardware solution
to debouncing.)

17. Using your solution for debouncing the USER button (Exercise 16), write a stopwatch
program using an ISR based on INT2. Connect a wire from the USER button pin to the
INT2 pin so you can use the USER button as your timing button. Using the NU32
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library, your program should send the following message to the user’s screen: Press the

USER button to start the timer. When the USER button has been pressed, it should
send the following message: Press the USER button again to stop the timer. When
the user presses the button again, it should send a message such as 12.505 seconds

elapsed. The ISR should either (1) start the core timer at 0 counts or (2) read the current
timer count, depending on whether the program is in the “waiting to begin timing” state
or the “timing state.” Use priority level 6 and the shadow register set. Verify that the
timing is accurate. The stopwatch only has to be accurate for periods of less than the core
timer’s rollover time.
You could also try using polling in your main function to write out the current elapsed
time (when the program is in the “timing state”) to the user’s screen every second so the
user can see the running time.

18. Write a program identical to the one in Exercise 17, but using a 16×2 LCD screen for
output instead of the host computer’s display.

19. Write a program that interrupts at a frequency defined interactively by the user. The main

function is an infinite loop that uses the NU32 library to ask the user to specify the
integer variable InterruptPeriod. If the user enters a number greater than an appropriate
minimum and less than an appropriate maximum, this becomes the number of core clock
ticks between core timer interrupts. The ISR simply toggles the LEDs, so the
InterruptPeriod is visible. Set the vector priority to 3 and subpriority to 0.

20. (a) Write a program that has two ISRs, one for the core timer and one for the debounced
input INT2. The core timer interrupts every 4 s, and the ISR simply turns on LED1 for
2 s, turns it off, and exits. The INT2 interrupt turns LED2 on and keeps it on until the
user releases the button. Choose interrupt priority level 1 for the core timer and 5 for
INT2. Run the program, experiment with button presses, and see if it agrees with what
you expect. (b) Modify the program so the two priority levels are switched. Run the
program, experiment with button presses, and see if it agrees with what you expect.

21. A CPU run-time error, such as attempting to access an invalid memory address,
generates a general exception. As with an interrupt, program execution jumps to a new
function, in this case called _gen_exception. In turn, this function calls the function
_general_exception_contextwhich calls _general_exception_handler. You have the
option to use the Microchip default general exception handler, or you can write your
own, as in Sample Code 5.2 readVA.c in Chapter 5, the only sample code in this book
that defines a general exception handler. Looking at the disassembly file for any program
that uses the Microchip default general exception handler, what does the program do
after the software debug breakpoint (sdbbp)?

Further Reading
PIC32 family reference manual. Section 08: Interrupts. (2013). Microchip Technology Inc.
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Digital Input and Output

Digital inputs and outputs (DIO) are the simplest interfaces between the PIC32 and other
electronics, sensors, and actuators. The PIC32 has many DIO pins, each of which normally
has one of two states: high (1) or low (0). These states usually correspond to 3.3 V or 0 V.1

The DIO peripheral also handles change notification (CN) interrupts, which happen when the
input changes on at least one of up to 19 digital inputs.

7.1 Overview

The PIC32 offers many DIO pins, arranged into “ports” B through G on the
PIC32MX795F512H. The pins are labeled Rxy, where x is the port letter and y is the pin
number. For example, pin 5 of port B is named RB5. (We often omit the R, referring to pin
RB5 as B5, when there is no possibility of confusion.) Port B is a full 16-bit port, with pins
0-15, and port B can also be used for analog input (Chapter 10). Other ports have a smaller
number of pins, not necessarily sequentially numbered; for example, port G has RG2, RG3,
and RG6-RG9. All pins labeled Rxy can be used for input or output, except for RG2 and RG3,
pins that are shared with USB communication lines and are input only. For more details on the
available pin numbers, see Section 1 of the Data Sheet.

The PIC32 has two types of digital outputs: buffered and open drain. Usually, outputs are
buffered and can drive the associated pin to either 0 V or 3.3 V. Some pins, however, can be
configured with open drains. Their pins can be driven to 0 V or to a high impedance state
often called “floating” or “high-Z.” When floating, the output is effectively disconnected,
allowing you to attach an external “pull-up” resistor from the output to a positive voltage.
Then, when the output floats, the external pull-up resistor connects the pin to the positive
voltage (Figure 7.1). The positive voltage must be less than either 3.3 V or 5 V, depending on
the pin (see, e.g., Figure 2.1 and Table 2.2 to determine which pins can tolerate 5 V).

A pin configured as an output should not source or sink more than about 10 mA. For example,
it would be a mistake to connect a digital output to a 10 � resistor to ground. In this case,

1 Technically, there are tolerances associated with these voltages. According to the Electrical Characteristics
section of the Data Sheet, input voltages below about 0.5 V are treated as logic low, and input voltages above
2.1 V are treated as logic high.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00007-X
Copyright © 2016 Elsevier Inc. All rights reserved. 115
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+5 V

PIC32

R > 500 

open-drain
output with

external pull-up
resistor

+3.3 V

input

PIC32

digital input configured
with internal pull-up resistor

Figure 7.1
Left: A digital output configured as an open-drain output with external pull-up resistor to 5 V. (This
should only be done for 5 V tolerant pins.) The resistor should allow no more than 10 mA to flow

into the PIC32 when the PIC32 holds the output low. If the LAT bit controlling the pin has the value
1, the internal switch is open, and the output reads 5 V. If the bit is a 0, internal switch is closed and

the output reads 0 V. Right: A digital input configured with an internal pull-up resistor allows a
simple open-close switch to yield digital high when the switch is open and digital low when the

switch is closed.

creating a digital high output of 3.3 V would require 3.3 V/10 � = 330 mA, which a digital
output cannot source. Be careful; trying to source or sink too much current from a pin may
damage your PIC32!

An input pin will read low, or 0, if the input voltage is close to zero, and it will read high, or 1,
if it is close to 3.3 V. Some pins tolerate inputs up to 5 V. Some input pins, those that can also
be used for “change notification” (labeled CNy, y = 0 to 18, spread out over several of the
ports), can be configured with an internal pull-up resistor to 3.3 V. If configured this way, the
input will read “high” if it is disconnected (Figure 7.1). This is useful for interfacing with
simple buttons, which either connect the input to ground or leave it floating (e.g., the USER
button in Figure 2.3).2 Otherwise, if an input pin is not connected to anything, we cannot be
certain what the input will read.

Input pins have fairly high input impedance—very little current will flow in or out of an input
pin. Therefore, connecting an external circuit to an input pin should have little effect on the
behavior of the external circuit.

Up to 19 inputs can be configured as change notification inputs. When enabled, the change
notification pins generate interrupts if their digital input state changes. The ISR must then read
from the ports configured with change notification, or else future input changes will not result

2 According to the PIC32MX575/675/695/775/795 Family Silicon Errata and Data Sheet Clarification, an internal
pull-up resistor is not guaranteed to make external devices read the pin as high, and even the PIC32 may not read
the pin as high if an external load causes it to source more than 50 μA.
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in an interrupt. The ISR can compare the new port values to the previous values to determine
which specific input has changed.

Microchip recommends that unused digital I/O pins be configured as outputs and driven to a
logic low state, though this is not required. All pins are configured as inputs by default. This
safety feature prevents the PIC32 from imposing unwanted voltages on attached circuitry
before your program begins executing. The pins on port B are shared with the with the
analog-to-digital converter (ADC) and default to analog inputs, unless explicitly set as
digital pins.

7.2 Details
TRISx, x =B to G These tri-state SFRs determine which port x DIO pins are inputs and

which are outputs. Bit y corresponds to the port’s pin y (i.e., Rxy). Bits can be accessed
individually by using TRISxbits.TRISxy. For example, TRISDbits.TRISD5= 0 makes
RD5 an output (0 =Output), and TRISDbits.TRISD5= 1 makes RD5 an input
(1 = Input). Bits of TRISx default to 1 on reset.

LATx, x =B to G A write to the latch chooses the output for pins configured as digital
outputs. (Pins configured as inputs ignore the write.) Bit y correspond to that port’s pin
(i.e., Rxy). For example, if TRISD= 0x0000, making all port D pins outputs, then
LATD=0x00FF sets pins RD0-RD7 high and other RD pins low. Individual pins can be
referenced using LATxbits.LATxy, where y is the pin number. For example,
LATDbits.LATD11 = 1 sets pin RD11 high. A write of 1 to an open-drain output sets the
output to floating, while a write of 0 makes the output to low.

PORTx, x =B to G PORTx returns the current digital value for DIO pins on port x
configured as inputs. Bit y corresponds to pin Rxy. Individual pins can be accessed as
PORTxbits.RDy; for example, PORTDbits.RD6 returns the digital input for RD6.

ODCx, x =B to G The open-drain configuration SFR determines whether outputs are open
drain or not. Individual bits can be accessed using ODCxbits.ODCxy. For example, if
TRISbits.TRISD8= 0, making RD8 an output, then ODCDbits.ODCD8 = 1 configures
RD8 as an open-drain output, and ODCDbits.ODCD8 = 0 configures RD8 as a typical
buffered output. The reset default for all bits is 0.

AD1PCFG The pin configuration bits in this register determine whether port B’s pins are
analog or digital inputs. See Chapter 10 for information about analog inputs.
AD1PCFG〈x〉, or AD1PCFGbits.PCFGx, x = 0 to 15, controls whether pin ANx

(equivalently RBx) is an analog input: 0 = analog input, 1 = digital pin.
Each of the lower 16 bits of this SFR correspond to a port B pin. On reset, they are zero,
meaning that all port B pins are analog inputs by default. Therefore, to use a port B pin
as a digital input, you must explicitly set the appropriate pin in AD1PCFG.
For example, to use port B, pin 2 (RB2) as a digital input, set AD1PCFGbits.PCFG2
(AD1PCFG〈2〉) to one. This extra configuration step applies only to port B because the
other ports do not overlap with analog inputs.
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CNPUE Change notification pull-up enable allows you to enable an internal pull-up resistor
on the change notification pins (CN0-CN18). Each bit in CNPUE〈18:0〉, when set,
enables the pull-up, and when clear, disables it. Bit x corresponds to pin CNx. Individual
bits can be accessed using CNPUEbits.CNPUEx. For example, if
CNPUEbits.CNPUE2 = 1, then CN2/RB0 has the internal pull-up resistor enabled, and if
CNPUEbits.CNPUE2 = 0, then it is disabled. The reset default for all bits is 0 so the
pull-up resistors are disabled. An internal pull-up resistor can be convenient because it
ensures that the input pin is in a known state when disconnected.

Latches vs. ports: What is the difference between the latch (LATx) and port (PORTx) SFRs?
The PORTx SFRs correspond to voltages on the pins while LATx SFRS correspond to what the
pin should output if configured as an output. When you read from LATx you are actually
reading the last value you wanted to put out on the port, not the pins’ actual state. Therefore,
to read pins, use PORTx, and to write digital outputs, use LATx.

Using the INV, CLR, and SET SFRs vs. directly manipulating bits: To directly set a bit, say bit
4 of LATF, you could use either LATFSET = 0b10000 (equivalently LATFSET = 0x10) or you
could use LATFbits.LATF4 = 1, based on the bit field names in the p32mx795f512h.h file. The
former approach is atomic—it executes in a single assembly statement. The latter approach
causes the CPU to copy LATF to a CPU register, set bit 4 of the CPU’s copy, and write the result
back to LATF. While this takes more assembly commands, we generally recommend that you
use this approach instead of using the SFR’s SET, CLR, and INV registers. The resulting syntax is
clearer (essentially self-documenting by the name of the bit field) and less error prone.

7.2.1 Change Notification

Change notification interrupts can be generated on pins CN0-CN18 and are triggered when the
input state on the pin changes. The relevant SFRs are:
CNPUE Change notification pull-up enable. See above (it is listed there because pull-ups can

be useful even if no change notification is used).
CNCON The change notification control SFR enables CN interrupts if CNCON〈15〉

(CNCONbits.ON) equals 1. The default is 0.
CNEN A particular pin CNx can generate a change notification interrupt if CNEN〈x〉

(CNENbits.CNENx) is 1. Otherwise it is not included in the change notification.

The relevant interrupt bit fields and constants are:
IFS1〈0〉 or IFS1bits.CNIF: Interrupt status flag for change notification, set when the

interrupt is pending.
IEC1〈0〉 or IEC1bits.CNIE: Interrupt enable flag for change notification, set to enable the

interrupt.
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IPC6〈20:18〉 or IPC6bits.CNIP: Change notification interrupt priority.
IPC6〈17:16〉 or IPC6bits.CNIS: Change notification sub-priority.
Vector Number: The change notification uses interrupt vector 26 or _CHANGE_NOTICE_VECTOR,

as defined in p32mx795f512h.h.

A recommended procedure for enabling the CN interrupt:

1. Write an ISR using the vector _CHANGE_NOTICE_VECTOR (26). It should clear IFS1bits.CNIF
and read the pins involved in the CN scan to re-enable the interrupt.

2. Disable all interrupts using __builtin_disable_interrupts().
3. Set CNENbits.CNENx to one for each pin x that you want included in the change

notification, and set CNCONbits.ON to one.
4. Choose the interrupt priority IPC6bits.CNIP and subpriority IPC6bits.CNIS. The priority

should match that used in the definition of the ISR.
5. Clear the interrupt flag status IFS1bits.CNIF.
6. Enable the CN interrupt by setting IEC1bits.CNIE to one.
7. Enable interrupts using __builtin_enable_interrupts().

7.3 Sample Code

Our first program, simplePIC.c, demonstrated the use of two digital outputs (to control two
LEDs) and one digital input (the USER button).

The example below configures the following inputs and outputs:

• Pins RB0 and RB1 are digital inputs with internal pull-up resistors enabled.
• Pins RB2 and RB3 are digital inputs without pull-up resistors.
• Pins RB4 and RB5 are buffered digital outputs.
• Pins RB6 and RB7 are open-drain digital outputs.
• Pins AN8-AN15 are analog inputs.
• RF4 is a digital input with an internal pull-up resistor.
• Change notification is enabled on pins RB0 (CN2), RF4 (CN17), and RF5 (CN18). Since

both ports B and F are involved in the change notification, both ports must be read inside
the ISR to allow the interrupt to be re-enabled. The ISR toggles one of the NU32 LEDs to
indicate that a change has been noticed on pin RB0, RF4, or RF5.

Code Sample 7.1 DIO_sample.c. Digital Input, Output, and Change Notification.

#include "NU32.h" // constants, funcs for startup and UART

volatile unsigned int oldB = 0, oldF = 0, newB = 0, newF = 0; // save port values

void __ISR(_CHANGE_NOTICE_VECTOR, IPL3SOFT) CNISR(void) { // INT step 1
newB = PORTB; // since pins on port B and F are being monitored

DIO_sample.c
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newF = PORTF; // by CN, must read both to allow continued functioning
// ... do something here with oldB, oldF, newB, newF ...

oldB = newB; // save the current values for future use
oldF = newF;
LATBINV = 0xF0; // toggle buffered RB4, RB5 and open-drain RB6, RB7
NU32_LED1 = !NU32_LED1; // toggle LED1
IFS1bits.CNIF = 0; // clear the interrupt flag

}

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

AD1PCFG = 0x00FF; // set B8-B15 as analog in, 0-7 as digital pins
TRISB = 0xFF0F; // set B4-B7 as digital outputs, 0-3 as digital inputs
ODCBSET = 0x00C0; // set ODCB bits 6 and 7, so RB6, RB7 are open drain outputs
CNPUEbits.CNPUE2 = 1; // CN2/RB0 input has internal pull-up
CNPUEbits.CNPUE3 = 1; // CN3/RB1 input has internal pull-up
CNPUEbits.CNPUE17 = 1; // CN17/RF4 input has internal pull-up

// due to errata internal pull-ups may not result in a logic 1

oldB = PORTB; // bits 0-3 are relevant input
oldF = PORTF; // pins of port F are inputs, by default
LATB = 0x0050; // RB4 is buffered high, RB5 is buffered low,

// RB6 is floating open drain (could be pulled to 3.3 V by
// external pull-up resistor), RB7 is low

__builtin_disable_interrupts(); // step 1: disable interrupts
CNCONbits.ON = 1; // step 2: configure peripheral: turn on CN
CNENbits.CNEN2 = 1; // Use CN2/RB0 as a change notification
CNENbits.CNEN17 = 1; // Use CN17/RF4 as a change notification
CNENbits.CNEN18 = 1; // Use CN18/RF5 as a change notification

IPC6bits.CNIP = 3; // step 3: set interrupt priority
IPC6bits.CNIS = 2; // step 4: set interrupt subpriority
IFS1bits.CNIF = 0; // step 5: clear the interrupt flag
IEC1bits.CNIE = 1; // step 6: enable the CN interrupt
__builtin_enable_interrupts(); // step 7: CPU enabled for mvec interrupts

while(1) {
; // infinite loop

}
return 0;

}

7.4 Chapter Summary

• The PIC32 has several DIO ports, labeled with the letters B through G. Only port B has all
16 pins. Almost every pin can be configured as a digital input or a digital output. Some
outputs can be configured to be open-drain.

• By default, port B inputs are configured as analog inputs. To use these pins as digital
inputs you must set the corresponding bits in AD1PCFG to one.

• Nineteen pins can be configured as change notification pins (CN0-CN18). For those pins
that are enabled as change notification pins, any change of input state generates an
interrupt. To re-enable the interrupt, the ISR should clear the IRQ flag and read the ports
with pins involved in the change notification.
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• The change notification pins offer an optional internal pull-up resistor so that the input
registers as high when it is left floating. These pull-up resistors can be used regardless of
whether change notification is enabled for the pin. The internal pull-up resistor allows
simple interfacing with push-buttons, for example.

7.5 Exercises
1. True or false? If an input pin is not connected to anything, it always reads digital low.
2. You are configuring port B to receive analog and digital inputs and to write digital output.

Here is how you would like to configure the port. (Pin x corresponds to RBx.)
• Pin 0 is an analog input.
• Pin 1 is a “typical” buffered digital output.
• Pin 2 is an open-drain digital output.
• Pin 3 is a “typical” digital input.
• Pin 4 is a digital input with an internal pull-up resistor.
• Pins 5-15 are analog inputs.
• Pin 3 is monitored for change notification, and the change notification interrupt is

enabled.
Questions:
a. Which digital pin would most likely have an external pull-up resistor? What would be

a reasonable range of resistances to use? Explain what factors set the lower bound on
the resistance and what factors set the upper bound on the resistance.

b. To achieve the configuration described above, give the eight-digit hex values you
should write to AD1PCFG, TRISB, ODCB, CNPUE, CNCON, and CNEN. (Some of
these SFRs have unimplemented bits 16-31; write 0 for those bits.)

Further Reading
PIC32 family reference manual. Section 12: I/O ports. (2011). Microchip Technology Inc.
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Counter/Timers

Counters count rising edges of a pulse train. The pulses may come from the internal peripheral
bus clock or external sources. If a fixed frequency clock produces the pulses, counters become
timers (the count represents a time). Therefore, the words “counter” and “timer” are often
used interchangeably. Because Microchip’s documentation refers to these devices as “timers,”
we adopt that terminology. Timers can generate interrupts after a preset number of pulses has
been counted or on the falling edge of an external pulse whose duration is being timed. These
timers differ from the core timer introduced in Chapter 5 because they are peripherals rather
than part of the MIPS32 CPU.

8.1 Overview

The PIC32 is equipped with five 16-bit peripheral timers named Timerx, where x is 1 to 5.
A timer increments on the rising edge of a clock signal, which may come from the PBCLK or
from an external source of pulses. The input for an external source for Timerx is pin TxCK.
For the 64-pin PIC32MX795F512H on the NU32 board, only Timer1 is equipped with a pin
for an external input (T1CK). The 100-pin version of this chip (the PIC32MX795F512L) has
an external input pin for all five timers.

A prescaler N ≥ 1 determines how many clock pulses must be received before the timer
increments. If the prescaler is set to N = 1, the timer increments on every clock rising edge; if
it is set to N = 8, it increments every eighth rising edge. The clock source type (internal or
external) and the prescaler value is chosen by setting the value of the SFR TxCON.

Each 16-bit timer can count from 0 up to a period P ≤ 216 − 1 = 65,535= 0xFFFF. The current
count is stored in the SFR TMRx and the value of P can be chosen by writing to the period
register SFR PRx. When the timer reaches the value P, a period match occurs, and after N
more pulses are received, the counter “rolls over” to 0. If the input to the timer is the 80 MHz
PBCLK, with 12.5 ns between rising edges, then the time between rollovers is
T = (P+ 1) × N × 12.5 ns. Choosing N = 8 and P = 9, 999, we get T = 1 ms, and changing
N to 64 gives T = 8 ms. By configuring the timer to use the PBCLK as input and to generate
an interrupt when a period match occurs, the timer can implement a function that runs at a
fixed frequency (a controller, for example) (see Figure 8.1).

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00008-1
Copyright © 2016 Elsevier Inc. All rights reserved. 123
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Figure 8.1
Simplified block diagram for a typical use of the 16-bit Timer2. The pulse train feeds a prescaler,

which produces one output pulse for every N input pulses (N = 1, 2, 4, 8, 16, 32, 64, or 256). The
TMR2 SFR stores the count of these pulses. TMR2 resets to zero on the first pulse in the reduced

pulse train after TMR2 matches the period register PR2. By default, PR2 is 0xFFFF, so TMR2 counts
up to 216 − 1 before rolling over to zero. Timers 3, 4, and 5 are similar to Timer 2, but Timer 1 can

only have prescaler values N = 1, 8, 64, or 256.

If the period P is zero, then once the count reaches zero it will never increment again (it keeps
rolling over). No interrupt can be generated by a period match if P = 0.

The PIC32 has two types of timers: Type A and Type B, each with slightly different features
(explained shortly). Timer1 is Type A and Timer2 to Timer5 are Type B. The timers can be
used in the following modes, chosen by the SFR TxCON:

Counting PBCLK pulses. In this mode, the timer counts PBCLK pulses, so the count
corresponds to an elapsed time. This mode is often used to generate interrupts at a
desired frequency by appropriate setting of N and P. It can also be used to time the
duration of code, like how we used the core timer in Chapter 5. A peripheral timer,
however, can increment once every N PBCLK cycles, including N = 1, not just every 2
SYSCLK cycles.

Synchronous counting of external pulses. For Timer1, an external pulse source is connected
to the pin T1CK. The timer count increments after each rising edge of the external
source. This mode is called “synchronous” because timer increments are synchronized to
the PBCLK; the timer does not actually increment until the first rising edge of PBCLK
after the rising edge of the external source. If the external pulses are too fast, the timer
will not accurately count them. According to the Electrical Characteristics section of the
Data Sheet, the duration of the high and low portions of a pulse should be at least 37.5 ns
each.

Asynchronous counting of external pulses (Type A Timer1 only). The Type A pulse
counting circuit can be configured to increment independently of the PBCLK, allowing it
to count even when the PBCLK is not operating, such as in the power-saving Sleep
mode. If a period match occurs, Timer1 can generate an interrupt and wake up the
PIC32. When used in asynchronous mode, the timer can count pulses with high and low
durations as low as 10 ns each.
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Timing the duration of an external pulse. Also called “gated accumulation mode.” For
Timer1, when the input on external pin T1CK goes high, the counter starts incrementing
according to the PBCLK and the prescaler N. When the input drops low, the count stops.
The timer can also generate an interrupt when the input drops low.

Important differences between Timer1 (Type A) and Timer2 to Timer5 (Type B) are:

• Only Timer1 can count external pulses on the PIC32MX795F512H.
• Timer1 can have prescalers N = 1, 8, 64, and 256, while Timer2 to Timer5 can have

prescalers N = 1, 2, 4, 8, 16, 32, 64, and 256.
• Timer2 and Timer3 can be chained together to make a single 32-bit timer, called Timer23.

Timer4 and Timer5 can similarly be used to make a single 32-bit timer, called Timer45.
These combined timers allow counts of up to 232 − 1, or over 4 billion. When two timers
are used to make Timerxy (x < y), Timerx is called the “master” and Timery is the
“slave”—only the prescaler and mode information in TxCON are relevant, while those
fields in TyCON are ignored. When Timerx rolls over from 216 − 1 to 0, it sends a clock
pulse to increment Timery. In Timerxy mode, the 16 bits of TMRy are also stored in the
most significant 16 bits of the SFR TMRx, so the 32 bits of TMRx contain the full count
of Timerxy. Similarly, the 32 bits of PRx contain the 32-bit period match value Pxy. The
interrupt associated with a period match (or a falling input in gated accumulation mode) is
actually generated by Timery, so interrupt settings should be chosen for Timery’s IRQ and
vector.

Timers are used in conjunction with digital waveform generation by the Output Compare
peripheral (Chapter 9) and in timing digital input waveforms by the Input Capture peripheral
(Chapter 15). A timer can also be used to repeatedly trigger analog to digital conversions
(Chapter 10).

8.2 Details

The following SFRs are associated with the timers. All SFRs default to 0x0000, except the
PRx SFRs, which default to 0xFFFF. First, we describe settings common to both Type A and
Type B timers.
TxCON, x = 1 to 5 The Timerx control SFR configures the behavior of Timerx. Important

bits common to both Type A and Type B timers include
TxCON〈15〉, or TxCONbits.ON: Enables and disables the timer.

1 Timerx enabled.
0 Timerx disabled.

TxCON〈7〉, or TxCONbits.TGATE: Sets gated accumulation mode, which can be used
to time the duration of an external pulse. In gated accumulation mode the timer
starts counting when an external signal goes high and stops when it goes low.
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1 Gated accumulation mode enabled.
0 Gated accumulation mode disabled.

Gated accumulation also requires TxCONbits.TCS = 0 (below).
TxCON〈1〉, or TxCONbits.TCS: Determines whether the timer uses an external clock

source or PBCLK. On the PIC32MX795F512H, only Timer1 has a pin for an
external clock source.

1 Timerx uses the signal on TxCK as an external pulse source.
0 PBCLK provides the pulse source.

The Type A timer, Timer1, also has the relevant fields:
T1CON The control register for Timer1. Has the same fields as above; here we describe the

fields specific to Timer1.
T1CON〈5:4〉, or T1CONbits.TCKPS: Sets the prescaler ratio. The prescaler determines

how many pulses are required to increment the timer count. Type A timers have
fewer prescaler ratios than Type B timers.
0b11 Prescaler of 1:256.
0b10 Prescaler of 1:64.
0b01 Prescaler of 1:8.
0b00 Prescaler of 1:1.

T1CON〈2〉, or T1CONbits.TSYNC: Determines whether external clock inputs are
synchronized to PBCLK. When synchronized, the timer counts external rising
edges on the PBCLK ticks. When asynchronous, every external pulse is registered
immediately (subject to timing requirements specified in the Data Sheet). Only
Type A timers can count pulses asynchronously.

1 External counting is synchronized.
0 External counting is asynchronous.

The Type B timers, Timer2 to Timer5, have their own type-specific TxCON fields.
TxCON, x = 2 to 5 Here we describe the fields in TxCON specific to Type B timers.

TxCON〈6:4〉, or TxCONbits.TCKPS: Sets the prescaler ratio. There are more choices
than for Type A timers.
0b111 Prescaler of 1:256.
0b110 Prescaler of 1:64.
0b101 Prescaler of 1:32.
0b100 Prescaler of 1:16.
0b011 Prescaler of 1:8.
0b010 Prescaler of 1:4.
0b001 Prescaler of 1:2.
0b000 Prescaler of 1:1.

TxCON〈3〉, or TxCONbits.T32: This bit is only relevant for x = 2 and 4 (Timer2 and
Timer4). When set, Timerx and Timery are chained together to make the 32 bit
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timer called Timerxy (y = x + 1). When in 32-bit mode, TyCON settings are ignored,
TMRy is enabled, and its clock value comes from the rollover of TMRx after it hits
0xFFFF. Interrupts are generated by Timery, but the timer’s full 32-bit value and
32-bit rollover count are accessed via TMRx and PRx. When TxCONbits.T32 is
zero, Timerx and Timery operate as independent 16-bit timers.

1 Use Timer23 (if x = 2) or Timer45 (if x = 4) as 32-bit timers.
0 User Timerx as a 16-bit timer.

The following SFRs apply to each Timerx, x = 1 to 5.
TMRx, x = 1 to 5 TMRx〈15:0〉 stores the 16-bit count of Timerx. TMRx resets to 0 on the

next count after TMRx reaches the number stored in PRx. This rollover process is called
a period match. In Timerxy 32-bit mode, TMRx contains the 32-bit value of the chained
timer, and period match occurs when TMRx =PRx.

PRx, x = 1 to 5 PRx〈15:0〉 contains the maximum value of the count of TMRx before it resets
to zero on the next count. An interrupt can be generated on this period match. In Timerxy
32-bit timer mode, PRx contains the 32-bit value of the period Pxy. Interrupts are
generated as if Timery triggered the interrupt.

The timer can generate an interrupt on the falling edge of the gate input when it is in gated
mode (TxCONbits.TCS= 0 and TxCONbits.TGATE= 1). Otherwise, it can generate an
interrupt whenever a period match occurs.

The relevant interrupt flags are shown in Table 8.1. To enable the interrupt for Timerx, the
interrupt enable bit IEC0bits.TxIE must be set. The interrupt flag bit IFS0bits.TxIF should be
cleared and the priority and subpriority bits IPCxbits.TxIP and IPCxbits.TxIS must be written.
In 32-bit Timerxy mode, interrupts are generated by Timery; interrupt settings for Timerx are
ignored.

Table 8.1: Vectors and bits relevant to timer interrupts

IRQ Source Vector Flag Enable Priority Subpriority
Timer1 4 IFS0〈4〉 IEC0〈4〉 IPC1〈4:2〉 IPC1〈1:0〉

_TIMER_1_VECTOR IFS0bits.T1IF IEC0bits.T1IE IPC1bits.T1IP IPC1bits.T1IS

Timer2 8 IFS0〈8〉 IEC0〈8〉 IPC2〈4:2〉 IPC2〈1:0〉
_TIMER_2_VECTOR IFS0bits.T2IF IEC0bits.T2IE IPC2bits.T2IP IPC2bits.T2IS

Timer3 12 IFS0〈12〉 IEC0〈12〉 IPC3〈4:2〉 IPC3〈1:0〉
_TIMER_3_VECTOR IFS0bits.T3IF IEC0bits.T3IE IPC3bits.T3IP IPC3bits.T3IS

Timer4 16 IFS0〈16〉 IEC0〈16〉 IPC4〈4:2〉 IPC4〈1:0〉
_TIMER_4_VECTOR IFS0bits.T4IF IEC0bits.T4IE IPC4bits.T4IP IPC4bits.T4IS

Timer5 20 IFS0〈20〉 IEC0〈20〉 IPC5〈4:2〉 IPC5〈1:0〉
_TIMER_5_VECTOR IFS0bits.T5IF IEC0bits.T5IE IPC5bits.T5IP IPC5bits.T5IS
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8.3 Sample Code

8.3.1 A Fixed Frequency ISR

To create a 5 Hz ISR with an 80 MHz PBCLK, the interrupt must be triggered every 16
million PBCLK cycles. The highest a 16-bit timer can count is 216 − 1. Instead of wasting two
timers to make a 32-bit timer with a prescaler N = 1, let us use a single 16-bit timer with a
prescaler N = 256. We shall use Timer1. We should choose PR1 to satisfy

16,000,000 = (PR1 + 1) x 256

that is, PR1 =62,499. The ISR in the following code toggles a digital output at 5 Hz, creating a
2.5 Hz square wave (a flashing LED on the NU32).

Code Sample 8.1 TMR_5Hz.c. Timer1 Toggles RF0 Five Times a Second (LED1 on the
NU32 Flashes).

#include "NU32.h" // constants, functions for startup and UART

void __ISR(_TIMER_1_VECTOR, IPL5SOFT) Timer1ISR(void) { // INT step 1: the ISR
LATFINV = 0x1; // toggle RF0 (LED1)
IFS0bits.T1IF = 0; // clear interrupt flag

}

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // INT step 2: disable interrupts at CPU
// INT step 3: setup peripheral

PR1 = 62499; // set period register
TMR1 = 0; // initialize count to 0
T1CONbits.TCKPS = 3; // set prescaler to 256
T1CONbits.TGATE = 0; // not gated input (the default)
T1CONbits.TCS = 0; // PCBLK input (the default)
T1CONbits.ON = 1; // turn on Timer1
IPC1bits.T1IP = 5; // INT step 4: priority
IPC1bits.T1IS = 0; // subpriority
IFS0bits.T1IF = 0; // INT step 5: clear interrupt flag
IEC0bits.T1IE = 1; // INT step 6: enable interrupt
__builtin_enable_interrupts(); // INT step 7: enable interrupts at CPU
while (1) {

; // infinite loop
}
return 0;

}

8.3.2 Counting External Pulses

The following code uses the 16-bit Timer1 to count the rising edges on the input T1CK. The
32-bit Timer45 creates an interrupt at 2 kHz to toggle a digital output, generating a 1 kHz

TMR_5Hz.c
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pulse train on RD1 that acts as input to T1CK. Although a 16-bit timer can certainly generate
a 2 kHz interrupt, we use a 32-bit timer just to show the configuration. In Chapter 9 we will
learn about the Output Compare peripheral, a better way to use a timer to create more flexible
waveforms.

To create an IRQ every 0.5 ms (2 kHz), we use a prescaler N = 1 and a period match
PR4= 39,999, so

(PR4 + 1) x N x 12.5 ns = 0.5 ms

The code below displays to your computer’s screen the amount of time that has elapsed since
the PIC32 was reset, in milliseconds. If you wait 65 s, you will see Timer1 roll over.

Code Sample 8.2 TMR_external_count.c. Timer45 Creates a 1 kHz Pulse Train on
RD1, and These External Pulses Are Counted by Timer1. The Elapsed Time Is
Periodically Reported Back to the Host Computer Screen.

#include "NU32.h" // constants, functions for startup and UART

void __ISR(_TIMER_5_VECTOR, IPL4SOFT) Timer5ISR(void) { // INT step 1: the ISR
LATDINV = 0x02; // toggle RD1
IFS0bits.T5IF = 0; // clear interrupt flag

}

int main(void) {
char message[200] = { };
int i = 0;

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
__builtin_disable_interrupts(); // INT step 2: disable interrupts

TRISDbits.TRISD1 = 0; // make D1 an output. connect D1 to T1CK (C14)!

// configure Timer1 to count external pulses.
// The remaining settings are left at their defaults

T1CONbits.TCS = 1; // count external pulses
PR1 = 0xFFFF; // enable counting to max value of 2ˆ16 - 1
TMR1 = 0; // set the timer count to zero
T1CONbits.ON = 1; // turn Timer1 on and start counting

// 1 kHz pulses with 2 kHz interrupt from Timer45
T4CONbits.T32 = 1; // INT step 3: set up Timers 4 and 5 as 32-bit Timer45
PR4 = 39999; // rollover at 40,000; 80MHz/40k = 2 kHz
TMR4 = 0; // set the timer count to zero
T4CONbits.ON = 1; // turn the timer on
IPC5bits.T5IP = 4; // INT step 4: priority for Timer5 (int goes with T5)
IFS0bits.T5IF = 0; // INT step 5: clear interrupt flag
IEC0bits.T5IE = 1; // INT step 6: enable interrupt
__builtin_enable_interrupts(); // INT step 7: enable interrupts at CPU

while (1) {
// display the elapsed time in ms

sprintf(message,"Elapsed time: %u ms\r\n", TMR1);
NU32_WriteUART3(message);

TMR_external_count.c
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for(i = 0; i < 10000000; ++i){// loop to delay printing
_nop(); // include nop so loop is not optimized away

}
}
return 0;

}

8.3.3 Timing the Duration of an External Pulse

In this last example we modify our previous code to use Timer45 to toggle the digital output
RD1 every 100 ms, creating a 5 Hz square wave. These pulses are timed by Timer1 in gated
accumulation mode. The accumulated count begins when the T1CK input from RD1 goes
high and stops when the T1CK input drops low. The falling edge triggers an ISR that displays
the Timer1 count to the screen and resets the timer. You should find that the measured time is
very close to 100 ms, as expected.

Code Sample 8.3 TMR_pulse_duration.c. Timer45 Creates a Series of 100 ms Pulses
on RD1. These Pulses Are Input to T1CK and Timer1 Measures Their Duration in
Gated Accumulation Mode.

#include "NU32.h" // constants, functions for startup and UART

void __ISR(_TIMER_5_VECTOR, IPL4SOFT) Timer5ISR(void) { // INT step 1: the ISR
LATDINV = 0x02; // toggle RD1
IFS0bits.T5IF = 0; // clear interrupt flag

}

void __ISR(_TIMER_1_VECTOR, IPL3SOFT) Timer1ISR(void) { // INT step 1: the ISR
char msg[100] = { };
sprintf(msg,"The count was %u, or %10.8f seconds.\r\n", TMR1, TMR1/312500.0);
NU32_WriteUART3(msg);
TMR1 = 0; // reset Timer1
IFS0bits.T1IF = 0; // clear interrupt flag

}

int main(void) {
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // INT step 2: disable interrupts

TRISDbits.TRISD1 = 0; // make D1 an output. connect D1 to T1CK (C14)

// INT step 3
T1CONbits.TGATE = 1; // Timer1 in gated accumulation mode
T1CONbits.TCKPS = 3; // 1:256 prescale ratio
T1CONbits.TCS = 0;
PR1 = 0xFFFF; // use the full period of Timer1
T1CONbits.TON = 1; // turn Timer1 on

T4CONbits.T32 = 1; // for T45: enable 32 bit mode Timer45
PR4 = 7999999; // set PR so timer rolls over at 10 Hz
TMR4 = 0; // initialize count to 0
T4CONbits.TON = 1; // turn Timer45 on

TMR_pulse_duration.c
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IPC5bits.T5IP = 4; // INT step 4: priority for Timer5 (int for Timer45)
IPC1bits.T1IP = 3; // priority for Timer1
IFS0bits.T5IF = 0; // INT step 5: clear interrupt flag for Timer45
IFS0bits.T1IF = 0; // clear interrupt flag for Timer1
IEC0bits.T5IE = 1; // INT step 6: enable interrupt for Timer45
IEC0bits.T1IE = 1; // enable interrupt for Timer1
__builtin_enable_interrupts(); // INT step 7: enable interrupts at the CPU

while (1) {
;

}
return 0;

}

8.4 Chapter Summary

• The PIC32 timers can be used to generate fixed-frequency interrupts, count external
pulses, and time the duration of external pulses. Additionally, the Type A Timer1 can
asynchronously count external pulses even when the PIC32 is in Sleep mode, while the
Type B timers Timer2 and Timer3 can be chained to make the 32-bit timer Timer23.
Similarly, Timer4 and Timer5 can be chained to make the 32-bit timer Timer45.

• For a 32-bit timer Timerxy, the timer configuration information in TxCON is used
(TyCON is ignored), and the interrupt enable, flag status, and priority bits are configured
for Timery (this information for Timerx is ignored). The 32-bit Timerxy count is held in
TMRx and the 32-bit period match value is held in PRx.

• A timer can generate an interrupt when either the external pulse being timed falls low
(gated accumulation mode) or the count reaches a value stored in a period register (period
match).

8.5 Exercises
1. Assume PBCLK is running at 80 MHz. Give the four-digit hex values for T3CON and

PR3 so that Timer3 is enabled, has a 1:64 prescaler, and rolls over (generates an interrupt)
every 16 ms.

2. Using a 32-bit timer (Timer23 or Timer45) to count rising edges from the 80 MHz
PBCLK, what is the longest duration you can time, in seconds, before the timer rolls
over? (Use the prescaler that maximizes this time.)

Further Reading
PIC32 family reference manual. Section 14: Timers. (2013). Microchip Technology Inc.



CHAPTER 9

Output Compare

The output compare (OC) peripheral sets the state of an output pin based on the value of a
timer. Output compare can be used to generate a single pulse of specified duration or a
continuous pulse train. Either mode of operation can generate an interrupt when the value of
the output pin changes.

Like most microcontrollers, the PIC32 cannot output an arbitrary analog voltage because it
lacks a true digital-to-analog converter (DAC) (see Chapter 16 for details about the PIC32’s
limited analog output capability). By generating a pulse train, the output compare can be used
to generate a time-based analog output. The analog value is proportional to the duty cycle of
the pulse train: the percentage of the period that the signal is high. Generating a signal whose
value is determined by the duty cycle is called “pulse width modulation” (PWM) (see Figure
9.1). High-frequency PWM signals can be low-pass filtered to create a true analog output.
PWM signals are also commonly used as input to H-bridge amplifiers that drive motors.

9.1 Overview

The PIC32’s five OC peripherals can be configured to operate in seven different modes.
In every mode, the module uses either the count of the 16-bit timer Timer2 or Timer3, or the
count of the 32-bit timer Timer23, depending on the OC control SFR OCxCON (where x = 1
to 5 refers to the particular output compare module). We call the timer used by an output
compare module Timery, where y = 2, 3, or 23. You must configure Timery with its own
prescaler and period register, which influences the OC peripheral’s behavior.

The OC peripheral’s operating modes consist of three “single compare” modes, two “dual
compare” modes, and two PWM modes. In the three single compare modes, the Timery count
TMRy is compared to the value in the OCx count SFR OCxR. In the “driven high” single
compare mode, the OCx output is initially driven low when OCx is enabled, and then
transitions to high when TMRy first matches OCxR. In the “driven low” single compare
mode, the OCx output is initially driven high and then transitions to low on the first TMRy
match. In the “toggle” single compare mode, the OCx output is initially driven low and then
toggles on each TMRy match. This toggle mode generates a continuous pulse train.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00009-3
Copyright © 2016 Elsevier Inc. All rights reserved. 133

http://dx.doi.org/10.1016/B978-0-12-420165-1.00009-3


134 Chapter 9

Period T

0.25 T
25% duty cycle

Figure 9.1
A PWM waveform. The duty cycle is the percentage of a period that the signal is high.

In the dual compare modes, TMRy is compared to two values, OCxR and OCxRS. When
TMRy matches OCxR the output is driven high, and when it matches OCxRS it is driven low.
Depending on a bit in OCxCON, either a single pulse or continuous pulse train is produced.

The two PWM modes create continuous pulse trains. Each pulse begins (is set high) at the
rollover of Timery, as set by the period register PRy. The output is then set low when the timer
count reaches OCxR. To change the value of OCxR, the user’s program may alter the value in
OCxRS at any time. This value will then be transferred to OCxR at the beginning of the new
time period. The duty cycle of the pulse train, as a percentage, is

duty cycle = OCxR/(PRy + 1) x 100%.

One of the two PWM modes offers the use of a fault protection input. If chosen, the OCFA
input pin (corresponding to OC1 through OC4) or the OCFB input pin (corresponding to
OC5) must be high for PWM to operate. If the pin drops to logic low, corresponding to some
external fault condition, the PWM output will be high impedance (like an open-drain output,
effectively disconnected) until the fault condition is removed and the PWM mode is reset by a
write to OCxCON.

9.2 Details

The output compare modules are controlled by the following SFRs. The OCxCON SFRs
default to 0x0000 on reset; the OCxR and OCxRS SFR values are unknown after reset.

OCxCON, x = 1 to 5 This output compare control SFR determines the operating mode
of OCx.
OCxCON〈15〉, or OCxCONbits.ON: Enables and disables the output compare module.

1 Output compare enabled.
0 Output compare disabled.

OCxCON〈5〉, or OCxCONbits.OC32: Determines which timer to use.
1 Use the 32-bit timer Timer23.
0 Use a 16-bit timer, either Timer2 or Timer3.

OCxCON〈4〉, or OCxCONbits.OCFLT: The read-only PWM fault condition status bit. If
a fault has occurred you must reset the PWM module by writing to
OCxCONbits.OCM (assuming the external fault condition has been removed).
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1 PWM fault has occurred.
0 No fault has occurred.

OCxCON〈3〉, or OCxCONbits.OCTSEL: This timer select bit chooses the timer used
for comparison. If using the 32-bit Timer23, then this bit is ignored.

1 Use Timer3.
0 Use Timer2.

OCxCON〈2:0〉, or OCxCONbits.OCM: These three bits determine the operating mode:
0b111 PWM mode with fault pin enabled. OCx is set high on the timer rollover, then

set low when the timer value matches OCxR. The SFR OCxRS can be altered
at any time, and its value is copied to OCxR at the beginning of the next timer
period.1 The duty cycle of the PWM signal is

OCxR/(PRy + 1) × 100%, (9.1)

where PRy is the period register of the timer.
If the fault pin (OCFA for OC1-OC4 and OCFB for OC5) drops low, the
read-only fault status bit OCxCONbits.OCFLT is set to 1, the OCx output is set
to high impedance, and an interrupt is generated if the interrupt enable bit is set.
The fault condition is cleared and PWM resumes once the fault pin goes high
and the OCxCONbits.OCM bits are rewritten.
You can use the fault pin with an Emergency Stop button that is normally high
but drops low when the user presses it. If the OCx output is driving an H-bridge
that powers a motor, setting the OCx output to high impedance will signal the
H-bridge to stop sending current to the motor. An emergency stop button will
likely have other requirements (such as also physically cutting power to the
motor), depending on your application.

0b110 PWM mode with fault pin disabled. Identical to above, except without the
fault pin.

0b101 Dual compare mode, continuous output pulses. When the module is enabled,
OCx is driven low. OCx is driven high on a match with OCxR and driven low
on a match with OCxRS. The process repeats, creating an output pulse train.
An interrupt can be generated when OCx is driven low.

0b100 Dual compare mode, single output pulse. Same as above, except the OCx pin
will remain low after the match with OCxRS until the OC mode is changed or
the module is disabled.

0b011 Single compare mode, continuous pulse train. When the module is enabled,
OCx is driven low. The output is toggled on all future matches with OCxR,
until the mode is changed or the module disabled. Each toggle can generate an
interrupt.

1 Initialize OCxR before enabling the OC module to handle the first PWM cycle. After enabling the OC module,
OCxR is read-only.
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0b010 Single compare mode, single high pulse. When the module is enabled, OCx is
driven high. OCx will be driven low and an interrupt optionally generated on a
match with OCxR. OCx remains low until the mode is changed or the module
disabled.

0b001 Single compare mode, single low pulse. When the module is enabled, OCx is
driven low. OCx will be driven high and an interrupt optionally generated on a
match with OCxR. OCx will remain high until the mode is changed or the
module disabled.

0b000 The output compare module is disabled but still drawing current, unless
OCxCONbits.ON = 0.

OCxR, x = 1 to 5 If OCxCONbits.OC32 = 1, then all 32-bits of OCxR are compared against
Timer23’s 32-bit count. Otherwise, only OCxR〈15:0〉 is compared to the 16-bit count of
Timer2 or Timer3, depending on OCxCONbits.OCTSEL.

OCxRS, x = 1 to 5 In dual compare mode, if OCxCONbits.OC32 = 1, then all 32-bits of
OCxRS are compared against Timer23’s 32-bit count. Otherwise, only OCxRS〈15:0〉 is
compared to the 16-bit counter Timer2 or Timer3, depending on OCxCONbits.OCTSEL.
In PWM mode, the value of this register is transferred into OCxR at the beginning of each
period; therefore, modifying this register sets the next duty cycle. This SFR is unused in
the single compare modes.

Timer2, Timer3, or Timer23 (depending on OCxCONbits.OC32 and OCxCONbits.OCTSEL)
must be separately configured. Output compare modules do not affect the behavior of the
timers; they simply compare the timer count to values in OCxR and OCxRS and alter the
digital output OCx on match events.

The interrupt flag status and enable bits for OCx are IFS0bits.OCxIF and IEC0bits.OCxIE,
and the priority and subpriority bits are IPCxbits.OCxIP and IPCxbits.OCxIS.

PWM modes

The Output Compare modes you are most likely to use are the PWMmodes. They can be used
to drive H-bridges powering motors or to continuously transmit analog values represented by
the duty cycle. Microchip often equates “duty cycle” to the duration OCxR of the high portion
of the PWM waveform, but it is more standard to refer to the duty cycle as a percentage, 0 to
100%. A plot of a PWM waveform is shown in Figure 9.2.

9.3 Sample Code

9.3.1 Generating a Pulse Train with PWM

Below is sample code using OC1 with Timer2 to generate a 10 kHz PWM signal, initially at
25% duty cycle and then changed to 50% duty cycle. The fault pin is not used.
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OCxR

1 2 1 2

Timery rolls over, the TyIF interrupt flag is asserted, the OCx pin is driven high,
and OCxRS is loaded into OCxR.

TMRy matches the value in OCxR and the OCx pin is driven low.

1

2

OCx
output

Duty cycle = 100% * OCxR / (PRy + 1)

PRy + 1

Figure 9.2
A PWM waveform from OCx using Timery as the time base.

Code Sample 9.1 OC_PWM.c. Generating 10 kHz PWM with 50% Duty Cycle.

#include "NU32.h" // constants, functions for startup and UART

int main(void) {
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

T2CONbits.TCKPS = 2; // Timer2 prescaler N=4 (1:4)
PR2 = 1999; // period = (PR2+1) * N * 12.5 ns = 100 us, 10 kHz
TMR2 = 0; // initial TMR2 count is 0
OC1CONbits.OCM = 0b110; // PWM mode without fault pin; other OC1CON bits are defaults
OC1RS = 500; // duty cycle = OC1RS/(PR2+1) = 25%
OC1R = 500; // initialize before turning OC1 on; afterward it is read-only
T2CONbits.ON = 1; // turn on Timer2
OC1CONbits.ON = 1; // turn on OC1

_CP0_SET_COUNT(0); // delay 4 seconds to see the 25% duty cycle on a ’scope
while(_CP0_GET_COUNT() < 4 * 40000000) {

;
}
OC1RS = 1000; // set duty cycle to 50%
while(1) {

; // infinite loop
}
return 0;

}

9.3.2 Analog Output

DC analog output

Low-pass filtering a high-frequency, constant duty cycle PWM signal can create an
approximately constant analog output. The low-pass filter essentially time-averages the high
and low voltages of the waveform,

average voltage = duty cycle * 3.3 V

OC_PWM.c
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assuming that the output compare module swings between 0 and 3.3 V (the range may
actually be a bit less).

There are many ways to build circuits to low-pass filter a signal, including active filter circuits
using op amps. Here we focus on a simple passive RC filter, shown in Figure 9.3 and
described in Appendix B.2. The voltage VC across the capacitor C is the output of the filter.
When R is zero, the output compare module attempts to source or sink enough current to allow
the capacitor voltage to exactly track the nominal PWM square wave, and there is no
“averaging” effect. As the resistance R is increased, however, the resistor increasingly limits
the current I available to charge or discharge the capacitor, meaning that the capacitor’s
voltage changes more and more slowly, according to the relationship dVC/dt = I/C.

The charging and discharging of the capacitor, and its relationship to the product RC, is shown
in Figure 9.4. RC low-pass filters are discussed in more detail in Appendix B.2.

In Figure 9.4, the RC filter voltage variation during one PWM cycle is rather large. To reduce
this variation, we would choose a larger product RC by increasing the resistance R and/or
capacitance C. The drawback of a large RC is that the filter’s average output voltage changes
slowly in response to a change in the PWM duty cycle. While this is not an issue if the desired

OC3
R C

RC filter
“averaged”

output voltage

PWM waveform

Figure 9.3
An RC low-pass filter “averaging” the PWM output from OC3.

PWM

RC time constant

RC filtered output

Figure 9.4
A close-up of the PWM, the RC filter output (with RC charging/discharging time constant

illustrated), and the true time-averaged output (dashed). If the variation in the RC filtered output is
unacceptably large, a larger value of RC should be chosen.
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analog voltage is DC (constant), it is an issue if we want the analog voltage to vary in time, as
discussed below.

The PWM OCxR value can range from 0 to PRy+ 1, where PRy is the period register of the
Timery base for the OCx module. This means that PRy + 2 different average voltage levels are
achievable.

Code Sample 9.2 generates a PWM signal at 78.125 kHz with a duty cycle determined by
OC3R in the range 0-1024. The timer base is Timer2. With an RC filter with a suitably large
time constant attached to OC3, the voltage across the capacitor reflects the DC analog voltage
requested by the user.

Code Sample 9.2 OC_analog_out.c. Using Timer2, OC3, and an RC Low-pass Filter
to Create Analog Output.

#include "NU32.h" // constants, functions for startup and UART

#define PERIOD 1024 // this is PR2 + 1
#define MAXVOLTAGE 3.3 // corresponds to max high voltage output of PIC32

int getUserPulseWidth(void) {
char msg[100] = {};
float f = 0.0;

sprintf(msg, "Enter the desired voltage, from 0 to %3.1f (volts): ", MAXVOLTAGE);
NU32_WriteUART3(msg);

NU32_ReadUART3(msg,10);
sscanf(msg, "%f", &f);

if (f > MAXVOLTAGE) { // clamp the input voltage to the appropriate range
f = MAXVOLTAGE;

} else if (f < 0.0) {
f = 0.0;

}

sprintf(msg, "\r\nCreating %5.3f volts.\r\n", f);
NU32_WriteUART3(msg);
return PERIOD * (f / MAXVOLTAGE); // convert volts to counts

}

int main(void) {
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

PR2 = PERIOD - 1; // Timer2 is OC3’s base, PR2 defines PWM frequency, 78.125 kHz
TMR2 = 0; // initialize value of Timer2
T2CONbits.ON = 1; // turn Timer2 on, all defaults are fine (1:1 divider, etc.)
OC3CONbits.OCTSEL = 0; // use Timer2 for OC3
OC3CONbits.OCM = 0b110; // PWM mode with fault pin disabled
OC3CONbits.ON = 1; // Turn OC3 on
while (1) {

OC3RS = getUserPulseWidth();
}
return 0;

}

OC_analog_out.c
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Time-varying analog output

Suppose we want to create a sinusoidal analog output voltage, such as

Va(t) = 1.65 V + A sin(2π fat),

by changing the duty cycle of the PWM. The frequency of this desired analog output is fa.
Now we have three relevant frequencies: the PWM frequency fPWM, the RC filter cutoff
frequency fc = 1/(2πRC) (Appendix B.2.2), and the desired analog voltage frequency fa.
Examining the frequency response of the low-pass RC filter in Figure B.9(a), we can adopt the
following rules of thumb for choosing these three frequencies:

• fPWM ≥ 100fc: The PWM waveform consists of a DC component, a base frequency at
fPWM, and higher harmonics to create the square wave output. According to the gain
response of the filter, only about 1% of the magnitude of the PWM frequency component
at 100fc makes it through the RC filter.

• fc ≥ 10fa: Again consulting the RC filter frequency response, we see that signals at
frequencies ten times less than fc are relatively unaffected by the RC filter: the phase delay
is only a few degrees and the gain is nearly 1.

For example, if the PWM is at 100 kHz, then we might choose an RC filter cutoff frequency of
1 kHz, and the highest frequency analog output we should expect to be able to create would be
100 Hz. In other words, we can vary the PWM duty cycle through a full sinusoid (e.g., from
50% duty cycle to 100% duty cycle to 0% duty cycle and back to 50% duty cycle) 100 times
per second.2 If the desired analog output is not sinusoidal, then it should be a sum of signals at
frequencies less than 100 Hz.

The maximum possible PWM frequency is determined by the 80 MHz PBCLK and the
number of bits of resolution we require for the analog output. For example, if we want 8 bits
of resolution in the analog output levels, this means we need 28 = 256 different PWM duty
cycles. Therefore the maximum PWM frequency is 80 MHz/256 = 312.5 kHz.3 On the other
hand, if we require 210 = 1024 voltage levels, the maximum PWM frequency is 78.125 kHz.
Thus there is a fundamental trade-off between the voltage resolution and the maximum PWM
frequency (and therefore the maximum analog output frequency fa). While higher resolution
analog output is generally desirable, there are limits to the value of increasing resolution
beyond a certain point, because the device receiving the analog input may have a limit to its
analog input sensing resolution and the transmission lines for the analog signal may be subject
to electromagnetic noise that creates voltage variations larger than the analog output
resolution.

2 Note that this creates a signal that is the sum of a 100 Hz sinusoid with a duty cycle amplitude equal to 50% plus
a DC (zero frequency) component of amplitude equal to 50% duty cycle.

3 Technically this yields 257 possible duty cycle levels, since OCxR = 0 corresponds to 0% duty cycle and
OCxR = 256 corresponds to 100% duty cycle.
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9.4 Chapter Summary

• Output compare modules pair with Timer2, Timer3, or the 32-bit Timer23 to generate a
single timed pulse or a continuous pulse train with controllable duty cycle.
Microcontrollers commonly control motors using pulse-width modulation (PWM) to
drive H-bridge amplifiers that power the motors.

• Low-pass filtering of PWM signals, perhaps using an RC filter with a cutoff frequency
fc = 1/(2πRC), allows the generation of analog outputs. There is a fundamental tradeoff
between the resolution of the analog output and the maximum possible frequency
component fa of the generated analog signal. If the PWM frequency is fPWM, then
generally the frequencies should satisfy fPWM � fc � fa.

9.5 Exercises
1. Enforce the constraints fPWM ≥ 100fc and fc ≥ 10fa. Given that PBCLK is 80 MHz,

provide a formula for the maximum fa given that you require n bits of resolution in your
DC analog voltage outputs. Provide a formula for RC in terms of n.

2. You will use PWM and an RC low-pass filter to create a time-varying analog output
waveform that is the sum of a constant offset and two sinusoids of frequency f and kf ,
where k is an integer greater than 1. The PWM frequency will be 10 kHz and f satisfies
50 Hz ≥ f ≥ 10 Hz. Use OC1 and Timer2 to create the PWM waveform, and set PR2 to
999 (so the PWM waveform is 0% duty cycle when OC1R = 0 and 100% duty cycle when
OC1R= 1000). You can break this program into the following pieces:
a. Write a function that forms a sampled approximation of a single period of the

waveform

Vout(t) = C + A1 sin(2π ft) + A2 sin(2πkft + φ),

where the constant C is 1.65 V (half of the full range 0 to 3.3 V), A1 is the
amplitude of the sinusoid at frequency f , A2 is the amplitude of the sinusoid at
frequency kf , and φ is the phase offset of the higher frequency component. Typically
values of A1 and A2 would be 1 V or less so the analog output is not saturated at 0 or
3.3 V. The function takes f , A1, k, A2, and φ as input and creates an array dutyvec, of
appropriate length, where each entry is a value 0 to 1000 corresponding to the voltage
range 0 to 3.3 V. Each entry of dutyvec corresponds to a time increment of
1/10 kHz = 0.1 ms, and dutyvec holds exactly one cycle of the analog waveform,
meaning that it has n = 10 kHz/f elements. A MATLAB implementation is given
below. You can experiment plotting waveforms or just use the function for reference.
A reasonable call of the function is signal(20, 0.5, 2, 0.25, 45), where the phase
45 is in degrees. An example waveform is shown in Figure 9.5.
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Figure 9.5
An example analog output waveform from Exercise 2, plotted as the duration 0 to 1000 of the high

portion of the PWM waveform, which has a period of 1000.

function signal(BASEFREQ,BASEAMP,HARMONIC,HARMAMP,PHASE)

% This function calculates the sum of two sinusoids of different
% frequencies and populates an array with the values. The function
% takes the arguments
%
% * BASEFREQ: the frequency of the low frequency component (Hz)
% * BASEAMP: the amplitude of the low frequency component (volts)
% * HARMONIC: the other sinusoid is at HARMONIC*BASEFREQ Hz; must be
% an integer value > 1
% * HARMAMP: the amplitude of the other sinusoid (volts)
% * PHASE: the phase of the second sinusoid relative to
% base sinusoid (degrees)
%
% Example matlab call: signal(20,1,2,0.5,45);

% some constants:

MAXSAMPS = 1000; % no more than MAXSAMPS samples of the signal
ISRFREQ = 10000; % frequency of the ISR setting the duty cycle; 10kHz

% Now calculate the number of samples in your representation of the
% signal; better be less than MAXSAMPS!

numsamps = ISRFREQ/BASEFREQ;
if (numsamps>MAXSAMPS)
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disp(’Warning: too many samples needed; choose a higher base freq.’);
disp(’Continuing anyway.’);

end
numsamps = min(MAXSAMPS,numsamps); % continue anyway

ct_to_samp = 2*pi/numsamps; % convert counter to time
offset = 2*pi*(PHASE/360); % convert phase offset to signal counts

for i=1:numsamps % in C, we should go from 0 to NUMSAMPS-1
ampvec(i) = BASEAMP*sin(i*ct_to_samp) + ...

HARMAMP*sin(HARMONIC*i*ct_to_samp + offset);
dutyvec(i) = 500 + 500*ampvec(i)/1.65; % duty cycle values,

% 500 = 1.65 V is middle of 3.3V
% output range

if (dutyvec(i)>1000) dutyvec(i)=1000;
end
if (dutyvec(i)<0) dutyvec(i)=0;
end

end

% ampvec is in volts; dutyvec values are in range 0...1000

plot(dutyvec);
hold on;
plot([1 1000],[500 500]);
axis([1 numsamps 0 1000]);
title([’Duty Cycle vs. sample #, ’,int2str(BASEFREQ),’ Hz’]);
hold off;

b. Write a function using the NU32 library that prompts the user for A1, A2, k, f , and φ.
The array dutyvec is then updated based on the input.

c. Use Timer2 and OC1 to create a PWM signal at 10 kHz. Enable the Timer2 interrupt,
which generates an IRQ at every Timer2 rollover (10 kHz). The ISR for Timer2
should update the PWM duty cycle with the next entry in the dutyvec array. When the
last element of the dutyvec array is reached, wrap around to the beginning of
dutyvec. Use the shadow register set for the ISR.

d. Choose reasonable values for RC for your RC filter. Justify your choice.
e. The main function of your program should sit in an infinite loop, asking the user for

new parameters. In the meantime, the old waveform continues to be “played” by the
PWM. For the values given in Figure 9.5, use your oscilloscope to confirm that your
analog waveform looks correct.

Further Reading
PIC32 family reference manual. Section 16: Output compare. (2011). Microchip Technology Inc.
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Analog Input

The PIC32 has one analog-to-digital converter (ADC) that, through the use of multiplexers,
can sample the analog voltage from 16 pins (Port B). Typically used with sensors that produce
analog voltages, the ADC can capture nearly one million readings per second. The ADC has
10-bit resolution, which means it distinguishes 210 = 1024 voltage values, usually in the range
from 0 to 3.3 V, yielding approximately 3 mV resolution. For higher resolution analog inputs,
you can use an external chip and communicate with it using SPI (Chapter 12) or I2C
(Chapter 13).

10.1 Overview

Analog to digital conversion is a multi-step process. First the voltage on the appropriate pin
must be routed to an internal differencing amplifier, which outputs the difference between the
pin voltage and a reference voltage. Next, the voltage difference is sampled and held by an
internal capacitor. Finally, the ADC converts the voltage on the capacitor into a 10-bit binary
number.

Figure 10.1 shows a block diagram of the ADC, adapted from the Reference Manual. First we
must determine which signals feed the differencing amp, which is located near the middle of
Figure 10.1. Control logic (determined by SFRs) selects the differencing amp’s + input from
the analog pins AN0 to AN15 and the − input from either AN1 or VREFL, a selectable
reference voltage.1 For proper operation, the − input voltage VINL should be less than or
equal to the + input voltage VINH.

The differencing amp sends the difference of the two input voltages, VSHA = VINH −VINL, to
the Sample and Hold Amplifier (SHA). During the sampling (or acquisition) stage, a 4.4 pF
internal holding capacitor charges or discharges to hold the voltage difference VSHA. Once the
sampling period has ended, the SHA is disconnected from the inputs, allowing VSHA to
remain constant during the conversion stage, even if the input voltages change.

1 This reference VREFL can be chosen to be either VREF-, a voltage provided on an external pin, or AVSS, the
PIC32’s GND line, also known as VSS.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00010-X
Copyright © 2016 Elsevier Inc. All rights reserved. 145
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Figure 10.1
A simplified schematic of the ADC module.

The Successive Approximation Register (SAR) converts VSHA to a 10-bit result depending on
the low (VREFL) and high (VREFH) reference voltages: 1024 × VSHA/(VREFH − VREFL),
rounded to the nearest integer between 0 and 1023. (See the Reference Manual for more
details on the ADC transfer function.) The 10-bit conversion result is written to the buffer
ADC1BUF which is read by your program. If you do not read the result right away,
ADC1BUF can store up to 16 results (in the SFRs ADC1BUF0, ADC1BUF1, …,
ADC1BUFF) before the ADC begins overwriting old results.2

Sampling and conversion timing

The two main stages of an ADC read are sampling/acquisition and conversion. During the
sampling stage, we must allow sufficient time for the internal holding capacitor to converge to
the difference VINH − VINL. According to the Electrical Characteristics section of the Data
Sheet, this time is 132 ns when the SAR ADC uses the external voltage references VREF- and

2 The ADC1BUFx buffers are not contiguous in memory. Each buffer is four bytes long, but they are 16 bytes
apart.
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VREF+ as its low and high references. The minimum sampling time is 200 ns when using AVSS

and AVDD as the low and high references.

Once the sampling stage finishes, the SAR begins the conversion process, using successive
approximation to find the digital representation of the voltage. This method uses a binary
search, iteratively comparing VSHA to test voltages produced by an internal digital-to-analog
converter (DAC). The DAC converts 10-bit numbers into test voltages between VREFL and
VREFH: 0x000 produces VREFL and 0x3FF produces VREFH. During the first iteration, the
DAC’s test value is 0x200= 0b1000000000, which produces a voltage in the middle of the
reference voltage range. If VSHA is greater than this DAC voltage, the first result bit is one,
otherwise it is zero. On the second cycle, the DAC’s most significant bit is set to the first test’s
result and the second most significant bit is set to 1. The comparison is performed and the
second result bit determined. The process continues until all 10 bits of the result are
determined. The entire process requires 10 cycles, plus 2 more, for a total of 12 ADC clock
cycles.

The ADC clock is derived from PBCLK. According to the Electrical Characteristics section of
the Data Sheet, the ADC clock period (Tad) must be at least 65 ns to allow enough time to
convert a single bit. The ADC SFR AD1CON3 allows us to choose the ADC clock period as
2 × k × Tpb, where Tpb is the PBCLK period and k is any integer from 1 to 256. Since Tpb is
12.5 ns for the NU32, to meet the 65 ns specification, the smallest value we can choose is
k = 3, or Tad = 75 ns.

The minimum time between samples is the sum of the sampling time and the conversion time.
If configured to sample automatically, we must choose the sampling time to be an integer
multiple of Tad. The shortest time we can choose is 2 × Tad = 150 ns to satisfy the 132 ns
minimum sampling time. Thus the fastest we can read from an analog input is

minimum read time = 150 ns + 12 * 75 ns = 1050 ns

or just over 1 µs. We can, theoretically, read the ADC at almost one million samples per
second (1MHz).

Multiplexers

Two multiplexers determine which analog input pins to connect to the differencing amp.
These two multiplexers are called MUX A and MUX B. MUX A is the default active
multiplexer, and the SFR AD1CON3 contains CH0SA bits that determine which of AN0 to
AN15 is connected to the + input and CH0NA bits that determine which of AN1 and VREF- is
connected to the − input. It is possible to alternate between MUX A and MUX B, but you are
unlikely to need this feature.
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Options

The ADC peripheral provides a bewildering array of options, some of which are described
here. No need to remember them all! The sample code provides a good starting point.

• Data format: The result of the conversion is stored in a 32-bit word, and it can be
represented as a signed integer, unsigned integer, fractional value, etc. Typically we use
either 16-bit or 32-bit unsigned integers.

• Sampling and conversion initiation events: Sampling can be initiated by a software
command or immediately after the previous conversion has completed (auto sample).
Conversion can be initiated by a software command, the expiration of a specified sampling
period (auto convert), a period match with Timer3, or a signal change on the INT0 pin. If
sampling and conversion happen automatically (i.e., not through software commands), the
conversion results are placed in the ADC1BUF at successively higher addresses
(ADC1BUF0 to ADC1BUFF) before returning to the first address in ADC1BUF.

• Input scan and alternating modes: You can read one analog input at a time, scan through a
list of inputs (using MUX A), or alternate between two inputs (one from MUX A and one
from MUX B).

• Voltage reference: The ADC normally uses reference voltages of 0 and 3.3 V (the power
rails of the PIC32); therefore, a reading of 0x000 corresponds to 0 V and a reading of
0x3FF corresponds to 3.3 V. If you are interested in a different voltage range—say 1.0 V
to 2.0 V—you can configure the ADC so that 0x000 corresponds to 1.0 V and 0x3FF
corresponds to 2.0 V, giving you better resolution: (2 V− 1 V)/1024 = 1 mV resolution.
You supply alternate voltage references on pins VREF- and VREF+. The voltages provided
must be between 0 and 3.3 V.

• Unipolar differential mode: Any of the analog inputs ANx (x= 2 to 15, e.g., AN5) can be
compared to AN1, allowing you to read the voltage difference between ANx and AN1.
The voltage on ANx should be greater than the voltage on AN1.

• Interrupts: An interrupt may be generated after a specified number of conversions. The
number of conversions per interrupt also determines which ADC1BUFx buffer is used,
even if you do not enable the interrupt. Conversion results are placed in successively
higher numbered ADC1BUFx buffers (i.e., the first conversion goes in ADC1BUF0, the
next in ADC1BUF1, etc.). When the interrupt triggers, the current buffer wraps around to
ADC1BUF0 (or, in dual buffer mode, ADC1BUF8, see below). So if you set the ADC to
interrupt on every conversion (the default), the results will always be stored in
ADC1BUF0.

• ADC clock period: The ADC clock period Tad can range from 2 times the PB clock
period up to 512 times the PB clock period, in integer multiples of two. Tad must be long
enough to convert a single bit (65 ns according to the Electrical Characteristics section of
the Data Sheet). You may also choose Tad to be the period of the ADC internal
RC clock.
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• Dual buffer mode: When an ADC conversion finishes, the result is written into the output
buffer ADC1BUFx (x= 0x0 to 0xF). The ADC can be configured to write a series of
conversions into a sequence of output buffers. The first conversion is stored in
ADC1BUF0, the second in ADC1BUF1, etc. After a series of conversions, an interrupt
flag is set, indicating that the results are available for the program to read. The next set of
conversions starts over at ADC1BUF0; if the program is slow to read the results, the next
conversions may overwrite the previous results. To help with this scenario, the 16
ADC1BUFx buffers can be split into two 8-word groups: one in which the current
conversions are written, and one from which the program should read the results. The first
conversion sequence starts writing at ADC1BUF0, the next starts at ADC1BUF8, and the
starting buffers alternate from there.

10.2 Details

The operation of the ADC peripheral is determined by the following SFRs, all of which
default to all zeros on reset.

AD1PCFG Only the least significant 16 bits are relevant. If a bit is 0, the associated pin on
port B is configured as an analog input. If a bit is 1, it is digital I/O. The analog input pins
AN0 to AN15 correspond to the port B pins RB0 to RB15.

AD1CON1 One of three main ADC control registers: controls the output format and
conversion and sampling methods.
AD1CON1〈15〉 or AD1CON1bits.ON: Enables and disables the ADC.

1 The ADC is enabled.
0 The ADC is disabled.

AD1CON1〈10:8〉 or AD1CON1bits.FORM: Determines the data output format. We
usually use either
0b100 32-bit unsigned integer
0b000 16-bit unsigned integer (the default).

AD1CON1〈7:5〉 or AD1CON1bits.SSRC: Determines what begins the conversion
process. The two most common methods are
0b111 Auto conversion. The conversion begins as soon as sampling ends. Hardware

automatically clears AD1CON1bits.SAMP to begin the conversion.
0b000 Manual conversion. You must clear AD1CONbits.SAMP to start the

conversion.
AD1CON1〈2〉 or AD1CON1bits.ASAM: Determines whether another sample occurs

immediately after conversion.
1 Use auto sampling. Sampling starts after the last conversion is finished.

Hardware automatically sets AD1CON1bits.SAMP.
0 Use manual sampling. Sampling begins when the user sets

AD1CON1bits.SAMP.
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AD1CON1〈1〉 or AD1CON1bits.SAMP: Indicates whether the sample and hold
amplifier (SHA) is sampling or holding. When auto sampling is disabled
(AD1CON1bits.ASAM=0), set this bit to initiate sampling. When using manual
conversion (AD1CON1bits.SSRC= 0) clear this bit to zero to start conversion.

1 The SHA is sampling. Setting this bit initiates sampling when in manual
sampling mode (AD1CON1bits.ASAM=0).

0 The SHA is holding. Clearing this bit begins conversion when in manual
conversion mode (AD1CON1bits.SSRC= 0).

AD1CON1〈0〉 or AD1CON1bits.DONE: Indicates whether a conversion is occurring.
When using automatic sampling, hardware clears this bit automatically.

1 The analog-to-digital conversion is finished.
0 The analog-to-digital conversion is either pending or has not begun.

AD1CON2 Determines voltage reference sources, input pin selections, and the number of
conversions per interrupt.
AD1CON2〈15:13〉 or AD1CON2bits.VCFG: Determines the voltage reference sources

for the VREFH and VREFL inputs to the SAR. These references determine what voltage
a given reading corresponds to: 0x000 corresponds to VREFL and 0x3FF corresponds
to VREFH.
0b000 Use the internal references: VREFH is 3.3 V and VREFL is 0 V.
0b001 Use an external reference for VREFH and an internal reference for VREFL:

VREFH is the voltage on the VREF+ pin and VREFL is 0 V.
0b010 Use an internal reference for VREFH and an external reference for VREFL:

VREFH is 3.3 V and VREFL is the voltage on the VREF− pin.
0b011 Use external references: VREFH is the voltage on the VREF+ pin and VREFL is

the voltage on the VREF− pin.
AD1CON2〈10〉 or AD1CON2bits.CSNA: Control scanning of inputs. The pins to scan

are selected by AD1CSSL.
1 Scan inputs. Each subsequent sample will be from a different pin, selected by

AD1CSSL, wrapping around to the beginning when the last pin is reached.
0 Do not scan inputs. Only one input is used.

AD1CON2〈7〉 or AD1CON2bits.BUFS: Used only in split buffer mode
(AD1CON2bits.BUFM=1). Indicates which buffer the ADC is currently filling.

1 The ADC is filling buffers ADC1BUF8 to ADC1BUFF, so the user should
read from buffers ADC1BUF0 to ADC1BUF7.

0 The ADC is filling buffers ADC1BUF0 to ADC1BUF7, so the user should
read from buffers ADC1BUF8 to ADC1BUFF.

AD1CON2〈5:2〉 or AD1CON2bits.SMPI: The number of sample/conversion
sequences per interrupt is AD1CON2bits.SMPI + 1. In addition to determining when
the interrupt occurs, these bits also determine how many conversions must occur
before the ADC starts storing data in the first buffer (or the alternate first buffer when
AD1CON2bits.BUFM=1). For example, if AD1CON2bits.SMPI = 1 then there will
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be two conversions per interrupt. The first conversion will be stored in AD1BUF0 and
the second in AD1BUF1. After the second conversion the ADC interrupt flag will be
set. The next conversion will be stored in AD1BUF0 if AD1CON2bits.BUFM=0 or
AD1BUF8 if AD1CON2bits.BUFM=1.

AD1CON2〈1〉 or AD1CON2bits.BUFM: Determines if the ADC buffer is split into two
8-word buffers or is used as a single 16-word buffer.

1 The ADC buffer is split into two 8-word buffers, ADC1BUF0 to ADC1BUF7
and ADC1BUF8 to ADC1BUFF. Data is alternatively stored in the lower and
upper buffers, every AD1CON2bits.SMPI + 1 sample/conversion sequences.

0 The ADC buffer is used as a single 16 word buffer, ADC1BUF0 to
ADC1BUFF.

AD1CON3 Controls settings for the ADC clock and other ADC timing settings. Determines
Tad, the ADC clock period.
AD1CON3〈12:8〉 or AD1CON3bits.SAMC: Determines the length of auto sampling

time, in Tad. Can be set anywhere from 1 Tad to 31 Tad; however, sampling requires
at least 132 ns.

AD1CON3〈7:0〉 or AD1CON3bits.ADCS: Determines the length of Tad, in terms of the
peripheral bus clock period Tpb, according to the formula

Tad = 2 × Tpb × (AD1CON3bits.ADCS + 1). (10.1)

Tad must be at least 65 ns, so with an 80 MHz peripheral bus clock frequency, the
minimum value for AD1CON3bits.ADCS is 2, which yields a 75 ns Tad by the
equation above.

AD1CHS This SFR determines which pins will be sampled (the “positive” inputs) and what
they will be compared to (i.e., VREFL or AN1). When in scan mode, the sample pins
specified in this SFR are ignored. There are two multiplexers available, MUX A and
MUX B; we focus on the settings for MUX A.
AD1CHS〈23〉 or AD1CHSbits.CH0NA: Determines the negative input for MUX A.

When MUX A is selected (the default), this input is the negative input to the
differencing amplifier.

1 The negative input is the pin AN1.
0 The negative input is VREFL. VREFL is determined by AD1CON2bits.VCFG.

AD1CHS〈19:16〉 or AD1CHSbits.CH0SA: Determines the positive input to MUX A.
When MUX A is selected (the default), this input is the positive input to the
differencing amplifier. The value of this field determines which ANx pin is used. For
example, if AD1CHS.CHOSA=6 than AN6 is used.

AD1CSSL Bits set to 1 in this SFR indicate which analog inputs will be sampled in scan
mode (if AD1CON2 has configured the ADC for scan mode). Inputs will be scanned from
lower number inputs to higher numbers. Bit x corresponds to an ANx. Individual bits can
be accessed using AD1CSSLbits.CSSLx.
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Apart from these SFRs, the ADC module has bits associated with the ADC interrupt in
IFS1bits.AD1IF (IFS1〈1〉), IEC1bits.AD1IE (IEC1〈1〉), IPC6bits.AD1IP (IPC6〈28:26〉), and
IPC6bits.AD1IS (IPC6〈25:24〉). The interrupt vector is 27, also known as _ADC_VECTOR.

10.3 Sample Code

10.3.1 Manual Sampling and Conversion

There are many ways to read the analog inputs, but the sample code below is perhaps the
simplest. This code reads in analog inputs AN14 and AN15 every half second and sends their
values to the user’s terminal. It also logs the time it takes to do the two samples and
conversions, which is a bit under 5 µs total. In this program we set the ADC clock period Tad
to be 6×Tpb = 75 ns, and the acquisition time to be at least 250 ns. There are two places in
this program where we wait and do nothing: during the sampling and during the conversion. If
speed were an issue, we could use more advanced settings to let the ADC work in the
background and interrupt when samples are ready.

In the exercises you will write code to initiate the conversion automatically, rather than
manually as in the sample code below.

Code Sample 10.1 ADC_Read2.c. Reading Two Analog Inputs with Manual
Initialization of Sampling and Conversion.

#include "NU32.h" // constants, functions for startup and UART

#define VOLTS_PER_COUNT (3.3/1024)
#define CORE_TICK_TIME 25 // nanoseconds between core ticks
#define SAMPLE_TIME 10 // 10 core timer ticks = 250 ns
#define DELAY_TICKS 20000000 // delay 1/2 sec, 20 M core ticks, between messages

unsigned int adc_sample_convert(int pin) { // sample & convert the value on the given
// adc pin the pin should be configured as an
// analog input in AD1PCFG

unsigned int elapsed = 0, finish_time = 0;
AD1CHSbits.CH0SA = pin; // connect chosen pin to MUXA for sampling
AD1CON1bits.SAMP = 1; // start sampling
elapsed = _CP0_GET_COUNT();
finish_time = elapsed + SAMPLE_TIME;
while (_CP0_GET_COUNT() < finish_time) {

; // sample for more than 250 ns
}
AD1CON1bits.SAMP = 0; // stop sampling and start converting
while (!AD1CON1bits.DONE) {

; // wait for the conversion process to finish
}
return ADC1BUF0; // read the buffer with the result

}

int main(void) {
unsigned int sample14 = 0, sample15 = 0, elapsed = 0;

ADC_Read2.c
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char msg[100] = {};

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
AD1PCFGbits.PCFG14 = 0; // AN14 is an adc pin
AD1PCFGbits.PCFG15 = 0; // AN15 is an adc pin
AD1CON3bits.ADCS = 2; // ADC clock period is Tad = 2*(ADCS+1)*Tpb =

// 2*3*12.5ns = 75ns
AD1CON1bits.ADON = 1; // turn on A/D converter
while (1) {

_CP0_SET_COUNT(0); // set the core timer count to zero
sample14 = adc_sample_convert(14); // sample and convert pin 14
sample15 = adc_sample_convert(15); // sample and convert pin 15
elapsed = _CP0_GET_COUNT(); // how long it took to do two samples

// send the results over serial
sprintf(msg, "Time elapsed: %5u ns AN14: %4u (%5.3f volts)"

" AN15: %4u (%5.3f volts) \r\n",
elapsed * CORE_TICK_TIME,
sample14, sample14 * VOLTS_PER_COUNT,
sample15, sample15 * VOLTS_PER_COUNT);

NU32_WriteUART3(msg);
_CP0_SET_COUNT(0); // delay to prevent a flood of messages
while(_CP0_GET_COUNT() < DELAY_TICKS) {

;
}

}
return 0;

}

If AN14 is connected to 0 V and AN15 is connected to 3.3 V, typical output of the program
repeats the following two lines,

...
Time elapsed: 4550 ns AN14: 0 (0.000 volts) AN15: 1023 (3.297 volts)
Time elapsed: 4675 ns AN14: 0 (0.000 volts) AN15: 1023 (3.297 volts)
...

indicating that the two conversions take less than 5 µs with some minor variation each time
through the loop.

10.3.2 Maximum Possible Sample Rate

The program ADC_max_rate.c reads from a single analog input, AN2, at the maximum speed
that fits the PIC32 Electrical Characteristics and the 80MHz PBCLK (Tpb = 12.5 ns). We
choose

Tad = 6 * Tpb = 75 ns

as the smallest time that is an even integer multiple of Tpb and greater than the 65 ns required
in the Electrical Characteristics section of the Data Sheet. We choose the sample time to be

Tsamp = 2 * Tad = 150 ns,
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the smallest integer multiple of Tad that meets the minimum spec of 132 ns in the Data Sheet.3

The ADC is configured to auto-sample and auto-convert eight samples and then generate an
interrupt. The ISR reads eight samples from ADCBUF0 to ADCBUF7 or from ADCBUF8 to
ADCBUFF while the ADC fills the other eight-word section. The ISR must finish reading one
eight-word section before the other eight-word section is filled. Otherwise, the ADC results
will start overwriting unread results.

After reading 1000 samples, the ADC interrupt is disabled to free the CPU from servicing
the ISR. The program writes the data and average sample/conversion times to the user’s
terminal.

High-speed sampling requires pin VREF- (RB1) to be connected to ground and pin VREF+

(RB0) to be connected to 3.3 V. These pins are the external low and high voltage references
for analog input. Technically, the Reference Manual states that VREF- should be attached to
ground through a 10 ohm resistor and VREF+ should be attached to two capacitors in parallel
to ground (0.1 µF and 0.01 µF) as well as a 10 ohm resistor to 3.3 V.

To provide input to the ADC, we configure OC1 to output a 5 kHz 25% duty cycle square
wave. The program also uses Timer45 to time the duration between ISR entries. The first 1000
analog input samples are written to the screen, as well as the time they were taken, confirming
that the samples correspond to 889 kHz sampling of a 5 kHz 25% duty cycle waveform. The
ISR that reads eight samples from ADCBUF also toggles an LED once every million times it
is entered, allowing you to measure the time it takes to acquire eight million samples with a
stopwatch (about 9 s).

Code Sample 10.2 ADC_max_rate.c. Reading a Single Analog Input at the Maximum
Possible Rate to Meet the Electrical Characteristics Section of the Data Sheet, Given
That the PBCLK Is 80 MHz.

// ADC_max_rate.c
//
// This program reads from a single analog input, AN2, at the maximum speed
// that fits the PIC32 Electrical Characteristics and the 80 MHz PBCLK
// (Tpb = 12.5 ns). The input to AN2 is a 5 kHz 25% duty cycle PWM from
// OC1. The results of 1000 analog input reads is sent to the user’s
// terminal. An LED on the NU32 also toggles every 8 million samples.
//
// RB1/VREF- must be connected to ground and RB0/VREF+ connected to 3.3 V.
//

#include "NU32.h" // constants, functions for startup and UART

#define NUM_ISRS 125 // the number of 8-sample ISR results to be printed
#define NUM_SAMPS (NUM_ISRS*8) // the number of samples stored
#define LED_TOGGLE 1000000 // toggle the LED every 1M ISRs (8M samples)

3 The Electrical Characteristics section of the Data Sheet lists 132 ns as the minimum sampling time for an analog
input from a source with 500 � output impedance. If the source has a much lower output impedance, you may be
able to reduce the sampling time below 132 ns.

ADC_max_rate.c
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// these variables are static because they are not needed outside this C file
// volatile because they are written to by ISR, read in main

static volatile int storing = 1; // if 1, currently storing data to print; if 0, done
static volatile unsigned int trace[NUM_SAMPS]; // array of stored analog inputs
static volatile unsigned int isr_time[NUM_ISRS]; // time of ISRs from Timer45

void __ISR(_ADC_VECTOR, IPL6SRS) ADCHandler(void) { // interrupt every 8 samples
static unsigned int isr_counter = 0; // the number of times the isr has been called

// "static" means the variable maintains its value
// in between function (ISR) calls

static unsigned int sample_num = 0; // current analog input sample number

if (isr_counter <= NUM_ISRS) {
isr_time[isr_counter] = TMR4; // keep track of Timer45 time the ISR is entered

}

if (AD1CON2bits.BUFS) { // 1=ADC filling BUF8-BUFF, 0=filling BUF0-BUF7
trace[sample_num++] = ADC1BUF0; // all ADC samples must be read in, even
trace[sample_num++] = ADC1BUF1; // if we don’t want to store them, so that
trace[sample_num++] = ADC1BUF2; // the interrupt can be cleared
trace[sample_num++] = ADC1BUF3;
trace[sample_num++] = ADC1BUF4;
trace[sample_num++] = ADC1BUF5;
trace[sample_num++] = ADC1BUF6;
trace[sample_num++] = ADC1BUF7;

}
else {

trace[sample_num++] = ADC1BUF8;
trace[sample_num++] = ADC1BUF9;
trace[sample_num++] = ADC1BUFA;
trace[sample_num++] = ADC1BUFB;
trace[sample_num++] = ADC1BUFC;
trace[sample_num++] = ADC1BUFD;
trace[sample_num++] = ADC1BUFE;
trace[sample_num++] = ADC1BUFF;

}
if (sample_num >= NUM_SAMPS) {

storing = 0; // done storing data
sample_num = 0; // reset sample number

}
++isr_counter; // increment ISR count
if (isr_counter == LED_TOGGLE) { // toggle LED every 1M ISRs (8M samples)

LATFINV = 0x02;
isr_counter = 0; // reset ISR counter

}

IFS1bits.AD1IF = 0; // clear interrupt flag
}

int main(void) {
int i = 0, j = 0, ind = 0; // variables used for indexing
float tot_time = 0.0; // time between 8 samples
char msg[100] ={}; // buffer for writing messages to uart
unsigned int prev_time = 0; // used for calculating time differences

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // INT step 2: disable interrupts
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// configure OC1 to use T2 to make 5 kHz 25% DC
PR2 = 15999; // (15999+1)*12.5ns = 200us period = 5kHz
T2CONbits.ON = 1; // turn on Timer2
OC1CONbits.OCM = 0b110; // OC1 is PWM with fault pin disabled
OC1R = 4000; // hi for 4000 counts, lo for rest (25% DC)
OC1RS = 4000;
OC1CONbits.ON = 1; // turn on OC1

// set up Timer45 to count every pbclk cycle
T4CONbits.T32 = 1; // configure 32-bit mode
PR4 = 0xFFFFFFFF; // rollover at the maximum possible period, the default
T4CONbits.TON = 1; // turn on Timer45

// INT step 3: configure ADC generating interrupts
AD1PCFGbits.PCFG2 = 0; // make RB2/AN2 an analog input (the default)
AD1CHSbits.CH0SA = 2; // AN2 is the positive input to the sampler
AD1CON3bits.SAMC = 2; // sample for 2 Tad
AD1CON3bits.ADCS = 2; // Tad = 6*Tpb
AD1CON2bits.VCFG = 3; // external Vref+ and Vref- for VREFH and VREFL
AD1CON2bits.SMPI = 7; // interrupt after every 8th conversion
AD1CON2bits.BUFM = 1; // adc buffer is two 8-word buffers
AD1CON1bits.FORM = 0b100; // unsigned 32 bit integer output
AD1CON1bits.ASAM = 1; // autosampling begins after conversion
AD1CON1bits.SSRC = 0b111; // conversion starts when sampling ends
AD1CON1bits.ON = 1; // turn on the ADC
IPC6bits.AD1IP = 6; // INT step 4: IPL6, to use shadow register set
IFS1bits.AD1IF = 0; // INT step 5: clear ADC interrupt flag
IEC1bits.AD1IE = 1; // INT step 6: enable ADC interrupt
__builtin_enable_interrupts(); // INT step 7: enable interrupts at CPU

TMR4 = 0; // start timer 4 from zero
while(storing) {
; // wait until first NUM_SAMPS samples taken

}
IEC1bits.AD1IE = 0; // disable ADC interrupt

sprintf(msg,"Values of %d analog reads\r\n",NUM_SAMPS);
NU32_WriteUART3(msg);
NU32_WriteUART3("Sample # Value Voltage Time");

for (i = 0; i < NUM_ISRS; ++i) {// write out NUM_SAMPS analog samples
for (j = 0; j < 8; ++j) {

ind = i * 8 + j; // compute the index of the current sample
sprintf(msg,"\r\n%5d %10d %9.3f ", ind, trace[ind], trace[ind]*3.3/1024);
NU32_WriteUART3(msg);

}
tot_time = (isr_time[i] - prev_time) *0.0125; // total time elapsed, in microseconds
sprintf(msg,"%9.4f us; %d timer counts; %6.4f us/read for last 8 reads",

tot_time, isr_time[i]-prev_time,tot_time/8.0);
NU32_WriteUART3(msg);
prev_time = isr_time[i];

}

NU32_WriteUART3("\r\n");
IEC1bits.AD1IE = 1; // enable ADC interrupt. won’t print the information again,

// but you can see the light blinking
while(1) {
;

}
return 0;

}
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The output should look like

... (earlier output snipped)
928 1019 3.284
929 1015 3.271
930 1015 3.271
931 1015 3.271
932 1015 3.271
933 4 0.013
934 4 0.013
935 4 0.013 9.0000 us; 720 timer counts; 1.1250 us/read for last
8 reads ... (later output snipped)

showing the sample number, the ADC counts, and the corresponding actual voltage for
samples 0 to 999. The high output voltage from OC1 is measured as approximately 3.27 V,
and the low output voltage is measured as approximately 0.01 V. You can also see that the
output is high for 45 consecutive samples and low for 135 consecutive samples, corresponding
to the 25% duty cycle of OC1. In the snippet above, OC1’s switch from high to low is
measured at sample 933.

Theoretically, the time needed for one sample is 150 ns + (12 × 75 ns) = 1050 ns, but we get
an extra 1 Tad (75 ns or 6 Tpb) for 1125 ns. This is 888.89 kHz sampling. Where does the
extra 75 ns come from? It’s not due to the extra processing time needed to enter the interrupt
and read the timer: these times are constant and cancel each other when measuring the time
between two interrupts. Rather, the discrepancy is from the time needed to start conversion
after sampling and the time needed to start sampling after conversion. The Electrical
Characteristics section of the Data Sheet lists the “Conversion Start from Sample Trigger” as
being typically 1.0 Tad and the “Conversion Completion to Sample Start” as being typically
0.5 Tad. Our experiment indicates that our measured times are actually a little lower than the
listed typical values, since we have only 1 Tad, not 1.5 Tad, of unexpected sample/conversion
time.

10.4 Chapter Summary

• The ADC peripheral converts an analog voltage to a 10-bit digital value, where 0x000
corresponds to an input voltage at VREFL (typically GND) and 0x3FF corresponds to an
input voltage at VREFH (typically 3.3 V). There is a single ADC on the PIC32, AD1, but it
can be multiplexed to sample from any or all of the 16 pins on Port B.

• Getting an analog input is a two-step process: sampling and conversion. Sampling
requires a minimum time to allow the sampling capacitor to stabilize its voltage. Once the
sampling terminates, the capacitor is isolated from the input so its voltage does not change
during conversion. The conversion process is performed by a Successive Approximation
Register (SAR) ADC which carries out a 10-step binary search, comparing the capacitor
voltage to a new reference voltage at each step.
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• The ADC provides a huge array of options which are only touched on in this chapter. The
sample code in this chapter provides a manual method for taking a single ADC reading in
the range 0-3.3 V in just over 2 µs. For details on how to use other reference value ranges,
sample and convert in the background and use interrupts to announce the end of a
sequence of conversions, etc., consult the Reference Manual.

10.5 Exercises
1. Configure the ADC for manual sampling and automatic conversion. Set Tad and the

sampling time as short as possible while still meeting the minimum constraints.
2. Assume that the ADC is configured for manual sampling and automatic conversion. Write

a function that begins sampling from a specified ANx pin, waits for the conversion to
complete, and returns the result. This function will be useful whenever you need to take
an ADC reading.

3. Using the configuration code and the ADC reading function you wrote for the previous
questions, write a program that prompts the user to press ENTER and then reports the
voltage on AN5 (in both ADC ticks and in volts) over the UART. Test the program with a
variety of voltage dividers or a potentiometer.

Further Reading
PIC32 family reference manual. Section 17: 10-Bit analog-to-digital converter (ADC). (2011). Microchip

Technology Inc.
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UART

The universal asynchronous receiver/transmitter (UART) allows two devices to communicate
with each other. Formerly ubiquitous as the hardware powering serial ports, the UART has
been almost completely replaced by the universal serial bus (USB). Although obsolete to the
average computer user, UARTs remain important in embedded systems due to their relative
simplicity. A UART can be used with an external transceiver device to implement RS-232
communication, RS-485 multipoint communication, IrDA infrared wireless communication,
or other types of wireless communication such as the IEEE 802.15.4 standard.

11.1 Overview

The PIC32 has six UARTs, each allowing it to communicate with one other device. Each
UART uses at least two pins, one for receiving data (RX) and one for transmitting
data (TX). Additionally, the devices share a common ground (GND) line. A UART can
simultaneously send and receive data, a feature known as full duplex communication. For
one-way communication, only one wire (in addition to GND) is required. To distinguish
your PIC32 from the device with which it is communicating, which may be your computer or
another PIC32, we call the other device data terminal equipment (DTE). The RX line
for the PIC32 is the TX line for the DTE, and the TX line for the PIC32 is the RX line
for the DTE.

You have used the PIC32’s UARTs to communicate with your computer. FTDI driver software
on your computer sends data over a USB cable, where a chip on the NU32 (the FTDI
FT231X) receives the USB data and converts it into signals appropriate for one of the PIC32’s
UARTs. Data sent by the PIC32’s UART is converted by the FTDI chip to USB signals to send
to your computer, where the FTDI driver software interprets it as if received by a UART on
your computer.

The important parameters for UART communication are the baud, the data length, the parity,
and the number of stop bits. The two devices use the same parameters for successful
communication. The baud refers to the number of bits sent per second. The PIC32’s UART
sends and receives data in groups of 8 or 9 bits. For data lengths of 8 bits, the PIC32 can

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00011-1
Copyright © 2016 Elsevier Inc. All rights reserved. 159

http://dx.doi.org/10.1016/B978-0-12-420165-1.00011-1


160 Chapter 11

optionally transmit an additional parity bit as a simple transmission error-detection measure.
For example, if the parity is “even,” the number of bits sent that are one must be an even
number; the parity bit is chosen to meet this constraint. If the receiver sees an odd number of
ones in the transmission, then it knows a transmission error has occurred. Finally, the PIC32’s
UART can be set to one or two stop bits, which are ones sent at the end of a transmission.

The NU32 library uses a baud of 230,400, eight data bits, no parity bit, and one stop bit.
Written in shorthand, this is 230,400/8N1. Parity may be odd, even, or none.

For historical reasons, common baud choices include 1200, 2400, 4800, 9600, 19,200, 38,400,
57,600, 115,200, and 230,400, but any choice is possible, as long as both devices agree.
According to the Reference Manual, the PIC32’s UART is theoretically capable of baud up to
20 M; however, in practice, the maximum achievable baud is much lower.

UART communication is asynchronous, meaning that there is no clock line to keep the two
devices in sync. Due to differences in clock frequencies on the two devices, the baud for each
device may be slightly different, and UART devices can handle slight differences by
resynchronizing their baud clocks on each transmission.

Figure 11.1 shows a typical UART transmission. When not transmitting, the TX line
is high. To start a transmission, the UART lowers TX for one baud period. This start bit tells
the receiver that a transmission has begun so that the receiver can start its baud clock and
begin receiving bits. Next, the data bits are sent. Each bit is held on the line for one baud
period. The bits are sent least-significant bit first (e.g., the first bit sent for 0b11001000
will be a zero). Following the data bits, a parity bit may be optionally sent. Finally, the
transmitter holds the line high, transmitting one or two stop bits. After the stop bits have been
transmitted, another transmission may begin; thus using two stop bits provides the devices
with extra processing time between transmissions. The start bit, parity bit, and stop bits are
control bits: they do not contain data. Therefore, the baud does not directly correspond to the
data rate.

As the UART receives data, hardware shifts each bit into a register. When a full byte has been
received, that byte is transferred into the UART’s RX first-in first-out queue (FIFO). When
transmitting data, software loads bytes into the TX FIFO. The hardware then loads bytes from
the FIFO into a shift register, which sends them over the wire. If either FIFO is full and

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7Idle Start Stop

Figure 11.1
UART transmission of 0b10110010 with 8 data bits, no parity, and one stop bit.
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another byte needs to be added, an overrun condition occurs and the data is lost. To prevent a
TX FIFO overrun, software should not attempt to write to the UART unless the TX FIFO has
space. To prevent an RX FIFO overrun, software must read the RX FIFO fast enough so that it
always has space when data arrives. Hardware maintains flags indicating the status of the
FIFOs and can also interrupt based on the number of items in the FIFOs.

An optional feature called hardware flow control can help software prevent overruns.
Hardware flow control requires two additional wires: request to send (RTS) and clear to send
(CTS).1 When the RX FIFO is full, the UART hardware de-asserts (drives high) RTS, which
tells the DTE not to send data. When the RX FIFO has space available, the hardware asserts
(drives low) RTS, allowing the DTE to send data. The DTE controls CTS. When the DTE
de-asserts (drives high) CTS, the PIC32 will not transmit data. For hardware flow control to
work, both the DTE and PIC32 must respect the flow control signals. By default, when you
use make screen or make putty, those terminal emulators configure your DTE to use hardware
flow control.

These are the basics of UART operation. Many other options exist, far too many to cover here.
The guiding principle behind all UART operation, however, remains the same: both ends of
the communication must agree on all the options. When interfacing with a specific device,
read its data sheet and select the appropriate options.

11.2 Details

Below is a description of the UART registers. The “x” in the SFR names stands for UART
number 1 to 6. All bits default to zero except for two read-only bits in UxSTA.

UxMODE Enables or disables the UART. Determines the parity, number of data bits, number
of stop bits, and flow control method.

UxMODE〈15〉 or UxMODEbits.ON: when set to one, enables the UART.
UxMODE〈9:8〉 or UxMODEbits.UEN: Determines which pins the UART uses.

Common choices are
0b00 Only the UxTX and UxRX are used (the minimum required for UART

communication).
0b10 UxTX, UxRX, UxCTS, and UxRTS are used. This enables hardware flow

control.
UxMODE〈3〉 or UxMODEbits.BRGH: This is called the “high baud rate generator bit”

and controls the value of a divisor M used in calculating the baud rate (see the SFR
UxBRG). If this bit is 1, M = 4, and if it is 0, M = 16.

1 Some UARTs on the PIC32 do not have hardware flow control lines, and the flow control pins of one UART may
coincide with the RX and TX lines of another UART. For example, using UART3 with flow control prevents the
use of UART6.
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UxMODE〈2:1〉 or UxMODEbits.PDSEL: Determines the parity and number of
data bits.
0b11 9 data bits, no parity.
0b10 8 data bits, odd parity.
0b01 8 data bits, even parity.
0b00 8 data bits, no parity.

UxMODE〈0〉 or UxMODEbits.STSEL: The number of stop bits. 0 = 1 stop bit, 1 = 2
stop bits.

UxSTA Contains the status of the UART: error flags and busy status. Controls the conditions
under which interrupts occur. Also allows the user to turn the transmitter or receiver on
and off.

UxSTA〈15:14〉 or UxSTAbits.UTXISEL: Determines when to generate a TX interrupt.
The PIC32 can hold eight bytes in its TX FIFO. Interrupts will continue to happen
until the condition causing the interrupt ends.
0b10 Interrupt while TX FIFO is empty.
0b01 Interrupt after everything in the TX FIFO has been transmitted.
0b00 Interrupt whenever the TX FIFO is not full.

UxSTA〈12〉 or UxSTAbits.URXEN: When set, enables the UART’s RX pin.
UxSTA〈10〉 or UxSTAbits.UTXEN: When set, enables the UART’s TX pin.
UxSTA〈9〉 or UxSTAbits.UTXBF: When set, indicates that the transmit buffer is full. If

you attempt to write to the UART when the buffer is full the data will be ignored.
UxSTA〈8〉 or UxSTAbits.TRMT: When clear, indicates that there is no pending

transmission or data in the TX buffer.
UxSTA〈7:6〉 or UxSTAbits.URXISEL: Determines when UART receive interrupts are

generated. The PIC32 can hold eight bytes in its RX FIFO. The interrupt will continue
to happen until the condition causing the interrupt is cleared.
0b10 Interrupt whenever the RX FIFO contains six or more characters.
0b01 Interrupt whenever the RX FIFO contains four or more characters.
0b00 Interrupt whenever the RX FIFO contains at least one character.

UxSTA〈3〉 or UxSTAbits.PERR: Set when the parity of the received data is incorrect.
For even (odd) parity the UART expects the total number of received ones (including
the parity bit) to be even (odd). If not using a parity bit, then there can be no parity
error, but you also lose the data integrity check that parity provides.

UxSTA〈2〉 or UxSTAbits.FERR: Set when a framing error occurs. A framing error
happens when the UART does not detect the stop bit. This often occurs if there is a
baud mismatch.

UxSTA〈1〉 or UxSTAbits.OERR: Set when the receive buffer is full but the UART is
sent another byte. When this bit is set the UART cannot receive data; therefore, if an
overrun occurs you must manually clear this bit to continue receiving data. Clearing
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this bit flushes the data in the receive buffer, so you may want to read the bytes in the
receive buffer prior to clearing.

UxSTA〈0〉 or UxSTAbits.URXDA: When set, indicates that the receive buffer contains
data.

UxTXREG Use this SFR to transmit data. Writing to UxTXREG places the data in an
eight-byte long hardware FIFO. The transmitter removes data from the FIFO and
loads it into an internal shift register, UxTSR, where the data is shifted out onto the
TX line, bit by bit. Once done shifting, hardware removes the next byte and begins
transmitting it.

UxRXREG Use this SFR to receive data. Hardware shifts received data bit by bit into an
internal RX shift register. After receiving a full byte, hardware transfers it from the shift
register into the RX FIFO. Reading from UxRXREG removes a byte from the RX FIFO.
If you do not read from UxRXREG often enough, the RX FIFO may overrun. If the FIFO
is full, subsequent received bytes are discarded and an overrun error status flag is set.

UxBRG Controls the baud. The value for this register should be set to achieve the desired
baud B according to the following equation:

UxBRG = FPB
M × B

− 1 (11.1)

where FPB is the peripheral bus frequency, and either M = 4 if UxMODE.BRGH=1 or
M = 16 if UxMODE.BRGH=0.

Interrupt vector numbers for the UARTs are named _UART_x_VECTOR, where x is 1 to 6. The
interrupt flag status bits for UART1 are IFS0bits.U1EIF (error interrupt generated by a parity
error, framing error, or overrun error), IFS0bits.U1RXIF (RX interrupt), and IFS0bits.U1TXIF
(TX interrupt). The interrupt enable control bits for UART1 are IEC0bits.U1EIE (error
interrupt enable), IEC0bits.U1RXIE (RX interrupt enable), and IEC0bits.U1TXIE (TX
interrupt enable). The priority and subpriority bits are IPC6bits.U1IP and IPC6bits.U1IS.
Interrupt flag status bits, enable control bits, and priority bits for UART2 are named similarly
(replacing “U1” with “U2”) and are in IFS1, IEC1, and IPC8; for UART3 they are in IFS1,
IEC1, and IPC7; and for UART4 to UART6 they are in IFS2, IEC2, and IPC12.

11.3 Sample Code

11.3.1 Loopback

In our first example, the PIC32 uses UART1 to talk to itself. Connect U1RX (RD2) to U1TX
(RD3). The program uses the NU32 library and UART3 to prompt the user for a single byte,
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sends it twice from U1TX to U1RX, and reports the byte that was read on U1RX. We set the
baud to an extremely low rate (100) so that you can easily see the transmission on an
oscilloscope. If you set the oscilloscope into single capture mode and trigger on the falling
edge, the scope will capture the signal from the beginning of the transmission, when the first
start bit is sent. Sending the byte twice allows you to verify the stop bits.

Code Sample 11.1 uart_loop.c. UART Code that Talks to Itself.

#include "NU32.h" // constants, functions for startup and UART

// We will set up UART1 at a slow baud rate so you can examine the signal on a scope.
// Connect the UART1 RX and TX pins together so the UART can communicate with itself.

int main(void) {
char msg[100] = {};
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

// initialize UART1: 100 baud, odd parity, 1 stop bit
U1MODEbits.PDSEL = 0x2; // odd parity (parity bit set to make the number of 1’s odd)
U1STAbits.UTXEN = 1; // enable transmit
U1STAbits.URXEN = 1; // enable receive

// U1BRG = Fpb/(M * baud) - 1 (note U1MODEbits.BRGH = 0 by default, so M = 16)
// setup for 100 baud. This means 100 bits /sec or 1 bit/ 1/10ms
U1BRG = 49999; // 80 M/(16*100) - 1 = 49,999
U1MODEbits.ON = 1; // turn on the uart

// scope instructions: 10 ms/div, trigger on falling edge, single capture
while(1) {
unsigned char data = 0;
NU32_WriteUART3("Enter hex byte (lowercase) to send to UART1 (i.e., 0xa1): ");
NU32_ReadUART3(msg, sizeof(msg));
sscanf(msg,"%2x",&data);
sprintf(msg,"0x%02x\r\n",data);
NU32_WriteUART3(msg); //echo back

while(U1STAbits.UTXBF) { // wait for UART to be ready to transmit
;

}
U1TXREG = data; // write twice so we can see the stop bit
U1TXREG = data;
while(!U1STAbits.URXDA) { // poll to see if there is data to read in RX FIFO

;
}
data = U1RXREG; // data has arrived; read the byte
while(!U1STAbits.URXDA) { // wait until there is more data to read in RX FIFO

;
}
data = U1RXREG; // overwriting data from previous read! could check if same
sprintf(msg,"Read 0x%x from UART1\r\n",data);
NU32_WriteUART3(msg);

}
return 0;

}

uart_loop.c
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11.3.2 Interrupt Based

The next example demonstrates the use of interrupts. Interrupts can be generated based on the
number of elements in the RX or TX buffers, or when an error has occurred. For example, you
can interrupt when the RX buffer is half full or when the TX buffer is empty. The IRQs for
these interrupts share the same vector; therefore, you must check within the ISR to see what
event triggered it. You must also remove the condition that triggered the interrupt or it will
trigger again after you exit the ISR.

The code below reads data from your terminal emulator and sends it back. It uses UART3, as
does the NU32 library, but does not use the NU32 UART commands. An interrupt is triggered
when the RX buffer contains at least one character, and the ISR immediately sends the data
back to the terminal emulator.

Using interrupts for serial I/O allows the PIC32 to receive data from the serial port without
wasting time polling for it.

Code Sample 11.2 uart_int.c. UART Code that Uses Interrupts to Receive Data.

#include "NU32.h" // constants, functions for startup and UART

void __ISR(_UART_3_VECTOR, IPL1SOFT) IntUart1Handler(void) {
if (IFS1bits.U3RXIF) { // check if interrupt generated by a RX event

U3TXREG = U3RXREG; // send the received data out
IFS1bits.U3RXIF = 0; // clear the RX interrupt flag

} else if(IFS1bits.U3TXIF) { // if it is a TX interrupt
} else if(IFS1bits.U3EIF) { // if it is an error interrupt. check U3STA for reason
}

}

int main(void) {
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
NU32_LED1 = 1;
NU32_LED2 = 1;
__builtin_disable_interrupts();

// set baud to 230400, to match terminal emulator; use default 8N1 of UART
U3MODEbits.BRGH = 0;
U3BRG = ((NU32_SYS_FREQ / 230400) / 16) - 1;

// configure TX & RX pins
U3STAbits.UTXEN = 1;
U3STAbits.URXEN = 1;

// configure using RTS and CTS
U3MODEbits.UEN = 2;

// configure the UART interrupts
U3STAbits.URXISEL = 0x0; // RX interrupt when receive buffer not empty
IFS1bits.U3RXIF = 0; // clear the rx interrupt flag. for

// tx or error interrupts you would also need to clear
// the respective flags

uart_int.c
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IPC7bits.U3IP = 1; // interrupt priority
IEC1bits.U3RXIE = 1; // enable the RX interrupt

// turn on UART1
U3MODEbits.ON = 1;
__builtin_enable_interrupts();
while(1) {
;

}
return 0;

}

11.3.3 NU32 Library

The NU32 library contains three functions that access the UART: NU32_Setup,
NU32_ReadUART3, and NU32_WriteUART3. The setup code configures UART3 for a baud of
230400, one stop bit, 8 data bits, no parity bit, and hardware flow control. No UART interrupts
are used. Notice that NU32_ReadUART3 keeps reading from the UART until it receives a certain
control character (’\n’ or ’\r’); thus it will wait indefinitely for input before proceeding.

The function NU32_WriteUART3 waits for the TX FIFO to have available space before
attempting to add more data to it. Also, since hardware flow control is enabled on the PIC32’s
UART, no data will be sent by the PIC32 unless the DTE (your computer) holds the CTS line
low. The terminal emulator must have hardware flow control enabled to ensure correct
operation.

Code Sample 11.3 NU32.c. The NU32 Library Implementation.

#include "NU32.h"

// Device Configuration Registers
// These only have an effect for standalone programs but don’t harm bootloaded programs.
// the settings here are the same as those used by the bootloader
#pragma config DEBUG = OFF // Background Debugger disabled
#pragma config FWDTEN = OFF // WD timer: OFF
#pragma config WDTPS = PS4096 // WD period: 4.096 sec
#pragma config POSCMOD = HS // Primary Oscillator Mode: High Speed crystal
#pragma config FNOSC = PRIPLL // Oscillator Selection: Primary oscillator w/ PLL
#pragma config FPLLMUL = MUL_20 // PLL Multiplier: Multiply by 20
#pragma config FPLLIDIV = DIV_2 // PLL Input Divider: Divide by 2
#pragma config FPLLODIV = DIV_1 // PLL Output Divider: Divide by 1
#pragma config FPBDIV = DIV_1 // Peripheral Bus Clock: Divide by 1
#pragma config UPLLEN = ON // USB clock uses PLL
#pragma config UPLLIDIV = DIV_2 // Divide 8 MHz input by 2, mult by 12 for 48 MHz
#pragma config FUSBIDIO = ON // USBID controlled by USB peripheral when it is on
#pragma config FVBUSONIO = ON // VBUSON controlled by USB peripheral when it is on
#pragma config FSOSCEN = OFF // Disable second osc to get pins back
#pragma config BWP = ON // Boot flash write protect: ON
#pragma config ICESEL = ICS_PGx2 // ICE pins configured on PGx2
#pragma config FCANIO = OFF // Use alternate CAN pins
#pragma config FMIIEN = OFF // Use RMII (not MII) for ethernet

NU32.c
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#pragma config FSRSSEL = PRIORITY_6 // Shadow Register Set for interrupt priority 6

#define NU32_DESIRED_BAUD 230400 // Baudrate for RS232

// Perform startup routines:
// Make NU32_LED1 and NU32_LED2 pins outputs (NU32_USER is by default an input)
// Initialize the serial port - UART3 (no interrupt)
// Enable interrupts
void NU32_Startup() {
// disable interrupts
__builtin_disable_interrupts();

// enable the cache
// This command sets the CP0 CONFIG register
// the lower 4 bits can be either 0b0011 (0x3) or 0b0010 (0x2)
// to indicate that kseg0 is cacheable (0x3) or uncacheable (0x2)
// see Chapter 2 "CPU for Devices with M4K Core" of the PIC32 reference manual
// most of the other bits have prescribed values
// microchip does not provide a _CP0_SET_CONFIG macro, so we directly use
// the compiler built-in command _mtc0
// to disable cache, use 0xa4210582
__builtin_mtc0(_CP0_CONFIG, _CP0_CONFIG_SELECT, 0xa4210583);

// set the prefectch cache wait state to 2, as per the
// electrical characteristics data sheet
CHECONbits.PFMWS = 0x2;

//enable prefetch for cacheable and noncacheable memory
CHECONbits.PREFEN = 0x3;

// 0 data RAM access wait states
BMXCONbits.BMXWSDRM = 0x0;

// enable multi vector interrupts
INTCONbits.MVEC = 0x1;

// disable JTAG to get B10, B11, B12 and B13 back
DDPCONbits.JTAGEN = 0;

TRISFCLR = 0x0003; // Make F0 and F1 outputs (LED1 and LED2)
NU32_LED1 = 1; // LED1 is off
NU32_LED2 = 0; // LED2 is on

// turn on UART3 without an interrupt
U3MODEbits.BRGH = 0; // set baud to NU32_DESIRED_BAUD
U3BRG = ((NU32_SYS_FREQ / NU32_DESIRED_BAUD) / 16) - 1;

// 8 bit, no parity bit, and 1 stop bit (8N1 setup)
U3MODEbits.PDSEL = 0;
U3MODEbits.STSEL = 0;

// configure TX & RX pins as output & input pins
U3STAbits.UTXEN = 1;
U3STAbits.URXEN = 1;
// configure hardware flow control using RTS and CTS
U3MODEbits.UEN = 2;

// enable the uart
U3MODEbits.ON = 1;

__builtin_enable_interrupts();
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}

// Read from UART3
// block other functions until you get a ’\r’ or ’\n’
// send the pointer to your char array and the number of elements in the array
void NU32_ReadUART3(char * message, int maxLength) {

char data = 0;
int complete = 0, num_bytes = 0;
// loop until you get a ’\r’ or ’\n’
while (!complete) {
if (U3STAbits.URXDA) { // if data is available

data = U3RXREG; // read the data
if ((data == ’\n’) || (data == ’\r’)) {

complete = 1;
} else {

message[num_bytes] = data;
++num_bytes;
// roll over if the array is too small
if (num_bytes >= maxLength) {

num_bytes = 0;
}

}
}

}
// end the string
message[num_bytes] = ’\0’;

}

// Write a character array using UART3
void NU32_WriteUART3(const char * string) {

while (*string != ’\0’) {
while (U3STAbits.UTXBF) {

; // wait until tx buffer isn’t full
}
U3TXREG = *string;
++string;

}
}

11.3.4 Sending Data from an ISR

It is often desirable to stream data collected by the PIC32 to your computer. For example, a
fixed-frequency ISR could sample data from a sensor and then send it back to your computer
for plotting. The ISR may collect samples at a much higher rate than they can be sent over the
UART, however. In this case, some of the data has to be discarded. The process of keeping
only one piece of data per every N collected (discarding N − 1) is called decimation.2

Decimation is common in signal processing.

In addition to decimation, another concept that enables streaming data from an ISR is that of a
circular buffer. A circular (or ring) buffer is an implementation of a FIFO, such as the UART’s

2 The origin of this term is a disciplinary practice of the Roman Army, whereby one out of every ten soldiers who
had performed disgracefully was killed.
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Figure 11.2
An eight-element circular buffer (FIFO), where the write index currently points to element 5 and the

read index currently points to element 1.

TX and RX FIFOs. A circular buffer is implemented as an array and two index variables:
write and read (see Figure 11.2). Data is added to the array at the write location and read
from the read location, after which the indexes are incremented. When the indexes reach the
end of the array, they wrap around to the beginning. If the read and write indexes are equal,
the buffer is empty. If the write index is one slot behind the read index, the buffer is full.

Circular buffers are useful for sharing data between interrupts and mainline code. The ISR can
write data to the buffer while the mainline code reads from the buffer and sends the data over
the UART.

Code Sample 11.4 demonstrates the concept of decimation and Code Sample 11.5
demonstrates the concept of a circular buffer. Both programs send 5000 data samples from the
PIC32 to the host computer. Code Sample 11.4 is titled batch.c because all decimated data is
first stored in an array in RAM, then sent over the UART in one batch. Code Sample 11.5 is
called circ_buf.c because data is streamed using a circular buffer. The use of a circular buffer
(a) allows the buffer to use less RAM than the array in batch.c and (b) allows data to be sent
immediately, not just in a batch after it is all collected.

Code Sample 11.4 batch.c. Storing Data in an ISR and Sending it in a Batch Over
the UART.

#include "NU32.h" // constants, functions for startup and UART

#define DECIMATE 3 // only send every 4th sample (counting starts at zero)
#define NSAMPLES 5000 // store 5000 samples

volatile int data_buf[NSAMPLES];// stores the samples
volatile int curr = 0; // the current index into buffer

void __ISR(_TIMER_1_VECTOR, IPL5SOFT) Timer1ISR(void) { // Timer1 ISR operates at 5 kHz
static int count = 0; // counter used for decimation
static int i = 0; // the data returned from the isr
++i; // generate the data (we just increment it for now)
if(count == DECIMATE) { // skip some data

count = 0;
if(curr < NSAMPLES) {

data_buf[curr] = i; // queue a number for sending over the UART

batch.c
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++curr;
}

}
++count;
IFS0bits.T1IF = 0; // clear interrupt flag

}

int main(void) {
int i = 0;
char buffer[100] = {};
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

__builtin_disable_interrupts();// INT step 2: disable interrupts at CPU
T1CONbits.TCKPS = 0b01; // PBCLK prescaler value of 1:8
PR1 = 1999; // The frequency is 80 MHz / (8 * (1999 + 1)) = 5 kHz
TMR1 = 0;
IPC1bits.T1IP = 5; // interrupt priority 5
IFS0bits.T1IF = 0; // clear the interrupt flag
IEC0bits.T1IE = 1; // enable the interrupt
T1CONbits.ON = 1; // turn the timer on
__builtin_enable_interrupts(); // INT step 7: enable interrupts at CPU

NU32_ReadUART3(buffer, sizeof(buffer)); // wait for the user to press enter
while(curr !=NSAMPLES) { ; } // wait for the data to be collected

sprintf(buffer,"%d\r\n",NSAMPLES); // send the number of samples that will be sent
NU32_WriteUART3(buffer);

for(i = 0; i < NSAMPLES; ++i) {
sprintf(buffer,"%d\r\n",data_buf[i]); // send the data to the terminal
NU32_WriteUART3(buffer);

}
return 0;

}

Code Sample 11.5 circ_buf.c. Streaming Data from an ISR Over the UART, Using a
Circular Buffer.

#include "NU32.h" // constants, functions for startup and UART
// uses a circular buffer to stream data from an ISR over the UART
// notice that the buffer can be much smaller than the total number of samples sent and
// that data starts streaming immediately unlike with batch.c

#define BUFLEN 1024 // length of the buffer
#define NSAMPLES 5000 // number of samples to collect

static volatile int data_buf[BUFLEN]; // array that stores the data
static volatile unsigned int read = 0, write = 0; // circular buf indexes
static volatile int start = 0; // set to start recording

int buffer_empty() { // return true if the buffer is empty (read = write)
return read == write;

}

int buffer_full() { // return true if the buffer is full.
return (write + 1) % BUFLEN == read;

}

circ_buf.c
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int buffer_read() { // reads from current buffer location; assumes buffer not empty
int val = data_buf[read];
++read; // increments read index
if(read >= BUFLEN) { // wraps the read index around if necessary

read = 0;
}
return val;

}

void buffer_write(int data) { // add an element to the buffer.
if(!buffer_full()) { // if the buffer is full the data is lost

data_buf[write] = data;
++write; // increment the write index and wrap around if necessary
if(write >= BUFLEN) {

write = 0;
}

}
}

void __ISR(_TIMER_1_VECTOR, IPL5SOFT) Timer1ISR(void) { // timer 1 isr operates at 5 kHz
static int i = 0; // the data returned from the isr
if(start) {

buffer_write(i); // add the data to the buffer
++i; // modify the data (here we just increment it as an example)

}
IFS0bits.T1IF = 0; // clear interrupt flag

}

int main(void) {
int sent = 0;
char msg[100] = {};
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

__builtin_disable_interrupts(); // INT step 2: disable interrupts at CPU
T1CONbits.TCKPS = 0b01; // PBCLK prescaler value of 1:8
PR1 = 1999; // The frequency is 80 MHz / (8 * (1999 + 1)) = 5 kHz
TMR1 = 0;
IPC1bits.T1IP = 5; // interrupt priority 5
IFS0bits.T1IF = 0; // clear the interrupt flag
IEC0bits.T1IE = 1; // enable the interrupt
T1CONbits.ON = 1; // turn the timer on
__builtin_enable_interrupts(); // INT step 7: enable interrupts at CPU

NU32_ReadUART3(msg,sizeof(msg)); // wait for the user to press enter before continuing
sprintf(msg, "%d\r\n", NSAMPLES); // tell the client how many samples to expect
NU32_WriteUART3(msg);
start = 1;
for(sent = 0; sent < NSAMPLES; ++sent) { // send the samples to the client
while(buffer_empty()) { ; } // wait for data to be in the queue
sprintf(msg,"%d\r\n", buffer_read()); // read from the buffer, send data over uart
NU32_WriteUART3(msg);

}

while(1) {
;

}
return 0;

}
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In circ_buf.c, if the circular buffer is full, data is lost. While circ_buf.c is written to send a
fixed number of samples, it can be easily modified to stream samples indefinitely. If the UART
baud is sufficiently higher than the rate at which data bits are generated in the ISR, lossless
data streaming can be performed indefinitely. The circular buffer simply provides some
cushion in cases where communication is temporarily delayed or disrupted.

11.3.5 Communication with MATLAB

So far, when we have used the UART to communicate with a computer, we have opened the
serial port in a terminal emulator. MATLAB can also open serial ports, allowing
communication with and plotting of data from the PIC32. As a first example, we will
communicate with talkingPIC.c from MATLAB.

First, load talkingPIC.c onto the PIC32 (see Chapter 1 for the code). Next, open MATLAB
and edit talkingPIC.m. You will need to edit the first line and set the port to be the PORT value
from your Makefile.

Code Sample 11.6 talkingPIC.m. Simple MATLAB Code to Talk to talkingPIC on the
PIC32.

port=’COM3’; % Edit this with the correct name of your PORT.

% Makes sure port is closed
if ˜isempty(instrfind)

fclose(instrfind);
delete(instrfind);

end
fprintf(’Opening port %s....\n’,port);

% Defining serial variable
mySerial = serial(port, ’BaudRate’, 230400, ’FlowControl’, ’hardware’);

% Opening serial connection
fopen(mySerial);

% Writing some data to the serial port
fprintf(mySerial,’%f %d %d\n’,[1.0,1,2])

% Reading the echo from the PIC32 to verify correct communication
data_read = fscanf(mySerial,’%f %d %d’)

% Closing serial connection
fclose(mySerial)

The code talkingPIC.m opens a serial port, sends three numerical values to the PIC32,
receives the values, and closes the port. Run talkingPIC.c on your PIC32, then execute
talkingPIC.m in MATLAB.

talkingPIC.m
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We can also combine MATLAB with batch.c or circ_buf.c, allowing us to plot data received
from an ISR. The example below reads the data produced by batch.c or circ_buf.c and plots
it in MATLAB. Once again, change the port variable to match the serial port that your PIC32
uses.

Code Sample 11.7 uart_plot.m. MATLAB Code to Plot Data Received from the
UART.

% plot streaming data in matlab
port =’/dev/ttyUSB0’

if ˜isempty(instrfind) % closes the port if it was open
fclose(instrfind);
delete(instrfind);

end

mySerial = serial(port, ’BaudRate’, 230400, ’FlowControl’,’hardware’);
fopen(mySerial);

fprintf(mySerial,’%s’,’\n’); %send a newline to tell the PIC32 to send data

len = fscanf(mySerial,’%d’); % get the length of the matrix

data = zeros(len,1);

for i = 1:len
data(i) = fscanf(mySerial,’%d’); % read each item

end

plot(1:len,data); % plot the data

11.3.6 Communication with Python

You can also communicate with the PIC32 from the Python programming language. This
freely available scripting language has many libraries available that help it be used as an
alternative to MATLAB. To communicate over the serial port you need the pyserial library.
For plotting, we use the libraries matplotlib and numpy. The following code reads data from
the PIC32 and plots it. As with the MATLAB code, you need to specify your own port where
the port variable is defined. This code will plot data generated by either batch.c or
circ_buf.c.

Code Sample 11.8 uart_plot.py. Python Code to Plot Data Received from the
UART.

#!/usr/bin/python
# Plot data from the PIC32 in python
# requries pyserial, matplotlib, and numpy
import serial
import matplotlib.pyplot as plt

uart_plot.m
uart_plot.py
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import numpy as np

port = ’/dev/ttyUSB0’ # the name of the serial port

with serial.Serial(port,230400,rtscts=1) as ser:
ser.write("\n".encode()) #tell the pic to send data. encode converts to a byte array
line = ser.readline()
nsamples = int(line)
x = np.arange(0,nsamples) # x is [1,2,3,... nsamples]
y = np.zeros(nsamples)# x is 1 x nsamples an array of zeros and will store the data

for i in range(nsamples): # read each sample
line = ser.readline() # read a line from the serial port
y[i] = int(line) # parse the line (in this case it is just one integer)

plt.plot(x,y)
plt.show()

11.4 Wireless Communication with an XBee Radio

XBee radios are small, low-power radio transmitters that allow wireless communication over
tens of meters, according to the IEEE 802.15.4 standard (Figure 11.3). Each of the two
communicating devices connect to an XBee through a UART, and then they can communicate
wirelessly as if their UARTs were wired together. For example, two PIC32s could talk to each
other using their UART3s using the NU32 library.

XBee radios have numerous firmware settings that must be configured before you use them.
The main setting is the wireless channel; two XBees cannot communicate unless they use the
same channel. Another setting is the baud, which can be set as high as 115,200. The easiest
way to configure an XBee is to purchase a development board, connect it to your computer,
and use the X-CTU program provided by the manufacturer. Alternatively, you can program
XBees directly using the API mode over a serial port (either from your computer or the
PIC32).

After setting up the XBees to use the desired baud and communication channel, you can use
them as drop-in replacements, one at each UART, for the wires that would usually connect
them.3

3 One caveat occurs at higher baud rates. The XBee generates its baud by dividing an internal clock signal. This
clock does not actually achieve a baud of 115,200, however; when set to 115,200 the baud actually is 111,000.
Such baud rate mismatches are a common issue when using UARTs. Due to the tolerances of UART timing, the
XBee may work for a time but occasionally experience failures. The solution is to set your baud to 111,000 to
match the actual baud of the XBee.
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Figure 11.3
An XBee 802.15.4 radio. (Image courtesy of Digi International, digi.com.)

11.5 Chapter Summary

• A UART is the low-level engine underlying serial communication. Once ubiquitous, serial
ports have been largely replaced by USB on consumer products.

• The NU32 board uses a UART to communicate with your PC. Software on your computer
emulates a serial port, which transfers data via USB to a chip on the NU32 board. This
chip then converts the USB data into a format suitable for the UART. Neither your
terminal nor the PIC32 know that data is actually sent over USB, they just see a UART.

• The PIC32 maintains two eight-byte hardware FIFOs, one for receiving, one for sending.
These FIFOs buffer data in hardware, allowing software to temporarily attend to other
tasks while the buffers are being transmitted or filled by received data.

• Both the PIC32 and the DTE must agree upon a common communication speed (baud)
and data format; otherwise data will not be interpreted properly.

• Hardware flow control provides a method to signal that your device is not ready to receive
more data. Although hardware handles flow control automatically, software must ensure
that the RX and TX buffers do not overrun.

11.6 Exercises
1. Plot the waveform for a UART sending the byte 0b11011001, assuming 9600 baud, no

parity, 8 data bits, and one stop bit.
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2. Write a program that reads characters that you type in your terminal emulator (via
UART3), capitalizes them, and returns them to your computer. Rather than processing
each character one line at a time, you want a result after each character is pressed;
therefore, you cannot use NU32_WriteUART3 or NU32_ReadUART3. For example, if you type
’x’ in the terminal emulator, you should see ’X’. You can use the C standard library
function toupper, defined in ctype.h, to convert characters to upper case.

Further Reading
PIC32 family reference manual. Section 21: UART. (2012). Microchip Technology Inc.
XBee/XBee-PRO RF modules (v1.xEx). (2009). Digi International.
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SPI Communication

The Serial Peripheral Interface (SPI) allows the PIC32 to communicate with other devices at
high speeds. Numerous devices use SPI as their primary mode of communication, such as
RAM, flash, SD cards, ADCs, DACs, and accelerometers. Unlike the UART, SPI
communication is synchronous: the “master” device on an SPI bus creates a separate clock
signal that dictates the timing of communication. The devices do not have to be configured in
advance to share the same bit rate, and any clock frequency can be used, provided it is within
the capabilities of the chips. High speeds are possible; for example, the SPI interface of the
STMicroelectronics LSM303D accelerometer/magnetometer, a device considered in this
chapter, supports up to 10 MHz clock signals.

12.1 Overview

SPI is a master-slave architecture, and an SPI bus has one master device and one or more
slaves. A minimal SPI bus consists of three wires (in addition to GND): Master Output Slave
Input (MOSI), carrying data from the master to the slave(s); Master Input Slave Output
(MISO), carrying data from the slave(s) to the master; and the master’s clock output, which
clocks the data transfers, one bit per clock pulse. Each SPI device on the bus correspondingly
has three pins: Serial Data Out (SDO), Serial Data In (SDI), and System Clock (SCK). The
MOSI line is connected to the master’s SDO pin and the slaves’ SDI pins, and the MISO line
is connected to the master’s SDI pin and the slaves’ SDO pins. All slaves’ SCK pins are
inputs, connected to the master’s SCK output (Figure 12.1).

Each of the PIC32’s three SPI peripherals can either be a master or a slave. We typically think
of the PIC32 acting as the master.

If there is more than one slave on the bus, then the master controls which slave is active by
using an active-low slave select (SS) line, one per slave. Only one slave-select line can have a
low signal at a time, and the line which is low indicates which slave is active. Unselected
slaves must let their SDO output float at high impedance, effectively disconnected from the
MISO line, and they should ignore data on the MOSI line. In Figure 12.1, there are two slaves,
and therefore two output slave-select lines from the master SS1 and SS2, and one slave-select
input line for each slave. Thus, adding more slaves to the bus means adding more wires.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00012-3
Copyright © 2016 Elsevier Inc. All rights reserved. 177
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Figure 12.1
An SPI master connected to two slave devices. Arrows indicate data direction. A PIC32 SPI

peripheral can either be a master or a slave. Only one slave select line can be active (low) at a time.
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MS
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SCK

MOSI
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Figure 12.2
Timing for an SPI transaction with a slave LSM303D accelerometer/magnetometer. The LSM303D is
selected when SS is driven low. On the falling edge of the master’s SCK, both the master (controlling
MOSI with its SDO pin) and the slave (controlling MISO with its SDO pin) transition to the next bit
of their signal. On the rising edge of SCK, the devices read the data, the master reading MISO with

its SDI pin and the slave reading MOSI with its SDI pin. In this example, the master first sends 8 bits,
the first of which (RW) determines whether it will be reading data from the LSM303D or writing

data to it. The bits AD0 to AD5 determine the address of the LSM303D register that the master is
accessing. Finally, if the operation is a read from the LSM303D, the LSM303D puts 8 bits DO0 to

DO7 on the MISO line; otherwise the master sends 8 bits on the MOSI line to write to the LSM303D.

Compare this to the (typically lower speed) I2C (Chapter 13) and CAN (Chapter 19) buses,
which have a fixed number of wires regardless of the number of devices on them.

The master initiates all communication by creating a square wave on the clock line. Reading
from and writing to the slave occur simultaneously, one bit per clock pulse. Transfers occur in
groups of 8, 16, or 32 bits, depending on the slave. Figure 12.2, taken from the LSM303D data
sheet, depicts the signals for a typical SPI transaction. The timing of the data bits relative to
the clock signal are settable using SFRs to match the behavior of other devices on the SPI bus;
see Section 12.2 for more information.
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In addition to the basic SPI communication described above, the PIC32 SPI module has other
modes of operations, which we do not cover in detail here. For example, a framing mode
allows for streaming data from supported devices. By default, the SPI peripheral has only a
single input and single output buffer. The PIC32 also has an enhanced buffer mode, which
provides FIFOs for queuing data waiting to be transferred or processed.

12.2 Details

Each of the three SPI peripherals, SPI2 to SPI4, has four pins associated with it: SCKx, SDIx,
SDOx, and SSx, where x is 2 to 4. When the SPI peripheral is a slave, it can be configured so
that it only receives and transmits data when the input SSx is low (e.g., when there is
more than one slave on the bus). When the SPI peripheral is a master, it can be configured to
drive the SSx automatically when communicating with a single slave. If there are multiple
slaves on the bus, however, other digital outputs can be used to control the multiple slave
select pins of the slaves.

Each SPI peripheral uses four SFRs, SPIxCON, SPIxSTAT, SPIxBUF, and SPIxBRG, x = 2
to 4. Many of the settings are related to the alternative operation modes that we do not discuss.
SFRs and fields that we omit may be safely left at their default values for typical applications.
All default bits are zero, except for one read-only bit in SPIxSTAT.

SPIxCON This register contains the main control options for the SPI peripheral.
SPIxCON〈28〉 or SPIxCONbits.MSSEN: Master slave select enable. If set, the SPI

master will assert (drive low) the slave select pin SSx prior to sending an 8-, 16-, or
32-bit transmission and de-assert (drive high) after sending the data. Some devices
require you to toggle the slave select after a complete multi-word transaction; in this
case, you should clear SPIxCONbits.MSSEN to zero (the default) and use any digital
output as the slave select.

SPIxCON〈15〉 or SPIxCONbits.ON: Set to enable the SPI peripheral.
SPIxCON〈11:10〉 or SPIxCONbits.MODE32 (bit 11) and SPIxCONbits.MODE16

(bit 10): Determines the communication width.
0b1X (SPIxCONbits.MODE32= 1): 32 bits of data sent per transfer.
0b01 (SPIxCONbits.MODE32= 0 and SPIxCONbits.MODE16 = 1): 16 bits of data

sent per transfer.
0b00 (SPIxCONbits.MODE32= SPIxCONbits.MODE16 = 0): 8 bits of data sent per

transfer.
SPIxCON〈9〉 or SPIxCONbits.SMP: determines when, relative to the clock pulses, the

master samples input data. Should be set to match the slave device’s specifications.
1 Sample at end of a clock pulse.
0 Sample in the middle of a clock pulse.
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SPIxCON〈8〉 or SPIxCONbits.CKE: The clock signal can be configured as either active
high or active low by setting SPIxCONbits.CKP (see below). This bit,
SPIxCONbits.CKE, determines whether the master changes the current output bit on
the edge when the clock transitions from active to idle or idle to active (see
SPIxCONbits.CKP, below). You should choose this bit based on what the slave device
expects.

1 The output data changes when the clock transitions from active to idle.
0 The output data changes when the clock transitions from idle to active.

SPIxCON〈7〉 or SPIxCONbits.SSEN: This slave select enable bit determines whether
the SSx pin is used in slave mode.

1 The SSx pin must be low for this slave to be selected on the SPI bus.
0 The SSx pin is not used, and is available to be used with another peripheral.

SPIxCON〈6〉 or SPIxCONbits.CKP: The clock signal can be configured as being active
high or active low. Chosen in conjunction with SPIxCONbits.CKE, above, this setting
should match the expectations of the slave device.

1 The clock is idle when high, active when low.
0 The clock is idle when low, active when high.

SPIxCON〈5〉 or SPIxCONbits.MSTEN: Master enable. Usually the PIC32 operates as
the master, meaning that it controls the clock and hence when and how fast data is
transferred, in which case this bit should be set to 1. To use the SPI peripheral as a
slave, this bit should be cleared to 0.

1 The SPI peripheral is the master.
0 The SPI peripheral is the slave.

SPIxSTAT The status of the SPI peripheral.
SPIxSTAT〈11〉 or SPIxSTATbits.SPIBUSY: When set, indicates that the SPI peripheral

is busy transferring data. You should not access the SPI buffer SPIxBUF when the
peripheral is busy.

SPIxSTAT〈6〉 or SPIxSTATbits.SPIROV: Set to indicate that an overflow has occurred,
which happens when the receive buffer is full and another data word is received. This
bit should be cleared in software. The SPI peripheral can only receive data when this
bit is clear.

SPIxSTAT〈1〉 or SPIxSTATbits.SPITXBF: SPI transmit buffer full. Set by hardware
when you write to SPIxBUF. Cleared by hardware after the data you wrote is
transferred into the transmit buffer SPIxTXB, a non-memory-mapped buffer. When
this bit is clear you can write to SPIxBUF.

SPIxSTAT〈0〉 or SPIxSTATbits.SPIRXBF: SPI receive buffer full. Set by hardware
when data is received into the SPI receive buffer indicating that SPIxBUF can be read.
Cleared when you read the data via SPIxBUF.

SPIxBUF Used to both read and write data over SPI. When, as the master, you write to
SPIxBUF, the data is actually stored in a transmit buffer SPIxTXB, and the SPI peripheral
generates a clock signal and sends the data over the SDOx pin. Meanwhile, in response to
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the clock signal, the slave sends data to the SDIx pin, where it is stored in a receive buffer
SPIxRXB, which you do not have direct access to. To access this received data, you do a
read from SPIxBUF. Therefore, perhaps unintuitively, after executing the C code

SPI1BUF = data1;
data2 = SPI1BUF;

data1 and data2 will not be identical! data1 is sent data, and data2 is received data.
To avoid buffer overflow errors, every time you write to SPIxBUF you should
also read from SPIxBUF, even if you do not need the data. Additionally, since the slave
can only send data when it receives a clock signal, which is only generated by the master
when you write data, as a master you must write to SPIxBUF before getting new data from
the slave.

SPIxBRG Determines the SPI clock frequency. Only the lowest 12 bits are used. To calculate
the appropriate value for SPIxBRG use the tables provided in the Reference Manual or the
following formula:

SPIxBRG = FPB
2Fsck

− 1, (12.1)

where FPB is the peripheral bus clock frequency (80 MHz for the NU32 board) and Fsck is
the desired clock frequency. SPI can operate at relatively high frequencies, in the MHz
range. The master dictates the clock frequency and the slave reads the clock; therefore a
slave device never needs to configure a clock frequency.

The interrupt vector for SPIx is _SPI_x_VECTOR, where x is 2 to 4. An interrupt can be
generated by an SPI fault, SPI RX conditions, and SPI TX conditions. For SPI2, the interrupt
flag status bits are IFS1bits.SPI2EIF (error), IFS1bits.SPI2RXIF (RX), and
IFS1bits.SPI2TXIF (TX); the enable control bits are IEC1bits.SPI2EIE (error),
IEC1bits.SPI2RXIE (RX), and IEC1bits.SPI2TXIE (TX); and the priority and subpriority bits
are IPC7bits.SPI2IP and IPC7bits.SPI2IS. For SPI3 and SPI4, the bits are named similarly,
replacing SPI2 with SPIx (x = 3 or 4), and with SPI3’s flag status bits in IFS0, enable control
bits in IEC0, and priority in IPC6; and SPI4’s in IFS1, IEC1, and IPC8.

The sample code in this chapter does not include interrupts, but TX and RX interrupt
conditions can be selected using SPIxCONbits.STXISEL and SPIxCONbits.SRXISEL. See
the Reference Manual.

12.3 Sample Code

12.3.1 Loopback

The first example uses two SPI peripherals to allow the PIC32 to communicate with itself over
SPI. Although practically useless, the code serves as vehicle for understanding the basic
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configuration of both an SPI master and an SPI slave. Both master (SPI4) and slave (SPI3) are
configured to send 16 bits per transfer. Notice that the SPI master sets a clock frequency,
whereas the slave does not. The program prompts the user to enter two 16-bit hexadecimal
numbers. The first number is sent by the master and the second by the slave. The code then
reads from the SPI ports and prints the results.

Remember, one bit of data is transferred in each direction per clock cycle. When the slave
writes to its SPI buffer, the data is not actually sent until the master generates a clock signal.
Both master and slave use the clock to send and receive the data. As sending and receiving
happen simultaneously, the master should always read from SPI4BUF after writing to
SPI4BUF.

Code Sample 12.1 spi_loop.c. SPI Loopback Example.

#include "NU32.h" // constants, funcs for startup and UART
// Demonstrates spi by using two spi peripherals on the same PIC32,
// one is the master, the other is the slave
// SPI4 will be the master, SPI3 the slave.
// connect
// SDO4 -> SDI3 (pin F5 -> pin D2)
// SDI4 -> SDO3 (pin F4 -> pin D3)
// SCK4 -> SCK3 (pin B14 -> pin D1)

int main(void) {
char buf[100] = {};
// setup NU32 LED’s and buttons
NU32_Startup();

// Master - SPI4, pins are: SDI4(F4), SDO4(F5), SCK4(B14), SS4(B8); not connected)
// since the pic is just starting, we know that SPI is off. We rely on defaults here
SPI4BUF; // clear the rx buffer by reading from it
SPI4BRG = 0x4; // baud rate to 8 MHz [SPI4BRG = (80000000/(2*desired))-1]
SPI4STATbits.SPIROV = 0; // clear the overflow bit
SPI4CONbits.MODE32 = 0; // use 16 bit mode
SPI4CONbits.MODE16 = 1;
SPI4CONbits.MSTEN = 1; // master operation
SPI4CONbits.ON = 1; // turn on spi 4

// Slave - SPI3, pins are: SDI3(D2), SDO3(D3), SCK3(D1), SS3(D9; not connected)
SPI3BUF; // clear the rx buffer
SPI3STATbits.SPIROV = 0; // clear the overflow
SPI3CONbits.MODE32 = 0; // use 16 bit mode
SPI3CONbits.MODE16 = 1;
SPI3CONbits.MSTEN = 0; // slave mode
SPI3CONbits.ON = 1; // turn spi on. Note: in slave mode you do not set baud

while(1) {
unsigned short master = 0, slave = 0;
unsigned short rmaster = 0, rslave = 0;
NU32_WriteUART3("Enter two 16-bit hex words (lowercase) to send from ");
NU32_WriteUART3("master and slave (i.e., 0xd13f 0xb075): \r\n");
NU32_ReadUART3(buf, sizeof(buf));
sscanf(buf,"%04hx %04hx",&master, &slave);
// have the slave write its data to its SPI buffer

spi_loop.c
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// (note, the data will not be sent until the master performs a write)
SPI3BUF = slave;
// now the master performs a write
SPI4BUF = master;
// wait until the master receives the data
while(!SPI4STATbits.SPIRBF) {

; // could check SPI3STAT instead; slave receives data same time as master
}
// receive the data
rmaster = SPI4BUF;
rslave = SPI3BUF;
sprintf(buf,"Master sent 0x%04x, Slave sent 0x%04x\r\n", master, slave);
NU32_WriteUART3(buf);
sprintf(buf," Slave read 0x%04x, Master read 0x%04x\r\n",rslave,rmaster);
NU32_WriteUART3(buf);

}
return 0;

}

12.3.2 SRAM

One use for SPI is to add external RAM to the PIC32. For example, the Microchip 23K256
256 kbit (32 KB) static random-access memory (SRAM) has an SPI interface. The data sheet
describes its communication protocol. The SRAM has three modes of operation: byte, page,
and sequential. Byte operation allows reading or writing a single byte of RAM. In page mode,
you can access one 32-byte page of RAM at a time. Finally, sequential mode allows writing or
reading sequences of bytes, ignoring page boundaries. The example code we provide uses
sequential mode.

The SRAM chip requires the use of slave select (called chip select CS on the 23K256). When
this signal drops low, the SRAM knows that data or commands are about to be sent, and when
CS becomes high, the SRAM knows that communication is finished. We control CS using a
normal digital output pin, as its state is only changed after several bytes are sent, not after
every byte is sent to the device (which is what the automatic slave select enable feature of the
SPI peripheral would do). After wiring the chip according to Figure 12.3 you can run the

SDO4 (F5)
SDI4 (F4)

SCK4 (B14)
B8
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(2) SO
(6) SCK
(1) CS

VCC (8)

HOLD (7)
VSS (4)

PIC32
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23K256
SRAM
Slave

3.3 V

Figure 12.3
SRAM circuit diagram. SRAM pin numbers are given in parentheses.
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following sample code, which writes data to the SRAM and reads it back, sending the results
over UART to your computer.

The main function used by the sample code is spi_io, which writes a byte to the SPI port and
reads the result. Every operation uses this command to communicate with the SRAM, since
every write requires a read and vice versa. After configuring the SRAM to use sequential
mode, the example reads the status of the SRAM, writes some data to it, and reads it back.

After executing this sample code, comment out the write to RAM, recompile and execute the
code. Notice that, if you do not power off the SRAM, the SRAM still contains the data from
the previous write, no matter how long between writes. Dynamic RAM, or DRAM, on the
other hand, must periodically have its bits rewritten or it loses the data.

Code Sample 12.2 spi_ram.c. SPI SRAM Access.

#include "NU32.h" // constants, funcs for startup and UART
// Demonstrates spi by accessing external ram
// PIC is the master, ram is the slave
// Uses microchip 23K256 ram chip (see the data sheet for protocol details)
// SDO4 -> SI (pin F5 -> pin 5)
// SDI4 -> SO (pin F4 -> pin 2)
// SCK4 -> SCK (pin B14 -> pin 6)
// SS4 -> CS (pin B8 -> pin 1)
// Additional SRAM connections
// Vss (Pin 4) -> ground
// Vcc (Pin 8) -> 3.3 V
// Hold (pin 7) -> 3.3 V (we don’t use the hold function)
//
// Only uses the SRAM’s sequential mode
//
#define CS LATBbits.LATB8 // chip select pin

// send a byte via spi and return the response
unsigned char spi_io(unsigned char o) {

SPI4BUF = o;
while(!SPI4STATbits.SPIRBF) { // wait to receive the byte
;

}
return SPI4BUF;

}

// initialize spi4 and the ram module
void ram_init() {

// set up the chip select pin as an output
// the chip select pin is used by the sram to indicate
// when a command is beginning (clear CS to low) and when it
// is ending (set CS high)
TRISBbits.TRISB8 = 0;
CS = 1;

// Master - SPI4, pins are: SDI4(F4), SDO4(F5), SCK4(F13).
// we manually control SS4 as a digital output (F12)
// since the pic is just starting, we know that spi is off. We rely on defaults here

spi_ram.c
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// setup spi4
SPI4CON = 0; // turn off the spi module and reset it
SPI4BUF; // clear the rx buffer by reading from it
SPI4BRG = 0x3; // baud rate to 10 MHz [SPI4BRG = (80000000/(2*desired))-1]
SPI4STATbits.SPIROV = 0; // clear the overflow bit
SPI4CONbits.CKE = 1; // data changes when clock goes from hi to lo (since CKP is 0)
SPI4CONbits.MSTEN = 1; // master operation
SPI4CONbits.ON = 1; // turn on spi 4

// send a ram set status command.
CS = 0; // enable the ram
spi_io(0x01); // ram write status
spi_io(0x41); // sequential mode (mode = 0b01), hold disabled (hold = 0)
CS = 1; // finish the command

}

// write len bytes to the ram, starting at the address addr
void ram_write(unsigned short addr, const char data[], int len) {
int i = 0;
CS = 0; // enable the ram by lowering the chip select line
spi_io(0x2); // sequential write operation
spi_io((addr & 0xFF00) >> 8 ); // most significant byte of address
spi_io(addr & 0x00FF); // the least significant address byte
for(i = 0; i < len; ++i) {

spi_io(data[i]);
}
CS = 1; // raise the chip select line, ending communication

}

// read len bytes from ram, starting at the address addr
void ram_read(unsigned short addr, char data[], int len) {
int i = 0;
CS = 0;
spi_io(0x3); // ram read operation
spi_io((addr & 0xFF00) >> 8); // most significant address byte
spi_io(addr & 0x00FF); // least significant address byte
for(i = 0; i < len; ++i) {

data[i] = spi_io(0); // read in the data
}
CS = 1;

}

int main(void) {
unsigned short addr1 = 0x1234; // the address for writing the ram
char data[] = "Help, I’m stuck in the RAM!"; // the test message
char read[] = "***************************"; // buffer for reading from ram
char buf[100]; // buffer for comm. with the user
unsigned char status; // used to verify we set the status
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
ram_init();

// check the ram status
CS = 0;
spi_io(0x5); // ram read status command
status = spi_io(0); // the actual status
CS = 1;

sprintf(buf, "Status 0x%x\r\n",status);
NU32_WriteUART3(buf);
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sprintf(buf,"Writing \"%s\" to ram at address 0x%x\r\n", data, addr1);
NU32_WriteUART3(buf);

// write the data to the ram
ram_write(addr1, data, strlen(data) + 1); // +1, to send the ’\0’ character
ram_read(addr1, read, strlen(data) + 1); // read the data back
sprintf(buf,"Read \"%s\" from ram at address 0x%x\r\n", read, addr1);
NU32_WriteUART3(buf);

while(1) {
;

}
return 0;

}

12.3.3 LSM303D Accelerometer/Magnetometer

The STMicroelectronics LSM303D accelerometer/magnetometer, depicted in Figure 12.4, is a
sensor that combines a three-axis accelerometer, a three-axis magnetometer, and a temperature
sensor.1 As a surface mount component, the accelerometer is difficult to work with; therefore,
we use it with a breakout board from Pololu. The combination of an accelerometer and
magnetometer is ideal for creating an electronic compass: the accelerometer gives tilt
parameters relative to the earth, providing a reference frame for the magnetometer readings.
The PIC32 can control this device using either SPI or I2C, another communication method
discussed in Chapter 13.

The sample code consists of three files: accel.h, spi_accel.c, and accel.c. The header file
accel.h provides a rudimentary interface to the accelerometer. The function prototypes in
accel.h are implemented using SPI in spi_accel.c. Thus you can think of accel.h and
spi_accel.c together as making an LSM303D interface library. (In Chapter 13, we will make
another version of the library by using I2C to implement the function prototypes.)

The SPI peripheral is set for 10 MHz operation and, as in spi_ram.c, spi_io encapsulates the
write/read behavior. The main file that uses the LSM303D library is accel.c. This code reads
and displays the sensor values approximately once per second.

You can test the accelerometer readings by tilting the board in various directions. The
accelerometer will always read 1 g of acceleration in the downward direction. If you rotate the
board you should see the magnetic field readings change. You can test the temperature sensor
by blowing on it: the heat from your breath will cause the reading to temporarily increase. To
use this device as a magnetic compass you must perform a calibration; STMicroelectronics
application note AN3192 provides a guide.

1 This chip uses microelectromechanical systems (MEMS) to provide you with so many sensors in such a small
package.
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Figure 12.4
The LSM303D accelerometer on the Pololu breakout board. (Image of breakout board courtesy of

Pololu Robotics and Electronics, pololu.com.)

Now that you are an expert in SPI, you can figure out the wiring yourself.

Code Sample 12.3 accel.h. Header File Providing the Interface to the LSM303D
Accelerometer/Magnetometer.

#ifndef ACCEL__H__
#define ACCEL__H__
// Basic interface with an LSM303D accelerometer/compass.
// Used for both i2c and spi examples, but with different implementation (.c) files

// register addresses
#define CTRL1 0x20 // control register 1
#define CTRL5 0x24 // control register 5
#define CTRL7 0x26 // control register 7

#define OUT_X_L_A 0x28 // LSB of x-axis acceleration register.
// accel. registers are contiguous, this is the lowest address

#define OUT_X_L_M 0x08 // LSB of x-axis of magnetometer register

#define TEMP_OUT_L 0x05 // temperature sensor register

// read len bytes from the specified register into data[]
void acc_read_register(unsigned char reg, unsigned char data[], unsigned int len);

// write to the register
void acc_write_register(unsigned char reg, unsigned char data);

// initialize the accelerometer
void acc_setup();
#endif

accel.h
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Code Sample 12.4 accel.c. Example Code that Reads the LSM303D and Prints the
Results Over UART.

#include "NU32.h" // constants, funcs for startup and UART
#include "accel.h"
// accelerometer/magnetometer example. Prints the results from the sensor to the UART

int main() {
char buffer[200];
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
acc_setup();

short accels[3]; // accelerations for the 3 axes
short mags[3]; // magnetometer readings for the 3 axes
short temp; // temperature reading
while(1) {
// read the accelerometer from all three axes
// the accelerometer and the pic32 are both little endian by default
// (the lowest address has the LSB)
// the accelerations are 16-bit twos complement numbers, the same as a short
acc_read_register(OUT_X_L_A, (unsigned char *)accels,6);

// NOTE: the accelerometer is influenced by gravity,
// meaning that, on earth, when stationary it measures gravity as a 1g acceleration
// You could use this information to calibrate the readings into actual units
sprintf(buffer,"x: %d y: %d z: %d\r\n",accels[0], accels[1], accels[2]);
NU32_WriteUART3(buffer);

// need to read all 6 bytes in one transaction to get an update.
acc_read_register(OUT_X_L_M, (unsigned char *)mags, 6);

sprintf(buffer, "xmag: %d ymag: %d zmag: %d \r\n",mags[0], mags[1], mags[2]);
NU32_WriteUART3(buffer);

// read the temperature data. It’s a right-justified 12-bit two’s complement number
acc_read_register(TEMP_OUT_L,(unsigned char *)&temp,2);
sprintf(buffer,"temp: %d\r\n",temp);
NU32_WriteUART3(buffer);

//delay
_CP0_SET_COUNT(0);
while(_CP0_GET_COUNT() < 40000000) { ; }

}
}

Code Sample 12.5 spi_accel.c. Communicates with the LSM303D
Accelerometer/Magnetometer Using SPI.

#include "accel.h"
#include "NU32.h"
// interface with the LSM303D accelerometer/magnetometer using spi
// Wire GND to GND, VDD to 3.3V, Vin is disconnected (on Pololu breakout board)
// SDO4 (F5) -> SDI (labeled SDA on Pololu board),
// SDI4 (F4) -> SDO
// SCK4 (B14) -> SCL
// RB8 -> CS
#define CS LATBbits.LATB8 // use RB8 as CS

accel.c
spi_accel.c


SPI Communication 189

// send a byte via spi and return the response
unsigned char spi_io(unsigned char o) {
SPI4BUF = o;
while(!SPI4STATbits.SPIRBF) { // wait to receive the byte

;
}
return SPI4BUF;

}

// read data from the accelerometer, given the starting register address.
// return the data in data
void acc_read_register(unsigned char reg, unsigned char data[], unsigned int len)
{
unsigned int i;
reg |= 0x80; // set the read bit (as per the accelerometer’s protocol)
if(len > 1) {

reg |= 0x40; // set the address auto inc. bit (as per the accelerometer’s protocol)
}
CS = 0;
spi_io(reg);
for(i = 0; i != len; ++i) {

data[i] = spi_io(0); // read data from spi
}
CS = 1;

}

void acc_write_register(unsigned char reg, unsigned char data)
{
CS = 0; // bring CS low to activate SPI
spi_io(reg);
spi_io(data);
CS = 1; // complete the command

}

void acc_setup() { // setup the accelerometer, using SPI 4
TRISBbits.TRISB8 = 0;
CS = 1;

// Master - SPI4, pins are: SDI4(F4), SDO4(F5), SCK4(B14).
// we manually control SS4 as a digital output (B8)
// since the PIC is just starting, we know that spi is off. We rely on defaults here

// setup SPI4
SPI4CON = 0; // turn off the SPI module and reset it
SPI4BUF; // clear the rx buffer by reading from it
SPI4BRG = 0x3; // baud rate to 10MHz [SPI4BRG = (80000000/(2*desired))-1]
SPI4STATbits.SPIROV = 0; // clear the overflow bit
SPI4CONbits.CKE = 1; // data changes when clock goes from active to inactive

// (high to low since CKP is 0)
SPI4CONbits.MSTEN = 1; // master operation
SPI4CONbits.ON = 1; // turn on SPI 4

// set the accelerometer data rate to 1600 Hz. Do not update until we read values
acc_write_register(CTRL1, 0xAF);

// 50 Hz magnetometer, high resolution, temperature sensor on
acc_write_register(CTRL5, 0xF0);

// enable continuous reading of the magnetometer
acc_write_register(CTRL7, 0x0);

}
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12.4 Chapter Summary

• An SPI device can be either a master or a slave. Usually the PIC32 is configured as the
master.

• Two-way communication requires at least three wires: a clock controlled by the master,
master-output slave-input (MOSI), and master-input slave-output (MISO). Some slave
devices also require their slave select pin to be actively controlled, even if they are the
only slave on the bus. If there is more than one slave device on the SPI bus, then there
must be one slave select line for every slave. The slave whose slave select line is held low
by the master controls the MISO line.

• When the master performs a write, it generates a clock signal. This clock signal also
signals the active slave to send data back to the master. Therefore, every write by the
master should be followed by a read, even if you do not need the data.

• Master writes to the MOSI line are initiated by writing data to SPIxBUF. Received data is
obtained by reading SPIxBUF, which actually gives you access to data in the receive
buffer SPIxRXB.

12.5 Exercises
1. Why must you write to the SPI bus in order to read a value from the slave?
2. Is it possible to use only two wires (plus GND) if you need to only read or only write?

Why or why not?
3. Write a program that receives bytes from the terminal emulator, sends the bytes by SPI to

an external chip, receives bytes back from the external chip, and sends the received bytes
to the terminal emulator for display. The program should also allow the user to toggle the
SS line. Such a program may prove useful when working with an unfamiliar chip. Note:
you can read and write hexadecimal numbers using the %x format specifier with sscanf

and sprintf.

Further Reading
23A256/23K256 256K SPI bus low-power serial SRAM. (2011). Microchip Technology Inc.
AN3192 using LSM303DLH for a tilt compensated electronic compass. (2010). STMicroelectronics.
LSM303D ultra compact high performance e-compass 3D accelerometer and 3D magnetometer module. (2012).

STMicroelectronics.
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I2C Communication

Each of the PIC32’s four inter-integrated circuit (I2C, pronounced eye-squared-see)
peripherals allows it to communicate with multiple devices using only two pins. Many devices
have I2C interfaces, including RAM, accelerometers, ADCs, and OLED screens. An
advantage of I2C over SPI is that the I2C bus has only two wires, no matter how many devices
are connected, and each device can act as a master or a slave. A disadvantage is the more
complicated support software and the typically lower bit rates—the standard mode is defined
as 100 kbit/s and the fast mode is defined as 400 kbit/s—though some I2C devices allow
higher rates.

13.1 Overview

The I2C bus consists of two wires, one for data (SDA) and one for a clock (SCL), in addition
to the common ground reference. Multiple chips can be connected to the same two wires and
communicate with each other. A chip can be a master or a slave. Multiple masters and slaves
can be connected to the same bus; however, only one master can operate at one time. Masters
control the clock signal and hence the speed at which data flows. Usually, I2C devices operate
either in standard 100 kHz or fast 400 kHz mode, although the PIC32 can set arbitrary
frequencies.

Figure 13.1 shows a circuit diagram of a typical bus connection. Rather than driving the lines
high and low, each pin on the I2C bus switches between high impedance output (disconnected,
floating, high-z) and logic low. The high-z state is equivalent to the open-drain digital output
mode, where the pin, rather than being high, is effectively disconnected. Pull-up resistors on
each I2C line ensure that the line is low only when a device outputs a low signal. The PIC32’s
four I2C peripherals can handle pull-up voltages between 3.3 and 5 V.

If all devices on a line are high-z, the line is pulled high, a logical 1. If any of the devices on a
line are pulling it low, the line is low, a logical 0. When the bus is idle, i.e., no data is being
transmitted, all device outputs are high-z, and both SDA and SCL are high.

When a device assumes the role of a master to begin a transmission, it pulls the SDA line low
while leaving SCL high. This is the start bit; it tells other devices on the bus that the bus has
been claimed by a master, and that they should not attempt to claim it until the transmission is

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00013-5
Copyright © 2016 Elsevier Inc. All rights reserved. 191

http://dx.doi.org/10.1016/B978-0-12-420165-1.00013-5


192 Chapter 13
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Figure 13.1
n devices on an I2C bus. Each of the two lines is pulled up, typically to 3.3 or 5 V, by a pull-up

resistor, unless one of the devices holds the line low. The PIC32 can work with either 3.3 or 5 V. A
typical pull-up resistance is 2.4 k�, but any nearby value should be fine.
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Figure 13.2
An I2C transmission begins when the master pulls SDA low while leaving SCL high. Then the master

begins driving the clock SCL. Data is loaded onto SDA at every falling edge of SCL and read from
SDA on every rising edge of SCL. In this figure, the transmission begins with 0b110. . . (these are the
highest three bits of the address of the slave being selected). Either the master or a slave can control

SDA, depending on whether the master wants to send information to the slave or receive
information from the slave. Transmission stops when the master releases SDA, allowing it to go high
while SCL is high. A RESTART (dashed line) occurs if the master quickly pulls the SDA line low again,

taking control of the bus again before another master can claim it.

finished. The master (or a slave; see below) then transmits data over the SDA line while the
master controls the clock SCL. Data is loaded onto SDA when SCL drops low and read from
SDA when SCL rises. Eight-bit data bytes are transferred most significant bit first.
Transmission stops when the master issues the stop bit: an SDA transition from low to high
while SCL is high. See the timing diagram in Figure 13.2.

Unlike UARTs and SPI, I2C employs a handshaking protocol between master and slave. A
typical data transaction consists of the following primitives, in order:

1. START: The master issues a start bit, dropping SDA from high to low while SCL
stays high.
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2. ADDRESS: The master transmits a byte consisting of a 7-bit address and a read-write bit,
RW, in the least significant bit. The 7-bit address indicates which slave the master is
addressing; each device on the bus has a unique 7-bit address.1 If RW = 0, the master will
write to the slave; if it is a 1, the master expects to read data from the slave.

3. ACKNOWLEDGMENT (ACK/NACK): If a slave has recognized its address, it will
respond with a single acknowledgment bit of 0, holding SDA low for the next clock cycle.
This is called an ACK. If SDA is high (no ACK, also called a NACK), the master knows
an error has occurred.

4. WRITE or RECEIVE: If RW = 0 (write), the master sends a byte over SDA. If RW = 1
(read), then the slave controls the SDA and sends a byte.

5. ACKNOWLEDGMENT (ACK/NACK): If it is a write, the slave must send an ACK bit to
acknowledge that it has received the data. Otherwise the master knows an error has
occurred. If it is a read, the master either sends an ACK if it wants another byte or a
NACK if it is done requesting bytes. If the master wishes to send another byte, or has
requested another byte, return to step 4.

6. STOP or RESTART: The master issues a stop bit (SDA raised to high while SCL is high)
to end the transmission. This allows other devices to claim control of the bus. If the master
wants to keep control of the bus, possibly to change the communication from a write to a
read or vice versa, the master can issue a RESTART (or “repeated start”) instead of a
STOP. This is simply a STOP followed quickly by another START, before another master
can claim the bus. In this case, return to step 2.

If two or more masters attempt to take control of an idle bus at approximately the same time,
an arbitration process ensures that all but one of them drop out. Each device monitors the state
of the SDA line, and if it is ever a 0 (low) while the device is transmitting a 1 (high), the
device knows that another master is driving the line, and therefore the device drops out.
Devices that lose arbitration report a bus collision.

Although the master nominally drives the clock line SCL, a slave may also pull it low. For
example, if the slave needs more time to process data sent to it, it can hold the SCL line low
when the master tries to let SCL return to high. The master senses this and waits until the slave
allows SCL to return high before resuming its normal clock rate. This is called clock
stretching.

13.2 Details

Seven SFRs control the behavior of I2C peripherals. Many of the fields in these SFRs initiate
an “event” on the I2C bus. All bits default to zero except I2CxCON.SCLREL. In the SFRs
below, x refers to the I2C peripheral number, 1, 3, 4, or 5.

1 10-bit addressing is also supported, but this chapter focuses on 7-bit addresses.
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I2CxCON The I2C control register. Setting bits in this register initiates primitive operations
used by the I2C protocol. Some bits control an I2C slave’s behavior.
I2CxCON〈15〉 or I2CxCONbits.ON: Setting this bit enables the I2C module.
I2CxCON〈12〉 or I2CxCONbits.SCLREL: In slave mode only, this SCL release control
bit is set to release the clock, telling the master it may continue to clock the
communication, or cleared to hold the clock low (clock stretching). When the master
detects that SCL is low, it delays sending a clock signal, giving the slave more time
before responding to the master.

I2CxCON〈6〉 or I2CxCONbits.STREN: This SCL stretch enable bit is used in slave
mode to control clock stretching. If set to one, the slave will hold SCL low prior to
transmitting to and after receiving from the master. When SCL is low, the clock is
stretched and the master pauses the clock. If clear, clock stretching only happens at the
beginning of a slave transmission. A slave transmission begins whenever the master
expects data from the slave, according to the I2C protocol. The transmission does not
actually occur until the slave sets I2CxCONbits.SCLREL.

I2CxCON〈5〉 or I2CxCONbits.ACKDT: Acknowledge data bit, used only in master
mode. If set to one, the master will send a NACK when sending an acknowledgment,
signaling that no more data is requested. If set to zero, the master sends an ACK during
the acknowledge, signaling that it wants more data.

I2CxCON〈4:0〉These bits initiate various control signals on the bus. While any of these
bits is high, you should not set any of the other bits.

I2CxCON〈4〉 or I2CxCONbits.ACKEN: Setting this bit initiates an acknowledgment,
transmitting the I2CxCON.ACKDT bit. Hardware clears this bit after the
ACK ends.

I2CxCON〈3〉 or I2CxCONbits.RCEN: Setting this bit initiates a RECEIVE. Hardware
clears this bit after the receive has finished.

I2CxCON〈2〉 or I2CxCONbits.PEN: Setting this bit initiates a STOP. Hardware clears
the bit after the stop is sent.

I2CxCON〈1〉 or I2CxCONbits.RSEN: Setting this bit initiates a RESTART. Hardware
clears this bit after the restart is finished.

I2CxCON〈0〉 or I2CxCONbits.SEN: Setting this bit initiates a START. Hardware clears
this bit after the start is finished.

I2CxSTAT Contains the status of the I2C peripheral and results from signals on the
I2C bus.
I2CxSTAT〈15〉 or I2CxSTATbits.ACKSTAT: If clear (0) an ACK (acknowledge) has
been received; otherwise an ACK has not been received.

I2CxSTAT〈14〉 or I2CxSTATbits.TRSTAT: If this transmission status bit is set (1) the
master is transmitting; otherwise the master is not transmitting. Only used in master
mode.
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I2CxSTAT〈6〉 or I2CxSTATbits.I2COV: Useful for debugging. If set (1), a receive
overflow has occurred, meaning the receive buffer contains a byte but another byte has
been received. Software must clear this bit.

I2CxSTAT〈5〉 or I2CxSTATbits.D_A: In slave mode, indicates whether the most recently
received or transmitted information was an address (0) or data (1).

I2CxSTAT〈2〉 or I2CxSTATbits.R_W: In slave mode, this bit is a 1 if the master is
requesting data from the slave and a 0 if the master is sending data.

I2CxSTAT〈1〉 or I2CxSTATbits.RBF: The receive buffer full bit, when set, indicates that
a byte has been received and is ready in I2CxRCV.

I2CxSTAT〈0〉 or I2CxSTATbits.TBF: When set (1), indicates that the transmit buffer is
full and that a transmission is occurring.

I2CxADD This register contains the I2C peripheral’s address. The address is contained in the
lower ten bits (although only seven are used in 7-bit address mode). Whenever an
ADDRESS is initiated on the I2C bus, the slave will respond if the ADDRESS matches its
own address. Only slaves need to set an address.

I2CxMSK Allows the slave to ignore some address bits.
I2CxBRG The lower 16 bits of this register determine the baud. Typically the baud is either

100 kHz or 400 kHz. To compute the value of I2CxBRG, use the formula

I2CxBRG =
((

1

2 × Fsck
− TPGD

)
Fpb

)
− 2, (13.1)

where Fsck is the desired baud, Fpb is the peripheral bus clock frequency, and TPGD is
104 ns, according to the Reference Manual. With an 80MHz peripheral bus clock,
I2CxBRG=390 for 100 kHz and I2CxBRG=90 for 400 kHz. Only masters need to set a
baud rate.

I2CxTRN Used to transmit a byte of data. Write an address to this register when performing
the ADDRESS command, or write data when sending a data byte.

I2CxRCV Used to receive data from the I2C bus. This register contains any data received.
On the master, this register only contains data after a RECEIVE request has been initiated.
On the slave, this register is loaded whenever the master sends any data, including address
bytes.

Interrupts can be generated for a master or the slave by any of the data transaction primitives
or by errors detected in the handshaking. Interrupts can also be generated by bus collisions.
See the Reference Manual for details. The interrupt vectors are _I2C_x_VECTOR, where x is 1, 3,
4, or 5. For I2C peripheral 1, the flag status bits are in IFS0bits.I2C1BIF (bus collision),
IFS0bits.I2C1SIF (slave event), and IFS0bits.I2C1MIF (master event); the enable bits are in
IEC0bits.I2C1BIE (bus collision), IEC0bits.I2C1SIE (slave event), and IEC0bits.I2C1MIE
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(master event); and the priority and subpriority bits are in IPC6bits.I2C1IP and
IPC6bits.I2C1IS, respectively. For I2C peripherals 3 to 5, the bits are named similarly,
replacing I2C1 with I2Cx, x = 3 to 5. For I2C3, the bits are also in IFS0, IEC0, and IPC6. For
I2C4, the bits are in IFS1, IEC1, and IPC7, and for I2C5, they are in IFS1, IEC1, and IPC8.

13.3 Sample Code

13.3.1 Loopback

In this example, a single PIC32 communicates with itself using I2C. Here we use I2C 1 as the
master and I2C 5 as a slave.2

We have divided the code into three modules: the master, the slave, and the main function,
allowing you to test the code on a single PIC32 and then to use two PIC32’s to test inter-PIC
communication.

First, the master code. The implementation of the I2C master contains functions roughly
corresponding to the primitives discussed earlier. Each function executes the primitive
command and waits for it to complete. By calling the primitive functions in succession, you
can form an I2C transaction.

Code Sample 13.1 i2c_master_noint.h. Header File for I2C Master with No
Interrupts.

#ifndef I2C_MASTER_NOINT_H__
#define I2C_MASTER_NOINT_H__
// Header file for i2c_master_noint.c
// helps implement use I2C1 as a master without using interrupts

void i2c_master_setup(void); // set up I2C 1 as a master, at 100 kHz

void i2c_master_start(void); // send a START signal
void i2c_master_restart(void); // send a RESTART signal
void i2c_master_send(unsigned char byte); // send a byte (either an address or data)
unsigned char i2c_master_recv(void); // receive a byte of data
void i2c_master_ack(int val); // send an ACK (0) or NACK (1)
void i2c_master_stop(void); // send a stop

#endif

2 Technically, a single I2C peripheral can simultaneously be a master and a slave. When the master sends data to
its slave address, the slave will respond!

i2c_master_noint.h
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Code Sample 13.2 i2c_master_noint.c. Implementation of I2C Master with No
Interrupts.

#include "NU32.h" // constants, funcs for startup and UART
// I2C Master utilities, 100 kHz, using polling rather than interrupts
// The functions must be callled in the correct order as per the I2C protocol
// Master will use I2C1 SDA1 (D9) and SCL1 (D10)
// Connect these through resistors to Vcc (3.3 V). 2.4k resistors recommended,
// but something close will do.
// Connect SDA1 to the SDA pin on the slave and SCL1 to the SCL pin on a slave

void i2c_master_setup(void) {
I2C1BRG = 390; // I2CBRG = [1/(2*Fsck) - PGD]*Pblck - 2

// Fsck is the freq (100 kHz here), PGD = 104 ns
I2C1CONbits.ON = 1; // turn on the I2C1 module

}

// Start a transmission on the I2C bus
void i2c_master_start(void) {

I2C1CONbits.SEN = 1; // send the start bit
while(I2C1CONbits.SEN) { ; } // wait for the start bit to be sent

}

void i2c_master_restart(void) {
I2C1CONbits.RSEN = 1; // send a restart
while(I2C1CONbits.RSEN) { ; } // wait for the restart to clear

}

void i2c_master_send(unsigned char byte) { // send a byte to slave
I2C1TRN = byte; // if an address, bit 0 = 0 for write, 1 for read
while(I2C1STATbits.TRSTAT) { ; } // wait for the transmission to finish
if(I2C1STATbits.ACKSTAT) { // if this is high, slave has not acknowledged

NU32_WriteUART3("I2C2 Master: failed to receive ACK\r\n");
}

}

unsigned char i2c_master_recv(void) { // receive a byte from the slave
I2C1CONbits.RCEN = 1; // start receiving data
while(!I2C1STATbits.RBF) { ; } // wait to receive the data
return I2C1RCV; // read and return the data

}

void i2c_master_ack(int val) { // sends ACK = 0 (slave should send another byte)
// or NACK = 1 (no more bytes requested from slave)

I2C1CONbits.ACKDT = val; // store ACK/NACK in ACKDT
I2C1CONbits.ACKEN = 1; // send ACKDT
while(I2C1CONbits.ACKEN) { ; } // wait for ACK/NACK to be sent

}

void i2c_master_stop(void) { // send a STOP:
I2C1CONbits.PEN = 1; // comm is complete and master relinquishes bus
while(I2C1CONbits.PEN) { ; } // wait for STOP to complete

}

Next the slave code. The slave code uses I2C 5, and, upon a read request, will return the last
two bytes written to the slave. As the slave is interrupt driven, it will work as soon as you call
i2c_slave_setup, providing the desired 7-bit address (the master is configured to talk to a

i2c_master_noint.c
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slave on address 0x32). The slave interrupt reads the status flags so that it can discriminate
between reads, writes, address bytes, and data bytes. Notice that, when the slave wishes to
send data to the master, it must release SCL to be controlled by the master by setting
I2C5CONbits.SCLREL to one.

Code Sample 13.3 i2c_slave.h. Header File for I2C Slave.

#ifndef I2C_SLAVE_H__
#define I2C_SLAVE_H__
// implements a basic I2C slave

void i2c_slave_setup(unsigned char addr); // set up the slave at the given address

#endif

Code Sample 13.4 i2c_slave.c. Implementation of an I2C Slave.

#include "NU32.h" // constants, funcs for startup and UART
// Implements a I2C slave on I2C5 using pins SDA5 (F4) and SCL5 (F5)
// The slave returns the last two bytes the master writes

void __ISR(_I2C_5_VECTOR, IPL1SOFT) I2C5SlaveInterrupt(void) {
static unsigned char bytes[2]; // store two received bytes
static int rw = 0; // index of the bytes read/written
if(rw == 2) { // reset the data index after every two bytes
rw = 0;

}
// We have to check why the interrupt occurred. Some possible causes:
// (1) slave received its address with RW bit = 1: read address & send data to master
// (2) slave received its address with RW bit = 0: read address (data will come next)
// (3) slave received an ACK in RW = 1 mode: send data to master
// (4) slave received a data byte in RW = 0 mode: store this data sent by master

if(I2C5STATbits.D_A) { // received data/ACK, so Case (3) or (4)
if(I2C5STATbits.R_W) { // Case (3): send data to master

I2C5TRN = bytes[rw]; // load slave’s previously received data to send to master
I2C5CONbits.SCLREL = 1; // release the clock, allowing master to clock in data

} else { // Case (4): we have received data from the master
bytes[rw] = I2C5RCV; // store the received data byte

}
++rw;

} else { // the byte is an address byte, so Case (1) or (2)
I2C5RCV; // read to clear I2C5RCV (we don’t need our own address)
if(I2C5STATbits.R_W) { // Case (1): send data to master

I2C5TRN = bytes[rw]; // load slave’s previously received data to send to master
++rw;
I2C5CONbits.SCLREL = 1; // release the clock, allowing master to clock in data

} // Case (2): do nothing more, wait for data to come
}
IFS1bits.I2C5SIF = 0;

}

// I2C5 slave setup (disable interrupts before calling)
void i2c_slave_setup(unsigned char addr) {

I2C5ADD = addr; // the address of the slave

i2c_slave.h
i2c_slave.c
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IPC8bits.I2C5IP = 1; // slave has interrupt priority 1
IEC1bits.I2C5SIE = 1; // slave interrupt is enabled
IFS1bits.I2C5SIF = 0; // clear the interrupt flag
I2C5CONbits.ON = 1; // turn on i2c2

}

Next, the main program, in which the PIC32 communicates with itself over I2C. The main
program initializes the slave and master and performs some I2C transactions, sending the
results over the UART to your terminal. Notice how the primitive operations are assembled
into a single transaction. You should connect the clock (SCL) and data (SDA) lines of I2C 1
and I2C 5, along with the pull-up resistors. To examine what happens when the slave does not
return an ACK, disconnect the I2C bus wires.

Code Sample 13.5 i2c_loop.c. The Main I2C Loopback Program.

#include "NU32.h" // config bits, constants, funcs for startup and UART
#include "i2c_slave.h"
#include "i2c_master_noint.h"
// Demonstrate I2C by having the I2C1 talk to I2C5 on the same PIC32
// Master will use SDA1 (D9) and SCL1 (D10). Connect these through resistors to
// Vcc (3.3 V) (2.4k resistors recommended, but around that should be good enough)
// Slave will use SDA5 (F4) and SCL5 (F5)
// SDA5 -> SDA1
// SCL5 -> SCL1
// Two bytes will be written to the slave and then read back to the slave.
#define SLAVE_ADDR 0x32

int main() {
char buf[100] = {}; // buffer for sending messages to the user
unsigned char master_write0 = 0xCD; // first byte that master writes
unsigned char master_write1 = 0x91; // second byte that master writes
unsigned char master_read0 = 0x00; // first received byte
unsigned char master_read1 = 0x00; // second received byte

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
__builtin_disable_interrupts();
i2c_slave_setup(SLAVE_ADDR); // init I2C5, which we use as a slave

// (comment out if slave is on another pic)
i2c_master_setup(); // init I2C2, which we use as a master
__builtin_enable_interrupts();

while(1) {
NU32_WriteUART3("Master: Press Enter to begin transmission.\r\n");
NU32_ReadUART3(buf,2);
i2c_master_start(); // Begin the start sequence
i2c_master_send(SLAVE_ADDR << 1); // send the slave address, left shifted by 1,

// which clears bit 0, indicating a write
i2c_master_send(master_write0); // send a byte to the slave
i2c_master_send(master_write1); // send another byte to the slave
i2c_master_restart(); // send a RESTART so we can begin reading
i2c_master_send((SLAVE_ADDR << 1) | 1); // send slave address, left shifted by 1,

// and then a 1 in lsb, indicating read
master_read0 = i2c_master_recv(); // receive a byte from the bus
i2c_master_ack(0); // send ACK (0): master wants another byte!

i2c_loop.c
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master_read1 = i2c_master_recv(); // receive another byte from the bus
i2c_master_ack(1); // send NACK (1): master needs no more bytes
i2c_master_stop(); // send STOP: end transmission, give up bus

sprintf(buf,"Master Wrote: 0x%x 0x%x\r\n", master_write0, master_write1);
NU32_WriteUART3(buf);
sprintf(buf,"Master Read: 0x%x 0x%x\r\n", master_read0, master_read1);
NU32_WriteUART3(buf);
++master_write0; // change the data the master sends
++master_write1;

}
return 0;

}

Using I2C to have the PIC32 communicate with itself may not seem practical, but it helps
demonstrate the peripheral without involving other chips. If you have another PIC32 available,
you can compile the slave as a standalone program using i2c_slave_loop.c (below). By
connecting the master loopback example to a slave on another chip you can witness inter-PIC
communication.

To use i2c_slave_loop.c, compile and link it with i2c_slave.c and run it on another NU32.
Connect the SDA and SCL pins on the two NU32s, as well as the pull-up resistors. Power the
slave NU32 from the master NU32 by connecting the GND rails of the two NU32s together,
and by connecting the two 6 V rails together. Plug in the master NU32 while making sure that
the slave NU32 is unplugged but with its power switch on. Both NU32’s will turn on and off
based on the state of the master’s switch.

Code Sample 13.6 i2c_slave_loop.c. A Standalone I2C Slave.

#include "i2c_slave.h"
#include "NU32.h"

int main() {
NU32_Startup();
i2c_slave_setup(0x32); // enable the slave w/ address 0x32

while(1) { // the slave is handled in an interrupt in i2c_slave.c
_nop(); // so we do nothing.

}
return 0;

}

13.3.2 Interrupt-Based Master

In Section 13.3.1, we created functions for each I2C primitive: the functions initiate a
command and wait for it to complete. In this section, we provide interrupt-based master code.
The function i2c_write_read allows the master to initiate a write-read transaction by

i2c_slave_loop.c
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providing a slave address, an input array with the bytes to write, and an output array with the
bytes that are read. If the length of the write or read array is zero, then that specific action will
not be performed.

The interrupt removes the need to wait for each primitive operation to complete. Instead, an
interrupt triggers at the end of each primitive. The ISR tracks the state of the current
communication and performs the appropriate state transition. As coded, the function
i2c_write_read waits for the whole transaction to complete before returning; however, in
time-critical applications this behavior could be modified. Calling i2c_write_read would
initiate the transaction, but not wait for it to finish. Mainline code could continue to execute,
and either check for the result of the transaction at a later time or handle the transaction results
from within the ISR.

Code Sample 13.7 i2c_master_int.h. Header File for Interrupt-Based I2C Master.

#ifndef I2C_MASTER_INT__H__
#define I2C_MASTER_INT__H__

// buffer pointer type. The buffer is shared by an ISR and mainline code.
// the pointer to the buffer is also shared by an ISR and mainline code.
// Hence the double volatile qualification
typedef volatile unsigned char * volatile buffer_t;

void i2c_master_setup(); //sets up I2C1 as a master using an interrupt

// Initiate an I2C write read operation at the given address.
// You can optionally only read or only write by passing 0 length for reading or writing.
// This will not return until the transaction is complete. Returns false on error.
int i2c_write_read(unsigned int addr, const buffer_t write, unsigned int wlen,

const buffer_t read, unsigned int rlen );

// write a single byte to the slave
int i2c_write_byte(unsigned int addr, unsigned char byte);

#endif

Code Sample 13.8 i2c_master_int.c. Implementation of an Interrupt-Based I2C
Master.

#include "NU32.h" // constants, funcs for startup and UART
#include "i2c_master_int.h"
// I2C Master utilities, using interrupts
// Master will use I2C1 SDA1 (D9) and SCL1 (D10)
// Connect these through resistors to Vcc (3.3V). 2.4k resistors recommended, but
// something close will do.
// Connect SDA1 to the SDA pin on a slave device and SCL1 to the SCL pin on a slave.

// keeps track of the current I2C state
static volatile enum {IDLE,START,WRITE,READ,RESTART,ACK,NACK,STOP,ERROR} state = IDLE;

static buffer_t to_write = NULL; // data to write
static buffer_t to_read = NULL; // data to read

i2c_master_int.h
i2c_master_int.c
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static volatile unsigned char address = 0; // the 7-bit address to write to / read from
static volatile unsigned int n_write = 0; // number of data bytes to write
static volatile unsigned int n_read = 0; // number of data bytes to read

void __ISR(_I2C_1_VECTOR, IPL1SOFT) I2C1MasterInterrupt(void) {
static unsigned int write_index = 0, read_index = 0; //indexes the read/write arrays

switch(state) {
case START: // start bit has been sent

write_index = 0; // reset indices
read_index = 0;
if(n_write > 0) { // there are bytes to write

state = WRITE; // transition to write mode
I2C1TRN = address << 1; // send the address, with write mode set

} else {
state = ACK; // skip directly to reading
I2C1TRN = (address << 1) & 1;

}

break;
case WRITE: // a write has finished

if(I2C1STATbits.ACKSTAT) { // error: didn’t receive an ACK from the slave
state = ERROR;

} else {
if(write_index < n_write) { // still more data to write

I2C1TRN = to_write[write_index]; // write the data
++write_index;

} else { // done writing data, time to read or stop
if(n_read > 0) { // we want to read so issue a restart
state = RESTART;
I2C1CONbits.RSEN = 1; // send the restart to begin the read

} else { // no data to read, issue a stop
state = STOP;
I2C1CONbits.PEN = 1;

}
}

}
break;

case RESTART: // the restart has completed
// now we want to read, send the read address
state = ACK; // when interrupted in ACK mode, we will initiate reading a byte
I2C1TRN = (address << 1) | 1; // the address is sent with the read bit sent
break;

case READ:
to_read[read_index] = I2C1RCV;
++read_index;
if(read_index == n_read) { // we are done reading, so send a nack

state = NACK;
I2C1CONbits.ACKDT = 1;

} else {
state = ACK;
I2C1CONbits.ACKDT = 0;

}
I2C1CONbits.ACKEN = 1;
break;

case ACK:
// just sent an ack meaning we want to read more bytes

state = READ;
I2C1CONbits.RCEN = 1;
break;
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case NACK:
//issue a stop
state = STOP;
I2C1CONbits.PEN = 1;
break;

case STOP:
state = IDLE; // we have returned to idle mode, indicating that the data is ready
break;

default:
// some error has occurred
state = ERROR;

}
IFS0bits.I2C1MIF = 0; //clear the interrupt flag

}

void i2c_master_setup() {
int ie = __builtin_disable_interrupts();
I2C1BRG = 90; // I2CBRG = [1/(2*Fsck) - PGD]*Pblck - 2

// Fsck is the frequency (400 kHz here), PGD = 104ns
// this is 400 khz mode
// enable the i2c interrupts

IPC6bits.I2C1IP = 1; // master has interrupt priority 1
IEC0bits.I2C1MIE = 1; // master interrupt is enabled
IFS0bits.I2C1MIF = 0; // clear the interrupt flag
I2C1CONbits.ON = 1; // turn on the I2C2 module

if(ie & 1) {
__builtin_enable_interrupts();

}
}

// communicate with the slave at address addr. first write wlen bytes to the slave,
// then read rlen bytes from the slave
int i2c_write_read(unsigned int addr, const buffer_t write,

unsigned int wlen, const buffer_t read, unsigned int rlen ) {
n_write = wlen;
n_read = rlen;
to_write = write;
to_read = read;
address = addr;
state = START;
I2C1CONbits.SEN = 1; // initialize the start
while(state != IDLE && state != ERROR) { ; } // initialize the sequence
return state != ERROR;

}

// write a single byte to the slave
int i2c_write_byte(unsigned int addr, unsigned char byte) {
return i2c_write_read(addr,&byte,1,NULL,0);

}

13.3.3 Accelerometer/Magnetometer

The STMicroelectronics LSM303D is a three-axis accelerometer and magnetometer that can
be used as a digital compass. It also has a temperature sensor. More details about this sensor
and the breakout board are discussed in Chapter 12. Here we use the same accelerometer
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library and example that we used in Chapter 12, except now our implementation uses I2C
rather than SPI.

When used with the Pololu breakout board, the accelerometer has an I2C address of 0x1D.
The example code continuously displays the raw accelerometer, magnetometer, and
temperature sensor values. The necessary code is Code Samples 12.3 and 12.4 from Chapter
12, as well as the following code.

Code Sample 13.9 i2c_accel.c. I2C Implementation of the Basic Accelerometer
Library. Requires i2c_master_int.h.

#include "accel.h"
#include "i2c_master_int.h"
#include <stdlib.h>

#define I2C_ADDR 0x1D // the I2C slave address

// Wire GND to GND, VDD to 3.3V, SDA to SDA2 (RA3) and SCL to SCL2 (RA2)

// read data from the accelerometer, given the starting register address.
// return the data in data
void acc_read_register(unsigned char reg, unsigned char data[], unsigned int len)
{

unsigned char write_cmd[1] = {};
if(len > 1) { // want to read more than 1 byte and we are reading from the accelerometer
write_cmd[0] = reg | 0x80; // make the MSB of addr 1 to enable auto increment

}
else {
write_cmd[0] = reg;

}
i2c_write_read(I2C_ADDR,write_cmd, 1, data,len);

}

void acc_write_register(unsigned char reg, unsigned char data)
{

unsigned char write_cmd[2];
write_cmd[0] = reg; // write the register
write_cmd[1] = data; // write the actual data
i2c_write_read(I2C_ADDR, write_cmd, 2, NULL, 0);

}

void acc_setup() { // set up the accelerometer, using I2C 2
i2c_master_setup();
acc_write_register(CTRL1, 0xAF); // set accelerometer data rate to 1600 Hz.

// Don’t update until we read values
acc_write_register(CTRL5, 0xF0); // 50 Hz magnetometer, high resolution, temp sensor on
acc_write_register(CTRL7, 0x0); // enable continuous reading of the magnetometer

}

i2c_accel.c
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13.3.4 OLED Screen

An organic light emitting diode (OLED) screen is a low-power, high-resolution monochrome
display. In this example we use an inexpensive 128 x 64 pixel OLED screen (128 columns and
64 rows) with an onboard SSD1306 controller chip, as can be found on hobbyist websites. The
PIC32 uses I2C to communicate with the SSD1306. The OLED library we provide gives a
simple interface to the OLED display; however, it does not provide comprehensive access to
all of the controller’s functions.

Each pixel is represented by a single bit. The PIC32 stores pixel data in a framebuffer in
PIC32 RAM, a copy of the OLED controller’s RAM. The functions display_pixel_set and
display_pixel_get access this framebuffer rather than directly accessing the OLED
controller’s memory. The function display_draw copies the whole framebuffer to the OLED
controller, which updates the screen.

The sample code consists of three files: the two files of the OLED library i2c_display.{c,h}

and a main program i2c_pixels.c. The main program uses the OLED library to draw diagonal
lines across the screen (Figure 13.3).

Figure 13.3
An OLED screen.
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Code Sample 13.10 i2c_display.h. Header File for Controlling an OLED Display.

#ifndef I2C_DISPLAY_H__
#define I2C_DISPLAY_H__
// bare-bones driver for interfacing with the SSD1306 OLED display via I2C
// not fully featured, just demonstrates basic operation
// note that resetting the PIC doesn’t reset the OLED display, only power cycling does

#define WIDTH 128 //display width in bits
#define HEIGHT 64 //display height, in bits

void display_init(void); // initialize I2C1

void display_command(unsigned char cmd); // issue a command to the display

void display_draw(void); // draw the buffer in the display

void display_clear(void); // clear the display

void display_pixel_set(int row, int col, int val); // set pixel at given row and column

int display_pixel_get(int row, int col); // get the pixel at the given row and column

#endif

Code Sample 13.11 i2c_display.c. OLED Screen Interfacing Code.

#include "i2c_master_int.h"
#include "i2c_display.h"
#include <stdlib.h>
// control the SSD1306 OLED display

#define DISPLAY_ADDR 0x3C

#define SIZE WIDTH*HEIGHT/8 //display size, in bytes

static unsigned char video_buffer[SIZE+1] = {0};// buffer corresponding to display pixels
// for sending over I2C. The first byte
// lets us to store the control character

static unsigned char * gddram = video_buffer + 1; // the video buffer start, excluding
// address byte we write these pixels
// to GDDRAM over I2C

void display_command(unsigned char cmd) {// write a command to the display
unsigned char to_write[] = {0x00,cmd}; // 1st byte = 0 (CO = 0, DC = 0), 2nd is command
i2c_write_read(DISPLAY_ADDR, to_write,2, NULL, 0);

}

void display_init() {
i2c_master_setup();

// goes through the reset procedure
display_command(0xAE); // turn off display

display_command(0xA8); // set the multiplex ratio (how many rows are updated per
// oled driver clock) to the number of rows in the display

display_command(HEIGHT-1); // the ratio set is the value sent+1, so subtract 1

i2c_display.h
i2c_display.c
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// we will always write the full display on a single update.
display_command(0x20); // set address mode
display_command(0x00); // horizontal address mode
display_command(0x21); // set column address
display_command(0x00); // start at 0
display_command(0xFF); // end at 127

// with this address mode, the address will go through all
// the pixels and then return to the start,
// hence we never need to set the address again

display_command(0x8d); // charge pump
display_command(0x14); // turn on charge pump to create ˜7 Volts needed to light pixels
display_command(0xAF); // turn on the display
video_buffer[0] = 0x40;// co = 0, dc =1, allows us to send data directly from video

// buffer, 0x40 is the "next bytes have data" byte
}

void display_draw() { // copies data to the gddram on the oled chip
i2c_write_read(DISPLAY_ADDR, video_buffer, SIZE + 1, NULL, 0);

}

void display_clear() {
memset(gddram,0,SIZE);

}

// get the position in gddram of the pixel position
static inline int pixel_pos(int row, int col) {
return (row/8)*WIDTH + col;

}

// get a bitmask for the actual pixel position, based on row
static inline unsigned char pixel_mask(int row) {
return 1 << (row % 8);

}

// invert the pixel at the given row and column
void display_pixel_set(int row, int col,int val) {
if(val) {

gddram[pixel_pos(row,col)] |= pixel_mask(row); // set the pixel
} else {

gddram[pixel_pos(row,col)] &= ˜pixel_mask(row); // clear the pixel
}

}

int display_pixel_get(int row, int col) {
return (gddram[pixel_pos(row,col)] & pixel_mask(row)) != 0;

}

Code Sample 13.12 i2c_pixels.c. Draw Some Lines on an OLED Screen.

#include "NU32.h" // constants, funcs for startup and UART
#include "i2c_display.h"
// Tests the OLED driver by drawing pixels

int main() {
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
display_init();

i2c_pixels.c
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int row, col;
for(col = 0; col < WIDTH; ++col) { // draw a diagonal line
row = col % HEIGHT; // when we hit the last row
display_pixel_set(row,col,1); // start from row 0, but keep advancing

// the column
display_draw(); // we draw every update, to display progress.

}
display_draw();

return 0;
}

13.3.5 Multiple Devices

To test three devices on the same I2C bus—the PIC32, the accelerometer, and the OLED
screen—and to have a little fun, we implemented the classic arcade game Snake (Figure 13.4).
The goal of this game is to move the snake, represented by a string of pixels, to eat food
without the snake’s head running into the boundaries of the screen or the body of the snake
itself. The snake’s head moves north, south, east, or west depending on the direction the player
tilts the accelerometer, and the snake’s body trails along behind the head. When the snake’s
head passes over a food pixel, a new food pixel appears, and the body of the snake grows by
one pixel, increasing the challenge.

The OLED screen and the accelerometer are used as slaves, and they have different slave
addresses. The code relies on i2c_snake.c (below), i2c_accel.c, accel.h, i2c_master_int.c,
and i2c_master_int.h.

Code Sample 13.13 i2c_snake.c. The Game of Snake, on an OLED Screen.

#include "NU32.h" // cache on, interrupts on, LED/button init, UART init
#include "i2c_display.h"
#include "accel.h"

// the game of snake, on an oled display. eat those pixels!

Food
Snake’s

head

Figure 13.4
The game of Snake. Eat the food, and do not crash into the wall or yourself!

i2c_snake.c
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#define MAX_LEN WIDTH*HEIGHT

typedef struct {
int head;
int tail;
int rows[MAX_LEN];
int cols[MAX_LEN];

} snake_t; // hold the snake

// direction of the snake
typedef enum {NORTH = 0, EAST = 1, SOUTH = 2, WEST= 3} direction_t;

// grow the snake in the appropriate direction, returns false if snake has crashed
int snake_grow(snake_t * snake, direction_t dir) {
int hrow = snake->rows[snake->head];
int hcol = snake->cols[snake->head];

++snake->head;
if(snake->head == MAX_LEN) {

snake->head = 0;
}
switch(dir) { // move the snake in the appropriate direction

case NORTH:
snake->rows[snake->head] = hrow -1;
snake->cols[snake->head] = hcol;
break;

case SOUTH:
snake->rows[snake->head] = hrow + 1;
snake->cols[snake->head] = hcol;
break;

case EAST:
snake->rows[snake->head] = hrow;
snake->cols[snake->head] = hcol + 1;
break;

case WEST:
snake->rows[snake->head] = hrow;
snake->cols[snake->head] = hcol -1;
break;

}
// check for collisions with the wall or with itself and return 0, otherwise return 1
if(snake->rows[snake->head] < 0 || snake->rows[snake->head] >= HEIGHT

|| snake->cols[snake->head] < 0 || snake->cols[snake->head] >= WIDTH) {
return 0;

} else if(display_pixel_get(snake->rows[snake->head],snake->cols[snake->head]) == 1) {
return 0;

} else {
display_pixel_set(snake->rows[snake->head],snake->cols[snake->head],1);
return 1;

}

}

void snake_move(snake_t * snake) { // move the snake by deleting the tail
display_pixel_set(snake->rows[snake->tail],snake->cols[snake->tail],0);
++snake->tail;
if(snake->tail == MAX_LEN) {

snake->tail = 0;
}

}
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int main(void) {
NU32_Startup();
display_init();
acc_setup();

while(1) {
snake_t snake = {5, 0, {20,20,20,20,20,20},{20,21,22,23,24,25}};
int dead = 0;
direction_t dir = EAST;
char dir_key = 0;
char buffer[3];
int i;
int crow, ccol;
int eaten = 1;
int grow = 0;
short acc[2]; // x and y accleration
short mag;
for(i = snake.tail; i <= snake.head; ++i) { // draw the initial snake

display_pixel_set(snake.rows[i],snake.cols[i],1);
}
display_draw();
acc_read_register(OUT_X_L_M,(unsigned char *)&mag,2);
srand(mag); // seed the random number generator with the magnetic field

// (not the most random, but good enough for this game)
while(!dead) {

if(eaten) {
crow = rand() % HEIGHT;
ccol = rand() % WIDTH;
display_pixel_set(crow,ccol,1);
eaten = 0;

}

//determine direction based on largest magnitude accel and its direction
acc_read_register(OUT_X_L_A,(unsigned char *)&acc,4);
if(abs(acc[0]) > abs(acc[1])) { // move snake in direction of largest acceleration

if(acc[0] > 0) { // prevent snake from turning 180 degrees,
if(dir != EAST) { // resulting in an automatic self crash
dir = WEST;

}
} else

if( dir != WEST) {
dir = EAST;

}
} else {

if(acc[1] > 0) {
if( dir != SOUTH) {
dir = NORTH;

}
} else {

if( dir != NORTH) {
dir = SOUTH;

}
}

}
if(snake_grow(&snake,dir)) {

snake_move(&snake);
} else if(snake.rows[snake.head] == crow && snake.cols[snake.head] == ccol) {

eaten = 1;
grow += 15;

} else {
dead = 1;
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display_clear();
}
if(grow > 0) {

snake_grow(&snake,dir);
--grow;

}
display_draw();

}
}
return 0;

}

13.4 Chapter Summary

• I2C communication requires two wires, one for the clock (SCL) and another for data
(SDA). Both lines should be pulled up to 3.3 or 5 V with resistors.

• An I2C device can be either a master or a slave. The master controls the clock and initiates
all communication. Usually the PIC32 operates as the master, but it can also be a slave.

• Each slave has a unique address, and it only responds when the master issues its address,
allowing multiple slaves to be connected to a single master. Multiple devices can assume
the role of master, but only one master can operate at a time.

• The I2C peripheral automatically handles the primitives of I2C communication, like
ADDRESS, WRITE, and RECEIVE. A full I2C transaction, however, requires a sequence
of these primitive commands that must be handled in software. The master can sequence
the commands by polling for status flags indicating the completion of a primitive, or by
generating interrupts on the completion of primitives.

13.5 Exercises
1. Why do the I2C bus lines require pull-up resistors?
2. Write a program that reads a series of bytes (entered as hexadecimal numbers) from the

terminal emulator and sends them over I2C to an external chip. It should then display the
data received over I2C as hexadecimal numbers. If you want, you may also allow for direct
control over sending various I2C primitives such as START or RESET. Note: you can read
and write hexadecimal numbers using the \%x format specifier with sscanf and sprintf.

Further Reading
LSM303D ultra compact high performance e-compass 3D accelerometer and 3D magnetometer module. (2012).

STMicroelectronics.
PIC32 family reference manual. Section 24: Inter-integrated circuit. (2013). Microchip Technology Inc.
SSD1306 OLED/PLED segment/common driver with controller. (2008). Solomon Systech.
UM10204 I2C-bus specification and user manual (v. 6). (2014). NXP Semiconductors.
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Parallel Master Port

The parallel master port (PMP) uses multiple wires to communicate multiple bits
simultaneously (in parallel). This is in contrast to serial communication, where one bit is sent
at a time. Parallel ports were once popular on computers and printers, but they have now been
displaced by newer communication technologies, such as USB and Ethernet. Nevertheless, the
PMP provides a simple interface to some devices, such as some LCD controllers.

14.1 Overview

The PIC32 has one PMP peripheral. Despite its name, the PMP can act as a master or a slave;
however, we focus on using it as a master. As master, the PMP has different modes of
communicating with the slave, making it suitable for interfacing with various parallel devices.

The PIC32’s PMP can use up to 16 address pins (PMA0 to PMA15), 8 data pins (PMD0 to
PMD7), and an assortment of control pins. The address pins are often used to indicate the
slave’s remote memory address to read to or write from. The peripheral can optionally
increment the address after each read/write to enable reading from/writing to multiple
registers on the target device. The data pins are used for sending bytes between the PMP and
the device. Control pins implement hardware handshaking, a signaling mechanism that tells
both the PIC32 and device when data is available on the pins and the direction of the data
transfer (read or write).

The PMP supports two basic methods of hardware handshaking, master modes 1 and 2. Both
methods involve two pins and pulsed signals called strobes. A strobe is a single pulse used to
signal the slave device; it also refers to the pin that issues the pulse. In master mode 2, the pins
are called parallel master read (PMRD, shared with RD5) and parallel master write (PMWR,
shared with RD4). To read from the device, the PMP pulses the read strobe (PMRD), signaling
the device to output bits to the data pins. Writing requires pulsing the write strobe (PMWR),
which signals the device to read bits from the data pins. Either the PIC32 or the external
device can control the data lines; when one is driving a line, the other must be in a
high-impedance (input) state.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00014-7
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In master mode 1, the RD5 pin is called PMRD/PMWR and the RD4 pin is called PMENB,
the parallel master enable strobe. The PMRD/PMWR signal determines whether the operation
is a read or a write while the strobe PMENB initiates the read or write.

The timing of the data and strobes must satisfy timing requirements according to the slave’s
data sheet. The strobe itself must be of sufficient duration. Microchip calls this duration WaitM.
Data setup time, before the strobe, is WaitB, and data should be valid on the data lines for time
WaitE after the end of the strobe.

14.2 Details

The parallel master port uses several SFRs; however, some are not used in master mode. We
omit the SFRs used only in slave mode. All bits of the SFRs below default to 0.
PMCON The main configuration register.

PMCON〈15〉 or PMCONbits.ON: Setting this bit enables the PMP.
PMCON〈9〉 or PMCONbits.PTWREN: Setting this bit enables the PMWR/PMENB pin

(shared with RD4). The pin is called PMWR when using master mode 2 and
PMENB when using master mode 1. Most devices require the use of
PMWR/PMENB so you will usually set this bit.

PMCON〈8〉 or PMCONbits.PTRDEN: Setting this bit enables the PMRD/PMWR pin
(shared with RD5). The pin is called PMRD when using master mode 2 and
PMRD/PMWR when using master mode 1.

PMCON〈1〉 or PMCONbits.WRSP: Determines the polarity of either PMWR or
PMENB, depending on whether you are using master mode 2 or master mode 1,
respectively. When set, the strobe pulse is from low to high back to low. When
clear, the strobe pulse is from high to low back to high.

PMCON〈0〉 or PMCONbits.RDSP: Determines the polarity of either PMRD or
PMRD/PMWR, depending on whether you are using master mode 2 or master
mode 1, respectively. When set, the strobe pulse is from low to high back to low.
When clear, the strobe pulse is from high to low back to high.

PMMODE Controls the PMP’s operating mode and tracks its status.
PMMODE〈15〉 or PMMODEbits.BUSY: The PMP sets this bit when the peripheral is

busy. Poll this bit to determine when a read or write operation has finished.
PMMODE〈9:8〉 or PMMODEbits.MODE: Determines the mode of the PMP. The two

master modes are
0b11 Master mode 1, uses a single strobe PMENB and a read/write direction signal

PMRD/PMWR.
0b10 Master mode 2, uses a read strobe PMRD and a write strobe PMWR.

PMMODE〈7:6〉 or PMMODEbits.WAITB: Determines the amount of time between
initiating a read/write and triggering the strobe. The time inserted will be
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(1+ PMMODEbits.WAITB)Tpb, where Tpb is the peripheral bus clock period, for a
minimum of one wait state (Tpb) and a maximum of four wait states (4Tpb).

PMMODE〈5:2〉 or PMMODEbits.WAITM: Determines the duration of the strobe. The
duration is given by (1 + PMMODEbits.WAITM)Tpb, for a minimum of one wait
state (Tpb) and a maximum of 16 wait states (16Tpb).

PMMODE〈1:0〉 or PMMODEbits.WAITE: Determines how long the data should be
valid after the end of the strobe. For reads, the number of wait states is
PMMODEbits.WAITE and for writes it is PMMODEbits.WAITE + 1. Each wait
state is one Tpb long.

PMADDR Set this register to the desired read/write address before performing the operation.
The peripheral may also be configured to automatically increment this register after each
read or write, allowing you to access a series of consecutive registers on the slave device.
The bits of this register that are used by the PMP are determined by PMAEN (below).

PMDIN In either master mode, use this register to read from and write to the slave. Writes to
this register are sent to the slave. Reading a value from the PMP requires you to read
from this SFR twice. The first read returns the value currently in the PMDIN buffer,
which is old data and should be ignored. The first read also initiates the PMP read
sequence, causing a strobe and new data to be latched into the PMDIN register. The
second read of PMDIN returns the data actually sent by the slave.

PMAEN Determines which parallel port address pins will be used by the PMP and which
pins are available to other peripherals. To claim a pin PMA0 to PMA15 for the PMP, set
the corresponding bit to 1.

The PMP’s interrupt vector is _PMP_VECTOR, its interrupt flag status bit is IFS1bits.PMPIF, its
interrupt enable control bit is IEC1bits.PMPIE, and its priority and subpriority are contained
in IPC7bits.PMPIP and IPC7bits.PMPIS. Interrupts can be generated on every completed read
or write operation. The sample code below does not use interrupts.

14.3 Sample Code

The PMP is used to implement the LCD library for a Hitachi HD44780 or compatible LCD
controller.1 The header file may look familiar to you, as it is the one we saw in Chapter 4.

In this example, we use master mode 1, with the PMRD/PMWR direction bit (RD5) attached
to the HD44780’s R/W input and the PMENB strobe (RD4) attached to the HD44780’s E
input. Only one address pin is used, PMA10 (RB13), and in this case this single bit is used to
select either the HD44780’s 8-bit instruction register (PMA10 =0) or its 8-bit data register

1 Many controllers compatible with the HD44780 exist. We used the Samsung KS006U when testing the examples
in this chapter.
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(PMA10= 1). The HD44780’s data sheet describes the valid 8-bit instructions, such as “clear
the display” and “move the cursor.” A write to the LCD involves assigning a 0 (instruction) or
1 (data) to the PMA10 bit, then writing an 8-bit value to PMDIN, representing either the
instruction (e.g., clear the screen) or data (e.g., a character to be printed).

The functions that interact directly with the PMP are wait_pmp, LCD_Setup, LCD_Read, and
LCD_Write.

Code Sample 14.1 LCD.h. An LCD Control Library Using the PMP.

#ifndef LCD_H
#define LCD_H
// LCD control library for Hitachi HD44780-compatible LCDs.

void LCD_Setup(void); // Initialize the LCD
void LCD_Clear(void); // Clear the screen, return to position (0,0)
void LCD_Move(int line, int col); // Move position to the given line and column
void LCD_WriteChar(char c); // Write a character at the current position
void LCD_WriteString(const char * string); // Write string starting at current position
void LCD_Home(void); // Move to (0,0) and reset any scrolling
void LCD_Entry(int id, int s); // Control display motion after sending a char
void LCD_Display(int d, int c, int b); // Turn display on/off and set cursor settings
void LCD_Shift(int sc, int rl); // Shift the position of the display
void LCD_Function(int n, int f); // Set number of lines (0,1) and the font size
void LCD_CustomChar(unsigned char val, const char data[7]); // Write custom char to CGRAM
void LCD_Write(int rs, unsigned char db70); // Write a command to the LCD
void LCD_CMove(unsigned char addr); // Move to the given address in CGRAM
unsigned char LCD_Read(int rs); // Read a value from the LCD
#endif

Code Sample 14.2 LCD.c. Implementation of an LCD Control Library Using the PMP.

#include "LCD.h"
#include<xc.h> // SFR definitions from the processor header file and some other macros

#define PMABIT 10 // which PMA bit number to use

// wait for the peripheral master port (PMP) to be ready
// should be called before every read and write operation
static void waitPMP(void)
{

while(PMMODEbits.BUSY) { ; }
}

// wait for the LCD to finish its command.
// We check this by reading from the LCD
static void waitLCD() {

volatile unsigned char val = 0x80;

// Read from the LCD until the Busy flag (BF, 7th bit) is 0
while (val & 0x80) {
val = LCD_Read(0);

}
int i = 0;
for(i = 0; i < 50; ++i) { // slight delay

LCD.h
LCD.c
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_nop();
}

}

// set up the parallel master port (PMP) to control the LCD
// pins RE0 - RE7 (PMD0 - PMD7) connect to LCD pins D0 - D7
// pin RD4 (PMENB) connects to LCD pin E
// pin RD5 (PMRD/PMWR) Connects to LCD pin R/W
// pin RB13 (PMA10) Connects to RS.
// interrupts will be disabled while this function executes
void LCD_Setup() {
int en = __builtin_disable_interrupts(); // disable interrupts, remember initial state

IEC1bits.PMPIE = 0; // disable PMP interrupts
PMCON = 0; // clear PMCON, like it is on reset
PMCONbits.PTWREN = 1; // PMENB strobe enabled
PMCONbits.PTRDEN = 1; // PMRD/PMWR enabled
PMCONbits.WRSP = 1; // Read/write strobe is active high
PMCONbits.RDSP = 1; // Read/write strobe is active high

PMMODE = 0; // clear PMMODE like it is on reset
PMMODEbits.MODE = 0x3; // set master mode 1, which uses a single strobe

// Set up wait states. The LCD requires data to be held on its lines
// for a minimum amount of time.
// All wait states are given in peripheral bus clock
// (PBCLK) cycles. PBCLK of 80 MHz in our case
// so one cycle is 1/80 MHz = 12.5 ns.
// The timing controls asserting/clearing PMENB (RD4) which
// is connected to the E pin of the LCD (we refer to the signal as E here)
// The times required to wait can be found in the LCD controller’s data sheet.
// The cycle is started when reading from or writing to the PMDIN SFR.
// Note that the wait states for writes start with minimum of 1 (except WAITE)
// We add some extra wait states to make sure we meet the time and
// account for variations in timing amongst different HD44780 compatible parts.
// The timing we use here is for the KS066U which is faster than the HD44780.
PMMODEbits.WAITB = 0x3; // Tas in the LCD datasheet is 60 ns
PMMODEbits.WAITM = 0xF; // PWeh in the data sheet is 230 ns (we don’t quite meet this)

// If not working for your LCD you may need to reduce PBCLK
PMMODEbits.WAITE = 0x1; // after E is low wait Tah (10ns)

PMAEN |= 1 << PMABIT; // PMA is an address line

PMCONbits.ON = 1; // enable the PMP peripheral
// perform the initialization sequence
LCD_Function(1,0); // 2 line mode, small font
LCD_Display(1, 0, 0); // Display control: display on, cursor off, blinking cursor off
LCD_Clear(); // clear the LCD
LCD_Entry(1, 0); // Cursor moves left to right. do not shift the display

if(en & 0x1) // if interrupts were enabled before, re-enable them
{

__builtin_enable_interrupts();
}

}

// Clears the display and returns to the home position (0,0)
void LCD_Clear(void) {
LCD_Write(0,0x01); //clear the whole screen

}
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// Return the cursor and display to the home position (0,0)
void LCD_Home(void) {

LCD_Write(0,0x02);
}

// Issue the LCD entry mode set command
// This tells the LCD what to do after writing a character
// id : 1 increment cursor, 0 decrement cursor
// s : 1 shift display right, 0 don’t shift display
void LCD_Entry(int id, int s) {

LCD_Write(0, 0x04 | (id << 1) | s);
}

// Issue the LCD Display command
// Changes display settings
// d : 1 display on, 0 display off
// c : 1 cursor on, 0 cursor off
// b : 1 cursor blinks, 0 cursor doesn’t blink
void LCD_Display(int d, int c, int b) {

LCD_Write(0, 0x08 | (d << 2) | (c << 1) | b);
}

// Issue the LCD display shift command
// Move the cursor or the display right or left
// sc : 0 shift cursor, 1 shift display
// rl : 0 to the left, 1 to the right
void LCD_Shift(int sc, int rl) {

LCD_Write(0,0x1 | (sc << 3) | (rl << 2));
}

// Issue the LCD Functions set command
// This controls some LCD settings
// You may want to clear the screen after calling this
// n : 0 one line, 1 two lines
// f : 0 small font, 1 large font (only if n == 0)
void LCD_Function(int n, int f) {

LCD_Write(0, 0x30 | (n << 3) | (f << 2));
}

// Move the cursor to the desired line and column
// Does this by issuing a DDRAM Move instruction
// line : line 0 or line 1
// col : the desired column
void LCD_Move(int line, int col) {

LCD_Write(0, 0x80 | (line << 6) | col);
}

// Sets the CGRAM address, used for creating custom
// characters
// addr address in the CGRAM to make current
void LCD_CMove(unsigned char addr) {

LCD_Write(0, 0x40 | addr);
}

// Writes the character to the LCD at the current position
void LCD_WriteChar(char c) {

LCD_Write(1, c);
}

// Write a string to the LCD starting at the current cursor
void LCD_WriteString(const char *str) {
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while(*str) {
LCD_WriteChar(*str); // increment string pointer after char sent
++str;

}
}

// Make val a custom character. This only implements
// The small font version
// val : between 0 and 7
// data : 7 character array. The first 5 bits of each character
// determine whether that pixel is on or off
void LCD_CustomChar(unsigned char val, const char * data) {
int i = 0;
for(i = 0; i < 7; ++i) {

LCD_CMove(((val & 7) << 2) | i);
LCD_Write(1, data[i]);

}
}

// Write data to the LCD and wait for it to finish by checking the busy flag.
// rs : the value of the RS signal, 0 for an instruction 1 for data
// data : the byte to send
void LCD_Write(int rs, unsigned char data) {
waitLCD(); // wait for the LCD to be ready
if(rs) { // 1 for data

PMADDRSET = 1 << PMABIT;
} else { // 0 for command

PMADDRCLR = 1 << PMABIT;
}
waitPMP(); // Wait for the PMP to be ready
PMDIN = data; // send the data

}

// read data from the LCD.
// rs : the value of the RS signal 0 for instructions status, 1 for data
unsigned char LCD_Read(int rs) {
volatile unsigned char val = 0; // volatile so 1st read doesn’t get optimized away
if(rs) { // 1 to read data

PMADDRSET = 1 << PMABIT;
} else { // 0 to read command status

PMADDRCLR = 1 << PMABIT;
}
// from the PIC32 reference manual, you must read twice to actually get the data
waitPMP(); // wait for the PMP to be ready
val = PMDIN;
waitPMP();
val = PMDIN;
return val;

}

14.4 Chapter Summary

• The PMP sends multiple bits of data simultaneously; however, this requires using many
more wires than serial communication protocols.

• The PMP performs hardware handshaking. The master tells the slave device when to read
data and when to output data.
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• Devices with parallel ports use slightly different protocols, hence the PMP is highly
configurable. For more details on the options, consult the Reference Manual.

14.5 Exercises
1. Compare and contrast parallel and serial communication protocols.
2. The LCD display used in this chapter has the ability to scroll text, allowing you to display

messages longer than the screen length. By consulting the data sheet and the provided LCD

library, implement a program that displays messages entered from the terminal emulator.
If the message is too long for a single line, use the LCD’s scrolling features to display the
whole message.

Further Reading
HD44780U (LCD-II) dot matrix liquid crystal display controller/driver. HITACHI.
KS0066U 16COM/40SEG driver and controller for dot matrix LCD. Samsung.
PIC32 family reference manual. Section 13: Parallel master port. (2012). Microchip Technology Inc.
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Input Capture

The input capture (IC) peripheral monitors an external signal and stores a timer value when
that signal changes, allowing precise timing of external events. In some sense, input capture
can be viewed as the opposite of output compare. Output compare changes the value of an
output pin based on the value of a timer, whereas input capture stores the value of a timer
based on the value of an input pin.

15.1 Overview

The PIC32 has five input capture modules, each associated with a single pin. The input
capture peripheral monitors the voltage on the pin and can trigger on external events such as a
rising or falling edge. When the specified event occurs, the module stores the value of a timer
in a FIFO buffer and, optionally, triggers an interrupt. Thus, each event receives a timestamp
from the PIC32, allowing software to know when a certain event occurred or to calculate the
duration of a high or low pulse. Figure 15.1 depicts the operation of the IC module.

A simple way for one microcontroller to communicate an analog value to another
microcontroller is to have the first generate a PWM signal whose duty cycle corresponds to
the analog value (between 0 and 1). The second microcontroller uses input capture to measure
the duty cycle. Input capture is also used in conjunction with Hall effect sensors to control the
commutation of brushless motors (Chapter 29).

Prior to using the IC module, you should configure a timer. The frequency of the timer
determines the precision of the times captured by the IC peripheral. The IC peripheral always
synchronizes the input event with the system clock; therefore, if the timer runs at high
frequency (e.g., using the 80 MHz peripheral bus clock as input with a prescaler equal to one),
there may be a delay of up to three timer cycles between when the event occurs and when the
timer value is recorded. Slower timers, however, do not have this issue—the data can be
synchronized within one timer period.

15.2 Details

The input capture peripheral uses two SFRs, ICxCON and ICxBUF, where x = 1 to 5.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00015-9
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ICxCON The main IC control register. All bits default to zero.
ICxCON〈15〉 or ICxCONbits.ON: Set to one to enable the module. Clear to zero to

disable the module and reset it.
ICxCON〈9〉 or ICxCONbits.FEDGE: This “First Capture Edge” bit is only relevant in

interrupt capture mode 6, below (ICxCONbits.ICM=0b110). If this bit is one, then
the first edge captured is a rising edge; if it is a zero, then it is a falling edge.

ICxCON〈8〉 or ICxCONbits.C32: If one, the IC peripheral uses the 32-bit timer
Timer23. If zero, the IC uses a 16-bit timer.

ICxCON〈7〉 or ICxCONbits.ICTMR: Determines which timer to use, if
ICxCONbits.C32 is zero. If ICxCONbits.C32 is one, this value is ignored.

0 Use Timer3.
1 Use Timer2.

ICxCON〈6:5〉 or ICxCONbits.ICI: Interrupt after ICxCONbits.ICI + 1 capture events,
where ICxCONbits.ICI takes values from zero to three.

ICxCON〈4〉 or ICxCONbits.ICOV: Input capture overrun, read-only. The IC peripheral
has a FIFO buffer that can store four timer values. When this FIFO is full and
another capture event occurs, hardware sets ICxCONbits.ICOV. In certain modes,
ICxCONbits.ICOV will not be set even when the buffer is full. To clear
ICxCONbits.ICOV you must read from the ICxBUF, removing the overflow
condition.

ICxCON〈3〉 or ICxCONbits.ICBNE: Read-only. Set whenever event times are available
in the input capture FIFO, accessed via ICxBUF.

ICxCON〈2:0〉 or ICxCONbits.ICM: Determines the events that cause the IC module to
trigger.

0b111 Allows the IC pin to be used to wake the PIC32 from sleep.
0b110 First trigger on the edge specified by ICxCONbits.FEDGE. Afterwards,

trigger on every edge.
0b101 Capture every sixteenth rising edge.
0b100 Capture every fourth rising edge.

TMR2
stored to FIFO

TMR2
stored to FIFO

IC3 input

Figure 15.1
Input capture module 3 configured to store the value of Timer2 on every change of the IC3

digital input.
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0b011 Capture every rising edge.
0b010 Capture every falling edge.
0b001 Capture every edge.
0b000 Input capture disabled.

ICxBUF Read-only buffer that returns the timer value captured by the IC peripheral. This
SFR reads the next element from a four-value deep FIFO; thus, a maximum of four
events can be captured between reads of the FIFO. When the FIFO contains data,
ICxCONbits.ICBNE is set, indicating that a read from ICxBUF will contain a captured
timestamp. To clear the overflow flag, ICxCONbits.ICOV, read from ICxBUF, which
removes a value from the FIFO.

The interrupt vector for input capture module 1 is _INPUT_CAPTURE_1_VECTOR, and the flag
status, enable control bits, and priority and subpriority bits are in IFS0bits.IC1IF,
IEC0bits.IC1IE, IPC1bits.IC1IP, and IPC1bits.IC1IS, respectively. For ICx, x = 2 to 5, the
vector names are similar, replacing _1_ with _x_. The flag status and enable control bits are all
in IFS0. The priority and subpriority bits are in IPC2, IPC3, IPC4, and IPC5 for IC2, IC3, IC4,
and IC5, respectively.

15.3 Sample Code

The following code demonstrates how an output compare module can send a PWM signal
encoding a value between 0 and 1 (the duty cycle) to an input capture module. Usually these
modules would reside on different microcontrollers; in this example, we use a single PIC32.

The code configures OC1 to use Timer2 as its timer base. Timer2 uses the peripheral bus clock
as input, with a prescaler of 8, meaning that TMR2 increments at 10 MHz. Timer2 rolls over
at a period match value of 9999, thereby generating a PWM signal of frequency
10 MHz/(9999+1) = 1 kHz.

IC1 uses Timer3 for its timing operations. Timer3 is also configured to increment at 10 MHz.
IC1 is configured to capture every rising and falling edge, beginning with a rising edge
(IC1CONbits.ICM=0b110). IC1 generates an interrupt after every four edges, and the ISR
reads the four recently captured times and calculates the PWM signal’s period and duty cycle.

The user is repeatedly prompted for the duty cycle of OC1’s PWM by entering the number of
clock cycles that the signal is high each PWM cycle. The PWM’s period and duty cycle, as
measured by IC1, is then printed to the user’s screen. Here is example output:

PWM period = 10,000 ticks of 10 MHz clock = 1 ms (1 kHz PWM).
Enter the high portion in 10 MHz (100 ns) ticks, in range 5-9995.
You entered 250.
Measured period is 10000 clock cycles, high for 250 cycles,
for a duty cycle of 2.50 percent.
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Code Sample 15.1 input_capture.c. Using Input Capture to Measure the Duty Cycle
of a PWM Signal.

#include "NU32.h" // constants, funcs for startup and UART

// Use IC1 (D8) to measure the PWM duty cycle of OC1 (D0).
// Connect D8 to D0 for this to work.

#define TMR3_ROLLOVER 0xFFFF // defines rollover count for IC1’s 16-bit Timer3

static volatile int icperiod = -1; // measured period, in Timer3 counts
static volatile int ichigh = -1; // measured high duration, in Timer3 counts

void __ISR(_INPUT_CAPTURE_1_VECTOR, IPL3SOFT) InputCapture1() {
int rise1, fall1, rise2, fall2;
rise1 = IC1BUF; // time of first rising edge
fall1 = IC1BUF; // time of first falling edge
rise2 = IC1BUF; // time of second rising edge
fall2 = IC1BUF; // time of second falling edge; not used below
if (fall1 < rise1) { // handle Timer3 rollover between rise1 and fall1
fall1 = fall1 + TMR3_ROLLOVER+1;
rise2 = rise2 + TMR3_ROLLOVER+1;

}
else if (rise2 < fall1) { // handle Timer3 rollover between fall1 and rise2
rise2 = rise2 + TMR3_ROLLOVER+1;

}
icperiod = rise2 - rise1; // calculate period, time between rising edges
ichigh = fall1 - rise1; // calculate high duration, between 1st rise and 1st fall
IFS0bits.IC1IF = 0; // clear interrupt flag

}

int main() {
char buffer[100] = "";
int val = 0, pd = 0, hi = 0; // desired pwm value, period, and high duration
int i = 0; // loop counter

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
__builtin_disable_interrupts();

// set up PWM signal using OC1 using Timer2
T2CONbits.TCKPS = 0x3; // Timer2 1:8 prescaler; ticks at 10 MHz (each tick is 100ns)
PR2 = 9999; // roll over after 10,000 ticks, or 1 ms (1 kHz)
TMR2 = 0;
OC1CONbits.OCM = 0b110; // PWM mode without fault pin; other OC1CON are defaults

// (use TMR2)
T2CONbits.ON = 1; // turn on Timer2
OC1CONbits.ON = 1; // turn on OC1

// set up IC1 to use Timer3. IC1 could also use Timer2 (sharing with OC1) in this case
// since we set both timers to the same frequency, but we’d need to incorporate the
// different rollover period in the ISR
T3CONbits.TCKPS = 0x3; // Timer3 1:8 prescaler; ticks at 10 MHz (each tick is 100ns)
PR3 = TMR3_ROLLOVER; // rollover value is also used in ISR to handle

// timer rollovers.
TMR3 = 0;
IC1CONbits.ICTMR = 0; // IC1 uses Timer3
IC1CONbits.ICM = 6; // capture every edge
IC1CONbits.FEDGE = 1; // capture rising edge first

input_capture.c
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IC1CONbits.ICI = 3; // interrupt every 4th edge
IFS0bits.IC1IF = 0; // clear interrupt flag
IPC1bits.IC1IP = 3; // interrupt priority 3
IEC0bits.IC1IE = 1; // enable IC1 interrupt
T3CONbits.ON = 1; // turn on Timer3
IC1CONbits.ON = 1; // turn on IC1

__builtin_enable_interrupts();

while(1) {
NU32_WriteUART3("PWM period = 10,000 ticks of 10 MHz clock = 1 ms (1 kHz PWM).\r\n");
NU32_WriteUART3("Enter high portion in 10 MHz (100 ns) ticks, in range 5-9995.\r\n");
NU32_ReadUART3(buffer,sizeof(buffer));
sscanf(buffer,"%d",&val);
if (val < 5) {

val = 5; // try removing these limits and understanding the
} else if (val > 9995) { // behavior when val is close to 0 or 10,000

val = 9995;
}
sprintf(buffer,"You entered %d.\r\n",val);
NU32_WriteUART3(buffer);
OC1RS = val; // change the PWM duty cycle
for (i=0; i<1000000; i++) { // a short delay as PWM updates and

_nop(); // IC1 measures the signal
}
__builtin_disable_interrupts(); // disable ints briefly to copy vars shared with ISR
pd = icperiod;
hi = ichigh;
__builtin_enable_interrupts(); // re-enable the interrupts
sprintf(buffer,"Measured period is %d clock cycles, high for %d cycles, \r\n",pd,hi);
NU32_WriteUART3(buffer);
sprintf(buffer," for a duty cycle of %5.2f percent.\r\n\n",

100.0*((double) hi/(double) pd));
NU32_WriteUART3(buffer);

}
return 0;

}

15.4 Chapter Summary

• The input capture peripheral allows you to record the times of the rising and/or falling
edges of a digital input.

• The precision of the time recorded depends on the frequency of the timer used. When the
timer runs at high frequency (e.g., the peripheral bus 80 MHz frequency), there may be a
lag of up to three timer cycles between the time the event occurs and when it is recorded.

15.5 Exercises
1. What other peripherals can you use to approximate input capture functionality?
2. What advantages does input capture provide over using other peripherals that can

approximate input capture’s functionality?

Further Reading
PIC32 family reference manual. Section 15: Input capture. (2010). Microchip Technology Inc.
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Comparator

A comparator compares two analog voltages, outputting a digital high signal if input VIN+ is
greater than input VIN− and a digital low signal otherwise (Figure 16.1). Each of the two
inputs to a comparator can be an external input (e.g., from a sensor) or an internally generated
reference. One of these internal references is a low-resolution digital-to-analog converter that
can create 16 different reference voltages. This reference can also be made available at an
output pin, so although the PIC32 does not have a true DAC, it does have a very simple one.

16.1 Overview

The PIC32 has two comparators, CM1 and CM2. The noninverting (+) input for CM1 can be
selected from the input voltage at pin C1IN+ or CVREF, the output of the four-bit internal
comparator reference voltage DAC. The inverting (−) input can be selected from the input
voltages at pin C1IN−, C1IN+, C2IN+, or an internal voltage IVREF of 1.2 V. The comparator
output can be queried in software, made available on the output pin C1OUT, or used to trigger
an interrupt. CM2 behaves exactly as CM1, replacing the “1” in the names of the possible
inputs and output with a “2.”

Additionally, the CVREF voltage can be output to an external pin (CVREFOUT/RB10),
providing the functionality of a simple DAC. This output has relatively high output
impedance, so if you are connecting CVREFOUT to another circuit, it is a good idea to buffer
the output (see Appendix B.5). The different values that CVREF can take are explained below
when discussing the CVRCON SFR. The comparator and voltage reference peripherals are
discussed in separate chapters in the Reference Manual.

16.2 Details

Each comparator has its own control SFR, CM1CON, and CM2CON, but they share a status
SFR, CMSTAT.
CMxCON, x = 1 or 2 Control register for the comparators.

CMxCON〈15〉 or CMxCONbits.ON: Set to one to enable the comparator.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00016-0
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Figure 16.1
Comparator.

CMxCON〈14〉 or CMxCONbits.COE: Setting this comparator output enable bit to one
causes the comparator’s output to drive the CxOUT pin. When set, the
corresponding TRIS SFR bit should be cleared to zero, making it an output (0).
C1OUT corresponds to pin RB8 and C2OUT is pin RB9.

CMxCON〈13〉 or CMxCONbits.CPOL: Setting this comparator polarity bit to one
inverts the comparator’s output.

CMxCON〈8〉 or CMxCONbits.COUT: The output of the comparator. Can also be read
from CMSTAT.

CMxCON〈7:6〉 or CMxCONbits.EVPOL: These interrupt event polarity bits control
the conditions under which the comparator generates an interrupt.
0b11 Interrupt when the comparator output transitions from high to low or

low to high.
0b10 Interrupt when the comparator output transitions from high to low.
0b01 Interrupt when the comparator output transitions from low to high.
0b00 Do not interrupt.

CMxCON〈4〉 or CMXCONbits.CREF: Determines what is connected to the
noninverting (+) comparator input.

1 Internal CVREF, created by the comparator reference voltage DAC (see
below).

0 External CxIN+ pin. If you are using USB, then C1IN+ cannot be used
as an input pin, so this bit should be set to 1.

CMxCON〈1:0〉 or CMxCONbits.CCH: Controls what is connected to the inverting (−)
comparator input. Let y represent the number of the other comparator; that is, if
using CM1CON (x = 1), then y = 2, and if using CM2CON (x = 2), then y = 1. Then
the meaning of the CMxCONbits.CCH bit field is determined as follows:
0b11 Connected to IVREF, the internal voltage reference, which is 1.2 V.
0b10 External CyIN+ pin.
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0b01 External CxIN+ pin.
0b00 External CxIN− pin.

CMSTAT The comparator status register, shared by both comparators.
CMSTAT〈1〉 or CMSTATbits.C2OUT: The output of comparator 2.
CMSTAT〈0〉 or CMSTATbits.C1OUT: The output of comparator 1.

The comparator reference voltage peripheral has a single SFR, CVRCON. All bits default
to zero.

CVRCON The comparator reference voltage control register. Controls the reference voltage
value and whether it is output to a pin.
CVRCON〈15〉 or CVRCONbits.ON: Set to one to enable the comparator reference

voltage.
CVRCON〈6〉 or CVRCONbits.CVROE: Set this output enable bit to output the

reference voltage CVREF on the CVREFOUT (RB10) pin. If clear, voltage will
only be accessible internally.

CVRCON〈5〉 or CVRCONbits.CVRR: Controls the range of the CVREF output voltage,
according to Figure 16.2. Assuming the default setting for CVRCONbits.CVRSS
(below), the 16 available output voltages are as follows:

1 From 0 V to 2.06 V, in steps of 3.3 V/24 = 0.1375 V.
0 From 0.83 V to 2.37 V, in steps of 3.3 V/32≈ 0.103 V.

CVRCON〈4〉 or CVRCONbits.CVRSS: Selects the sources for Vmax and Vmin in
Figure 16.2.

1 : Uses external voltage references CVREF+ (RA10) and CVREF− (RA9).

Vmax
8R R R

Vmin

R R

8R

. . .

CVREF

16-to-1 MUXCVRCONbits.CVR

CVRCONbits.CVRR =
0:  Switch open
1:  Switch closed

Vmin = 0 V
Vmin = CVREF– pin

CVRCONbits.CVRSS = 0:
CVRCONbits.CVRSS = 1:

Vmax = 3.3 V
Vmax = CVREF+ pin

Figure 16.2
The CVREF DAC circuit. CVRCONbits.CVRSS controls whether Vmax and Vmin are 3.3 V and 0 V,

respectively, or whether they are determined by inputs at the CVREF+ and CVREF− pins.
CVRCONbits.CVRR determines whether the voltage steps are 1/32 of the voltage range

(CVRCONbits.CVRR = 0, switch open) or 1/24 of the voltage range (1, switch closed), as well as
whether the minimum voltage is 1/4 of the voltage range (0, switch open) or at the bottom of the

voltage range (1, switch closed). The four bits of CVRCONbits.CVR select CVREF from the 16
available voltages in the resistor network.
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0 : The default, uses the analog supply voltages AVdd (3.3 V) and
AVss (0 V).

CVRCON〈3:0〉 or CVRCONbits.CVR: These four bits, taking values 0 to 15,
determine the actual voltage output, CVREF. Depends on the settings of
CVRCONbits.CVRSS and CVRCONbits.CVRR. When CVRCONbits.CVRR = 1,

CVREF = Vmin + (CVRCONbits.CVR/24) × (Vmax − Vmin), (16.1)

and when CVRCONbits.CVRR = 0,

CVREF = Vmin + (0.25 + CVRCONbits.CVR/32) × (Vmax − Vmin). (16.2)

The interrupt vector for CM1 is _COMPARATOR_1_VECTOR, and its interrupt flag, enable control,
and priority and subpriority bits are in IFS1bits.CMP1IF, IEC1bits.CMP1IE,
IPC7bits.CMP1IP and IPC7bits.CMP1IS. The vector for CM2 is _COMPARATOR_2_VECTOR, and
the relevant bits are also in IFS1, IEC1, and IPC7, replacing “CMP1” by “CMP2.”

16.3 Sample Code

16.3.1 Voltage Comparison

The following code uses CM2 to compare an external voltage to an internally generated
reference signal. The internal reference voltage is IVREF = 1.2 V, and the external voltage is
applied to the noninverting (+) input via C2IN+ (RB3). Whenever the voltage on C2IN+ is
greater than 1.2 V, both LEDs will illuminate. You can test the example by applying the output
of various voltage dividers to the C2IN+ pin.

Code Sample 16.1 comparator.c. Basic Comparator Example

#include "NU32.h" // constants, funcs for startup and UART

// Uses comparator 2 to interrupt on a low voltage condition.
// The + comparator terminal is connected to C2IN+ (B3).
// The - comparator terminal is connected to the internal voltage IVref (1.2 V).
// Both NU32 LEDs illuminate if the + input is > 1.2 V; otherwise, off.
// The comparator output can be viewed on C2OUT (B9) with a voltmeter or measured by ADC.

int main(void) {
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
CM2CONbits.COE = 1; // comparator output is on the C2OUT pin, so you can measure it
CM2CONbits.CCH = 0x3; // connect - input to IVref; by default + connected to C2IN+
TRISBbits.TRISB9 = 0; // configure B9 as an output, which must be set to use C2OUT
CM2CONbits.ON = 1;

while(1) {
// test the comparator output
if(CMSTATbits.C2OUT) { // if output is high then the input signal > 1.2 V

NU32_LED1 = 0;
NU32_LED2 = 0;

comparator.c
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} else {
NU32_LED1 = 1;
NU32_LED2 = 1;

}
}
return 0;

}

16.3.2 Analog Output

This example demonstrates how to output the internal comparator reference voltage to a pin.
This reference voltage has relatively high output impedance, since it is designed to be input to
a comparator; therefore, this output should be buffered in most cases. Without a buffer circuit,
you can still look at the output voltage using a high-impedance input like a voltmeter or an
oscilloscope. The reference voltage cycles through the 16 available values, one per second.

Code Sample 16.2 ref_volt.c. Output Comparator Reference Voltage to a Pin

#include "NU32.h" // constants, funcs for startup and UART

// Use the comparator reference voltage as a cheap DAC.
// Voltage is output on CVREFOUT (RB10). You can measure it.
// You will most likely need to buffer this output to use it to
// drive a low-impedance load.

int main(void) {
int i;
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
TRISBbits.TRISB10 = 0; // make the CVrefout/RB10 pin an output
CVRCONbits.CVROE = 1; // output the voltage on CVrefout
CVRCONbits.CVRR = 0; // use the smaller output range, at higher voltages
CVRCONbits.ON = 1; // turn the module on
while(1) {

for(i = 0; i < 16; ++i) { // step through the voltages, one per second
CVRCONbits.CVR = i;
_CP0_SET_COUNT(0);
while(_CP0_GET_COUNT() < 40000000) {

;
}

}
}
return 0;

}

16.4 Chapter Summary

• Comparators allow you to compare two analog voltages and determine which one is larger.
• Comparators can compare two external signals or an external signal with an internal

reference voltage.
• The comparator reference voltage can be output to an external pin, serving as a simple

four-bit DAC.

ref_volt.c
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16.5 Exercises
1. Describe the advantages and disadvantages of using the PIC32’s internal voltage reference

for analog output compared to pairing a PWM signal with a low-pass filter.
2. Use the PIC32’s two comparators and appropriate reference voltages to implement a 2-bit

analog-to-digital converter.

Further Reading
PIC32 family reference manual. Section 19: Comparator. (2010). Microchip Technology Inc.
PIC32 family reference manual. Section 20: Comparator voltage reference. (2012). Microchip Technology Inc.
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Sleep, Idle, and the Watchdog Timer

In battery-powered applications, conserving energy is important. The PIC32 provides multiple
power-saving modes which help reduce energy consumption, for example by reducing the
system or peripheral bus clock frequencies. Apart from changing clock frequencies, the PIC32
offers an idle mode, where the CPU halts but the peripherals continue to operate, unless they
are individually disabled during idle mode. To save the most power, the PIC32 can be placed
in sleep mode, where the system clock and peripheral bus clock are shut down. Most
peripherals cease to operate except for a few that do not rely on either the system clock or
peripheral bus clock. For example, a changed signal on a change-notification digital input can
be used to wake the PIC32 from sleep mode.

Another peripheral that can operate in sleep mode is the watchdog timer (WDT), which uses
the PIC32’s internal low-power RC (LPRC) oscillator to keep time. The WDT continues to
operate during sleep, and the WDT rollover can be used to wake up the PIC32 after a fixed
period. In addition, even when not in sleep mode, the WDT can be useful for recovering from
faulty code. To use this capability, the user’s code should periodically reset the WDT, before it
rolls over. If the WDT expires, for example because the code is stuck in an unexpected infinite
loop, the PIC32 will automatically reset. Thus the WDT provides an escape mechanism if the
software ever enters an unexpected state.

This chapter describes the idle and sleep modes and the use of the WDT.

17.1 Overview

17.1.1 Power Saving

The PIC32 has several oscillator sources that can drive the system clock and peripheral clock.
Lower frequencies result in less power consumption but also reduced performance. Rather
than focus on the numerous oscillator sources and settings, we assume that both the system
clock and peripheral bus clock are operating at 80 MHz from the primary oscillator source
Posc. Thus, the power-saving methods we focus on involve disabling the CPU and
peripherals: the idle and sleep modes.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00017-2
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In both idle and sleep modes, the CPU stops executing instructions. In idle mode, however, the
system and peripheral bus clocks continue running and most peripherals function, unless
selectively disabled. In sleep mode, the system clock and peripheral bus clock halt, and
peripherals relying on either of these clocks cease to function. Therefore, sleep conserves
more energy than idle.

To enter sleep or idle mode, you must issue the assembly instruction wait. When a peripheral
interrupt wakes the PIC32 from sleep, code will continue executing from where the wait

instruction was issued. The WDT, however, wakes the PIC32 from sleep by causing a reset.
This is a simple software reset, not a full reset of the PIC32 as happens when you power cycle
the PIC32. For example, the SFR bits do not revert to their default values, as they would with
a power cycle; they keep any values that were set previously in the program.

The WDT reset causes the program to jump to the C runtime startup code installed at the reset
address, which checks if the reset was caused by a WDT timeout during sleep or idle. If so,
control returns to the beginning of your main function, where your code can check if the WDT
reset the PIC32 during sleep or idle mode. You can issue an iret assembly instruction to
resume the code from where the wait instruction was issued. If the C runtime startup code
determines that the WDT reset did not occur during sleep or idle, the regular startup code
executes, as if you had pressed the RESET button.

17.1.2 Watchdog Timer

Unlike other peripherals, the primary setup of the WDT occurs in the configuration bits, set
when the device is programmed with an external programmer. For the NU32 board, these bits
were set when the bootloader was installed (see Section 17.2). The configuration bits control
whether the WDT is on or off and the timeout period. If enabled in the configuration bits,
software cannot disable the WDT; however, software can enable it if it is not enabled in the
configuration bits. Preventing software from changing WDT settings is a safety mechanism:
buggy software cannot disable the error recovery mechanism that the WDT provides.

17.2 Details

Several SFRs and configuration words control the WDT and power-saving modes.
DEVCFG1 The configuration word that contains the WDT configuration. This configuration

word can only be changed with a programming device. When the bootloader was loaded
onto the NU32, this word was set to disable the watchdog timer and to set a rollover
period of 4.096 s. The WDT can be enabled in software.
DEVCFG1〈23〉 or FWDTEN: Watchdog timer enable bit. If one, the WDT is enabled

and cannot be disabled. The bootloader sets this bit to zero using
#pragma config FWDTEN = OFF in the bootloader code, allowing you to enable the
WDT in software or to leave it disabled.
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DEVCFG1〈20:16〉 or WDTPS: Watchdog timer postscaler select bits. The WDT
rollover period is 2WDTPS ms. When the bootloader was installed, the programmer
set these bits to 0b01100 = 12 using #pragma config WDTPS = PS4096. The LPRC
timer operates at 32 kHz and provides a nominal timeout of 1 ms, so this postscaler
creates a WDT period of 4.096 s.

WDTCON The WDT control register.
WDTCON〈15〉 or WDTCONbits.ON: Set to enable the watchdog timer. This bit is only

relevant if the device configuration bit FWDTEN is zero (WDT disabled by
default). If FWDTEN is one, the WDT is enabled regardless of the value of
WDTCONbits.ON.

WDTCON〈6:2〉 or WDTCONbits.SWDTPS: Read-only bits containing the value of the
WDT postscaler configuration, DEVCFG1〈20:16〉 (WDTPS).

WDTCON〈0〉 or WDTCONbits.WDTCLR: Write a 1 to this bit to clear the WDT. If
the WDT is enabled and you do not write a 1 to this bit often enough, the PIC32
will reset.

RCON The reset control register. Among other functions, RCON provides information on the
type of the most recent reset or whether the PIC32 just woke from a sleep or idle mode.
RCON〈4〉 or RCONbits.WDTO: Hardware sets this bit to 1 if the reset occurred due to

a WDT timeout.
RCON〈3〉 or RCONbits.SLEEP: Hardware sets this bit to 1 if the device had been in

sleep mode.
RCON〈2〉 or RCONbits.IDLE: Hardware sets this bit to 1 if the device had been in idle

mode.
OSCCON Allows you to change some oscillator settings.

OSCCON〈4〉 or OSCCONbits.SLPEN: When set, issuing the wait instruction causes
the PIC32 to enter sleep mode. When clear, the wait instruction causes the PIC32
to enter idle mode.

SIDL bit This is not an SFR, but rather the “Stop in Idle Mode” bit in the control register of
many peripherals. For example, Timer1’s control register has the bit T1CONbits.SIDL.
This bit controls whether the peripheral will stop in idle mode. If this bit is set to one, the
peripheral will stop functioning (saving power) when the PIC32 is in idle mode.
Otherwise the peripheral remains on.

17.3 Sample Code

The following code demonstrates sleep mode and the use of the WDT. The WDT acts as both
(1) a guard against faulty code where the WDT is not reset and (2) a way to wake the PIC32
from sleep.

First, the code checks the reason for the last reset. If the WDT caused the PIC32 to reset while
in sleep mode, an iret instruction is issued, allowing the code to resume where it left off.
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Otherwise, the WDT reset happened due to the software getting unexpectedly stuck in an
infinite loop, so the program starts from the beginning.

Next, the WDT is enabled and the PIC32 is set to enter sleep mode when a wait instruction is
issued. The program then enters a loop, printing the alphabet to the serial terminal at
approximately one letter per second. After each letter, the software writes to
WDTCONbits.WDTCLR, resetting the watchdog timer.

Pressing the NU32’s USER button prior to the letter “j” being printed causes the PIC32 to
enter sleep mode. While the PIC32 sleeps the WDT continues to tick but
WDTCONbits.WDTCLR is no longer set; thus the WDT will time out and reset the PIC32.
The code detects that the PIC32 has awoken, and, rather than restarting the program, resumes
from where it left off.

Pressing the USER button after the letter “j” causes the PIC32 to enter an infinite loop that
does nothing, simulating faulty code. As the code no longer sets WDTCONbits.WDTCLR,
the WDT will eventually time out, resetting the PIC32. Upon resetting, the program will start
printing the letters from the beginning. When the PIC32 resets in this manner it typically
indicates a bug in the code.

Code Sample 17.1 wdt.c. Sleep Mode and WDT Demonstration.

#include "NU32.h" // constants, funcs for startup and UART

int main(void) {

if(RCONbits.WDTO && RCONbits.SLEEP) { // reset due to WDT waking PIC32 from sleep?
__asm__ __volatile__ ("iret"); // if so, resume where we left off.

}

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

if(RCONbits.WDTO) { // WDT caused the reset, but it was not from sleep mode
RCONbits.WDTO = 0;// clear WDT reset. Subsequent resets due to the reset button

// won’t be interpreted as a WDT reset
NU32_WriteUART3("\r\nReset after a WDT timeout in infinite loop.\r\n");

}

char letters[2] = "a"; // second char is the string terminator
int pressed = 0; // true if button pressed during the delay

OSCCONbits.SLPEN = 1; // enters sleep (not idle) when ’wait’ instruction issued

// print instructions
NU32_WriteUART3("Press USER button before ’j’ to go to sleep; after to enter a\r\n");
NU32_WriteUART3("faulty infinite loop. If sleep, the WDT will wake the PIC32.\r\n");
NU32_WriteUART3("If infinite loop, the WDT will reset the PIC32 and start over.\r\n");

WDTCONbits.ON = 1; // turn on the WDT (rollover of 4.096s in DEVCFG1)

wdt.c
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while(1) {
if(!NU32_USER || pressed) { // USER button pushed (NU32_USER is low if USER pressed)

if(letters[0] < ’j’) { // if button pushed early in program, go to sleep
NU32_WriteUART3(" Going to sleep ... ");
__asm__ __volatile__ ("wait"); // until the WDT rolls over and wakes from sleep
NU32_WriteUART3(" Waking up. ");

} else { // if button pushed late, get stuck in infinite loop
NU32_WriteUART3(" Getting stuck in infinite loop.\r\n");
while(1) {
_nop(); // fortunately the WDT will reset the PIC32

}
}

}
NU32_WriteUART3(letters);
++letters[0];
pressed = 0;
_CP0_SET_COUNT(0);
while(_CP0_GET_COUNT() < 40000000) {

pressed |= !NU32_USER; // delay for ˜1 second, still poll the user button
}
WDTCONbits.WDTCLR = 1; // clear the watchdog timer

}
return 0;

}

17.4 Chapter Summary

• Lower oscillator frequencies result in lower power consumption but also reduced
performance.

• In idle mode, the CPU stops executing instructions but most peripherals can continue to
operate. Peripherals, including the WDT, can wake the PIC32 from idle.

• In sleep mode, the CPU stops executing instructions and only peripherals that do not rely
on the system clock or peripheral bus clock can operate. Some peripherals, like change
notification or the WDT, can wake the PIC32 from sleep.

• You must periodically write to WDTCONbits.WDTCLR to reset an enabled WDT;
otherwise the PIC32 will reset.

• Important WDT settings must be set in the configuration bits.
• Software can check RCON at reset to determine the reason for the reset.

17.5 Exercises
1. Describe a situation in which saving power is important. In such a situation would you

prefer to be in sleep mode or idle mode more often? Why?
2. Pretend that, to protect against the possibility of an inadvertent infinite loop, you have

enabled the watchdog timer. Your code works most of the time; however, in some
situations it resets due to the watchdog timer expiring. Does this behavior indicate an error
in your code?
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3. In the scenario of the previous Exercise, your friend suggests that you should simply
disable the watchdog timer to fix the problem. Do you agree? Why or why not?

Further Reading
PIC32 family reference manual. Section 10: Power-saving modes. (2011). Microchip Technology Inc.
PIC32 family reference manual. Section 07: Resets. (2013). Microchip Technology Inc.
PIC32 family reference manual. Section 09: Watchdog timer and power-up timer. (2013). Microchip Technology

Inc.
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Flash Memory

Flash memory retains its contents even when powered off. So far, we have used this
nonvolatile memory (NVM) to store your programs and the bootloader; however, we have not
explicitly accessed it from software. By writing to the appropriate SFRs, software can write
data to flash memory, allowing you to save data even when the PIC32 loses power. The
process of writing to flash via software, outlined here, is often referred to as run-time self
programming (RTSP). The bootloader uses RTSP to store your programs on the PIC32.

Flash can also be written using an external programmer such as the PICkit 3. This chapter
does not discuss how external programmers work; their operation is described in the PIC32
Flash Programming Specification. The bootloader was originally stored on your PIC32 using
an external programmer.

18.1 Overview

Our PIC32 contains 12 kB of boot flash and 512 kB of flash program memory. Program
memory is divided into 128 pages, each 4 kB (4096 bytes). Each page is further divided into
eight rows, each containing 128 four-byte words.

As per the PIC32 memory model (see Chapter 2), each byte of flash resides at a unique
physical address. The CPU (or the prefetch cache module) can directly read instructions or
data from flash memory during the execution of your program. If you have ever declared any
initialized const global variables, the linker stored these in flash, unlike other data stored in
RAM. This behavior is specific to the XC32 compiler and is not a rule for C generally.

Unlike reading from flash, which is straightforward, writing to flash is a bit peculiar, for the
following reasons:

• If you are not careful which physical address you write to, you could accidentally
overwrite program instructions!

• To prevent accidental corruption of program instructions and data in flash, your code must
implement a specific unlocking sequence before writing to flash.

• “Erasing” a region of flash memory means setting all bits to one. A “write” operation only
changes some of the ones to zeros; it cannot change zeros to ones. Therefore any write

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00018-4
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operation must be preceded by an erase operation. For example, if we erase a four-byte
word at a particular physical address (so it now contains 0xFFFFFFFF), then write the
four-byte word 0xFFFFFF00 to that address, the address will hold the proper value. But if
we then attempt to write the four-byte word 0xFF00FFFF to the same address, without
first erasing, the address will now hold the value 0xFF00FF00—the second write was
unable to convert the zero bits back to ones.

• The smallest region you can erase is an entire 4 kB page. The only write operations
available are a write of a four-byte word or an entire row (128 four-byte words).

• Flash memory fails after too many erase-write cycles, so writing to flash should only be
done infrequently. According to the Electrical Characteristics section of the Data Sheet,
only 1000 erase/write cycles are guaranteed before flash cells may degrade.

18.2 Details

Writes to flash memory are controlled via the flash SFRs, described in more detail in the Flash
Programming section of the Reference Manual. All SFR bits default to zero. While certain
pages in program flash memory can be made off-limits to RTSP by setting write-protection
bits in the device configuration register DEVCFG0, no pages of program flash were
write-protected when DEVCFG0 was configured when the bootloader was installed on the
NU32. The boot flash was write-protected, however.

NVMCON The main control register for flash memory.
NVMCON〈15〉 or NVMCONbits.WR: Set this write control bit to one to start the flash

operation stored in NVMCONbits.NVMOP, below. When the operation completes,
the PIC32 clears this bit. This bit can only be set if the flash unlock sequence has
been performed and NVMCONbits.WREN=1.

NVMCON〈14〉 or NVMCONbits.WREN: Write enable bit. When set,
NVMCONbits.WR can be written, as long as the unlock sequence has been
performed. You should set this bit prior to writing to flash and clear it when you are
finished.

NVMOP〈3:0〉 or NVMCONbits.NVMOP: Determines the operation that is performed
when NVMCONbits.WR is set.

0b0101 Erase all program memory pages (mostly useful for bootloaders).
0b0100 Erase a single page, selected by the address NVMADDR.
0b0011 Write a row to the row chosen by NVMADDR. Data to be written is

stored at the address in NVMSRCADDR.
0b0001 Write a word to the address stored in NVMADDR. The word to write is

stored in NVMDATA.
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NVMKEY Used to unlock the NVMCON register to enable erasing and writing. Issue the
following commands in order, with interrupts disabled and NVMCONbits.WREN
already set to one, to unlock NVMCON and perform the flash operation stored in
NVMCONbits.NVMOP:

NVMKEY = 0xAA996655; // unlock step 1
NVMKEY = 0x556699AA; // unlock step 2; the unlock sequence is complete
NVMCONSET = 0x8000; // while unlocked, set write control bit to start

operation

These steps should be performed consecutively to prevent the unlock sequence from
timing out.

NVMADDR Stores the physical address of flash memory of the page that will be erased, the
row that will be written, or the word that will be written, depending on
NVMCONbits.NVMOP.

NVMDATA Stores the data that will be written to flash when a single word is written.
NVMSRCADDR The word-aligned physical address of data to be written when a whole row

is programmed. “Word-aligned” means that the physical memory address must be
divisible by four (since there are four bytes in a flash word).

18.3 Sample Code

The flash.{c,h} library below allocates one page of flash memory and provides functions for
erasing the page, writing a single word, or reading a single word.

Examine flash.c. Notice the buffer declaration

static const unsigned int buffer[PAGE_WORDS] __attribute__ ((__aligned__(PAGE_
SIZE))) = {0};

This declaration looks similar to that of a normal global array, except for a few extra
keywords. Because the array is declared as const and is initialized using = {0}, the XC32
linker allocates buffer to flash memory rather than RAM.1 (When you compile a program
using this flash library, you can examine the map file to see where this read-only data is
allocated in flash.) This data is loaded to flash when you load your program onto the PIC32; it
is not re-initialized every time you run your program, as an initialized array in RAM would be.

The __attribute__ ((__aligned_ _(PAGE_SIZE))) code ensures that the linker places buffer
on a page boundary; that is, the address of buffer must be the start of a page in flash memory.
In other words, buffer (equivalently &buffer[0]) must be evenly divisible by the page size
(4096).

1 There is no brief C syntax to initialize the buffer to have all bits equal to one, which would have amounted to an
erase of the buffer.
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Although declaring a const global array is the easiest way to allocate space in flash program
memory to hold your persistent data, you can also allocate flash memory directly in the linker
script.

The function flash_op handles unlocking the flash and executing the appropriate operation.
The only operations we have implemented are writing a single word in the buffer and erasing
the buffer.

Code Sample 18.1 flash.h. Flash Memory Header File.

#ifndef FLASH__H__
#define FLASH__H__
// the flash module allocates a page of flash and provides read/write accesss

#define PAGE_SIZE 4096 // size of a page, in bytes
#define PAGE_WORDS (PAGE_SIZE/4) // size of a page, in 4-byte words

// erases the flash page by setting all bits to 1’s
void flash_erase(void);

// writes the 0’s of a 4-byte word
void flash_write_word(unsigned int index, unsigned int data);

// reads a word from flash
unsigned int flash_read_word(unsigned int index);

#endif

Code Sample 18.2 flash.c. Flash Memory Implementation.

#include "flash.h"
#include <xc.h>
#include <sys/kmem.h> // macros for converting between physical and virtual addresses

#define OP_ERASE_PAGE 4 // erase page operation, per NVMCONbits.NVMOP specification
#define OP_WRITE_WORD 1 // write word operation, per NVMCONbits.NVMOP specification

// Making the array const and initializing it to 0 ensures that the linker will
// store it in flash memory.
// Since one page is erased at a time, array must be a multiple of PAGE_SIZE bytes long.
// The aligned attribute ensures that the page falls at an address divisible by 4096.

static const unsigned int buf[PAGE_WORDS] __attribute__ ((__aligned__(PAGE_SIZE))) = {0};

static void flash_op(unsigned char op) { // perform a flash operation (op is NVMOP)
int ie = __builtin_disable_interrupts();

NVMCONbits.NVMOP = op; // store the operation
NVMCONbits.WREN = 1; // enable writes to the WR bit

NVMKEY = 0xAA996655; // unlock step 1
NVMKEY = 0x556699AA; // unlock step 2
NVMCONSET = 0x8000; // set the WR bit to begin the operation

flash.h
flash.c
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while (NVMCONbits.WR) { // wait for the operation to finish
;

}
NVMCONbits.WREN = 0; // disables writes to the WR bit

if (ie & 0x1) { // re-enable interrupts if they had been disabled
__builtin_enable_interrupts();

}
}

void flash_erase() { // erase the flash buffer. resets the memory to ones
NVMADDR = KVA_TO_PA(buf); // use the physical address of the buffer
flash_op(OP_ERASE_PAGE);

}

void flash_write_word(unsigned int index, unsigned int data) { // writes a word to flash
NVMADDR = KVA_TO_PA(buf + index); // physical address of flash to write to
NVMDATA = data; // data to write
flash_op(OP_WRITE_WORD);

}

unsigned int flash_read_word(unsigned int index) { // read a word from flash
return buf[index];

}

The following code, flashbasic.c, uses the flash library to store up to 1023 unsigned int

words. It first checks whether a valid flash buffer has already been created, perhaps prior to the
most recent power-up of the PIC32. If no buffer exists, then it creates the buffer by erasing the
page and writing the four-byte hex “password” 0xDEADBEEF at the last element of the
buffer. The presence of this password tells the program that a valid buffer exists, and the page
should not be erased.

Each time through the infinite loop in main, the program tells the user how many words have
already been stored in flash and asks whether the user would like to add a new word to the
buffer (by typing “a”), show the words that have already been stored (“s”), erase the page and
make a new flash buffer (“m”), or generate an error (“e”). The error overwrites the
0xDEADBEEF password, and the next time through the loop the code sees that there is no
buffer with a valid password and therefore erases the flash page and starts over. This is the
same effect as making a new page.

To add a word to the buffer, the code looks for the first unoccupied element of the buffer to
store it in. This is the first element with the “erased” value of 0xFFFFFFFF. Since
0xFFFFFFFF is interpreted as an erased element, the user cannot store this value. Thus only
232 − 1 different values can be stored by the user, not 232 different values.

The buffer is considered full when the first unoccupied element is the last element of the array,
the element holding the password.

After entering some data into the buffer, if you power-cycle the PIC32, you will see that the
data is still there. Output from a sample run is shown below.
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No flash memory allocated currently; making a page.
Currently 0 words stored in flash.
(a)dd word, erase & (m)ake new page, (s)how words, (e)rror? // user enters a
Enter an unsigned int to store at location 0. // enters 11223344
Adding 0x11223344 at location 0.

Currently 1 words stored in flash.
(a)dd word, erase & (m)ake new page, (s)how words, (e)rror? // user enters a
Enter an unsigned int to store at location 1. // enters abcdef01
Adding 0xabcdef01 at location 1.

Currently 2 words stored in flash.
(a)dd word, erase & (m)ake new page, (s)how words, (e)rror? // user enters s
at index 0: 0x11223344 // data printed
at index 1: 0xabcdef01

Currently 2 words stored in flash.
(a)dd word, erase & (m)ake new page, (s)how words, (e)rror? // user enters a
Enter an unsigned int to store at location 2. // enters ffffffff,
Adding 0xffffffff at location 2. // unstorable word

Currently 2 words stored in flash. // still 2 words
(a)dd word, erase & (m)ake new page, (s)how words, (e)rror? // user enters s
at index 0: 0x11223344 // ffffffff is
at index 1: 0xabcdef01 // an erased element

Code Sample 18.3 flash_basic.c. Basic Flash Memory Demonstration.

#include "NU32.h" // constants, funcs for startup and UART
#include "flash.h" // allocates buffer of PAGE_WORDS (1024) unsigned ints

// Uses flash.{c,h} library to allocate a page in flash and then write 32-bit
// words there, consecutively starting from the zeroth index in the array.
// LIMITATION: Words that are all 1’s (0xFFFFFFFF) cannot be saved; array
// elements holding this value are considered to be empty (not written since erase).

#define PAGE_IN_USE_PWD 0xdeadbeef // password meaning a valid flash buffer is present
#define PAGE_IN_USE_INDEX (PAGE_WORDS-1) // the password is at the last index of buffer

int page_exists() { // valid flash page is allocated if password is at the right index
return (flash_read_word(PAGE_IN_USE_INDEX) == PAGE_IN_USE_PWD);

}

// returns the index where the next word should be written
unsigned int next_page_index() {

unsigned int count = 0;

while ((flash_read_word(count) != 0xFFFFFFFF)
&& (count < PAGE_IN_USE_INDEX)) {

count++;
}
return count;

}

flash_basic.c
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// page is full if the next word would be written at the password index
int page_full() {
return (next_page_index() == PAGE_IN_USE_INDEX);

}

// erase page and write the password indicating a flash page is available
void make_page() {
flash_erase();
flash_write_word(PAGE_IN_USE_INDEX,PAGE_IN_USE_PWD);

}

void add_new_word() { // add a four-byte word at the next_page_index if page is not full
char msg[100];
unsigned int ind = next_page_index(); // where to write the word in the flash page
unsigned int val;

if (page_full()) {
NU32_WriteUART3("Flash page full; no more data will be stored.\r\n");

}
else {

sprintf(msg,"Enter an unsigned int to store at location %d.\r\n",ind);
NU32_WriteUART3(msg);
NU32_ReadUART3(msg,sizeof(msg)); // enter word using 8 hex characters, like f01dab1e
sscanf(msg,"%x",&val);
flash_write_word(ind,val);
sprintf(msg,"Adding 0x%x at location %d.\r\n",val,ind);
NU32_WriteUART3(msg);

}
}

void show_words() { // print out the currently saved four-byte words in hex
char msg[100];
unsigned int i;
for (i = 0; i < next_page_index(); i++) {

sprintf(msg,"at index %4d: 0x%x \r\n",i,flash_read_word(i));
NU32_WriteUART3(msg);

}
}

int main(void) {
char msg[100]="";

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
while(1) {

if (!page_exists()) { // initialize a flash page if the password is not present
NU32_WriteUART3("\r\nNo flash memory allocated currently; making a page.");
make_page();

}
sprintf(msg,"\r\nCurrently %d words stored in flash.\r\n",next_page_index());
NU32_WriteUART3(msg);
NU32_WriteUART3("(a)dd word, erase & (m)ake new page, (s)how words, (e)rror?\r\n");
NU32_ReadUART3(msg,sizeof(msg));
switch (msg[0]) { // check the first character entered by user

case ’a’:
add_new_word();
break;

case ’m’:
make_page();
break;

case ’s’:
show_words();
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break;
case ’e’:// shows that if we obliterate the password, then no valid flash page exists

flash_write_word(PAGE_IN_USE_INDEX,0);
break;

default:
break;

}
}
return 0;

}

The code above attempts to minimize page erases, and therefore maximize the flash lifetime,
by filling the page with up to 1023 saved data words before having to erase again. One
limitation is the inability to distinguish the data 0xFFFFFFFF from an erased element.
Another is the slow method for finding the next index where data should be stored—we had to
step through the buffer looking for the first unoccupied (erased) element.

More sophisticated methods for managing flash could use some of the buffer elements as
control bits that represent which array elements are occupied by data. When you write data to
an array cell, you write a zero to the corresponding control bit. This scheme overcomes both
limitations above, at the cost of having fewer array elements available for data. To lessen the
wear on any single page, more than one page could be allocated to hold data, up to the flash
memory capacity of the PIC32.

18.4 Chapter Summary

• Flash memory can be used to store data that you want to retain across power cycling of
the PIC32.

• Program flash memory is divided into 128 pages of 4 kB each. Each page is divided into
eight rows, each consisting of 128 four-byte words.

• Flash can only be erased a page at a time, by setting all bits to ones. Writes can only flip
ones to zeros, never zeros to ones. Writes can only be done to a single four-byte word or
an entire row at once.

• Flash has a limited lifespan so you should minimize writes and erasures.

18.5 Exercises
1. To minimize flash erasure, pretend that the 4096 words of a page are divided into control

and data words. Each bit of a control word corresponds to one or more data words, called
a block; a one indicates that the block is empty and a zero indicates that the block is full.
Assuming four data words per block, how many data words can a page of flash store?
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2. Assume that you want to save a single four-word block at a time, and that each page of
flash can be erased 1000 times.
a. How many times could you store a block of data, assuming that you need to erase the

page before each write?
b. How many times could you write a block of data using the control/data scheme

described in Exercise 1?
3. Implement and test the control/data word scheme described in Exercise 1.

Further Reading
PIC32 family reference manual. Section 05: Flash programming. (2012). Microchip Technology Inc.
PIC32 flash programming specification. (2014). Microchip Technology Inc.
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Controller Area Network (CAN)

The high-speed controller area network (CAN) is an asynchronous protocol used extensively
in industrial automation and for communication between many microprocessors in modern
automobiles. CAN allows many devices to communicate over only two wires in electrically
noisy environments. Speeds up to 1 Mbps are possible over distances up to tens of meters, with
lower bit rates over longer distances. The PIC32 provides two CAN controller peripherals.

19.1 Overview

A CAN bus consists of two wires, CANH and CANL, terminated by 120 � resistors at either
end. The PIC32, like many devices, cannot directly create the required CAN bus voltages, and
therefore connects to the bus through a separate CAN transceiver, such as the Microchip
MCP2562. Figure 19.1 shows a CAN bus with n devices attached to it, including the PIC32’s
CAN1 module connected to the bus through an MCP2562. In the discussion below, devices
have CAN controller peripherals, and they interact with the bus through transceivers.

The DEVCFG3 configuration bit FCANIO on the NU32’s PIC32 was cleared to zero when the
bootloader was installed, meaning that the CAN1 module uses the alternate pins AC1TX
(RF4) and AC1RX (RF5) instead of the default pins C1TX (RF0) and C1RX (RF1). This is
because RF0 and RF1 are used as digital outputs to control LED1 and LED2 on the NU32.

To send a message over the bus using CAN1, the PIC32 sends bits from its AC1TX pin to the
MCP2562’s TXD pin, and the MCP2562 controls the output voltages VCANH and VCANL to
send the information over the bus. The MCP2562 also converts bits on the bus to the PIC32’s
logic levels (0 and 3.3 V) and sends them from its RXD pin to the PIC32’s AC1RX pin.

To send a logic low signal (0), the MCP2562 drives VCANH to a high voltage and VCANL to a
low voltage. This state of the bus is called dominant. The exact value of VCANH − VCANL is
not critical, provided it exceeds some minimum threshold that allows transceivers on the bus
to recognize the dominant (logic 0) state. For example, the MCP2562 requires
VCANH − VCANL > 0.9 V to ensure that the bus is measured as dominant.

To send a logic high signal (1), the MCP2562 CANH and CANL outputs are left floating (high
impedance). Because the bus is a closed loop (terminated by resistors), this means that

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00019-6
Copyright © 2016 Elsevier Inc. All rights reserved. 249
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Figure 19.1
The PIC32 and other devices connected to the CAN bus through CAN transceivers. In this figure the
PIC32 is connected using CAN module 1; it could also (or instead) be connected using CAN module

2 with pins C2TX and C2RX.

VCANH ≈ VCANL, assuming that no other transceiver on the bus is making it dominant. This
state of the bus is called recessive. The MCP2562 recognizes the recessive (logic 1) state if
VCANH − VCANL < 0.5 V.

The dominant (0) and recessive (1) states of the bus are given these names because the bus is
only recessive if all devices are transmitting ones. If any device transmits a zero, its
transceiver puts the bus in the dominant (0) state, since the high-impedance outputs of the
recessive transceivers cannot affect the bus voltage.

Each device on the bus should be configured with the same nominal bit rate (since, as with the
UART, there is no clock signal). If no device is communicating, all transceivers have
high-impedance outputs and the bus is in the recessive (logic 1) state. When a device begins to
send a data frame, it first sends a logic 0 (drives the bus to dominant) for the duration of one
bit. This is called the start-of-frame (SOF) bit. The next 11 bits in the frame carry the standard
identifier (SID) of the message, indicating the type of information in the message. The next bit
is the remote transmission request (RTR), which is a 0 if the device is sending data and a 1 if it
is requesting data from another device. The next bit is the identifier extension bit (IDE), which
is 0 for standard CAN frames.1 The next bit is a reserved bit RB0 which is 0 by convention.
The next 4 bits are the data length code (DLC), which indicates the number of data bytes in
the transmission, which must be 0-8 by the CAN standard. The next 0-64 bits are the 0-8 bytes
of data (DATA) as dictated by the DLC. The next 16 bits are the cyclic redundancy check

1 The IDE bit is a 1 for extended CAN frames. We do not discuss extended CAN data frames, which differ
primarily by allowing 29 bits for the message identifier, rather than 11 bits.
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(CRC), an error-detection code which receiving devices can use to check if the data was
received correctly. The next two bits are the acknowledgment field (ACK); the transmitter
sends two ones (recessive), but any receiver that received the data correctly should send a zero
(dominant) during the first bit to indicate that the message was received. If there is no
acknowledgment, the transmitter realizes that there has been a transmission error and should
resend the frame. Finally, the frame is concluded by seven consecutive recessive (1) bits
(EOF). The standard CAN frame is illustrated in the following table.

field SOF SID RTR IDE RB0 DLC DATA CRC ACK EOF
# bits 1 11 1 1 1 4 0-64 16 2 7

A standard CAN frame.

Because the timing of bus transitions (dominant to recessive and vice versa) are used to help
synchronize devices on the bus (see the description of the CiCFG SFR in Section 19.2), the
CAN protocol requires a bit transition at least once every six bits. If the frame has five
consecutive bits of the same sign, a bit of the opposite sign is inserted by the transmitter. This
is called bit stuffing. Thus, depending on the SID and DATA, the length of the actual CAN
frame may be extended by stuffed bits. Since each receiving device understands the bit
stuffing rule, it discards the stuffed bits. If a receiving device senses six consecutive bits of the
same sign, an error has occurred, and the device can transmit six consecutive dominant bits to
declare the error. (This chapter does not discuss CAN error handling.) Stuffbits are not added
during the ACK or EOF fields, and the seven consecutive recessive bits in the EOF do not
signal an error.

After a frame, at least three consecutive recessive (1) bits are inserted as interframe spacing.
Any recessive-to-dominant transition after this is considered a SOF.

If the bus has been quiet and then one device transmits a SOF bit, other devices wait until the
frame is complete before attempting to send a message. If two or more devices attempt to send
a message simultaneously, the device with the message with the lower SID wins the
arbitration and is able to send its message, while other devices must wait. Arbitration can be
achieved because each transmitting device is also measuring the bus voltage, and if the bus is
ever dominant (logic 0) when device x is sending a recessive (logic 1), device x knows another
device has won the arbitration, and device x stops attempting to transmit. Since the SID is the
first bit string sent in the frame, and since the most significant bits of the SID are sent first, the
device sending the lowest SID has the most zeros at the beginning of its frame and therefore
wins the arbitration.

Messages broadcast over the bus are not necessarily relevant to all devices on the bus, so
devices only process messages with SIDs they care about. The PIC32 uses user-specified SID
masks and filters to look for relevant messages, and only stores relevant messages in RAM.



252 Chapter 19

19.2 Details

The PIC32 handles CAN frames by using first-in first-out queues (FIFOs). These FIFOs are
stored in RAM that you allocate. The CAN peripheral can use up to 32 separate FIFOs, each
configurable as either a receive (RX) or transmit (TX) FIFO. Each FIFO consists of a
specified number of message buffers, up to 32, to hold messages that are ready to go out
(TX FIFO) or have been received (RX FIFO).

Each message buffer is four 32-bit words (16 bytes total), containing all the data needed to
construct a full data frame.2 The four four-byte words are

• CMSGSID: Contains the SID of the message. If it is a received message, then it also
contains timestamp information and the ID of the filter that accepted the message.

• CMSGEID: Contains the RTR, IDE, RB0, and DLC bits, as well as other bits if using
extended CAN frames.

• CMSGDATA0: Contains bytes 0-3 of the DATA.
• CMSGDATA1: Contains bytes 4-7 of the DATA.

For example, you could have one TX FIFO queue able to hold up to 12 messages, therefore
occupying 1 × 12 × 16 = 192 bytes of RAM, and four RX FIFOs each holding up to 32
received messages, therefore occupying 4 × 32 × 16 = 2048 bytes of RAM.

Receive (RX) masks and filters are used to ignore irrelevant messages and to automatically
sort relevant messages into the appropriate RX FIFO. A MASK is an 11-bit number, and a
message is accepted if the bitwise AND

MASK & SID

matches a user-programmed filter. An accepted message is stored in a FIFO associated with
the filter. The user can define up to 32 filters and four masks.

The CAN peripheral relies on a large number of SFRs. Some apply to the CAN peripheral as a
whole, while others only apply to individual filters or FIFOs. We provide the information you
need to establish basic CAN communication; the Reference Manual section provides a full
description. Unlike other peripherals, you must turn on the CAN peripheral and put it in a
mode that allows it to be configured. After setting the configuration, you change modes so that
CAN can send and receive messages.

The PIC32 has two CAN modules, and in the SFRs below, i is either 1 or 2, indicating CAN1
or CAN2.

2 For an RX FIFO, it is possible to use message buffers with only two 32-bit words, containing only
CMSGDATA0 and CMSGDATA1, ignoring the SID, timestamp, DLC, etc. In this chapter we focus on RX
messages with four four-byte words.
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Nominal bit time

Time quanta

Sample point

Previous bit Propagation Phase 1 Phase 2Sync Next bit

Tq

Figure 19.2
Timing for a single bit on the CAN bus, showing the four segments within a bit duration.

CiCON The main configuration register. Allows you to set the operating mode.
CiCON〈26:24〉 or CiCONbits.REQOP: Request a change in the operating mode. After
requesting a mode change you must wait for the mode to actually change by polling
CiCONbits.OPMOD. Switching between certain modes may require a condition on the
bus to be met; thus, errors in the wiring of the bus may prevent some mode switches.
The main modes are:
0b100 Configuration mode, which allows all CAN SFRs to be modified.
0b010 Loopback mode. The CAN is internally wired to itself, allowing you to test

sending and receiving messages. When in loopback mode, the CAN is not
actually connected to the bus, so no transceiver is required.

0b000 The CAN peripheral operates normally.
CiCON〈23:21〉 or CiCONbits.OPMOD: The current operating mode. Uses the same
values as CiCONbits.REQOP. You should poll this value after requesting an operating
mode transition to wait for CAN bus to actually enter the desired mode. The CAN
peripheral cannot change modes until certain bus conditions are met; therefore, if your
code hangs when polling OPMOD you may have a wiring error.

CiCON〈15〉 or CiCONbits.ON: Set to 1 to turn the CAN module on. You cannot switch
modes unless this bit is set, so, unlike other peripherals, enabling the peripheral is not
the last step in its configuration.

CiCFG Configures the bit rate for the CAN peripheral as well as parameters controlling
synchronization to other devices on the bus. According to the CAN protocol, each bit
duration consists of an integral number of time quanta of duration Tq. According to the
Reference Manual, the CAN module should be configured so that the duration of a single
bit is eight to 25 Tq. For example, at a 1 Mbps bit rate, the duration of each bit is 1 µs, and
if there are ten Tq per bit, then Tq = 100 ns.
Also according to the CAN protocol, the bit duration is broken into four segments:
synchronization, propagation, phase 1, and phase 2 (Figure 19.2). The synchronization
phase lasts one Tq, but the others generally last for multiple Tq. Data on the bus is actually
sampled at the transition between phase 1 and phase 2.
These segments are used to help CAN devices resynchronize with each other, accounting
for oscillator frequency and phase differences and propagation delays. On the SOF
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recessive-to-dominant transition at the beginning of every data frame, the CAN module
restarts its bit timer. In addition, within a data frame, if a transition is measured outside of
the synchronization segment, the CAN module resynchronizes by lengthening or
shortening phase 1 or phase 2 by an integral number of Tq, depending on the
timing error.
The CiCFG SFRs are used to configure the time quantum Tq; the maximum number of Tq
that phase 1 and phase 2 can be lengthened or shortened to achieve resynchronization;
and the number of Tq in the propagation, phase 1, and phase 2 segments. The overall bit
duration is the sum of the durations of these three segments and the synchronization
segment (which lasts one Tq). For example, for Tq = 100 ns and propagation, phase 1, and
phase 2 segments lasting 3Tq, the total bit duration is 10Tq = 1 µs and the bit rate is
1 Mbps.
CiCFG〈13:11〉 or CiCFGbits.SEG1PH: The duration of phase 1 is

(CiCFGbits.SEG1PH + 1)Tq. In the default configuration, CiCFGbits.SEG2PH for
phase 2 will be set automatically to CiCFGbits.SEG1PH, making phase 1 and phase 2
equal duration.

CiCFG〈10:8〉 or CiCFGbits.PRSEG: The duration of the propagation segment is
(CiCFGbits.PRSEG + 1)Tq. Should be at least twice the time it takes signals to
propagate down the bus.

CiCFG〈7:6〉 or CiCFGbits.SJW: The maximum amount that the phase 1 or phase 2
segments can be adjusted is (CiCFGbits.SJW + 1)Tq. SJW must not be greater than
SEG2PH.

CiCFG〈5:0〉 or CiCFGbits.BRP: This baud rate prescaler determines Tq, where

Tq = 2 × (CiCFG.BRP + 1)/Fsys,

and Fsys is the frequency of SYSCLK. For example, for an 80 MHz SYSCLK,
CiCFGbits.BRP = 0b000011= 3 means that Tq = 2 × (3 + 1)/80 MHz = 100 ns.

Setting the bit timing for CAN becomes critical when attempting to communicate quickly
or over long distances. Microchip’s Application Note AN754 provides more details about
choosing the proper settings for your purposes.

CiTREC Tracks the number of receive and transmit errors. This register is especially useful
when debugging or in situations where managing failures is critical.

CiFLTCONr, r = 0 to 7 There are eight filter control SFRs. A filter directs data to various
RX FIFOs based on the frame’s SID. Each register contains configuration bits for four of
the 32 available filters. The fields for each filter are

CiFLTCONrbits.FLTENx, x = 0 to 31: Set to enable filter x.
CiFLTCONrbits.MSELx, x = 0 to 31: These two bits, taking values 0b00 to 0b11 (0 to
3), select the mask register for filter x. Mask registers determine which SID bits to
ignore when hardware attempts to match an SID to a filter.
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c

Figure 19.3
Memory layout for CAN FIFOs. In this example, four FIFOs are used: two two-message TX FIFOs
(FIFO0 and FIFO1) and two three-message RX FIFOs (FIFO2 and FIFO3). Each message buffer

consists of four four-byte words, hence the spacing of 0x10 = 16 addresses between message buffers.

CiFLTCONrbits.FSELx, x = 0 to 31: These five bits, taking values 0b00000-0b11111
(0 to 31), associate a FIFO (numbered 0-31) with filter x. When the filter matches, the
data will be stored in the specified FIFO.

CiRXFn, n = 0 to 31 One SFR per filter. Specifies the SID that the filter matches. Only
operates if enabled by setting the appropriate bits in CiFLTCONr. When using standard
CAN frames, only 11 bits are relevant:
CiRXFn〈31:21〉 or CiRXFnbits.SID: The SID to match.

CiRXMr, r = 1 to 4 There are four mask registers. Masks determine which bits of an SID to
ignore. Each filter uses one mask register.
CiRXMr〈31:21〉 or CiRXMrbits.SID: Bits that are zero in this field are the bits of the
message SID that will be ignored when matching a filter. For example, if you use the
mask C1RXM0bits.SID = 0b101, only bits 0 and 2 of the message’s SID matter when
matching against a filter.

CiFIFOBA Stores the base physical address of the contiguous region in RAM where the
CAN FIFOs are located. This region must be large enough to store all of the FIFOs, up to
32, each having up to 32 message buffers, as prescribed by the user. Each message buffer
consists of four 4-byte words. If you use n FIFOs, to avoid wasting RAM, you should use
consecutive FIFOs from FIFO0 to FIFO(n− 1) (Figure 19.3).

CiFIFOCONn, n = 0 to 31 The control register for FIFOn. Determines the size of the FIFO
and whether it is for transmitting or receiving.
CiFIFOCONn〈20:16〉 or CiFIFOCONnbits.FSIZE: The number of messages in the FIFO
is CiFIFOCONnbits.FSIZE + 1.
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CiFIFOCONn〈14〉 or FRESET: Set this bit to reset the FIFO. Hardware clears this bit
after the reset process finishes. According to Microchip’s PIC32MX795 Family
Silicon Errata sheet, this bit can only be set using CiFIFOCONnSET= 0x5000. (You
cannot set the bit using CiFIFIOCONnbits.FRESET.)

CiFIFOCONn〈13〉 or UINC: Set this bit after adding a message to a TX FIFO for
sending, or after reading a message from an RX FIFO. This will cause the FIFO
pointer CiFIFOUAn (below) to be incremented to the next message buffer in the FIFO.
For a TX FIFO, the next message added to the FIFO for sending out on the bus should
be placed at this new address, and for an RX FIFO, the next message read from the bus
will be placed at this new address. The pointer rolls over to the beginning of the FIFO
when it reaches the end of the FIFO. According to Microchip’s PIC32MX795 Family
Silicon Errata sheet, this bit can only be set using CiFIFOCONnSET= 0x2000. (You
cannot set the bit using CiFIFOCONnbits.UINC.)

CiFIFOCONn〈12〉 or CiFIFOCONnbits.DONLY: For an RX FIFO, if this bit is set, only
the data bytes of received messages will be stored in the FIFO. By default this bit is
cleared and received messages consist of four 32-bit words. We use the default in this
chapter.

CiFIFOCONn〈7〉 or CiFIFOCONnbits.TXEN: When set (1), the FIFO is a TX FIFO.
When clear (0), the FIFO is an RX FIFO.

CiFIFOCONn〈4〉 or CiFIFOCONnbits.TXERR: This bit is set when an error occurred
during transmission. Cleared when read. Useful for debugging.

CiFIFOCONn〈3〉 or CiFIFOCONnbits.TXREQ: For TX FIFOs, requests that the data in
the FIFO be sent out on the CAN bus. Cleared after messages are successfully sent.

CiFIFOINTn, n = 0 to 31 Contains the interrupt enable (IE) bits and interrupt flag (IF) bits,
which indicate which interrupt conditions have been triggered by FIFOn. Interrupt flags
indicate the state of the FIFO and may be polled even if the particular interrupt is disabled.
Some important status flags are:
CiFIFOINTn〈10〉 or CiFIFOINTnbits.TXNFULLIF: Read only. Set to one when a TX
FIFO is not full, cleared to zero when a TX FIFO is full.

CiFIFOINTn〈0〉 or CiFIFOINTnbits.RXNEMPTYIF: Read only. Set to one when an RX
FIFO is not empty and therefore has at least one message, cleared to zero when an RX
FIFO is empty.

CiFIFOUAn, n = 0 to 31 This user address stores the physical address of the current position
in FIFOn. For TX FIFOs, this address is where you place your next message to go out on
the bus. For RX FIFOs, this address is where the next message received from the bus is
placed. These addresses are maintained automatically once the user specifies the physical
base address of the FIFOs, CiFIFOBA.

The interrupt vectors for CAN modules 1 and 2 are _CAN_1_VECTOR (46) and _CAN_2_VECTOR

(47), respectively. The interrupt flag status bit for CAN1 is IFS1bits.CAN1IF, the interrupt
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enable control bit is IEC1bits.CAN1IE, the priority is IPC11bits.CAN1IP, and the subpriority
is IPC11bits.CAN1IS. Similarly, for CAN2 the relevant bits are IFS1bits.CAN2IF,
IEC1bits.CAN2IE, IPC11bits.CAN2IP, and IPC11bits.CAN2IS. Many events can generate a
CAN module interrupt, including FIFO events and events described in the CiINT SFR (not
covered here). To determine which event caused an interrupt, examine the flag bits in the
relevant CAN SFRs. The sample code below does not use interrupts; see the Reference
Manual section for more details.

19.2.1 Addresses

The CAN bus manages all of its FIFOs in RAM using physical addresses. Your program,
however, uses virtual addresses (see Chapter 3 for more details about the memory map).
The header file <sys/kmem.h> provides macros for converting between physical and virtual
addresses. To convert virtual addresses to physical addresses, such as when you calculate the
physical address CiFIFOBA from a pointer (virtual address) to a block of RAM allocated for
the FIFOs, use KVA_TO_PA(virtual_address). To convert physical addresses to virtual
addresses, such as when you write to a FIFO virtual address based on the CAN’s physical
address FIFO pointer CiFIFOUAn, use PA_TO_KVA1(physical_address).

19.2.2 Transmitting a Message

To transmit a message, you must load it into a TX FIFO at the current physical address held
by CiFIFOUAn. A TX message consists of four four-byte words, CMSGSID, CMSGEID,
CMSGDATA0, and CMSGDATA1, which can be viewed as an array of four unsigned integers
stored in RAM consecutively. CMSGSID is at the lowest address addr, given by unsigned int

* addr = PA_TO_KVA1(CiFIFOUAn). The bit fields are illustrated in Figure 19.4, where SRR,
EID, and RB1 are only used in an extended CAN frame and are cleared to zero for a standard
CAN frame.

The 11-bit SID can take any value between 0 and 211 − 1. To set the SID in CMSGSID
to 27, for example, we can simply write addr[0] = 27. The next word, called CMSGEID and
stored at addr[1], contains the fields IDE, RTR, RB0, and DLC. IDE is zero for a standard
CAN frame, RTR is zero for a normal data transmission, and RB0 is zero by the CAN
protocol, so we only need to choose the data length code (DLC). Since DLC occupies the
lowest four bits, we can simply write addr[1] = length, where length is the number of data
bytes, 0 to 8. The last two words, CMSGDATA0 at addr[2] and CMSGDATA1 at addr[3] are
the data bytes. If you are sending unsigned integers, you can simply assign the values to
addr[2] and addr[3]. If you are sending other data types, like chars, floats, or signed ints,
Exercise 14 in Appendix A gives an idea of how to use union to put data of different types into
a single array.
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Figure 19.4
Four 32-bit (four-byte) words are used to generate a CAN message for transmission. Bits 0-7 of

CMSGSID are at the lowest address, while bits 0-7 of CMSGEID, CMSGDATA0, and CMSGDATA1
are at addresses 0x10 (16), 0x20 (32), and 0x30 (48) higher, respectively. For a standard CAN

frame, the bit fields SRR, EID, and RB1 are cleared to zero.

A typical process for transmitting a CAN frame is the following:

1. Ensure that the TX FIFO is not full by checking to make sure that
CiFIFOINTnbits.TXNFULLIF = 1.

2. Get the address where the next message to be sent on the bus should be stored by reading
CiFIFOUAn and converting it to a virtual address using PA_TO_KVA1.

3. Store the desired message in the FIFO at the virtual address calculated above.
4. Set the FIFO’s UINC bit, using CiFIFOCONnSET = 0x2000, to notify the CAN peripheral to

increment CiFIFOUAn by one message buffer size (16 bytes).
5. Set CiFIFOCONnbits.TXREQ to one, requesting transmission. This bit will be cleared by

hardware when the transmission completes successfully.

19.2.3 Receiving a Message

To receive a message, you must configure an RX FIFO and a filter that matches the desired
message. Configuring a filter n requires enabling it and assigning it an SID and mask using
CiFLTCONr (r = 0 to 7), CiRXFn (n= 0 to 31), and CiRXMr (r = 1 to 4). When the CAN
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Figure 19.5
Layout used by the CAN peripheral for storing a received CAN frame.

peripheral matches the SID on the bus to a mask and SID in a filter, it stores the message in the
desired FIFO. For example, if a filter is configured with a mask of 0x7FF (all 11 bits are 1),
then all bits of the SID on the bus must match all bits of the filter’s SID. If there is a match, the
message will be stored in the FIFO specified by CiFLTCONr.

Like a transmit message, a receive message is also four four-byte words long. Figure 19.5
shows the full layout of an RX message. As with a transmit message, we assume that the
current RX FIFO position is stored in addr, a pointer to an array of unsigned ints. Then
CMSGSID is at addr[0], CMSGEID is at addr[1], CMSGDATA0 is at addr[2], and
CMSGDATA1 is at addr[3]. Only the first DLC bytes in the data words are valid. The five bits
in CMSGSID〈15:11〉 contain the number of the filter that put the message here. For more
information on how the timestamp data in CMSGSID〈31:16〉 is generated from the SYSCLK
and the CiTMR SFR, see the Reference Manual.

To read a message, you should either enable message receive interrupts or poll, waiting for
CiFIFOINTnbits.RXNEMPTYIF to be set. To read the message, perform the following steps.

1. Ensure that RX filters have been set and enabled.
2. The RX FIFO should be non-empty, so check to make sure that

CiFIFOINTnbits.RXNEMPTYIF = 1.
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3. Get the address of the next RX message by reading CiFIFOUAn and converting it to a
virtual address using PA_TO_KVA1.

4. Process the message.
5. Set the FIFO’s UINC bit, using CiFIFOCONnSET = 0x2000, to notify the CAN peripheral to

move CiFIFOUAn to the next message buffer.

19.3 Sample Code

19.3.1 Loopback

The first example uses the CAN’s loopback mode, allowing the CAN module to send data to
itself. Loopback mode allows testing the CAN module without worrying about physical layer
issues such as transceivers, propagation delay, or bus impedance. The code creates a single
filter to respond to only one specific SID, and it uses one TX FIFO and one RX FIFO. It
prompts the user for data, sends and receives that data using the CAN peripheral, and reports
the result to the user.

Code Sample 19.1 can_loop.c. Basic CAN Loopback Functionality.

#include "NU32.h" // constants, funcs for startup and UART
#include <sys/kmem.h> // used to convert between physical and virtual addresses
// Basic CAN example using loopback mode, so this functions with no external hardware.
// Prompts user to enter numbers to send via CAN.
// Sends the numbers and receives them via loopback, printing the results.

#define MY_SID 0x146 // the sid that this module responds to

#define FIFO_0_SIZE 4 // size of FIFO 0 (RX), in number of message buffers
#define FIFO_1_SIZE 2 // size of FIFO 1 (TX), in number of message buffers
#define MB_SIZE 4 // number of 4-byte integers in a message buffer

// buffer for CAN FIFOs
static volatile unsigned int fifos[(FIFO_0_SIZE + FIFO_1_SIZE) * MB_SIZE];

int main() {
char buffer[100];
int to_send = 0;
unsigned int * addr; // used for storing fifo addresses

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

C1CONbits.ON = 1; // turn on the CAN module
C1CONbits.REQOP = 4; // request configure mode
while(C1CONbits.OPMOD != 4) { ; } // wait to enter config mode

C1FIFOCON0bits.FSIZE = FIFO_0_SIZE-1;// set fifo 0 size. Actual size is 1 + FSIZE
C1FIFOCON0bits.TXEN = 0; // fifo 0 is an RX fifo

C1FIFOCON1bits.FSIZE = FIFO_1_SIZE-1;// set fifo 1 size. Actual size is 1 + FSIZE
C1FIFOCON1bits.TXEN = 1; // fifo 1 is a TX fifo
C1FIFOBA = KVA_TO_PA(fifos); // tell CAN where the fifos are

C1RXM0bits.SID = 0x7FF; // mask 0 requires all SID bits to match

can_loop.c
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C1FLTCON0bits.FSEL0 = 0; // filter 0 is for FIFO 0
C1FLTCON0bits.MSEL0 = 0; // filter 0 uses mask 0
C1RXF0bits.SID = MY_SID; // filter 0 matches against SID
C1FLTCON0bits.FLTEN0 = 1; // enable filter 0

// skipping baud settings since loopback only
C1CONbits.REQOP = 2; // request loopback mode
while(C1CONbits.OPMOD != 2) { ; } // wait for loopback mode

while(1) {
NU32_WriteUART3("Enter number to send via CAN:\r\n");
NU32_ReadUART3(buffer,100);
sscanf(buffer,"%d", &to_send);
sprintf(buffer,"Sending: %d\r\n",to_send);
NU32_WriteUART3(buffer);

addr = PA_TO_KVA1(C1FIFOUA1); // get FIFO 1 (the TX fifo) current message address
addr[0] = MY_SID; // only the sid must be set for this example
addr[1] = sizeof(to_send); // only DLC field must be set, we indicate 4 bytes
addr[2] = to_send; // 4 bytes of actual data
C1FIFOCON1SET = 0x2000; // setting UINC bit tells fifo to increment pointer
C1FIFOCON1bits.TXREQ = 1; // request that data from the queue be sent

while(!C1FIFOINT0bits.RXNEMPTYIF) { ; } // wait to receive data
addr = PA_TO_KVA1(C1FIFOUA0); // get the VA of current pointer to the RX FIFO
sprintf(buffer,"Received %d with SID = 0x%x\r\n",addr[2], addr[0] & 0x7FF);
NU32_WriteUART3(buffer);
C1FIFOCON0SET = 0x2000; // setting UINC bit tells fifo to increment pointer

}
return 0;

}

19.3.2 Light Control

The next example requires at least two PIC32s to be connected to the CAN bus through
transceivers. One PIC32 (on an NU32 board) is a virtual traffic control police officer, sending
messages to the other PIC32 to change a traffic light to red, yellow, or green. The second
PIC32 (on an NU32 board) simulates a traffic light by illuminating two LEDs if the light
should be green, one LED if it should be yellow, and no LEDs if it should be red. This
example is easily extensible to any number of traffic lights on the CAN bus by using different
SIDs to address different traffic lights.

The traffic cop PIC32 communicates with your computer via UART, allowing you to tell the
cop what color you would like the light. The cop then relays the message to the other PIC32
via CAN. The traffic cop PIC32 runs the program can_cop.c, while the traffic light PIC32 runs
the program can_light.c. Note that can_cop.c performs some rudimentary error checking and
prints some diagnostic information. If you see such information, you should confirm that you
have wired the bus correctly. If you run can_cop.c without any other devices on the CAN bus,
you will eventually trigger the error condition, as CAN requires at least two devices on the bus
for acknowledgment generation.
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The bit timing for this example uses a time quantum of Tq = 34/Fsys = 34 × 12.5 ns = 425 ns
and segment durations of 4Tq for propagation, 4Tq for phase 1, and 4Tq for phase 2. Adding
the Tq for the synchronization segment, this makes a bit duration of Tb = 13Tq = 5.525 µs
and a bit rate of 1/Tb ≈ 180, 995 Hz.

Code Sample 19.2 can_cop.c. Control the Lights on Another PIC32 via CAN.

#include "NU32.h" // constants, funcs for startup and UART
#include <sys/kmem.h> // used to convert between physical and virtual addresses
#include <ctype.h> // function "tolower" makes uppercase chars into lowercase
// The CAN cop is the "police officer" that controls the traffic light
// connect AC1TX to TXD on the transceiver, AC1RX to RXD on the transceiver
// The CANH and CANL transceiver pins should be connected to the same wires as
// the PIC running can_light.c.
//
// if your transceiver chip is the Microchip MCP2562 then connect
// Vss and STBY to GND, VDD to 5V VIO to 3.3V
#define FIFO_0_SIZE 4 // size of FIFO 0, in number of message buffers
#define FIFO_1_SIZE 4
#define MB_SIZE 4 // number of 4-byte integers in a message buffer

#define LIGHT1_SID 1 // SID of the first traffic light

volatile unsigned int fifos[(FIFO_0_SIZE + FIFO_1_SIZE)* MB_SIZE]; // buffer for CAN FIFOs

int main(void) {
char buffer[100] = "";
char cmd = ’\0’;
unsigned int * addr = NULL; // used to store fifo address

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

C1CONbits.ON = 1; // turn on the CAN module
C1CONbits.REQOP = 4; // request configure mode
while(C1CONbits.OPMOD != 4) { ; } // wait to enter config mode

C1FIFOCON0bits.FSIZE = FIFO_0_SIZE-1;// set fifo 0 size in message buffers
C1FIFOCON0bits.TXEN = 0; // fifo 0 is an RX fifo

C1FIFOCON1bits.FSIZE = FIFO_1_SIZE-1;// set fifo 1 size
C1FIFOCON1bits.TXEN = 1; // fifo 1 is a TX fifo
C1FIFOBA = KVA_TO_PA(fifos); // tell CAN where the fifos are

C1CFGbits.BRP = 16; // Tq = (2 x (BRP + 1)) x 12.5 ns = 425 ns
C1CFGbits.PRSEG = 3; // 4Tq in propagation segment
C1CFGbits.SEG1PH = 3; // 4Tq in phase 1. Phase 2 is set automatically to be the same.
// bit duration = 1Tq(sync) + 4Tq(prop) + 4Tq(phase 1) + 4Tq(phase 2) = 13Tq = 5.525 us
// so baud is 1/5.525 us = 180,995 Hz

C1CFGbits.SJW = 0; // up to (SJW+1)*Tq adjustment possible in phase 1 or 2 to resync

C1CONbits.REQOP = 0; // request normal mode
while(C1CONbits.OPMOD != 0) { ; } // wait for normal mode
NU32_LED1 = 0;
while(1) {
NU32_WriteUART3("(R)ed, (Y)ellow, or (G)reen?\r\n");
NU32_ReadUART3(buffer,100);

can_cop.c
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sscanf(buffer,"%c", &cmd);
sprintf(buffer,"Setting %c\r\n", cmd);
NU32_WriteUART3(buffer);

if(C1TRECbits.TXWARN) { // many bad transmissions have occurred,
// print info to help debug bus (no ACKs?)

sprintf(buffer,"Error: C1TREC 0x%08x\r\n",C1TREC);
NU32_WriteUART3(buffer);

}

addr = PA_TO_KVA1(C1FIFOUA1); // get VA of FIFO 1 (TX) current message buffer
addr[0] = LIGHT1_SID; // specify SID in word 0
addr[1] = sizeof(cmd); // specify DLC in word 1 (one byte being sent)
addr[2] = tolower(cmd); // the data (make uppercase chars lowercase)

// since only 1 byte, no addr[3] given
C1FIFOCON1SET = 0x2000; // setting the UINC bit icrements fifo pointer
C1FIFOCON1bits.TXREQ = 1; // request that fifo data be sent on the bus

}
return 0;

}

Code Sample 19.3 can_light.c. The can_cop.c Program can Control the LED Status
via CAN.

#include "NU32.h" // config bits, constants, funcs for startup and UART
#include <sys/kmem.h> // used to convert between physical and virtual addresses
// simulates a traffic light that can be controlled via can_cop
// LED1 on, LED2 on = GREEN
// LED1 on, LED2 off = YELLOW
// LED1 off, LED2 off = RED

// connect AC1TX to TXD on the transceiver, AC1RX to RXD on the transceiver
// The CANH and CANL transceiver pins should be connected to the same wires as
// the PIC running can_cop.c
//
// if your transceiver chip is the Microchip MCP2562 then connect
// Vss and STBY to GND, VDD to 5V VIO to 3.3V
#define FIFO_0_SIZE 4 // size of FIFO 0, in number of message buffers
#define FIFO_1_SIZE 4
#define MB_SIZE 4 // number of 4-byte integers in a message buffer

#define LIGHT1_SID 1 // SID of the first traffic light

volatile unsigned int fifos[(FIFO_0_SIZE + FIFO_1_SIZE)* MB_SIZE]; // buffer for CAN FIFOs

int main(void) {
unsigned int * addr = NULL; // used to store fifo address

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init

C1CONbits.ON = 1; // turn on the CAN module
C1CONbits.REQOP = 4; // request configure mode
while(C1CONbits.OPMOD != 4) { ; } // wait to enter config mode

C1FIFOCON0bits.FSIZE = FIFO_0_SIZE-1;// set fifo 0 size
C1FIFOCON0bits.TXEN = 0; // fifo 0 is an RX fifo

C1FIFOCON1bits.FSIZE = FIFO_1_SIZE-1;// set fifo 1 size
C1FIFOCON1bits.TXEN = 1; // fifo 1 is a TX fifo

can_light.c
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C1FIFOBA = KVA_TO_PA(fifos); // tell CAN where the fifos are

C1RXM0bits.SID = 0x7FF; // mask 0 requires all SID bits to match

C1FLTCON0bits.FSEL0 = 0; // filter 0 uses FIFO 0
C1FLTCON0bits.MSEL0 = 0; // filter 0 uses mask 0
C1RXF0bits.SID = LIGHT1_SID; // filter 0 matches against SID
C1FLTCON0bits.FLTEN0 = 1; // enable filter 0

C1CFGbits.BRP = 16; // copy the bit timing info for can_cop.c;
C1CFGbits.PRSEG = 3; // see comments in can_cop.c
C1CFGbits.SEG1PH = 3;
C1CFGbits.SJW = 0;

C1CONbits.REQOP = 0; // request normal mode
while(C1CONbits.OPMOD != 0) { ; } // wait for normal mode
NU32_LED1 = 1; // turn both LEDs off
NU32_LED2 = 1;
while(1) {
if(C1FIFOINT0bits.RXNEMPTYIF) { // we have received data

addr = PA_TO_KVA1(C1FIFOUA0); // get VA of the RX fifo 0 current message
switch(addr[2]) {

case ’r’: // switch to red
NU32_LED1 = 1;
NU32_LED2 = 1;
break;

case ’y’: // switch to yellow
NU32_LED1 = 0;
NU32_LED2 = 1;
break;

case ’g’: // switch to green
NU32_LED1 = 0;
NU32_LED2 = 0;
break;

default:
; // error! do something here

}
C1FIFOCON0SET = 0x2000; // setting the UINC bit increments RX FIFO pointer

}
}
return 0;

}

19.4 Chapter Summary

• CAN is an asynchronous protocol, developed for and used extensively in the automotive
industry. It is also used in industrial control systems.

• Devices with a CAN controller, like the PIC32, typically connect to the two-wire CAN
bus through a CAN transceiver, which translates between logic-level bits on the device
and CAN bus voltages VCANH and VCANL.

• The CAN peripheral has several operating modes. You must request a mode and then wait
for it to enter the appropriate mode before continuing.

• The CAN peripheral operates on FIFOs stored in RAM. A FIFO can be either an RX or
TX FIFO.
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• All CAN devices on the same bus receive and acknowledge all messages. Hardware filters
determine whether received messages are stored in an RX FIFO, depending on the
message’s SID. Messages with different SIDs can be stored in different FIFOs.

• Choosing the bit timing for the CAN bus depends on the physical properties of the bus.
Proper bit timing is crucial for CAN to operate at long distances and high speeds.

19.5 Exercises
1. Assume that both the accelerator and brake pedal on a car both send their input values

over a CAN network. Which message, the brake or accelerator, should have the higher
SID? Explain.

2. Pretend you are designing a cruise control system for a golf cart. One microcontroller
controls the motor’s PWM signal, one measures the wheel speed, one reads the speed
input from the user, and another implements the controller. Design the CAN messages that
should be sent between these four microcontrollers to implement the cruise control
system.

Further Reading
AN754 understanding Microchip’s CAN module bit timing. (2001). Microchip Technology Inc.
CAN specification (2.0 ed.). (1991). Robert Bosch GmbH.
Corrigan, S. (2008). Introduction to the controller area network CAN (Tech. Rep.).
PIC32 family reference manual. Section 34: Controller area network (CAN). (2012). Microchip Technology Inc.
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Harmony and Its Application to USB

Programming by directly manipulating SFRs, as we have done so far, requires detailed
knowledge. Microchip’s Harmony framework presents a different programming model, one
that hides hardware intricacies behind functions, macros, and automatic code generation
intended to make it easier to develop code that is portable across different PIC32 models.

Rather than being a comprehensive reference, this chapter provides an introduction to
Harmony. Using a progression of examples, we demonstrate how Harmony’s abstractions
interact with each other and the SFRs. The chapter concludes with an example using the
PIC32’s USB peripheral.

As with all previous code in this book, code in this chapter assumes the bootloader is installed,
which configures certain configuration bits, enables the prefetch cache module, and enables
multi-vector interrupts (Chapter 3.6). Just as with the programs we have been writing until
now, programs written using the Harmony framework include p32mx795f512h.h and link with
the correct processor.o file, as described in Chapter 3. This allows you to use the
SFR-manipulation code given earlier in the book within Harmony applications. We avoid
that in this chapter, however, and adopt “the Harmony way” to interact with SFRs and
peripherals.

The code in this chapter is significantly more complex than the sample code until now. This
chapter can be skipped if you will not be exploring the Harmony software distribution. Since
Harmony is relatively new, you should be aware that updates to Harmony may result in
changes to specific function names or function behavior that will not be reflected in this
chapter.

20.1 Overview

The Harmony framework attempts to accomplish three goals: abstraction, code portability,
and code generation.

Abstraction hides implementation details behind a higher-level application programming
interface (API) consisting of functions, data types, and macros. You have already used
abstraction extensively; for example, the definitions provided by pic32mx795f512h.h (included
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via xc.h), allow us to access SFRs by name (e.g., PORTB) rather than needing to directly
enter a virtual address (VA). Another example of abstraction is NU32_WriteUART3, which allows
you to send text over UART3 without needing to know how UARTs operate. The Harmony
API provides an interface not just for manipulating peripherals but also for more complex
tasks such as reading files from a USB flash drive.

Portable code is code that works across multiple microcontrollers with minimal modification.
Abstraction aids portability. The PORTB SFR, for example, has different VAs on different
PIC32MX models; however, by using PORTB structure rather than directly entering its VA, the
same code works across multiple microcontrollers. Based on the -mprocessor=<proc>

compiler argument, xc.h includes the appropriate pic32<proc>.h file and links against the
appropriate processor.o file, which provides the appropriate VA for PORTB (see Chapter 3
for more details). Harmony, at its lowest level, uses the -mprocessor compiler flag, xc.h, and
processor.o to achieve portability.

The aforementioned -mprocessor approach to portability is often insufficient because different
microcontrollers have different peripherals and pin layouts. Harmony addresses this issue by
imposing a structure on your program that separates the hardware-specific code from the more
general logic. All code that depends on specific hardware is placed in its own configuration
directory. At compile time, you select one configuration to use, and only that
hardware-dependent code is included. Although useful for portable code development, we
ignore Harmony’s suggested directory structure for most examples in this chapter because its
flexibility adds complexity.

Harmony’s code generation facilities, integrated into the MPLAB X IDE, allow you to
graphically configure peripherals; the tool generates the necessary source code for you.
Additionally, the code generation tools automatically add Harmony dependencies to your
project (a major benefit, as you will soon see). Although we do not discuss MPLAB X or these
code generation tools, you may want to explore them on your own. The foundation provided
in this chapter will allow you to not only use but also understand the output of the code
generation tools.

20.2 The Framework

If you have not already installed Harmony, do so now. Refer to Chapter 1 for details.
Throughout this chapter we refer to the Harmony installation directory as <harmonyDir> and
the Harmony version as <harmonyVer>. So if Harmony is installed in
/opt/microchip/harmony/v1_06, then <harmonyDir> refers to /opt/microchip/harmony and
<harmonyVer> is v1_06. An important Harmony subdirectory, which contains all of the
Harmony source code, is <harmonyDir>/<harmonyVer>/framework; we refer to it as
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Middleware

System service

SFRs

PLIB

Driver

Figure 20.1
Hierarchy of Harmony module types. If a module type depends on another module type, there is an

arrow from the second to the first.

<framework>. The Harmony documentation is installed in <harmonyDir>/doc and you may wish
to refer to it throughout this chapter.

Conceptually, the Harmony API is divided into distinct layers, organized into a hierarchy (see
Figure 20.1). Higher layers generally indicate more abstraction. The SFR layer is the lowest,
corresponding to directly manipulating SFRs using definitions from p32mx795f512h.h.

The next layer, PLIB (short for peripheral library), contains functions for directly
manipulating SFRs. Rather than setting an SFR to a value directly (e.g., LATB = 0xFF) you
would use a function call (e.g., PLIB_PORTS_Write(PORTS_ID_0,PORTS_CHANNEL_B,0xFF)).

Usually you do not use the PLIB layer directly when using Harmony. The driver layer builds
upon PLIB and provides easier access to peripherals and other common functions. Drivers
have a common interface; for example, all drivers have a DRV_<drivername>_Initialize

function to configure the driver.

The system services layer manages drivers and other system resources. For example, a system
service might manage access to a timer driver, allowing you to run multiple tasks at different
frequencies using the same underlying timer. Sometimes, drivers depend on system services;
for example, the UART driver requires the interrupt system service to help it manage UART
interrupts. Unlike drivers, system services do not always adhere to a consistent interface.

The highest layer we discuss, middleware, provides higher-level functionality such as
implementing the USB protocol (discussed in Section 20.8). There are other aspects of
Harmony (e.g., support of real-time operating systems) that we do not discuss.

A good way to understand the Harmony programming model is to work through some
examples. We begin with the PLIB layer and work our way up, allowing you to see the
relationship between the various API layers.
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20.2.1 Setup

Just as you needed to configure your development environment prior to programming the
PIC32, Harmony also requires configuration. Rather than relying on the MPLAB X IDE, we
have provided you with a Makefile for building Harmony applications. It is available on the
book’s website. Just as you needed to edit your original Makefile, you also need to edit the
Harmony Makefile so it knows where to find your development tools. The variables used in
the Harmony Makefile are the same as those used in the original Makefile and should be
entered according to the instructions in Chapter 1. You may notice an additional variable
assignment at the top of the file, CONFIG=pic32_NU32, which controls the target platform; you
will learn about this feature later.

Although the Harmony Makefile is different from the original Makefile, you use it in the same
manner. It compiles all .c files in the current directory into a single executable. The file also
has additional capabilities, allowing it to compile projects that adhere to Harmony’s
recommended directory structure. We recommend putting the Harmony Makefile in a skeleton
directory, perhaps named harmony_skel. This directory should also include the linker script
NU32bootloaded.ld. It need not include NU32.h and NU32.c as Harmony projects do not need
these files.1 You will copy this Harmony skeleton directory to create new projects, just as you
had been doing with skeleton.

20.3 PLIB

The PLIB layer requires the smallest leap from SFR-based programming—nearly every line
you have used to control an SFR can be implemented with a PLIB function. Code Sample
20.1 demo_plib.c, below, demonstrates using PLIB to toggle LEDs at 5 Hz, closely
resembling TMR_5Hz.c from Chapter 8. Every PLIB function call corresponds to accessing the
appropriate SFR. For example, instead of setting B5 high using LATBSET = 0x20, you use
PLIB_PORTS_PinSet. More details about individual functions can be found in the Harmony
documentation.

Notice the naming scheme employed: the PLIB functions all begin with PLIB_. The next part
of the name indicates which category of SFRs they manipulate; for example, PLIB_INT relates
to interrupt SFRs and PLIB_TMR controls timer SFRs. The first argument to every PLIB
function is an ID. All ports use PORTS_ID_0 and all interrupts use INT_ID_0. For timers, the ID
corresponds to the timer number: TMR_ID_x indicates Timerx, where x is 1 to 5.

1 You can still use the functions in the NU32 library in a Harmony project if you want. Just do not attempt to
separately configure UART3 in your Harmony project; it is already claimed by NU32! Also, you must be careful
about using NU32’s blocking functions, as you will see in Section 20.4.
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demo_plib.c does not include NU32.h. Instead it includes sys/attribs.h in the XC32
distribution (Chapter 3) so that we can use the __ISR macro. (NU32.h had included this file for
us.) It also includes <framework>/peripheral/peripheral.h, which provides functions from
the Harmony PLIB library.

Code Sample 20.1 demo_plib.c. Toggle LEDs at 5 Hz, Using Harmony PLIB.

#include <peripheral/peripheral.h> // harmony peripheral library
#include <sys/attribs.h> // defines the __ISR macro
// Almost a direct translation of TMR_5Hz.c to use the harmony peripheral library.
// The main difference is that it flashes two LEDs out of phase,
// instead of just flashing LED2.

void __ISR(_TIMER_1_VECTOR, IPL5SOFT) Timer1ISR(void) {
// toggle LATF0 (LED1) and LATF1 (LED2)
PLIB_PORTS_PinToggle(PORTS_ID_0, PORT_CHANNEL_F, PORTS_BIT_POS_0);
PLIB_PORTS_PinToggle(PORTS_ID_0, PORT_CHANNEL_F, PORTS_BIT_POS_1);
// clear the interrupt flag
PLIB_INT_SourceFlagClear(INT_ID_0, INT_SOURCE_TIMER_1);

}

int main(void) {
// F0 and F1 are is output (LED1 and LED2)
PLIB_PORTS_PinDirectionOutputSet(PORTS_ID_0, PORT_CHANNEL_F, PORTS_BIT_POS_0);
PLIB_PORTS_PinDirectionOutputSet(PORTS_ID_0, PORT_CHANNEL_F, PORTS_BIT_POS_1);

// turn LED1 on by clearing F0 to zero
PLIB_PORTS_PinClear(PORTS_ID_0, PORT_CHANNEL_F, PORTS_BIT_POS_0);

// turn off LED2 by setting F1 to one
PLIB_PORTS_PinSet(PORTS_ID_0, PORT_CHANNEL_F, PORTS_BIT_POS_1);

PLIB_TMR_Period16BitSet(TMR_ID_1, 62499); // set up PR1: PR1 = 62499
PLIB_TMR_Counter16BitSet(TMR_ID_1,0); // set up TMR1: TMR1 = 0
PLIB_TMR_PrescaleSelect(TMR_ID_1, TMR_PRESCALE_VALUE_256); // 1:256 prescaler

// set up the timer interrupts
// clear the interrupt flag
PLIB_INT_SourceFlagClear(INT_ID_0, INT_SOURCE_TIMER_1);

// set the interrupt priority
PLIB_INT_VectorPrioritySet(INT_ID_0, INT_VECTOR_T1, INT_PRIORITY_LEVEL5);

// enable the timer interrupt
PLIB_INT_SourceEnable(INT_ID_0, INT_SOURCE_TIMER_1);

// start the timer
PLIB_TMR_Start(TMR_ID_1);
// enable interrupts
PLIB_INT_Enable(INT_ID_0);
while (1) {

; // infinite loop
}
return 0;

}

demo_plib.c
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To build demo_plib.c, copy harmony_skel to a new directory and add demo_plib.c. Your
directory now has three files: the Harmony Makefile, NU32bootloaded.ld, and demo_plib.c.
Type make to compile the program. Notice that make issues the commands

> xc32-gcc -g -O1 -x c -c -mprocessor=32MX795F512H -I<framework> -I./
-o demo_plib.o demo_plib.c

> xc32-gcc -mprocessor=32MX795F512H -o out.elf demo_plib.o
-l:<harmonyDir>/<harmonyVer>/bin/framework/peripheral/PIC32MX795F512H_
peripherals.a

-Wl,--script="NU32bootloaded.ld",-Map=out.map

These commands are similar to what you have seen before to compile and link non-Harmony
programs (see Chapter 3). We have added a few additional options here. The compiler is
invoked with options to set the include path, which tells the compiler where to find header
files: -I<framework> and -I./. The first path specifies the Harmony framework directory.
When you include files in your project, all paths to Harmony headers are specified relative to
this directory. For example, peripheral.h, which we included as peripheral/peripheral.h, is
located at <framework>/peripheral/peripheral.h. The -I./ tells the compiler to add the
current directory to the include path; this is needed because, in later programs, Harmony files
include files that you write.

The linking step also has an additional option:
-l:<harmonyDir>/<harmonyVer>/bin/framework/peripheral/PIC32MX795F512H_peripherals.a.
This causes the linker to link against the Harmony pre-compiled library
PIC32MX795F512H_peripherals.a. Every supported PIC32 model has its own peripheral library
that implements the PLIB functions, and you must link against the library appropriate to your
microcontroller.2

20.4 Harmony Concepts

To move beyond the PLIB layer and use Harmony effectively, it helps to understand a few
programming concepts that we have not used until now: finite state machines (FSMs), tasks,
non-blocking functions, and callback functions.

An FSM consists of two types of objects: states and transitions. For example, a simple drink
vending machine has four states: wait-for-money, has-money, refund-money, and vend. When
in the wait-for-money state, any drink button pressed by the user is ignored; the FSM waits for
sufficient money to be inserted. Once sufficient money has been inserted, the FSM transitions
to the has-money state. In this state, the FSM waits for a drink button to be pressed. When a
button is pressed, the FSM transitions to the vend state, dispensing the drink and any change.

2 Usually, due to compiler optimizations, the functions in the .a library are unnecessary as they are present as
inlined functions in the peripheral header files.
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Figure 20.2
The vending machine finite state machine.

When finished vending, the FSM returns to the wait-for-money state. If the user presses the
“cancel” button in either the wait-for-money or has-money state, the FSM transitions to the
refund-money state. After any inserted money is returned to the user, the FSM transitions again
to the wait-for-money state.

An FSM can be viewed as a graph: the states are nodes and the transitions are arrows between
the nodes. The vending machine FSM is illustrated in Figure 20.2.

When you write code in Harmony, you may find it useful to implement an FSM. You
define a finite set of states, like with the vending machine, and for each state you define (1)
the actions to perform while in that state and (2) the conditions that cause transitions to other
states.

More importantly, many capabilities in Harmony are implemented as FSMs. For example, the
Harmony UART driver implements FSMs to control sending and receiving bytes. Each FSM
is called a task. Your code is likely to use multiple Harmony tasks, and conceptually these
tasks run simultaneously. To keep these tasks running properly:

1. Your code should regularly call Harmony functions associated with each task. Each
function performs the actions for the current FSM state and evaluates whether conditions
have been satisfied to transition to a new state. Typically, your code enters an infinite loop
and calls the Harmony task update functions at the end of the loop.3

2. Many Harmony function calls associated with a task return quickly. Such a function is
called non-blocking, meaning that it does not occupy the CPU for a long time and block
the execution of subsequent code. Non-blocking function calls are critical; otherwise they
may delay another FSM too long, preventing it from performing its functions or checking

3 Some Harmony tasks can manage their FSMs using interrupts, in which case you call the Harmony task update
function from the appropriate ISR.
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conditions for state transitions. Similarly, functions you write (perhaps to implement your
own FSM) should be non-blocking, to allow the Harmony task functions to be called
regularly.

Many Harmony modules allow you to specify a function to be executed when a certain state
transition occurs in the module’s FSM. This function is called a callback function. For
example, a Harmony timer driver module could be configured to call your callback function
when the driver recognizes a timer rollover. Thus your callback function acts similarly to a
fixed frequency ISR, but without using an interrupt.

What we have learned about FSMs and tasks, non-blocking functions, and callback functions
will be used repeatedly in the following examples.

20.5 Drivers

In Harmony, drivers are used to control specific devices or peripherals. Unlike PLIB functions,
drivers impose several additional requirements on your project. All drivers follow the same
basic usage patterns. Although they ultimately provide abstract interfaces to the peripherals,
drivers require more setup than using PLIB functions or SFRs alone. You not only need to
include the appropriate headers, but also must add specific .c and .h files to your project,
define certain macros, and execute code in a specific manner.

All the files needed for drivers exist in subdirectories <framework>/driver/<drvname>. For
example, the I2C driver is located at <framework>/driver/i2c. Within the driver directory is
the header file drv_<drvname>.h (e.g., drv_i2c.h), which you need to include in your projects
using a #include directive. There also exists a <framework>/driver/<drvname>/src directory
which may contain .c files, .h files, and subdirectories with additional source code. To use a
driver, you need to include certain files from within the src directory or its subdirectories in
your project’s compilation; however, the specific files depend on which features of the driver
you wish to use. For example, some drivers have both static and dynamic modes, where the
static mode typically has several additional options that can be set at compile time. The
Harmony documentation specifies which files you need based on which features you desire.
To use the driver files in your project, copy them into your project directory.4

In addition to copying the driver files, you also need to create two header files:
system_config.h and system_definitions.h. These two files are present in nearly every
Harmony project. system_config.h should define macros needed by Harmony code. Without
these, drivers may not compile. system_definitions.h should #include Harmony and other
header files needed by the program.

4 Harmony’s code generation tool within MPLAB automatically adds Harmony dependencies to your project.
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20.5.1 UART

In Code Sample 20.2 demo_uart.c, below, we configure and use the UART driver.5 The result
will be two functions that roughly duplicate the functionality of NU32_ReadUART3 and
NU32_WriteUART3. Refer to Chapter 11 for details about UARTs. This program behaves like
Code Sample 1.2 (talkingPIC.c): it reads text sent from a terminal emulator and displays it to
the user.

To build this project, you need the following in your project directory:

• demo_uart.c: Your source code.
• drv_usart.c: Copied from <framework>/driver/usart/src/dynamic/. The main Harmony

UART driver file.
• drv_usart_read_write.c: Copied from <framework>/driver/usart/src/dynamic/.

Provides access to the file I/O mode of the driver.
• system_config.h: Defines various macros needed by the Harmony code used by the

program.
• system_definitions.h: #includes Harmony and other standard header files needed by the

program.

With the five files above as well as the Harmony Makefile and NU32bootloaded.ld in your
project directory, you can use make as usual to build the project.

demo_uart.c follows a pattern typical of Harmony programs. First it includes system_config.h
and system_definitions.h. Next it provides values for an initialization structure that
determines how the UART driver will be used. All drivers have an initialization struct named
DRV_<drvname>_INIT, where <drvname> is the driver name (in this case USART).

The main function has two parts: the initialization code and the main loop. All drivers must be
initialized using a function named DRV_<drvname>_Initialize (in this case
DRV_USART_Initialize), which uses the initialization struct to configure the driver.

Next, the driver must be opened
using DRV_<drvname>_Open (in this case DRV_USART_Open). As you will see in later
examples, some drivers must be opened from the main loop. The DRV_<drvname>_Open function
must be called after the driver is initialized. DRV_<drvname>_Open provides a DRV_HANDLE

which can be used to access the driver. Each access through a given DRV_HANDLE is considered
a client. Some drivers support multiple clients to provide concurrent access to the driver
from multiple tasks while others do not. In our examples, we always use one client per driver.

The main loop implements the program’s logic. In demo_uart.c, the logic is an FSM with
three states: APP_STATE_QUERY (ask the user to enter text), APP_STATE_RECEIVE (wait for text

5 Harmony refers to the driver as a USART, but we refer to it as a UART wherever possible.
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from the user), and APP_STATE_ECHO (write the user’s text back to the terminal emulator). The
function WriteUart is used by the APP_STATE_QUERY and APP_STATE_ECHO states, and the
function ReadUart is used by the APP_STATE_RECEIVE state. ReadUart and WriteUart are similar
to their NU32 counterparts NU32_ReadUART3 and NU32_WriteUART3, with two major differences:
they can be used with any UART (not just UART3) and they are non-blocking, meaning that
they return quickly even if they have not fully completed their task. These functions return
zero if they have not yet finished with their task (to be resumed the next time they are called)
or one if the process has finished. It is worth examining ReadUart and WriteUart to see how to
write a non-blocking function that returns quickly and that may be called multiple times
before it completes its task.

ReadUart and WriteUart are non-blocking because the main loop must also regularly update
the FSMs of the Harmony modules that you use, by calling function(s) named
DRV_<drvname>_Tasks<subtask>, where <subtask> is an additional part of the function name
and is sometimes omitted, depending on the specific driver. In demo_uart.c, the main loop
updates three FSMs handling different aspects of the UART: receive, transmit, and
receive/transmit errors.

Code Sample 20.2 demo_uart.c. Demonstrates the Harmony UART Driver. The User
Types in the Terminal and the PIC32 Responds.

// Demonstrates the harmony UART driver.
// Implements a program similar to talkingPIC.c.

#include "system_config.h" // macros needed for this program
#include "system_definitions.h" // includes header files needed by the program

// UART_init, below, is of type DRV_USART_INIT, a struct. Here we initialize uart_init.
// The fields in DRV_USART_INIT, according to framework/driver/usart/drv_usart.h, are
// .moduleInit, .usartID, .mode, etc. Syntax below doesn’t give the field names, so the
// values are assigned to fields in the order they appear in the definition of the
// DRV_USART_INIT struct.

const static DRV_USART_INIT uart_init = { // initialize struct with driver options
.moduleInit = {SYS_MODULE_POWER_RUN_FULL}, // no power saving
.usartID = USART_ID_3, // use UART 3
.mode = DRV_USART_OPERATION_MODE_NORMAL, // use normal UART mode
.modeData = 0, // not used in normal mode
.flags = 0, // no flags needed
.brgClock = APP_PBCLK_FREQUENCY, // peripheral bus clock frequency
.lineControl = DRV_USART_LINE_CONTROL_8NONE1, // 8 data bits, no parity, 1 stop bit
.baud = 230400, // baud
.handshake = DRV_USART_HANDSHAKE_FLOWCONTROL, // use flow control

// remaining fields are not needed here
};

// Write a string to the UART. Does not block. Returns true when finished writing.
int WriteUart(DRV_HANDLE handle, const char * msg);

// Read a string from the UART. The string is ended with a ’\r’ or ’\n’.
// If more than maxlen characters are read, data wraps around to the beginning.

demo_uart.c
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// Does not block, returns true when ’\r’ or ’\n’ is encountered.
int ReadUart(DRV_HANDLE handle, char * msg, int maxlen);

#define BUF_SIZE 100

// states for our FSM
typedef enum {APP_STATE_QUERY, APP_STATE_RECEIVE, APP_STATE_ECHO} APP_STATE;

int main(void) {
char buffer[BUF_SIZE];
APP_STATE state = APP_STATE_QUERY; // initial state of our FSM will ask user for text
SYS_MODULE_OBJ uart_module;
DRV_HANDLE uart_handle;

// Initialize the UART.
uart_module = DRV_USART_Initialize(DRV_USART_INDEX_0,(SYS_MODULE_INIT*)&uart_init);

// Open the UART for non-blocking read/write operations.
uart_handle = DRV_USART_Open(

uart_module, DRV_IO_INTENT_READWRITE | DRV_IO_INTENT_NONBLOCKING);

while (1) {
switch(state) {

case APP_STATE_QUERY:
if(WriteUart(uart_handle,"\r\nWhat do you want? ")) {

// Start/continue writing to UART.
// If we get here, the message has been completed.

state = APP_STATE_RECEIVE; // Switch to receive message state.
}
break;

case APP_STATE_RECEIVE:
if(ReadUart(uart_handle,buffer,BUF_SIZE)) {

// Start/continue reading msg from user.
// If we get here, the user’s message is concluded.

state = APP_STATE_ECHO; // Switch to echo state.
}
break;

case APP_STATE_ECHO:
if( WriteUart(uart_handle,buffer)) {

// Start/continue echoing message to UART.
// If we get here, we’re finished echoing.

state = APP_STATE_QUERY; // Switch to user query state.
}
break;

default:
;// logic error, impossible state!

}

// Update the UART FSMs. Since we are not using UART interrupts, the FSM
// updating must be done in mainline code, and it should be done often.
// Typically done at the end of the main loop, and there should be no
// blocking functions in the main loop.
DRV_USART_TasksReceive(uart_module);
DRV_USART_TasksTransmit(uart_module);
DRV_USART_TasksError(uart_module);

}
return 0;

}

// WriteUart keeps track of the number of characters already sent in the most recent
// message send request. Once it realizes the last character has been sent, it returns
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// TRUE (1), indicating it is finished. Otherwise it tries to send another byte of
// the msg. In any case, it returns quickly (non-blocking).

int WriteUart(DRV_HANDLE handle, const char * msg) {
static int sent = 0; // number of characters sent (static so saved between calls)
if(msg[sent] == ’\0’) { // we are at the last string character
sent = 0; // reset the "sent" count for the next time
return 1; // finished sending message

} else {
// DRV_USART_Write(handle,str,numbytes) tries to add numbytes from str to the UART
// send buffer, returning the number of bytes that were placed in the buffer,
// so we can keep track. Note that DRV_USART_Write takes a void *, hence the cast
sent += DRV_USART_Write(handle,(char*)(msg + sent),1);
return 0;

}
}

// ReadUart reads bytes into msg. It keeps track of the number of characters received.
// If the number exceeds maxlen, then wraps around and begins to write to msg at
// beginning. Returns TRUE (1) if the entire user message has been received, or FALSE (0)
// if the end of the message has not been reached. Regardless, it returns quickly
// (non-blocking).

int ReadUart(DRV_HANDLE handle, char * msg, int maxlen) {
static int recv = 0; // number of characters received
int nread = 0; // number of bytes read
// DRV_USART_Readh(handle,str,numbytes) tries to read one byte from uart receive buffer.
// Returns the number of bytes that were actually placed into str. If no bytes
// are available, then recv is unchanged.
nread = DRV_USART_Read(handle,msg + recv, 1);
if(nread) { // if we have read one byte
if(msg[recv] == ’\r’ || msg[recv] == ’\n’) { // check for newline / carriage return

msg[recv] = ’\0’; // insert the null character
recv = 0; // prepare to receive another string
return 1; // indicate that the string is ready

} else {
recv += nread;
if(recv >= maxlen) { // wrap around to the beginning

recv = 0;
}
return 0;

}
}
return 0;

}

We now discuss demo_uart.c in more depth. The variable uart_init is the driver initialization
structure. The first element in this struct controls the driver’s behavior with respect to power
saving modes. We always use SYS_MODULE_POWER_RUN_FULL (no power saving); for more details
see the Harmony documentation. The next element of the initialization struct determines
which UART peripheral to use, in this case UART3. The other fields control settings
related to UARTs, such as the baud; refer to the Harmony documentation and Chapter 11 for
details.
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The main function first initializes the UART driver by calling DRV_USART_Initialize, which
requires an index to the driver and the driver-specific initialization struct. The driver
initializer index determines which instance of the driver to initialize. You use multiple driver
instances to manage multiple peripherals of the same type. For example, if you wanted to use
both UART3 and UART2 you would need to use two UART driver instances. The initializer
function creates an instance of the driver and returns a SYS_MODULE_OBJ that allows you to
access the driver later.

After initializing a UART driver instance, we open the driver using DRV_USART_Open,
which requires a handle to the initialized driver and a parameter describing how you
will use it. We open the driver with read and write access and in non-blocking
mode. Non-blocking mode means that function calls to the driver will return even if the
hardware has not completed the commanded task. We need non-blocking operations so that
we can continue to update Harmony drivers in the main loop while waiting for input. The
non-blocking operations are what allow us to write ReadUart and WriteUart as non-blocking
functions.

The non-blocking nature of ReadUart and WriteUart necessitates the FSM
architecture. Each call to these functions may not actually complete the sending or
receiving of the entire string. If the function returns before its task completes, it returns zero.
Subsequent calls then attempt to complete the task. When the task completes, the function
returns one.

The FSM facilitates calling these functions multiple times, only moving to the next state after
the desired task completes. If you wanted to use ReadUart or WriteUart in a blocking manner
you could loop until they finished. For example

while(!ReadUart(uart_handle,buffer, BUF_SIZE)) { ; }

would loop until an entire line was read.

The functions ReadUart and WriteUart are implemented using the DRV_USART_Read and
DRV_USART_Write functions from the UART driver (see the comments in the demo_uart.c

listing). Both DRV_USART_Read and DRV_USART_Write are part of the UART driver’s read/write
mode. Other modes include byte mode and buffer queue mode. The different modes are
enabled by setting certain macros in system_config.h (discussed subsequently) and by
including the appropriate .c files in your project. To use read/write mode, for example, we
included drv_usart_read_write.c in the project.

Now let us take a look at the two header files we included at the beginning of the demo_uart.c,
starting with system_definitions.h:
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Code Sample 20.3 system_definitions.h. System Definitions for the UART Example.
This File Should #include Any Harmony or Other Standard Header Files Your Project
Needs.

#ifndef SYSTEM_DEFINITIONS_H
#define SYSTEM_DEFINITIONS_H

#include "driver/usart/drv_usart.h" // only one header file needed

#endif

The purpose of system_definitions.h is to #include Harmony and other headers needed by
the project. For this project, only one header file is included,
<framework>/driver/usart/drv_usart.h, giving access to macros and function prototypes
associated with the UART.

Let us now examine system_config.h. Every Harmony project that uses drivers must include a
file named system_config.h, which contains macros that determine configuration options for
various Harmony components. Reminder: in system_config.h you must only define macros
using #define; do not include other files or declare data types. The meaning of each macro is
explained in the comments.

Code Sample 20.4 system_config.h. System Configuration for the UART Example.

#ifndef SYSTEM_CONFIG_H__
#define SYSTEM_CONFIG_H__

// Suppresses warnings from parts of Harmony that are not yet fully
// implemented by Microchip.
#define _PLIB_UNSUPPORTED

// The number of UART driver instances needed by the program. If you wanted
// to use UART1, UART2, and UART3, for example, this value should be 3.
#define DRV_USART_INSTANCES_NUMBER 1

// Multiple clients could concurrently use the driver. The function
// DRV_USART_Open creates a client that code uses to access the driver.
// To allow the driver to manage concurrent perhipheral access from multiple
// tasks (e.g., mainline code and a timer ISR), you should have each task
// create its own client. Not all drivers support concurrent access;
// consult the Harmony documentation. Usually sufficient to set this to 1.
#define DRV_USART_CLIENTS_NUMBER 1

// Can be true or false. If true, the driver FSMs are updated in interrupts,
// meaning that the various DRV_USART_Tasks should be called from ISRs. Our
// program does not use interrupts.
#define DRV_USART_INTERRUPT_MODE false

// Use the read/write UART model.
#define DRV_USART_READ_WRITE_MODEL_SUPPORT true

// This is not used by Harmony, so we use APP_ as the prefix (our application).
// This is used in the initialization of the UART so the driver can generate

system_definitions.h
system_config.h
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// the proper baud rate.
#define APP_PBCLK_FREQUENCY 80000000L

#endif

20.5.2 Timers

In this example, we use the Harmony timer (TMR) driver to toggle LED1 and LED2 at 5Hz.
The timer driver depends on several other modules, specifically the clock (CLK) system
service, the device control (DEVCON) system service, and the interrupt (INT) system service.
We explain system services later; for now, think of them as drivers. In addition to the
Harmony Makefile and the NU32bootloaded.ld linker script, you need the following files in
your project directory:

demo_tmr.c: The main source code for the example.
system_config.h: Defines various macros needed by the Harmony code used by the
program.
system_definitions.h: #includes Harmony and other standard header files needed by the
program.
drv_tmr.c: Copied from <framework>/driver/tmr/src/dynamic/. The TMR driver
implementation.
sys_clk.c: Copied from <framework>/system/clk/src/. Processor-independent part of the
CLK system service implementation.
sys_clk_pic32mx.c: Copied from <framework>/system/clk/src/. PIC32MX-specific part
of the CLK system service implementation.
sys_devcon.c: Copied from <framework>/system/devcon/src/. Processor-independent part
of the DEVCON system service.
sys_devcon_pic32mx.c: Copied from <framework>/system/devcon/src/.
PIC32MX-specific DEVCON implementation.
sys_devcon_local.h: Copied from <framework>/system/devcon/src/. A necessary
DEVCON header that is not otherwise on the include path.
sys_int_pic32.c: Copied from <framework>/system/int/src/. The INT system service
implementation.

The system_definitions.h file is given below:

Code Sample 20.5 system_definitions.h. System Definitions Required to Use the
Timer Driver.

#ifndef SYSTEM_DEFINITIONS_H
#define SYSTEM_DEFINITIONS_H

#include <stddef.h> // Standard C header defining NULL and types used by Harmony

system_definitions.h
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#include <stdbool.h> // Standard C header defining type bool (true/false)
#include "peripheral/peripheral.h" // The Harmony PLIB library
#include "system/devcon/sys_devcon.h" // DEVCON handles cache, other config tasks.
#include "system/clk/sys_clk.h"// Clock header. Control and query oscillator properties.
#include "system/common/sys_module.h"//Basic system module, used by most Harmony projects
#include "driver/tmr/drv_tmr.h" // The timer driver
#include <sys/attribs.h> // defines the __ISR macro, needed when we use interrupts
#endif

system_config.h contains macros for driver and system service settings. We also use it to
define macros for pins controlling the LEDs on the NU32 board. These macros begin with
NU32_.

Code Sample 20.6 system_config.h. System Configuration for the Timer Driver.

#ifndef SYSTEM_CONFIG_H__
#define SYSTEM_CONFIG_H__

// Suppresses warnings from parts of Harmony that are not yet fully
// implemented by Microchip.
#define _PLIB_UNSUPPORTED

// system clock settings

// The NU32 system clock oscillator frequency, 8 MHz. (This is the oscillator frequency,
// not the final SYSCLK frequency.)
#define SYS_CLK_CONFIG_PRIMARY_XTAL 8000000L

// The secondary oscillator frequency. There is no secondary oscillator on the NU32.
#define SYS_CLK_CONFIG_SECONDARY_XTAL 0

// If we were asking Harmony to automatically determine clock multipliers and divisors
// to achieve our 80 MHz SYSCLK from the 8 MHz external oscillator, this tolerance
// would be the largest acceptable error.
#define SYS_CLK_CONFIG_FREQ_ERROR_LIMIT 10

// timer driver settings

// The PIC32 has five hardware timers. This example uses only one, so we could set
// this number to one to save some RAM (driver instances are stored in a statically
// allocated array, so the more instances, the more RAM used).
#define DRV_TMR_INSTANCES_NUMBER 5

// Set this to true to enable interrupts. We do not use interrupts in this example.
#define DRV_TMR_INTERRUPT_MODE false

// Some definitions for the NU32 board.
#define NU32_LED_CHANNEL PORT_CHANNEL_F // port channel for the NU32 LEDs
#define NU32_LED1_POS PORTS_BIT_POS_0
#define NU32_LED2_POS PORTS_BIT_POS_1

#endif

Now that we have explained all of the Harmony infrastructure, we can examine the file that
implements the timer demonstration. We define an initialization structure for the timer driver

system_config.h
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and use it to initialize the timer. We also use PLIB functions to initialize the output pins
needed to control the LEDs.

After initializing and opening the timer, we register an alarm with the timer driver. The timer
driver’s alarm calls a callback function at a specified frequency, in this case 5 Hz. In this
example, the callback function inverts the LEDs. Only one alarm can be registered at any
given time. We then start the timer and enter the main loop.

The main loop, in this case, only updates Harmony module FSMs. We do not implement our
own FSM logic because there is only one state (flashing the LEDs).

Code Sample 20.7 demo_tmr.c. Harmony Timer Demonstration Using Polling.

// demonstrates the timer driver

#include "system_config.h"
#include "system_definitions.h"

void invert_leds_callback(uintptr_t context, uint32_t alarmCount) {
// context is data passed by the user that can then be used in the callback.
// alarmCount tracks how many times the callback has occurred.
PLIB_PORTS_PinToggle(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED1_POS); // toggle led 1
PLIB_PORTS_PinToggle(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED2_POS); // toggle led 2

}

const static DRV_TMR_INIT init = // used to configure timer; const so stored in flash
{
.moduleInit = {SYS_MODULE_POWER_RUN_FULL}, // no power saving
.tmrId = TMR_ID_1, // use timer 1
.clockSource = DRV_TMR_CLKSOURCE_INTERNAL, // use pbclk
.prescale = TMR_PRESCALE_VALUE_256, // use a 1:256 prescaler value
.interruptSource = INT_SOURCE_TIMER_1, // ignored since system_config has set

// interrupt mode to false
.mode = DRV_TMR_OPERATION_MODE_16_BIT, // use 16 bit mode
.asyncWriteEnable = false // no asynchronous write

};

int main(void) {
SYS_MODULE_OBJ timer_handle; // handle to the timer driver
SYS_MODULE_OBJ devcon_handle; // device configuration handle
DRV_HANDLE timer1; // handle to the timer

SYS_CLK_Initialize(NULL); // initialize the clock, but tell it to use
// configuration bit
// settings that were set with the bootloader

// initialize the DEVCON system service, default init settings are fine.
devcon_handle = SYS_DEVCON_Initialize(SYS_DEVCON_INDEX_0, NULL);

// initialize the LED pins as outputs
PLIB_PORTS_PinDirectionOutputSet(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED1_POS);
PLIB_PORTS_PinDirectionOutputSet(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED2_POS);
PLIB_PORTS_PinClear(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED1_POS); // turn on LED1
PLIB_PORTS_PinSet(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED2_POS); // turn off LED2

// initialize the timer driver

demo_tmr.c


284 Chapter 20

timer_handle = DRV_TMR_Initialize(DRV_TMR_INDEX_0, (SYS_MODULE_INIT*)&init);

// open the timer, this is the only client (only place where DRV_TMR_Open is called)
timer1 = DRV_TMR_Open(DRV_TMR_INDEX_0, DRV_IO_INTENT_EXCLUSIVE);

// the timer driver will call invert_leds_callback at 5 Hz. This is a "periodic alarm."
DRV_TMR_Alarm16BitRegister(timer1, 62499, true, 0, invert_leds_callback);

// start the timer
DRV_TMR_Start(timer1);

while (1) {
// update device configuration. Does nothing in Harmony v1.06 but may in the future
SYS_DEVCON_Tasks(devcon_handle);
// update the timer driver state machine
DRV_TMR_Tasks(timer_handle);

}
return 0;

}

Just as in the UART example, we define an initialization struct (DRV_TMR_INIT init) to set
parameters such as which timer peripheral to use (Timer1), the prescaler, and the clock source.
In this example, the timer is configured with a 1:256 prescaler, so each tick occurs at
80,000,000 Hz/256 = 312,500 Hz and takes 3.2 µs. The period count is 62,499, so the timer
rolls over every 3.2 × (62,499 + 1) µs = 200 ms (5 Hz) (see Chapter 8 for details).

In main, we first initialize the CLK and DEVCON system services, upon which the TMR
driver depends. We also set the LED pins as outputs and set the initial LED states. As with all
drivers we must initialize the driver and open a client. Here we open the client with
DRV_IO_INTENT_EXCLUSIVE to indicate that only one client will be used; the TMR driver does
not support multiple clients. Finally, we must register the callback function that is executed
when the timer rolls over. We pass DRV_TMR_Alarm16BitRegister a driver handle, a period
count, a Boolean indicating whether the alarm repeats or occurs once, a context value that gets
passed to the callback, and finally a pointer to a function that should be called when the alarm
expires.6

Note that the callback function, invert_leds_callback, is just an ordinary function, not an
ISR. Unlike many of our previous timer examples, the example does not use an ISR even
though it has code that should be executed periodically. Instead, the TMR driver invokes the
callback function by using polling. In polling mode, the driver constantly checks (i.e., polls)
whether the timer’s period has expired, and if so, it calls the callback function (in this case
invert_leds_callback). The polling occurs in the timer driver’s state machine, which is
updated by the call to DRV_TMR_Tasks in the main loop. If you were to add code to the main loop
that delayed the call to DRV_TMR_Tasks for too long, then the timer callback would be delayed.

6 In C, pointers can point to functions. The address of a function is that function’s name without the parentheses.
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After registering the callback, we start the timer by calling DRV_TMR_Start and enter the main
loop. The main loop updates two Harmony state machines, one belonging to the DEVCON
system service and the other belonging to the TMR driver. The call to DRV_TMR_Tasks is where
the timer polling occurs. If DRV_TMR_Tasks detects that the timer has rolled over it will call the
alarm function registered in DRV_TMR_Alarm16BitRegister.

20.5.3 Timers with Interrupts

Instead of polling, and perhaps being delayed to call the callback function if the computations
in the main loop take too long, we can employ an interrupt-based approach, while still using
the Harmony TMR driver.

Using interrupts with the TMR driver requires only a few small changes. First, edit
system_config.h, changing the value of DRV_TMR_INTERRUPT_MODE to true. Next, you must set
the interrupt priority (and optionally the sub-priority), anywhere prior to the call to
DRV_TMR_Start:

PLIB_INT_VectorPrioritySet(INT_ID_0, INT_VECTOR_T1, INT_PRIORITY_LEVEL5);

In demo_tmr.c, immediately before entering the main loop, enable interrupts:

PLIB_INT_Enable(INT_ID_0); // enable interrupts

Finally, make timer_handle a global variable, not local to main, and implement the timer ISR:

void __ISR(_TIMER_1_VECTOR, IPL5SOFT) Timer1ISR(void) {
DRV_TMR_Tasks_ISR(timer_handle); // update the timer state machine

}

Note that the ISR does not perform any action other then calling DRV_TMR_Tasks_ISR, which
updates the TMR driver state, dispatching the alarm callback function as appropriate. You need
not clear any interrupt flags as the TMR driver handles these details for you. As the TMR driver
state is nowupdated in the ISR, you should remove the call to DRV_TMR_Tasks from themain loop.

20.6 System Services

In Harmony, system services are similar to drivers: you add .c and .h files to your project,
include the appropriate header files in system_definitions.h, and define necessary
compile-time parameters in system_config.h. Files for system services reside under
<framework>/system. Unlike drivers, however, system services lack a consistent interface (they
do not all have initialize and open functions, for example, although many do) and vary widely
in purpose. Some system services depend on drivers, and some drivers depend on system
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services. In the previous section we used the device configuration (DEVCON), clock (CLK),
and interrupt (INT) system services. Both the DEVCON and CLK system services provide
low-level hardware functionality: CLK handles oscillators while DEVCON handles settings
such as the cache. The INT system service mostly duplicates functionality available in the
interrupt PLIB so we did not use it explicitly; however, the TMR driver will not compile
without the INT system service. Another system service that mostly duplicates PLIB
functionality is the PORT system service; therefore, when manipulating ports we have used
PLIB functions directly.

Although the aforementioned system services provide low-level functionality, other services
work on a higher level. For example, the messaging (MSG) system service provides an
interface for sophisticated inter-task communication. The timer (TMR) system service that we
introduce here abstracts TMR drivers, allowing you to specify timer periods in ms rather than
ticks. You use the TMR service to create one or more logical (not hardware) timers at different
frequencies, all of which are derived from a single hardware timer. The TMR system service
uses a TMR driver to manage the underlying hardware timer. The Harmony documentation
refers to logical timers derived from the system service as clients, since they are created by
calling functions provided by the TMR system service module.

To understand how the TMR system service works, imagine that you want one task
to occur every 10ms and another to occur every 55ms. You could configure two separate
hardware timers at those respective frequencies. If you wanted to use only one timer, however,
you could configure it to interrupt every 5ms. The timer ISR would then perform the first task
every other interrupt and the second task every 11 interrupts. The TMR system service
handles this logic for you, and allows you to use timers either in an interrupt or polled mode.

To build this project, you need all the files from the TMR driver program in Section 20.5.2
(because the TMR system service requires a TMR driver) plus
<framework>/system/tmr/src/sys_tmr.c. You should modify the system_definitions.h file
from Code Sample 20.5, adding #include "system/tmr/sys_tmr.h" to include the TMR system
service header; the rest of the file remains the same.

The system_config.h header requires the same macros to be defined as in Section 20.5.2. For
this example, use polled rather than interrupt mode by making sure DRV_TMR_INTERRUPT_MODE is
set to false. The TMR system service also requires you to define some additional macros in
system_config.h (see the comments below):

// The maximum number of timers that can be created using the system service.
// We will actually create two timers.
#define SYS_TMR_MAX_CLIENT_OBJECTS 5

// The frequency, in Hz, used for timing calculations. The higher the value, the
// better the resolution of the timer, but the shorter its longest possible

duration.



Harmony and Its Application to USB 287

// This is used in determining the integer number of clock ticks for each client
timer

// rollover. (No hardware timers actually operate at this speed.) We choose
10 kHz.

#define SYS_TMR_UNIT_RESOLUTION 10000

// The hardware timer’s base frequency is derived from a clock frequency
(PBCLK here).

// Due to limited resolution of the timer, not all frequencies are exactly
available.

// If the closest available frequency differs from the requested frequency by more
// than this amount (in percent), a run-time error occurs. We choose ten percent.
#define SYS_TMR_FREQUENCY_TOLERANCE 10

// Just as the hardware timer’s base frequency is derived from the peripheral bus
// frequency, the client timer frequency is derived from the base TMR
// system service frequency. The requested client frequency may not be exactly
// available. If the closest available client frequency differs from the requested
// frequency by more than this amount (in percent), a run-time error occurs. We
// choose ten percent.
#define SYS_TMR_CLIENT_TOLERANCE 10

Now let us study code that uses the TMR system service to toggle one LED at 5 Hz and the
other at 1 Hz. As in Code Sample 20.7 we define a callback, initialization structures, and
initialize a timer driver. We also must initialize the system service. Unlike the timer driver
demo, we implement an FSM in this demonstration. The program has two states: initialization
(APP_STATE_INIT) and running (APP_STATE_RUN). These states are necessary because the TMR
system service FSM must be updated a few times before logical timers can be started.

Code Sample 20.8 demo_service.c. Demonstration of the TMR System Service.

// Demonstrates the timer service.
// The timer service allows us to use one hardware timer to run tasks
// at different frequencies.

#include "system_config.h"
#include "system_definitions.h"

void invert_leds_callback(uintptr_t context, uint32_t alarmCount) {
// context is data passed by the user that can then be used in the callback.
// Here the context is NU32_LED1_POS or NU32_LED2_POS to tell us which LED to toggle.
PLIB_PORTS_PinToggle(PORTS_ID_0, NU32_LED_CHANNEL, context);

}

const static DRV_TMR_INIT init = // used to configure timer; const so stored in flash
{
.moduleInit = {SYS_MODULE_POWER_RUN_FULL}, // no power saving
.tmrId = TMR_ID_1, // use Timer1
.clockSource = DRV_TMR_CLKSOURCE_INTERNAL, // use pbclk
.prescale = TMR_PRESCALE_VALUE_256, // use a 1:256 prescaler value
.interruptSource = INT_SOURCE_TIMER_1, // ignored because system_config.h

// has set interrupt mode to false
.mode = DRV_TMR_OPERATION_MODE_16_BIT, // use 16-bit mode
.asyncWriteEnable = false // no asynchronous write

};

const static SYS_TMR_INIT sys_init =

demo_service.c
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{
.moduleInit = {SYS_MODULE_POWER_RUN_FULL}, // no power saving
.drvIndex = DRV_TMR_INDEX_0, // use timer driver 0
.tmrFreq = 1000 // base frequency of the system service (Hz)

};

// holds the state of the application
typedef enum {APP_STATE_INIT, APP_STATE_RUN} AppState;

int main(void) {
SYS_MODULE_OBJ timer_handle; // handle to the timer driver
SYS_MODULE_OBJ devcon_handle; // device configuration handle
SYS_TMR_HANDLE sys_tmr;
SYS_CLK_Initialize(NULL); // initialize the clock,

// but tell it to use configuration bit settings
// that were set with the bootloader

// initialize the device, default init settings are fine
devcon_handle = SYS_DEVCON_Initialize(SYS_DEVCON_INDEX_0, NULL);

// initialize the pins for LEDs
PLIB_PORTS_PinDirectionOutputSet(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED1_POS);
PLIB_PORTS_PinDirectionOutputSet(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED2_POS);
PLIB_PORTS_PinClear(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED1_POS);
PLIB_PORTS_PinSet(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED2_POS);

// initialize the timer driver
timer_handle = DRV_TMR_Initialize(DRV_TMR_INDEX_0, (SYS_MODULE_INIT*)&init);

// initialize the timer system service
sys_tmr = SYS_TMR_Initialize(SYS_TMR_INDEX_0,(SYS_MODULE_INIT*)&sys_init);

AppState state = APP_STATE_INIT; // initialize the application state

while (1) {
// based on the application state, we may need to initialize timer callbacks
switch(state) {

case APP_STATE_INIT:
if(SYS_STATUS_READY == SYS_TMR_Status(sys_tmr)) {

// If the timer is ready:
// Register the timer callbacks to invert LED1 at 5 Hz (200 ms period)
// & LED2 at 1 Hz (1000 ms period). Both tasks use the same callback function
// and use the context to determine which LED to invert; however, we could
// have registered different callback functions. Note that the context type
// could also be a pointer, if you want more information passed to the callback
SYS_TMR_CallbackPeriodic(200,NU32_LED1_POS,invert_leds_callback);
SYS_TMR_CallbackPeriodic(1000,NU32_LED2_POS,invert_leds_callback);
state = APP_STATE_RUN;

} else {
// the timer is not ready, so do nothing and let the state machines update

}
break;

case APP_STATE_RUN:
break; // we are just running

}

//update the device configuration
SYS_DEVCON_Tasks(devcon_handle);
SYS_TMR_Tasks(sys_tmr);
// update the timer driver state machine
DRV_TMR_Tasks(timer_handle);
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}
return 0;

}

The first implementation detail we examine is the timer callback invert_leds_callback.
Notice that we use the first argument, context, to determine which LED to invert. We use the
system service to create two logical timers that use the same callback but pass a different
value as the context.

We also must initialize the TMR system service and the timer driver upon which it depends.
The sys_init struct defines which TMR driver the system service uses and what base
frequency (in Hz) the underlying TMR driver uses. Notice that we never explicitly open a
TMR driver; rather, a system service opens the TMR driver using the frequency we specified
in the initialization data. However, we still must initialize the TMR driver and update its state
machine in the main loop.

We cannot create client timers until the TMR system service is ready. We therefore enter the
main loop and use a state machine to determine whether some initialization must be
performed or if the application is ready to run. When in the initialization state, we query the
TMR system service’s status using SYS_TMR_Status and check if it is SYS_STATUS_READY. Once
the TMR system service is ready, we create two client timers, one with a period of 200 ms
(5 Hz) and another with a period of 1000 ms (1 Hz). Each of these clients calls
invert_leds_callback at their respective frequency; however, one timer passes NU32_LED1_POS
and the other passes NU32_LED2_POS as the context parameter to the callback function. Thus,
the 5 Hz timer inverts LED1 while the 1 Hz timer inverts LED2. After we create the client
timers we enter the run state; otherwise, we would be creating new timers on every loop
iteration! After handling the application tasks we call the appropriate Tasks function for each
Harmony component that we use, updating their state machines.

20.7 Program Structure

Earlier we mentioned that Harmony suggests that your program have a certain structure. We
have already seen the unavoidable elements of that structure in the form of system_config.h
and system_definitions.h, but we still have placed all our code in a single directory.
Harmony, however, is designed to allow code re-use across multiple hardware configurations.
To achieve this goal, it suggests creating a logical separation between your application code
and the code that is specific to a single processor. To accomplish this goal, Harmony suggests
the following file and directory structure:

app.c: The main application logic.
app.h: Header for the application.
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main.c: Boilerplate code that ties everything together.
system_config: The system configuration directory. Contains one subdirectory for every
supported platform. For example:

pic32_NU32: A configuration directory for code designed to run on the NU32 board.
Generally, subdirectories of system_config should describe the hardware they support,
but they can be whatever you want. We will assume that you use pic32_NU32 in this
example as, by default, the Makefile looks for this directory.
pic32_Standalone: This hypothetical directory could contain configuration information
for a program that does not use the bootloader.
pic32_picMZ: This hypothetical directory could contain configuration information for a
program running on a PIC32MZ processor.

Within each system_config subdirectory (e.g., system_config/pic32_NU32) should be the
following files:

system_config.h: The system configuration header.
system_definitions.h: Data type definitions and #include directives needed by
other files.
system_init.c: Performs the system initialization.
system_tasks.c: Updates the Harmony modules’ state machines.
system_interrupt.c: Implements the ISRs.
framework: Subdirectory for holding the files the project needs that are provided by
Harmony. Generally mirrors the structure of <framework>.

drivers: Harmony driver files, organized into subdirectories for each driver used (e.g.,
tmr for the timer driver).
system: Harmony system service files, organized into subdirectories for each system
service used (e.g., tmr for the TMR system service).

The automatic Harmony code configuration tools provided by Microchip and installed with
MPLAB create a structure similar to the one above. Optionally, however, you can direct the
IDE to include the files at their home locations in <framework> during the build rather than
copying them to your project directory.

The Harmony Makefile that we have provided will compile and link the files in your
project directory with files in system_config/pic32_NU32 and the mentioned subdirectories.
The variable CONFIG in the Makefile determines which system_config subdirectory is used
when you compile. You can use this variable to compile your project for different platforms
either by editing the Makefile or by overriding the variable at the command line (i.e., issuing
make CONFIG=dir). Finally, if you remove the linker script NU32bootloaded.ld from the base
directory, you can place a different linker script in each of the system_config subdirectories
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(e.g., system_config/pic32_NU32), allowing you to use different linker scripts for different
configurations.

Now that you have a general sense of the organization of a full Harmony project, we
demonstrate the use of this structure by revisiting the interrupt-based timer driver example of
Section 20.5.3. By examining the code you should gain a better understanding about how this
structure allows you to isolate your main program logic from hardware-specific
considerations, making it more portable.

We begin with the files that remain the same, regardless of hardware configuration. All
Harmony applications that follow the recommended structure have a very simple main

function, defined in main.c. This file delegates initialization tasks to SYS_Initialize in
system_init.c and the state machine logic to SYS_Tasks, implemented in system_tasks.c.

Code Sample 20.9 main.c. Main File for All Canonical Harmony Programs.

#include <stddef.h> // defines NULL
#include "system/common/sys_module.h" // SYS_Initialize and SYS_Tasks prototypes

int main(void) {

SYS_Initialize(NULL); // initializes the system

while(1) {
SYS_Tasks(); // updates the state machines of polled harmony modules

}

return 0;
}

The header file app.h defines any data types needed by the application and also provides
prototypes for the two primary application functions, APP_Initialize and APP_Tasks. These
functions will be called by SYS_Initialize and SYS_Tasks, respectively.

Code Sample 20.10 app.h. Header File for the Application.

#ifndef APP__H__
#define APP__H__

// The application states. APP_STATE_INIT is the initial state, used to perform
// application-specific setup. Then, during program operation, we enter
// APP_STATE_WAIT as the timer takes over.
typedef enum { APP_STATE_INIT, APP_STATE_WAIT} APP_STATES;

// Harmony structure suggests that you place your application-specific data in a struct.
typedef struct {
APP_STATES state;
DRV_HANDLE handleTmr;

main.c
app.h
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} APP_DATA;

void APP_Initialize(void);
void APP_Tasks(void);

#endif

The actual application logic is implemented in app.c, and is driven by an FSM.

Code Sample 20.11 app.c. The Application Implementation.

#include "system_config.h"
#include "system_definitions.h"
#include "app.h"

APP_DATA appdata;

void invert_led_callback(uintptr_t context, uint32_t alarmCount) {
// context is data passed by the user that can then be used in the callback.
// alarm count tracks how many times the callback has occured
PLIB_PORTS_PinToggle(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED1_POS); // toggle led 1
PLIB_PORTS_PinToggle(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED2_POS); // toggle led 2

}

// initialize the application state
void APP_Initialize(void) {

appdata.state = APP_STATE_INIT;
}

void APP_Tasks(void) {
switch(appdata.state) {
case APP_STATE_INIT:

// turn on LED1 by clearing A5
PLIB_PORTS_PinClear(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED1_POS);
// turn off LED2 by setting A5
PLIB_PORTS_PinSet(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED2_POS);

// only one client at a time, open the timer
appdata.handleTmr = DRV_TMR_Open(DRV_TMR_INDEX_0, DRV_IO_INTENT_EXCLUSIVE);

// timer driver calls invert_led_callback at 5 Hz. Register this "periodic alarm."
DRV_TMR_Alarm16BitRegister(appdata.handleTmr, 62499, true, 0, invert_led_callback);
DRV_TMR_Start(appdata.handleTmr);
appdata.state = APP_STATE_WAIT;
break;

case APP_STATE_WAIT:
break; // we need not do anything here

}
}

Next, we visit the files that have hardware-dependent implementations and are therefore
located under the system_config/<hardware> directory, where <hardware> is a
platform-specific name: for our purposes we use <hardware> = pic32_NU32.

app.c
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The system_config.h file is almost the same as Code Sample 20.6 except, since this example
uses timer interrupts, DRV_TMR_INTERRUPT_MODE is defined as true.

The system_definitions.h file contains an extra data structure, used to hold handles to the
Harmony modules that the program uses. The handles are stored in a single global variable,
made accessible to all modules via the extern keyword, as per the Harmony documentation’s
recommendation.

Code Sample 20.12 system_definitions.h. System Definitions for a Harmony
Application.

#ifndef SYSTEM_DEFINITIONS_H
#define SYSTEM_DEFINITIONS_H

#include <stddef.h> // some standard C headers with types needed by harmony
// defines integer types with fixed sizes, for example
// uint32_t is guaranteed to be a 32-bit unsigned integer
// uintptr_t is an integer that can be treated as a pointer
// (i.e., an unsigned int large enough to hold an address)

#include <stdbool.h>
#include "peripheral/peripheral.h" // all the peripheral (PLIB) libraries
#include "system/devcon/sys_devcon.h" // device configuration system service
#include "system/clk/sys_clk.h" // clock system service
#include "system/common/sys_module.h" // basic system module
#include "driver/tmr/drv_tmr.h" // the timer driver

// system object handles
typedef struct {
SYS_MODULE_OBJ sysDevcon; // device configuration object
SYS_MODULE_OBJ drvTmr; // the timer driver object

} SYSTEM_OBJECTS;

// Declares a global variable that holds the system objects so that all files including
// system_definitions.h can access the handles. Is actually defined and initialized in
// system_init.c,
extern SYSTEM_OBJECTS sysObj;

#endif

The system_init.c file performs the initialization. It also calls the application’s initialization
function. For standalone applications, you would include the necessary configuration bit setup
(#pragma config) in this file; however, we do not need to set configuration bits as the
bootloader has already done that for us.

Code Sample 20.13 system_init.c. Platform-Specific Hardware Initialization.

#include "system_config.h"
#include "system_definitions.h"
#include "app.h"

// Code to initialize the system.
// For standalone projects (those without a bootloader)

system_definitions.h
system_init.c
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// you would define the configuration values here, e.g.,
// #pragma config FWDTEN = OFF
// See NU32.h for configuration bits. These are set by the bootloader in this example.

const static DRV_TMR_INIT init = // used to configure the timer; const so stored in flash
{

.moduleInit = SYS_MODULE_POWER_RUN_FULL, // no power saving

.tmrId = TMR_ID_1, // use timer 1

.clockSource = DRV_TMR_CLKSOURCE_INTERNAL, // use pbclk

.prescale = TMR_PRESCALE_VALUE_256, // use a 1:256 prescaler value

.interruptSource = INT_SOURCE_TIMER_1, // use timer one interrupts

.mode = DRV_TMR_OPERATION_MODE_16_BIT, // use 16-bit mode

.asyncWriteEnable = false
};

SYSTEM_OBJECTS sysObj; // handles to harmony modules. Defined in system_definitions.h.

// called from the beginning of main to initialize the harmony components etc.
void SYS_Initialize(void * data) {

SYS_CLK_Initialize(NULL); // initialize the clock, but use configuration bit settings
// that were set with the bootloader

// Initialize the device, default init settings are fine.
// As of harmony 1.06 this call is not needed for our purposes,
// but this may change in future versions so we include it.
// It is necessary if you want to set the prefetch cache
// and wait states using SYS_DEVCON_PerformanceConfig.
// However, we need not configure the cache and wait states
// the bootloader has already done this for us.

sysObj.sysDevcon = SYS_DEVCON_Initialize(SYS_DEVCON_INDEX_0, NULL);

// initialize the pins for the LEDs
PLIB_PORTS_PinDirectionOutputSet(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED1_POS);
PLIB_PORTS_PinDirectionOutputSet(PORTS_ID_0, NU32_LED_CHANNEL, NU32_LED2_POS);

// initialize the timer driver
sysObj.drvTmr = DRV_TMR_Initialize(DRV_TMR_INDEX_0, (SYS_MODULE_INIT*)&init);

PLIB_INT_MultiVectorSelect(INT_ID_0); // enable multi-vector interrupt mode

// set timer int priority
PLIB_INT_VectorPrioritySet(INT_ID_0, INT_VECTOR_T1, INT_PRIORITY_LEVEL5);
PLIB_INT_Enable(INT_ID_0); // enable interrupts

// initialize the apps
APP_Initialize();

}

The system_interrupt.c file implements the timer ISR, and, in general, all ISRs.

Code Sample 20.14 system_interrupt.c. ISR Definitions for a Harmony Application.

#include "system_config.h"
#include "system_definitions.h"
#include <sys/attribs.h>

// the timer interrupt. note that this just updates the state of the timer
void __ISR(_TIMER_1_VECTOR, IPL5SOFT) Timer1ISR(void) {

DRV_TMR_Tasks_ISR(sysObj.drvTmr); // update the timer state machine
}

system_interrupt.c
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The system_tasks.c file updates state machines for Harmony modules that operate in a polled
mode (in this case it is only the DEVCON system service). It also calls the application code,
allowing the application to update its state machine.

Code Sample 20.15 system_tasks.c. Update Harmony Modules and the
Application’s State Machines.

#include "system_config.h"
#include "system_definitions.h"
#include "app.h"

// update the state machines
void SYS_Tasks(void) {
SYS_DEVCON_Tasks(sysObj.sysDevcon);
// timer tasks are interrupt driven, not polled.
// for a polled application uncomment below
// DRV_TMR_Tasks(sysObj.drvTmr);
APP_Tasks(); // application specific tasks

}

The Harmony files required for this example are the same as those needed in the Timer
example in Section 20.5.2. You should copy these files into the
system_config/pic32_NU32/framework directory and its subdirectories. For example, copy
<framework>/system/int/src/sys_int_pic32.c into
system_config/pic32_NU32/framework/system/int.

With your Makefile and NU32bootloaded.ld in the top-level directory, you should be able to
make the project and see the LEDs toggle.

20.8 USB

20.8.1 USB Basics

If you have used a computer in the past 20 years, you probably have used universal serial bus
(USB) devices. An unimaginable number of USB devices have been created over the years. To
support such a profusion of devices, the USB protocol is relatively complicated; therefore, we
describe only the minimum required to use Harmony’s USB middleware to create simple USB
devices.

With USB, the bus is controlled by a single master called the host, typically your computer or
a smart phone (although the PIC32 can act as a host too). Each host can control up to 127

system_tasks.c
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devices through a hub. The physical connectors for hosts and devices are incompatible; this
prevents two devices or two hosts from being connected to each other. Apart from the mini-B
USB connector you use for programming the NU32, the board has a micro-B connector,
which makes it a device by default. A USB On-The-Go cable can be used to convert the
micro-B connector to an A connector, allowing the NU32 to act as a host. Such a cable is used
by smart phones (which typically use a micro-B port) to allow you to connect devices such as
USB flash drives to them.

USB uses four wires: 5 V power (V+), which allows the host to optionally provide power to
devices; ground (V−); and two data lines, D+ and D−. The PIC32MX795F512H has a single
USB port, and the micro-B connector’s D+ and D− lines are directly connected to the PIC32’s
D+ and D− pins.

USB uses a complicated protocol for communication. Multiple versions of the USB
protocol exist, with newer hosts typically being backwards compatible with older protocols.
The PIC32 supports USB 2.0 in low speed (1.5Mb/s) and full speed (12Mb/s) modes; all our
examples will use USB full speed. The USB protocol includes support for many types of
devices, known as device classes. Device classes include human interface devices (HID) such
as keyboards and mice; mass storage devices (MSD) such as external hard drives;
communications device classes (CDC) such as a virtual serial port; and a generic device class
used to implement a vendor-specific protocol. Harmony provides support for all of these
device classes; however, we focus on HID because it is the simplest. Despite its name, HID
devices provide a flexible interface for transferring data bidirectionally between host and
device.

Harmony handles the USB protocol details for us; however, a familiarity with two basic USB
concepts, endpoints and descriptors, will be helpful. USB devices transfer data between
themselves and the host through “endpoints.” An endpoint has a type, which determines
properties of the data transfer such as latency and the host-centric direction, either in or out.
In-endpoints are used for transferring data into the host (the device sends the data) and
out-endpoints are used for transferring data out of the host (the device receives the data).
Descriptors provide information to the host about the device’s capabilities and endpoints. For
example, a descriptor tells the host what device class the device uses. There are numerous
types of device descriptors; we will encounter several when implementing a device and
discuss the relevant details when necessary.

20.8.2 Powering the NU32 by USB

When acting as a device, you can power the PIC32 from the external power supply, as usual,
or from the 5 V provided by the host’s USB port. To power the PIC32 from the host, ensure
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that NU32’s power jack is unplugged and connect the VBUS pin to the 5 V pin. Be especially
careful when powering the PIC32 from the USB port of your computer: incorrect circuits
could damage your PIC32, the USB port on your computer, or even your computer’s
motherboard! Note that USB devices must specify a current request from the host; our code
always requests 100mA.

It is also possible to use the NU32 as a USB host; see the book’s website for details.

20.8.3 USB HID Device

Our USB example creates a generic HID device that can be used to transfer data between the
PIC32 and a host (either your computer or a smartphone).

Unlike the virtual UART over USB approach used earlier in this book, we need to write a C
program that runs on the host to interact with our new USB device. The C program uses the
HID API library, a freely available, cross-platform library for communicating with USB HID
devices. We leave the details of the installation and use of this library to the book’s website
and only provide an overview here; the details vary by operating system and may change.
Overall, installation involves compiling the HID API library into a binary format. To use the
library, you must specify some flags at the compiler command line: -I<include path> to tell
the compiler where to find the hidapi.h header, -L<library path> to tell it where to find the
compiled HID library, and -l<library name> to indicate that your code should be linked
against the HID API library (the name varies by platform and the options used when
compiling the library).

Prior to discussing the PIC32 code, we first examine the client code, client.c, to get a sense
of the goals of the example. The code opens the device based on some hardware identifiers. It
then prints some information about the device. Next it enters an infinite loop where it
prompts the user for a string, sends that string to the PIC32, and then prints the
PIC32’s reply. Overall, the behavior is similar to Code Sample 1.2 (talkingPIC.c). Here is
sample output:

Opened HID device.
Manufacturer String: Microchip Technology Inc.
Product String: Talking HID
Say something to PIC (blank to exit): I’m talking via usb.
PIC Replies: I’M TALKING VIA USB.
Say something to PIC (blank to exit):
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Code Sample 20.16 client.c. C Client for Our Custom HID Device.

#include <stdio.h>
#include <stddef.h>
#include "hidapi.h"

// Client that talks to the HID device
// using hidapi, from www.signal11.us.
// hidapi allows you to directly communicate with hid devices
// without needing a special driver.
// To use hidapi you first must compile the library.
// You need its header to be on your path and you need to
// link against the library. The procedure for doing this
// varies by platform.
// Note: error checking code omitted for clarity
#define REPORT_LEN 65 // 64 bytes per report plus report ID
#define MAX_STR 255 // max length for a descriptor string

int main(void) {
char outbuf[REPORT_LEN] = "";
char inbuf[REPORT_LEN] = "";
wchar_t wstr[MAX_STR] = L""; // use 2-character "wide chars" for USB string descriptors
hid_device *handle = NULL;

// open the hid device using the VID and PID
handle = hid_open(0x4d8, 0x1769, NULL);
printf("Opened HID device.\n");

// use blocking mode so hid_read will wait for data before returning
hid_set_nonblocking(handle, 0);

// get the manufacturer string
hid_get_manufacturer_string(handle, wstr, MAX_STR);
printf("Manufacturer String: %ls\n", wstr); // the ls is to print a wide string

// get the product string
hid_get_product_string(handle, wstr, MAX_STR);
printf("Product String: %ls\n", wstr);

while(1) {
printf("Say something to PIC (blank to exit): ");
// get string of max length REPORT_LEN-1 from user
// first byte is the report id (always 0)
fgets(outbuf + 1, REPORT_LEN - 1, stdin);
if(outbuf[1] == ’\n’) { // if blank line, exit

break;
}
hid_write(handle, (unsigned char *)outbuf, REPORT_LEN);// send report to the device

// read the pic’s reply, wait for bytes to actually be read
while(hid_read(handle, (unsigned char *)inbuf, REPORT_LEN) == 0) {

; // (on some platforms hid_read returns 0 even in blocking mode, hence the loop)
}
printf("\nPIC Replies: %s\n", inbuf);

}
return 0;

}

client.c
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Notice that the code includes hidapi.h, allowing us to use functions from the HID
API library. The first interesting function call is to hid_open, which provides access to
a given HID device based on its vendor identifier (VID) and product identifier (PID). All USB
devices have a VID and a PID that should uniquely identify the device. For a hefty fee you can
obtain your own VID from the USB Implementers Forum (USB-IF); if you wanted to
manufacture many USB devices, your company would purchase a VID. Here we just use
Microchip’s VID (0x4d8). We choose a PID that does not conflict with any Microchip
products, 0x1769. These values are provided to the host by a descriptor that we implement on
the device.

After we open the device we read the manufacturer and product strings, which provide
human-readable information about the device.

In the infinite loop we use two HID API functions, hid_write and hid_read, to write data to,
and read data from, the device. Data is sent and received from HID devices in structures called
reports. Reports are described by the USB HID standard, and provide a flexible but
complicated method for structuring data. Here we simply send and receive 64-byte-long
packets. Notice that we use the packets to store strings, but technically they could store any
type of data.

Prior to continuing, you should compile client.c. (Make sure it is not in your project
directory, as it is not meant for the PIC32!) This step will ensure that you have installed the
HID API successfully. Next, we will examine the PIC32 code needed to make the device work.

In this project we will dispense with the subdirectory structure of the previous example in
Section 20.7 and simply put all code in the same directory. In addition to the usual Harmony
Makefile and NU32bootloaded.ld, you need

talkingHID.c: The main project code.
hid.c: A simple HID library we created.
hid.h: The header file for the HID library.
system_config.h

system_definitions.h

sys_int_pic32.c: Copied from <framework>/system/int/src/. The system interrupt
system service, which is needed by other Harmony modules.
drv_usbfs.c: Copied from <framework>/driver/usb/usbfs/src/dynamic/. General USB
device driver for full-speed mode. This USB layer contains code common to all Harmony
USB drivers (including host implementations).
drv_usbfs_device.c: Copied from <framework>/driver/usb/usbfs/src/dynamic/. The
USB driver for all full-speed devices.
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usb_device.c: Copied from <framework>/usb/src/dynamic/. The Harmony middleware
that contains code common to all USB devices.
usb_device_hid.c: Copied from <framework>/usb/src/dynamic/. USB HID middleware
used to implement a HID device.

After copying the necessary Harmony files into the project directory, take a look at the main
file, talkingHID.c, to learn about the overall program logic. This file implements main and
offloads most of the USB details to a HID library we have created, hid.{c,h}. We first define a
HID report descriptor, which describes the format of the data sent and received between the
device and the host. In this case each report contains 64 data bytes. Following a pattern similar
to a Harmony driver, the HID library has a function for initialization (hid_setup), a function
for opening the device hid_open, and a function for updating an internal FSM (hid_update).
The main loop implements an FSM to appropriately receive data and send a response. We use
our HID library functions hid_send and hid_receive to communicate with the host. Much like
the UART example, these functions are non-blocking.

Code Sample 20.17 talkingHID.c. The Main Talking HID File.

#include "hid.h"
#include "system_config.h"
#include "system_definitions.h"
#include <sys/attribs.h>
#include <ctype.h> //for toupper
#define REPORT_LEN 0x40 // reports have 64 bytes in them

// the HID report descriptor (see Universal Serial Bus HID Usage Tables document).
// This example is from the harmony hid_basic example.
// This descriptor contains input and output reports that are 64 bytes long. The
// data can be anything. Borrowed from the microchip generic hid example
const uint8_t HID_REPORT[NU32_REPORT_SIZE] = {

0x06, 0x00, 0xFF, // Usage Page = 0xFF00 (Vendor Defined Page 1)
0x09, 0x01, // Usage (Vendor Usage 1)
0xA1, 0x01, // Collection (Application)
0x19, 0x01, // Usage Minimum
0x29, REPORT_LEN, // Usage Maximum 64 input usages total (0x01 to 0x40)
0x15, 0x01, // Logical Minimum (data bytes in the report have min value = 0x00)
0x25, 0x40, // Logical Maximum (data bytes in the report have max value = 0xFF)
0x75, 0x08, // Report Size: 8-bit field size
0x95, REPORT_LEN, // Report Count: 64 8-bit fields

// (for next "Input", "Output", or "Feature" item)
0x81, 0x00, // Input (Data, Array, Abs): input packet fields

// ased on the above report size, count, logical min/max, and usage
0x19, 0x01, // Usage Minimum
0x29, REPORT_LEN, // Usage Maximum 64 output usages total (0x01 to 0x40)
0x91, 0x00, // Output (Data, Array, Abs): Instantiates output packet fields.

// Uses same report size and count as "Input" fields, since nothing
// new/different was specified to the parser since the "Input" item.

0xC0 // End Collection
};

// states for the application

talkingHID.c
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typedef enum {APP_STATE_INIT, APP_STATE_RECEIVE, APP_STATE_SEND} APP_STATE;

int main (void) {
char report[REPORT_LEN]="";// message report buffer 64 bytes per hid report descriptor
APP_STATE state = APP_STATE_INIT;
hid_setup(); // initialize the hid usb helper module

// enable interrupts
PLIB_INT_Enable(INT_ID_0);

while (1) {
switch(state) {

case APP_STATE_INIT:
if(hid_open()) { // wait for the hid device to open
state = APP_STATE_RECEIVE;

}
break;

case APP_STATE_RECEIVE:
if(hid_receive((unsigned char *)report, REPORT_LEN)) {
// we are finished receiving the message
char * curr = report;
while(*curr) { // convert to upper case

*curr = toupper(*curr);
++curr;

}
state = APP_STATE_SEND; // send data to client

}
break;

case APP_STATE_SEND:
if(hid_send((unsigned char *)report, REPORT_LEN) ) { // finished sending
state = APP_STATE_RECEIVE; // receive data again

}
break;

default:
;// logic error, impossible state!

}

// update the usb hid state
hid_update();

}
return 0;

}

Note that the report descriptor is a byte array that describes the format of the HID report. The
format and interpretation of a HID report descriptor is flexible but rather complicated. It is
defined in the Device Class Definition for Human Interface Devices supplement to the USB
Standard.

The next file to examine is hid.h. We have created hid.h to implement some common HID
functionality for you. This eliminates much code duplication when creating different types of
basic HID devices.

Following the basic Harmony structure, the NU32 HID library requires you to define several
macros in system_config.h. These macros control several aspects of a HID device that you
may wish to change across projects:
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• NU32_PID: The product identifier for the device. Note that we always use Microchip’s
vendor ID.

• NU32_REPORT_SIZE: The size, in bytes, of the HID report descriptor. Note that this is not the
same as the number of bytes sent, rather it is the length of the array that describes the
communication protocol between the PIC32 and the host. The actual array, HID_REPORT,
was defined in Code Sample 20.17 talkingHID.c.

• NU32_DEVICE_NAME: The name of the device, in USB string descriptor format. The first byte
of the string is the string descriptor’s length, the second byte is the string descriptor ID
(3), and then each character is represented by two bytes.

• NU32_HID_SUBCLASS: The HID subclass, which tells the host what type of HID device to
expect. We use a generic subclass for this example, but devices such as keyboards and
mice have their own subclasses, as defined by the USB standard.

• NU32_HID_PROTOCOL: Again, we use a generic protocol here. The protocol, for certain
subclasses, provides information about the format of the HID report.

In addition to the expected macros, the hid.{c,h} library assumes you have defined the array
HID_REPORT somewhere in your code (here, in Code Sample 20.17 talkingHID.c). This array
contains the HID report descriptor.

Code Sample 20.18 hid.h. The NU32 HID Library.

#ifndef HID__H__
#define HID__H__
// code common to all hid examples

#include <stdbool.h> // bool type with true, false
#include <stdint.h> // uint8_t
#include "system_config.h"

// following harmony’s lead you must define the following variables and macros
// macros in system_config.h
// #define NU32_PID - the product ID for the device
// #define NU32_REPORT_SIZE the size of the hid report
// #define NU32_DEVICE_NAME the name of the device in usb string descriptor format
// #define NU32_HID_SUBCLASS the hid subclass
// #define NU32_HID_PROTOCOL the hid protocol
// in one of your .c files you must also define the HID_REPORT
const extern uint8_t HID_REPORT[NU32_REPORT_SIZE]; // the hid report

// initialize the hid device
void hid_setup(void);

// attempt to open the hid device, return true when
// the keyboard is successfully opened
bool hid_open(void);

// request a hid report from the host. when the report is available, return true
// returning false indicates that the current request is pending
bool hid_receive(uint8_t report[], int length);

hid.h
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// send a hid report. return true when finished sending
// returning false indicates that the current request is pending
bool hid_send(uint8_t report[], int length);

// update the necessary harmony state machines, call from the main loop
void hid_update(void);

// return true if the idle time has expired, indicating that the host expects a report
bool hid_idle_expired(void);

// get the time, in ms, based on the usb clock
uint32_t hid_time(void);

#endif

We saw many of the functions declared in hid.h used in Code Sample 20.17 talkingHID.c.
We provide a complete description below:

• hid_setup: Initializes the Harmony USB middleware and prepares the PIC32 to use the
USB peripheral.

• hid_open: Opens the Harmony HID middleware.
• hid_receive: Requests a report from the host. While the request is pending, returns false.

The first call after a request completes returns true and the next call issues a new request.
• hid_send: Sends a report to the host. While the request is pending, it returns false. The

first call after a request completes returns true and the next call issues a new send request.
• hid_update: Updates the Harmony HID FSM. Should be called frequently from the main

loop.
• hid_idle_expired: Hosts may set an idle rate, which is the minimum rate at which the

device must send data. If the device (PIC32) has not sent data for too long,
hid_idle_expired will return true, indicating that the PIC32 should send a report.

• hid_time: The Harmony USB code allows us to access a “timer” with a 1 ms period; this
function provides that access.

Prior to examining the implementation of the HID library, we first look at system_config.h
and system_definitions.h.

We need to set up many macros for the Harmony USB driver and middleware layers. The
Harmony documentation describes the details, but what is important to understand is that

1. The PIC32 is configured as a device, not a host.
2. It has two endpoints (in addition to the mandatory control endpoint, endpoint 0). One is

used to send data to the host (an in-endpoint), and the other is used to receive data from
the host (an out-endpoint).

3. The macros prefixed with DRV_USB are for the USB driver, whereas those prefixed with
USB_DEVICE are for the Harmony USB middleware.
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Code Sample 20.19 system_config.h. System Configuration Header for the USB HID
Project.

#ifndef SYSTEM_CONFIG_H
#define SYSTEM_CONFIG_H

// avoid superfluous warnings when building harmony
#define _PLIB_UNSUPPORTED

// USB driver configuration

// work as a USB device not as a host
#define DRV_USB_DEVICE_SUPPORT true
#define DRV_USB_HOST_SUPPORT false

// use only one instance of the usb driver
#define DRV_USB_INSTANCES_NUMBER 1

// operate using usb interrupts
#define DRV_USB_INTERRUPT_MODE true

// there are 2 usb endpoints
#define DRV_USB_ENDPOINTS_NUMBER 2

// USB device configuration
// use only one device layer instance
#define USB_DEVICE_INSTANCES_NUMBER 1

// size of the endpoint 0 buffer, in bytes
#define USB_DEVICE_EP0_BUFFER_SIZE 8

// enable the USB start of frame event. it happens at 1 ms intervals
#define USB_DEVICE_SOF_EVENT_ENABLE

// USB HID configuration
// use only one instance of the hid driver
#define USB_DEVICE_HID_INSTANCES_NUMBER 1

// total size of the hid read and write queues
#define USB_DEVICE_HID_QUEUE_DEPTH_COMBINED 2

// ports used by NU32 LEDs and USER button
#define NU32_LED_CHANNEL PORT_CHANNEL_F
#define NU32_USER_CHANNEL PORT_CHANNEL_D

// positions of the LEDs and user buttons
#define NU32_LED1_POS PORTS_BIT_POS_0
#define NU32_LED2_POS PORTS_BIT_POS_1
#define NU32_USER_POS PORTS_BIT_POS_7

// macros used by hid.c
#define NU32_PID 0x1769 // usb product id

#define NU32_REPORT_SIZE 28 // hid report is 28 bytes long

// name of the device. first byte is the length, next byte is the string descriptor id
// (always 3), then the following characters are two bytes each, spelling "Talking HID"

system_config.h
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#define NU32_DEVICE_NAME "\x18\x03T\0a\0l\0k\0i\0n\0g\0 \0H\0I\0D\0"
#define NU32_HID_SUBCLASS USB_HID_SUBCLASS_CODE_NO_SUBCLASS
#define NU32_HID_PROTOCOL USB_HID_PROTOCOL_CODE_NONE

#endif

You may notice the strange definition for NU32_DEVICE_NAME. This macro defines a USB
string descriptor. This string descriptor begins with a one-byte length (\x18, which means
0x18), a one-byte string descriptor ID (3), and then each subsequent character is two bytes
long. The \0, which appears every other byte, inserts a 0 to conform to the two-byte character
format.

We also specify, using NU32_HID_SUBCLASS and NU32_HID_PROTOCOL, that we are not using a
particular HID subclass or protocol, because we are using HID to transfer raw data that the
host operating system need not interpret. If we were making, for example, a USB keyboard,
we would specify the keyboard subclass.

The system_definitions.h file includes the necessary Harmony headers:

Code Sample 20.20 system_definitions.h. System Definitions for a Generic HID
Implementation.

#ifndef SYSTEM_DEFINITIONS_H
#define SYSTEM_DEFINITIONS_H

#include <stddef.h>
#include "system/common/sys_common.h"
#include "system/common/sys_module.h"
#include "usb/usb_device.h"
#include "usb/usb_device_hid.h"
#include "peripheral/peripheral.h"

#endif

We now examine the HID library’s implementation. Much of hid.c is devoted to configuring
various USB descriptors, according to the USB standard. After defining the descriptors, they
are placed into structures defined by Harmony so that Harmony functions can use them. We
also define initialization structures for the Harmony USB middleware. The middleware relies
on the USB driver layer to detect USB events and dispatch them to two callback functions. We
use the callback functions to maintain the state of the current USB transaction; for example,
the state tracks whether we are currently sending or receiving data.

system_definitions.h
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Code Sample 20.21 hid.c. NU32 HID Library Implementation.

#include "hid.h"
#include "system_config.h"
#include "system_definitions.h"
#include <sys/attribs.h>

// the USB device descriptor, part of the usb standard.
const USB_DEVICE_DESCRIPTOR device_descriptor = {

0x12, // the descriptor size, in bytes
USB_DESCRIPTOR_DEVICE, // 0x01, indicating that this is a device descriptor
0x0200, // usb version 2.0, BCD format of AABC == version AA.B.C
0x00, // Class code 0, class will be in configuration descriptor
0x00, // subclass 0, subclass will be in configuration descriptor
0x00, // protocol unused, it is in the configuration descriptor
USB_DEVICE_EP0_BUFFER_SIZE,// max size for packets to control endpoint (endpoint 0)
0x04d8, // Microchip’s vendor id, assigned by usb-if
NU32_PID, // product id (do not conflict with existing pid’s)
0x0000, // device release number
0x01, // string descriptor index; string describes the manufacturer
0x02, // product name string index
0x00, // serial number string index, 0 to indicate not used
0x01 // only one possible configuration

};

// Configuration descriptor, from the USB standard.
// All configuration descriptors are stored contiguously in memory in
// this byte array. Remember, the pic32’s CPU is little endian.
const uint8_t configuration_descriptor[] = {

// configuration descriptor header
0x09, // descriptor is 9 bytes long
USB_DESCRIPTOR_CONFIGURATION, // 0x02, this is a configuration descriptor
41,0, // total length of all descriptors is 41 bytes (remember, little endian)
1, // configuration has only 1 interface
1, // configuration value (host uses this to select config)
0, // configuration string index, 0 indicates not used
USB_ATTRIBUTE_DEFAULT | USB_ATTRIBUTE_SELF_POWERED, // device is self-powered
50, // max power needed 100 mA (2 mA units)

// interface descriptor
0x09, // descriptor is 9 bytes long
USB_DESCRIPTOR_INTERFACE, // 0x04, this is an interface descriptor
0, // interface number 0
0, // interface 0 in the alternate configuration
2, // 2 endpoints (not including endpoint 0)
USB_HID_CLASS_CODE, // uses the hid class
NU32_HID_SUBCLASS, // hid boot interface subclass, in system_config.h
NU32_HID_PROTOCOL, // hid protoocol, defined in system_config.h
0, // no string for this interface

// the hid class descriptor
0x09, // descriptor is 9 bytes long
USB_HID_DESCRIPTOR_TYPES_HID, // 0x21 indicating that this is a HID descriptor
0x11, 0x01, // use HID version 1.11, (BCD format, little endian)
0x00, // no country code
0x1, // Number of class descriptors, including this one
// as part of the hid descriptor, class descriptors follow (only one for this example)
USB_HID_DESCRIPTOR_TYPES_REPORT,// this is a report descriptor

hid.c
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sizeof(HID_REPORT),0x00, // size of the report descriptor

// in endpoint descriptors
0x07, // the descriptor is 7 bytes long
USB_DESCRIPTOR_ENDPOINT, // 0x05, endpoint descriptor type
0x1 | USB_EP_DIRECTION_IN, // in to host direction, address 1
USB_TRANSFER_TYPE_INTERRUPT, // use interrupt transfers
0x40, 0x00, // maximum packet size, 64 bytes
0x01, // sampling interval 1 frame count

// out endpoint descriptor
0x07, // the descriptor is 7 bytes long
USB_DESCRIPTOR_ENDPOINT, // 0x05, endpoint descriptor type
0x1 | USB_EP_DIRECTION_OUT, // in to host direction, address 1
USB_TRANSFER_TYPE_INTERRUPT, // use interrupt transfers
0x40, 0x00, // maximum packet size, 64 bytes
0x01 // sampling interval 1 frame count

};

// String descriptor table. String descriptors provide human readable information
// to the hosts.
// The syntax \xRR inserts a byte with value 0xRR into the string.
// As per the USB standard, the first byte is the total length of the descriptor
// the next byte is the descriptor type, (0x03 for string descriptor). The following bytes
// are the string itself. Since each character is two bytes, we insert a \0 after
// every character. The descriptors are placed into a table for use with harmony.
const USB_DEVICE_STRING_DESCRIPTORS_TABLE string_descriptors[] = {
// 1st byte: length of string (0x04 = 4 bytes)
// 2nd byte: string descriptor (3)
// 3rd and 4th byte: language code, 0x0409 for English (remember, little endian)
"\x04\x03\x09\x04",
// manufacturer string: Microchip Technology Inc.
"\x34\x03M\0i\0c\0r\0o\0c\0h\0i\0p\0 \0T\0e\0c\0h\0n\0o\0l\0o\0g\0y\0 \0I\0n\0c\0.\0",

// name of the device, defined in system_config.h
NU32_DEVICE_NAME

};

// 512-byte-aligned table needed by the harmony device layer
static uint8_t __attribute__((aligned(512)))
endpoint_table[USB_DEVICE_ENDPOINT_TABLE_SIZE];

// harmony structure for storing the configuration descriptors.
// a device can have multiple configurations but only one can be active at one time
// we have only one configuration
const USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE configuration_table[]= {
configuration_descriptor };

// table of descriptors used by the harmony USB device layer
const USB_DEVICE_MASTER_DESCRIPTOR master_descriptor = {

&device_descriptor, // Full speed descriptor
1, // Total number of full speed configurations available
configuration_table, // Pointer to array of full speed configurations descriptors
NULL, 0, NULL, // usb high speed info, high speed not supported on PIC32MX
3, // Total number of string descriptors available
string_descriptors, // Pointer to array of string descriptors
NULL, NULL, NULL // unsupported features, should be NULL

};

// harmony HID initialization structure
const USB_DEVICE_HID_INIT hid_init = {
sizeof(HID_REPORT), // size of the hid report descriptor
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&HID_REPORT, // the hid report descriptor
1,1 // send and receive queues of 1 byte each

};

// register hid functions with the Harmony device layer
const USB_DEVICE_FUNCTION_REGISTRATION_TABLE function_table[] = {

{
USB_SPEED_FULL, // full speed mode
1, // use configuration number 1
0, // use interface 0 of configuration number 1
1, // only one interface is used
0, // use instance 0 of the usb function driver
(void*)&hid_init, // the initialization for the driver
(void*)USB_DEVICE_HID_FUNCTION_DRIVER, // use the HID function layer

}
};

// used to initialize the device layer
const USB_DEVICE_INIT usb_device_init = {

{SYS_MODULE_POWER_RUN_FULL}, // power state
USB_ID_1, // use usb module 1 (PLIB USB_ID to use)
false, false, // don’t stop in idle or suspend in sleep modes
INT_SOURCE_USB_1, 0, // use usb 1 interrupt, not using dma so set source to 0
endpoint_table, // the endpoint table
1, // only one function driver is registered
(USB_DEVICE_FUNCTION_REGISTRATION_TABLE*)function_table, // function drivers for HID
(USB_DEVICE_MASTER_DESCRIPTOR*)&master_descriptor, // all of the descriptors
USB_SPEED_FULL, // use usb full speed mode
//1,1 // endpoint read/write queues of 1 byte each

};

volatile SYS_MODULE_OBJ usb; // handle to the usb device middleware

// maintains the status of the usb system, based on the callback events responses
typedef struct {

bool configured; // true if the device is configured
bool sent; // true if the device report has been sent
uint16_t idle_rate; // how often a report should be sent, in 4 ms units
uint32_t time; // time in ms, based on usb clock
unsigned int idle_count; // the idle count, in 1 ms ticks
bool received; // true if a report has been received
USB_DEVICE_HANDLE device; // harmony device handle

} usb_status;

// the initial status of the device
static usb_status status = {false,false,0,0,0,false,USB_DEVICE_HANDLE_INVALID};

// prototypes for usb event handling functions
static void usb_device_handler(

USB_DEVICE_EVENT event, void * eventData, uintptr_t context);

static void usb_hid_handler(
USB_DEVICE_HID_INDEX hidInstance, USB_DEVICE_HID_EVENT event,
void * eventData, uintptr_t userData);

void __ISR(_USB_1_VECTOR, IPL4SOFT) USB1_Interrupt(void)
{

// update the USB state machine
USB_DEVICE_Tasks_ISR(usb);

}
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void hid_setup(void) {
// set the USB ISR priority
SYS_INT_VectorPrioritySet(INT_VECTOR_USB1, INT_PRIORITY_LEVEL4);

// initialize the usb device middleware
usb = USB_DEVICE_Initialize(USB_DEVICE_INDEX_0, (SYS_MODULE_INIT*)&usb_device_init);

}

bool hid_open(void) {
// attempt to open the usb device
status.device = USB_DEVICE_Open(USB_DEVICE_INDEX_0, DRV_IO_INTENT_READWRITE);

// if the device is successfully opened
if(status.device != USB_DEVICE_HANDLE_INVALID) {

// register a callback for USB device events
USB_DEVICE_EventHandlerSet(status.device, usb_device_handler, 0);
return true;

} // otherwise opening failed, but this is not usually an error,
// we just need to wait more iterations until the USB system is ready

return false;
}

// update the usb state machine, should be called from the main loop
void hid_update() {
USB_DEVICE_Tasks(usb);

}

bool hid_receive(uint8_t report[], int length) {
USB_DEVICE_HID_TRANSFER_HANDLE handle;
static bool requested = false; // true if we have requested a report
if(status.configured) { // the device is configured and plugged in

if(!requested) { // have not already requested a report
requested = true; // request the report
status.received = false; // not received the report yet

// the next line issues the recieve request. When it
// completes, usb_hid_handler will be called with
// event = USB_DEVICE_HID_EVENT_REPORT_RECEIVED

USB_DEVICE_HID_ReportReceive(USB_DEVICE_HID_INDEX_0, &handle,report,length);
}
if(status.received) { // requested report has been received

requested = false; // ready for a new receive request
return true; // indicate that the report is ready

}
}
return false; // requested report is not ready

}

// send a hid report, if we are not busy sending, otherwise return false
bool hid_send(uint8_t report[], int length) {
USB_DEVICE_HID_TRANSFER_HANDLE handle;
static bool requested = false;
if(status.configured) { // the device is configured and plugged in

if(!requested) { // have not requested a hid report to be sent
requested = true; // issue the hid report send request
status.sent = false; // request has not been sent
status.idle_count = 0; // sending a report so reset the idle count

// the next line issues the send request. When it
// completes, usb_hid_handler will be called with
// event = USB_DEVICE_HID_EVENT_REPORT_SENT

USB_DEVICE_HID_ReportSend(USB_DEVICE_HID_INDEX_0, &handle, report, length);
}
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if(status.sent) { // finished a send request
requested = false; // ready for a new send request
return true; // indicate that the report has been sent

}
}
return false; // send request is not finished

}

uint32_t hid_time(void) {
// get a time count in ms ticks from the usb subsystem
return status.time;

}

bool hid_idle_expired(void) {
return (status.idle_rate > 0 && status.idle_count*4 >= status.idle_rate);

}

// handles HID events, reported by the Harmony HID layer
static void usb_hid_handler(

USB_DEVICE_HID_INDEX hidInstance,
USB_DEVICE_HID_EVENT event, void * eventData, uintptr_t context)

{
static uint16_t protocol = 0; // store the protocol
static uint8_t blank_report[sizeof(HID_REPORT)] = ""; // a blank report to return

// if requested
switch(event)
{
case USB_DEVICE_HID_EVENT_REPORT_SENT:

// we have finished sending a report to the host
status.sent = true;
break;

case USB_DEVICE_HID_EVENT_REPORT_RECEIVED:
// the host has sent a report to us. Ignore zero length reports
status.received = true;
break;

case USB_DEVICE_HID_EVENT_GET_REPORT:
// send blank report when requested. Per HID spec, we must send a report when asked
USB_DEVICE_ControlSend(status.device,blank_report,sizeof(blank_report));
break;

case USB_DEVICE_HID_EVENT_SET_IDLE:
// acknowledge the receipt of the set idle request
USB_DEVICE_ControlStatus(status.device, USB_DEVICE_CONTROL_STATUS_OK);
// set new idle rate, in units of 4 ms. report must be sent before period expires
status.idle_rate = ((USB_DEVICE_HID_EVENT_DATA_SET_IDLE*)eventData)->duration;
break;

case USB_DEVICE_HID_EVENT_GET_IDLE:
// send the idle rate to the host
USB_DEVICE_ControlSend(status.device, &status.idle_rate,1);
break;

case USB_DEVICE_HID_EVENT_SET_PROTOCOL:
// all usb hid devices that support the boot protocol must implement SET_PROTOCOL &
// GET_PROTOCOL which allows the host to select between the boot protocol and the
// report descriptor we made. our operation remains the same regardless so we just
// store the request and return it when asked
protocol = ((USB_DEVICE_HID_EVENT_DATA_SET_PROTOCOL*)eventData)->protocolCode;
USB_DEVICE_ControlStatus(status.device, USB_DEVICE_CONTROL_STATUS_OK);
break;

case USB_DEVICE_HID_EVENT_GET_PROTOCOL:
// return the currently selected protocol to the host
USB_DEVICE_ControlSend(status.device, &protocol,1);
break;
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default:
break; // many other events we simply don’t handle

}
}

// handles USB device events, reported by the Harmony device layer
static void usb_device_handler(

USB_DEVICE_EVENT event, void * eventData, uintptr_t context) {
switch(event) {

case USB_DEVICE_EVENT_SOF:
// this event occurs at the USB start of frame, every 1 ms per the usb spec
// the event is enabled by defining USB_DEVICE_EVENT_SOF_ENABLE in system_config.h
++status.idle_count; // keep track of how long device has not sent reports
++status.time; // also keep a running time, in ms
break;

case USB_DEVICE_EVENT_RESET:
// usb bus was reset
status.configured = false;
break;

case USB_DEVICE_EVENT_DECONFIGURED:
// device was deconfigured
status.configured = false;
break;

case USB_DEVICE_EVENT_CONFIGURED:
// we have been configured. eventData holds the selected configuration,
// but this device has only have one configuration.
// we can now register a hid event handler
USB_DEVICE_HID_EventHandlerSet(USB_DEVICE_HID_INDEX_0, usb_hid_handler, 0);
status.configured = true;
break;

case USB_DEVICE_EVENT_POWER_DETECTED:
// Vbus is detected meaning the device is attached to a host
USB_DEVICE_Attach(status.device);
break;

case USB_DEVICE_EVENT_POWER_REMOVED:
// the device was removed from a host
USB_DEVICE_Detach(status.device);
break;

default:
break; // there are other events that we do not handle

}
}

// The USB device layer, when it initializes the driver layer,
// attempts to call this function, but Harmony does not implement it as of
// v1.06. Therefore we place it here
void DRV_USB_Tasks_ISR_DMA(SYS_MODULE_OBJ o)
{
DRV_USB_Tasks_ISR(o);

}

We define the following descriptors:

device_descriptor: Defines basic USB information such as the VID, the PID, and the
USB version.
configuration_descriptors: Actually a collection of several descriptors, stored in a byte
array. These descriptors describe the device’s configuration and are used, for example, to
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inform the host that the device is a HID device with one in-endpoint and one out-endpoint.
string_descriptors: A Harmony data type containing a table of string descriptors. This
table contains, for example, the manufacturer string and the device name string (which is
determined based on what you define NU32_DEVICE_NAME to be). Remember, string
descriptors use a different format than C strings: they start with one byte for the length, a
byte with the value 3 (indicating that this is a string descriptor), and then the subsequent
characters are two bytes long.

To be used with Harmony, the USB descriptors must be placed into Harmony-specific
variables: endpoint_table, configuration_table, and master_descriptor. We also must define
initialization structures for the Harmony HID layer (hid_init) and the USB Device layer
(usb_device_init). The function_table array is used to inform the Harmony device layer that
it should use Harmony’s HID functions. We then define a variable to store a handle to the
Harmony USB middleware.

As stated earlier, we must implement two callbacks: one for the device layer
(usb_device_handler) and another for the HID layer (usb_hid_handler). As the program runs,
various USB events will occur and these callbacks will be called appropriately. Both of these
callbacks modify the state of the system, which we track using the usb_status struct. The
device callback is registered with Harmony when the device is opened, whereas the HID
callback is registered in the device callback, in response to the event that occurs when the host
configures the device.

The event handlers that we implement for both the HID layer and generic USB device layer
consist mainly of a switch statement determining the reason for the callback. Our callbacks
only handle a small subset of the possible events, but this is enough for our purposes. The
most important HID events (handled in usb_hid_handler) are

• USB_DEVICE_HID_EVENT_REPORT_SENT: A HID report has been sent to the host.
• USB_DEVICE_HID_EVENT_REPORT_RECEIVED: A HID report has been received from the host.

The important events handled by the generic USB device layer are

• USB_DEVICE_EVENT_CONFIGURED: This event occurs when the host has configured the device.
When configured, we register the HID event handler.

• USB_DEVICE_EVENT_POWER_DETECTED: The device has detected power from the host. We
must call USB_DEVICE_Attach to tell Harmony to configure the device and receive
subsequent events.

To help update the USB device module’s state, we must call USB_DEVICE_Tasks frequently and
implement the USB ISR, which calls USB_DEVICE_Tasks_ISR. The need to call
USB_DEVICE_Tasks motivates the hid_update function.
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The initialization function (hid_setup) and opening function (hid_open) must be called before
the device starts receiving events. The functions hid_receive, hid_send, hid_time, and
hid_idle_expired all depend upon usb_status being updated in the Harmony USB callbacks.
For example, to receive or send a HID report (i.e., the data), the USB device must be
configured and another report must not be pending. If these conditions are not met, the
functions return false, allowing the main loop to continue and the state of the Harmony USB
state machine to update.

20.9 Chapter Summary

• Harmony is a comprehensive software framework for all PIC32 microcontrollers that aims
to promote modular and portable code. Its documentation comprises over 4000 pages, or
more than 8 reams of paper if you wish to print it!

• Harmony is divided into different layers that fulfill different roles. This chapter discusses
various PLIB, driver, and system service modules. There are also modules providing
support for real-time operating systems.

• Microchip suggests that programs using Harmony adhere to a specific directory structure.
For large projects it may help keep your files organized, but for smaller projects it may
seem overwhelming. The Makefile we provide can compile programs either using
Microchip’s suggested structure or just a flat directory structure.

• Harmony can be used to implement a USB device that communicates with a host.

20.10 Exercises
1. Add an additional logical timer to the system timer example. At a frequency of 0.25 Hz,

switch which LED blinks faster and which blinks slower.
2. Describe a situation when using the TMR system service would be beneficial compared to

using the timer driver directly.
3. What happens to the USB example code if talkingHID.c wants to communicate a string

exceeding 64 bytes to/from the host? Modify talkingHID.c and client.c so that strings
longer than 64 bytes can be handled.

Further Reading
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Universal serial bus specification (Revision 2.0). (2000). Compaq, Hewlett-Packard, Intel, Lucent, Microsoft,
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Sensors

Your PIC32 interacts with the outside world through sensors and actuators. “Mechatronics” is
the design of microprocessor-controlled electromechanical systems incorporating sensors and
actuators. There is no clear distinction between mechatronics and robotics, but we typically
think of robots as higher-level, more complex and general purpose devices, often with more
sophisticated sensing and artificial intelligence than we associate with mechatronics. Robots
often integrate multiple mechatronic subsystems.

In this chapter we focus on sensors. Sensors transduce physical properties of interest to a
signal that a microcontroller can understand. Some sensors produce a simple digital or analog
voltage signal, which may need signal conditioning circuitry before sending to the PIC32.
Examples of signal conditioning include switch debouncing, voltage amplification, and
low-pass filtering (see Appendix B). Other sensors, like rotary encoders, encode their signals
in digital pulse trains, to be decoded either by the PIC32 itself or by an external circuit.
Finally, some sensors incorporate their own microprocessor or ASIC (application-specific
integrated circuit) and can communicate by one of the peripherals discussed earlier (e.g.,
UART, CAN, I2C, or SPI).

An overview of sensors could be organized by the transduction principle involved (e.g., a
voltage proportional to a magnetic field’s strength due to the Hall effect or a current
proportional to light intensity by the photoelectric effect). These transduction principles can
be applied to measure many other quantities of interest; for example, sensors can be
constructed to measure the rotation angle of a joint using either the Hall effect or photodiodes.
To the mechatronics designer, the specific transduction principle employed is typically
secondary to the sensor’s capability of sensing the quantity of interest (e.g., the joint angle).
Therefore, in this chapter, we roughly organize the presentation around typical quantities of
interest: angle, angular velocity, acceleration, force, etc. We do not go into details of the
physics of the transduction principles, but provide a broad overview of relatively inexpensive
sensors common in mechatronics and how they can be interfaced to the PIC32.

Many of the sensors in this chapter can be purchased from vendors like Digikey or Mouser, or
on convenient breakout boards from vendors like SparkFun, Pololu, or Adafruit.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00021-4
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Figure 21.1
(a) A button interfacing to the PIC32. (b) A hinged roller-lever limit switch, and its use in a linear

joint to detect the end of travel. (Image courtesy of Digi-Key Electronics, digikey.com.)

21.1 Contact: Buttons and Switches

Perhaps the simplest sensors are buttons and switches. Buttons and switches can be used to get
information from a user (e.g., a keyboard or the USER button on the NU32) or to sense when
a robot joint has reached the limit of its allowable travel (a limit switch).

A simple button interface to the PIC32 is shown in Figure 21.1(a). The button has two
connections, one to a pull-up resistor and one to ground. When the button is unpressed, the
internal switch is open circuit, and the digital input to the PIC32 is high (3.3 V). When the
button is pressed, the switch is closed, pulling the digital input low (ground). This kind of
button is called normally open (or NO for short). There are also buttons that are normally
closed (NC), requiring the button to be pressed to open the internal switch.

One common application for a switch is as a limit switch. When a robot linear or rotary joint
reaches its limit of travel, the limit switch depresses, sending a signal to the controller to stop
driving the joint. The limit switch in Figure 21.1(b) has both an NO and an NC output.

The switch interface in Figure 21.1(a) shows an external pull-up resistor. The digital inputs on
the PIC32 supporting Change Notification have internal pull-up resistors that can be used
instead, eliminating the external resistor (see Chapter 7).

A common problem with mechanical switches such as those in Figure 21.1 is bounce—many
on-off transitions in a brief period of time as the switch establishes or breaks contact. If
bounce is a problem for the particular application, the designer should decide the shortest
amount of time allowed between “real” transitions (as opposed to mechanical bounces), then
design either a circuit or a software routine to debounce the switch. See, for example, the
debouncing circuit in Appendix B.2.1.
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A switch is often characterized by the number of poles and throws. The number of poles is the
number of internal moving levers, and the number of throws is the number of different
connections each lever can make contact with. Thus the switch in Figure 21.1(a) is a
single-pole single-throw switch (or SPST for short), and the switch in Figure 21.1(b) is a
single-pole double-throw (SPDT) switch. Other common configurations are DPST (two
internal switches of the type in Figure 21.1(a), meaning four external connections) and DPDT
(two internal switches of the type in Figure 21.1(b), meaning six external connections). Each
of the two poles in DPST and DPDT switches is activated by the same external button or lever.

Mechanical switches are distinguished by their current rating. Switches with higher current
ratings have larger contact surfaces between the throws and the poles.

Switches can be used in many different ways. For example, attaching a stiff wire to the end of a
limit switch as in Figure 21.1(b) could allow you to use the wire as a binary “whisker” sensor.

21.2 Light

21.2.1 Types of Light Sensors

Light sensors include photocells (also called photoresistors), photodiodes, and
phototransistors. Photodiodes and phototransistors are used not only to sense light levels
directly, but as building blocks in many other types of sensors.

Photocell

A photocell is a resistor that changes resistance depending on the amount of light incident on
it. A photocell operates on semiconductor photoconductivity: the energy of photons hitting the
semiconductor frees electrons to flow, decreasing the resistance.

An example photocell is the Advanced Photonix PDV-P5002, shown in Figure 21.2. In the
dark, this photocell has a resistance of approximately 500 k�, and in bright light the
resistance drops to approximately 10 k�. The PDV-P5002 is sensitive to light in the
wavelengths 400-700 nm, approximately the same wavelengths the human eye is responsive
to. Figure 21.2 shows a simple circuit illustrating how it can be used as an ambient light sensor
feeding either a digital or an analog input to the PIC32.

Photodiode

Photocells are easy to use, but their resistance changes relatively slowly. For example, the
PDV-P5002 may take tens of milliseconds to fully change resistance in response to ambient
light change. A much faster response can be obtained with a photodiode. As with a photocell,
a photodiode operates by photons “kicking up” electrons that allow current to flow, but unlike
a photocell, current can flow even without an externally imposed voltage due to the electric
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Figure 21.2
(Left) The PDV P5002 photocell. (Image courtesy of Advanced Photonix, Inc.,

advancedphotonix.com.) (Middle) Circuit symbol for a photocell. (Right) A simple
light-level-detection circuit. In bright light, the photocell’s resistance is around 10 k�, making an

output of about 2.7 V. In darkness, the photocell’s resistance is around 500 k�, making an output
of about 0.3 V. The sensor output could go to a PIC32 digital or analog input.
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Figure 21.3
(Left) A photodiode. The cathode of a diode is the shorter leg, and the anode is the longer leg.

(Right) The circuit symbol for a photodiode, and the direction that photocurrent flows when light
hits the photodiode.

field in the diode. In response to a rapidly changing light source, this photocurrent can turn on
and off in just a few nanoseconds, depending on the design of the circuit the photodiode is
used in.

When light hits the photodiode, reverse photocurrent flows, from the cathode to the anode
(Figure 21.3). This current is quite small; for the OPTEK Technology OP906, for example, the
maximum current is on the order of tens of microamps. While it may be possible to simply
pass this current through a large resistance to generate a measurable voltage, it is common to
use an op amp or instrumentation amp circuit to create a sensor with a low-impedance output,
a sufficient gain from light levels to voltage, and a fast switching time. It is also common to
put a reverse bias voltage across the photodiode to reduce the diode’s capacitance, allowing
faster current switches. A drawback of the reverse bias voltage is the creation of a reverse dark
current, in addition to the photocurrent. Thus the reverse bias voltage decreases switching
time but reduces the sensitivity of the circuit.

When a photodiode is used without an imposed reverse bias, for maximum sensitivity, it is
used in photovoltaic mode. When a photodiode is used with an imposed reverse bias, for
maximum switching speed, it is used in photoconductive mode. This chapter does not cover
amplifier circuit designs for these cases; see the references at the end of this chapter.
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Some photodiodes come with light filters to adjust their sensitivity to different light
wavelengths. The OP906 has no filter, and responds to light at wavelengths between
approximately 500 nm and 1100 nm, with a peak response at 880 nm (infrared, invisible). The
OP906 can be paired with a Fairchild QED123 LED, which emits IR light at 880 nm, for
applications like photointerrupters and reflective object sensors (below).

Photodiodes also come with lenses to direct the incoming light, and the lens on the OP906
ensures that there is little response to light arriving at an angle more than 20 degrees off the
central axis of the sensor. Other photodiodes have wider or even narrower viewing angles.
Which is best for you depends on your application.

Phototransistor

A phototransistor is a type of bipolar junction transistor including a photodiode junction. An
NPN phototransistor has a photodiode at its base-collector junction, and the photocurrent
generated there acts as the base current IB. Below saturation, the phototransistor implements
the equations IC = βIB, where IC is the collector current and β is the transistor’s gain, and
IE = IC + IB, where IE is the emitter current. (See Appendix B.3 for more on bipolar junction
transistors.) Since a typical β is 100, a phototransistor has a higher gain from light to current
than a photodiode.

For example, the OSRAM SFH 310 NPN phototransistor creates emitter currents of up to a
few milliamps, as compared to the microamps of a photodiode. This higher current makes
phototransistors much easier to interface to than photodiodes. See the example circuit in
Figure 21.4. A drawback compared to a photodiode is the longer rise and fall times of the
current, on the order of 10 µs for the SFH 310.

Like photodiodes, phototransistors may have filters to alter their sensitivity spectrum and
lenses to control their viewing angle. The SFH 310 has a viewing angle of up to about
25 degrees off the central axis, and it is sensitive to light of wavelengths 450 nm to 1100 nm,
which includes much of the visible spectrum (about 390 nm to 700 nm). Peak sensitivity of
the SFH 310 is at 880 nm. The SFH 310 can be paired with the IR LED QED123, mentioned
above, with its 880 nm wavelength. If a visible LED is preferred, you could use the Kingbright
WP7113SRC/DU red LED at 640 nm (Figure 21.4). While this wavelength is below the
SFH 310’s 880 nm peak sensitivity, the response is still about 60% of peak.

21.2.2 Basic Applications

Photodiodes and phototransistors are often paired with LEDs to make a variety of different
types of sensors. Two of the simplest are photointerrupters and reflective object sensors.
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Figure 21.4
(Left) The SFH 310 NPN phototransistor. The shorter leg is the collector and the longer leg is the
emitter. (Image courtesy of Digi-Key Electronics, digikey.com.) (Middle) The circuit symbol for an
NPN phototransistor. (Right) A circuit with a WP7113SRC/DU red LED illuminating an SFH 310

phototransistor. The resistance R should be chosen to get the right voltage range at the input to the
PIC32, which could be an analog or digital input, depending on the application. For a sufficiently

large resistance R, the sensor’s output voltage ranges from close to 0 V (no light on the
phototransistor) to close to 3.15 V (transistor saturated, with 0.15 V drop from collector to emitter).
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Figure 21.5
(Left) The OPB370T51 photointerrupter. (Image courtesy of Digi-Key Electronics, digikey.com.)

(Right) The connections of the package’s pins 1 to 4 to the LED and phototransistor.

Photointerrupter

A photointerrupter, or slotted optical switch, contains an LED and a phototransistor or
photodiode in a single package. The two are aimed at each other across a small gap, as with
the OPTEK Technology OPB370T51, which uses an infrared LED and a phototransistor
(Figure 21.5). The LED is always powered, so if the gap is clear, current flows through the
phototransistor. If the gap is blocked by an opaque object, blocking the LED light, current
through the phototransistor drops. A complete circuit is similar to that illustrated in Figure
21.4(right). An optointerrupter can be used as a type of a limit switch or as a building block
for an optical encoder (Section 21.3.2).

To obtain clean digital pulses to a PIC32 input, rather than slowly varying analog voltages as
the gap transitions from unblocked to blocked and back, the phototransistor output in Figure
21.4(right) can be passed through a Schmitt trigger (Appendix B.2, Figure B.6).
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Reflective
surface

Figure 21.6
The OPB742 reflective object sensor uses an LED and a phototransistor to detect the presence of

nearby reflective surfaces. (Image courtesy of Digi-Key Electronics, digikey.com.)

Reflective object sensor

A reflective object sensor is very similar to a photointerrupter, except instead of directly facing
each other, the LED and phototransistor are pointed nearly parallel to each other, with a slight
inward focus; see the OPTEK Technology OPB742 in Figure 21.6. The OPB742 is designed
to detect reflective surfaces at distances between about 0.2 cm and 0.8 cm. When there is no
reflective surface nearby, little current flows through the phototransistor; when there is a
reflective surface within range, significant current flows through the phototransistor. As with
the photointerrupter, a complete circuit is similar to that illustrated in Figure 21.4(right).

21.3 Angle of a Revolute Joint

There are many ways to measure the angle or angular velocity of a joint; here we mention a
few of the most common.

21.3.1 Potentiometer

A potentiometer (Appendix B.2), or pot for short, is a variable resistor, typically with a
rotating knob that determines the variable resistance (Figure 21.7). A pot has three output
terminals: two at either end of the internal resistor, with a fixed resistance between them, and
one at the wiper. As the knob rotates, the wiper slides over the resistive element, and the
resistance between one end of the resistor and the wiper increases smoothly from zero to the
max resistance of the pot, while the resistance between the wiper and the other end of the
resistor drops smoothly from max resistance to zero. Thus, by putting a voltage across the two
ends of the internal resistor, the pot’s wiper provides a voltage proportional to the angle of the
knob, which can be read by the PIC32’s analog input (Figure 21.7(c)).

Pots come in many different styles, distinguished by total resistance across the resistive
element; the type of knob or other attachment (e.g., the hollow-shaft pot in Figure 21.7(d));
the number of turns that the pot allows (from less than a single turn to multi-turn); the taper of
the resistive element, which dictates how the resistance changes with rotation of the knob
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Figure 21.7
(a) A breadboardable 10 k� pot. (b) A representation of the wiper sliding over the resistive element
as the knob is rotated. (c) The circuit symbol for a pot, and its use in a simple circuit that measures
pot rotation as an analog value between 0 and 3.3 V. (d) The Contelec WAL305 hollow-shaft pot.
The interior rotating element of this pot can be press-fitted on a motor shaft. (Image courtesy of

Contelec AG, www.contelec.ch/en.)

(typically linear or logarithmic, where the latter is often used in audio applications); and the
amount of power the resistive element can dissipate without damage. Since a typical pot has a
sliding contact between the wiper and the resistive element, pots can only endure a limited
number of cycles. More expensive pots have a longer lifetime and a more precise relationship
between the rotation of the knob and the variable resistance.

Pots are relatively inexpensive and easy to use, but since they transmit their angle readings as
analog voltages, their readings are subject to electrical noise. For applications where electrical
noise is an issue, or where more precise angle estimates are needed, encoders, with their
digital outputs, are more common choices.

21.3.2 Encoder

There are two major types of encoders: incremental and absolute.

Incremental encoder

An incremental encoder creates two pulse trains, A and B, as the encoder shaft rotates a
codewheel. These pulse trains can be created by magnetic field sensors (Hall effect sensors) or
light sensors (LEDs and phototransistors or photodiodes). The latter technique, used in optical
encoders, is illustrated in Figure 21.8. The codewheel could be an opaque material with slots
or a transparent material (glass or plastic) with opaque lines.

The relative phase of the A and B pulses determines whether the encoder is rotating clockwise
or counterclockwise. A rising edge on B after a rising edge on A means the encoder is rotating
one way, and a rising edge on B after a falling edge on A means the encoder is rotating the
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Figure 21.8
A rotating optical encoder creates 90 degree out-of-phase pulse trains on A and B using LEDs and
phototransistors. Although two LEDs are shown in the image, it is common to use one LED and a

mask to create the two light streams.
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Figure 21.9
4x decoding of A/B quadrature encoder channels. Each node of the state machine shows the digital

A/B signals as a two-bit number AB. When the signals change, the encoder count is either
incremented or decremented according to the specific transition.

opposite direction. A rising edge on B followed by a falling edge on B (with no change in A)
means that the encoder has undergone no net motion. The out-of-phase A and B pulse trains
are known as quadrature signals.

In addition to determining the rotation direction, the pulses can be counted to determine how
far the encoder has rotated. The encoder signals can be “decoded” at 1x, 2x, or 4x resolution,
where 1x resolution means that a single count is generated for each full cycle of A and B (e.g.,
on the rising edge of A), 2x resolution means that two counts are generated for each full cycle
(e.g., on the rising and falling edges of A), and 4x means that a count is generated for every
rising and falling edge of A and B (four counts per cycle, Figure 21.9). Thus an encoder with
“100 lines” or “100 pulses per revolution” can be used to generate up to 400 counts per
revolution of the encoder. If the encoder is attached to a motor shaft, and the motor shaft is
also attached to a 20:1 speed-reducing gearhead, then the encoder generates 400 × 20 = 8000
counts per revolution of the gearhead output shaft.

Some encoders offer a third output channel called the index channel, usually labeled I or Z.
The index channel creates one pulse per revolution of the joint and can be used to determine
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when the joint is at a “home” position. Some encoders also offer differential outputs Ā, B̄, and
Z̄, which are always opposite A, B, and Z, respectively. This is for noise immunity in
electrically noisy environments. For example, if a transient magnetic field induces a voltage
change on all of the encoder lines, a single-ended reading (e.g., channel A only) may
incorrectly interpret the voltage change as movement of the encoder. A differential reading of
A − Ā would reject this noise, since it is common to both A and Ā.

Some microcontrollers, but not the PIC32, are equipped with a “quad encoder interface”
(QEI) peripheral that accepts A and B inputs directly and maintains the encoder count on an
internal counter. On the PIC32, the A and B channels can be used with a change notification
ISR that implements the state machine of Figure 21.9, provided the A and B lines do not
change too quickly. A better solution is to use external encoder decoder circuitry to maintain
the count, then query the count using SPI, I2C, or parallel communication.

Absolute encoder

An incremental encoder can only tell you how far the joint has moved since the encoder was
turned on. An absolute encoder can tell you where the joint is at any time, regardless of the
position of the joint at power on. To provide absolute position information, an absolute
encoder uses many more LED/phototransistor pairs, and each one provides a single bit of
information on the joint’s position. For example, an absolute encoder with 17 channels, like
the Avago Technologies AEAT-9000-1GSH1, can distinguish the absolute orientation of a
joint up to a resolution of 360◦/(217) = 0.0027◦ (131,072 unique positions).

As the codewheel rotates, the binary count represented by the 17 channels increments
according to Gray code, not the typical binary code, so that at each increment, only one of the
17 channels changes signal.1 This removes the need for the infinite manufacturing precision
needed to make two signals switch at exactly the same angle. Compare the following two
three-bit sequences, for example (Figure 21.10):

Figure 21.10
A 3-bit Gray code codewheel for an optical absolute encoder. If the innermost ring corresponds to
the most significant bit, then as we proceed counterclockwise around the codewheel, the count is

000, 001, 011, 010, 110, 111, 101, and 100.

1 The AEAT-9000-1GSH1 actually uses a 12-bit Gray code codewheel. The other five bits are obtained by
advanced methods not discussed in this chapter.
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State 0 1 2 3 4 5 6 7
Binary code 000 001 010 011 100 101 110 111
Gray code 000 001 011 010 110 111 101 100

Absolute encoders typically employ some type of serial communication to send their readings.

21.3.3 Magnetic Encoders

The angle of a rotational joint can be measured by the orientation of the magnetic field due to
a magnet attached to the joint. An example is the Avago magnetic encoder sensor illustrated in
Figure 21.16 and described in Section 21.6.

21.3.4 Resolver

A resolver consists of three coils: an input excitation coil on the rotor and “sine” and “cosine”
measurement coils on the stator. The rotor coil is driven by a sinusoidal reference excitation
voltage, Vr(t) = Vr,max sin ωt, where the precise voltage Vr,max and frequency ω are not
critical, but the frequency ω/2π is typically multiple kHz. The current through the excitation
coil generates a magnetic field, which induces a current and therefore a voltage across the
stator measurement coils. The sine and cosine coils are offset by 90 degrees relative to each
other, so that the voltages induced across the measurement coils are given by

Vsin(t) = V sin ωt sin θ ,

Vcos(t) = V sin ωt cos θ ,

where θ is the angle of the rotor coil (see Figure 21.11).

Excitation
coil, rotor

cos coil,
stator

sin coil,
stator

q = 45 degrees q = 90 degrees q = 135 degreesq = 0 degrees

Figure 21.11
A resolver consists of an excitation coil on the rotor and sine and cosine pickup coils on the stator.
The excitation coil is driven by a sinusoidal voltage as a function of time. The excitation coil induces
sinusoidal voltages across the pickup coils. The amplitude and phase (zero or 180 degrees) of the

pickup voltage sinusoids is a function of the angle of the rotor.
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The angle of the resolver’s rotor is decoded by a resolver-to-digital converter (RDC) chip,
such as the Analog Devices AD2S90. The two pickup coil voltages are sent to the RDC,
which decodes the angle and provides three kinds of outputs: (a) serial output simulating a
12-bit absolute encoder; (b) A and B outputs simulating a 1024-line incremental encoder
(1024 A and B pulses per revolution, allowing 4x decoding for a resolution of 4096 counts per
revolution); and (c) an analog voltage proportional to the angular velocity.

21.3.5 Tachometer

A tachometer refers to any device that produces a signal proportional to the speed of rotation
of a joint. There are many different types of tachometers, some based on measuring the
frequency of, or the time between, pulses generated by the rotating shaft. Any angle-measuring
device can be used to simulate a tachometer by numerical differencing, taking angle
measurements at times t and t + δt and calculating θ̇ (t + δt) ≈ (θ(t + δt) − θ(t))/δt.

21.4 Position of a Prismatic Joint

Linear or prismatic joints are the second-most common type of joint, after rotary joints. Often
prismatic joints are driven by rotary motors with a transmission that converts rotational motion
to linear motion, such as a ball screw or a rack and pinion (Chapter 26). In this case, the linear
motion can be indirectly measured by a rotational sensor (e.g., a pot or encoder) on the motor.

In other cases, it is necessary or desirable to measure the linear displacement directly. For
these cases, potentiometers and encoders have direct linear analogs. Linear potentiometers are
sometimes called slide pots, and are common on analog audio equipment. Linear incremental
and absolute encoders simply take the codewheel and straighten it out into a line.

Just as a resolver employs an AC excitation signal and induction to determine the angle of a
revolute joint, a linear variable differential transformer (LVDT) employs induction to
determine the position of a prismatic joint (Figure 21.12). A stationary excitation coil, driven
by a sinusoidal voltage in the kHz frequency range, is coupled to two stationary pickup coils
by a ferromagnetic core that moves with the linear joint. The coupling between the excitation
coil and each pickup coil changes with the position of the core. The voltages across the two
pickup coils are differenced (hence the “D” in LVDT), and this differenced signal is used to
determine the position of the core. When the core is centered, the difference between the two
pickup voltages is zero. As the core moves away from the center position, the amplitude of the
difference increases, and the phase of the differenced sinusoid, relative to the excitation
sinusoid, is zero as the core moves in one direction and 180 degrees as the core moves in the
other direction.
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Figure 21.12
(Left) An LVDT consists of a movable core, a stationary excitation coil, and two stationary pickup
coils. (Right) An Omega LD320 LVDT. (Image courtesy of Omega Engineering, Inc., omega.com.)

Figure 21.12 shows an Omega LD320 LVDT. An LVDT is typically interfaced to a
microcontroller using an LVDT signal conditioning chip such as the Analog Devices AD698,
which generates the excitation voltage and turns the differential pickup voltage into an analog
voltage output proportional to the position of the LVDT core.

21.5 Acceleration and Angular Velocity: Gyros, Accelerometers, and IMUs

Gyroscopes (gyros) and accelerometers use sensing of inertial forces to measure the angular
velocity of a body about one, two, or three axes (gyros) or linear acceleration of a body along
one, two , or three axes (accelerometers). A three-axis gyro and a three-axis accelerometer can
be used together to make an inertial measurement unit (IMU) that attempts to track the motion
of a rigid body, based solely on inertial forces. The ability to do this is fundamentally limited
by the fact that linear velocity relative to a “fixed” frame cannot be directly measured based on
inertial forces—any reference frame translating at a constant velocity is an inertial frame,
indistinguishable from other inertial frames.

Gyros and accelerometers have existed for many years, but the advent of
microelectromechanical systems (MEMS) has brought these formerly expensive devices
within reach of low-cost consumer applications. In this section we focus on MEMS gyros and
accelerometers.

21.5.1 MEMS Accelerometer

A MEMS accelerometer measures acceleration (which includes the gravitational acceleration
g) by measuring the deflection of a tiny mass m suspended on springs. For example, for a
one-axis accelerometer that measures acceleration in a single direction, let x = 0 be the rest
position of the mass when the acceleration is zero (Figure 21.13). Then the acceleration a of
the accelerometer can be calculated from the deflection x using the equation kx+ma = 0,
where k is the stiffness of the springs. The deflection is typically sensed by the change in
capacitance between plates fixed to the mass and plates fixed to the body of the accelerometer.
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Figure 21.13
(Left) A MEMS accelerometer mass m at its home position x = 0 relative to the body of the

accelerometer. (Right) An acceleration a > 0 leads to a deflection of the mass x = −ma/k < 0,
where k is the total stiffness of the springs.

Accelerometers come in one-, two-, and three-axis (x, y, z) devices; different ranges of
detectable accelerations; and different output types, including I2C, SPI, and analog output.
The Analog Devices ADXL362 is a three-axis accelerometer capable of measuring x-y-z
accelerations in the range ±2g, ±4g, or ±8g, as selected by the user, and provides both analog
and 12-bit resolution SPI output.

The STMicroelectronics LSM303D accelerometer, discussed in Chapters 12 (SPI) and 13
(I2C), includes a three-axis accelerometer as well as a three-axis magnetometer. The
magnetometer can be used to sense the Earth’s magnetic field, and combined with the
accelerometer to measure the gravity direction, allows the implementation of a
tilt-compensated compass.

21.5.2 MEMS Gyro

Like an accelerometer, a MEMS gyro uses masses supported by springs and capacitive
deflection sensors. Unlike an accelerometer, the masses in a gyro are forced to constantly
vibrate. Because of this motion, when the gyro is rotated, the masses experience “Coriolis
forces” that deflect the nominal vibration relative to a gyro-fixed frame (see Figure 21.14 for
an explanation of Coriolis forces). These Coriolis effects are proportional to the rotation rate.
The masses and capacitance sensors are physically configured so that the differential
capacitance change is zero if deflection is caused by a linear acceleration of the gyro, ensuring
that only deflections due to angular velocity are measured (Figure 21.15).

The STMicroelectronics L3GD20H is a three-axis gyro with a user-selectable full-scale range
of up to ±2000 degrees/s in each of the three axes. Data is transmitted by I2C or SPI.

21.5.3 MEMS IMU

An IMU combines a gyro and an accelerometer, and optionally a magnetometer and/or a
barometric pressure sensor. The barometer allows approximate altitude readings while the
magnetometer allows sensing the orientation of the Earth’s magnetic field.

The primary goal of an IMU is to track the 3D position and orientation of a rigid body in time
without using any external references. For example, if the body begins at rest, the
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Figure 21.14
The Coriolis effect, illustrated by an xyz frame rotating with positive angular velocity about the z-axis
out of the page. The constant angular velocity is written in vector form as ω = (0, 0, ωz). (a) Viewed

in a stationary frame fixed to the page, a point mass m moves at a constant velocity to the right
while the gray frame rotates. The frame’s angle and the mass are shown in black at a specific instant
in time. (b) Viewed by an observer in the non-inertial rotating frame, the velocity of the point mass
does not appear constant. Instead, the mass follows a spiral trajectory. The mass is shown in black
at the same instant as in (a). In the coordinates of the rotating frame, the acceleration of the point
mass is a = −2ω × v, where v is the velocity vector of the mass as viewed from the rotating frame,
and ω in the non-inertial frame is the same as in the inertial frame. The “Coriolis force” is simply
ma = −2mω × v. This is not a true force on the mass; the apparent acceleration of the mass is a

result of observing its motion from a rotating frame.
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Figure 21.15
A schematic of a one-axis MEMS gyro. The two masses are oscillated opposite each other in the
x-direction. When one is moving with ẋ > 0, the other is moving with ẋ < 0. If the gyro is rotated

with a positive angular velocity about the z-axis, the masses experience equal and opposite “Coriolis
forces” in the ±y direction. If the two masses are currently moving outward (black arrows), the

masses experience accelerations as indicated by the corresponding black acceleration arrows; if the
two masses are currently moving inward (gray arrows), the masses experience accelerations in the

directions of the corresponding gray acceleration arrows.

accelerometer can use the gravitational field to determine the orientation of the body. There is
no way for an IMU to determine the initial x-y-z position of the body,2 so only relative motion
can be estimated. When the body begins to move, it must experience either linear
accelerations, angular velocities, or both. Angular velocity can be numerically integrated by

2 The z position can be approximately measured by a barometer.
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microcontroller software to estimate the orientation of the body, and linear accelerations can
be integrated to get linear velocities and again to get the net position change from the initial
position. Sophisticated software integrators exist; they typically employ extended Kalman
filters.

Because of sensor errors and errors due to numerical integration, estimates of linear velocity
and position tend to accumulate error over time. These errors can be mitigated by occasionally
referencing an external reference such as GPS. IMUs allow systems that rely on GPS to
continue functioning when GPS is briefly unavailable.

An IMU can consist of a PCB with separate accelerometer and gyro ICs; a single IC
incorporating both an accelerometer and a gyro; or a complete integrated solution, including
onboard estimation software. An example IMU is the STMicroelectronics ASM330LXH,
which features a three-axis accelerometer with a user-selectable full scale between ±2g and
±16g and a three-axis gyro with a user-selectable full scale between ±125 and
±2000 degrees/s. It communicates by I2C or SPI.

21.6 Magnetic Field Sensing: Hall Effect Sensors

The Hall effect is a manifestation of the Lorentz force law, which states that a moving charge
carrier in a magnetic field experiences a force if the magnetic field flux lines are not aligned
with the direction of motion. (The Lorentz force law is discussed in more detail in Chapter 25,
as the basis for converting electrical energy to mechanical energy in DC motors.) Current
flowing through a flat, stationary semiconductor plate is deflected by this force until there is a
charge buildup at the edges of the plate that balances the effect of the Lorentz force. The
charge buildup can be measured as a voltage across the plate, transverse to the direction of the
current flow. The magnitude of this Hall voltage is a function of the strength of the magnetic
field and its alignment relative to the current direction.

The Hall effect is used in a great variety of sensors, including 3D magnetic-field-sensing
magnetometers (e.g., for a digital compass or for measuring orientation in a known, artificially
created magnetic field), current sensors, rotary encoders, and angular position sensors for
brushless DC motors (Chapter 29), and sensors that detect proximity to a magnet or
ferromagnetic material. To sense whether a piece of metal is nearby, for example, a sensor can
be designed consisting of a Hall sensor with a magnet fixed closed by. If the sensor comes
close to a piece of metal, the magnet’s magnetic field changes, changing the voltage read by
the Hall sensor.

The Toshiba TCS20DPR is a digital Hall effect switch IC with three pins, for power (e.g.,
3.3 V), GND, and a digital output that reads low when the magnetic flux density exceeds a
limit Bon and high when the flux density drops below Boff, where Bon > Boff. If the flux is
between Boff and Bon, the sensor reading does not change from its previous value. This
hysteresis assures that the output only changes if the magnetic field has changed significantly.
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Figure 21.16
Many motors have a shaft extending on both sides of the motor: one side for a sensor element and

the other side to connect to a gearhead or the load. Here, the orientation of a disk magnet mounted
on one end of the shaft is sensed by the Avago AEAT-6600 magnetic encoder IC. (Image of

AEAT-6600 courtesy of Avago Technologies, avagotech.com.)

The values of Boff and Bon are a few milliTeslas (mT). For reference, the strength of the
Earth’s magnetic field at the Earth’s surface is a bit less than 0.1 mT, while a typical small
magnet at a distance of a centimeter might have a field strength on the order of 100 mT. Thus
the TCS20DPR could be used to test for the presence of a nearby magnet, perhaps on a
moving joint.

Another application of the Hall effect is embodied in the Avago Technologies AEAT-6600
angular magnetic encoder IC (Figure 21.16). A diametrically magnetized two-pole disk
magnet is mounted on a rotating shaft directly above the IC. The AEAT-6600 is capable of
sensing the orientation of the magnet with 16-bit resolution, or 65,536 unique angles. The
orientation can be communicated in several ways: as incremental encoder A/B/I signals; as
three Hall sensor signals for brushless DC motors (Chapter 29); as a value encoded in the duty
cycle of a PWM signal; or as a 16-bit position using asynchronous serial communication.

21.7 Distance

Inexpensive ultrasonic and infrared ranging sensors can sense the distance to nearby surfaces,
from distances of a few centimeters to a few meters. The HC-SR04 ultrasonic sensor and the
Sharp GP2Y0A60SZ are two such sensors (Figure 21.17).

The HC-SR04 has four pins: Vcc (powered by 5 V), GND, Trigger input, and Echo output.
When the HC-SR04 receives a 10 µs high pulse on the Trigger input, its ultrasonic transmitter
emits a brief burst of 40 kHz ultrasonic pulses. The time until the receiver hears the echo,
together with the speed of sound (approximately 340 m/s in dry air at room temperature at sea
level), is used to determine the distance to the nearby surface. A digital high pulse is created
on the Echo output for a time proportional to the distance to the surface, where the distance in
centimeters equals approximately the duration of the pulse in microseconds divided by 58.3

The sensor works best when the reflecting surface is approximately parallel with, and directly
in front of, the face of the HC-SR04, and large enough to generate a good reflection. The

3 A pulse of over 30 ms indicates that no reflection was detected.
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PSD PSD

Figure 21.17
(Left) The HC-SR04 ultrasonic distance sensor. (Right) The Sharp GP2Y0A60SZ infrared distance

sensor detects distance using a position-sensitive detector to triangulate the distance to the reflective
surface.

HC-SR04 may also detect surfaces not parallel to the face of the HC-SR04, and up to
20 degrees off the central axis of the emitter/receiver. Under ideal conditions, the HC-SR04’s
distance readings can be accurate to up to about 1 cm.

The Sharp GP2Y0A60SZ consists of an infrared beam emitter and a position-sensitive
detector (PSD). The emitted IR beam is reflected by the sensed surface and detected by the
PSD. The PSD uses the photovoltaic effect, also used by photodiodes and phototransistors, to
measure the linear position of the reflected spot of light (see Figure 21.17). The PSD output is
returned as an analog voltage, updated at approximately 60 Hz, and distance is calculated by
triangulation. The GP2Y0A60SZ is sensitive to ranges between 10 and 150 cm.

21.8 Force

A force sensor is used to sense the force transmitted through a body. For example, a robot arm
may have a force-torque sensor between the arm and its gripper, to sense the mass of the
object being grasped. Such a sensor actually senses the force in three axes (x, y, and z) as well
as the torque about the three axes. Digital scales also employ force sensors.

Forces are commonly measured using strain gauges. A strain gauge is a resistor whose
resistance changes as it is stretched or compressed. For example, consider a resistive, slightly
flexible rod, with current flowing from one end to the other. As the rod is compressed, it
becomes shorter and fatter, and resistance decreases. As it is stretched, it becomes longer and
thinner, and resistance increases (Figure 21.18).

A typical strain gauge, such as the Vishay strain gauge in Figure 21.18, consists of a metallic
foil resistor mounted on a flexible insulating backing. When glued to a (typically metallic)
substrate, the change in resistance measures the strain (compression or stretching) of the
underlying substrate. The stiffness properties of the substrate are then used to estimate the
forces that the substrate is experiencing. The substrate is typically quite stiff, as flexibility is
generally an undesired property in a force sensor, so strains tend to be quite small. To sense
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Figure 21.18
(Left) The principle behind a strain gauge, modeled here as a compressible/extensible rod:

compression reduces the resistance and extension increases the resistance. (Right) A closeup of a
Vishay metallic foil strain gauge. The long and thin resistor is patterned to accentuate the resistance
change due to small strains. The large solder pads on the right are the ends of the resistor. (Image

courtesy of Micro-Measurements, a brand of Vishay Precision Group, vpgsensors.com.)
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Figure 21.19
A Wheatstone bridge to sense the change in resistance of a strain gauge, whose nominal resistance is

R. The small sensed voltage Vs is usually amplified by an instrumentation amplifier.

the small resistance change, a Wheatstone bridge (Figure 21.19) is often used in conjunction
with an instrumentation amplifier (Appendix B.4). Because of the differential nature of the
sensed voltage Vs, the reading is relatively immune to variations in supply voltage and effects
of resistance changes due to temperature.

Working with strain gauges is a bit of an art. For example, forces in different directions will
affect the reading of a single strain gauge. For this reason, the design of the shape of the
substrate, and therefore its stiffness in different directions, is quite important. It is also
common to use multiple strain gauges, for example two strain gauges at right angles to each
other, to better identify the direction of the force. Finally, the output of a set of strain gauges
must be carefully calibrated by applying known loads to the force sensor and fitting a mapping
between sensor readings and applied forces.

Rather than gluing your own strain gauges, you are more likely to buy an integrated load cell
including the substrate, strain gauge(s), and Wheatstone bridge(s). Load cells come in
single-axis and multi-axis versions, up to a full six axes (forces and torques about three
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Figure 21.20
A one-axis load cell. The metal substrate is shaped to achieve the desired force sensitivity.

orthogonal axes). Professional load cells can cost several thousand dollars, but inexpensive
one- and two-axis load cells are available from manufacturers of load cells for consumer
digital scales (Figure 21.20). These load cells typically integrate the Wheatstone bridge but
require you to supply your own instrumentation amplifier. Vendors include seeedstudio.com
and elane.net.

A much more flexible force-sensitive resistor is the Flex Sensor from Spectra Symbol. Flex
Sensors are flexible strips with the resistor printed on one side in conductive ink. As the strip
is bent in the other direction, by up to 180 degrees, the resistance increases up to twice its
original value.

21.9 Temperature

Thermistors are resistors whose resistances vary significantly with temperature, and they
come in two types: NTC (negative temperature coefficient) and PTC (positive temperature
coefficient). An example NTC thermistor is the TDK B57164K103J (Figure 21.21) which has
a nominal resistance of 10 k� at 25◦ C, rising to 35.6 k� at 0◦ C and dropping to 549 � at
100◦ C.

While the resistance exhibited by the B57164K103J is nonlinear with respect to temperature
in Celsius, the Analog Devices TMP37 is designed to produce an analog voltage proportional
to the temperature in Celsius. The three pins of the TMP37 in Figure 21.21 are for power (e.g.,
3.3 V), GND, and the output voltage, 20 mV/degree Celsius for the range 5-100◦ C, with a
typical accuracy of ±1◦ C.
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Figure 21.21
(Left) The TDK B57164K103J thermistor. (Right) The Analog Devices TMP37 temperature sensor.

(Images courtesy of Digi-Key Electronics, digikey.com.)

The B57164K103J and the TMP37 each cost approximately 1 USD. To measure temperatures
down to −200◦ C and up to 1000◦ C and higher, a more expensive thermocouple and
thermocouple amplifier can be used.

21.10 Current

Two common methods for measuring the current flowing through a wire are to (1) use a Hall
effect sensor and (2) put a low-resistance resistor in series with the wire and measure the
voltage across the resistor. We consider the latter case first.

21.10.1 Current-Sense Resistor and Amplifier

To measure current, a current-sensing resistor can be placed in series with it. Current flowing
through this resistor creates a voltage drop across it, which is then measured. To have
minimum effect on the current, the sensing resistance should be small. For good accuracy, the
resistor should have a tight tolerance on its resistance, and the resistor’s power rating should
be high enough to allow it to survive the largest current that can flow through it. For example,
a 15 m� resistor used on a wire that may carry up to 5 A should be rated for at least
(5 A)2 0.015 � = 0.375 W to ensure that it will not burn up.

The voltage across a current-sense resistor is intended to be small, e.g.,
5 A × 0.015 � = 0.075 V for 5 A through a 15 m� resistor. A specialized current-sense
amplifier chip can be used to turn this small signal into a signal usable by a microcontroller.
One such chip is the Maxim Integrated MAX9918 current-sense amplifier (Figure 21.22). The
voltage across the current-sense resistor is registered by pins RS+ and RS−. The analog
output voltage OUT is given by
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Figure 21.22
Top: Wiring the MAX9918 current-sense amplifier. Bottom: Effective internal circuit, showing how

the R1 and R2 resistors are used to set the gain of a noninverting amplifier.

OUT=G* (RS+ –RS-) +REFIN

where the gain G is set by the external feedback resistors R1 and R2 as G = 1 + (R2/R1). To
implement this equation, the chip uses a noninverting instrumentation amplifier along with a
level-shifting circuit (Figure 21.22).

The circuit shows REFIN as 1.65 V, so that zero current through the sense resistor reads as
1.65 V at OUT. This offset voltage allows OUT voltages less than 1.65 V to represent negative
currents. The R3 voltage divider resistors feeding the reference voltage REFIN should be
relatively small, perhaps a few hundred ohms, to prevent small currents in the feedback resistor
network from affecting REFIN.4 Lowering R3 further would waste power unnecessarily.

The gain G should be chosen so that the maximum expected current gives the maximum
voltage at the output. For example, if the maximum expected current is 2 A, then the
maximum expected voltage across the 15 m� resistor is ±0.03 V. To use the full resolution of
the PIC32’s ADC, this should map to ±1.65 V, meaning G= 1.65 V/0.03 V= 55. Then a
current of 2 A reads as 3.3 V at OUT and a current of −2 A reads as 0 V. The feedback

4 Ideally the voltage reference to REFIN would be from a lower-impedance source, like a buffered output, but here
we are trying to keep the component count down.



Sensors 339

resistors R1 and R2 should be relatively high resistance, so as not to load the REFIN voltage
divider. See, for example, Exercise 13 of Chapter 27.

One common application of a current sensor is to sense the current flowing through a motor.
Since motors are typically driven by a rapidly switching pulse-width modulated voltage
(Chapter 27), the current through the motor may also be rapidly changing. We are less
interested in this fast variation at the PWM frequency (typically tens of kHz), and more
interested in the time-averaged current over several PWM cycles. One way to approximate this
time-averaged current is by low-pass RC filtering the sensor output (Appendix B.2.2).5 A
good choice for the RC time constant would give a filter cutoff frequency fc = 1/(2πRC) of a
few hundred Hz, approximately 100 times less than a typical PWM frequency. The filter,
therefore, attenuates most of the variation due to the PWM without making current sensing
overly sluggish.

21.10.2 Hall Effect Current Sensor

The Allegro ACS711 is a Hall effect-based current sensor. The current is passed into the IP+
pins of the IC and back out the IP− pins. The internal conduction path generates a magnetic
field which is sensed by the internal Hall effect sensor. At 0 A current, the ACS711 output is
half of the supply voltage (e.g., 3.3 V/2 = 1.65 V). The output voltage increases (decreases)
proportionally with the positive (negative) current flowing into the ACS711 with a constant of
proportionality of 45, 55, 90, or 110 mV/A, depending on the specific ACS711 model number.
Like the output of the MAX9918, this analog output can be sent to a PIC32 analog input.

21.11 GPS

For well under 100 USD, you can buy a GPS receiver that listens to satellites in Medium Earth
Orbit at an altitude of approximately 20,200 km. GPS satellites carry precise atomic clocks
that are regularly synchronized with Earth-based clocks. GPS satellites continuously
broadcast their time and their 3D location, as determined in communication with Earth-based
stations. If a GPS receiver is able to receive transmissions from at least four satellites, then the
difference between the satellites’ transmission times and their relative arrival times, along
with knowledge of the speed of light, can be used to calculate the receiver’s latitude,
longitude, and altitude.

Many GPS receivers are on the market. It is common to communicate with GPS receivers via
UART or USB.

5 An even better solution would be a high-impedance input active filter, using an op-amp.
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21.12 Exercises

For any of the sensors described in this chapter, or any other sensor, get the data sheet for the
sensor and understand the key sensor specifications; design and build a circuit to interface it to
your PIC32; create a library consisting of a header file and a C file that gives the user access to
the main sensor functions; write a demo program that uses that library; and calibrate or test
your sensor under different conditions and report your results to show that the sensor works as
expected.
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Digital Signal Processing

We have already used RC filters to low-pass-filter high-frequency PWM signals, creating
analog output signals. Filters have many other uses: for example, suppressing high-frequency
or 60 Hz electrical noise, extracting high-frequency components from change-sensitive
sensors, and integrating or differentiating a signal. If the signal is an analog voltage, these
filters can be implemented with resistors, capacitors, and op amps (Appendix B).

Filters can also be implemented in software. In this case, the signal is first converted to digital
form, perhaps using an analog-to-digital converter to sample an analog signal at fixed time
increments. Once in this form, a digital filter can be used to difference or integrate the signal,
or to suppress, enhance, or extract different frequency components in the signal. Digital filters
offer advantages over their analog electronic counterparts:

• No need for extra external components, such as resistors, capacitors, and op amps.
• Tremendous flexibility in the filter design. Filters with excellent properties can be

implemented very easily in software.
• The ability to operate on signals that do not originate from analog voltages.

Digital filtering is one example of digital signal processing (DSP). We start this chapter by
providing some background on sampled signal representation. We then provide an
introduction to the fast Fourier transform (FFT), which can be used to decompose a digital
signal into its frequency components. The FFT is among the most important and heavily used
algorithms in video, audio, and many other signal processing and control applications. We
then discuss a class of digital filters called finite impulse response (FIR) filters, which
calculate their output values as weighted sums of their past input samples. Next we briefly
describe infinite impulse response (IIR) filters, which calculate their output as weighted sums
of their past inputs and outputs. We also discuss FFT-based filters. Finally we conclude with
sample code for DSP on a PIC32.

This chapter provides a brief introduction and some practical hints on how to use FFTs, FIR
filters, and IIR filters. We skip most of the mathematical underpinnings, which are covered in
books and courses focusing solely on signal processing.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00022-6
Copyright © 2016 Elsevier Inc. All rights reserved. 341
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22.1 Sampled Signals and Aliasing

Let x(t) be a periodic signal that varies as a function of (continuous) time with period T
(x(t) = x(t + T)), and therefore frequency f = 1/T . A periodic signal x(T) can be written as
the sum of a DC (constant) component and an infinite sequence of sinusoids at frequencies
f , 2f , 3f , etc.:

x(t) = A0 +
∞∑
m=1

Am sin(2πmft + φm). (22.1)

Thus the T-periodic signal x(t) can be uniquely represented by the amplitudes A0,A1, . . . and
the phases φ1,φ2, . . . of the component sinusoids. These amplitudes and phases form the
frequency domain representation of x(t).

An example is a square wave signal that swings between +1 and −1 at frequency f and 50%
duty cycle. The Fourier series that creates this signal is given by Am = 0 for even m and
Am = 4/(mπ) for odd m, with all phases φm = 0. Figure 22.1 illustrates the first four
components of the square wave.

The first step in analyzing an analog signal using DSP is to sample the continuous-time signal
x(t) at time intervals Ts (sampling frequency fs = 1/Ts), yielding N samples
x(n) ≡ x(nTs) = x(t) for n = 0, 1, 2, . . . ,N − 1, as shown in Figure 22.2. The sampling
process also quantizes the signal; for example, the PIC32’s 10-bit ADC module converts a
continuous voltage to one of 1024 levels. While quantization is an important consideration in
DSP, in this chapter we ignore quantization effects and assume that x(n) can take arbitrary real
values.

Suppose the original analog input signal is a sinusoid

x(t) = A sin(2π ft + φ),

(4/p) sin(2pft) +
(4/(3p)) sin(6pft) +
(4/(5p)) sin(10pft)  +
(4/(7p)) sin(14pft) 

(4/p) sin(2pft) +
(4/(3p)) sin(6pft) +
(4/(5p)) sin(10pft)  

(4/p) sin(2pft) +
(4/(3p)) sin(6pft) 

(4/p) sin(2pft) 

Figure 22.1
An illustration of the sum of the first four nonzero frequency components of the Fourier series of

a square wave. The sum converges to the square wave as higher frequency components are included
in the sum.
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Sampling
x(t) x(n)

Figure 22.2
The sampling module converts the continuous-time signal x(t) to a discrete-time signal x(n).

Ts = 1/fs

fs / 2 – Δ fs / 2 – Δ fs / 2 + Δ

Ts = 1/fs

(a) (b)

Figure 22.3
(a) The underlying sinusoid x(t) with frequency f = fs/2 − �, � > 0, can be reconstructed from its

samples x(n), shown as circles. (b) An input sinusoid of frequency f = fs/2 + �, however, appears to
be a signal of frequency f = fs/2 − � with a different phase.

where f is the frequency, T = 1/f is the period, A is the amplitude, and φ is the phase. Given
samples x(n) taken at the sampling frequency fs, and knowing the input is a sinusoid, it is
possible to use the samples to uniquely determine A, f , and φ of the underlying signal,
provided f is less than fs/2. As we increase the signal frequency f beyond fs/2, however,
something interesting happens, as illustrated in Figure 22.3. The samples of a signal with
frequency f1 = fs/2 + �,� > 0, with phase φ1, are indistinguishable from the samples of a
signal with lower frequency f2 = fs/2 − � with a different phase φ2. For example, for
� = fs/2, an input signal of frequency f1 = fs/2 + � = fs looks the same as a constant (DC)
input signal (f2 = fs/2 − � = 0), because our once-per-cycle sampling returns the same value
each time.

The phenomenon of signals of frequency greater than fs/2 “posing” as signals of frequency
between 0 and fs/2 is called aliasing. The frequency fs/2, the highest frequency we can
uniquely represent with a discrete-time signal, is known as the Nyquist frequency fN . Because
we cannot distinguish higher-frequency signals from lower-frequency signals, we assume that
all input frequencies are in the range [0, fN]. If the sampled signal is obtained from an analog
voltage, it is common to put an analog electronic low-pass anti-aliasing filter before the
sampler to remove frequency components greater than fN .

Aliasing is familiar from watching a low-frame-rate video of a spinning wheel. Your eyes
track a mark on the wheel as it speeds up at a constant rate, and initially you see the wheel
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spinning forward faster and faster. In other words, the wheel appears to have an increasingly
positive rotational frequency. As the wheel continues to accelerate, just after the point where
the video camera captures only two images per revolution, the wheel begins to appear to be
rotating backwards at a high speed (rotating with a large negative rotational frequency). As its
actual forward speed increases further, the apparent negative speed begins to slow (the
negative rotational frequency grows toward zero), until eventually the wheel appears to be at
rest again (zero frequency) when the camera takes exactly one image per revolution.

22.2 The Discrete Fourier Transform

To design digital filters, it is important to understand the frequency domain representation of a
digital signal. This representation allows us to see the amount of signal present at different
frequencies, and to assess the performance of filters designed to suppress signals or noise at
unwanted frequencies.

To find the frequency domain representation of an N-sample signal x(n), n = 0, . . . ,N − 1, we
use the discrete Fourier transform (DFT) of x. As we will see, the DFT allows us to calculate
the frequency domain representation of the N-periodic signal that repeats the same N samples
infinitely. Assuming N is even, this representation is given by N/2 sinusoid phases φm, where
m = 1 . . .N/2, and N/2 + 1 amplitudes: the DC amplitude A0 and the sinusoidal amplitudes
Am. The frequencies of the sinusoids are mf = mfs/N in (22.1). The spacing between
frequencies represented by the Am and φm is fs/N = 1/(NTs)—the more samples N, the higher
the frequency resolution.

The DFT X(k), k = 0, . . . ,N − 1, of x(n), n = 0, . . . ,N − 1, is given by

X(k) =
N−1∑
n=0

x(n)e−j2πkn/N , k = 0, . . . ,N − 1. (22.2)

Considering that e−j2πkn/N = cos(2πkn/N) − j sin(2πkn/N), generally the X(k) are complex
numbers. Additionally, the form of (22.2) shows that X(N/2 + �), where
� ∈ {1, 2, . . . ,N/2 − 1}, is the complex conjugate of X(N/2 − �). In particular, this means
that their magnitudes are equal, |X(N/2 − �)| = |X(N/2 + �)|.
Without going into details, the normalized “frequency” k/N associated with the sinusoids in
X(k) represents the actual frequency kfs/N. Thus X(N/2) is associated with the Nyquist
frequency fN = fs/2. Higher frequencies (k > N/2) are equivalent to negative frequencies
(k − N)fs/N, as described in the spinning wheel aliasing analogy.

The X(k) contain all the information we need to find the Am and φm frequency domain
representation of the sampled signal x. For a given X(k) = a+ bj, the magnitude
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|X(k)| = √
a2 + b2 corresponds to N times the magnitude of the frequency component at

fsk/N, and the phase is given by the angle of X(k) in the complex plane, i.e., the two-argument
arctangent atan2(b, a). In this chapter we focus only on the amplitudes of the frequency
components, ignoring the phase, since the phase is essentially random when the amplitude√
a2 + b2 is near zero.

Because the |X(k)| represent the magnitudes as a component at DC (|X(0)|), a component at
the Nyquist frequency fN (|X(N/2)|), and equal-magnitude complex conjugate pairs X(k) for
all other k, the Am can be calculated as

A0 = |X(0)|/N, (22.3)

AN/2 = |X(N/2)|/N, (22.4)

Am = 2|X(m)|/N, for all m = 1, . . . ,N/2 − 1, (22.5)

where the frequency corresponding to Am is mfs/N.

22.2.1 The Fast Fourier Transform

The Fast Fourier Transform (FFT) refers to one of several methods for efficiently calculating
the DFT. Many implementations of the FFT require that N be a power of two. If we have a
number of samples that is not a power of two, we can simply “pad” the signal with “virtual”
samples of value zero at the end. This process is called “zero padding.” For example, if we
have 1000 samples, we can pad the signal with 24 zeros to reach 210 = 1024 samples.

For example, assume an underlying analog signal

x(t) = 0.5 + sin(2π(20 Hz)t + π/4) + 0.5 sin(2π(200 Hz)t + π/2)

with components at DC, 20 Hz, and 200 Hz. We collect 1000 samples at fs = 1 kHz (0.001 s
intervals) and zero pad to get N = 1024. The signal and its FFT magnitude plot is shown in
Figure 22.4. The magnitude components are spaced at frequency intervals of fs/N, or
0.9766 Hz. The DC, 20 Hz (0.04 fN), and 200 Hz (0.4 fN) components are clearly visible,
though the numerical procedure has spread the components over several nearby frequencies
since the actual signal frequencies are not represented exactly as mfs/N for any integer m.

The mathematics of the DFT (and FFT) implicitly assume that the signal repeats every N
samples. Thus the DFT may have a significant component at the lowest nonzero frequency,
fs/N, even if this frequency is not present in the original signal. This component suggests the
following:

• If the original signal is known to be periodic with frequency f , the N samples should
contain several complete cycles of the signal (as opposed to one or less than one cycle).
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Figure 22.4
(Top) The original sampled signal. (Bottom) The FFT magnitude plot, with a portion of it magnified.

Having many cycles means that the smallest nonzero frequency represented, fs/N, is
much smaller than f , isolating the non-DC signals we care about (at f and higher) from
the lower frequencies that appear due to the finite sampling.

• If the original signal is known to be periodic with frequency f , then, if possible, the
samples should contain an integer number of cycles. In this case, there should be very
little magnitude at the lowest nonzero frequency fs/N.

• If the original signal is not periodic, zero padding can be used to isolate the lowest
nonzero frequency component of the repeated signal from fs/N.
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22.2.2 The FFT in MATLAB

Given an even number of samples N in a row vector x = [x(1) . . . x(N)] in MATLAB (note
the index starts at 1 in MATLAB), the command

X = fft(x);

returns an N-vector X = [X(1) . . . X(N)] of complex numbers corresponding to the
amplitude and phase at different frequencies. Let us try an FFT of N = 200 samples of a 50%
duty cycle square wave, where each period consists of 10 samples equal to 2 and 10 samples
equal to 0 (i.e., the square wave of Figure 22.1 plus a DC offset of 1). The frequency of the
square wave is fs/20, and our entire sampled signal consists of 10 full cycles. According to
Figure 22.1, the continuous-time square wave consists of frequency components at fs/20,
3fs/20, 5fs/20, 7fs/20, etc. Thus we expect the frequency domain magnitude representation of
the sampled square wave to consist of the DC component and nonzero components at these
frequencies.

Let us build the signal and plot it (Figure 22.5(a)):

x=0; % clear any array that might already be in x
x(1:10) = 2;
x(11:20)= 0;
x = [x x x x x x x x x x];
N = length(x);
plot(x,’Marker’,’o’);
axis([-5 205 -0.1 2.1]);

Now let us plot the FFT amplitude plot, using the procedure described in Section 22.2:

plotFFT(x);

This code uses our custom MATLAB function plotFFT:

Code Sample 22.1 plotFFT.m. Plotting the Single-Sided FFT Magnitude Plot of a
Sampled Signal x with an Even Number of Samples.

function plotFFT(x)

if mod(length(x),2) == 1 % x should have an even number of samples
x = [x 0]; % if not, pad with a zero

end
N = length(x);
X = fft(x);
mag(1) = abs(X(1))/N; % DC component
mag(N/2+1) = abs(X(N/2+1))/N; % Nyquist frequency component
mag(2:N/2) = 2*abs(X(2:N/2))/N; % all other frequency components
freqs = linspace(0, 1, N/2+1); % make x-axis as fraction of Nyquist freq
stem(freqs, mag); % plot the FFT magnitude plot
axis([-0.05 1.05 -0.1*max(mag) 1.1*max(mag)]);
xlabel(’Frequency (as fraction of Nyquist frequency)’);

plotFFT.m
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ylabel(’Magnitude’);
title(’Single-Sided FFT Magnitude’);
set(gca,’FontSize’,18);

Figure 22.5 shows the original signal and the single-sided FFT magnitude plot. Notice that
the FFT very clearly picks out the frequency components at DC, 0.1fN , 0.3fN , 0.5fN , 0.7fN ,
and 0.9fN .
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Figure 22.5
(a) The original sampled signal. (b) The single-sided FFT magnitude plot with frequencies expressed

as a fraction of the Nyquist frequency.
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FFT with N = 2n

For efficiency reasons, the MIPS PIC32 DSP code only performs FFTs on sampled signals
that have a power-of-2 length. Let us increase the number of samples with MATLAB from
200 to the next highest power of 2, 28 = 256. We can either pad the original x(k) with 56
zeros at the end, or we can take more samples.

Let us try the zero-padding option first:

x = 0;
x(1:10) = 2;
x(11:20)= 0;
x = [x x x x x x x x x x]; % get the signal samples
N = 2ˆnextpow2(length(x)); % compute the number of zeros to pad
xpad = [x zeros(1,N-length(x))]; % add the zero padding
plotFFT(xpad);

And now if the signal were sampled 256 times in the first place:

x = 0;
x(1:10) = 2;
x(11:20)= 0;
x = [x x x x x x x x x x x x 2*ones(1,10) zeros(1,6)];
plotFFT(x);

The results are plotted in Figure 22.6. The frequency components are still visible, though the
results are not as clear as in Figure 22.5. A major reason for the lower quality plot is that the
signal frequencies 0.1fN , 0.3fN , etc., are not exactly represented in the FFT, as they were
before. The frequency intervals are now fs/256, not fs/200. As a result, the FFT spreads the
original frequency components across nearby frequencies rather than concentrating them in
spikes at exact frequencies. This kind of spread is typical in most applications, as it is unlikely
that the original signal will have component frequencies exactly at frequencies of the form
mfs/N.

22.2.3 The Inverse Fast Fourier Transform

Given the frequency domain representation X(k) obtained from X = fft(x), the inverse FFT
uses the FFT algorithm to recover the original time-domain signal x(n). In MATLAB, this is
the procedure:

N = length(x);
X = fft(x);
xrecovered = fft(conj(X)/N);
plot(real(xrecovered));

The inverse FFT is accomplished by applying fft to the complex conjugate of the frequency
representation X (the imaginary components of all entries are multiplied by −1), scaled by 1/N.
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Figure 22.6
(Top) The FFT of the 200-sample square wave signal with 56 zeros padded. (Bottom) The FFT of the

256-sample square wave signal.

The vector xrecovered is equal to the original x up to numerical errors, so its entries have
essentially zero imaginary components. The real operation returns only the real components,
ensuring that the imaginary components are exactly zero.

22.3 Finite Impulse Response (FIR) Digital Filters

Now that we understand frequency domain representations of sampled signals, we turn our
attention to filtering those signals (Figure 22.7). A finite impulse response (FIR) filter
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x(n) z(n)
Digital filter. . . . . . . . . . . .

Figure 22.7
A digital filter produces filtered output z(n) based on the inputs x(n).

produces a filtered signal z(n) by multiplying the P+ 1 current and past inputs
x(n− j), j = 0 . . .P, by filter coefficients bj and adding:

z(n) =
P∑
j=0

bjx(n− j).

Such filters can be used for several operations, such as differencing a signal or suppressing
low-frequency or high-frequency components. For example, if P = 1 and we choose b0 = 1
and b1 = −1, then

z(n) = x(n) − x(n− 1),

i.e., the output of the filter at time n is the difference between the input at time n and the input
at time n− 1. This differencing filter in discrete time is similar to a derivative filter in
continuous time.

Since FIR filtering is a linear operation on the samples, filters in series can be performed in
any order. For example, a differencing filter followed by a low-pass filter gives equivalent
output to the low-pass filter followed by the differencing filter.

An FIR filter has P+ 1 coefficients, and P is called the order of the filter. The filter
coefficients are directly evident in the impulse response, which is the response z(n) to a unit
impulse δ(n), where

δ(n) =
{

1 for n = 0
0 otherwise.

The output is simply z(0) = b0, z(1) = b1, z(2) = b2, etc. The impulse response is typically
written as h(k).

Any input signal x can be represented as the sum of scaled and time-shifted impulses. For
example,

x = 3δ(n) − 2δ(n− 2)

is a signal that has value 3 at time n = 0 and −2 at time n = 2 (Figure 22.8(left)). Because an
FIR filter is linear, the output is simply the sum of the scaled and time-shifted impulse
responses,
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Figure 22.8
(Left) The two scaled and time-shifted impulses sum to give the signal x in time. (Left to right) The

filter with coefficients b0 = 3, b1 = 2, b2 = 1 applied to each of the individual and composite
signals. (Right) The response z to the signal x can be obtained by summing the responses z1 and z2

to the individual components of x.
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z = 3h(n) − 2h(n− 2).

For the second-order filter with coefficients b0 = 3, b1 = 2, b2 = 1, for example, the response
to the input x is shown in Figure 22.8(right). When reading these signals, be aware that the
leftmost samples are oldest; for example, the output z(0) happens three timesteps before the
output z(3).

The output z is called the convolution of the input x and the filter’s impulse response h,
commonly written z = x ∗ h. The convolution is obtained by simply summing the scaled and
time-shifted impulse responses corresponding to each sample x(n), as illustrated in Figure 22.8.

An FIR filter response can be calculated using MATLAB’s conv command. We collect the
filter coefficients into the impulse response vector h = b = [b0 b1 b2] = [3 2 1] and the
input into the vector x = [3 0 -2], and then

z = conv(h,x)

produces z = [9 6 -3 -4 -2].

“Finite Impulse Response” filters get their name from the fact that the impulse response goes
to zero in finite time (i.e., there is a finite number of filter coefficients). As a result, for any
input that goes to zero eventually, the response goes to zero eventually. The output of an
“Infinite Impulse Response” filter (Section 22.4) may never go to zero.

A filter is fully characterized by its impulse response. Often it is more convenient to look at
the filter’s frequency response, however. Because the filter is linear, a sinusoidal input will
produce a sinusoidal output, and the filter’s frequency response consists of its
frequency-dependent gain (the ratio of the filter’s output sinusoid amplitude to the input
amplitude) and phase (the shift in the phase of the output sinusoid relative to the input
sinusoid).1 To begin to understand the discrete-time frequency response, we start with the
simplest of FIR filters: the moving average filter.

22.3.1 Moving Average Filter

Suppose we have a sensor signal x(n) that has been corrupted by high-frequency noise
(Figure 22.9). We would like to find the low-frequency signal underneath the noise.

The simplest filter to try is a moving average filter (MAF). A moving average filter calculates
the output z(n) as a running average of the input signals x(n),

z(n) = 1

P+ 1

P∑
j=0

x(n− j), (22.6)

1 See Appendix B.2.2 for related information on frequency response for analog circuits.
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Figure 22.9
The original noisy signal with samples x(n) given by the circles, the signal z(n) resulting from filtering
with a three-point MAF (P = 2), and the signal z(n) from a nine-point MAF (P = 8). The signal gets

smoother and more delayed as the number of samples in the MAF increases.

i.e., the FIR filter coefficients are b0 = b1 = · · · = bP = 1/(P+ 1). The output z(n) is a
smoothed and delayed version of x(n). The more samples P+ 1 we average over, the
smoother and more delayed the output. The delay occurs because the output z(n) is a function
of only the current and previous inputs x(n− j), 0 ≤ j ≤ P (see Figure 22.9).

To find the frequency response of a third-order, four-sample MAF, we test it on some
sinusoidal inputs at different frequencies (Figure 22.10). We find that the phase φ of the
(reconstructed) output sinusoid relative to the input sinusoid, and the ratio G of the amplitude
of their amplitudes, depend on the frequency. For the four test frequencies in Figure 22.10, we
get the following table:

Frequency Gain G Phase φ

0.25fN 0.65 −67.5◦
0.5fN 0 NA

0.67fN 0.25 0◦
fN 0 NA
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Figure 22.10
Testing the frequency response of a four-sample MAF with different input frequencies.

Testing the response at many different frequencies, we can plot the frequency response in
Figure 22.11. Two things to note about the gain plot:

• Gains are usually plotted on a log scale. This allows representation of a much wider range
of gains.

• Gains are often expressed in decibels, which are related to gains by the following
relationship:

MdB = 20 log10G.

So G = 1 corresponds to 0 dB, G = 0.1 corresponds to −20 dB, and G = 0.01
corresponds to −40 dB.
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Figure 22.11
The frequency response of a four-sample MAF. Test frequencies are shown as dotted lines.

Examining Figure 22.11 shows that low frequencies are passed with a gain of G = 1 and no
phase shift. The gain drops monotonically as the frequency increases, until it reaches G = 0
(−∞ dB) at input frequencies f = 0.5fN . (The plot truncates the dip to −∞.) The gain then
begins to rise again, before falling once more to G = 0 at f = fN . The MAF behaves
somewhat like a low-pass filter, but not a very good one; high frequency signals can get
through with gains of 0.25 or more. Still, it works reasonably well as a signal smoother for
input frequencies below 0.5fN .

Given a set of filter coefficients b = [b0 b1 b2 . . .], we can plot the frequency response in
MATLAB using

freqz(b);

Causal vs. acausal filters

A filter is called causal if its output is the result of only current and past inputs, i.e., past
inputs “cause” the current output. Causal filters are the only option for real-time
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implementation. If we are post-processing data, however, we can choose an acausal version of
the filter, where the outputs at time n are a function of past as well as future inputs. Such
acausal filters can eliminate the delay associated with only using past inputs to calculate the
current value. For example, a five-sample MAF which calculates the average of the past two
inputs, the current input, and the next two inputs is acausal.

Zero padding

When a filter is first initialized, there are no past inputs. In this case we can assume the
nonexistent past inputs were all zero. The output transient caused by this assumption will end
at the (P+ 1)th input.

22.3.2 FIR Filters Generally

FIR filters can be used for low-pass filtering, high-pass filtering, bandpass filtering, bandstop
(notch) filtering, and other designs. MATLAB provides many useful functions for filter
design, such as fir1, fdatool, and design. In this section we work with fir1. See the
MATLAB documentation for more details.

A “good” filter is one that

• passes the frequencies we want to keep with gain close to 1,
• highly attenuates the frequencies we do not want, and
• provides a sharp transition in gain between the passed and attenuated frequencies.

The number of filter coefficients increases with the sharpness of the desired transition and the
degree of attenuation needed in the stopped frequencies. This relationship is a general
principle: the sharper the transitions in the frequency domain, the smoother and longer the
impulse response (i.e., more coefficients are needed in the filter). The converse is also true: the
sharper the transition in the impulse response, the smoother the frequency response. We saw
this phenomenon with the moving average filter. It has a sharp transition between filter
coefficients of 0 and 1/(P+ 1), and the resulting frequency response has only slow
transitions.

High-order filters are fine for post-processing data or for non-time-critical applications, but
they may be inappropriate for real-time control because of unacceptable delay.

The MATLAB filter design function fir1 takes the order of the filter, the frequencies you
would like to pass or stop (expressed as a fraction of the Nyquist frequency), and other
options, and returns a list of filter coefficients. MATLAB considers the cutoff frequency to be
where the gain is 0.5 (−6 dB). Here are some examples using fir1:
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b = fir1(10,0.2); % 10th-order, 11-sample LPF with cutoff freq
of 0.2 fN

b = fir1(10,0.2,’high’); % HPF cutting off frequencies below 0.2 fN
b = fir1(150,[0.1 0.2]); % 150th-order bandpass filter with passband 0.1

to 0.2 fN
b = fir1(50,[0.1 0.2],’stop’); % 50th-order bandstop filter with notch at 0.1 to

0.2 fN

You can then plot the frequency response of your designed filter using freqz(b).

If the order of your specified filter is not high enough, you will not be able to meet your design
criteria. For example, if you want a low-pass filter that cuts off frequencies at 0.1 fN , and you
only allow seven coefficients (sixth order),

b = fir1(6,0.1);

you will find that the filter coefficients that MATLAB returns do not achieve your aims.

Examples

In the examples in Figures 22.12–22.19, we work with a 1000-sample signal, with
components at DC, 0.004fN , 0.04fN , and 0.8fN . The original signal x is plotted in Figure 22.12.
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Figure 22.12
The original 1000-sample signal x.
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Figure 22.13
Moving average filter: maf=ones(13,1)/13; freqz(maf); plot(conv(maf,x)). Left: The frequency
response of the 12th-order (13-sample) MAF. Middle: The result of the MAF applied to (convolved
with) the original signal. Since the original signal has 1000 samples, and the MAF has 13 samples,
the filtered signal has 1012 samples. (In general, if two signals of length j and k are convolved with

each other, the result will have length j + k − 1.) This is equivalent to first “padding” the 1000
samples with 12 samples equal to zero on either end (sample numbers −11 to 0, and 1001 to

1012), then applying the 13-sample filter 1012 times, over samples −11 to 1, then −10 to 2, etc.,
up to samples 1000-1012. This zero-padding explains why the signal drops to close to zero at either

end. Right: Zoomed in on the smoothed signal.
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Figure 22.14
lpf=fir1(12,0.2); freqz(lpf); plot(conv(lpf,x)). Left: The frequency response of a

12th-order LPF with cutoff at 0.2fN. Middle: The signal smoothed by the LPF. Right: A zoomed-in
view, showing less high-frequency content than the 12th-order MAF.
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Figure 22.15
lpf=fir1(150,0.01). Left: stem(lpf). The coefficients of a 150th-order FIR LPF with a cutoff at
0.01fN. Middle: freqz(lpf). The frequency response. Right: plot(conv(lpf,x)). The smoothed

signal, where only the 0.004fN and DC components get through.
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Figure 22.16
bpf=fir1(150,[0.02,0.2]). Left: stem(bpf). The coefficients of a 150th-order bandpass filter with

a passband from 0.02fN to 0.2fN. Middle: freqz(bpf). The frequency response. Right:
plot(conv(bpf,x)). The signal consisting mostly of the 0.04fN component, with small DC and

0.004fN components.
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Figure 22.17
hpf=fir1(150,0.5,’high’). Left: stem(hpf). The coefficients of a 150th-order high-pass filter with

frequencies below 0.5fN cut off. Middle: freqz(hpf). The frequency response. Right:
plot(conv(hpf,x)). Zoomed in on the high-passed signal.
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Figure 22.18
A simple differencing (or “velocity”) filter has coefficients b[0] = 1, b[1] = −1, or written in

MATLAB, b = [1 -1]. (Note the order: the coefficient that goes with the most recent input is on
the left.) A differencing filter responds more strongly to signals with larger slopes (i.e., higher

frequency signals) and has zero response to constant (DC) signals. Usually the signal “velocities” we
are interested in, though, are those at low frequency; higher-frequency signals tend to come from
sensing noise. Thus a better filter is probably a differencing filter convolved with a low-pass filter.

Left: b1 = [1 -1]; b2 = conv(b1,fir1(12,0.2)); freqz(b1); hold on; freqz(b2). This plot
shows the frequency response of the differencing filter, as well as a differencing filter convolved with
a 12th-order FIR LPF with cutoff at 0.2fN. At low frequencies, where the signals we are interested in
live, the two filters have the same response. At high frequencies, the simple differencing filter has a
large (unwanted) response, while the other filter attenuates this noise. Middle: plot(conv(b1,x)).
Zoomed in on the signal filtered by the simple difference filter. Right: plot(conv(b2,x)). Zoomed

in on the signal filtered by the difference-plus-LPF.
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Figure 22.19
We can also make a double-differencing (or “acceleration”) filter by taking the difference of two

consecutive difference samples, i.e., convolving two differencing filters. This gives a simple filter with
coefficients [1 -2 1]. This filter amplifies high frequency noise even more than a differencing filter.
A better choice would be to use a filter that is the convolution of two difference-plus-low-pass filters

from the previous example. Left: bvel=[1 -1]; bacc=conv(bvel,bvel);
bvellpf=conv(bvel,fir1(12,0.2)); bacclpf=conv(bvellpf,bvellpf); freqz(bacc); hold
on; freqz(bacclpf). The low-frequency response of the two filters is identical, while the low-pass
version attenuates high frequency noise. Middle: plot(conv(bacc,x)). Zoomed in on the second

derivative of the signal, according to the simple acceleration filter. Right: plot(conv(bacclpf,x)).
Zoomed in on the second derivative of the signal, according to the low-passed version of the

acceleration filter.

22.4 Infinite Impulse Response (IIR) Digital Filters

The class of infinite impulse response (IIR) filters generalizes FIR filters to the following form:

Q∑
i=0

aiz(n− i) =
P∑
j=0

bjx(n− j),

or, written in a more useful form for us,

z(n) = 1

a0

⎛
⎝ P∑
j=0

bjx(n− j) −
Q∑
i=1

aiz(n− i)

⎞
⎠ , (22.7)

where the output z(n) is a weighted sum of Q past outputs, P past inputs, and the current input.
Some differences between FIR and IIR filters are highlighted below:

• IIR filters may be unstable, that is, their output may persist indefinitely and grow without
bound even if the input is bounded in value and duration. Instability is impossible with
FIR filters.

• IIR filters often use fewer coefficients to achieve the same magnitude response transition
sharpness. Hence they can be more computationally efficient than FIR filters.
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• IIR filters generally have a nonlinear phase response (phase does not change linearly with
frequency, as with most FIR filters). This nonlinearity may or may not be acceptable,
depending on the application. A linear phase response ensures that the time (not phase)
delay associated with signals at all frequencies is the same. A nonlinear phase response,
on the other hand, may cause different time delays at different frequencies, which may
result in unacceptable distortion (e.g., in an audio application).

Because of roundoff errors in computation, an IIR filter that is theoretically stable may be
unstable when implemented directly in the form of (22.7). Because of the possibility of
instability, IIR filters with many coefficients are usually implemented as a cascade of filters
with P = 2 and Q = 2. It is relatively easy to ensure that these low-order filters are stable,
ensuring the stability of the cascade of filters.

Popular IIR digital filters include Chebyshev and Butterworth filters, which include low-pass,
high-pass, bandpass, and bandstop versions. MATLAB offers design tools for these filters;
you can refer to the documentation on cheby1, cheby2, and butter. Given a set of coefficients b
and a defining the IIR filter, the MATLAB command freqz(b,a) plots the frequency response
and filter(b,a,signal) returns the filtered version of signal.

One of the simplest IIR filters is the integrator

z(n) = z(n-1) + x(n)*Ts

where Ts is the sample time. The coefficients are a = [1 -1] and b = [Ts]. The behavior of
the integrator on the sample signal in Figure 22.12 is shown in Figure 22.20.

22.5 FFT-Based Filters

Another option for filtering signals is to first FFT the signal, then set certain frequency
components of the signal to zero, then invert the FFT. Assume we are working with the
256-sample square wave we looked at in Section 22.2.2, and we want to extract only the
component at 0.1fN . First we build the signal and FFT it:

x = 0;
x(1:10) = 2;
x(11:20)= 0;
x = [x x x x x x x x x x x x 2*ones(1,10) zeros(1,6)];
N = length(x);
X = fft(x);

The element X(1) is the DC component, X(2) and X(256) correspond to frequency fs/N, X(3)
and X(255) correspond to frequency 2fs/N, X(4) and X(254) correspond to frequency 3fs/N,
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Figure 22.20
Left: a=[1 -1]; b=[1]; freqz(b,a). Note that the frequency response of the integrator is infinite
to DC signals (the integral of a nonzero constant signal goes to infinity) and low for high frequency

signals. This is opposite of the differencing filter. Right: plot(filter(b,a,x)). The filter
command applies the filter with coefficients b and a to x. This generalizes conv to IIR filters. (We

cannot simply use conv for IIR filters, since the impulse response is not finite.) The upward slope of
the integral is due to the nonzero DC term. We can also see the wiggle due to the 2 Hz term. It is

basically impossible to see the 20 and 400 Hz terms in the signal.

etc., until X(129) corresponds to frequency 128fs/N = fs/2 = fN . So the frequencies we care
about are near index 14 and its counterpart 258 − 14 = 244. To cancel other frequencies, we
can do

halfwidth = 3;
Xfiltered = zeros(1,256);
Xfiltered(14-halfwidth:14+halfwidth) = X(14-halfwidth:14+halfwidth);
Xfiltered(244-halfwidth:244+halfwidth) = X(244-halfwidth:244+halfwidth);
xrecovered = fft(conj(Xfiltered)/N);
plot(real(xrecovered));

The result is the (approximate) sinusoidal component of the square wave at 0.1fN , shown in
Figure 22.21.

This is simple! (Of course the cost is in computing the FFT and inverse FFT.) FFT-based filter
design tools allow you to specify an arbitrary frequency response (e.g., by drawing the
magnitude response) and the size of the filter you are willing to accept, then use an inverse
FFT to find filter coefficients that best match the desired response. The more coefficients you
allow, the closer the approximation.
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Figure 22.21
(Left) The extracted frequencies from the FFT magnitude plot in Figure 22.6. (Right) The FFT filter

output, which is approximately a sinusoid at 0.1fN.

22.6 DSP on the PIC32

MIPS provides a DSP library for the MIPS M4K CPU on the PIC32, including FFT, FIR
filtering, IIR filtering, and other DSP functions, described in Microchip’s “32-Bit Language
Tools Libraries” manual. For efficiency, the code is written in assembly language, optimizing
the number of instructions. It also uses 16- and 32-bit fixed-point numbers to represent values,
unlike MATLAB’s double-precision floating point numbers. Fixed-point math is identical to
integer math, and, as we have seen, integer math is significantly faster than floating point
math. We will revisit fixed-point math soon.

This section presents an example demonstrating FIR filtering and the FFT on the PIC32,
comparing the results to results you get in MATLAB. The MATLAB code generates a
1024-sample square wave as well as a 48-coefficient low-pass FIR filter with a cutoff
frequency at 0.02fN . It sends these to the PIC32, which calculates the FIR-filtered signal, the
FFT of the original signal, and the FFT of the filtered signal, and sends the results back to
MATLAB for plotting. MATLAB also calculates the filtered signal and the FFTs of the
original and filtered signals and compares the results to the PIC32’s results. The results are
indistinguishable (Figure 22.22). MATLAB also prints out the time it takes to do a
1024-sample FFT on the PIC32, about 13 ms.

The code for this example consists of the following files:

PIC32 code

• dsp_fft_fir.c. Communicates with the host and invokes the PIC32 DSP functions in
nudsp.c.

• nudsp.c. Code that calls the MIPS functions.
• nudsp.h. Header file with prototypes for functions in nudsp.c.
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Figure 22.22
(Top) The 1024 samples of the original square wave signal, the MATLAB low-pass-filtered signal,

and the PIC32 low-pass-filtered signal. The results are indistinguishable. (Middle) The MATLAB and
PIC32 FFTs of the original signal. (Bottom) The MATLAB and PIC32 FFTs of their low-pass-filtered

signals. Although it is difficult to see, the FFT results on the two platforms are indistinguishable.

Host computer code. We focus on the MATLAB interface, but we also provide code for
Python.

• sampleFFT.m if you are using MATLAB, or
• sampleFFT.py if you are using Python. Python users need the freely available packages

pyserial (for UART communication), matplotlib (for plotting), numpy (for matrix
operations), and scipy (for DSP).
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The MATLAB client code is given below. The Python code is similar. Load the PIC32
executable, then in MATLAB run sampleFFT to do the test.

Code Sample 22.2 sampleFFT.m. MATLAB Client for FIR and FFT.

% Compute the FFT of a signal and FIR filter the signal in both MATLAB and on the PIC32
% and compare the results
% open the serial port
port =’/dev/tty.usbserial-00001014A’; % modify for your own port

if ˜isempty(instrfind) % closes the port if it was open
fclose(instrfind);
delete(instrfind);

end
fprintf(’Opening serial port %s\n’,port);
ser = serial(port, ’BaudRate’, 230400, ’FlowControl’,’hardware’);
fopen(ser);

% generate the input signal
xp(1:50) = 200;
xp(51:100)= 0;
x = [xp xp xp xp xp xp xp xp xp xp 200*ones(1,24)];

% now, create the FIR filter
Wn = 0.02; % let’s see if we can just get the lowest frequency sinusoid

ord = 47; % ord+1 must be a multiple of 4
fir_coeff = fir1(ord,Wn);

N = length(x);
Y = fft(x); % computer MATLAB’s fft

xfil = filter(fir_coeff,1,x); % filter the signal
Yfil = fft(xfil); % fft the filtered signal

% generate data for FFT plots for the original signal
mag = 2*abs(Y(1:N/2+1))/N;
mag(1) = mag(1)/2;
mag(N/2+1) = mag(N/2+1)/2;

% generate data for FFT plots for the filtered signal
magfil = 2*abs(Yfil(1:N/2+1))/N;
magfil(1) = magfil(1)/2;
magfil(N/2+1) = magfil(N/2+1)/2;

freqs = linspace(0,1,N/2+1);

% send the original signal to the pic32
fprintf(ser,’%d\n’,N); % send the length
for i=1:N

fprintf(ser,’%f\n’,x(i)); % send each sample in the signal
end

% send the fir filter coefficients
fprintf(ser,’%d\n’,length(fir_coeff));
for i=1:length(fir_coeff)

fprintf(ser,’%f\n’,fir_coeff(i));
end

sampleFFT.m
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% now we can read in the values sent from the PIC.
elapsedns = fscanf(ser,’%d’);
disp([’The first 1024-sample FFT took ’,num2str(elapsedns/1000.0),’ microseconds.’]);
Npic = fscanf(ser,’%d’);
data = zeros(Npic,4); % the columns in data are

% original signal, fir filtered, orig fft, fir fft
for i=1:Npic
data(i,:) = fscanf(ser,’%f %f %f %f’);

end

xpic = data(:,1); % original signal from the pic
xfirpic = data(:,2); % fir filtered signal from pic
Xfftpic = data(1:N/2+1,3); % fft signal from the pic
Xfftfir = data(1:N/2+1,4); % fft of filtered signal from the pic

% used to plot the fft pic signals
Xfftpic = 2*abs(Xfftpic);
Xfftpic(1) = Xfftpic(1)/2;
Xfftpic(N/2+1) = Xfftpic(N/2+1)/2;

Xfftfir = 2*abs(Xfftfir);
Xfftfir(1) = Xfftfir(1)/2;
Xfftfir(N/2+1) = Xfftfir(N/2+1)/2;

% now we are ready to plot
subplot(3,1,1);
hold on;
title(’Plot of the original signal and the FIR filtered signal’)
xlabel(’Sample number’)
ylabel(’Amplitude’)
plot(x,’Marker’,’o’);
plot(xfil,’Color’,’red’,’LineWidth’,2);
plot(xfirpic,’o’,’Color’,’black’);
hold off;
legend(’Original Signal’,’MATLAB FIR’, ’PIC FIR’)
axis([-10,1050,-10,210])
set(gca,’FontSize’,18);

subplot(3,1,2);
hold on;
title(’FFTs of the original signal’)
ylabel(’Magnitude’)
xlabel(’Normalized frequency (fraction of Nyquist Frequency)’)
stem(freqs,mag)
stem(freqs,Xfftpic,’Color’,’black’)
legend(’MATLAB FFT’, ’PIC FFT’)
hold off;
set(gca,’FontSize’,18);

subplot(3,1,3);
hold on;
title(’FFTs of the filtered signal’)
ylabel(’Magnitude’)
xlabel(’Normalized frequency (fraction of Nyquist Frequency)’)
stem(freqs,magfil)
stem(freqs,Xfftfir,’Color’,’black’)
legend(’MATLAB FFT’, ’PIC FFT’)
hold off;
set(gca,’FontSize’,18);

fclose(ser);
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The PIC32 code dsp_fft_fir.c contains the main function. It reads the signal and filter
information from MATLAB, invokes functions from our nudsp.{h,c} library to compute the
filtered signal and the FFTs of the original and filtered signals, and sends the data back to the
host for plotting.

Code Sample 22.3 dsp_fft_fir.c. Communicates with the Client and Uses nudsp to
Perform Signal Processing Operations.

#include "NU32.h"
#include "nudsp.h"
// Receives a signal and FIR filter coefficients from the computer.
// filters the signal and ffts the signal and filtered signal, returning the results
// We omit error checking for clarity, but always include it in your own code.

#define SIGNAL_LENGTH 1024
#define FFT_SCALE 10.0
#define FIR_COEFF_SCALE 10.0
#define FIR_SIG_SCALE 10.0
#define NS_PER_TICK 25 // nanoseconds per core clock tick

#define MSG_LEN 128

int main(void) {
char msg[MSG_LEN]; // communication buffer
double fft_orig[SIGNAL_LENGTH] = {}; // fft of the original signal
double fft_fir[SIGNAL_LENGTH] = {}; // fft of the FIR filtered signal
double xfir[SIGNAL_LENGTH] = {}; // the FIR filtered signal
double sig[SIGNAL_LENGTH] = {}; // the signal
double fir[MAX_ORD] = {}; // the FIR filter coefficients
int i = 0;
int slen, clen; // signal and coefficient lengths
int elapsedticks; // duration of FFT in core ticks

NU32_Startup();

while (1) {
// read the signal from the UART.
NU32_ReadUART3(msg, MSG_LEN);
sscanf(msg,"%d",&slen);
for(i = 0; i < slen; ++i) {

NU32_ReadUART3(msg, MSG_LEN);
sscanf(msg,"%f",&sig[i]);

}

// read the filter coefficients from the UART
NU32_ReadUART3(msg,MSG_LEN);
sscanf(msg,"%d", &clen);
for(i = 0; i < clen; ++i) {

NU32_ReadUART3(msg,MSG_LEN);
sscanf(msg,"%f",&fir[i]);

}

// FIR filter the signal
nudsp_fir_1024(xfir, sig, fir, clen, FIR_COEFF_SCALE, FIR_SIG_SCALE);

// FFT the original signal; also time the FFT and send duration in ns
_CP0_SET_COUNT(0);

dsp_fft_fir.c
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nudsp_fft_1024(fft_orig, sig, FFT_SCALE);
elapsedticks = _CP0_GET_COUNT();
sprintf(msg,"%d\r\n",elapsedticks*NS_PER_TICK); // the time in ns
NU32_WriteUART3(msg);
// FFT the FIR signal
nudsp_fft_1024(fft_fir, xfir, FFT_SCALE);

// send the results to the computer
sprintf(msg,"%d\r\n",SIGNAL_LENGTH); // send the length
NU32_WriteUART3(msg);

for (i = 0; i < SIGNAL_LENGTH; ++i) {
sprintf(msg,"%12.6f %12.6f %12.6f %12.6f\r\n",sig[i],xfir[i],fft_orig[i],fft_fir[i]);
NU32_WriteUART3(msg);

}
}
return 0;

}

Code Sample 22.4 nudsp.h. Header File for FIR and FFT of Signals Represented as
double Arrays.

#ifndef NU__DSP__H__
#define NU__DSP__H__
// wraps some dsp library functions making it easier to use them with doubles
// all provided operations assume signal lengths of 1024 elements

#define MAX_ORD 128 // maximum order of the FIR filter

// compute a scaling factor for converting doubles into Q15 numbers
double nudsp_qform_scale(double * din, int len, double div);

// FFT a signal that has 1024 samples
void nudsp_fft_1024(double * dout, double * din, double div);

// FIR filter a signal that has 1024 samples
// arguments are dout (output), din (input), c (FIR coeffs), nc (number of coeffs),
// div_c (coeffs scale factor for Q15), and div_sig (signal scale factor for Q15)
void
nudsp_fir_1024(double *dout,double *din,double *c,int nc,double div_c,double div_sig);

#endif

The code nudsp.c, below, uses the MIPS dsp library to perform signal processing operations
on arrays of type double. The dsp library, however, represents numbers in a fixed-point
fractional format, either Q15 (a 16-bit format) or Q31 (a 32-bit format). The representation is
the same as a two’s complement integer, with the most significant bit corresponding to the
sign, but the values of the bits are interpreted differently. For example, for Q15, bit 14 is the
2−1 column, bit 13 is the 2−2 column, etc., down to bit 0, the 2−15 column (see Table 22.1).
This interpretation means that Q15 can represent fractional values from −1 to 1 − 2−15.

The advantage of a fixed-point format over a floating point format is that all the rules of
integer math apply, allowing fast integer operations. The disadvantage is that it covers a
smaller range of values than floating point numbers with the same number of bits (though with

nudsp.h
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Table 22.1: The fixed-point Q15 representation is equivalent
to the 16-bit two’s complement integer representation, and it
uses the same mathematical operations

Binary int16 Interpretation Q15 Interpretation
0000000000000000 0 0
0000000000000001 1 2−15

0000000000000010 2 2−14

0000000000000011 3 2−14 + 2−15

...
0111111111111111 32,767 1 − 2−15

1000000000000000 −32, 768 −1
1000000000000001 −32, 767 −1 + 2−15

1000000000000010 −32, 766 −1 + 2−14

...
1111111111111111 −1 −2−15

The only difference is that consecutive numbers in Q15 are separated by 2−15,
covering the range −1 to 1 − 2−15, as opposed to the int16 representation,
which has consecutive numbers separated by 1, covering the range −32, 768 to
32, 767.

uniform resolution over the range, unlike floating point numbers). If a signal is represented as
an array of doubles, before using it in a fixed-point computation the signal should be scaled so
that (1) the maximum range of the scaled signal is well less than the fixed-point format’s
range, to allow headroom for additions and subtractions without causing overflow; and (2) to
make sure that there is sufficient resolution in the scaled signal’s representation, avoiding
quantization effects that significantly alter the shape of the signal.

The dsp library defines four data types to hold both real and complex fixed-point Q15 and Q31
numbers: int16, int16c, int32, and int32c, where the number indicates the number of bits in
the representation and the c is added to indicate that the type is a struct with both real (.re)
and imaginary (.im) values. Our code only uses Q15 numbers (int16 and int16c), as they
provide enough precision for our purposes and some dsp functions only accept Q15
arguments. As described above and in Table 22.1, Q15 numbers in the range −1 to 1 − 2−15

can be interpreted as int16 numbers a factor 215 larger. Therefore, in the rest of this section,
we refer only to int16 integers in the range −32, 768 to 32,767.

The function nudsp_qform_scale computes an appropriate scaling factor for a signal, which is
used to convert an array of doubles into an array of int16 integers. The scaling normalizes
the signal by its largest magnitude value, mapping that value to 1/div, where div is a scaling
factor used to provide headroom to prevent overflow. (The sample code dsp_fft_fir.c

chooses div = 10.0 for signals used in the FFT and FIR filters, scaling them to the range
[−0.1, 0.1].) This scaling factor is then multiplied by QFORMAT = 215, which scales the signal
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up to use the range offered by the int16 data type. To convert doubles to int16s we multiply
by the calculated scaling factor, and to convert back to doubles we divide by the scaling factor.

The next function, nudsp_fft_1024, uses the dsp library function mips_fft16 to perform an
FFT on a signal represented as an array of 1024 doubles. First, the signal must be converted
into an array of complex int16 numbers; we use nudsp_qform_scale to compute the scaling
factor. Next we copy the twiddle factors, parameters used in the FFT algorithm, into RAM.
The dsp library (through fftc.h) provides precomputed factors and places them in an
array in flash called fft16c1024; we load them into RAM for greater speed. Finally, we call
mips_fft16 with a buffer for the result of the computation, the source signal, the twiddle
factors, a scratch array, and the log2 of the signal length (the signal length must always be a
power of 2, and here we assume it is 1024). The scratch array just provides extra memory for
the mips_fft16 function to perform temporary calculations. After computing the FFT,
we convert the magnitudes back into doubles, using the scaling factor computed earlier.

The final function, nudsp_fir_1024, applies an FIR filter to a signal represented as an array of
1024 doubles. The first step prior to using the dsp library’s FIR function is to scale the signal
and the coefficients by scale_c and scale_s, respectively, converting them to int16s. After
performing the scaling, we must call mips_fir16_setup to initialize a coefficient buffer that is
twice as long as the actual number of filter coefficients. Finally, the call to mips_fir16

performs the filtering operation. In addition to the input and output buffers and prepared
coefficients, the filter also requires a buffer long enough to hold the last K samples, where K is
the number of filter coefficients. The filter returns its result as int16 numbers. To convert the
result back to doubles, we must divide by the product of the scaling factors of the coefficients
and the signal, because these numbers are multiplied during the filter operation. Since both
scaling factors scale_c and scale_s contain a factor QFORMAT to convert to the int16 range, we
eliminate one of these scaling factors by multiplying by QFORMAT.

Code Sample 22.5 nudsp.c. Implements FIR and FFT Operations for Arrays of Type
double.

#include <math.h> // C standard library math, for sqrt
#include <stdlib.h> // for max
#include <string.h> // for memcpy
#include <dsplib_dsp.h> // for int16, int16c data types and FIR and FFT functions
#include <fftc.h> // for the FFT twiddle factors, stored in flash
#include "nudsp.h"

#define TWIDDLE fft16c1024 // FFT twiddle factors for int16 (Q15), 1024 signal length
#define LOG2N 10 // log base 2 of the length, assumed to be 1024
#define LEN (1 << LOG2N) // the length of the buffer
#define QFORMAT (1 << 15) // multiplication factor to map range (-1,1) to int16 range

// compute the scaling factor to convert an array of doubles to int16 (Q15)
// The scaling is performed so that the largest magnitude number in din
// is mapped to 1/div; thus the divisor gives extra headroom to avoid overflow

nudsp.c
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double nudsp_qform_scale(double * din, int len, double div) {
int i;
double maxm = 0.0;

for (i = 0; i< len; ++i) {
maxm = max(maxm, fabs(din[i]));

}
return (double)QFORMAT/(maxm * div);

}

// Performs an FFT on din (assuming it is 1024 long), returning its magnitude in dout
// dout - pointer to array where answer will be stored
// din - pointer to double array to be analyzed
// div - input scaling factor. max magnitude input is mapped to 1/div

void nudsp_fft_1024(double *dout, double *din, double div)
{

int i = 0;
int16c twiddle[LEN/2];
int16c dest[LEN], src[LEN];
int16c scratch[LEN];
double scale = nudsp_qform_scale(din,LEN,div);

for (i=0; i< LEN; i++) { // convert to int16 (Q15)
src[i].re = (int) (din[i] * scale);
src[i].im = 0;

}
memcpy(twiddle, TWIDDLE, sizeof(twiddle)); // copy the twiddle factors to RAM
mips_fft16(dest, src, twiddle, scratch, LOG2N); // perform FFT
for (i = 0; i < LEN; i++) { // convert the results back to doubles
double re = dest[i].re / scale;
double im = dest[i].im / scale;
dout[i] = sqrt(re*re + im*im);

}
}

// Perform a finite impulse response filter of a signal that is 1024 samples long
// dout - pointer to result array
// din - pointer to input array
// c - pointer to coefficient array
// nc - the number of coefficients
// div_c - for scaling the coefficients
// The maximum magnitude coefficient is mapped to 1/div_c in int16 (Q15)
// div_sig - for scaling the input signal
// The maximum magnitude input is mapped to 1/div_sig in int16 (Q15)
void

nudsp_fir_1024(double *dout,double *din,double *c,int nc,double div_c,double div_sig)
{

int16 fir_coeffs[MAX_ORD], fir_coeffs2x[2*MAX_ORD];
int16 delay[MAX_ORD] = {};
int16 din16[LEN], dout16[LEN];
int i=0;
double scale_c = nudsp_qform_scale(c, nc, div_c); // scale coeffs to Q15
double scale_s = nudsp_qform_scale(din, LEN, div_sig); // scale signal to Q15
double scale = 0.0;

for (i = 0; i< nc; ++i) { // convert FIR coeffs to Q15
fir_coeffs[i] = (int) (c[i]*scale_c);

}
for (i = 0; i<LEN; i++) { // convert input signal to Q15
din16[i] = (int) (din[i]*scale_s);
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}
mips_fir16_setup(fir_coeffs2x, fir_coeffs, nc); // set up the filter
mips_fir16(dout16, din16, fir_coeffs2x, delay, LEN, nc, 0); // run the filter
scale = (double)QFORMAT/(scale_c*scale_s); // convert back to doubles
for (i = 0; i<LEN; i++) {

dout[i] = dout16[i]*scale;
}

}

22.7 Exercises
1. Use MATLAB to find the coefficients of a 20th-order low-pass FIR filter with a cutoff

frequency of 0.5fN . Then do the same for a 100th-order low-pass FIR filter. Plot the
frequency response of each and discuss the relative merits of each in terms of both the
magnitude response and the phase response. For a real-time filter, i.e., one that is
performing the filtering on data as it comes in, what are the implications of the different
phase responses of the two filters?

2. Experiment with MATLAB’s sound function, which allows you to play a vector of
numbers as a sound waveform through your computer’s speakers. Create a one-second
signal sampled at 8.192 kHz that is the sum of a 500 and a 2500 Hz sinusoid, each of
amplitude 0.5, and play it through your speakers. In MATLAB, design a low-pass FIR
filter to extract only the 500 Hz tone and a high-pass FIR filter to extract only the 2500 Hz
tone. Plot the frequency response of each filter and verify by audio that the filtered sounds
are correct.

3. The PIC32 dsp library implements FIR and IIR filters, but it performs a batch filter: all
data must be collected, and then you filter it. Often filters must be calculated in real-time
for real-time control. For example, noisy sensor data could be low-pass filtered, or
position readings could be differenced to get velocity readings.
Implement your own PIC32 real-time FIR filter library, FIR.{c,h}. This library provides
variables (e.g., arrays or structs) to hold the filter coefficients and the most recently taken
samples and calculates the output of the filter. The library should be easy to use and
computationally efficient, though you are welcome to use doubles, not fixed-point math.
How will you let the user “shift in” the next sensor reading while “shifting out” the oldest
sensor reading? How will you handle initial conditions when no prior readings have been
taken?
Design a ninth-order low-pass FIR filter with a cutoff frequency at 0.2 fN and plot both the
input and filtered output for a 1000-input signal consisting of two equal amplitude
sinusoids, one at 0.1fN and one at 0.5fN .

4. Augment the PIC32 nudsp.{c,h} library with an inverse Fast Fourier Transform
capability. Test it on a sample signal by taking the FFT and then the inverse FFT and
confirming that the original signal is recovered.
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5. Use the PIC32 inverse FFT capability to implement an FFT-based filter in nudsp.{c,h}.
The user specifies the frequency ranges to pass or stop, allowing the FFT-based filter to
act as a low-pass, high-pass, bandpass, or bandstop filter. After taking the FFT, the code
should zero out the appropriate components and take the inverse FFT, yielding the new
filtered signal.

Further Reading
32-Bit language tools libraries. (2012). Microchip Technology Inc.
Oppenheim, A. V., & Schafer, R. W. (2009). Discrete-time signal processing (3rd ed.). Upper Saddle River, NJ:

Prentice Hall.
Signal processing toolbox help. (2015). The MathWorks Inc.



CHAPTER 23

PID Feedback Control

The cruise control system on a car is an example of a feedback control system. The actual
speed v of the car is measured by a sensor (e.g., the speedometer) to yield a sensed value s; the
sensed value is compared to a reference speed r set by the driver; and the error e = r− s is fed
to a control algorithm that calculates a control for the motor that drives the throttle angle. This
control therefore changes the car’s speed v and the sensed speed s. The controller tries to drive
the error e = r − s to zero.

Figure 23.1 shows a block diagram for a typical feedback control system, like the cruise
control system. Typically, a computer (the PIC32 in our case) calculates the error between the
reference and the sensor value and implements the control algorithm. The controller produces
a control signal that is input into the plant, the physical system that we want to control. Often
we model the plant’s dynamics with differential equations derived from Newton’s laws. The
plant produces an output that the sensor measures. A system that uses a sensor measurement
to determine its control signal is a closed-loop control system (the sensor feedback causes the
block diagram to form a closed loop).

In this chapter, for simplicity, we assume that the sensor is perfect. Therefore, the sensed
output s and the plant’s actual output are the same.

A common test of a controller’s performance is to start with the reference r equal to zero, then
suddenly switch r to 1 and keep it constant for all time. (Equivalently, for the cruise control
case, r could start at 50 mph then change suddenly to 51 mph.) Such an input is called a step
input and the resulting error e(t) is called the step error response. Figure 23.2 shows a typical
step error response and illustrates three key metrics by which controller performance is
measured: overshoot, 2% settling time ts, and steady-state error ess. The settling time ts is the
amount of time it takes for the error to settle to within 0.02 of its final value, and the
steady-state error ess is the final error. A controller performs well if the system has a short
settling time and zero (or small) overshoot, oscillation, and steady-state error.

Perhaps the most popular feedback control algorithm is the proportional-integral-derivative
(PID) controller. Entire books are devoted to the analysis and design of PID controllers, but
PID control can also be used effectively with a little intuition and experimentation. This
chapter provides a brief introduction to help with that intuition.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00023-8
Copyright © 2016 Elsevier Inc. All rights reserved. 375
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Figure 23.1
A block diagram of a typical control system.
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Figure 23.2
A typical error response to a step change in the reference, showing overshoot, 2% settling time ts,
and steady-state error ess. The error is one immediately after the step change in the reference and

converges to ess.

23.1 The PID Controller

Assume the reference signal is r(t), the sensed output is s(t), the error is e(t) = r(t) − s(t), and
the control signal is u(t). Then the PID controller can be written

u(t) = Kpe(t) + Ki

∫ t

0
e(z) dz+ Kdė(t), (23.1)

where Kp, Ki, and Kd are called the proportional, integral, and derivative gains, respectively.
To make the discussion of the control law (23.1) concrete, let us assume r is the desired
position of a mass moving on a line, s is the sensed position of the mass, and u is the linear
force applied to the mass by a motor. Let us look at each of the proportional, derivative, and
integral terms individually.

Proportional. The term Kpe(t) creates a force proportional to the distance between the
desired and measured position of the mass. This force is exactly what a mechanical
spring does: it creates a force that pulls or pushes the mass proportional to a position
displacement. Thus the proportional term Kpe acts like a spring with a rest length of
zero, with one end attached to the mass at s and the other end attached to the desired
position r. The larger Kp, the stiffer the virtual spring.
Because we define the error as e = r − s, Kp should be positive. If Kp were negative,
then in the case s > r (the mass’s position s is “ahead” of the reference r), the force
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Kp(r − s) > 0 would try to push the mass even further ahead of the reference. Such a
controller is called unstable, as the actual error tends toward infinity, not zero.

Derivative. The term Kdė(t) creates a force proportional to ė(t) = ṙ(t) − ṡ(t), the difference
between the desired velocity ṙ(t) and the measured velocity ṡ(t). This force is exactly
what a mechanical damper does: it creates a force that tries to zero the relative velocity
between its two ends. Thus the derivative term Kdė acts like a damper. An example of a
spring and a damper working together is an automatic door closing mechanism: the
spring pulls the door shut, but the damper acts against large velocities so the door does
not slam. Derivative terms are used similarly in PID controllers, to damp overshoot and
oscillation typical of mass-spring systems.
As with Kp, Kd should be nonnegative.

Integral. The term Ki
∫ t
0 e(z) dz creates a force proportional to the time integral of the error.

This term is less easily explained in terms of a mechanical analog, but we can still use a
mechanical example. Assume the mass moves vertically in gravity with a gravitational
force −mg acting downward. If the goal is to hold the mass at a constant height r, then a
controller using only proportional and derivative terms would bring the mass to rest with
a nonzero error e satisfying Kpe = mg, the upward force needed to balance the
gravitational force. (Note that the derivative term Kdė is zero when the mass is at rest.)
By increasing the stiffness of Kp, the error e can be made small, but it can never be made
zero—nonzero error is always needed for the motor to produce nonzero force.
Using an integral term allows the controller to produce a nonzero force even when the
error is zero. Starting from rest with error e = mg/Kp, the time-integral of the error
accumulates. As a result, the integral term Ki

∫ t
0 e(z) dz grows, pushing the mass upward

toward r, and the proportional term Kpe shrinks, due to the shrinking error e. Eventually,
the term Ki

∫ t
0 e(z) dz equals mg, and the mass comes to rest at r (e = 0). Thus the

integral term can drive the steady-state error to zero in systems where proportional and
derivative terms alone cannot.
As with Kp and Kd, Ki should be nonnegative.

It is possible to implement a PID controller purely in electronics using op amps. However,
nearly all modern PID controllers are implemented digitally on computers.1 Every dt seconds,
the computer reads the sensor value and calculates a new control signal. The error derivative ė
becomes an error difference, and the error integral

∫ t
0 e(z) dz becomes an error sum.

Pseudocode for a digital implementation of PID control is given below.

eprev = 0; // initial "previous error" is zero
eint = 0; // initial error integral is zero
now = 0; // "now" tracks the elapsed time

1 A digital PID controller is a type of digital filter, just like those discussed in Chapter 22.
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every dt seconds do {
s = readSensor(); // read sensor value
r = referenceValue(now); // get reference signal for time "now"
e = r - s; // calculate the error
edot = e - eprev; // error difference
eint = eint + e; // error sum
u = Kp*e + Ki*eint + Kd*edot; // calculate the control signal
sendControl(u); // send control signal to the plant
eprev = e; // current error is now prev error for next iteration
now = now + dt; // update the "now" time
}

A few notes about the algorithm:

• The timestep dt and delays. Generally, the shorter dt is, the better. If computing
resources are limited, however, it is enough to know that the timestep dt should be
significantly shorter than time constants associated with the dynamics of the plant. So if
the plant is “slow,” you can afford a longer dt, but if the system can go unstable quickly, a
short dt is needed. The primary reason is that near the end of a control cycle, the control
applied by the controller is in response to old sensor data. Control based on old
measurements can cause the system to become unstable.
For many robot control systems, dt is 1 ms.

• Error difference and sum. The pseudocode uses an error difference and an error sum.
Instead, the error derivative can be approximated as edot = (e - eprev)/dt and the error
integral could be approximated using eint = eint + e*dt. There is no need to do these
extra divisions and multiplications, however, which simply scale the results. This scaling
can be incorporated in the gains Kd and Ki.

• Integer math vs. floating point math. As we have seen, addition, subtraction,
multiplication, and division of integer data types is much faster than with floating point
types. If we wish to ensure that the control loop runs as quickly as possible, we should use
integers where possible. Consider that raw sensor signals (e.g., encoder counts or ADC
counts) and control signals (e.g., the period register of an output compare PWM signal)
are typically integers anyway. If necessary, control gains can be scaled up or down to
maintain good resolution while only using integer values during calculations, while also
making sure that integer overflow does not occur. After calculations, the control signal can
be scaled back to an appropriate range. The idea of scaling to allow integer math is exactly
the same used for fixed-point math in DSP in Chapter 22.6.
For many applications, since the PID controller involves only a few additions,
subtractions, and multiplications, integer math is not necessary (especially on the PIC32,
with its relatively fast clock speed).

• Control saturation. There are practical limits on the control signal u. The function
sendControl(u) enforces these limits. If the control calculation yields u=100, for example,
but the maximum control effort available is 50, the value sent by sendControl(u) is 50.
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If large controller gains Kp, Ki, and Kd are used, the control signal may often be saturated
at the limits.

• Integrator anti-windup. Imagine that the integrator error eint is allowed to build up to a
large value. This windup creates a large control signal that tries to create error of the
opposite sign, to try to dissipate the integrated error. To limit the oscillation caused by this
effect, eint can be bounded. This integrator anti-windup protection can be implemented
by adding the following lines to the code above:

eint = eint + e; // error sum
if (eint > EINTMAX) { // ADDED: integrator anti-windup
eint = EINTMAX;

} else if (eint < -EINTMAX) { // ADDED: integrator anti-windup
eint = -EINTMAX;

}

Choosing EINTMAX is a bit of an art, but a good rule of thumb is that Ki*EINTMAX should be
no more than the maximum control effort available from the actuator.

• Sensor noise, quantization, and filtering. The sensor data take discrete or quantized
values. If this quantization is coarse, or if the time interval dt is short, the error e is
unlikely to change much from one cycle to the next, and therefore edot = e - eprev is
likely to take only a small set of different values. This effect means that edot is likely
to be a jumpy, low-resolution signal. The sensor may also be noisy, adding to the
jumpiness of the edot signal. Digital low-pass filtering, or averaging edot over several
cycles, yields a smoother signal, at the expense of added delay from considering older
edot values.

Although the PID control algorithm is quite simple, the challenge is finding control gains that
yield good performance. Tuning these gains is the topic of Section 23.3.

23.2 Variants of the PID Controller

Common variants of the PID controller are P, PI, and PD controllers. These controllers are
obtained by setting Ki and/or Kd equal to zero. Which variant to use depends on the
performance specifications, sensor properties, and the dynamics of the plant, particularly its
order. The order of a plant is the number of integrations from the control signal to the output.
For example, consider the case where the control is a force to drive a mass, and the objective
is to control the position of the mass. The force directly creates an acceleration, and the
position is obtained from two integrations of the acceleration. Hence this is a second-order
system. For such a system, derivative control is often helpful. If the system lacks much natural
damping, derivative control can add it, slowing the output as it approaches the desired value.
For zeroth-order or first-order systems, derivative control is generally not needed. Integral
control should always be considered if it is important to eliminate steady-state error.
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Table 23.1: Recommended PID variants based on the order of the plant

Control Output of Plant Order Recommended Controller
Force Position of mass 2 PD, PID
Force Velocity of mass 1 P, PI

Current Voltage across capacitor 1 P, PI
Current Brightness of LED 0 P, PI

A rough guide to choosing the PID variant is given in Table 23.1. While PID control can be
effective for plants of order higher than two, we will not consider such systems, which can
have unintuitive behavior. An example is controlling the endpoint location of a flexible robot
link by controlling the torque at the joint. The bending modes of the link introduce more state
variables, increasing the system’s order.

23.3 Empirical Gain Tuning

Although there is no substitute for analytic design techniques using a good model of the
system, useful controllers can also be designed using empirical methods.

Empirical gain tuning is the art of experimenting with different control gains on the actual
system and choosing gains that give a good step error response. Searching for good gains in
the three-dimensional Kp-Ki-Kd space can be tricky, so it is best to be systematic and to obey a
few rules of thumb:

• Steady-state error. If the steady-state error is too big, consider increasing Kp. If the
steady-state error is still unacceptable, consider introducing a nonzero Ki. Be careful with
Ki, though, as large Ki can destabilize the system.

• Overshoot and oscillation. If there is too much overshoot and oscillation, consider
increasing the damping Kd, or the ratio Kd/Kp.

• Settling time. If the settling time is too long, consider simultaneously increasing
Kp and Kd.

It is a good idea to first get the best possible performance with simple P control (Ki = Kd = 0).
Then, starting from your best Kp, if you are using PD or PID control, experiment with Kd and
Kp simultaneously. Experimenting with Ki should be saved until last, when you have your best
P or PD controller, as nonzero Ki can lead to unintuitive behavior and instability.

Assuming you will not break your system by making it unstable, you should experiment with
a wide range of control gains. Figure 23.3 shows an example exploration of a PD gain space
for a plant with unknown dynamics. The control gains are varied over a few orders or
magnitude. For larger control gains, the actuator effort u(t), indicated by dotted lines, is often
saturated. As expected, as Kp increases, oscillation and overshoot increases while the
steady-state error decreases. As Kd increases, oscillation and overshoot is damped.
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Figure 23.3
The step error response for a mystery system controlled by different PD controllers. The solid lines

indicate the error response e(t) and the dotted lines indicate the control effort u(t). Which controller
is “best?”

There are practical limits to how large controller gains can be. Large controller gains,
combined with noisy sensor measurements or long cycle times dt, can lead to instability. They
can also result in controls that chatter between the actuator limits.

23.4 Model-Based Control

With a feedback controller, like the PID controller, no control signal is generated unless there
is error. If you have a reasonable model of the system’s dynamics, why wait for error before
applying a control? Using a model to anticipate the control effort needed is called feedforward
control, because it depends only on the reference trajectory r(t), not sensor feedback.
A model-based feedforward controller can be written as

uff(t) = f (r(t), ṙ(t), r̈(t), . . .),

where f (·) is a model of the inverse plant dynamics that computes the control effort needed as
a function of r(t) and its derivatives (Figure 23.4).
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Inverse plant model Plant
r(t)r(t) uff (t)

Figure 23.4
An ideal feedforward controller. If the inverse plant model is perfect, the output of the plant exactly

tracks the reference r(t).

Since feedforward control is not robust to inevitable model errors, it can be combined with
PID feedback control to get the control law

u(t) = uff(t) + Kpe(t) + Ki

∫ t

0
e(z) dz+ Kdė(t). (23.2)

In control of a robot arm, this control law is called computed torque control, where u is the set
of joint torques and the model f (·) computes the joint torques needed given the desired joint
angles, velocities, and accelerations.

A related control strategy is to use the reference trajectory r(t) and the error e(t) to calculate a
desired change of state. For example, if the plant is a second-order system (the control u
directly controls s̈), then the desired acceleration s̈d(t) of the plant output can be written as the
sum of the planned acceleration r̈(t) and a PID feedback term to correct for errors:

s̈d(t) = r̈(t) + Kpe(t) + Ki

∫ t

0
e(z) dz+ Kdė(t).

Then the actual control u(t) is calculated using the inverse model,

u(t) = f (s(t), ṡ(t), s̈d(t)). (23.3)

If the inverse model is good, an advantage of the control law (23.3) over (23.2) is that the
effect of the constant PID gains is the same at different states of the plant. This property can
be important for systems like robot arms, where the inertia about a joint can change depending
on the angle of outboard joints. For example, the inertia about your shoulder is large when
your elbow is fully extended and smaller when your elbow is bent. A shoulder PID controller
designed for a bent elbow may not work so well when the elbow is extended if the output of
the PID controller is a joint torque. By treating the PID terms as accelerations instead of joint
torques, and by passing these accelerations through the inverse model, the shoulder PID
controller should have the same performance regardless of the configuration of the elbow.2

Feedforward plus feedback control laws like (23.2) and (23.3) provide the advantage of
smaller errors with less control effort as compared to feedback control alone. The cost is in

2 Provided the inverse model is good and the control effort does not saturate.
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developing a good model of the plant dynamics and in increased computation time for the
controller.

23.5 Chapter Summary

• Performance of a control system is often evaluated by the overshoot, 2% settling time, and
steady-state error of the step error response.

• The PID control law is u(t) = Kpe(t) + Ki
∫ t
0 e(z) dz+ Kdė(t).

• The proportional gain Kp acts like a virtual spring and the derivative gain Kd acts like a
virtual damper. The integral gain Ki can be useful for eliminating steady-state error, but
large values of Ki may cause the system to become unstable.

• Common variants of PID control are P, PI, and PD control.
• To reduce steady-state error, Kp and Ki can be increased. To reduce overshoot and

oscillation, Kd can be increased. To reduce settling time, Kp and Kd can be increased
simultaneously. Stability considerations place practical limits on controller gains.

• Feedback control requires error to produce a control signal. Model-based feedforward
control can be used in conjunction with feedback control to anticipate the controls needed,
thereby reducing errors.

23.6 Exercises
1. Provided with this chapter is a simple MATLAB model of a one-joint revolute robot arm

moving in gravity. Perform empirical PID gain tuning by doing tests of the error response
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Figure 23.5
The step error and control response of the one-joint robot for Kp = 50, Ki = 0, Kd = 3000.
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to a step input, where the step input asks the joint to move from θ = θ = 0 (hanging down
in gravity) to θ = 1 radian. Tests can be performed using

pidtest(Kp, Ki, Kd)

Find good gains Kp, Ki, and Kd, and turn in a plot of the resulting step error response. An
example output of pidtest(50, 0, 3000) is given in Figure 23.5.

Code Sample 23.1 pidtest.m. Empirical Gain Tuning in MATLAB for a Simulated
One-Joint Revolute Robot in Gravity.

function pidtest(Kp, Ki, Kd)

INERTIA = 0.5; % The plant is a link attached to a revolute joint
MASS = 1; % hanging in GRAVITY, and the output is the angle of the joint.
CMDIST = 0.1; % The link has INERTIA about the joint, MASS center at CMDIST
DAMPING = 0.1; % from the joint, and there is frictional DAMPING.
GRAVITY = 9.81;
DT = 0.001; % timestep of control law
NUMSAMPS = 1001; % number of control law iterations
UMAX = 20; % maximum joint torque by the motor

eprev = 0;
eint = 0;
r = 1; % reference is constant at one radian
vel = 0; % velocity of the joint is initially zero
s(1) = 0.0; t(1) = 0; % initial joint angle and time
for i=1:NUMSAMPS

e = r - s(i);
edot = e - eprev;
eint = eint + e;
u(i) = Kp*e + Ki*eint + Kd*edot;
if (u(i) > UMAX)
u(i) = UMAX;

elseif (u(i) < -UMAX)
u(i) = -UMAX;

end
eprev = e;
t(i+1) = t(i) + DT;

% acceleration due to control torque and dynamics
acc = (u(i) - MASS*GRAVITY*CMDIST*sin(s(i)) - DAMPING*vel)/INERTIA;

% a simple numerical integration scheme
s(i+1) = s(i) + vel*DT + 0.5*acc*DT*DT;
vel = vel + acc*DT;

end

plot(t(1:NUMSAMPS),r-s(1:NUMSAMPS),’Color’,’black’);
hold on;
plot(t(1:NUMSAMPS),u/20,’--’,’Color’,’black’);
set(gca,’FontSize’,18);
legend({’e(t)’,’u(t)/20’},’FontSize’,18);
plot([t(1),t(length(t)-1)],[0,0],’:’,’Color’,’black’);
axis([0 1 -1.1 1.1])
title([’Kp: ’,num2str(Kp),’ Ki: ’,num2str(Ki),’ Kd: ’,num2str(Kd)]);
hold off

pidtest.m
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CHAPTER 24

Feedback Control of LED Brightness

In this chapter you will use feedback control to control the brightness of an LED. This project
uses counter/timer, output compare, and analog input peripherals, as well as the parallel
master port for the LCD screen.

Figure 24.1 shows an example result of this project. The LED’s brightness is expressed in
terms of the analog voltage of the brightness sensor, measured in ADC counts. The desired
brightness alternates between 800 ADC counts (bright) and 200 ADC counts (dim) every half
second, shown as a square wave reference in Figure 24.1. A successful feedback controller
results in an actual brightness that closely follows the reference brightness.

Figure 24.2 shows the LED and sensor circuits and their connection to the OC1 output and the
AN0 analog input. A PWM waveform from OC1 turns the LED on and off at 20 kHz, too fast
for the eye to see, yielding an apparent averaged brightness between off and full on. The
phototransistor is activated by the LED’s light, creating an emitter current proportional to the
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Figure 24.1
A demonstration of feedback control of LED brightness. The square wave is the desired LED

brightness, in sensor ADC counts, and the other curve is the actual brightness as measured by the
sensor. Samples are taken at 100 Hz, and the duration of the plotted data is 2 s.
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Figure 24.2
The LED control circuit. The long leg of the LED (anode) is connected to OC1 and the short leg
(cathode) is connected to the 330 � resistor. The short leg of the phototransistor (collector) is

attached to 3.3 V and the long leg (emitter) is attached to AN0, the resistor R, and the 1 µF
capacitor.
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Figure 24.3
A block diagram of the LED brightness control system.

incident light. The resistor R turns this current into a sensed voltage. The 1 µF capacitor in
parallel with R creates a low-pass filter with a time constant τ = RC, removing
high-frequency components due to the rapidly switching PWM signal and instead giving a
time-averaged voltage. This filtering is similar to the low-pass filtering of your visual
perception, which does not allow you to see the LED turning on and off rapidly.

A block diagram of the control system is shown in Figure 24.3. The PIC32 reads the analog
voltage from the phototransistor circuit, calculates the error as the desired brightness (in ADC
counts) minus the measured voltage in ADC counts, and uses a proportional-integral (PI)
controller to generate a new PWM duty cycle on OC1. This control signal, in turn, changes the
average brightness of the LED, which is sensed by the phototransistor circuit.

Your PIC32 program will generate a reference waveform, the desired light brightness
measured in ADC counts, as a function of time. Then a 1 kHz control loop will read the sensor
voltage (in ADC counts) and update the duty cycle of the 20 kHz OC1 PWM signal,
attempting to make the measured ADC counts track the reference waveform.
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Figure 24.4
The phototransistor (left) and LED (right) pointed toward each other.

This project requires the coordination of many peripherals to work properly. Therefore, it is
useful to divide it into smaller pieces and verify that each piece works, rather than attempting
the whole project all at once.

24.1 Wiring and Testing the Circuit
1. LED diode drop. Connect the LED anode to 3.3 V, the cathode to a 330 � resistor, and

the other end of the resistor to ground. This is the LED at its maximum brightness. Use
your multimeter to record the forward bias voltage drop across the LED. Calculate or
measure the current through the LED. Is this current safe for the PIC32 to provide?

2. Choose R. Wire the circuit as shown in Figure 24.2, except for the connection
from the LED to OC1. The LED and phototransistor should be pointing toward each
other, with approximately one inch separation, as shown in Figure 24.4. Now choose R to
be as small as possible while ensuring that the voltage Vout at the phototransistor emitter is
close to 3 V when the LED anode is connected to 3.3 V (maximum LED brightness) and
close to 0 V when the LED anode is disconnected (the LED is off). (Something in the
10 k� range may work, but use a smaller resistance if you can still get the same voltage
swing.) Record your value of R. Now connect the anode of the LED to OC1 for the rest of
the project.

24.2 Powering the LED with OC1
1. PWM calculation. You will use Timer3 as the timer base for OC1. You want a 20 kHz

PWM on OC1. Timer3 takes the PBCLK as input and uses a prescaler of 1. What should
PR3 be?

2. PWM program.Write a program that uses your previous result to create a 20 kHz PWM
output on OC1 (with no fault pin) using Timer3. Set the duty cycle to 75%. Get the
following screenshots from your oscilloscope:
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a. The OC1 waveform. Verify that this waveform matches your expectations.
b. The sensor voltage Vout.
c. Now remove the 1 µF capacitor and get another screenshot of Vout. Explain the

difference from the previous waveform.
Insert the 1 µF capacitor back into the circuit for the rest of the project.

24.3 Playing an Open-Loop PWM Waveform

Now you will modify your program to generate a waveform stored in an int array. This array
will eventually be the reference brightness waveform for your feedback controller (the square
wave in Figure 24.1), but not yet; here this array will represent a PWM duty cycle as a
function of time. Modify your program to define a constant NUMSAMPS and the global volatile
int array Waveform by putting the following code near the top of the C file (outside of main):

#define NUMSAMPS 1000 // number of points in waveform
static volatile int Waveform[NUMSAMPS]; // waveform

Then create a function makeWaveform() to store a square wave in Waveform[] and call
it near the beginning of main. The square wave has amplitude A centered about the value
center. Initialize center as (PR3+1)/2 and A as for the PR3 you calculated in the previous
section.

void makeWaveform() {
int i = 0, center = ???, A = ???; // square wave, fill in center value and amplitude
for (i = 0; i < NUMSAMPS; ++i) {
if ( i < NUMSAMPS/2) {

Waveform[i] = center + A;
} else {

Waveform[i] = center - A;
}

}
}

Now configure Timer2 to call an ISR at a frequency of 1 kHz. This ISR will eventually
implement the controller that reads the ADC and calculates the new duty cycle of the PWM.
For now we will use it to modify the duty cycle according to the waveform in Waveform[]. Call
the ISR Controller and make it interrupt priority level 5. It will use a static local int that
counts the number of ISR entries and resets after 1000 entries.1 In other words, the ISR should
be of the form

1 Recall that a static local variable is only initialized once, not upon every function call, and the value of the
variable is retained between function calls. For global variables, the static qualifier means that the variable
cannot be used in other modules (i.e., other .c files).
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void __ISR(_TIMER_2_VECTOR, IPL5SOFT) Controller(void) { // _TIMER_2_VECTOR = 8
static int counter = 0; // initialize counter once

// insert line(s) to set OC1RS

counter++; // add one to counter every time ISR is entered
if (counter == NUMSAMPS) {

counter = 0; // roll the counter over when needed
}
// insert line to clear interrupt flag

}

In addition to clearing the interrupt flag (which we did not show in our example), your
Controller ISR should set OC1RS to be equal to Waveform[counter]. Since your ISR is called
every 1 ms, and the period of the square wave in Waveform[] is 1000 cycles, your PWM duty
cycle will undergo one square wave period every 1 s. You should see your LED become bright
and dim once per second.

1. Get a screenshot of your oscilloscope trace of Vout showing 2-4 periods of what should be
an approximately square-wave sensor reading.

2. Turn in your code.

24.4 Establishing Communication with MATLAB

By establishing communication between your PIC32 and MATLAB, the PIC32 gains access
to MATLAB’s extensive scientific computing and graphics capabilities, and MATLAB can use
the PIC32 as a data acquisition and control device. Refer to Section 11.3.5 for details about
how to open a serial port in MATLAB and use it to communicate with talkingPIC.c, the basic
communication program from Chapter 1.

1. Make sure you can communicate between talkingPIC on the PIC32 and talkingPIC.m in
MATLAB. Do not proceed further until you have verified correct communication.

24.5 Plotting Data in MATLAB

Now that you have MATLAB communication working, you will build on your code from
Section 24.3 by sending your controller’s reference and sensed ADC data to MATLAB for
plotting. This information will help you see how well your controller is working, allowing you
to tune the PI gains empirically.

First, add some constants and global variables at the top of your program. The PIC32 program
will send to MATLAB PLOTPTS data points upon request from MATLAB, where the constant
PLOTPTS is set to 200. It is unnecessary to record data from every control iteration, so the
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program will record the data once every DECIMATION times, where DECIMATION is 10. Since the
control loop is running at 1000 Hz, data is collected at 1000 Hz/DECIMATION = 100 Hz.

We also define the global int arrays ADCarray and REFarray to hold the values of the sensor
signal and the reference signal. The int StoringData is a flag that indicates whether data is
currently being collected. When it transitions from TRUE (1) to FALSE (0), it indicates that
PLOTPTS data points have been collected and it is time to send ADCarray and REFarray to
MATLAB. Finally, Kp and Ki are global floats with the PI gains. All of the variables have the
specifier volatile because they are shared between the ISR and main and static because they
are not needed in other .c files (good practice, even though this project only uses one .c file).

So you should have the following constants and variables near the beginning of your
program:

#define NUMSAMPS 1000 // number of points in waveform
#define PLOTPTS 200 // number of data points to plot
#define DECIMATION 10 // plot every 10th point

static volatile int Waveform[NUMSAMPS]; // waveform
static volatile int ADCarray[PLOTPTS]; // measured values to plot
static volatile int REFarray[PLOTPTS]; // reference values to plot
static volatile int StoringData = 0; // if this flag = 1, currently storing

// plot data
static volatile float Kp = 0, Ki = 0; // control gains

You should also modify your main function to define these local variables near the
beginning:

char message[100]; // message to and from MATLAB
float kptemp = 0, kitemp = 0; // temporary local gains
int i = 0; // plot data loop counter

These local variables are used in the infinite loop in main, below. This loop is interrupted by
the ISR at 1 kHz. The loop waits for a message from MATLAB, which contains the new PI
gains requested by the user. When a message is received, the gains from MATLAB are stored
into the local variables kptemp and kitemp. Then interrupts are disabled, these local values are
copied into the global gains Kp and Ki, and interrupts are re-enabled. Interrupts are disabled
while Kp and Ki are assigned to ensure that the ISR does not interrupt in the middle of these
assignments, causing it to use the new value of Kp but the old value of Ki. In addition, since
sscanf takes longer to execute than simple variable assignments, it is called outside of the
period when interrupts are disabled. We want to keep the time that interrupts are disabled as
brief as possible, to avoid interfering with the timing of the 1 kHz control loop.

Next, the flag StoringData is set to TRUE (1), to tell the ISR to begin storing data. The ISR
sets StoringData to FALSE (0) when PLOTPTS data points have been collected, indicating that
it is time to send the stored data to MATLAB for plotting. Your infinite loop in main should be
the following:
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while (1) {
NU32_ReadUART3(message, sizeof(message)); // wait for a message from MATLAB
sscanf(message, "%f %f" , &kptemp, &kitemp);
__builtin_disable_interrupts(); // keep ISR disabled as briefly as possible
Kp = kptemp; // copy local variables to globals used by ISR
Ki = kitemp;
__builtin_enable_interrupts(); // only 2 simple C commands while ISRs disabled
StoringData = 1; // message to ISR to start storing data
while (StoringData) { // wait until ISR says data storing is done

; // do nothing
}
for (i=0; i<PLOTPTS; i++) { // send plot data to MATLAB

// when first number sent = 1, MATLAB knows we’re done
sprintf(message, "%d %d %d\r\n", PLOTPTS-i, ADCarray[i], REFarray[i]);
NU32_WriteUART3(message);

}
}

Finally, you will need to write code in your ISR to record data when StoringData is TRUE.
This code will use the new local static int variables plotind, decctr, and adcval. plotind is
the index, 0 to PLOTPTS-1, of the next set of data to collect. decctr counts from 1 up to
DECIMATION to implement the once-every-DECIMATION data storing. adcval is set to zero for
now, until you start reading the ADC.

Your code should look like the following. You only need to insert lines to set OC1RS and to
clear the interrupt flag.

void __ISR(_TIMER_2_VECTOR, IPL5SOFT) Controller(void) {
static int counter = 0; // initialize counter once
static int plotind = 0; // index for data arrays; counts up to PLOTPTS
static int decctr = 0; // counts to store data one every DECIMATION
static int adcval = 0; //

// insert line(s) to set OC1RS

if (StoringData) {
decctr++;
if (decctr == DECIMATION) { // after DECIMATION control loops,

decctr = 0; // reset decimation counter
ADCarray[plotind] = adcval; // store data in global arrays
REFarray[plotind] = Waveform[counter];
plotind++; // increment plot data index

}
if (plotind == PLOTPTS) { // if max number of plot points plot is reached,

plotind = 0; // reset the plot index
StoringData = 0; // tell main data is ready to be sent to MATLAB

}
}
counter++; // add one to counter every time ISR is entered
if (counter == NUMSAMPS) {

counter = 0; // rollover counter over when end of waveform reached
}

// insert line to clear interrupt flag
}
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The MATLAB code to communicate with the PIC32 is below. Load your new PIC32 code
and, in MATLAB, use a command like

data = pid_plot(’COM3’, 2.0, 1.0)

where you should replace ’COM3’ with the appropriate COM port name from your Makefile. The
2.0 is your Kp and the 1.0 is your Ki. Since your program does not do anything with the gains
yet, it does not matter what gains you type. If all is working properly, MATLAB should plot
two cycles of your square wave duty cycle waveform and zero for your measured ADC value
(which you have not implemented yet).

Code Sample 24.1 pid_plot.m. MATLAB Code to Plot Data from Your PIC32 LED
Control Program.

function data = pid_plot(port,Kp,Ki)
% pid_plot plot the data from the pwm controller to the current figure
%
% data = pid_plot(port,Kp,Ki)
%
% Input Arguments:
% port - the name of the com port. This should be the same as what
% you use in screen or putty in quotes ’ ’
% Kp - proportional gain for controller
% Ki - integral gain for controller
% Output Arguments:
% data - The collected data. Each column is a time slice
%
% Example:
% data = pid_plot(’/dev/ttyUSB0’,1.0,1.0) (Linux)
% data = pid_plot(’/dev/tty.usbserial-00001014A’,1.0,1.0) (Mac)
% data = pid_plot(’COM3’,1.0,1.0) (PC)
%

%% Opening COM connection
if ˜isempty(instrfind)

fclose(instrfind);
delete(instrfind);

end
fprintf(’Opening port %s....\n’,port);
mySerial = serial(port, ’BaudRate’, 230400, ’FlowControl’, ’hardware’);
fopen(mySerial); % opens serial connection
clean = onCleanup(@()fclose(mySerial)); % closes serial port when function exits

%% Sending Data
% Printing to matlab Command window
fprintf(’Setting Kp = %f, Ki = %f\n’, Kp, Ki);

% Writing to serial port
fprintf(mySerial,’%f %f\n’,[Kp,Ki]);

%% Reading data
fprintf(’Waiting for samples ...\n’);

sampnum = 1; % index for number of samples read
read_samples = 10; % When this value from PIC32 equals 1, it is done sending data

pid_plot.m
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while read_samples > 1
data_read = fscanf(mySerial,’%d %d %d’); % reading data from serial port

% Extracting variables from data_read
read_samples=data_read(1);
ADCval(sampnum)=data_read(2);
ref(sampnum)=data_read(3);

sampnum=sampnum+1; % incrementing loop number
end
data = [ref;ADCval]; % setting data variable

%% Plotting data
clf;
hold on;
t = 1:sampnum-1;
plot(t,ref);
plot(t,ADCval);
legend(’Reference’, ’ADC Value’)
title([’Kp: ’,num2str(Kp),’ Ki: ’,num2str(Ki)]);
ylabel(’Brightness (ADC counts)’);
xlabel(’Sample Number (at 100 Hz)’);
hold off;
end

1. Turn in a MATLAB plot showing pid_plot.m is communicating with your PIC32 code.

24.6 Writing to the LCD Screen
1. Write the function printGainsToLCD(), and its function prototype void

printGainsToLCD(void);. This function writes the gains Kp and Ki on your LCD screen,
one per row, like

Kp: 12.30
Ki: 1.00

This function should be called by main just after StoringData is set to 1. Verify that it
works before continuing to the next section.

24.7 Reading the ADC
1. Read the ADC value in your ISR, just before the if (StoringData) line of code. The

value should be called adcval, so it will be stored in ADCarray. Turn in a MATLAB plot
showing the measured ADCarray and the REFArray. You may wish to use manual sampling
and automatic conversion to read the ADC.

24.8 PI Control

Now you will implement the PI controller. Change makeWaveform so that center is 500 and the
amplitude A is 300, making a square wave swinging between 200 and 800. This waveform is
now the desired brightness of the LED, in ADC counts. Use the adcval read from the ADC
and the reference waveform as inputs to the PI controller. Call u the output of the PI controller.
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The output u may be positive or negative, but the PWM duty cycle can only be between 0 and
PR3. If we treat the value u as a percentage, we can make it centered at 50% by adding 50 to
the value, then saturate it at 0% and 100%, by the following code:

unew = u + 50.0;
if (unew > 100.0) {
unew = 100.0;

} else if (unew < 0.0) {
unew = 0.0;

}

Finally we must convert the control effort unew into a value in the range 0 to PR3 so that it can
be stored in OC1RS:

OC1RS = (unsigned int) ((unew/100.0) * PR3);

We recommend that you define the integral of the control error, Eint, as a global static
volatile int. Then reset Eint to zero in main every time a new Kp and Ki are received from
MATLAB. This ensures that this new controller starts fresh, without a potentially large error
integral from the previous controller.

1. Using your MATLAB interface, tune your gains Kp and Ki until you get good tracking of
the square wave reference. Turn in a plot of the performance.

24.9 Additional Features

Some other features you can add:

1. In addition to plotting the reference waveform and the actual measured signal, plot the
OC1RS value, so you can see the control effort.

2. Create a new reference waveform shape. For example, make the LED brightness follow a
sinusoidal waveform. You can calculate this reference waveform on the PIC32. You
should be able to choose which waveform to use by an input argument in your MATLAB
interface. Perhaps even allow the user to specify parameters of the waveform (like center

and A).
3. Change the PIC32 and MATLAB code so that MATLAB sends over the 1000 samples of

an arbitrary reference trajectory. Then you can use MATLAB code to flexibly create a
wide variety of reference trajectories.

24.10 Chapter Summary

• Control of the brightness of an LED can be achieved by a PWM signal at a frequency
beyond that perceptible by the eye. The brightness can be sensed by a phototransistor and
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resistor circuit. A capacitor in parallel with the resistor low-pass filters the sensor signal
with a cutoff frequency fc = 1/(2πRC), rejecting the high-frequency components due to
the PWM frequency and its harmonics while keeping the low-frequency components
(those perceptible by the eye).

• A reference brightness, as a function of time, can be stored in an array with N samples. By
cyclically indexing through this array in an ISR invoked at a fixed frequency of fISR, the
reference brightness waveform is periodic with frequency fISR/N.

• Since LED brightness control by a PWM signal is a zeroth-order system (the PWM
voltage directly changes the LED current and therefore brightness, without any
integrations), a good choice for a feedback controller is a PI controller.

• When accepting new gains Kp and Ki from the user, interrupts should be disabled to ensure
that the ISR is not called in the middle of updating Kp and Ki. Interrupts should be
disabled as briefly as possible, however, to avoid interfering with expected ISR timing.
This can be achieved by keeping the relatively slow sscanf outside the period that
interrupts are disabled. Interrupts are only disabled during the short period that the values
read by sscanf are copied to Kp and Ki.

24.11 Exercises

Complete the LED brightness control project as outlined in the chapter.
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Brushed Permanent Magnet DC Motors

Most electric motors operate on the principle that current flowing through a magnetic field
creates a force. Because of this relationship between current and force, electric motors can be
used to convert electrical power to mechanical power. They can also be used to convert
mechanical power to electrical power; as with, for example, generators in hydroelectric dams
or regenerative braking in electric and hybrid cars.

In this chapter we study perhaps the simplest, cheapest, most common, and arguably most
useful electrical motor: the brushed permanent magnet direct current (DC) motor. For
brevity, we refer to these simply as DC motors. A DC motor has two input terminals, and a
voltage applied across these terminals causes the motor shaft to spin. For a constant load or
resistance at the motor shaft, the motor shaft achieves a speed proportional to the input
voltage. Positive voltage causes spinning in one direction, and negative voltage causes
spinning in the other.

Depending on the specifications, DC motors cost anywhere from tens of cents up to thousands
of dollars. For most small-scale or hobby applications, appropriate DC motors typically cost a
few dollars. DC motors are often outfitted with a sensing device, most commonly an encoder,
to track the position and speed of the motor, and a gearhead to reduce the output speed and
increase the output torque.

25.1 Motor Physics

DC motors exploit the Lorentz force law,

F = �I × B, (25.1)

where F, I, and B are three-vectors, B describes the magnetic field created by permanent
magnets, I is the current vector (including the magnitude and direction of the current flow
through the conductor), � is the length of the conductor in the magnetic field, and F is the
force on the conductor. For the case of a current perpendicular to the magnetic field, the force
is easily understood using the right-hand rule for cross-products: with your right hand, point
your index finger along the current direction and your middle finger along the magnetic field
flux lines. Your thumb will then point in the direction of the force (see Figure 25.1).

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00025-1
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Figure 25.1
Two magnets create a magnetic field B, and a current I along the conductor causes a force F on the

conductor.
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Figure 25.2
A current-carrying loop of wire in a magnetic field.

Now let us replace the conductor by a loop of wire, and constrain that loop to rotate about its
center. See Figures 25.2 and 25.3. In one half of the loop, the current flows into the page, and
in the other half of the loop the current flows out of the page. This creates forces of opposite
directions on the loop. Referring to Figure 25.3, let the magnitude of the force acting on each
half of the loop be f , and let d be the distance from the halves of the loop to the center of the
loop. Then the total torque acting on the loop about its center can be written

τ = 2df cos θ ,

where θ is the angle of the loop. The torque changes as a function of θ . For −90◦ < θ < 90◦,
the torque is positive, and it is maximum at θ = 0. A plot of the torque on the loop as a
function of θ is shown in Figure 25.4(a). The torque is zero at θ = −90◦ and 90◦, and of these
two, θ = 90◦ is a stable equilibrium while θ = −90◦ is an unstable equilibrium. Therefore, if
we send a constant current through the loop, it will likely come to rest at θ = 90◦.
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Figure 25.3
A loop of wire in a magnetic field, viewed end-on. Current flows into the page on one side of the
loop and out of the page on the other, creating forces of opposite directions on the two halves of

the loop. These opposite forces create torque on the loop about its center at most angles θ of
the loop.
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Figure 25.4
(a) The torque on the loop of Figure 25.3 as a function of its angle for a constant current. (b) If we

reverse the current direction at the angles θ = −90◦ and θ = 90◦, we can make the torque
nonnegative at all θ . (c) If we use several loops offset from each other, the sum of their torques (the
thick curve) becomes more constant as a function of angle. The remaining variation contributes to

torque ripple.

To make a more useful motor, we can reverse the direction of current at θ = −90◦ and
θ = 90◦, which makes the torque nonnegative at all angles (Figure 25.4(b)). The torque
is still zero at θ = −90◦ and θ = 90◦, however, and it undergoes a large variation as a
function of θ . To make the torque more constant as a function of θ , we can introduce more
loops of wire, each offset from the others in angle, and each reversing their current
direction at appropriate angles. Figure 25.4(c) shows an example with three loops of wire
offset from each other by 120◦. Their component torques sum to give a more constant torque
as a function of angle. The remaining variation in torque contributes to angle-dependent
torque ripple.
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Finally, to increase the torque generated, each loop of wire is replaced by a coil of wire (also
called a winding) that loops back and forth through the magnetic field many times. If the coil
consists of 100 loops, it generates 100 times the torque of the single loop for the same current.
Wire used to create coils in motors, like magnet wire, is very thin, so there is resistance from
one end of a coil to the other, typically from fractions of an ohm up to hundreds of ohms.

As stated previously, the current in the coils must switch direction at the appropriate angle to
maintain non-negative torque. Figure 25.5 shows how brushed DC motors accomplish this
current reversal. The two input terminals are connected to brushes, typically made of a soft
conducting material like graphite, which are spring-loaded to press against the commutator,
which is connected to the motor coils. As the motor rotates, the brushes slide over the
commutator and switch between commutator segments, each of which is electrically
connected to the end of one or more coils. This switching changes the direction of current
through the coils. This process of switching the current through the coils as a function of the
angle of the motor is called commutation. Figure 25.5 shows a schematic of a minimal motor
design with three commutator segments and a coil between each pair of segments. Most high
quality motors have more commutator segments and coils.

Unlike the simplified example in Figure 25.4, the brush-commutator geometry means that
each coil in a real brushed motor is only energized at a subset of angles of the motor. Apart

Brush

Commutator
segment

Coils

Magnet Magnet

       Leaf
spring

Motor
 housing

Magnet

Brush

Commutator Coils

Gearhead

Figure 25.5
(Left) A schematic end-on view of a simple DC motor. The two brushes are held against the

commutator by leaf springs which are electrically connected to the external motor terminals. This
commutator has three segments and there are coils between each segment pair. The stator magnets
are epoxied to the inside of the motor housing. (Right) This disassembled Pittman motor has seven
commutator segments. The two brushes are attached to the motor housing, which has otherwise

been removed. One of the two permanent magnets is visible inside the housing. The coils are
wrapped around a ferromagnetic core to increase magnetic permeability. This motor has a gearhead

on the output.
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Figure 25.6
Figure 25.4(c) illustrates the sum of the torque of three coils offset by 120◦ if they are all energized

at the same time. The geometry of the brushes and commutator ensure that not all coils are
energized simultaneously, however. This figure shows the angle-dependent torque of a three-coil

brushed motor that has only one coil energized at a time, which is approximately what happens if
the brushes in Figure 25.5 are small. The energized coil is the one at the best angle to create a
torque. The result is a motor torque as indicated by the thick curve; the thinner curves are the

torques that would be provided by the other coils if they were energized. Comparing this figure to
Figure 25.4(c) shows that this more realistic motor produces half the torque, but uses only one-third
of the electrical power, since only one of the three coils is energized. Power is not wasted by putting

current through coils that would generate little torque.

from being a consequence of the geometry, this has the added benefit of avoiding wasting
power when current through a coil would provide little torque. Figure 25.6 is a more realistic
version of Figure 25.4(c).

The stationary portion of the motor attached to the housing is called the stator, and the rotating
portion of the motor is called the rotor.

Figure 25.7 shows a cutaway of a Maxon brushed motor, exposing the brushes, commutator,
magnets, and windings. The figure also shows other elements of a typical motor application:
an encoder attached to one end of the motor shaft to provide feedback on the angle and a
gearhead attached to the other end of the motor shaft. The output shaft of the gearhead
provides lower speed but higher torque than the output shaft of the motor.

Brushless motors are a variant that use electronic commutation as opposed to brushed
commutation. For more on brushless DC motors, see Chapter 29.5.

25.2 Governing Equations

To derive an equation to model the motor’s behavior, we ignore the details of the
commutation and focus instead on electrical and mechanical power. The electrical power into
the motor is IV , where I is the current through the motor and V is the voltage across the motor.
We know that the motor converts some of this input power to mechanical power τω, where τ
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Figure 25.7
A cutaway of a Maxon brushed motor with an encoder and a planetary gearhead. The brushes are

spring-loaded against the commutator. The bottom left schematic is a simplified cross-section
showing the stationary parts of the motor (the stator) in dark gray and the rotating parts of the

motor (the rotor) in light gray. In this “coreless” motor geometry, the windings spin in a gap
between the permanent magnets and the housing. (Cutaway image courtesy of Maxon Precision

Motors, Inc., maxonmotorusa.com.)

and ω are the torque and velocity of the output shaft, respectively. Electrically, the motor is
described by a resistance R between the two terminals as well as an inductance L due to the
coils. The resistance of the motor coils dissipates power I2R as heat. The motor also stores
energy 1

2LI
2 in the inductor’s magnetic field, and the time rate of change of this is LI(dI/dt),

the power into (charging) or out of (discharging) the inductor. Finally, power is dissipated as
sound, heat due to friction at the brush-commutator interface and at the bearings between the
motor shaft and the housing, etc. In SI units, all these power components are expressed in
watts. Combining all of these factors provides a full accounting for the electrical power put
into the motor:

IV = τω + I2R+ LI
dI

dt
+ power dissipated due to friction, sound, etc.

Ignoring the last term, we have our simple motor model, written in terms of power:

IV = τω + I2R+ LI
dI

dt
. (25.2)
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From (25.2) we can derive all other relationships of interest. For example, dividing both sides
of (25.2) by I yields

V = τ

I
ω + IR+ L

dI

dt
. (25.3)

The ratio τ/I is a constant, an expression of the Lorentz force law for the particular motor
design. This constant, relating current to torque, is called the torque constant kt. The torque
constant is one of the most important properties of the motor:

kt = τ

I
or τ = ktI. (25.4)

The SI units of kt are Nm/A. (In this chapter, we only use SI units, but you should
be aware that many different units are used by different manufacturers, as on the
speed-torque curve and data sheet in Figure 25.16 in the Exercises.) Equation (25.3) also
shows that the SI units for kt can be written equivalently as Vs/rad, or simply Vs.
When using these units, we sometimes call the motor constant the electrical constant ke. The
inverse is sometimes called the speed constant. You should recognize that these terms
all refer to the same property of the motor. For consistency, we usually refer to the torque
constant kt.

We now express the motor model in terms of voltage as

V = ktω + IR+ L
dI

dt
. (25.5)

You should remember, or be able to quickly derive, the power equation (25.2), the torque
constant (25.4), and the voltage equation (25.5).

The term ktω, with units of voltage, is called the back-emf, where emf is short for
electromotive force. We could also call this “back-voltage.” Back-emf is the voltage generated
by a spinning motor to “oppose” the input voltage generating the motion. For example,
assume that the motor’s terminals are not connected to anything (open circuit). Then I = 0
and dI

dt = 0, so (25.5) reduces to

V = ktω.

This equation indicates that back-driving the motor (e.g., spinning it by hand) will generate a
voltage at the terminals. If we were to connect a capacitor across the motor terminals, then
spinning the motor by hand would charge the capacitor, storing some of the mechanical
energy we put in as electrical energy in the capacitor. In this situation, the motor acts as a
generator, converting mechanical energy to electrical energy.

The existence of this back-emf term also means that if we put a constant voltage V across a
free-spinning frictionless motor (i.e., the motor shaft is not connected to anything), after some
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time it will reach a constant speed V/kt. At this speed, by (25.5), the current I drops to zero,
meaning there is no more torque τ to accelerate the motor. This happens because as the motor
accelerates, the back-emf increases, countering the applied voltage until no current flows (and
hence there is no torque or acceleration).

25.3 The Speed-Torque Curve

Consider a motor spinning a boat’s propeller at constant velocity. The torque τ provided by
the motor can be written

τ = τfric + τpushing water,

where τfric is the torque the motor has to generate to overcome friction and begin to spin,
while τpushing water is the torque needed for the propeller to displace water when the motor is
spinning at velocity ω. In this section we assume τfric = 0, so τ = τpushing water in this
example. In Section 25.4 we consider nonzero friction.

For a motor spinning at constant speed ω and providing constant torque τ (as in the propeller
example above), the current I is constant and therefore dI/dt = 0. Under these assumptions,
(25.5) reduces to

V = ktω + IR. (25.6)

Using the definition of the torque constant, we get the equivalent form

ω = 1

kt
V − R

k2t
τ . (25.7)

Equation (25.7) gives ω as a linear function of τ for a given constant V . This line, of
slope −R/k2t , is called the speed-torque curve for the voltage V .

The speed-torque curve plots all the possible constant-current operating conditions with
voltage V across the motor. Assuming friction torque is zero, the line intercepts the τ = 0
axis at

ω0 = V/kt = no load speed.

The line intercepts the ω = 0 axis at

τstall = ktV

R
= Stall torque.

At the no-load condition, τ = I = 0; the motor rotates at maximum speed with no current or
torque. At the stall condition, the shaft is blocked from rotating, and the current
(Istall = τstall/kt = V/R) and output torque are maximized due to the lack of back-emf. Which
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point along the speed-torque curve the motor actually operates at is determined by the load
attached to the motor shaft.

An example speed-torque curve is shown in Figure 25.8. This motor has ω0 = 500 rad/s and
τstall = 0.1067 Nm for a nominal voltage of Vnom = 12 V. The operating region is any point
below the speed-torque curve, corresponding to voltages less than or equal to 12 V. If the
motor is operated at a different voltage cVnom, the intercepts of the speed-torque curve are
linearly scaled to cω0 and cτstall.

Imagine squeezing the shaft of a motor powered by a voltage V and spinning at a constant
velocity. Your hand is applying a small torque to the shaft. Since the motor is not accelerating
and we are neglecting friction in the motor, the torque created by the motor’s coils must be
equal and opposite the torque applied by your hand. Thus the motor operates at a specific
point on the speed-torque curve. If you slowly squeeze the shaft harder, increasing the torque
you apply to the rotor, the motor will slow down and increase the torque it applies, to balance
your hand’s torque. Assuming the motor’s current changes slowly (i.e., LdI/dt is negligible),
then the operating point of the motor moves down and to the right on the speed-torque curve
as you increase your squeeze force. When you squeeze hard enough that the motor can no
longer move, the operating point is at the stall condition, the bottom-right point on the
speed-torque curve.

The speed-torque curve corresponds to constant V , but not to constant input power Pin = IV .
The current I is linear with τ , so the input electrical power increases linearly with τ . The
output mechanical power is Pout = τω, and the efficiency in converting electrical to
mechanical power is η = Pout/Pin = τω/IV . We return to efficiency in Section 25.4.
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Figure 25.8
A speed-torque curve. Many speed-torque curves use rpm for speed, but we prefer SI units.



408 Chapter 25

To find the point on the speed-torque curve that maximizes the mechanical output power, we
can write points on the curve as (τ ,ω) = (cτstall, (1 − c)ω0) for 0 ≤ c ≤ 1, so the output
power is expressed as

Pout = τω = (c− c2)τstallω0,

and the value of c that maximizes the power output is found by solving

d

dc

(
(c− c2)τstallω0

)
= (1 − 2c)τstallω0 = 0 → c = 1

2
.

Thus the mechanical output power is maximized at τ = τstall/2 and ω = ω0/2. This maximum
output power is

Pmax =
(
1

2
τstall

)(
1

2
ω0

)
= 1

4
τstallω0.

See Figure 25.9.

Motor current is proportional to motor torque, so operating at high torques means large coil
heating power loss I2R, sometimes called ohmic heating. For that reason, motor manufacturers
specify a maximum continuous current Icont, the largest continuous current such that the coils’
steady-state temperature remains below a critical point.1 The maximum continuous current
has a corresponding maximum continuous torque τcont. Points to the left of this torque and
under the speed-torque curve are called the continuous operating region. The motor can be
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Figure 25.9
The quadratic mechanical power plot P = τω plotted alongside the speed-torque curve. The area of

the speed-torque rectangle below and to the left of the operating point is the mechanical power.

1 The maximum continuous current depends on thermal properties governing how fast coil heat can be transferred
to the environment. This depends on the environment temperature, typically considered to be room temperature.
The maximum continuous current can be increased by cooling the motor.
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operated intermittently outside of the continuous operating region, in the intermittent
operating region, provided the motor is allowed to cool sufficiently between uses in this
region. Motors are commonly rated with a nominal voltage that places the maximum
mechanical power operating point (at τstall/2) outside the continuous operating region.

Given thermal characteristics of the motor of Figure 25.8, the speed-torque curve can be
refined to Figure 25.10, showing the continuous and intermittent operating regions of the
motor. The point on the speed-torque curve at τcont is the rated or nominal operating point,
and the mechanical power output at this point is called the motor’s power rating. For the motor
of Figure 25.10, τcont = 26.67 mNm, which occurs at ω = 375 rad/s, for a power rating of

0.02667 Nm × 375 rad/s = 10.0 W.

Figure 25.10 also shows the constant output power hyperbola τω = 10 W passing through the
nominal operating point.

The speed-torque curve for a motor is drawn based on a nominal voltage. This is a “safe”
voltage that the manufacturer recommends. It is possible to overvolt the motor, however,
provided it is not continuously operated beyond the maximum continuous current. A motor
also may have a specified maximum permissible speed ωmax, which creates a horizontal line
constraint on the permissible operating range. This speed is determined by allowable brush
wear, or possibly properties of the shaft bearings, and it is typically larger than the no-load
speed ω0. The shaft and bearings may also have a maximum torque rating τmax > τstall. These
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Figure 25.10
The continuous operating region (under the speed-torque curve and left of τcont) and the

intermittent operating region (the rest of the area under the speed-torque curve). The 10 W
mechanical power hyperbola is indicated, including the nominal operating point at τcont.
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Figure 25.11
It is possible to exceed the nominal operating voltage, provided the constraints ω < ωmax and

τ < τmax are respected and τcont is only intermittently exceeded.

limits allow the definition of overvolted continuous and intermittent operating regions, as
shown in Figure 25.11.

25.4 Friction and Motor Efficiency

Until now we have been assuming that the full torque τ = ktI generated by the windings is
available at the output shaft. In practice, some torque is lost due to friction at the brushes and
the shaft bearings. Let us use a simple model of friction: assume a torque τ ≥ τfric > 0 must
be generated to overcome friction and initiate motion, and any torque beyond τfric is available
at the output shaft regardless of the motor speed (e.g., no friction that depends on speed
magnitude). When the motor is spinning, the torque available at the output shaft is

τout = τ − τfric.

Nonzero friction results in a nonzero no-load current I0 = τfric/kt and a no-load speed ω0 less
than V/kt. The speed-torque curve of Figure 25.11 is modified to show a small friction torque
in Figure 25.12. The torque actually delivered to the load is reduced by τfric.

Taking friction into account, the motor’s efficiency in converting electrical to mechanical
power is

η = τoutω

IV
. (25.8)
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Figure 25.12
The speed-torque curve of Figure 25.11 modified to show a nonzero friction torque τfric and the

resulting reduced no-load speed ω0.
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Figure 25.13
The speed-torque curve for a motor and two efficiency plots, one for high friction torque (case 1)
and one for low friction torque (case 2). For each case, efficiency is zero for all τ below the level

needed to overcome friction. The low friction version of the motor (case 2) achieves a higher
maximum efficiency, at a higher speed and lower torque, than the high friction version (case 1).

The efficiency depends on the operating point on the speed-torque curve, and it is zero when
either τout or ω is zero, as there is no mechanical power output. Maximum efficiency generally
occurs at high speed and low torque, approaching the limit of 100% efficiency at τ = τout = 0
and ω = ω0 as τfric approaches zero. As an example, Figure 25.13 plots efficiency vs. torque
for the same motor with two different values of τfric. Lower friction results in a higher
maximum efficiency ηmax, occurring at a higher speed and lower torque.
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To derive the maximally efficient operating point and the maximum efficiency ηmax for a given
motor, we can express the motor current as

I = I0 + Ia,

where I0 is the no-load current necessary to overcome friction and Ia is the added current to
create torque to drive the load. Recognizing that τout = ktIa, V = IstallR, and
ω = R(Istall − Ia − I0)/kt by the linearity of the speed-torque curve, we can rewrite the
efficiency (25.8) as

η = Ia(Istall − I0 − Ia)

(I0 + Ia)Istall
. (25.9)

To find the operating point I∗a maximizing η, we solve dη/dIa = 0 for I∗a , and recognizing that
I0 and Istall are nonnegative, the solution is

I∗a = √
IstallI0 − I0.

In other words, as the no-load current I0 goes to zero, the maximally efficient current (and
therefore τ ) goes to zero.

Plugging I∗a into (25.9), we find

ηmax =
(
1 −

√
I0
Istall

)2

.

This answer has the form we would expect: maximum efficiency approaches 100% as the
friction torque approaches zero, and maximum efficiency approaches 0% as the friction torque
approaches the stall torque.

Choosing an operating point that maximizes motor efficiency can be important when trying to
maximize battery life in mobile applications. For the majority of analysis and motor selection
problems, however, ignoring friction is a good first approximation.

25.5 Motor Windings and the Motor Constant

It is possible to build two different versions of the same motor by simply changing the
windings while keeping everything else the same. For example, imagine a coil of resistance R
with N loops of wire of cross-sectional area A. The coil carries a current I and therefore has a
voltage drop IR. Now we replace that coil with a new coil with N/c loops of wire with
cross-sectional area cA. This preserves the volume occupied by the coil, fitting in the same
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form factor with similar thermal properties. Without loss of generality, let us assume that the
new coil has fewer loops and uses thicker wire (c > 1).

The resistance of the new coil is reduced to R/c2 (a factor of c due to the shorter coil and
another factor of c due to the thicker wire). To keep the torque of the motor the same, the new
coil would have to carry a larger current cI to make up for the fewer loops, so that the current
times the pathlength through the magnetic field is unchanged. The voltage drop across the new
coil is (cI)(R/c2) = IR/c.

Replacing the coils allows us to create two versions of the motor: a many-loop, thin wire
version that operates at low current and high voltage, and a fewer-loop, thick wire version that
operates at high current and low voltage. Since the two motors create the same torque with
different currents, they have different torque constants. Each motor has the same motor
constant km, however, where

km = τ√
I2R

= kt√
R

with units of Nm/
√
W. The motor constant defines the torque generated per square root

of the power dissipated by coil resistance. In the example above, the new coil dissipates
(cI)2(R/c2) = I2R power as heat, just as the original coil does, while generating the same
torque.

Figure 25.16 shows the data sheet for a motor that comes in several different versions, each
identical in every way except for the winding. Each version of the motor has a similar stall
torque and motor constant but different nominal voltage, resistance, and torque constant.

25.6 Other Motor Characteristics

Electrical time constant

When the motor is subject to a step in the voltage across it, the electrical time constant Te
measures the time it takes for the unloaded current to reach 63% of its final value. The motor’s
voltage equation is

V = ktω + IR+ L
dI

dt
.

Ignoring back-emf (because the motor speed does not change significantly over one electrical
time constant), assuming an initial current through the motor of I0, and an instantaneous drop
in the motor voltage to 0, we get the differential equation
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0 = I0R+ L
dI

dt

or

dI

dt
= −R

L
I0

with solution

I(t) = I0 e
−tR/L = I0 e

−t/Te .

The time constant of this first-order decay of current is the motor’s electrical time constant,
Te = L/R.

Mechanical time constant

When the motor is subject to a step voltage across it, the mechanical time constant Tm
measures the time it takes for the unloaded motor speed to reach 63% of its final value.
Beginning from the voltage equation

V = ktω + IR+ L
dI

dt
,

ignoring the inductive term, and assuming an initial speed ω0 at the moment the voltage drops
to zero, we get the differential equation

0 = IR+ ktω0 = R

kt
τ + ktω0 = JR

kt

dω

dt
+ ktω0,

where we used τ = Jdω/dt, where J is the inertia of the motor. We can rewrite this equation as

dω

dt
= − k2t

JR
ω0

with solution

ω(t) = ω0 e−t/Tm ,

with a time constant of Tm = JR/k2t . If the motor is attached to a load that increases the inertia
J, the mechanical time constant increases.
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Short-circuit damping

When the terminals of the motor are shorted together, the voltage equation (ignoring
inductance) becomes

0 = ktω + IR = ktω + τ

kt
R

or

τ = −Bω = −k2t
R

ω,

where B = k2t /R is the short-circuit damping. A spinning motor is slowed more quickly by
shorting its terminals together, compared to leaving the terminals open circuit, due to this
damping.

25.7 Motor Data Sheet

Motor manufacturers summarize motor properties described above in a speed-torque curve
and in a data sheet similar to the one in Figure 25.14. When you buy a motor second-hand or
surplus, you may need to measure these properties yourself. We will use all SI units, which is
not the case on most motor data sheets.

Many of these properties have been introduced already. Below we describe some methods for
estimating them.

Experimentally Characterizing a Brushed DC Motor

Given a mystery motor with an encoder, you can use a function generator, oscilloscope,
multimeter and perhaps some resistors and capacitors to estimate most of the important
properties of the motor. Below are some suggested methods; you may be able to devise others.

Terminal resistance R

You can measure R with a multimeter. The resistance may change as you rotate the shaft by
hand, as the brushes move to new positions on the commutator. You should record the
minimum resistance you can reliably find. A better choice, however, may be to measure the
current when the motor is stalled.

Torque constant kt

You can measure this by spinning the shaft of the motor, measuring the back-emf at the motor
terminals, and measuring the rotation rate ω using the encoder. Or, if friction losses are
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Motor Characteristic Symbol Value Units Comments
Terminal resistance R Ω Resistance of the motor windings. May change as

brushes slide over commutator segments. Increases
with heat.

Torque constant kt Nm/A The constant ratio of torque produced to current
through the motor.

Electrical constant ke Vs/rad Same numerical value as the torque constant (in SI
units). Also called voltage or back-emf constant.

Speed constant ks rad/(Vs) Inverse of electrical constant.
Motor constant km Nm/

√
W Torque produced per square root of power dissi-

pated by the coils.
Max continuous current Icont A Max continuous current without overheating.
Max continuous torque τcont Nm Max continuous torque without overheating.
Short-circuit damping B Nms/rad Not included in most data sheets, but useful for

motor braking (and haptics).
Terminal inductance L H Inductance due to the coils.

Electrical time constant Te s The time for the motor current to reach 63% of
its final value. Equal to L/R.

Rotor inertia J kgm2 Often given in units gcm2.
Mechanical time constant Tm s The time for the motor to go from rest to 63% of

its final speed under constant voltage and no load.
Equal to JR/kt2.

Friction Not included in most data sheets. See explanation.

Values at Nominal Voltage
Nominal voltage Vnom V Should be chosen so the no-load speed is safe for

brushes, commutator, and bearings.
Power rating P W Output power at the nominal operating point (max

continuous torque).
No-load speed ω0 rad/s Speed when no load and powered by Vnom. Usually

given in rpm (revs/min, sometimes m–1).
No-load current I0 A The current required to spin the motor at the

no-load condition. Nonzero because of friction
torque.

Stall current I A Same as starting current, Vnom/R.
Stall torque τstall Nm The torque achieved at the nominal voltage when

the motor is stalled.
Max mechanical power Pmax W The max mechanical power output at the nominal

voltage (including short-term operation).
Max efficiency η % The maximum efficiency achievable in converting

electrical to mechanical power.

Figure 25.14
A sample motor data sheet, with values to be filled in.

negligible, a good approximation is Vnom/ω0. This eliminates the need to spin the motor
externally.

Electrical constant ke

Identical to the torque constant in SI units. The torque constant kt is often expressed in units of
Nm/A or mNm/A or English units like oz-in/A, and often ke is given in V/rpm, but kt and ke
have identical numerical values when expressed in Nm/A and Vs/rad, respectively.
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Speed constant ks

Just the inverse of the electrical constant.

Motor constant km

The motor constant is calculated as km = kt/
√
R.

Max continuous current Icont

This is determined by thermal considerations, which are not easy to measure. It is typically
less than half the stall current.

Max continuous torque τcont

This is determined by thermal considerations, which are not easy to measure. It is typically
less than half the stall torque.

Short-circuit damping B

This is most easily calculated from estimates of R and kt: B = k2t /R.

Terminal inductance L

There are several ways to measure inductance. One approach is to add a capacitor in parallel
with the motor and measure the oscillation frequency of the resulting RLC circuit. For
example, you could build the circuit shown in Figure 25.15, where a good choice for C may be
0.01 or 0.1 µF. The motor acts as a resistor and inductor in series; back-emf will not be an
issue, because the motor will be powered by tiny currents at high frequency and therefore will
not move.

Motor

1 kW
1 kHz Square

wave

Scope

c

L

R

Figure 25.15
Using a capacitor to create an RLC circuit to measure motor inductance.
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Use a function generator to put a 1 kHz square wave between 0 and 5 V at the point indicated.
The 1 k� resistor limits the current from the function generator. Measure the voltage with an
oscilloscope where indicated. You should be able to see a decaying oscillatory response to the
square wave input when you choose the right scales on your scope. Measure the frequency of
the oscillatory response. Knowing C and that the natural frequency of an RLC circuit is
ωn = 1/

√
LC in rad/s, estimate L.

Let us think about why we see this response. Say the input to the circuit has been at 0 V for a
long time. Then your scope will also read 0 V. Now the input steps up to 5 V. After some time,
in steady state, the capacitor will be an open circuit and the inductor will be a closed circuit
(wire), so the voltage on the scope will settle to 5 V × (R/(1000 + R))—the two resistors in
the circuit set the final voltage. Right after the voltage step, however, all current goes to charge
the capacitor (as the zero current through the inductor cannot change discontinuously). If the
inductor continued to enforce zero current, the capacitor would charge to 5 V. As the voltage
across the capacitor grows, however, so does voltage across the inductor, and therefore so does
the rate of change of current that must flow through the inductor (by the relation
VL + VR = VC and the constitutive law VL = L dI/dt). Eventually the integral of this rate of
change dictates that all current is redirected to the inductor, and in fact the capacitor will have
to provide current to the inductor, discharging itself. As the voltage across the capacitor drops,
though, the voltage across the inductor will eventually become negative, and therefore the rate
of change of current through the inductor will become negative. And so on, to create the
oscillation. If R were large, i.e., if the circuit were heavily damped, the oscillation would die
quickly, but you should be able to see it.

Note that you are seeing a damped oscillation, so you are actually measuring a damped natural
frequency. But the damping is low if you are seeing at least a couple of cycles of oscillation,
so the damped natural frequency is nearly indistinguishable from the undamped natural
frequency.

Electrical time constant Te

The electrical time constant can be calculated from L and R as Te = L/R.

Rotor inertia J

The rotor inertia can be estimated from measurements of the mechanical time constant Tm, the
torque constant kt, and the resistance R. Alternatively, a ballpark estimate can be made based
on the mass of the motor, a guess at the portion of the mass that belongs to the spinning rotor,
a guess at the radius of the rotor, and a formula for the inertia of a uniform density cylinder.
Or, more simply, consult a data sheet for a motor of similar size and mass.
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Mechanical time constant Tm

The time constant can be measured by applying a constant voltage to the motor, measuring the
velocity, and determining the time it takes to reach 63% of final speed. Alternatively, you
could make a reasonable estimate of the rotor inertia J and calculate Tm = JR/k2t .

Friction

Friction torque arises from the brushes sliding on the commutator and the motor shaft
spinning in its bearings, and it may depend on external loads. A typical model of friction
includes both Coulomb friction and viscous friction, written

τfric = b0 sgn(ω) + b1ω,

where b0 is the Coulomb friction torque (sgn(ω) just returns the sign of ω) and b1 is a viscous
friction coefficient. At no load, τfric = ktI0. An estimate of each of b0 and b1 can be made by
running the motor at two different voltages with no load.

Nominal voltage Vnom

This is the specification you are most likely to know for an otherwise unknown motor. It is
sometimes printed right on the motor itself. This voltage is just a recommendation; the real
issue is to avoid overheating the motor or spinning it at speeds beyond the recommended value
for the brushes or bearings. Nominal voltage cannot be measured, but a typical no-load speed
for a brushed DC motor is between 3000 and 10,000 rpm, so the nominal voltage will often
give a no-load speed in this range.

Power rating P

The power rating is the mechanical power output at the max continuous torque.

No-load speed ω0

You can determine ω0 by measuring the unloaded motor speed when powered with the
nominal voltage. The amount that this is less than Vnom/kt can be attributed to friction
torque.

No-load current I0

You can determine I0 by using a multimeter in current measurement mode.
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Stall current Istall

Stall current is sometimes called starting current. You can estimate this using your estimate of
R. Since R may be difficult to measure with a multimeter, you can instead stall the motor shaft
and use your multimeter in current sensing mode, provided the multimeter can handle the
current.

Stall torque τstall

This can be obtained from kt and Istall.

Max mechanical power Pmax

The max mechanical power occurs at 1
2τstall and

1
2ω0. For most motor data sheets, the max

mechanical power occurs outside the continuous operation region.

Max efficiency ηmax

Efficiency is defined as the power out divided by the power in, τoutω/(IV). The wasted power
is due to coil heating and friction losses. Maximum efficiency can be estimated using the
no-load current I0 and the stall current Istall, as discussed in Section 25.4.

25.8 Chapter Summary

• The Lorentz force law says that a current-carrying conductor in a constant magnetic field
feels a net force according to

F = �I × B,

where � is the length of the conductor in the field, I is the current vector, and B is the
(constant) magnetic field vector.

• A brushed DC motor consists of multiple current-carrying coils attached to a rotor, and
magnets on the stator to create a magnetic field. Current is transmitted to the coils by two
brushes connected to the stator sliding over a commutator ring attached to the rotor. Each
coil attaches to two different commutator segments.

• The voltage across a motor’s terminals can be expressed as

V = ktω + IR+ L
dI

dt
,

where kt is the torque constant and ktω is the back-emf.
• The speed-torque curve is obtained by plotting the steady-state speed as a function of

torque for a given motor voltage V ,
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ω = 1

kt
V − R

k2t
τ .

The maximum speed (at τ = 0) is called the no-load speed ω0 and the maximum torque
(at ω = 0) is called the stall torque τstall.

• The continuous operating region of a motor is defined by the maximum current I
the motor coils can conduct continuously without overheating due to I2R power
dissipation.

• The mechanical power τω delivered by a motor is maximized at half the stall torque and
half the no-load speed, Pmax = 1

4τstallω0.
• A motor’s electrical time constant Te = L/R is the time needed for current to reach 63%

of its final value in response to a step input in voltage.
• A motor’s mechanical time constant Tm = JR/k2t is the time needed for the motor speed to

reach 63% of its final value in response to a step change in voltage.

25.9 Exercises
1. Assume a DC motor with a five-segment commutator. Each segment covers 70◦ of the

circumference of the commutator circle. The two brushes are positioned at opposite ends
of the commutator circle, and each makes contact with 10◦ of the commutator circle.
a. How many separate coils does this motor likely have? Explain.
b. Choose one of the motor coils. As the rotor rotates 360◦, what is the total angle over

which that coil is energized? (For example, an answer of 360◦ means that the coil is
energized at all angles; an answer of 180◦ means that the coil is energized at half of
the motor positions.)

2. Figure 25.16 gives the data sheet for the 10 W Maxon RE 25 motor. The columns
correspond to different windings.
a. Draw the speed-torque curve for the 12 V version of the motor, indicating the no-load

speed (in rad/s), the stall torque, the nominal operating point, and the rated power of
the motor.

b. Explain why the torque constant is different for the different versions of the motor.
c. Using other entries in the table, calculate the maximum efficiency ηmax of the 12 V

motor and compare to the value listed.
d. Calculate the electrical time constant Te of the 12 V motor. What is the ratio to the

mechanical time constant Tm?
e. Calculate the short-circuit damping B for the 12 V motor.
f. Calculate the motor constant km for the 12 V motor.
g. How many commutator segments do these motors have?
h. Which versions of these motors are likely to be in stock?
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Article Numbers

Specifications Operating Range

maxon Modular System

Motor Data

Figure 25.16
The data sheet for the Maxon RE 25 motor. The columns correspond to different windings for

different nominal voltages. (Image courtesy of Maxon Precision Motors. Motor data is subject to
change at any time; consult maxonmotorusa.com for the latest data sheets.)

i. (Optional) Motor manufacturers may specify slightly different continuous and
intermittent operating regions than the ones described in this chapter. For example, the
limit of the continuous operating region is not quite vertical in the speed-torque plot
of Figure 25.16. Come up with a possible explanation, perhaps using online resources.

3. There are 21 entries on the motor data sheet from Section 25.7. Let us assume zero
friction, so we ignore the last entry. To avoid thermal tests, you may also assume a
maximum continuous power that the motor coils can dissipate as heat before overheating.
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Of the 20 remaining entries, under the assumption of zero friction, how many independent
entries are there? That is, what is the minimum number N of entries you need to be able to
fill in the rest of the entries? Give a set of N independent entries from which you can derive
the other 20 − N dependent entries. For each of the 20 − N dependent entries, give the
equation in terms of the N independent entries. For example, Vnom and R will be two of the
N independent entries, from which we can calculate the dependent entry Istall = Vnom/R.

4. This exercise is an experimental characterization of a motor. For this exercise, you need a
low-power motor (preferably without a gearhead to avoid high friction) with an encoder.
You also need a multimeter, oscilloscope, and a power source for the encoder and motor.
Make sure the power source for the motor can provide enough current when the motor is
stalled. A low-voltage battery pack is a good choice.
a. Spin the motor shaft by hand. Get a feel for the rotor inertia and friction. Try to spin

the shaft fast enough that it continues spinning briefly after you let go of it.
b. Now short the motor terminals by electrically connecting them. Spin again by hand,

and try to spin the shaft fast enough that it continues spinning briefly after you let go
of it. Do you notice the short-circuit damping?

c. Try measuring your motor’s resistance using your multimeter. It may vary with the
angle of the shaft, and it may not be easy to get a steady reading. What is the
minimum value you can get reliably? To double-check your answer, you can power
your motor and use your multimeter to measure the current as you stall the motor’s
shaft by hand.

d. Attach one of your motor’s terminals to scope ground and the other to a scope input.
Spin the motor shaft by hand and observe the motor’s back-emf.

e. Power the motor’s encoder, attach the A and B encoder channels to your oscilloscope,
and make sure the encoder ground and scope ground are connected together. Do not
power the motor. (The motor inputs should be disconnected from anything.) Spin the
motor shaft by hand and observe the encoder pulses, including their relative phase.

f. Now power your motor with a low-voltage battery pack. Given the number of lines
per revolution of the encoder, and the rate of the encoder pulses you observe on your
scope, calculate the motor’s no-load speed for the voltage you are using.

g. Work with a partner. Couple your two motor shafts together by tape or flexible tubing.
(This may only work if your motor has no gearhead.) Now plug one terminal of one
of the motors (we shall call it the passivemotor) into one channel of a scope, and plug
the other terminal of the passive motor into GND of the same scope. Now power the
other motor (the driving motor) with a battery pack so that both motors spin. Measure
the speed of the passive motor by looking at its encoder count rate on your scope.
Also measure its back-emf. With this information, calculate the passive motor’s
torque constant kt.

5. Using techniques discussed in this chapter, or techniques you come up with on your own,
create a data sheet with all 21 entries for your nominal voltage. Indicate how you
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calculated the entry. (Did you do an experiment for it? Did you calculate it from other
entries? Or did you estimate by more than one method to cross-check your answer?) For
the friction entry, you can assume Coulomb friction only—the friction torque opposes the
rotation direction (b0 �= 0), but is independent of the speed of rotation (b1 = 0). For your
measurement of inductance, turn in an image of the scope trace you used to estimate ωn
and L, and indicate the value of C that you used.
If there are any entries you are unable to estimate experimentally, approximate, or
calculate from other values, simply say so and leave that entry blank.

6. Based on your data sheet from above, draw the speed-torque curves described below, and
answer the associated questions. Do not do any experiments for this exercise; just
extrapolate your previous results.
a. Draw the speed-torque curve for your motor. Indicate the stall torque and no-load

speed. Assume a maximum power the motor coils can dissipate continuously before
overheating and indicate the continuous operating regime. Given this, what is the
power rating P for this motor? What is the max mechanical power Pmax?

b. Draw the speed-torque curve for your motor assuming a nominal voltage four times
larger than in Exercise 6a. Indicate the stall torque and no-load speed. What is the
max mechanical power Pmax?

7. You are choosing a motor for the last joint of a new direct-drive robot arm design.
(A direct-drive robot does not use gearheads on the motors, creating high speeds with low
friction.) Since it is the last joint of the robot, and it has to be carried by all the other
joints, you want it to be as light as possible. From the line of motors you are considering
from your favorite motor manufacturer, you know that the mass increases with the motor’s
power rating. Therefore you are looking for the lowest power motor that works for your
specifications. Your specifications are that the motor should have a stall torque of at least
0.1 Nm, should be able to rotate at least 5 revolutions per second when providing
0.01 Nm, and the motor should be able to operate continuously while providing 0.02 Nm.
Which motor do you choose from Table 25.1? Give a justification for your answer.

8. The speed-torque curve of Figure 25.8 is drawn for the positive speed and positive torque
quadrant of the speed-torque plane. In this exercise, we will draw the motor’s operating
region for all four quadrants. The power supply used to drive the motor is 24 V, and
assume the H-bridge motor controller (discussed in Chapter 27) can use that power supply
to create any average voltage across the motor between −24 and 24 V. The motor’s
resistance is 1 � and the torque constant is 0.1 Nm/A. Assume the motor has zero friction.

a. Draw the four-quadrant speed-torque operating region for the motor assuming the
24 V power supply (and the H-bridge driver) has no limit on current. Indicate the
torque and speed values where the boundaries of the operating region intersect the
ω = 0 and τ = 0 axes. Assume there are no other speed or torque constraints on the
motor except for the one due to the 24 V limit of the power supply. (Hint: the
operating region is unbounded in both speed and torque!)
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Table 25.1: Motors to choose from

Assigned power rating W 3 10 20 90
Nominal voltage V 15 15 15 15
No load speed rpm 13,400 4980 9660 7180
No load current mA 36.8 21.8 60.8 247
Nominal speed rpm 10,400 3920 8430 6500
Max continuous torque mNm 2.31 28.2 20.5 73.1
Max continuous current mA 259 1010 1500 4000
Stall torque mNm 10.5 131 225 929
Stall current mA 1030 4570 15,800 47,800
Max efficiency % 65 87 82 83
Terminal resistance Ohm 14.6 3.28 0.952 0.314
Terminal inductance mH 0.486 0.353 0.088 0.085
Torque constant mNm/A 10.2 28.6 14.3 19.4
Speed constant rpm/V 932 334 670 491
Mechanical time constant ms 7.51 4.23 4.87 5.65
Rotor inertia gcm2 0.541 10.6 10.4 68.1
Max permissible speed rpm 16,000 5500 14,000 12,000
Cost USD 88 228 236 239

Note that sometimes the “Assigned power rating” is different from the mechanical power
output at the nominal operating point, for manufacturer-specific reasons. The meanings of the
other terms in the table are unambiguous.

b. Update the operating region with the constraint that the power supply can provide a
maximum current of 30 A. What is the maximum torque that can be generated using
this power supply, and what are the maximum and minimum motor speeds possible at
this maximum torque? What is the largest back-emf voltage that can be achieved?

c. Update the operating region with the constraint that the maximum recommended
speed for the motor brushes and shaft bearings is 250 rad/s.

d. Update the operating region with the constraint that the maximum recommended
torque at the motor shaft is 5 Nm.

e. Update the operating region to show the continuous operating region, assuming the
maximum continuous current is 10 A.

f. We typically think of a motor as consuming electrical power (IV > 0, or “motoring”)
and converting it to mechanical power, but it can also convert mechanical power to
electrical power (IV < 0, or “regenerating”). This occurs in electric car braking
systems, for example. Update the operating region to show the portion where the
motor is consuming electrical power and the portion where the motor is generating
electrical power.

Further Reading
Hughes, A., & Drury, B. (2013). Electric motors and drives: Fundamentals, types and applications (4th ed.).

Amsterdam: Elsevier.
Maxon DC motor RE 25, ø 25 mm, graphite brushes, 20 Watt. (2015). Maxon.



CHAPTER 26

Gearing and Motor Sizing

The mechanical power produced by a DC motor is a product of its torque and angular velocity
at its output shaft. Even if a DC motor provides enough power for a given application, it may
rotate at too high a speed (up to thousands of rpm), and too low a torque, to be useful. In this
case, we can add a gearhead to the output shaft to decrease the speed by a factor of G > 1 and
to increase the torque by a similar factor. In rare cases, we can choose G < 1 to actually
increase the output speed.

In this chapter we discuss options for gearing the output of a motor, and how to choose a DC
motor and gearing combination that works for your application.

26.1 Gearing

Gearing takes many forms, including different kinds of rotating meshing gears, belts and
pulleys, chain drives, cable drives, and even methods for converting rotational motion
to linear motion, such as racks and pinions, lead screws, and ball screws. All transform
torques/forces and angular/linear velocities while ideally preserving mechanical power. For
specificity, we refer to a gearhead with an input shaft (attached to the motor shaft) and an
output shaft.

Figure 26.1 shows the basic idea. The input shaft is attached to an input gear A with N teeth,
and the output shaft is attached to an output gear B with GN teeth, where typically G > 1. The
meshing of these teeth enforces the relationship

ωout = 1

G
ωin.

Ideally the meshing gears preserve mechanical power, so Pin = Pout, which implies

τinωin = Pin = Pout = 1

G
ωinτout → τout = Gτin.

It is common to have multiple stages of gearing (Figure 26.2(a)), so the output shaft
described above has a second, smaller gear which becomes the input of the next stage.
If the gear ratios of the two stages are G1 and G2, the total gear ratio is G = G1G2.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00026-3
Copyright © 2016 Elsevier Inc. All rights reserved. 427
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A
B

Figure 26.1
The input gear A has 12 teeth and the output gear B has 18, making the gear ratio G = 1.5.

Multi-stage gearheads can make huge reductions in speed and increases in torque, up to ratios
of hundreds or more.

26.1.1 Practical Issues

Efficiency

In practice, some power is lost due to friction and impacts between the teeth. This power loss
is often modeled by an efficiency coefficient η < 1, such that Pout = ηPin. Since the teeth
enforce the ratio G between input and output velocities, the power loss must appear as a
decrease in the available output torque, i.e.,

ωout = 1

G
ωin τout = ηGτin.

The total efficiency of a multi-stage gearhead is the product of the efficiencies of each stage
individually, i.e., η = η1η2 for a two-stage gearhead. As a result, high ratio gearheads may
have relatively low efficiency.

Backlash

Backlash refers to the angle that the output shaft of a gearhead can rotate without the input
shaft moving. Backlash arises due to tolerance in manufacturing; the gear teeth need some
play to avoid jamming when they mesh. An inexpensive gearhead may have backlash of a
degree or more, while more expensive precision gearheads have nearly zero backlash.
Backlash typically increases with the number of gear stages. Some gear types, notably



Gearing and Motor Sizing 429

harmonic drive gears (see Section 26.1.2), are specifically designed for near-zero backlash,
usually by using flexible elements.

Backlash can be a serious issue in controlling endpoint motions, due to the limited resolution
of sensing the gearhead output shaft angle using an encoder attached to the motor shaft (the
input of the gearhead).

Backdrivability

Backdrivability refers to the ability to drive the output shaft of a gearhead with an external
device (or by hand), i.e., to backdrive the gearing. Typically the motor and gearhead
combination is less backdrivable for higher gear ratios, due to the higher friction in the
gearhead and the higher apparent inertia of the motor (see Section 26.2.2). Backdrivability
also depends on the type of gearing. In some applications we do not want the motor and
gearhead to be backdrivable (e.g., if we want the gearhead to act as a kind of brake that
prevents motion when the motor is turned off), and in others backdrivability is highly
desirable (e.g., in virtual environment haptics applications, where the motor is used to create
forces on a user’s hand).

Input and output limits

The input and output shafts and gears, and the bearings that support them, are subject to
practical limits on how fast they can spin and how much torque they can support. Gearheads
will often have maximum input velocity and maximum output torque specifications reflecting
these limits. For example, you cannot assume that you get a 10 Nm actuator by adding a
G = 10 gearhead to a 1 Nm motor; you must make sure that the gearhead is rated for 10 Nm
output torque.

26.1.2 Examples

Figure 26.2 shows several different gear types. Not shown are cable, belt, and chain drives,
which can also be used to implement a gear ratio while transmitting torques over distances.

Spur gearhead

Figure 26.2(a) shows a multi-stage spur gearhead. To keep the spur gearhead package
compact, typically each stage has a gear ratio of only 2 or 3; larger gear ratios would require
large gears.

Planetary gearhead

A planetary gearhead has an input rotating a sun gear and an output attached to a planet
carrier (Figure 26.2(b)). The sun gear meshes with the planets, which also mesh with an
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internal gear. An advantage of the planetary gearhead is that more teeth mesh, allowing
higher torques.

Bevel gears

Bevel gears (Figure 26.2(c)) can be used to implement a gear ratio as well as to change the
axis of rotation.

Worm gears

The screw-like input worm interfaces with the output worm gear in Figure 26.2(d), making for
a large gear ratio in a compact package.

Harmonic drive

The harmonic drive gearhead (Figure 26.2(e)) has an elliptical wave generator attached to the
input shaft and a flexible flexspline attached to the output shaft. Ball bearings between the
wave generator and the flexibility of the flexspline allow them to move smoothly relative to
each other. The flexspline teeth engage with a rigid external circular spline. As the wave
generator completes a full revolution, the teeth of the flexspline may have moved by as little as
one tooth relative to the circular spline. Thus the harmonic drive can implement a high gear
ratio (for example, G = 50 or 100) in a single stage with essentially zero backlash. Harmonic
drives can be quite expensive.

Ball screw and lead screw

A ball screw or lead screw (Figure 26.2(f)) is aligned with the axis of, and coupled to, the
motor’s shaft. As the screw rotates, a nut on the screw translates along the screw. The nut is
prevented from rotating (and therefore must translate) by linear guide rods passing through the
nut. The holes in the nuts in Figure 26.2(f) are clearly visible. A lead screw and a ball screw
are basically the same, but a ball screw has ball bearings in the nut to reduce friction with the
screw.

Ball and lead screws convert rotational motion to linear motion. The ratio of the linear motion
to the rotational motion is specified by the lead of the screw.

Rack and pinion

The rack and pinion (Figure 26.2(g)) is another way to convert angular to linear motion. The
rack is typically mounted to a part on a linear slide.
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Figure 26.2
(a) Multi-stage spur gearhead. (b) A planetary gearhead. (c) Bevel gears. (d) Worm gears.

(e) Harmonic drive gearhead. (f) Ball screws. (g) Rack and pinion.

26.2 Choosing a Motor and Gearhead

26.2.1 Speed-Torque Curve

Figure 26.3 illustrates the effect of a gearhead with G = 2 and efficiency η = 0.75 on the
speed-torque curve. The continuous operating torque also increases by a factor ηG, or 1.5 in
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Speed

Original motor

Torque

G=2, Efficiency=100%

G=2, Efficiency=75%

*

Figure 26.3
The effect of gearing on the speed-torque curve. The operating point * is possible with the gearhead,

but not without.

this example. When choosing a motor and gearing combination, the expected operating points
should lie under the geared speed-torque curve, and continuous operating points should have
torques less than ηGτc, where τc is the continuous torque of the motor alone.

26.2.2 Inertia and Reflected Inertia

If you spin the shaft of a motor by hand, you can feel its rotor inertia directly. If you spin the
output shaft of a gearhead attached to the motor, however, you feel the reflected inertia of the
rotor through the gearbox. Say Jm is the inertia of the motor, ωm is the angular velocity of the
motor, and ωout = ωm/G is the output velocity of the gearhead. Then we can write the kinetic
energy of the motor as

KE = 1

2
Jmω2

m = 1

2
JmG

2ω2
out = 1

2
Jrefω

2
out,

and Jref = G2Jm is called the reflected (or apparent) inertia of the motor. (We ignore the inertia
of the gears.)

Commonly the gearbox output shaft is attached to a rigid-body load. For a rigid body
consisting of point masses, the inertia Jload about the axis of rotation is calculated as

Jload =
N∑
i=1

mir
2
i ,

where mi is the mass of point i and ri is its distance from the axis of rotation. In the case of a
continuous body, the discrete sum becomes the integral

Jload =
∫
V

ρ(r)r2 dV(r),

where r refers to the location of a point on the body, r is the distance of that point to the
rotation axis, ρ(r) is the mass density at that point, V is the volume of the body, and dV is a
differential volume element. Solutions to this equation are given in Figure 26.4 for some
simple bodies of mass m and uniform density.
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If the inertia of a body about its center of mass is Jcm, then the inertia J′ about a parallel axis a
distance r from the center of mass is

J′ = Jcm + mr2. (26.1)

Equation (26.1) is called the parallel-axis theorem. With the parallel-axis theorem and the
formulas in Figure 26.4, we can approximately calculate the inertia of a load consisting of
multiple bodies (Figure 26.5). Typically Jload is significantly larger than Jm, but with the
gearing, the reflected inertia of the motor G2Jm may be as large or larger than Jload.

Given a load of mass m and inertia Jload (about the gearhead axis) in gravity as shown in
Figure 26.6, and a desired acceleration α > 0 (counterclockwise), we can calculate the torque
needed to achieve the acceleration (using Newton’s second law):

τ = (G2Jm + Jload)α + mgr sin θ .

rr

J = (1/2) mr2J = mr2 J = (1/12) m(h   + w   ) 22

h

w

Figure 26.4
Inertia for an annulus, a solid disk, and a rectangle, each of mass m, about an axis out of the page

and through the center of mass.

Rotation
axis

r1
r2 m2m1

Figure 26.5
The body on the left can be approximated by the rectangle and disk on the right. If the inertias

of the two bodies (about their centers of mass) are J1 and J2, then the approximate inertia of the
compound body about the rotation axis is J = J1 + m1r2

1 + J2 + m2r2
2 by the parallel-axis theorem.

q

g

r

Rotation axis

Figure 26.6
A load in gravity.
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Given angular velocities at which we would like this acceleration to be possible, we have
a set of speed-torque points that must lie under the speed-torque curve (transformed by the
gearhead).

26.2.3 Choosing a Motor and Gearhead

To choose a motor and gearing combination, consider the following factors:

• The motor can be chosen based on the peak mechanical power required for the task. If the
motor’s power rating is sufficient, then theoretically we can follow by choosing a
gearhead to give the necessary speed and torque. Our choice of motor might also be
constrained by the voltage supply available for the application.

• The maximum velocity needed for the task should be less than ω0/G, where ω0 is the
no-load speed of the motor.

• The maximum torque needed for the task should be less than Gτstall, where τstall is the
motor’s stall torque.

• Any required operating point (τ ,ω) must lie below the gearing-transformed speed-torque
curve.

• If the motor will be used continuously, then the torques during this continuous
operation should be less than Gτc, where τc is the maximum continuous torque of the
motor.

To account for the efficiency η of the gearhead and other uncertain factors, it is a good idea to
oversize the motor by a safety factor of 1.5 or 2.

Subject to the hard constraints specified above, we might wish to find an “optimal” design,
e.g., to minimize the cost of the motor and gearing, its weight, or the electrical power
consumed by the motor. One type of optimization is called inertia matching.

Inertia matching

Given the motor inertia Jm and the load inertia Jload, the system is inertia matched if the
gearing G is chosen so that the load acceleration α is maximized for any given motor torque
τm. We can express the load acceleration as

α = Gτm

Jload + G2Jm
.

The derivative with respect to G is

dα

dG
= (Jload − G2Jm)τm

(Jload + G2Jm)2
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and solving dα/dG = 0 yields

G =
√
Jload
Jm

,

or G2Jm = Jload, hence the term “inertia matched.” With this choice of gearing, half of the
torque goes to accelerating the motor’s inertia and half goes to accelerating the load
inertia.

26.3 Chapter Summary

• For gearing with a gear ratio G, the output angular velocity is ωout = ωin/G and the ideal
output torque is τout = Gτin, where ωin and τin are the input angular velocity and torque,
respectively. If the gear efficiency η < 1 is taken into account, the output torque is
τout = ηGτin.

• For a two-stage gearhead with gear ratios G1 and G2 and efficiencies η1 and η2 for the
individual stages, the total gear ratio is G1G2 and total efficiency is η1η2.

• Backlash refers to the amount the output of the gearing can move without motion of the
input.

• The reflected inertia of the motor (the apparent inertia of the motor from the output of the
gearhead) is G2Jm.

• A motor and gearing system is inertia matched with its load if

G =
√
Jload
Jm

.

26.4 Exercises
1. You are designing gearheads using gears with 10, 15, and 20 teeth. When the 10- and

15-teeth gears mesh, you have η = 85%. When the 15-and 20-teeth gear mesh, you have
η = 90%. When the 10- and 20-teeth gear mesh, you have η = 80%.
a. For a one-stage gearhead, what gear ratios G > 1 can you achieve, and what are their

efficiencies?
b. For a two-stage gearhead, what gear ratios G > 1 can you achieve, and what are their

efficiencies? Consider all possible combinations of one-stage gearheads.
2. The inertia of the motor’s rotor is Jm, and its load is a uniform solid disk, which will be

centered on the gearhead output shaft. The disk has a mass m and a radius R. For what
gear ratio G is the system inertia matched?

3. The inertia of the motor’s rotor is Jm, and its load is a propeller with three blades. You
model the propeller as a simple planar body consisting of a uniform-density solid disk of
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radius R and massM, with each blade a uniform-density solid rectangle extending from
the disk. Each blade has mass m, length �, and (small) width w.
a. What is the inertia of the propeller? (Since a propeller must push air to be effective,

ideally our model of the propeller inertia would include the added mass of the air
being pushed, but we leave that out here.)

b. What gear ratio G provides inertia matching?
4. You are working for a startup robotics company designing a small differential-drive

mobile robot, and your job is to choose the motors and gearing. A diff-drive robot has two
wheels, each driven directly by its own motor, as well as a caster wheel or two for
balance. Your design specifications say that the robot should be capable of continuously
climbing a 20◦ slope at 20 cm/s. To simplify the problem, assume that the mass of the
whole robot, including motor amplifiers, motors, and gearing, will be 2 kg, regardless of
the motors and gearing you choose. Further assume that the robot must overcome a
viscous damping force of (10 Ns/m)×v when it moves forward at a constant velocity v,
regardless of the slope. The radius of the wheels has already been chosen to be 4 cm, and
you can assume they never slip. If you need to make other assumptions to complete the
problem, clearly state them.
You will choose among the 15 V motors in Table 25.1, as well as gearheads with G = 1,
10, 20, 50, or 100. Assume the gearing efficiency η for G = 1 is 100%, and for the others,
75%. (Do not combine gearheads! You get to use only one.)
a. Provide a list of all combinations of motor and gearhead that satisfy the

specifications, and explain your reasoning. (There are 20 possible combinations: four
motors and five gearheads.) “Satisfy the specifications” means that the motor and
gearhead can provide at least what is required by the specifications. Remember that
each motor only needs to provide half of the total force needed, since there are two
wheels.

b. To optimize your design, you decide to use the motor with the lowest power rating,
since it is the least expensive. You also decide to use the lowest gear ratio that works
with this motor. (Even though we are not modeling it, a lower gear ratio likely means
higher efficiency, less backlash, less mass in a smaller package, a higher top-end
speed (though lower top-end torque), and lower cost.) Which motor and gearing do
you choose?

c. Instead of optimizing the cost, you decide to optimize the power efficiency—the
motor and gearing combination that uses the least electrical power when
climbing up the 20◦ slope at a constant 20 cm/s. This is in recognition that battery
life is very important to your customers. Which motor and gearhead do you
choose?
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d. Forget about your previous answers, satisfying the specifications, or the limited set of
gear ratios. If the motor you choose has rotor inertia Jm, half of the mass of the robot
(including the motors and gearheads) is M, and the mass of the wheels is negligible,
what gear ratio would you choose to achieve inertia matching? If you need to make
other assumptions to complete the problem, clearly state them.

Further Reading
Budynas, R., & Nisbett, K. (2014). Shigley’s mechanical engineering design. New York: McGraw-Hill.



CHAPTER 27

DC Motor Control

Driving a brushed DC motor with variable speed and torque requires variable high current.
A microcontroller is capable of neither variable analog output nor high current. Both problems
are solved through the use of digital PWM and an H-bridge. The H-bridge consists of a set of
switches that are rapidly opened and closed by the microcontroller’s PWM signal, alternately
connecting and disconnecting high voltage to the motor. The effect is similar to the
time-average of the voltage. Motion control of the motor is achieved using motor position
feedback, typically from an encoder.

27.1 The H-Bridge and Pulse Width Modulation

Let us consider a series of improving ideas for driving a motor. By attempting to fix their
problems, we arrive at the H-bridge.

Direct driving from a microcontroller pin (Figure 27.1(a))

The first idea is to simply connect a microcontroller digital output pin to one motor lead and
connect the other motor lead to a positive voltage. The pin can alternate between low (ground)
and high impedance (disconnected or “tristated”). This connection method is a bad idea, of
course, since a typical digital output can only sink a few milliamps, and most motors must
draw much more than that to do anything useful.

Current amplification with a switch (Figure 27.1(b))

To increase the current, we can use the digital pin to turn a switch on and off. The switch
could be an electromechanical relay or a transistor, and it allows a much larger current to flow
through the motor.

Consider, however, what happens when the switch has been closed for a while. A large current
is flowing through the motor, which electrically behaves like a resistor and inductor in series.
When the switch opens, the current must instantly drop to zero. The voltage across the
inductor is governed by

VL = L
dI

dt
,

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00027-5
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Figure 27.1
A progression of ideas to drive a motor, from worst to better. (a) Attempting to drive directly from a

digital output. (b) Using a digital output to control a switch that allows more current to flow. (c)
Adding a flyback diode to prevent sparking. (d) Using two switches and a bipolar supply to run the
motor bidirectionally. (e) Using an analog control signal, an op-amp, and two transistors to make a

linear push-pull amplifier.

so the instantaneous drop in current means that a large (theoretically infinite) voltage develops
across the motor leads. The large voltage means that a spark will occur between the switch
and the motor lead it was recently attached to. This sparking is certainly bad for the
microcontroller.

Adding a flyback diode (Figure 27.1(c))

To prevent the instantaneous change in current and sparking, a flyback diode can be added to
the circuit. Now when the closed switch is opened, the motor’s current has a path to flow
through—the diode in parallel with the motor. The voltage across the motor instantaneously
changes from +V to the negative of the forward bias voltage of the diode, but that’s okay,
there is nothing in the resistor-inductor-diode circuit that tries to prevent that. With the switch
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open, the energy stored in the motor’s inductance is dissipated by the current flowing through
the motor’s resistance, and the initial current I0 will drop smoothly. Assuming the diode’s
forward bias voltage is zero, and treating the motor as a resistor and inductor in series,
Kirchoff’s voltage law tells us that the voltage around the closed loop satisfies

L
dI

dt
(t) + RI(t) = 0,

and the current through the motor after opening the switch can be solved as

I(t) = I0e−R
L t,

a first-order exponential drop from the initial current I0 to zero, with time constant equal to the
electrical time constant of the motor, Te = L/R.

When the switch is closed, the flyback diode has no effect on the circuit. Flyback diodes
should be capable of carrying a lot of current, should be fast switching, and should have low
forward bias voltage.

This circuit represents a viable approach to controlling a motor with variable speed: by
opening and closing the switch rapidly, it is possible to create a variable average voltage
across, and current through, the motor, depending on the duty cycle of the switching. The
current always has the same sign, though, so the motor can only be driven in one direction.

Bidirectional operation with two switches and a bipolar supply (Figure 27.1(d))

By using a bipolar power supply (+V, −V, and GND) and two switches, each controlled by a
separate digital input, it is possible to achieve bidirectional motion. With the switch S1 closed
and S2 open, current flows from +V, through the motor, to GND. With S2 closed and S1 open,
current flows through the motor in the opposite direction, from GND, through the motor, to
−V. Two flyback diodes are used to provide current paths when switches transition from
closed to open. For example, if S2 is open and S1 switches from closed to open, the motor
current that was formerly provided by S1 now comes from −V through the diode D2.

To prevent a short circuit, S1 and S2 should never be closed simultaneously.

Bidirectional average voltages between +V and −V are determined by the duty cycle of the
rapidly opening and closing switches.

A drawback of this approach is that a bipolar power supply is needed. This issue is solved by
the H-bridge. But before discussing the H-bridge, let us consider a commonly used variation
of the circuit in Figure 27.1(d).
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Linear push-pull amplifier (Figure 27.1(e))

Figure 27.1(e) shows a linear push-pull amplifier. The control signal is a low-current analog
voltage to an op-amp configured with negative feedback. Because of the negative feedback
and the effectively infinite gain of the op-amp, the op-amp output does whatever it can to
make sure that the signals at the inverting and noninverting inputs are equal. Since the
inverting input is connected to one of the motor leads, the voltage across the motor is equal to
the control voltage at the noninverting input, except with higher current available due to the
output transistors. Only one of the two transistors is active at a time: either the NPN bipolar
junction transistor Q1 “pushes” current from +V, through the motor, to GND, or the PNP BJT
Q2 “pulls” current from GND, through the motor, to −V. Thus the op-amp provides a high
impedance input and voltage following of the low-current control voltage, while the
transistors provide current amplification.

For example, if +V=10 V, and the control signal is at 6 V, then the op-amp ensures 6 V across
the motor. To double-check that our circuit works as we expect, we calculate the current that
would flow through the motor when it is stalled. If the motor’s resistance is 6 �, then the
current Ie = 6 V/6 � = 1 A must be provided by the emitter of Q1. If the transistor is capable
of providing that much current, we then check if the op-amp is capable of providing the base
current Ib = Ie/(β + 1) required to activate the transistor, where β is the transistor gain. If so,
we are in good shape. The voltage at the base of Q1 is a PN diode drop higher than the voltage
across the motor, and the voltage at the op-amp output is that base voltage plus IbR. Note that
Q1 is dissipating power approximately equal to the 4 V between the collector and the emitter
times the 1 A emitter current, or approximately 4 W. This power goes to heating the transistor,
so the transistor must be heat-sinked to allow it to dissipate the heat without burning up.

An example application of a linear push-pull amplifier would be using a rotary knob to control
a motor’s bidirectional speed. The ends of a potentiometer in the knob would be connected to
+V and −V, with the wiper voltage serving as the control signal.

If the op-amp by itself can provide enough current, the op-amp output can be connected
directly to the motor and flyback diodes, eliminating the resistors and transistors. Power
op-amps are available, but they tend to be expensive relative to using output transistors to
boost current.

We could instead eliminate the op-amp by connecting the control signal directly to the base
resistors of the transistors. The drawback is that neither transistor would be activated for
control signals between approximately −0.7 and 0.7 V, or whatever the base-emitter voltage is
when the transistors are activated. We have a “deadband” from the control signal to the motor
voltage.
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Some issues with the linear push-pull amp, addressed by the H-bridge, include:

• A bipolar power supply is required.
• The control signal is an analog voltage, which is generally not available from a

microcontroller.
• The output transistors operate in the linear regime, with significant voltage between the

collectors and emitters. A transistor in the linear mode dissipates power approximately
equal to the current through the transistor multiplied by the voltage across it. This heats
the transistor and wastes power.

Linear push-pull amps are sometimes used when power dissipation and heat are not a concern.
They are also common in speaker amplifiers. (A speaker is a current-carrying coil moving in a
magnetic field, essentially a linear motor.) There are many improvements to, and variations
on, the basic circuit in Figure 27.1(e), and audio applications have raised amplifier circuit
design to an art form. You can use a commercial audio amplifier to drive a DC motor, but you
would have to remove the high-pass filter on the amplifier input. The high-pass filter is there
because we cannot hear sound below 20 Hz, and low-frequency currents simply heat up the
speaker coil without producing audible sound.

27.1.1 The H-Bridge

For most motor applications, the preferred amplifier is an H-bridge (Figure 27.2). An
H-bridge uses a unipolar power supply (Vm and GND), is controlled by digital pulse width
modulation pulse trains that can be created by a microcontroller, and has output transistors
(switches) operating in the saturated mode, therefore with little voltage drop across them and
relatively little power wasted as heat.

Vm

D1

D2

D3

D4

S1

S2

S3

S4
OUT1 OUT2

+ _M

Figure 27.2
An H-bridge constructed of four switches and four flyback diodes. OUT1 and OUT2 are the

H-bridge outputs, attached to the two terminals of the DC motor.
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An H-bridge consists of four switches, S1–S4, typically implemented by MOSFETs, and four
flyback diodes D1–D4.1 An H-bridge can be used to run a DC motor bidirectionally,
depending on which switches are closed:

Closed Switches Voltage Across Motor
S1, S4 Positive (forward rotation)
S2, S3 Negative (reverse rotation)
S1, S3 Zero (short-circuit braking)
S2, S4 Zero (short-circuit braking)

None or one Open circuit (coasting)

Switch settings not covered in the table (S1 and S2 closed, or S3 and S4 closed, or any set of
three or four switches closed) result in a short circuit and should obviously be avoided!

While you can build your own H-bridge out of discrete components, it is often easier to buy
one packaged in an integrated circuit, particularly for low-power applications. Apart from
reducing your component count, these ICs also make it impossible for you to accidentally
cause a short circuit. An example H-bridge IC is the Texas Instruments DRV8835.

The DRV8835 has two full H-bridges, labeled A and B, each capable of providing up to 1.5 A
continuously to power two separate motors. The two H-bridges can be used in parallel to
provide up to 3 A to drive a single motor. The DRV8835 works with motor supply voltages
(to power the motors) of up to 11 V and logic supply voltages (for interfacing with the
microcontroller) between 2 and 7 V. It offers two modes of operation: the IN/IN mode, where
the two inputs for each H-bridge control whether the H-bridge is in the forward, reverse,
braking, or coasting mode, and the PHASE/ENABLE mode, where one input controls whether
the H-bridge is enabled or braking and the other input controls forward vs. reverse if the
H-bridge is enabled. We will focus on the PHASE/ENABLE mode.

In the PHASE/ENABLE mode, chosen by setting the MODE pin to logic high, the following
truth table determines how the logic inputs (0 and 1) of one H-bridge controls its two outputs:

MODE PHASE ENABLE OUT1 OUT2 Function
1 x 0 L L Short-circuit braking (S2, S4 closed)
1 0 1 H L Forward (S1, S4 closed)
1 1 1 L H Reverse (S2, S3 closed)

1 MOSFETs themselves allow reverse currents, acting somewhat as flyback diodes, but typically dedicated flyback
diodes are incorporated for better performance.
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Figure 27.3
Wiring the DRV8835 to use H-bridge A. Not shown is a recommended 10 µF capacitor from VM to
GND and a recommended 0.1 µF capacitor from VCC to GND, which may be included already on a

DRV8835 breakout board.

When the ENABLE pin is low, OUT1 and OUT2 are held at the same (low) voltage, causing
the motor to brake by its own short-circuit damping. When ENABLE is high, then if PHASE
is low, switches S1 and S4 are closed, putting a positive voltage across the motor trying to
drive it in the forward direction. When ENABLE is high and PHASE is high, switches S2 and
S3 are closed, putting a negative voltage across the motor trying to drive it in the reverse
direction. PHASE sets the sign of the voltage across the motor, and the duty cycle of the PWM
on ENABLE determines the average magnitude of the voltage across the motor, by rapidly
switching between approximately +Vm (or −Vm) and zero.

Figure 27.3 shows the wiring of the DRV8835 to use H-bridge A, where Vm is the voltage to
power the motor. The logic high voltage VCC is 3.3 V. If the two H-bridges of the DRV8835
are used in parallel for more current, the following pins should be connected to each other:
APHASE and BPHASE; AENABLE and BENABLE; AOUT1 and BOUT1; and AOUT2 and
BOUT2.

27.1.2 Control with PWM

Rapidly switching ENABLE from high to low can effectively create an average voltage Vave
across the motor. Assuming PHASE= 0 (forward), then if DC is the duty cycle of ENABLE,
where 0 ≤ DC ≤ 1, and if we ignore voltage drops due to flyback diodes and resistance at the
MOSFETs, then the average voltage across the motor is

Vave ≈ DC ∗ Vm.

Ignoring the details of the motor’s inductance charging and discharging, this yields an
approximate average current through the motor of

Iave ≈ (Vave − Vemf)/R,
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Switches S1 and S4 closed Switches S2 and S4 closed

Vm

S1

S4
OUT1 OUT2

+ _M
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D2S2 S4
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+ _M

Figure 27.4
Left: The closed switches S1 and S4 provide current to the motor, from Vm to GND. Right: When S1

is opened and S2 is closed, the motor’s need for a continuous current is satisfied by the flyback
diode D2 and the switch S4. Current could also flow through the MOSFET S2, which acts like a

diode to reverse current, but the flyback diode is designed to carry the current.

where Vemf = ktω is the back-emf. Since the period of a PWM cycle is typically much shorter
than the motor’s mechanical time constant Tm, the motor’s speed ω (and therefore Vemf) is
approximately constant during a PWM cycle.

Figure 27.4 shows a motor with positive average current (from left to right). When switches S1
and S4 are closed and S2 and S3 are open (ENABLE is 1, OUT1 is high, and OUT2 is low),
S1 and S4 carry current from Vm, through the motor, to ground. When the PWM on ENABLE
becomes 0, S2 and S4 are closed and S1 and S3 are open (OUT1 and OUT2 are both low).
Because the motor’s inductance requires that the current not change instantaneously, the
current must flow from ground, through the flyback diode D2, through the motor, then through
switch S4 back to ground. (The “closed switch” S2 MOSFET is represented as a diode, since a
MOSFET behaves similarly to a diode when current tries to flow in the reverse direction. But
the flyback diode is designed to carry this current, so most current flows through D2.)

During the period when OUT1 and OUT2 are low, the voltage across the motor is
approximately zero, and the motor current I(t) satisfies

0 = L
dI

dt
(t) + RI(t) + Vemf,

causing an exponential drop in I(t) with time constant Te = L/R, the electrical time constant
of the motor. Figure 27.5 shows an example of the voltage across the motor during two cycles
of PWM, and the resulting current for two different motors: one with a large Te and one with a
small Te. A large Te results in a nearly constant current during a PWM cycle, while a small Te
results in a fast-changing current. The nearly constant motor velocity during a PWM cycle
gives a nearly constant Vemf.
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Figure 27.5
A PWM signal puts Vm across the motor for 75% of the PWM cycle and 0 V for 25% of the cycle.
This causes a nearly constant positive current for a motor with large L/R, while the current for a

motor with small L/R varies significantly.

To understand the behavior of the electromechanical system under PWM control, we need to
consider three time scales: the PWM period T , the electrical time constant Te, and the
mechanical time constant Tm. The PWM frequency 1/T should be chosen to be much higher
than 1/Tm, to prevent significant speed variation during a PWM cycle. Ideally the PWM
frequency would also be much higher than 1/Te, to minimize current variation during a cycle.
One reason to want little current variation is that more-constant current results in less power
wasted heating the motor coils. To see why, consider a motor with resistance R = 1 � powered
by a constant current of 2 A vs. a current alternating with 50% duty cycle between 4 and 0 A,
for a time-average of 2 A. Both provide the same average torque, but the average power to
heating the coils in the first case is I2R = 4 W while it is 0.5(4 A)2(1 �) = 8 W in the second.

Another consideration is audible noise: to make sure the switching is inaudible, the PWM
frequency 1/T should be chosen at 20 kHz or larger.

On the other hand, the PWM frequency should not be chosen too high, as it takes time for the
H-bridge MOSFETs to switch. During switching, when larger voltages are across the active
MOSFETs, more power is wasted to heating. If switching occurs too often, the H-bridge may
even overheat. The DRV8835 takes approximately 200 ns to switch, and its maximum
recommended PWM frequency is 250 kHz.

Trading off the considerations above, common PWM frequencies are in the range 20-40 kHz.

27.1.3 Regeneration

When the voltage across the motor and the current through the motor have the same sign, the
motor is consuming electrical power (IV > 0). When the voltage across the motor and the
current through the motor have opposite signs (IV < 0), then the motor is acting as a generator
and is actually producing electrical power. This phenomenon is called regeneration.
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Regeneration may occur when braking a motor, for example. Regenerative braking is used in
hybrid and electric cars to convert some of the car’s kinetic energy into battery energy, instead
of just wasting it heating the brake pads.

For concreteness, consider the H-bridge of Figure 27.2 powered by 10 V, flyback diodes with
a forward bias voltage of 0.7 V, and a motor with a resistance of 1 � and a torque constant of
0.01 Nm/A (0.01 Vs/rad). Consider these two examples of regeneration.

1. Forced motion of the motor output. Assume all H-bridge switches are open and an
external power source spins the motor shaft. The external source could be water falling
over the blades of a turbine in a hydroelectric dam, for example. If the motor shaft spins at
a constant ω = 2000 rad/s, then the back-emf is ktω = (0.01 Vs/rad)(2000 rad/s) = 20 V.
The flyback diodes cap the voltage across the motor to the range [−11.4 V, 11.4 V],
however, so current must be flowing through the motor. Assuming the flyback diodes D1
and D4 are conducting, we have

11.4 V = ktω + IR = 20 V + I(1 �).

Solving for I, we get a current of I = −8.6 A, flowing from ground through D4, the motor,
and D1 to the 10 V supply (Figure 27.6). The power consumed by the motor is
(−8.6 A)(11.4 V) = −98.04 W, i.e., the motor is generating 98.04 W.
(If we had assumed the flyback diodes D2 and D3 were conducting instead, putting
−11.4V across the motor, and solved for I, we would have seen that the required negative
current, from right to left, cannot be provided by D2 and D3. Therefore, D2 and D3 are
not conducting.)

2. Motor braking. Assume the motor has a positive current of 2 A through it (left to right,
carried by switches S1 and S4), then all switches are opened. Immediately after the

Vm

+ _M

D4

D1
S1

S2

S3

S4

Figure 27.6
One example of regeneration, where the current through and voltage across a motor have opposite

signs. The motor is forced to spin forward, by an external source, at a speed ω such that the
back-emf ktω is larger than Vm. This forces a negative current to flow through the motor, carried by

the flyback diodes D1 and D4. Electrical power is dumped into the power supply.
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switches are opened, the only option to continue providing 2 A to the motor is from
ground, through D2, the motor, and D3 to the 10 V supply. The voltage across the motor
must therefore be −11.4 V: two diode drops and the 10 V supply voltage. The motor
consumes (2 A)(−11.4 V) =−22.8 W, i.e., it is acting as a generator, providing 22.8 W of
power just after the switches are opened.

As these examples show, regeneration dumps current back into the power supply, charging it
up, whether it wants to be charged or not. Some batteries can directly accept the regeneration
current. For a wall-powered supply, however, a high-capacitance, high-voltage, typically
polarized electrolytic capacitor at the power supply outputs can act as storage for energy
dumped back into the power supply. While such a capacitor may be present in a linear power
supply, a switched-mode power supply is unlikely to have one, so an external capacitor would
have to be added. If the power supply capacitor voltage gets too high, a voltage-activated
switch can allow the back-current to be redirected to a “regen” power resistor, which is
designed to dissipate electrical energy as heat.

27.1.4 Other Practical Considerations

Motors are electrically noisy devices, creating both electromagnetic interference (EMI), e.g.,
induced currents on sensitive electronics due to changing magnetic fields induced by large
changing motor currents, as well as voltage spikes, due to brush switching and changing
PWM current and voltage. These effects can disrupt the functioning of your microcontroller,
cause erroneous readings on your sensor inputs, etc. Dealing with EMI is beyond our scope,
but it can be minimized by keeping the motor leads short and far from sensitive circuitry, and
by using shielded cable or twisted wires for motor and sensor leads.

Optoisolators can be used to separate noisy motor power supplies from clean logic voltage
supplies. An optoisolator consists of an LED and a phototransistor. When the LED turns on,
the phototransistor is activated, allowing current to flow from its collector to its emitter. Thus a
digital on/off signal can be passed between the logic circuit and the power circuit using only
an optical connection, eliminating an electrical connection. In our case, the PIC32’s H-bridge
control signals would be applied to the LEDs and converted by the phototransistors to high
and low signals to be passed to the inputs of the H-bridge.

Optoisolators can be bought in packages with multiple optoisolators. Each
LED-phototransistor pair uses four pins: two for the internal LED and two for the collector
and emitter of the phototransistor. Thus you can get a 16-pin DIP chip with four optoisolators,
for example.

It is also common to directly solder a nonpolarized capacitor across the motor terminal leads,
effectively turning the motor into a capacitor in parallel with the resistance and inductance of
the motor. This capacitor helps to smooth out voltage spikes due to brushed commutation.
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Finally, the H-bridge chip should be heat-sinked to prevent overheating. The heat sink
dissipates heat due to MOSFET switching and MOSFET output resistance (on the order of
hundreds of m� for the DRV8835).

27.2 Motion Control of a DC Motor

An example block diagram for control of a DC motor is shown in Figure 27.7.2 A trajectory
generator creates a reference position as a function of time. To drive the motor to follow this
reference trajectory, we use two nested control loops: an outer motion control loop and an
inner current control loop. These two loops are roughly motivated by the two time scales of
the system: the mechanical time constant of the motor and load and the electrical time
constant of the motor.

• Outer motion control loop. This outer loop runs at a lower frequency, typically a few
hundred Hz to a few kHz. The motion controller takes as input the desired position and/or
velocity, as well as the motor’s current position, as measured by an encoder or
potentiometer, and possibly the motor’s current velocity, as measured by a tachometer.
The output of the controller is a commanded current Ic. The current is directly
proportional to the torque. Thus the motion control loop treats the mechanical system as if
it has direct control of motor torque.

• Inner current control loop. This inner loop typically runs at a higher frequency, from a
few kHz to tens of kHz, but no higher than the PWM frequency. The purpose of the
current controller is to deliver the current requested by the motion controller. To do this, it

Current
controller

Current
sensor

Motor

Encoder,
tachometer

H-bridge

Reference
position

or velocity
Torque/current

command
PWM
duty

Actual
current

Motor
position

Measured current

Measured position or velocity

Motion
controller

Trajectory
generator

Figure 27.7
A block diagram for motion control.

2 A simpler block diagram would have the motion controller block directly output a PWM duty cycle to an
H-bridge, with no inner-loop control of the actual motor current, which would be sufficient for many
applications. However, the block diagram in Figure 27.7 is more typical of industrial implementations.
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monitors the actual current flowing through the motor and outputs a commanded average
voltage Vc (expressed as a PWM duty cycle).

Traditionally a mechanical engineer might design the motion control loop, and an electrical
engineer might design the current control loop. But you are a mechatronics engineer, so you
will do both.

27.2.1 Motion Control

Feedback control

Let θ and θ̇ be the actual position and velocity of the motor, and r and ṙ be the desired position
and velocity. Define the error e = r − θ , error rate of change ė = ṙ − θ̇ , and error sum
(approximating an integral) eint = ∑

k e(k). Then a reasonable choice of controller would be a
PID controller (Chapter 23),

Ic,fb = kpe+ kieint + kdė, (27.1)

where Ic,fb is the commanded current by the feedback controller. The kpe term acts as a virtual
spring that creates a force proportional to the error, pulling the motor to the desired angle. The
kdė term acts as a virtual damper that creates a force proportional to the “velocity” of the error,
driving the error rate of change toward zero. The kieint term creates a force proportional to the
time integral of error. See Chapter 23 for more on PID control.

In the absence of a model of the motor’s dynamics, a reasonable commanded current Ic is
simply Ic = Ic,fb.

An alternative form of the feedback controller (27.1) is

θ̈d = kpe+ kieint + kdė, (27.2)

where the feedback gains set a desired corrective acceleration of the motor θ̈d instead of a
current. This alternative form of the PID controller is used in conjunction with a system model
in the next section.

Feedforward plus feedback control

If you have a decent model of the motor and its load, a model-based controller can be
combined with a feedback controller to yield better performance. For example, for an
unbalanced load as in Figure 27.8, you could choose a feedforward current command to be

Ic,ff = 1

kt
(Jr̈ + mgd sin θ + b0 sgn(θ̇ ) + b1θ̇ ),
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Load
Motor shaft

d

mg

q

Figure 27.8
An unbalanced load in gravity.

where kt is the torque constant, J is the motor and load inertia about the motor’s axis, the
planned motor acceleration r̈ can be obtained by finite differencing the desired trajectory, mg
is the weight of the load, d is the distance of the load center of mass from the motor axis, θ is
the angle of the load from vertical, b0 is Coulomb friction torque, and b1 is a viscous friction
coefficient. To compensate for errors, the feedback current command Ic,fb can be combined
with the feedforward command to yield

Ic = Ic,ff + Ic,fb. (27.3)

Alternatively, the motor acceleration feedback law (27.2) could be combined with the system
model to yield the controller

Ic = 1

kt
(J(r̈ + θ̈d) + mgd sin θ + b0 sgn(θ̇ ) + b1θ̇ ), (27.4)

an implementation of a model-based controller from Chapter 23.4.

27.2.2 Current Control

To implement a current controller, a current sensor is required. In this chapter we assume a
current-sense resistor with a current-sense amplifier, as described in Chapter 21.10.1 and
Figure 21.22.

The output of the current controller is Vc, the commanded average voltage (to be converted to
a PWM duty cycle). The simplest current controller would be

Vc = kVIc

for some gain kV . This controller would be a good choice if your load were only a resistance
R, in which case you would choose kV = R. Even if not, if you do not have a good mechanical
model of your system, achieving a particular current/torque may not matter anyway. You can
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just tune your motion control PID gains, use kV = 1, and not worry about what the actual
current is, eliminating the inner control loop.

On the other hand, if your battery pack voltage changes (due to discharging, or changing
batteries, or changing from a 6 to a 12 V battery pack), the change in behavior of your overall
controller will be significant if you do not measure the actual current in your current
controller. More sophisticated current controller choices might be a mixed model-based and
integral feedback controller

Vc = IcR+ ktθ̇ + kI,i eI,int

or, recognizing that the electrical system is a first-order system (using voltage to control a
current through a resistor and inductor), a PI feedback controller

Vc = kI,p eI + kI,i eI,int,

where eI is the error between the commanded current Ic and the measured current, eI,int is the
integral of current error, R is the motor resistance, kt is the torque constant, kI,p is a
proportional current control gain, and kI,i is an integral current control gain. A good current
controller would closely track the commanded current.

27.2.3 An Industrial Example: The Copley Controls Accelus Amplifier

Copley Controls is a well known manufacturer of amplifiers for brushed and brushless motors
for industrial applications and robotics. One of their models is the Accelus, pictured in
Figure 27.9. The Accelus supports many different operating modes. Examples include control
of motor current or velocity to be proportional to either an analog voltage input or the duty
cycle of a PWM input. A microcontroller on the Accelus interprets the analog input or PWM
duty cycle and implements a controller similar to that in Figure 27.7.

Figure 27.9
The Copley Controls Accelus amplifier. (Image courtesy of Copley Controls, copleycontrols.com.)
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The mode most relevant to us is the Programmed Position mode. In this mode, the user
specifies a few parameters to describe a desired rest-to-rest motion of the motor. The
controller’s job is to drive the motor to track this trajectory.

When the amplifier is first paired with a motor, some initialization steps must be performed.
A GUI interface on the host computer, provided by Copley, communicates with the
microcontroller on the Accelus using RS-232.

1. Enter motor parameters. From the motor’s data sheet, enter the inertia, peak torque,
continuous torque, maximum speed, torque constant, resistance, and inductance. These
values are used for initial guesses at control gains for motion and current control. Also
enter the number of lines per revolution of the encoder.

2. Tune the inner current control loop. Set a limit on the recent current to avoid
overheating the motor. This limit is based on the integral

∫ T2
T1
I2(t) dt, which is a measure

of how much energy the motor coils have dissipated recently. (When this limit is
exceeded, the motor current is limited to the continuous operating current until the history
of currents indicates that the motor has cooled.) Also, tune the values of P and I control
gains for a PI current controller. This tuning is assisted by plots of reference and actual
currents as a function of time. See Figure 27.10, which shows a square wave reference
current of amplitude 1 A and frequency 100 Hz. The zero average current and high
frequency of the reference waveform ensure that the motor does not move during current
tuning, which focuses on the electrical properties of the motor.
The current control loop executes at 20 kHz, which is also the PWM frequency (i.e., the
PWM duty cycle is updated every cycle).

Figure 27.10
A plot of the reference square wave current and the actual measured current during PI current

controller tuning.
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3. Tune the outer motion control loop with the load attached. Attach the load to the
motor and tune PID feedback control gains, a feedforward acceleration term, and a
feedforward velocity term to achieve good tracking of sample reference trajectories. This
process is assisted by plots of reference and actual positions and velocities as a function of
time. The motion control loop executes at 4 kHz.

Once the initial setup procedures have been completed, the Accelus microcontroller saves all
the motor parameters and control gains to nonvolatile flash memory. These tuned parameters
then survive power cycling and are available the next time you power up the amplifier.

Now the amplifier is ready for use. The user specifies a desired trajectory using any of a
number of interfaces (RS-232, CAN, etc.), and the amplifier uses the saved parameters to
drive the motor to track the trajectory.

27.3 Chapter Summary

• An H-bridge amplifier allows bidirectional control of a DC motor based on a PWM
control signal.

• Flyback diodes are used with an H-bridge to provide a current path for the inductive load
(the motor) at all times as the H-bridge transistors switch on and off.

• A motor acts as an electrical generator, generating electrical power instead of consuming
it, when the voltage across the motor and the current through it have opposite signs. An
example is regenerative braking in electric and hybrid vehicles.

• A typical motor control system has a nested structure: an outer motion-control loop,
which commands a torque (or current) from the inner current-control loop, which
attempts to deliver the current requested by the outer-loop controller. Typically the
inner-loop controller executes at a higher frequency than the outer-loop controller.

27.4 Exercises
1. The switch in Figure 27.1(b), with no flyback diode, has been closed for a long time, and

then it is opened. The voltage supply is 10 V, the motor’s resistance is R = 2 �, the
motor’s inductance is L = 1 mH, and the motor’s torque constant is kt = 0.01 Nm/A.
Assume the motor is stalled.
a. What is the current through the motor just before the switch is opened?
b. What is the current through the motor just after the switch is opened?
c. What is the torque being generated by the motor just before the switch is opened?
d. What is the torque being generated by the motor just after the switch is opened?
e. What is the voltage across the motor just before the switch is opened?
f. What is the voltage across the motor just after the switch is opened?
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2. The switch in Figure 27.1(c), with the flyback diode, has been closed for a long time, and
then it is opened. The voltage supply is 10 V, the motor’s resistance is R = 2 �, the
motor’s inductance is L = 1 mH, and the motor’s torque constant is kt = 0.01 Nm/A. The
flyback diode has a forward bias voltage drop of 0.7 V. Assume the motor is stalled.
a. What is the current through the motor just before the switch is opened?
b. What is the current through the motor just after the switch is opened?
c. What is the torque being generated by the motor just before the switch is opened?
d. What is the torque being generated by the motor just after the switch is opened?
e. What is the voltage across the motor just before the switch is opened?
f. What is the voltage across the motor just after the switch is opened?
g. What is the rate of change of current through the motor dI/dt just after the switch is

opened? (Make sure to use a correct sign, relative to your current answers above.)
3. In Figure 27.1(d), the voltage supplies are ±10 V, the motor’s resistance is R = 5 �, the

motor’s inductance is L = 1 mH, and the motor’s torque constant is kt = 0.01 Nm/A. The
flyback diodes have a forward bias voltage drop of 0.7 V. Switch S1 has been closed for
a long time, with no voltage drop across it, and the motor is stalled. Switch S2 is open.
Then switch S1 is opened while switch S2 remains open. Immediately after S1 opens,
which flyback diode conducts current? What is the voltage across the motor? What is the
current through the motor? What is the rate of change of the current through the motor?

4. Give some advantages of driving a DC motor using an H-bridge with PWM over a linear
push-pull amplifier with an analog control input. Give at least one advantage of using a
linear push-pull amplifier over an H-bridge. (Hint: consider the case of low PWM
frequency or low motor inductance.)

5. Explain why an initially spinning motor comes to rest faster if the two motor leads are
shorted to each other rather than left disconnected. Derive the result from the motor
voltage equation.

6. Provide a circuit diagram showing the DRV8835 configured to drive a single motor with
more than 2 A continuous.

7. Consider a motor connected to an H-bridge with all switches opened (motor is
unpowered). The motor rotor is rotated by external forces (e.g., rushing water in a
hydroelectric dam spinning the blades of a turbine). If the H-bridge is connected to a
battery supply of voltage Vm, and the forward bias voltage of the flyback diodes is Vd,
give a mathematical expression for the rotor speed at which the battery begins to charge.
When this speed is exceeded, and assuming that the battery voltage Vm is constant (e.g.,
it acts somewhat like a very high capacitance capacitor, accepting current without
changing voltage), give an expression for the current through the motor as a function of
the rotor speed. Also give an expression for the power lost due to the heating the
windings.
How does the presence of the hydrogenerator affect the total energy of a bucket of water
at the top of the dam compared to the total energy just before that water splashes into the
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river at the bottom of the dam? (The total energy is the potential energy plus the kinetic
energy.)

8. To create an average current I through a motor, you could send I constantly, or you could
alternate quickly between kI for 100%/k of a cycle and zero current for the rest of the
cycle. Provide an expression for the average power dissipated by the motor coils for each
of these cases.

9. Imagine a motor with a 500 line incremental encoder on one end of the motor shaft and a
gearhead with G = 50 on the other end. If the encoder is decoded in 4x mode, how many
encoder counts are counted per revolution of the gearhead output shaft?

10. A simple outer-loop motion controller is to command a torque (current) calculated by a
PID controller. A more sophisticated controller would attempt to use a model of the
motor-load dynamics to get better trajectory tracking. One possibility is the control
law (27.3). Another possibility is the control law (27.4). Describe any advantages of
(27.4) over (27.3).

11. Choose R2/R1 for the current-sense amplifier in Figure 21.22 in Chapter 21 so the output
voltage OUT swings full range (0-3.3 V) for a current range of ±1 A.

12. Choose an example R and C for the current-sense amplifier in Figure 21.22 in Chapter
21 to create a cutoff frequency of 200 Hz.

13. For the current-sense amplifier in Figure 21.22 in Chapter 21, the reference voltage at
REFIN should be constant. We know that the currents into and out of the
high-impedance op-amp inputs REFIN and FB are negligible, as is the current into the
PIC32 analog input. But the currents through the external resistors R1 and R2 may not
be small. As a result, REFIN actually varies as a function of the sensed input voltage and
the output voltage OUT. We should choose the resistances R1, R2, and R3 so the voltage
variation at REFIN is small.
Pay attention only to the op-amp portion of the circuit in the bottom of Figure 21.22 in
Chapter 21. Now assume that OUT is 3.3 V. What is the voltage at REFIN as a function
of R1, R2, and R3? (Note that it is not exactly 1.65 V.) Use your equation to comment on
how to choose the relative values of R1, R2, and R3 to make sure that REFIN is close to
1.65 V. Explain other practical constraints on the absolute values (minimum and
maximum values) of R1, R2, and R3. (You may focus on slowly changing signals at the
+ input of the op amp. For high-frequency inputs, using large resistances R1 and R2 may
combine with small parasitic capacitances in the circuit to create RC time delays that
adversely affect the response.)

14. You decide on a current amplifier gain of G = 101. Using your result from the previous
exercise, choose R1, R2, and R3 to achieve the gain G while ensuring that REFIN does
not vary by more than 1 mV for any voltage at OUT in the range [0, 3.3 V]. For your
choice of R3, indicate how much power is used in the R3-R3 voltage divider.

15. Due to natural variations in resistor values within their tolerance ranges, the gain G, and
the voltage at REFIN, that you design for your current-sense circuit in Figure 21.22 in
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Chapter 21 will not be exactly realized. Due to this and other variations, you need to
calibrate your current sensor by running some experiments. Clearly explain what
experiments you would do, and how you would use the results to interpret analog
voltages read at the PIC32 as motor currents. Be specific; the interpretation should be
easy to implement in software.

16. Clearly outline how you would implement the motor controller in Figure 27.7 in
software on a PIC32. Indicate what peripherals, ISRs, NU32 functions, and global
variables you might use. You may use concepts from the LED brightness control project,
if it is helpful. In particular, indicate how you would implement:
• The trajectory generator. Assume that desired trajectories are sent from MATLAB

on the host computer, and trajectory tracking results are plotted in MATLAB.
• The outer-loop motion controller. Assume that an external decoder/counter chip

maintains the encoder count, and that communication with the chip occurs using
SPI. How would you collect trajectory tracking data to be plotted in MATLAB?

• The inner-loop current controller, using the current sensor described in this
chapter. How would you collect data on tracking the desired current to be plotted in
MATLAB?

Further Reading
Accelus panel: Digital servoamplifier for brushless/brush motors. (2011). Copley Controls.
DRV8835: Dual low voltage H-bridge IC. (2014). Texas Instruments.
DRV8835 dual motor driver carrier. (2015). https://www.pololu.com/product/2135 (Accessed: May 6,

2015).
MAX9918/MAX9919/MAX9920 −20V to +75V input range, precision uni-/bidirectional, current-sense amplifiers.

(2015). Maxim Integrated.

https://www.pololu.com/product/2135


CHAPTER 28

A Motor Control Project

Imagine combining the power and convenience of a personal computer with the peripherals of
a microcontroller. Motors moving in response to keyboard commands. Plots showing the
motor’s positional history. Interactive controller tuning. By combining your knowledge of
microcontrollers, motors, and controls you can accomplish these goals.

It starts with a menu. This menu will provide a simple user interface: a list of commands that
you can choose by pressing a key. We will begin with an empty menu. By the end of this
project, it will have nearly 20 options: everything from reading encoders to setting control
gains to plotting trajectories. Much work lies ahead, but by breaking the project into subgoals
and using discipline in your coding, you will complete it successfully.

28.1 Hardware

The major hardware components for the project are listed below. Data sheets for the chips can
be found on the book’s website.

• brushed DC motor with encoder, including a mounting bracket and a bar for the motor
load (Figure 28.1)

• the NU32 microcontroller board
• a printed circuit board with an encoder counting chip counting in 4x mode (quadrature

inputs from the encoder and an SPI interface to the NU32)
• a printed circuit board with the MAX9918 current-sense amplifier and a built-in 15 m�

current-sense resistor, to provide a voltage proportional to the motor current (this voltage
output is attached to an ADC input on the NU32)

• a printed circuit board breaking out the DRV8835 H-bridge (attached to a digital output
and a PWM/output compare channel on the NU32)

• a battery pack to provide power to the H-bridge
• resistors and capacitors

We discuss the hardware in greater detail after an overview of the software you will develop.

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00028-7
Copyright © 2016 Elsevier Inc. All rights reserved. 459
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q

Motor

Encoder Shaft

Inertial load
(bar)

Figure 28.1
A bar attached as the motor’s load. Positive rotation θ is counterclockwise when viewing along the

axis of the motor shaft toward the motor.

28.2 Software Overview

The motivation for this project is to build an intelligent motor driver, with a subset of the
features found in industrial products like the Copley Accelus drive described in Chapter 27.
The drive incorporates the amplifier to drive the motor as well as feedback control to track a
reference position, velocity, or torque. Many robots and computer-controlled machine tools
have drives like this, one for each joint.

Your motor drive system should accept a desired motor trajectory, execute that trajectory, and
send the results back to your computer for plotting (Figure 28.2). We break this project into
several supporting features, accessible from a menu on your computer. This approach enables
you to build and test incrementally.

This project requires you to develop two different pieces of software that communicate with
each other: the PIC32 code for the motor driver and the client user interface that runs on the
host computer. In this chapter we assume that the client is developed for MATLAB, taking
advantage of its plotting capabilities. You could easily use another programming language
(e.g., python with its plotting capability), provided you can establish communication with the
NU32 via the UART (Chapter 11).

For convenience, we will refer to the code on the host computer as the “client” and the code
on the PIC32 as the “PIC32.”

The PIC32 will implement the control strategy of Chapter 27, specifically Figure 27.7,
consisting of a low-frequency position control loop and a nested high-frequency current
control loop. This is a common industrial control scheme. In this project, the outer position
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Figure 28.2
An example result of this project. The user specifies a position reference trajectory for the motor and

the system attempts to follow it. An average error is calculated as an indication of how well the
motor controller achieved its objective.

control loop runs at 200 Hz and the inner current control loop runs at 5 kHz. PWM is at
20 kHz.

Prior to implementing these control loops, we will implement some more basic features. The
current control loop must output a PWM signal to the motor and read values from the current
sensor, and the position control loop needs encoder feedback. Therefore we begin with menu
options that allow the user to directly view sensor readings and specify the PWM duty cycle.
Another option allows the user to tune the current control feedback loop independently of the
position controller. The ability to interactively specify control gains and see the resulting
control performance simplifies this process. All of the features will be accessible from the
client menu that you create, depicted in Figure 28.3.

Below we describe the purpose of the individual commands, in order, but let us start with the
last one, r: Get mode. The PIC32 can operate in one of five modes: IDLE, PWM, ITEST,
HOLD, and TRACK. When it first powers on, the PIC32 should be in IDLE mode. In IDLE
mode, the PIC32 puts the H-bridge in brake mode, with zero voltage across the motor. In
PWM mode, the PIC32 implements a fixed PWM duty cycle, as requested by the user. In
ITEST mode, the PIC32 tests the current control loop, without caring about the motion of the
motor. In HOLD mode, the PIC32 attempts to hold the motor at the last position commanded
by the user. In TRACK mode, the PIC32 attempts to track a reference motor trajectory
specified by the user (Figure 28.2). Some of the menu commands cause the PIC32 to change
mode, as noted below.

a: Read current sensor (ADC counts). Print the motor current as measured using the
current sensor, in ADC counts (0-1023). For example, the result could look like
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PIC32 MOTOR DRIVER INTERFACE

)001ot001-(MWPteS:fredocneteseR:e
sniagtnerructeG:hsniagtnerructeS:g
sniagnoitisopteG:jsniagnoitisopteS:i

k: Test current control l: Go to angle (deg)
m: Load step trajectory n: Load cubic trajectory

rotomehtrewopnU:pyrotcejartetucexE:o
edomteG:rtneilctiuQ:q

ENTER COMMAND:

a: Read current sensor (ADC counts) b: Read current sensor (mA)
c: Read encoder (counts) d: Read encoder (deg)

Figure 28.3
The final menu. The user enters a single character, which may result in the user being prompted for

more information. Additional options are possible, but these are a minimum.

ENTER COMMAND: a
The motor current is 903 ADC counts.

After printing the current sensor reading, the client should display the full menu again, to
help the user enter the next command. Alternatively, to save screen space, you could just
keep a printout of the commands handy and not print the menu to the screen each time.
Although the “a” command is somewhat redundant with the next command, which
returns the current in mA, it is sometimes useful for debugging to see the raw ADC data,
rather than the scaled version in more familiar units.

b: Read current sensor (mA). Print the motor current as measured using the current sensor,
in mA. The output could look like

The motor current is 763 mA.

By a convention we will adopt, the current is positive when trying to drive the motor
counterclockwise, in the direction of increasing motor angle (Figure 28.1). If you are
getting the opposite sign, you can swap the wires to the current sensor or handle it in
software.

c: Read encoder (counts). Print the encoder angle, in encoder counts. By convention, the
encoder count increases as the motor rotates counterclockwise. An example output:

The motor angle is 314 counts.

d: Read encoder (deg). Print the encoder angle, in degrees. By convention, the encoder
angle increases as the motor rotates counterclockwise. If the encoder gives 1000 counts
per revolution in 4x decoding mode, then 314 counts would give an output

The motor angle is 113.0 degrees.

since 360◦(314/1000) ≈ 113◦. In this project, 0 degrees, 360 degrees, 720 degrees, etc.,
are all treated differently, allowing us to control multiple turns of the motor.
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e: Reset encoder. The present angle of the motor is defined as the zero position. No output
is necessary. Optionally, command d could be called automatically after zeroing the
encoder, to confirm the result to the user.

f: Set PWM (-100 to 100). Prompt the user for a desired PWM duty cycle, specified in the
range [−100%, 100%]. The PIC32 switches to PWM mode and implements the constant
PWM until overridden. An input −100 means that the motor is full on in the clockwise
direction, 100 means full on in the counterclockwise direction, and 0 means that the
motor is unpowered. An example prompt, user reply, and result is

What PWM value would you like [-100 to 100]? 73
PWM has been set to 73% in the counterclockwise direction.

with the motor speeding up to its 73% steady-state speed. The PIC32 should saturate
values outside the range [−100, 100] and convert values in the range [−100, 100] to an
appropriate PWM duty cycle and direction bit to the DRV8835.

g: Set current gains. Prompt for the current loop control gains and send them to the
PIC32, to be implemented immediately. (This command does not change the mode of the
PIC32, however; the gains only affect the motor’s behavior when the PIC32 is in the
ITEST, HOLD, or TRACK mode.) We suggest two gains, for a PI controller. An example
interface:

Enter your desired Kp current gain [recommended: 4.76]: 3.02
Enter your desired Ki current gain [recommended: 0.32]: 0
Sending Kp = 3.02 and Ki = 0 to the current controller.

It is not necessary to recommend values in the prompting text, but if you find good values,
you may wish to put them into your client, so you remember for the future. (The values
given here are just for demonstration, not actual recommendations!) You might also wish
to use only integers for your gains, depending on the implicit units, to allow for more
time-efficient math.

h: Get current gains. Print the current controller gains. Example output:

The current controller is using Kp = 3.02 and Ki = 0.

i: Set position gains. Prompt for the position loop control gains and send them to the
PIC32, to be implemented immediately. (This command does not change the mode of the
PIC32, however; the gains only affect the motor’s behavior if the PIC32 is in the HOLD
or TRACK mode.) If you use PID control, the interface could be:

Enter your desired Kp position gain [recommended: 4.76] : 7.34
Enter your desired Ki position gain [recommended: 0.32] : 0
Enter your desired Kd position gain [recommended: 10.63]: 5.5
Sending Kp = 3.02, Ki = 0, and Kd = 5.5 to the position controller.

Other motion controllers (Chapter 27) require specification of other gains and parameters.
j: Get position gains. Print the position controller gains. Example output:
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The position controller is using Kp = 7.34, Ki = 0, and Kd = 5.5.

k: Test current control. Test the current controller, which uses the gains set using the “g”
command. This command puts the PIC32 in ITEST mode. In this mode, the 5 kHz current
control loop uses a 100 Hz, 50% duty cycle, ±200 mA square wave reference current.
Each time through the loop, the reference and actual current are stored in data arrays for
later plotting. After 2-4 cycles of the 100 Hz current reference, the PIC32 switches to
IDLE mode, and the data collected during the ITEST mode is sent back to the client,
where it is plotted. An example of reasonably good tracking is shown in Figure 28.4. The
plots help the user to choose good current loop gains.
During the current control test, the motor may move a little bit, but it is important to
remember that we are not interested in the motor’s motion, only the performance of the
current controller. The motor should not move far, since the actual current should be
changing quickly with zero average.
The client should calculate an average of the absolute value of the current error over the
samples. This score allows you to compare the performance of different current
controllers, in addition to the eyeball test based on the plots.

l: Go to angle (deg). Prompt for an angle, in degrees, that the motor should move to. The
PIC32 switches to HOLD mode, and the motor should move to the specified position
immediately and hold the position. Example interface:

Enter the desired motor angle in degrees: 90
Motor moving to 90 degrees.

Time (ms)
0 5 10 15 20

C
ur

re
nt

 (
m

A
)

–300

–200

–100

0

100

200

300
Average error:  32.4 mA

Figure 28.4
A result of a current controller test. The square wave is the reference current and the other plot is the

measured current.
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m: Load step trajectory. Prompt for the time and angle parameters describing a series of
one or more steps in the motor position. Plot the reference trajectory on the client so the
user can see if the trajectory was entered correctly. Convert the reference trajectory to a
series of setpoint positions at 200 Hz (each point is separated by 5 ms), store it in an
array, and send it to the PIC32 for future execution. In addition, set the number of samples
the PIC32 should record in the position control loop according to the duration of the
trajectory.
The PIC32 should discard any trajectory data that exceeds the maximum trajectory length.
This command does not change the mode of the PIC32.
An example interface is shown below. First the user requests a trajectory that starts at
angle 0 degrees at time 0 s; then steps to 90 degrees at 1 s; and holds at 90 degrees until
500 s have passed. This duration is too long: the PIC32 RAM cannot store
500 s × 200 samples/s = 100,000 samples of the reference trajectory. In the second try, the
user requests the step trajectory shown in Figure 28.5. Note that the client only plots the
reference trajectory that is sent to the PIC32; no data is received from the PIC32, because
the trajectory has not been executed yet.

Enter step trajectory, in sec and degrees [time1, ang1; time2, ang2; ...]:
[0, 0; 1, 90; 500, 90]

Error: Maximum trajectory time is 10 seconds.

Enter step trajectory, in sec and degrees [time1, ang1; time2, ang2; ...]:
[0, 0; 1, 180; 3, -90; 4, 0; 5, 0]
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Figure 28.5
Sample reference trajectories for the position controller. The step trajectory is generated in MATLAB
using the command ref = genRef([0,0; 1,180; 3,-90; 4,0; 5,0], ’step’) and the smooth

cubic curve is generated by replacing ’step’ with ’cubic’.
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Plotting the desired trajectory and sending to the PIC32 ... completed.

Now the PIC32 has a reference trajectory waiting to be executed. A MATLAB function
genRef.m is provided with this chapter to generate the sample points of step trajectories,
and is invoked using

ref = genRef([0,0; 1,180; 3,-90; 4,0; 5,0], ’step’);

The resulting trajectory is shown in Figure 28.5, as a plot of the motor angle in degrees
vs. the sample number.

n: Load cubic trajectory. Prompt for the time and angle parameters describing a set of via
points for a cubic interpolation trajectory for the motor. This command is similar to the
step trajectory command, except a smooth trajectory is generated through the specified
points, with zero velocity at the beginning and end. The same MATLAB function genRef

calculates the cubic trajectory, using the option ’cubic’ instead of ’step’ (Figure 28.5).

Enter cubic trajectory, in sec and degrees [time1, ang1; time2, ang2; ...]:
[0, 0; 1, 180; 3, -90; 4, 0; 5, 0]

Plotting the desired trajectory and sending to the PIC32 ... completed.

o: Execute trajectory. Execute the trajectory stored on the PIC32. This command changes
the PIC32 to TRACK mode, and the PIC32 attempts to track the reference trajectory
previously stored on the PIC32. After the trajectory has finished, the PIC32 switches to
HOLD mode, holding the last position of the trajectory, then sends the reference and
actual position data back to the client for plotting, as shown in Figure 28.2 for a step
trajectory. The client should calculate an average position error, similar to the current
control test. Because step trajectories request unrealistic step changes of the motor angle,
the average error for a step trajectory could be large, while the average error for a smooth
cubic trajectory can be quite small.

p: Unpower the motor. The PIC32 switches to IDLE mode.
q: Quit client. The client should release the communication port so other applications can

communicate with the NU32. The PIC32 should be set to IDLE mode.
r: Get mode. Described above. Example output:

The PIC32 controller mode is currently HOLD.

Once the circuits have been built, the functions above have been fully implemented and tested
(both the client and the PIC32), and control gains have been found that yield good
performance of the motor, the project is complete.

To help you finish this project, Section 28.3 gives some recommendations on how to develop
maintainable, modular PIC32 code. Section 28.4 breaks the project down into a series of steps
that you should complete, in order. Finally, Section 28.5 describes a number of extensions to
go further with the project.
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28.3 Software Development Tips

Since this is a big project, it is a good idea to be disciplined in the development of your PIC32
code. This discipline will make the code easier to maintain and build upon. Here are some
tips. We recommend you read this section to help you better understand the project, but if you
are confident in your software skills and your understanding of the project, you need not
adhere to the advice.

Debugging

Run-time errors in your PIC32 code are inevitable. The ability to locate bugs quickly is crucial
to keeping development time reasonable. Typically debugging consists of having your
program provide feedback at breakpoints, to pinpoint where the unexpected behavior occurs.1

This type of debugging can be challenging for embedded code, since there is no printf to a
monitor. You should be comfortable using the following tools, however:

• Terminal emulator. Using a terminal emulator to connect to the PIC32, instead of your
client, allows you to send simple commands and see exactly what information is being
sent back by the PIC32, without the complication of potential errors in the client code.
Just be aware that there is only one communication port with the NU32, so either the
client or the terminal emulator can be used, not both simultaneously.

• LCD screen. You can use the LCD screen to display information about the state of the
PIC32 without using the UART communication with the host.

• LEDs and digital outputs. You can use LEDs or digital outputs connected to an
oscilloscope as other ways of getting feedback from the PIC32. To verify that your current
control and position control ISRs are operating at the correct frequencies, for example,
you could toggle a digital output in each ISR and look at the resulting square wave
“heartbeats” on an oscilloscope.

Modularity

Instead of writing one large .c file to do everything, consider breaking the project into
multiple modules. A module consists of one .c and one .h file. The .h file contains the
module’s interface and the .c file contains the module’s implementation. The .c file should
always #include the corresponding .h file.

A module’s interface (the .h file) consists of function prototypes and data types that other
modules can use. You can use functions from module A in module B by having B.c include A.h.

1 The PICkit 3 and other Microchip programming tools can be used to set breakpoints and step through code as it
executes. These features can be accessed through MPLAB X but cannot be used in conjunction with the NU32’s
bootloader.
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A module’s implementation (the .c file) contains the code that makes the interface functions
work. It also contains any functions and variables that the module uses but wants to hide from
other modules. These hidden functions and variables should be declared as static, limiting
their scope to the module’s .c file. By hiding implementations in the .c file and only exposing
certain functions in the .h file, you decrease the dependencies between modules, making
maintenance easier and helping prevent bugs. For those readers familiar with an
object-oriented programming language such as C++ or Java, these concepts roughly mirror
the ideas of public and private class members.

In an embedded system, peripherals can be accessed by code in any module; therefore,
dividing the code into modules is only the first step in a good design. To maintain proper
module separation, you should document which modules own which peripherals. If a module
owns a peripheral, only it should access that peripheral directly. If a module needs to access a
peripheral it does not own, it must call a function in the owning module. These rules, enforced
by your vigilance rather than the compiler, will help you more easily isolate bugs and fix them
as they occur.

All .c and .h files should be in the same directory, allowing the project to be built by
compiling and linking all .c files in the directory.

One module your project will certainly use is NU32, for communication with the client. Other
modules we suggest are the following. Some example interface functions are suggested for
each module, but feel free to use your own functions.

• main. This module is the only one with no .h file, since no other module needs to call
functions in the main module. The main.c file is the only one with a main function. main.c
calls appropriate initialization functions for the other modules and then enters an infinite
loop. The infinite loop waits for commands from the client, then interprets the user’s input
and responds appropriately.

• encoder. This module owns an SPI peripheral, to communicate with the encoder counting
chip. The interface encoder.h should provide functions to (1) do a one-time setup or
initialization of the encoder module, (2) read the encoder in encoder counts, (3) read the
encoder in degrees, and (4) reset the encoder position so that the present angle of the
encoder is treated as the zero angle.

• isense. This module owns the ADC peripheral, used to sense the motor current. The
interface isense.h should provide functions for a one-time setup of the ADC, to provide
the ADC value in ADC counts (0-1023), and to provide the ADC value in terms of
milliamps of current through the motor.

• currentcontrol. This module implements the 5 kHz current control loop. It owns a timer
to implement the fixed-frequency control loop, an output compare and another timer to
implement a PWM signal to the H-bridge, and one digital output controlling the motor’s
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direction (see the description of the DRV8835 in Chapter 27). Depending on the PIC32
operating mode, the current controller either brakes the motor (IDLE mode), implements
a constant PWM (PWM mode), uses the current control gains to try to provide a current
specified by the position controller (HOLD or TRACK mode), or uses the current control
gains to try to track a 100 Hz ±200 mA square wave reference (ITEST mode). The
interface currentcontrol.h should provide functions to initialize the module, receive a
fixed PWM command in the range [−100, 100], receive a desired current (from the
positioncontrol module), receive current control gains, and provide the current
control gains.

• positioncontrol. This module owns a timer to implement the 200 Hz position control
loop. The interface positioncontrol.h should provide functions to initialize the module,
load a trajectory from the client, load position control gains from the client, and send
position control gains back to the client.

• utilities. This module is used for various bookkeeping tasks. It maintains a variable
holding the operating mode (IDLE, PWM, ITEST, HOLD, or TRACK) and arrays
(buffers) to hold data collected during trajectory tracking (TRACK) or current tracking
(ITEST). The interface utilities.h provides functions to set the operating mode, return
the current operating mode, receive the number N of samples to save into the data buffers
during the next TRACK or ITEST, write data to the buffers if N is not yet reached, and to
send the buffer data to the client when N samples have been collected (TRACK or ITEST
has completed).

Variables

Variables that are shared by ISRs and mainline code should be declared volatile. You may
consider disabling interrupts before using a shared variable in the mainline code, then
re-enabling interrupts afterward, to make sure a read or write of the variable in the mainline
code is not interrupted. If you do disable interrupts, make sure not to leave interrupts disabled
for more than a few simple lines of code; otherwise you are defeating the purpose of having
interrupts in the first place.

Function local variables that need to keep their value from one invocation of the function to
the next should be declared static. A variable foo that is only meant to be used in one .c file,
but should be available to several functions in that file (i.e., “global” within the file), can be
defined at the beginning of the file but outside any function. To prevent this foo from colliding
with a variable of the same name defined in another .c file, foo should be declared static,
limiting its scope to the file it is defined in.

Consider writing your code so that no variable is used outside the .c file it is defined in. To
share the value of a variable in module A with other modules, provide the prototype of a public
accessor function in A.h, like int get_value_from_A(). Do not define variables in header files.
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New data types

The five operating modes (IDLE, etc.) can be represented by a variable of type int (or short),
taking values 0 to 4. Instead you could consider using enum, allowing you to create a data type
mode_t with only five possible values, named IDLE, PWM, ITEST, HOLD, and TRACK.

For your data buffers, consider creating a new data type control_data_t using a struct, where
the struct has several members (e.g., the current reference, the actual current, the position
reference, and the actual position). This way you can make a single data array of type
control_data_t instead of having several arrays.

Integer math

The PIC32 control laws begin by sensing an integral number of encoder counts and ADC
counts, and end by storing an integer to the period register of an output compare module
(PWM). Thus it is possible, though not necessary, to calculate all control laws using integer
math with integer-valued gains. Using integer math ensures that the controllers run as quickly
as possible. If you do use only integers, however, you are responsible for making sure that
there are no unacceptable roundoff or overflow errors.

Degrees and milliamps are the most natural units to display to the user on the client interface,
however.

28.4 Step by Step

This section provides a step-by-step guide to building the project, testing and debugging as
you go. Make sure that each step works properly before moving on to the next step, and be
sure to perform all the numbered action items associated with each subsection. Turn in your
answers for the items in bold.

28.4.1 Decisions, Decisions

Before writing any code, you must decide which peripherals you will use in the context of the
controller block diagram in Figure 27.7. The PIC32 will connect to three external circuit
boards: the H-bridge, the motor encoder counter, and the motor current sensor. Record your
answers to the following questions:

1. The NU32 communicates with the encoder counter by an SPI channel. Which SPI channel
will you use? Which NU32 pins does it use?

2. The NU32 reads the MAX9918 current sensor using an ADC input. Which ADC input
will you use? Which NU32 pin is it?
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3. The NU32 controls the DRV8835 H-bridge using a direction bit (a digital output) and
PWM (an output compare and a timer). Which peripherals will you use, and which NU32
pins?

4. Which timers will you use to implement the 200 Hz position control ISR and the 5 kHz
current control ISR? What priorities will you use?

5. Based on your answers to these questions, and your understanding of the project, annotate
the block diagram of Figure 27.7. Each block should clearly indicate which devices or
peripherals perform the operation in the block, and each signal line should clearly indicate
how the signal is carried from one block to the other. (After this step, there should be no
question about the hardware involved in the project. The details of wiring the H-bridge,
current sensor, and encoder are left to later.)

6. Based on which circuit boards need to be connected to which pins of the NU32, and the
connections of the circuit boards to the motor and encoder, sketch a proposed layout of the
circuit boards relative to the NU32 so that wire crossing is approximately minimized. (Do
not make a full circuit diagram at this time.)

7. Turn in your answers for items 1-6.

28.4.2 Establishing Communication with a Terminal Emulator

The role of the main function is to call any functions initializing peripherals or modules and to
enter an infinite loop, dispatching commands that the PIC32 receives from the client.

Code Sample 28.1 main.c. Basic Code for Setup and Communication.

#include "NU32.h" // config bits, constants, funcs for startup and UART
// include other header files here

#define BUF_SIZE 200

int main()
{
char buffer[BUF_SIZE];
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init
NU32_LED1 = 1; // turn off the LEDs
NU32_LED2 = 1;
__builtin_disable_interrupts();
// in future, initialize modules or peripherals here
__builtin_enable_interrupts();

while(1)
{

NU32_ReadUART3(buffer,BUF_SIZE); // we expect the next character to be a menu command
NU32_LED2 = 1; // clear the error LED
switch (buffer[0]) {

case ’d’: // dummy command for demonstration purposes

main.c
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{
int n = 0;
NU32_ReadUART3(buffer,BUF_SIZE);
sscanf(buffer, "%d", &n);
sprintf(buffer,"%d\r\n", n + 1); // return the number + 1
NU32_WriteUART3(buffer);
break;

}
case ’q’:
{

// handle q for quit. Later you may want to return to IDLE mode here.
break;

}
default:
{

NU32_LED2 = 0; // turn on LED2 to indicate an error
break;

}
}

}
return 0;

}

The infinite while loop reads from the UART, expecting a single character. That character is
processed by a switch statement to determine what action to perform. If the character matches
a known menu entry, we may have to retrieve additional parameters from the client. The
specific format for these parameters depends on the particular command, but in this case, after
receiving a “d,” we expect an integer and store it in n. The command then increments the
integer and sends the result to the client.

Note that each case statement ends with a break. The break prevents the code from falling
through to the next case. Make sure that every case has a corresponding break.

Unrecognized commands trigger the default case. The default case illuminates LED2 to
indicate an error. We could have designed the communication protocol to allow the PIC32 to
return error conditions to the client. Although crucial in the real world, proper error handling
complicates the communication protocol and obscures the goals of this project. Therefore we
omit it.

Before proceeding further, test the PIC32 menu code:

1. Compile and load main.c, then connect to the PIC32 with a terminal emulator.
2. Enter the “d” command, then enter a number. Ensure that the command works as

expected.
3. Issue an unknown command and verify that LED2 illuminates.
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28.4.3 Establishing Communication with the Client

We have also provided you with some basic MATLAB client code. This code expects a single
character of keyboard input and sends it to the PIC32. Then, depending on the command sent,
the user can be prompted to enter more information and that information can be sent to the
PIC32.

Code Sample 28.2 client.m. MATLAB Client Code.

function client(port)
% provides a menu for accessing PIC32 motor control functions
%
% client(port)
%
% Input Arguments:
% port - the name of the com port. This should be the same as what
% you use in screen or putty in quotes ’ ’
%
% Example:
% client(’/dev/ttyUSB0’) (Linux/Mac)
% client(’COM3’) (PC)
%
% For convenience, you may want to change this so that the port is hardcoded.

% Opening COM connection
if ˜isempty(instrfind)

fclose(instrfind);
delete(instrfind);

end

fprintf(’Opening port %s....\n’,port);

% settings for opening the serial port. baud rate 230400, hardware flow control
% wait up to 120 seconds for data before timing out
mySerial = serial(port, ’BaudRate’, 230400, ’FlowControl’, ’hardware’,’Timeout’,120);
% opens serial connection
fopen(mySerial);
% closes serial port when function exits
clean = onCleanup(@()fclose(mySerial));

has_quit = false;
% menu loop
while ˜has_quit

fprintf(’PIC32 MOTOR DRIVER INTERFACE\n\n’);
% display the menu options; this list will grow
fprintf(’ d: Dummy Command q: Quit\n’);
% read the user’s choice
selection = input(’\nENTER COMMAND: ’, ’s’);

% send the command to the PIC32
fprintf(mySerial,’%c\n’,selection);

% take the appropriate action
switch selection

case ’d’ % example operation
n = input(’Enter number: ’); % get the number to send
fprintf(mySerial, ’%d\n’,n); % send the number

client.m
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n = fscanf(mySerial,’%d’); % get the incremented number back
fprintf(’Read: %d\n’,n); % print it to the screen

case ’q’
has_quit = true; % exit client

otherwise
fprintf(’Invalid Selection %c\n’, selection);

end
end

end

Test the client as follows. Do not move on until you have completed each step.

1. Exit the terminal emulator (if it is still open).
2. Run client.m in MATLAB and confirm that you are connected to the PIC32. Issue the “d”

command, and verify that it works as you expect. (The client prompts you for a number
and sends it to the PIC32. The PIC32 increments it and sends the value back. The client
prints out the return value.)

3. Quit the client by using “q.”
4. Implement a command “x” on the PIC32 that accepts two integers, adds them, and returns

the sum to the client.
5. Test the new command using the terminal emulator. Once you have verified that the PIC32

code works, quit the emulator.
6. Add an entry “x” to the client menu and verify that the client’s new menu command works

as expected.

After completing the tasks above, you should be familiar with the menu system. Adding menu
entries and determining a communication protocol for these commands will become routine as
you proceed through this project. If you encounter problems, you can open the terminal
emulator and enter the commands manually to narrow down whether the issue is on the client
or on the PIC32. Remember, do not attempt to simultaneously open the serial port in the
terminal emulator and the client. Also, a mismatch between the data that the PIC32 expects
and what the client sends, or vice versa, may cause one or the other to freeze while waiting for
data. You can force-quit the client in MATLAB by typing CTRL-C.

When you are comfortable with how the menu system works, you can remove the “d” and “x”
commands, as they are no longer needed.

28.4.4 Testing the Encoder

1. Power the encoder with 3.3 V and GND. Be absolutely certain of your wiring before
applying power! Some encoders are easy to destroy with the wrong power and ground
connections.
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2. Attach two oscilloscope probes to the A and B encoder outputs.
3. Twist the motor in both directions and make sure you see out-of-phase square waves from

the two encoder channels.

28.4.5 Adding Encoder Menu Options

In this section you will implement the menu items “c” (Read encoder (counts)), “d” (Read
encoder (deg)), and “e” (Reset encoder).

Figure 28.6 shows the wiring of the decoder PCB to both the motor encoder and
the NU32, based on the assumption that the PIC32 uses SPI channel 4 to communicate
with the decoder. The decoder uses 4x decoding of the quadrature encoder inputs and keeps a
16-bit count, 0 to 65,535. The decoder is actually a dedicated PIC microcontroller,
programmed only to count encoder pulses and to send the count to the PIC32 when requested.
To verify that the decoder chip is programmed, you can look for the 1 kHz “heartbeat” square
wave on pin B3.

Once you have connected all the components, it is time to add an encoder reading option to
the PIC32 menu code:

case ’c’:
{
sprintf(buffer,"%d", encoder_counts());
NU32_WriteUART3(buffer); // send encoder count to client
break;

}
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Figure 28.6
Encoder counter circuit.
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This code invokes a function called encoder_counts(), which apparently returns an integer.
Below we give you an implementation of encoder_counts(). Here we assume this function
lives in a module consisting of encoder.c and encoder.h (Section 28.3), but it could also be
included directly in the main.c file with no header encoder.h. The function encoder_counts()

relies on the helper function encoder_command().

Code Sample 28.3 encoder.c. Implementation of Some Encoder Functions.

#include "encoder.h"
#include <xc.h>

static int encoder_command(int read) { // send a command to the encoder chip
// 0 = reset count to 32,768, 1 = return the count

SPI4BUF = read; // send the command
while (!SPI4STATbits.SPIRBF) { ; } // wait for the response
SPI4BUF; // garbage was transferred, ignore it
SPI4BUF = 5; // write garbage, but the read will have the data
while (!SPI4STATbits.SPIRBF) { ; }
return SPI4BUF;

}

int encoder_counts(void) {
return encoder_command(1);

}

void encoder_init(void) {
// SPI initialization for reading from the decoder chip
SPI4CON = 0; // stop and reset SPI4
SPI4BUF; // read to clear the rx receive buffer
SPI4BRG = 0x4; // bit rate to 8 MHz, SPI4BRG = 80000000/(2*desired)-1
SPI4STATbits.SPIROV = 0; // clear the overflow
SPI4CONbits.MSTEN = 1; // master mode
SPI4CONbits.MSSEN = 1; // slave select enable
SPI4CONbits.MODE16 = 1; // 16 bit mode
SPI4CONbits.MODE32 = 0;
SPI4CONbits.SMP = 1; // sample at the end of the clock
SPI4CONbits.ON = 1; // turn SPI on

}

The function encoder_init() initializes SPI4. This function should be called at the beginning
of main, while interrupts are disabled. The SPI peripheral uses a baud of 8 MHz, 16-bit
operation, sampling on the falling edge, and automatic slave detect.

The function encoder_counts() uses encoder_command() to send a command to the decoder
chip and return a response. Valid commands to encoder_command() are 0x01, which reads the
decoder count, and 0x00, which resets the count to 32,768, halfway through the count range 0
to 65,535. Note that every time you write to SPI you must also read, even if you do not need
the data.

If you use a separate encoder module (Section 28.3), encoder_init() and encoder_counts()

should have prototypes in encoder.h so that they are available to other modules that #include

encoder.c
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"encoder.h". The function encoder_command() is private to encoder.c, and therefore should be
declared static and should have no prototype in encoder.h.

In addition to encoder_counts(), you will implement a function to reset the encoder count
(e.g., encoder_reset()) using encoder_command().

1. Implement the PIC32 code to read the encoder counts (the “c” command).
2. Use a terminal emulator to issue commands and display the results from the PIC32. Twist

the motor shaft, issue the “c” command, and ensure that the count increases as the shaft
rotates counterclockwise and decreases as it rotates clockwise. If you get opposite results,
swap the encoder inputs to the decoder PCB.

3. Implement PIC32 code for the “e” command to reset the encoder count to 32,768. Using
the terminal emulator and the “c” command, verify that resetting the encoder works as
expected.

4. Knowing the 4x resolution of the encoder, implement PIC32 code for the “d” command to
read the encoder in degrees. Using the terminal emulator, verify that the angle reads as
zero degrees after the reset command “e.” Also verify that rotating the shaft 180 or −180
degrees results in appropriate readings with the “d” command.

5. Close the terminal emulator and update the client to handle the “c” (Read encoder

(counts)), “d” (Read encoder (deg)), and “e” (Reset encoder) commands. For example,

case ’c’
counts = fscanf(mySerial,’%d’);
fprintf(’The motor angle is %d counts.’, counts)

Verify that the three commands work as expected on the client.

From now on, when you are asked to implement menu items, you should implement them on
both the PIC32 and client. We will not ask you to test with the terminal emulator first. You can
always fall back to the terminal emulator for debugging purposes.

28.4.6 PIC32 Operating Mode

In this section you will implement the menu item “r” (Get mode).

The PIC32 can be in one of five operating modes: IDLE, PWM, ITEST, HOLD, and TRACK.
You will create functions to both set and query the mode. If you are following the modular
design suggested in Section 28.3, these functions, and the variable holding the mode, will
likely be in the utilities module.

1. Implement PIC32 functions to set the mode and to query the mode.
2. Use the mode-setting function at the beginning of main to put the PIC32 in IDLE mode.
3. Implement the “r” menu item (Get mode) on the PIC32 and the client. Verify that it works.
4. Update the “q” (quit) menu entry to set the PIC32 to the IDLE state prior to exiting the

menu.
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Note that there is no client menu command that only sets the mode.

28.4.7 Current Sensor Wiring and Calibration

The current sensor detects the amount of current flowing through the motor. We use a PCB
breaking out the MAX9918 current-sense amplifier and an onboard 15 m� current-sense
resistor, as described in Chapter 21.10.1.

In this section, you will first use the information in Chapter 21.10.1 to set up and calibrate
your current sensor, independent of the NU32 and the motor. The questions refer to the circuit
in Figure 21.22.

1. Choose the voltage divider resistors R3 to be a few hundred ohms (e.g., 330 �).
2. Find the maximum current you expect to sense. If the H-bridge’s battery voltage is V and

the motor resistance is Rmotor, then the maximum current you can expect to see is
approximately Imax = 2V/Rmotor. This occurs when the motor is spinning at no-load
speed in reverse, with essentially zero current and −V across the motor terminals,

−V = ktωrev → ωrev = −V/kt

and then the control voltage switches suddenly to V , yielding (ignoring inductance)

V = ktωrev + ImaxRmotor → Imax = 2V/Rmotor.

Record your calculated Imax for your battery and motor.
3. Calculate the voltage across the 15 m� sense resistor if Imax flows through it. Call this

Vmax.
4. Choose resistors R1 and R2 so the current-sense amplifier gain G= 1 + (R2/R1)

approximately satisfies
1.65 V=G× Vmax.

This ensures that the maximum positive motor current yields a 3.3 V output from the
current sensor and the maximum negative motor current yields a 0 V output from the
current sensor, utilizing the full range of the ADC input. Choose R1 and R2 to be in the
range of 104-106 �.

5. Choose a resistor R and a capacitor C to make an RC filter on the MAX9918 output with a
cutoff frequency fc = 1/(2πRC) in the neighborhood of 200 Hz, to suppress
high-frequency components due to the 20 kHz PWM.

6. Build the circuit as shown in Figure 21.22, but do not connect to the motor or the PIC32.
You will calibrate the circuit using resistors, an ammeter, and an oscilloscope or voltmeter.
Figure 28.7 shows how to use a resistor R0 to provide controlled positive and negative test
currents to the current sensor. You will choose different values of R0 to create test currents
over the range of likely currents. For example, if you have two 20 � resistors, you can use
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Figure 28.7
Test circuits for calibrating the current sensor. The circuit on the left provides positive currents

through the current-sense resistor; switching the RS+ and RS− connections in the right circuit results
in negative currents.

them to create an R0 of 20 �, 40 � (two resistors in series), or 10 � (two resistors in
parallel). If the battery voltage V is 6 V, this results in expected currents of ±300, ±150,
and ±600 mA, respectively.
Important: The calibration resistors must be rated to handle high currents without
burning up. For example, a 20 � resistor with 300 mA through it dissipates
(300 mA)2(20 �) = 1.8 W, more than a typical 1/4 W resistor can dissipate.
With different resistances R0, use an ammeter to measure the actual current and a
voltmeter or oscilloscope to measure the output of the current sensor. Fill out a table
similar to the table below, for your particular resistances and battery. If you
built your current sensor circuit correctly, zero current should give approximately 1.65 V
at the sensor output, and the data points (sensor voltage as a function of the measured
current) should agree with the amplifier gain G you designed. If not, time to fix your
circuit.

R0 (�) Expected I (mA) Measured I (mA) Sensor (V) ADC (counts)
10 (to RS+) 600 587 2.82
20 (to RS+) 300 295 2.24
40 (to RS+) 150 140 1.93
Open circuit 0 0 1.63
40 (to RS−) −150 −147 1.34
20 (to RS−) −300 −322 1.01
10 (to RS−) −600 −605 0.45

Leave the column “ADC (counts)” blank; you will fill in that column in the next section.
As a sanity check, you can replace R0 with your motor, stalled, and make sure that the
sensor voltage makes sense.
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7. Turn in your answers for items 2-6.

28.4.8 ADC for the Current Sensor

In this section you will implement the menu items “a” (Read current sensor (ADC counts))
and “b” (Read current sensor (mA)).

The ADC reads the voltage from the motor current sensor. See Chapter 10 for information on
setting up and using the ADC.

1. Create a PIC32 function to initialize the ADC, and call it at the beginning of main.
2. Create a PIC32 function that reads the ADC and returns the value, 0-1023. Consider

reading the ADC a few times and averaging for a more stable reading.
3. Add the menu item “a” (Read current sensor (ADC counts)) to the PIC32 and client and

verify that it works. Use simple voltage dividers at the analog input to make sure that the
readings make sense.

4. Hook up the current sensor output from the previous section to the analog input. Provide a
circuit diagram showing all connections to the current sensor PCB.

5. Using the power-resistor voltage dividers from the previous section, and the “a” menu
command, fill in the last column of the current sensor calibration table. (It is a good idea
to update your ammeter-measured currents, too, just in case they have changed due to a
draining battery.)

6. Plot your data points, measured current in mA as a function of ADC counts. Find the
equation of a line that best fits your data (e.g., using least-squares fitting in MATLAB).

7. Use the line equation in a PIC32 function that reads the ADC counts and returns the
calibrated measured current, in mA. Add the menu item “b” (Read current sensor (mA))
and verify that it works as expected.

28.4.9 PWM and the H-Bridge

In this section you will implement the menu items “f” (Set PWM (-100 to 100)) and “p”
(Unpower the motor).

By now you should have control of both the current sensor and the encoder. The next step is to
provide low-level motor control. First you will implement part of the software associated with
the current control loop. Next you will connect the H-bridge and the motor. When you finish
this section you will be able to control the motor PWM signal from the client.

1. The current controller uses a timer for the 5 kHz ISR, another timer and an output
compare to generate a 20 kHz PWM signal, and a digital output to control the motor
direction. Write a PIC32 function that initializes these peripherals and call it from main.

2. Write the 5 kHz ISR. It should set the PWM duty cycle to 25% and invert the motor
direction digital output. Look at the digital output and the PWM output on an oscilloscope



A Motor Control Project 481

and confirm that you see a 2.5 kHz “heartbeat” square wave for the ISR and a 25% duty
cycle 20 kHz PWM signal. Remember to clear the interrupt flag.

3. Now modify the ISR to choose the PWM duty cycle and direction bit depending on the
operating mode. You should use a switch-case construct, similar to the switch–case in
main, except the value in question here is the operating mode, as returned by the
mode-querying function developed in Section 28.4.6. There will eventually be five modes
to handle—IDLE, PWM, ITEST, HOLD, and TRACK—but in this section we focus on
IDLE and PWM. If the operating mode is IDLE, the PWM duty cycle and direction bit
should put the H-bridge in brake mode. If the operating mode is PWM, the duty cycle and
direction bit are set according to the value −100 to 100 specified by the user through the
client. This leads to the next action item. . .

4. Implement the menu item “f” (Set PWM (-100 to 100)). The PIC32 switches to PWM
mode, and in this mode the 5 kHz ISR creates a 20 kHz PWM pulse train of the specified
duty cycle and a digital output with the correct direction bit.

5. Implement the menu item “p” (Unpower the motor). The PIC32 switches to IDLE mode.
6. Test whether the mode is being changed properly in response to the new “f” and “p”

commands by using the menu item “r” (Get mode).
7. Set the PWM to 80%. Verify the duty cycle with an oscilloscope and record the value of

the direction pin. Then set the PWM to −40%. Verify the new duty cycle and that the
direction pin has changed.

8. Now that the PWM output appears to be working, it is time to wire up the DRV8835
H-bridge circuit, as discussed in Chapter 27.1.1, to the motor and the PIC32 outputs
(Figure 28.8). Notice that the 15 m� resistor on the current-sense PCB is in series with
the motor. Turn in a circuit diagram showing all connections of the H-bridge to the
NU32, motor, and current sensor PCB.

Vin

O2A

O1A

GND

Vcc

GND

ENA

PHA

MD

OCx

Rxx

M

RS− +SR

3.3 V

3.3 V

Rs

Battery

DRV8835

Figure 28.8
H-bridge circuit.
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9. Verify the following:
a. Set the PWM to 100%. Make sure that the motor rotates counterclockwise, that the

angle returned by the encoder is increasing, and that the measured current is positive.
You may have to swap the motor terminals or the encoder channels if not.

b. Stall the motor at 100% PWM and see that the current is greater than during free
running, and check that the measured current is consistent with your estimate of the
resistance of the motor. (Note that the voltage at the H-bridge outputs will be somewhat
lower than the voltage of the battery, due to voltage drops at the output MOSFETs.)

c. Set the PWM to 50% and make sure that the motor spins slower than at 100%.
d. Repeat the steps above for negative values of PWM.
e. Make sure the motor stops when you issue the “p” (Unpower the motor) command.
f. Attach the bar to the motor to increase the inertia, if it

was not attached already. Get the motor spinning at its max negative speed with PWM
set at −100%. Then change the PWM to 100% and quickly query the motor current
(“a”) several times as the motor slows down and then reverses direction on its way
to its max positive speed. You should see the motor current is initially very large due
to the negative back-emf, and drops continuously as the back-emf increases toward
its maximum positive value (when the motor is at full speed in the forward direction).

You now have full control of the low-level features of the hardware!

28.4.10 PI Current Control and ITEST Mode

In this section you will implement menu items “g” (Set current gains), “h” (Get current

gains), and “k” (Test current control).

The PI current controller tries to make the current sensor reading match a reference current by
adjusting the PWM signal. For details about PI controllers, see Chapters 23 and 27.2.2.

In this section we focus particularly on the ITEST mode in the 5 kHz current control ISR.

1. Implement the menu items “g” (Set current gains) and “h” (Get current gains) to set
and read the current loop’s proportional and integral gains. You can use either floating
point or integer gains. Verify the menu items by setting and reading some gains.

2. In the 5 kHz current control ISR, add a case to the switch-case to handle the ITEST mode.
When in ITEST mode, the following should happen in the ISR:
• In this mode, the current controller attempts to track a ±200 mA 100 Hz square wave

reference current (Figure 28.4). Since a half-cycle of a 100 Hz signal is 5 ms, and 5 ms
at 5000 samples/s is 25 samples, this means that the reference current toggles between
+200 and −200 mA every 25 times through the ISR. To implement two full cycles
of the current reference, you could use a static int variable in the ISR that counts
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from 0 to 99. At 25, 50, and 75, the reference current changes sign. When the counter
reaches 99, the PIC32 mode should be changed to IDLE—the current loop test is over.

• A PI controller reads the current sensor, compares it to the
square wave reference, and calculates a new PWM duty cycle and motor direction bit.

• The reference
and actual current data are saved in arrays for later plotting (e.g., Figure 28.4).

3. Add the menu item “k” (Test current gains). This puts the PIC32 in ITEST mode,
triggering the ITEST case in the switch-case in the current control ISR. When the PIC32
returns to IDLE mode, indicating that the ITEST has completed, the data saved during the
ITEST should be sent back to the client for plotting (e.g., Figure 28.4). This data transfer
should not occur in an ISR, as it will be slow. See below for sample MATLAB code for
plotting the ITEST data.

4. Experiment by setting different current gains (“g”) and testing them with the square wave
reference current (“k”). Verify that the measured current is approximately zero if both PI
gains are zero. See how good a response you can get with a proportional gain only.
Finally, get the best response possible using both the P and I gains.

5. Turn in your best ITEST plot, and indicate the control gains you used, as well as
their units.

We provide you with a sample MATLAB function to read and plot the ITEST data (Figure
28.4). This code assumes that the PIC32 first sends the number of samples N it will be
sending, then sends N pairs of integers: the reference and the actual current, in mA.

Code Sample 28.4 read_plot_matrix.m. Reads a Matrix of Current Data from the
PIC32 and Plots the Results. It also Computes an Average Tracking Error, to Help
You Evaluate the Current Controller.

function data = read_plot_matrix(mySerial)
nsamples = fscanf(mySerial,’%d’); % first get the number of samples being sent
data = zeros(nsamples,2); % two values per sample: ref and actual
for i=1:nsamples

data(i,:) = fscanf(mySerial,’%d %d’); % read in data from PIC32; assume ints, in mA
times(i) = (i-1)*0.2; % 0.2 ms between samples

end
if nsamples > 1

stairs(times,data(:,1:2)); % plot the reference and actual
else

fprintf(’Only 1 sample received\n’)
disp(data);

end
% compute the average error
score = mean(abs(data(:,1)-data(:,2)));
fprintf(’\nAverage error: %5.1f mA\n’,score);
title(sprintf(’Average error: %5.1f mA’,score));
ylabel(’Current (mA)’);
xlabel(’Time (ms)’);

end

read_plot_matrix.m
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28.4.11 Position Control

In this section you will implement the menu items “i” (Set position gains), “j” (Get
position gains), and “l” (Go to angle (deg)).

Of the five PIC32 operating modes, only HOLD and TRACK are relevant to the position
controller. If in either of these modes, the 200 Hz position control ISR specifies the reference
current for the current controller to track.

Complete the following steps in order.

1. Implement the menu items ‘i” (Set position gains) and “j” (Get position gains). The
type of controller is up to you, but a reasonable choice is a PID controller, requiring three
numbers from the user. Verify that the “i” and “j” menu items work by setting and reading
gains from the client.

2. The position controller uses a timer to implement a 200 Hz ISR. Write a position
controller initialization function that sets up the timer and ISR and call it at the beginning
of main.

3. Write the 200 Hz position control ISR. In addition to clearing the interrupt flag, have it
toggle a digital output, and verify the 200 Hz frequency of the ISR with an oscilloscope.

4. Implement the menu item “l” (Go to angle (deg)). The user enters the desired angle of
the motor, in degrees, and the PIC32 switches to HOLD mode. In the 200 Hz position
control ISR, check if the PIC32 is in the HOLD mode. When in the HOLD mode, the ISR
should read the encoder, compare the actual angle to the desired angle set by the user, and
calculate a reference current using the PID control gains. It is up to you whether to
compare the angles in terms of encoder counts or degrees or some other unit (e.g., an
integer number of tenths or hundredths of degrees).
You also need to add the HOLD case to the 5 kHz current control ISR. When in the
HOLD mode, the current controller uses the current commanded by the position controller
as the reference for the PI current controller.

5. With the bar on the motor, verify that the “l” (Go to angle (deg)) command works as
expected. Find control gains that hold the bar stably at the desired angle, and move the bar
to the new desired angle on the next “l” command. Try to choose gains that give a quick
motion with little overshoot. It may be easiest to use zero integral gain.

28.4.12 Trajectory Tracking

All that remains is to implement the menu items “m” (Load step trajectory), “n” (Load
cubic trajectory), and “o” (Execute trajectory). These commands allow us to design a
reference trajectory for the motor, execute it, and see the position controller tracking results.
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We have provided a MATLAB function genRef.m, below, to generate and visualize step and
cubic trajectories similar to those seen in Figure 28.5. For trajectories that are T seconds long,
genRef.m generates an array of 200T reference angles, one per 200 Hz control loop iteration,
and plots it in MATLAB. Before continuing, try generating some sample trajectories using
genRef.m. See the description of menu items “m” and “n” in Section 28.2 for more information
on genRef.m.

Code Sample 28.5 genRef.m. MATLAB Code to Generate a Step or Cubic Reference
Trajectory.

function ref = genRef(reflist, method)

% This function takes a list of "via point" times and positions and generates a
% trajectory (positions as a function of time, in sample periods) using either
% a step trajectory or cubic interpolation.
%
% ref = genRef(reflist, method)
%
% Input Arguments:
% reflist: points on the trajectory
% method: either ’step’ or ’cubic’
%
% Output:
% An array ref, each element representing the reference position, in degrees,
% spaced at time 1/f, where f is the frequency of the trajectory controller.
% Also plots ref.
%
% Example usage: ref = genRef([0, 0; 1.0, 90; 1.5, -45; 2.5, 0], ’cubic’);
% Example usage: ref = genRef([0, 0; 1.0, 90; 1.5, -45; 2.5, 0], ’step’);
%
% The via points are 0 degrees at time 0 s; 90 degrees at time 1 s;
% -45 degrees at 1.5 s; and 0 degrees at 2.5 s.
%
% Note: the first time must be 0, and the first and last velocities should be 0.

MOTOR_SERVO_RATE = 200; % 200 Hz motion control loop
dt = 1/MOTOR_SERVO_RATE; % time per control cycle

[numpos,numvars] = size(reflist);

if (numpos < 2) || (numvars ˜= 2)
error(’Input must be of form [t1,p1; ... tn,pn] for n >= 2.’);

end
reflist(1,1) = 0; % first time must be zero
for i=1:numpos
if (i>2)

if (reflist(i,1) <= reflist(i-1,1))
error(’Times must be increasing in subsequent samples.’);

end
end

end

if strcmp(method,’cubic’) % calculate a cubic interpolation trajectory

timelist = reflist(:,1);
poslist = reflist(:,2);

genRef.m
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vellist(1) = 0; vellist(numpos) = 0;
if numpos >= 3
for i=2:numpos-1

vellist(i) = (poslist(i+1)-poslist(i-1))/(timelist(i+1)-timelist(i-1));
end

end

refCtr = 1;
for i=1:numpos-1 % go through each segment of trajectory
timestart = timelist(i); timeend = timelist(i+1);
deltaT = timeend - timestart;
posstart = poslist(i); posend = poslist(i+1);
velstart = vellist(i); velend = vellist(i+1);
a0 = posstart; % calculate coeffs of traj pos = a0+a1*t+a2*tˆ2+a3*tˆ3
a1 = velstart;
a2 = (3*posend - 3*posstart - 2*velstart*deltaT - velend*deltaT)/(deltaTˆ2);
a3 = (2*posstart + (velstart+velend)*deltaT - 2*posend)/(deltaTˆ3);
while (refCtr-1)*dt < timelist(i+1)

tseg = (refCtr-1)*dt - timelist(i);
ref(refCtr) = a0 + a1*tseg + a2*tsegˆ2 + a3*tsegˆ3; % add an element to ref array
refCtr = refCtr + 1;

end
end

else % default is step trajectory

% convert the list of times to a list of sample numbers
sample_list = reflist(:,1) * MOTOR_SERVO_RATE;
angle_list = reflist(:,2);
ref = zeros(1,max(sample_list));
last_sample = 0;
samp = 0;
for i=2:numpos
if (sample_list(i,1) <= sample_list(i-1,1))

error(’Times must be in ascending order.’);
end
for samp = last_sample:(sample_list(i)-1)

ref(samp+1) = angle_list(i-1);
end
last_sample = sample_list(i)-1;

end
ref(samp+1) = angle_list(end);

end

str = sprintf(’%d samples at %7.2f Hz taking %5.3f sec’, ...
length(ref),MOTOR_SERVO_RATE,reflist(end,1));

plot(ref);
title(str);
border = 0.1*(max(ref)-min(ref));
axis([0, length(ref), min(ref)-border, max(ref)+border]);
ylabel(’Motor angle (degrees)’);
xlabel(’Sample number’);
set(gca,’FontSize’,18);

In the MATLAB client, you can use code of the form

A = input(’Enter step trajectory: ’);
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to read the user’s matrix of times and positions into the variable A, to send to genRef.m. The
user would simply type a string similar to [0,0; 1,180; 3,-90; 4,0; 5,0] in response.

1. Implement the menu item “m” (Load step trajectory). The client should prompt the user
for the trajectory parameters for genRef.m. Provided the duration of the trajectory is not
too long to store in the PIC32’s data array, the client first sends the number of samples N
to the PIC32, then sends N reference positions. It is up to you whether the reference
positions are sent as floating point numbers (e.g., degrees) or integers (e.g., tenths of
degrees, hundredths of degrees, or encoder counts). But the user should only ever have to
deal with degrees, in specifying angles and looking at plots.

2. Implement the menu item “n” (Load cubic trajectory). This entry is very similar to the
previous item, except genRef.m is invoked with the ’cubic’ option.

3. Implement the menu item “o” (Execute trajectory). The PIC32 is placed in TRACK
mode. In the 200 Hz position control ISR, check if the mode is TRACK. If so, then the
ISR increments an index into the reference trajectory array, and the indexed trajectory
position is used as the reference to the PID controller, which calculates a commanded
current for the current control ISR.
The position control ISR should also collect motor angle data for later plotting.
When the array index reaches N, the operating mode is switched to HOLD, and the last
angle of the reference trajectory array is used as the holding angle. The collected data is
sent back to the client for plotting, similar to the ITEST case. The MATLAB client
plotting code should be similar to Code Sample 28.4, but using the appropriate data types
and scaling of the sample times, so the user sees the results in terms of time, not samples.
You also need to add the TRACK case to the 5 kHz current control ISR. To the current
controller, the TRACK case is identical to the HOLD case: in both cases, the current
controller attempts to match the current commanded by the position controller.

4. Experiment with tracking different trajectories (such as the ones in Figure 28.5) with
different position control gains until you get good performance. For example, the
performance in Figure 28.2 is reasonable, though a larger derivative gain would help to
eliminate the overshoot. In experimentally tuning your gains, it is easiest to start with
proportional (P) control alone, then add derivative (D) control. Finally, tune your PD gains
simultaneously. You may not need an integral (I) term for good performance.

5. Turn in your best plots of following the step and cubic trajectories in Figure 28.5
with the load attached. Indicate the control gains you used, as well as their units.

Congratulations! You now have a full motor control system.

28.5 Extensions

Saving gains in flash memory

Currently you must re-enter gains every time you reset the PIC32; this quickly becomes
annoying. You can, however, store the gains in flash memory, which allows them to persist,
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even when the PIC32 is powered off. To see how to access flash memory, refer to Chapter 18.
Add a menu item that saves gains to flash memory, and modify the startup code in main to first
read any stored gains.

LCD display

Connect an LCD display to the PIC32. Use it to show information about the current system
state, the gains, or whatever else you want.

Model-based control

In Chapter 25, we learned how to characterize a motor. Notice that we have mostly ignored the
motor parameters when implementing the control law. Our ability to do this demonstrates the
power of feedback to compensate for a lack of a system model. However, incorporating a
model of the motor and load into the control loop could improve the motor’s performance. See
Chapter 27.2.1, for example.

To test your model-based control, try adding a small weight to one end of the bar and track the
trajectories in Figure 28.5. Either hardcode the mass, center of mass, and inertia of the total
load in your PIC32 code, or allow the user to enter information about the load. See if your
model-based control can provide better tracking than your original controller.

As an even more advanced project, you could identify the properties of the motor and the load
by spinning the motor, measuring the current (torque) as a function of the position, velocity,
and acceleration of the motor, and using the data to fit parameters of a model.

Anytime data collection

Instead of only collecting data during ITEST or TRACK modes, the user could have the
option to collect and plot a specified duration of data at any time. This would allow collecting
data during a HOLD while the user perturbs the motor, for example.

Real-time data

Currently we employ batch processing to retrieve motor data. This severely limits how long
you can collect data before running out of memory. What if you want to see the motor data in
real-time? A data structure called a circular (a.k.a. ring) buffer can help. The circular buffer
has two position indexes; one for reading and one for writing. Data is added to the array at the
write position, which is subsequently advanced. If the end of the array is reached, the write
position wraps around to the beginning. Data is read from the read position and the read index
advanced, also wrapping around. In one style of circular buffer, if the read position and write
position are the same, the buffer is empty. If the write position is one behind the read position,
the buffer is full. When using a circular buffer in this project, either the current loop or
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Figure 28.9
A trapezoidal move of length d.

position loop will add data to the buffer. Rather than waiting for the buffer to be full, data can
be sent back any time the buffer is not empty. It is up to the client how to handle this
continuous stream of data, perhaps by using an oscilloscope-style display. See Chapter 11 for
more details about circular buffers.

If the communication cannot keep up with the data, then the stored data can be decimated,
sending back only every nth data sample, n > 1.

Trapezoidal moves

The reference trajectories in this chapter are rest-to-rest step or cubic motions in position. One
type of rest-to-rest trajectory that is common in machine tools is the trapezoidal move. The
name comes from the fact that the trajectory, represented in the velocity space, is a trapezoid
(Figure 28.9): the motor accelerates with a constant acceleration a for a time Tacc until it
reaches a maximum velocity v; it coasts with a constant velocity v for a time Tcoast; and then it
comes to a stop by decelerating at −a for a time Tdec = Tacc. The user should specify the total
move distance d and either (a) the total time T = Tacc + Tcoast + Tdec and the maximum
velocity v, (b) the acceleration a and the maximum velocity v, or (c) T and a. The other
parameters are calculated so that the integral of the velocity trapezoid is equal to d.

Add a menu item that allows the user to generate a trapezoidal reference trajectory based on
either (a), (b), or (c).

28.6 Chapter Summary

A typical commercial motor amplifier consists of at least a microcontroller, a high-current
H-bridge output, a current sensor, and some type of motion feedback input (e.g., from an
encoder or a tachometer). The amplifier is connected to a high-power power supply to power
the H-bridge. The amplifier accepts a velocity or current/torque input from an external
controller (e.g., a PC), either as an analog signal or the duty cycle of a PWM signal. When the
amplifier is in current mode, current sensor feedback is used to alter the PWM input to the
H-bridge to achieve close tracking of the commanded current. In velocity mode, the amplifier
uses motion feedback to alter the PWM input to achieve close tracking of the desired velocity.
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More advanced motor amplifiers, like the Copley Accelus, offer other features, like client
graphical user interfaces and trajectory tracking. The project in this chapter emulates some of
the capabilities that come with advanced motor amplifiers. This project brings together your
knowledge of the PIC32 microcontroller, C programming, brushed DC motors, feedback
control, and interfacing a microcontroller with sensors and actuators to achieve capabilities
found in every robot and computer-controlled machine tool.

28.7 Exercises

Complete the motor control project. Complete all of the numbered action items in each
subsection. Turn in your answers for the action items in bold as well as your
well-commented code.
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Other Actuators

In addition to brushed permanent magnet DC motors, many other types of electric actuators
exist. In this chapter we discuss some of the most commonly used electric actuators in
mechatronics.

29.1 Solenoids

A solenoid is an on-off linear actuator. It consists of a stationary wire coil around a tube and a
plunger that moves in the tube, typically until it rests against a stop at one end or moves
completely out of the tube at the other end. When current flows through the coil it becomes an
electromagnet, pulling the plunger into the tube and against the stop. When current is off, the
plunger moves freely.

Figure 29.1 shows an example solenoid, the Pontiac Coil F0411A. Note that the plunger is not
physically connected to the coil housing; the plunger returns to a home position when the
current is off either by a return spring or some other external means (e.g., the influence of
gravity).

A solenoid draws more current, at a higher voltage, than the PIC32 output can provide. For
example, the F0411A is rated for 12 V and the coil has a resistance of 36 �; therefore, it
draws 1/3 A and dissipates 4 W when energized. To provide this current and voltage, an
H-bridge can be used (Chapter 27.1.1). Figure 29.1 shows an alternative circuit which uses a
transistor to interface the PIC32 with a solenoid. When the PIC32’s digital output is high, the
TIP120 transistor turns on, pulling current from the 12 V supply through the solenoid coil.
When the PIC32 digital output drops low, the TIP120 turns off and current that is already
flowing through the inductive solenoid flows through the 1N4001 flyback diode until the
initial energy 1

2LI
2 in the solenoid is dissipated.

To see that the circuit in Figure 29.1 is adequate, we consult the data sheet for the TIP120
Darlington NPN bipolar junction transistor. The TIP120 can provide up to 5 A of current,
more than the 1/3 A needed by the solenoid. The DC current gain β (see Appendix B.3.2) for
the TIP120 is at least 1000. When the transistor is in the linear mode, it enforces the equation
IC = βIB, where IC is the collector current (flowing through the solenoid) and IB is the base

Embedded Computing and Mechatronics with the PIC32 Microcontroller. http://dx.doi.org/10.1016/B978-0-12-420165-1.00029-9
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Figure 29.1
(Left) The Pontiac Coil F0411A 12 V solenoid, with the plunger separated from the coil. (Image

courtesy of Digi-Key Electronics, digikey.com.) (Middle) The TIP120 Darlington NPN bipolar
junction transistor in a TO-220 package. (Right) A circuit that allows a PIC32 digital output to

activate the solenoid (plunger equipped with a return spring).

current. Since we want IC = 1/3 A, rounded up to IC = 0.5 A to be safe, then the base current
should be at least 0.5 A/β = 0.5 mA. Since PIC32 digital outputs can produce a few mA, this
current is safe to draw from a digital output. Again consulting the TIP120 data sheet, we see
that the maximum base-emitter voltage when the transistor is on, VBE,on, is 2.5 V. The high
digital output is 3.3 V, so to get a base current of 0.5 mA, we have

IB = (3.3 V − 2.5 V)/R = 0.5 mA.

Solving, we get a base resistance R = 1600 �. We round this down to 1 k� as a safety factor
to ensure enough base current. Finally, we need to ensure that the 1N4001 diode can handle
the current from the solenoid. Consulting its data sheet, we see that it can handle 1 A
continuously, more than enough.

Electrical characteristics of solenoids are their rated voltage and coil resistance, as well as a
specification of whether they can be activated continuously without overheating the coil. For
example, the F0411A can be activated continuously. Its sister 12 V solenoid, the F0412A, has
a resistance of only 16.9 �, so it heats up faster. The F0412A can only be activated
intermittently, e.g., one minute on and three minutes off.

Mechanical characteristics of a solenoid include the maximum force when the coil is
energized and the stroke. The maximum force is obtained when the plunger is fully inserted
into the coil tube. As the plunger is displaced from its retracted position, the electromagnetic
force drops. The stroke of the solenoid is the distance from the fully retracted position to a
position where the force has dropped below a minimum threshold.

Although all solenoids operate by pulling the plunger into the coil, some solenoids are called
push type solenoids. These solenoids have a rod attached to the plunger that protrudes from
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the back of the solenoid. When the plunger is pulled into the tube, the end of the rod is pushed
away from the tube.

29.2 Speakers and Voice Coil Actuators

A speaker is an electromagnetic actuator used to generate sound. It consists of magnets to
create a magnetic field and a coil (commonly referred to as a voice coil) attached to a speaker
cone. Current through the coil creates a force on the coil/cone assembly due to the Lorentz
force law, and alternating current causes the coil/cone to alternate motion directions
(up/down). The resulting vibration of the cone creates pressure waves that carry sound. Since
human hearing is sensitive only to frequencies in the range 20 Hz to 20 kHz, the frequency
content of the alternating current through the speaker coils is generally limited to that range.
In particular, DC current would simply heat the coils without producing any vibration that
would generate sound. Speaker sizes and shapes are designed to produce audible sound in
particular frequency ranges, from the lowest audible frequencies for subwoofers, to low
frequencies for woofers, to mid-range and high frequencies for tweeters.

Speakers can be used as inexpensive linear actuators, driven by AC or DC currents. The linear
force generated by a speaker for a given current is maximized when the coil is centered in the
magnet’s magnetic field, and drops quickly as the coil moves away from the center. A large
subwoofer, with its corresponding large magnets, may allow significant forces to be generated
at displacements of a centimeter or more, while a small tweeter has a much smaller operating
range.

Voice coil actuators operate on the same principle as speakers, except they are designed to
provide a nearly constant magnetic field over a larger displacement of the coil (stroke). Just as
a rotational brushed permanent magnet DC motor has a motor constant (in Nm/

√
W) and a

torque constant (in Nm/A), a voice coil actuator has a motor constant (in N/
√
W) and a force

constant (in N/A). For example, the H2W Technologies NCC05-11-011-1PBS (Figure 29.2)
has a stroke of 1.27 cm, a motor constant of 2.98 N/

√
W, and a force constant of 5.2 N/A (and

therefore an electrical constant, or back-emf constant, of 5.2 Vs/m). Other relevant
characteristics of the NCC05-11-011-1PBS are a peak force of 14.7 N, a maximum
continuous force of 4.9 N without overheating, a resistance of 3 �, and an inductance of
1 mH. For a given voltage, a speed-force curve could be drawn, analogous to the speed-torque
curve for a brushed DC motor, but linear voice coil actuators are rarely run at constant speed
for significant time due to their limited stroke.

The NCC05-11-011-1PBS is a moving coil actuator. There are also moving magnet voice coil
actuators, where the coil is attached to the stator. Voice coil actuators can either come with
linear bearings installed or require the user to supply the bearings.
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Figure 29.2
The NCC05-11-011-1PBS moving coil voice coil actuator by H2W Technologies, Inc. The magnetic

stator is on the left and the moving coil is on the right. (Image courtesy of H2W Technologies,
h2wtech.com.)

To drive a voice coil actuator with a PIC32, an H-bridge can be used, just as with brushed DC
motors. Position feedback can be obtained using a linear potentiometer, a linear encoder, or
other position sensor, as described in Chapter 21.

Another option to drive a voice coil actuator is to use an analog speaker amplifier, since voice
coil actuators are essentially speakers.1 This method, however, requires an analog voltage
from the controller, and you would have to remove the amplifier’s high-pass filter that prevents
DC currents.

29.3 RC Servos

An RC servo consists of a DC motor, gearhead, angle sensor such as a potentiometer, and a
feedback control circuit (typically implemented by a microcontroller), all in a single package
(Figure 29.3). The integration of these components makes RC servos an excellent choice for
high-torque approximate positioning without requiring your own feedback controller. The
servo’s output shaft typically has a total rotation angle of less than 360 degrees, with 180
degrees being common.

An RC servo has three input connections: power (typically 5 or 6 V), GND, and a digital
control signal. The power line must provide enough current to drive the motor. By convention,
the control signal consists of a high pulse every 20 ms, and the duration of this pulse indicates
the desired output shaft angle. A typical design has a 0.5 ms pulse mapping to one end of the
rotation range and a 2.5 or 3 ms pulse mapping to the other end of the range, with a linear
relationship between pulse length and rotation angle in between (Figure 29.4).

1 Speaker amplifiers can also be used to drive a DC motor.
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Figure 29.3
The interior of a Hitec RC servo showing the gears and the microcontroller that receives the control
signal, reads the potentiometer, and implements the feedback controller. (Image courtesy of Hitec

RCD USA, Inc., hitecrcd.com.)

0.5 ms

2.5 ms

20 ms

Figure 29.4
Typical RC servo control waveforms. These pulse widths drive the servo output shaft near the two

ends of its rotation range.

29.4 Stepper Motors

A stepper motor is designed to progress through a revolution in a series of small increments or
steps. There are several types of stepper motors with different stator and rotor configurations.
The easiest type to understand is the permanent magnet stepper motor shown in Figure 29.5.
Permanent magnet stepper motors have permanent magnets on the rotor. Current flows
through coils 1 and 2 of the stator. Current through coil 1 acts as an electromagnet of one sign
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Figure 29.5
(a) A stepper motor with two rotor poles and four stator poles. The four stator poles correspond to
two independent coils, 1 and 2. (b) The stepping sequence. As the coils change from current flowing

one way, to off, to the other way, the rotor rotates to new equilibrium positions. Note that the
holding torque at the intermediate half-step may be lower than at the full-step positions.

(e.g., N) on coil 1 and the opposite sign (e.g., S) on its partner coil 1̄; coil 2 operates similarly.
These magnetic fields attract permanent magnets on the rotor, causing the rotor to rotate (step)
to a new equilibrium position. By switching the direction of the current through a coil, the
sign of the electromagnet changes.

As the currents through the electromagnets proceed through a fixed sequence, the motor
rotates, one step at a time. A complete full-stepping sequence for the coils is shown below:

coil 1 + − − + + (back to the beginning)
coil 2 + + − − + (back to the beginning)

Another type of stepper motor is the variable reluctance stepper motor. These motors have no
permanent magnets; rather their rotor is made of a ferrous material. Both the stator poles and
the rotor have teeth, and when the stator coils are energized, the rotor rotates so the rotor teeth
are positioned to minimize magnetic reluctance.2 Hybrid stepper motors incorporate
principles of both permanent magnet and variable reluctance motors. Regardless, all motors
progress through their revolution by energizing the coils in the correct sequence.

Stepper motors can also be controlled using half-stepping, to increase their position
resolution. With half-stepping, the current to one of the coils is turned off before transitioning
to the next full-step state. Half-stepping doubles the number of steps available, but results in
reduced holding torque at the half-steps. A complete half-stepping sequence is given below:

2 The relationship of reluctance to magnetic flux is analogous to the relationship of resistance to current.
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coil 1 + 0 − − − 0 + + + (back to the beginning)
coil 2 + + + 0 − − − 0 + (back to the beginning)

Figure 29.5(b) shows two half-steps making a full step.

Microstepping refers to partially energizing the coils, instead of using only full current in one
direction, full current in the other direction, or off. Microstepping allows for increased
resolution in the control of the motor’s angle, but the holding torque at each microstep is
reduced even further beyond that for half-steps.

The simple stepper shown in Figure 29.5(b) has only two rotor poles, and a full rotation of the
motor consists of only four full steps (or eight half steps). Real stepper motors have many
more rotor poles and stator poles, but usually only two independently controlled sets of coils
that energize these electromagnetic stator poles. The rotor poles are typically toothed and are
attracted to stator pole teeth, and a large number of rotor teeth create much finer step sizes
than the 90◦ of our simple example. Figure 29.6 shows a hybrid stepper motor that has been
opened, exposing the stator poles and rotor poles.

A stepper motor is characterized by the number of steps per revolution (e.g., 100 steps, or 3.6◦
per step); the resistance of the coils; the current each coil can carry continuously without
overheating (usually implicit in the motor’s voltage rating and the coil resistances, since
stepper motors are intended to be powered continuously); the holding torque, the maximum
restoring force as the rotor is forced away from an equilibrium when the coils are energized;
and the detent torque, the amount of torque needed to move the rotor out of an equilibrium
position when the coils are off. The detent torque comes from the attraction of the rotor’s
permanent magnets to the stator teeth.

When a stepper is stepped slowly, it settles into its equilibrium position between steps. When
stepped quickly, however, it may never settle before the coils change, leading to continuous

Figure 29.6
(Left) A stepper motor stator, showing the eight stator coils and the stator teeth. (Right) The
stepper motor rotor, removed from the motor, showing many magnetized rotor pole teeth.
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motion. If a stepper motor is stepped too quickly, or if the motor’s load or the acceleration of
the stepping sequence is too high, the stepper will be unable to keep up and will simply
vibrate. Similarly, if a stepper is moving at a high speed and the stepping sequence stops
suddenly, inertia may cause the stepper to continue to rotate. Once either of these events
occurs, it is impossible to know the angle of the rotor without an external sensing device, like
an encoder. The speed at which the motor can be stepped reliably decreases as the torque it
must provide increases. To ensure that the stepping sequence is followed, particularly in the
presence of a significant load, it is a good idea to ramp up the stepping frequency at the
beginning of a motion and ramp down the frequency at the end, which limits the torque
required to perform the motion.

To save power when no motion is required, the coils can be turned off, provided the detent
torque is sufficient to prevent any unwanted motion.

Steppers are generally used for precise position control of known loads, such as printer heads,
without the need for feedback control. If the load is well known, and if velocity and
acceleration limits are not exceeded, you can be certain of the stepper’s position, within a tight
tolerance, based solely on your commanded stepping sequence.

29.4.1 Stepper Motor Coil Configurations

Stepper motors come in two types of coil configurations, bipolar and unipolar (Figure 29.7).
With bipolar stepper motors, current can flow in either direction (hence bipolar) through each
coil. With unipolar stepper motors, each coil is broken into two subcoils, and current typically
only flows one direction (hence unipolar) through each subcoil.

Bipolar stepper motor

A bipolar stepper motor has four external wires to connect: one at each end of coil 1 and one
at each end of coil 2. Let us call the two ends of coil 1 1A and 1B. To switch coil 1’s current,

Unipolar stepperBipolar stepper

1A

1B

2A

2B

1A

1B

1C

2A

2B

2C

Figure 29.7
(Left) A bipolar stepper motor has four connections to the two coils. (Right) A unipolar stepper

motor has six connections to the two coils, or five if 1C and 2C are combined.
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we apply V and GND to 1A and 1B, respectively, then switch to GND and V at 1A and 1B,
respectively. A bipolar stepper motor can be driven using two H-bridges, treating each coil
separately as a DC motor that is driven either full forward or full backward for full stepping.
Many H-bridge chips, like the DRV8835 (Chapter 27.1.1), come with two H-bridges.

There are also microstepping stepper motor drivers, such as the Texas Instruments DRV8825.
The DRV8825 has two H-bridges, and each H-bridge has two wires (AOUT and BOUT)
connected to the two ends of one of the stepper’s coils. The DRV8825 has a DIR digital input,
which specifies whether the motor steps clockwise or counterclockwise, and a STEP digital
input. On a rising edge of STEP, the motor moves to the next position as indicated by DIR.
There are also three digital inputs, MODE0-MODE2, that determine whether the next position
is at a full step, 1/2 step, 1/4 step, 1/8 step, 1/16 step, or 1/32 step. To achieve microstepping,
the coils are partially energized, using PWM, to a fixed percentage of the full current. To
ensure that holding torque is approximately the same at every position of the motor, when
both coils are energized equally, each coil is only energized to 71% full current; when one coil
is at 0%, the other is energized to 100% full current.

If you are using an unknown bipolar stepper motor, you can determine which wires are
connected to which coil using a multimeter in resistance-testing mode.

Unipolar stepper motor

A unipolar stepper motor typically has six external wires to connect, three for each coil. For
coil 1, for example, the wires 1A and 1B are at either end of coil 1, as before, and the
connection 1C is a “center tap.” This center tap is commonly connected to the voltage V , and
we switch current through the coil by alternating between grounding 1A while leaving 1B
floating, and grounding 1B while leaving 1A floating.

Five-wire unipolar stepper motors have a single center tap that is common to both coils.

One method for driving a unipolar stepper motor is to ignore the center taps, treating it as a
bipolar stepper, and use one H-bridge for each coil.

If you are using an unknown unipolar stepper motor, you can determine which wires are
connected to which coil using a multimeter set to resistance-testing mode. The center taps are
at half the resistance of the full coil resistance.

29.5 Brushless DC Motors

A brushless DC motor (BLDC) is similar to a permanent magnet stepper motor, but with some
properties of a brushed DC motor. A BLDC has coils on the stator and permanent magnets on
the rotor, like a permanent magnet stepper motor. Like a brushed DC motor, the coils are
driven using PWM to H-bridges, and the coils are commutated as the rotor rotates. Unlike a
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Figure 29.8
(a) A simple three-phase BLDC motor with two rotor poles and six stator poles. Current flowing

from B to A (current path 1) creates N magnetic poles on the coils α and β and S magnetic poles on
the coils α and β, driving the rotor counterclockwise. (b) The electrical wiring of the BLDC in (a),

and the six possible current paths. This wiring is known as a “wye” configuration, since it looks
like a Y. (c) Some BLDCs have a delta wiring configuration, which we do not consider further in

this chapter.

brushed DC motor, however, the commutation of the stator coils is performed electronically;
there are no brushes.

BLDCs are often used as replacements for brushed DC motors, and they are popular in
applications like computer fans and quadcopters. Advantages of BLDCs over brushed motors
include:

• longer lifetime and higher speeds since there is no brush friction and wear;
• no particles due to wearing brushes;
• less electrical noise, since there are no abrupt brush-commutation switching events; and
• higher continuous current, and therefore continuous torque, because the coils are attached

to the stator which serves as a heat sink to cool the coils.

A disadvantage of BLDCs is the more complex drive circuitry required.

Figure 29.8(a) illustrates the basic operation of a three-phase BLDC, where a phase is one of
the three inputs, A, B, or C. The permanent magnet rotor has two poles. The stator has six
poles, wired electrically as shown in Figure 29.8(b). Current is flowing from B to A, indicated
as current path 1 in Figure 29.8(b). The current from B to b creates an S pole at coil β, as seen
by the permanent magnet, while the current from b to com creates an N pole at β on the
opposite side of the stator. The current continues from com to a, creating another S pole at α
and from a to A, creating an N pole at α on the opposite side of the stator. The net result is that
the permanent magnet experiences a torque to rotate it counterclockwise. In fact, as long as the
N pole of the permanent magnet is in the angular region shaded gray, the current should either
flow from B to A (current path 1) to rotate the rotor counterclockwise, or from A to B (current
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path 4) to rotate the rotor clockwise. No current should flow through the C coils, as current
through these coils simply wastes power while creating little or zero torque on the rotor.

If the rotor exits the gray shaded region in the clockwise direction, then A should float, as the
coils α and α cannot create much torque on the rotor, and current should flow between B and
C (current path 3 or 6) to generate torque. If the rotor exits the gray shaded region in the
counterclockwise direction, then B should be left floating while current should flow between
A and C (current path 2 or 5).

Thus the coils are commutated much like they are for a brushed DC motor. Every sixty
degrees of rotation of the rotor, the energized coils change. During a full counterclockwise
revolution of the rotor, starting from the configuration shown in Figure 29.8(a), the current
flows from B to A (current path 1), C to A (path 2), C to B (path 3), A to B (path 4), A to C
(path 5), and B to C (path 6) before repeating. In other words, the sequence is 1-2-3-4-5-6.
During a clockwise revolution, the sequence goes 4-3-2-1-6-5 before repeating. A full
commutation cycle, from current path 1 to current path 6, is called an electrical cycle or
electrical revolution. For the two-pole-rotor BLDC, one mechanical revolution corresponds to
one electrical revolution.

A BLDC rotor can have more than two magnetic poles; BLDCs with four and eight poles are
common, for example. For every pair of rotor poles, there is one electrical revolution per
mechanical revolution. Thus there is one electrical revolution per mechanical revolution for a
two-pole (one pair) rotor, two electrical revolutions per mechanical revolution for a four-pole
(two pair) rotor (twelve different commutation periods, or 30 mechanical degrees between coil
changes) and four electrical revolutions (15 mechanical degrees between coil changes) for an
eight-pole (four pair) rotor.

To know when to switch which coils are energized, position feedback is required. BLDCs are
typically equipped with three digital Hall effect sensors that sense the position in an electrical
revolution, and therefore which of A, B, and C should be left floating while the other two are
powered.

Let us say that the Hall effect sensors indicate that phase C should be left floating. Driving A
and B is exactly the same as driving the two terminals of a brushed DC motor. An H-bridge
and PWM is used to create variable, bidirectional voltage across the terminals. When the Hall
sensor state switches, you simply switch the terminal left floating and drive the other two
terminals in the same way. Flyback diodes provide a path for current through the newly
inactivated coil to begin to dissipate. We will return shortly to details of interfacing a BLDC
with a PIC32.

An example BLDC is the Pittman 24 V ELCOM SL 4443S013. This motor is a three-phase,
four-rotor-pole wye-style BLDC with six stator poles (Figure 29.9). Because it has four rotor
poles, there are two electrical revolutions per mechanical revolution, i.e., 30 mechanical
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Figure 29.9
Left to right: the Pittman ELCOM SL 4443S013, with its three motor connections A, B, and C and
its five Hall sensor wires (three Hall sensor outputs and two wires for power (5 V) and ground); the
three-phase, six-pole stator; and the rotor with four poles created by bar magnets along the axis of

the shaft.

degrees between commutation changes. This is illustrated in the motor’s data sheet, the
relevant section of which is reproduced in Figure 29.10. The three Hall sensor outputs are
concatenated to make a three-bit number S1S2S3, and the six electrical steps are represented
by the Hall sensor readings 100, 110, 010, 011, 001, and 101. These correspond to the current
paths 1-6 from Figure 29.8(b), respectively, when the motor rotates counterclockwise. To
reverse the direction, at each sensor state you swap which phase is high and which is grounded.

The coil resistance of the 24 V ELCOM SL 4443S013 is 0.89 �, indicating a stall current of
24 V/0.89 �= 27 A. The torque constant is 0.039 Nm/A, indicating a stall torque of
0.039 Nm/A × 27 A= 1.05 Nm. The maximum continuous torque is 0.135 Nm/A and the
terminal inductance is 0.19 mH.

29.5.1 Interfacing the PIC32 to a BLDC

While it is possible to drive a BLDC with standard H-bridge chips, it is easier to use an IC
designed specifically to drive BLDCs, such as the STMicroelectronics L6234 three-phase
motor driver. The L6234 has three half H-bridges which are connected to the three-phase
motor as shown in Figure 29.11. One of the three half H-bridges always has both switches
open, leaving its motor terminal floating. Typically one of the other half H-bridges holds its
output low, while the last half H-bridge is driven by PWM that alternates its output between Vs
and GND. Each half H-bridge has two flyback diodes to provide a current path for an
energized coil that is suddenly left floating.

The L6234 allows a supply voltage Vs between 7 and 52 V, can handle up to 5 A peak current,
and allows PWM frequencies up to 150 kHz. Each of the three half H-bridge outputs, OUTx,
has two associated digital inputs: ENx and INx. If ENx is low, OUTx is floating (both
switches in the half H-bridge are off/open). If ENx is high and INx is low, the lower switch is
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Figure 29.10
Bottom: The motor inputs as a function of the mechanical angle of the rotor. In regions shaded
gray, the corresponding input is left floating at those rotor angles while the other two inputs are

powered. For example, between 0 and 30 degrees, input B is powered by +Vs, A is grounded, and C
is left floating. The voltages shown here are to drive the motor counterclockwise at maximum speed;

to drive the motor clockwise, the voltages should be reversed (e.g., between 0 and 30 degrees, A
should be +Vs and B should be grounded). Instead of using the maximum voltage Vs at all times,

PWM can be used to achieve variable speeds. Top: The digital Hall sensor readings as a function of
electrical angle. Note there are two electrical revolutions per mechanical revolution. The steps 1-6

correspond to the counterclockwise-driving current paths in Figure 29.8.

closed, pulling OUTx close to GND. If ENx is high and INx is high, the upper switch is
closed, pulling OUTx close to Vs. For other details on the operation of the L6234, consult the
data sheet and associated application notes.
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Connecting the L6234 three-phase motor driver to a BLDC.
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Figure 29.12
Interfacing a BLDC with Hall sensors to a PIC32 using an L6234.

Figure 29.12 illustrates a circuit using the L6234 to interface the PIC32 with the Pittman
ELCOM SL 4443S013. We choose Vs = 9 V. While this can create a stall current of
9 V/0.89 A = 10 A, beyond the rated peak current of the L6234, this 5 A rating applies to
supply voltages up to 52 V. In practice we have not encountered an issue with stall currents at
9 V, although we do not suggest stalling the motor for long periods of time.

29.5.2 A BLDC Library

The bldc.{c,h} library implements functions to handle commutation based on the sensor
state. It is written for the L6234 circuit shown in Figure 29.12. The bldc library uses three
output compare (PWM) modules, OC1 (D0), OC2 (D1), and OC3 (D2), and three digital
outputs, E0, E1, and E2. The PWMs connect to the INx inputs for the three phases, and the
digital outputs connect to the ENx inputs for the three phases.

The function bldc_get_pwm prompts the user for a signed PWM duty cycle percentage. The
function bldc_commutate accepts a three-bit Hall sensor reading, as in Figure 29.10, as well as
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the signed PWM duty cycle percentage, and determines which of the three motor phases
should be floating, which should be grounded, and which should be PWMed between Vs and
GND. This function offloads the commutation details from user programs that use the bldc

library.

Code Sample 29.1 bldc.h. BLDC Library Header.

#ifndef COMMUTATION_H__
#define COMMUTATION_H__

// Set up three PWMs and three digital outputs to control a BLDC via
// the STM L6234. The three PWM channels (OC1 = D0, OC2 = D1, OC3 = D2) control the
// INx pins for phases A, B, and C, respectively. The digital outputs
// E0, E1, and E2 control the ENx pins for phases A, B, and C, respectively.
// The PWM uses timer 2.
void bldc_setup(void);

// Perform commutation, given the PWM percentage and the current sensor state.
void bldc_commutate(int pwm, unsigned int state);

// Prompt the user for a signed PWM percentage.
int bldc_get_pwm(void);

#endif

Code Sample 29.2 bldc.c. BLDC Library C Implementation.

#include "NU32.h"

void bldc_setup() {
TRISECLR = 0x7; // E0, E1, and E2 are outputs

// Set up timer 2 to use as the PWM clock source.
T2CONbits.TCKPS = 1; // Timer2 prescaler N=2 (1:2)
PR2 = 1999; // period = (PR2+1) * N * 12.5 ns = 50 us, 20 kHz

// Set up OC1, OC2, and OC3 for PWM mode; use defaults otherwise.
OC1CONbits.OCM = 0b110; // PWM mode without fault pin; other OC1CON bits are defaults
OC2CONbits.OCM = 0b110;
OC3CONbits.OCM = 0b110;

T2CONbits.ON = 1; // turn on Timer2
OC1CONbits.ON = 1; // turn on OC1
OC2CONbits.ON = 1; // turn on OC2
OC3CONbits.ON = 1; // turn on OC3

}

// A convenient new type to use the mnemonic names PHASE_A, etc.
// PHASE_NONE is not needed, but there for potential error handling.

typedef enum {PHASE_A = 0, PHASE_B = 1, PHASE_C = 2, PHASE_NONE = 3} phase;

// Performs the actual commutation: one phase is PWMed, one is grounded, the third floats.
// The sign of the PWM determines which phase is PWMed and which is low, so the motor can
// spin in either direction.

bldc.h
bldc.c
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static void phases_set(int pwm, phase p1, phase p2) {

// an array of the addresses of the PWM duty cycle-controlling SFRs
static volatile unsigned int * ocr[] = {&OC1RS, &OC2RS, &OC3RS};

// If p1 and p2 are the energized phases, then floating[p1][p2] gives
// the floating phase. Note p1 should not equal p2 (that would be an error), so
// the diagonal entries in the 2d matrix are the bogus PHASE_NONE.
static phase floating[3][3] = {{PHASE_NONE, PHASE_C, PHASE_B},

{PHASE_C, PHASE_NONE, PHASE_A},
{PHASE_B, PHASE_A, PHASE_NONE}};

// elow_bits[pfloat] takes the floating phase pfloat (e.g., pfloat could be PHASE_A)
// and returns a 3-bit value with a zero in the column corresponding to the
// floating phase (0th column = A, 1st column = B, 2nd column = C).
static int elow_bits[3] = {0b110, 0b101, 0b011};

phase pfloat = floating[p1][p2]; // the floating phase
phase phigh, plow; // phigh is the PWMed phase, plow is the grounded phase
int apwm; // magnitude of the pwm count

// choose the appropriate direction
if(pwm > 0) {
phigh = p1;
plow = p2;
apwm = pwm;

} else {
phigh = p2;
plow = p1;
apwm = -pwm;

}
// Pin E0 controls enable for phase A; E1 for B; E2 for C.
// The pfloat phase should have its pin be 0; other pins should be 1.
LATE = (LATE & ˜0x7) | elow_bits[pfloat];

// set the PWM’s appropriately by setting the OCxRS SFRs
*ocr[pfloat] = 0; // floating pin has 0 duty cycle
*ocr[plow] = 0; // low will always be low, 0 duty cycle
*ocr[phigh] = apwm; // the high phase gets the actual duty cycle

}

// Given the Hall sensor state, use the mapping between sensor readings and
// energized phases given in the Pittman ELCOM motor data sheet to determine the
// correct phases to PWM and GND and the phase to leave floating.

void bldc_commutate(int pwm, unsigned int state) {
pwm = ((int)PR2 * pwm)/100; // convert pwm to ticks
switch(state) {
case 0b100:

phases_set(pwm,PHASE_B, PHASE_A); // if pwm > 0, phase A = GND and B is PWMed
break; // if pwm < 0, phase B = GND and A is PWMed

case 0b110:
phases_set(pwm,PHASE_C, PHASE_A);
break;

case 0b010:
phases_set(pwm, PHASE_C, PHASE_B);
break;

case 0b011:
phases_set(pwm, PHASE_A, PHASE_B);
break;

case 0b001:
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phases_set(pwm,PHASE_A,PHASE_C);
break;

case 0b101:
phases_set(pwm,PHASE_B, PHASE_C);
break;

default:
NU32_WriteUART3("ERROR: Read the state incorrectly!\r\n"); // ERROR!

}
}

// Get the signed PWM duty cycle from the user.

int bldc_get_pwm() {
char msg[100];
int newpwm;
NU32_WriteUART3("Enter signed PWM duty cycle (-100 to 100): ");
NU32_ReadUART3(msg, sizeof(msg));
NU32_WriteUART3(msg);
NU32_WriteUART3("\r\n");
sscanf(msg,"%d", &newpwm);
return newpwm;

}

29.5.3 Commutation Using Hall Sensor Feedback

In Code Sample 29.3 closed_loop.c, which uses the bldc library, the user is prompted for a
signed PWM duty cycle percentage (an integer in the range −100 to 100). Three input capture
modules (IC1 to IC3, corresponding to digital input pins D8 to D10) are used to detect
changes in the Hall sensor state, as shown in Figure 29.12. After receiving a PWM value, the
main function initiates a commutation, causing the proper coils to be energized and the proper
coil to float, based on the Hall effect sensor input. When one of the Hall sensors changes
value, the associated input capture ISR is invoked. The ISR reads the three-bit Hall sensor
state and calls bldc_commutate from the bldc library to choose which motor phase gets the
PWM input, which motor phase is grounded, and which motor phase is left floating.
Notice that PORTD (input capture) bits 10, 9, and 8, written D10D9D8, directly correspond to
the Hall sensor code S1S2S3 from the motor’s data sheet, depicted in Figure 29.10.

Using input capture modules allows the possibility for velocity estimation (see Exercise 5).
Since closed_loop.c, below, does not implement velocity estimation, it could have used
change notification instead of input capture.

Code Sample 29.3 closed_loop.c. Using the Hall Effect Sensors to Implement
Brushless Commutation. The User Specifies the PWM Level.

#include "NU32.h" // constants, funcs for startup and UART
#include "bldc.h"
// Using Hall sensor feedback to commutate a BLDC.
// Pins E0, E1, E2 correspond to the connected state of
// phase A, B, C. When low, the respective phase is floating
// and when high, the voltage on the phase is determined by

closed_loop.c
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// the value of pins D0 (OC1), D1 (OC2), and D2 (OC3), respectively.
//
// Pins IC1 (RD8), IC2 (RD9), and IC3 (RD10) read the Hall effect sensor output
// and provide velocity feedback using the input capture peripheral.
// When one of the Hall sensor values changes, an interrupt is generated
// by the input capture, and a call to the bldc library updates the
// commutation.

// read the hall effect sensor state

inline unsigned int state() {
return (PORTD & 0x700) >> 8;

}

static volatile int pwm = 0; // current PWM percentage

void __ISR(_INPUT_CAPTURE_1_VECTOR,IPL6SRS) commutation_interrupt1(void) {
IC1BUF; // clear the input capture buffer
bldc_commutate(pwm,state()); // update the commutation
IFS0bits.IC1IF = 0; // clear the interrupt flag

}

void __ISR(_INPUT_CAPTURE_2_VECTOR,IPL6SRS) commutation_interrupt2(void) {
IC2BUF; // clear the input capture buffer
bldc_commutate(pwm,state()); // update the commutation
IFS0bits.IC2IF = 0; // clear the interrupt flag

}

void __ISR(_INPUT_CAPTURE_3_VECTOR,IPL6SRS) commutation_interrupt3(void) {
IC3BUF; // clear the input capture buffer
bldc_commutate(pwm,state()); // update the commutation
IFS0bits.IC3IF = 0; // clear the interrupt flag

}

int main(void) {
NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
TRISECLR = 0x7; // E0, E1, and E2 are outputs

bldc_setup(); // initialize the bldc

// set up input capture to generate interrupts on Hall sensor changes
IC1CONbits.ICTMR = 1; // use timer 2
IC1CONbits.ICM = 1; // interrupt on every rising or falling edge
IFS0bits.IC1IF = 0; // enable interrupt for IC1
IPC1bits.IC1IP = 6;
IEC0bits.IC1IE = 1;

IC2CONbits.ICTMR = 1; // use timer 2
IC2CONbits.ICM = 1; // interrupt on every rising or falling edge
IC2CONbits.ON = 1; // enable interrupt for IC2
IFS0bits.IC2IF = 0;
IPC2bits.IC2IP = 6;
IEC0bits.IC2IE = 1;

IC3CONbits.ICTMR = 1; // use timer 2
IC3CONbits.ICM = 1; // interrupt on every rising or falling edge
IFS0bits.IC3IF = 0; // enable interrupt for IC3
IPC3bits.IC3IP = 6;
IEC0bits.IC3IE = 1;
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IC1CONbits.ON = 1; // start the input capture modules
IC2CONbits.ON = 1;
IC3CONbits.ON = 1;

while(1) {
int newpwm = bldc_get_pwm(); // prompt user for PWM duty cycle
__builtin_disable_interrupts();
pwm = newpwm;
__builtin_enable_interrupts();
bldc_commutate(pwm, state()); // ground, PWM, and float the right phases

}
}

For proper commutation, it is important to handle Hall sensor changes in a timely manner. If
you would like to avoid using computation time for your own Hall-sensor-based commutation,
you can buy an external chip, like the Texas Instruments UC3625N, which uses a PWM and
direction input from your the PIC32 and the three Hall sensor readings to drive three external
half H-bridges connected to the motor’s phases.

29.5.4 Synchronous Driving Using Open-Loop Control

Many inexpensive brushless motors do not provide Hall sensor feedback.3 These motors have
only three wires, for the phases A, B, and C. Such motors are often used in quadcopters, for
example. It is possible to drive these motors to achieve a desired angular velocity by
commutating open-loop (no Hall sensor feedback).

To understand how a BLDC motor can run without sensing, consider that if we kept a constant
voltage at A, ground at B, and left C floating, the rotor might first experience a positive torque,
accelerating in the positive direction until it reaches the point where the magnetic poles at
α,α,β, and β provide zero torque. Then, after overshooting the zero torque position, it would
experience a negative torque, decelerating it. With damping, the rotor would eventually rest at
a position where it experiences zero torque, much like the operation of a stepper motor.

The eventual negative torque that comes from not commutating can be viewed as a type of
built-in stabilizing feedback. In the extreme stepper-like case above, the feedback causes the
rotor to stop. Instead, consider what happens when the commutation cycles through the steps
1-6 at a fixed frequency. If the frequency is slightly too low for the voltage (or PWM level)
used, the rotor may experience deceleration before the next commutation step occurs and it
begins to accelerate it again. Although somewhat inefficient, this deceleration acts as negative
feedback, causing the rotor to slow its travel around its mechanical revolution to better match
the speed of the electrical revolution imposed by the commutation.

3 Hobby BLDCs are often classified as inrunners or outrunners. An inrunner has its rotor inside the stator coils, as
discussed so far in this chapter. An outrunner has the stator coils on the outer circumference of the stator cylinder
and the rotor permanent magnet poles are around an even larger circumference, outside the stator.
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In summary, if the commutation frequency is neither too fast nor too slow for the given PWM
level, the rotor will synchronize with the commutation due to the built-in negative feedback. If
the commutation frequency is too fast, then, much like a stepper, the rotor will fall behind,
become desynchronized, and likely end up vibrating. Similarly, if the acceleration or
deceleration of the commutation is too high, the inertia of the BLDC and its load will prevent
the rotor from following the commutation. To achieve open-loop control of a BLDC from rest,
to a high velocity, and back to rest, the acceleration, deceleration, and maximum velocity must
be limited.

Open-loop driving of a BLDC only works when the loads on the BLDC are relatively well
known. If a large torque is suddenly applied to the BLDC rotor, the rotor is likely to
desynchronize with the commutation.

Code Sample 29.4 open_loop.c demonstrates open-loop control of the unloaded Pittman
ELCOM SL 4443S013 using the 9 V motor supply in Figure 29.12. The user specifies the
desired PWM duty cycle as a signed percentage (−100 to 100). Using information from the
motor’s data sheet, the relationship between the average voltage (and therefore PWM duty
cycle) and the unloaded motor’s speed is derived. Knowing the motor speed corresponding to
the user’s requested PWM, the duration of each commutation segment is calculated. For
example, since there are 12 commutation phases per mechanical revolution, at 500RPM, there
are 500× 12 = 6000 commutation phases per minute, or 100 commutation phases per second,
so each commutation phase lasts 1 s/100= 10 ms.

The duration of each commutation phase is counted in increments of 50 µs by using the ISR
of Timer2, which is generating the 20 kHz (= 1/50 µs) PWM. When the duration of the
commutation phase is exceeded, bldc_commutate (in the bldc library, above) is called with the
virtual Hall sensor state of the next commutation segment.

Finally, when the user asks to change the PWM duty cycle, the code ramps up or ramps down
the PWM in increments of 1%, which yields an acceleration rate found empirically to prevent
desynchronization.

Code Sample 29.4 open_loop.c. Driving a BLDC Without Hall Effect Sensors.

#include "NU32.h" // constants, funcs for startup and UART
#include "bldc.h"

// Open-loop control of the Pittman ELCOM SL 4443S013 BLDC operating at no load and 9 V.
// Pins E0, E1, E2 correspond to the connected state of
// phase A, B, C. When low, the respective phase is floating,
// and when high, the voltage on the phase is determined by
// the value of pins D0 (OC1), D1 (OC2), and D2 (OC3), respectively.

// Some values below have been tuned experimentally for the Pittman motor.

#define MAX_RPM 1800 // the max speed of the motor (no load speed), in RPM, for 9 V
#define MIN_PWM 3 // the min PWM required to overcome friction, as a percentage

open_loop.c
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#define SLOPE (MAX_RPM/(100 - MIN_PWM)) // slope of the RPM vs PWM curve
#define OFFSET (-SLOPE*MIN_PWM) // RPM where the RPM vs PWM curve intersects the RPM axis

// NOTE: RPM = SLOPE * PWM + OFFSET
#define TICKS_MIN 1200000 // number of 20 kHz (50 us) timer ticks in a minute
#define EMREV 2 // number of electrical revs per mechanical revs (erev/mrev)
#define PHASE_REV 6 // the number of phases per electrical revolution (phase/erev)

// convert minutes/mechanical revolution into ticks/phase (divide TP_PER_MPR by the rpm)
#define TP_PER_MPR (TICKS_MIN/(PHASE_REV *EMREV))

#define ACCEL_PERIOD 200000 // Time in 40 MHz ticks to wait before accelerating to next
// PWM level (i.e., the higher this value, the slower
// the acceleration). When doing open-loop control, you
// must accel/decel slowly enough, otherwise you lose sync.
// The PWM is adjusted by 1 percent in each accel period,
// but the deadband where the motor does not move is skipped.

static volatile int pwm = 0; // current PWM as a percentage
static volatile int period = 0; // commutation period, in 50 us (1/20 kHz) ticks

void __ISR(_TIMER_2_VECTOR, IPL6SRS) timer2_ISR(void) { // entered every 50 us (1/20 kHz)
// the states, in the order of rotation through the phases (what we’d expect to read)
static unsigned int state_table[] = {0b101,0b001,0b011,0b010,0b110,0b100};

static int phase = 0;
static int count = 0; // used to commutate when necessary
if(count >= period) {

count = 0;
if(pwm > MIN_PWM) {

++phase;
} else if (pwm < -MIN_PWM){

--phase;
}
if(phase == 6) {

phase = 0;
} else if (phase == -1) {

phase = 5;
}
bldc_commutate(pwm, state_table[phase]);

} else {
++count;

}
IFS0bits.T2IF = 0;

}

// return true if the PWM percentage is in the deadband region
int in_deadband(int pwm) {
return -MIN_PWM <= pwm && pwm <= MIN_PWM;

}

int main(void) {
char msg[100];

NU32_Startup(); // cache on, interrupts on, LED/button init, UART init
bldc_setup();

// Set up Timer2 interrupts (the bldc already uses Timer2 for the PWM).
// We just reuse it for our timer here.
IPC2bits.T2IP = 6;
IFS0bits.T2IF = 0;
IEC0bits.T2IE = 1;
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while(1) {
int newpwm = bldc_get_pwm(); // get new PWM from user
if(in_deadband(newpwm)) { // if PWM is in deadband where motor doesn’t move, pwm=0

__builtin_disable_interrupts();
period = 0;
pwm = 0;
__builtin_enable_interrupts();

} else {
// newpwm is not in the deadband
int curr_pwm = pwm;
_CP0_SET_COUNT(0);

while(curr_pwm != newpwm) { // ramp the PWM up or down, respecting accel limits
int comm_period;

if(curr_pwm > newpwm) {
--curr_pwm;
// skip the deadband
if(in_deadband(curr_pwm)) {
curr_pwm = - MIN_PWM - 1;

}
} else if(curr_pwm < newpwm) {

++curr_pwm;
if(in_deadband(curr_pwm)) {
curr_pwm = MIN_PWM + 1;

}
}
// divide T_PER_MPR by the RPM to get the commutation period
// We compute the RPM based on the RPM vs pwm curve RPM = SLOPE pwm + OFFSET
comm_period = (TP_PER_MPR/(SLOPE*abs(curr_pwm)+ OFFSET));
while(_CP0_GET_COUNT() < ACCEL_PERIOD) { ; } // delay until accel period over
__builtin_disable_interrupts();
period = comm_period;
pwm = curr_pwm;
__builtin_enable_interrupts();
_CP0_SET_COUNT(0); // we just moved to a new pwm, reset the acceleration period

}
sprintf(msg,"PWM Percent: %d, PERIOD: %d\r\n",pwm,period);
NU32_WriteUART3(msg);

}
}

}

Another method for estimating the angle of a BLDC without Hall sensors involves monitoring
the back-emf of the windings, but we do not pursue this method in this chapter.

29.6 Linear Brushless Motors

Linear brushless motors are “unrolled” BLDCs. Often the track consists of a number of
permanent magnetic poles while the moving body consists of the energized coils. Hall effect
sensors are often used to determine the current electrical step.
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29.7 Chapter Summary

• In addition to brushed DC motors, other electric actuators include solenoids, speakers and
voice coil actuators, RC servos, stepper motors, and brushless DC motors.

• An RC servo incorporates a DC motor, gearhead, angle sensor, and feedback controller in
a single package. A PWM control signal is used to specify the desired angle of the RC
servo output.

• A stepper motor rotates in fixed increments in response to digital pulses. A stepper is
typically used in open-loop applications.

• For a brushless DC motor, commutation is performed electronically based on the angle of
the motor indicated by three digital Hall sensors.

29.8 Exercises
1. Obtain a solenoid and its data sheet. Confirm the coil’s resistance using a multimeter.

Then design a circuit to power the solenoid and write a simple PIC32 program that
periodically activates the solenoid.

2. Get a speaker, preferably a small woofer, and measure the coil resistance. Wire an
H-bridge circuit to drive the speaker, ensuring that the maximum current through the
speaker does not exceed the H-bridge’s capability. Write a program for the PIC32 that
creates a 100 Hz tone through the speaker by creating a 100 Hz sinusoidal average
H-bridge output voltage, centered at 0 V. To do this, you can use 40 kHz or higher PWM,
above the audible range, to drive the speaker. Your program should use an ISR at
20-40 kHz to vary the duty cycle of the PWM. If you use a 20 kHz ISR, this means that
the duty cycle goes through a full sinusoidal waveform after 20 kHz/100 Hz = 200 times
through the ISR.

3. Write a program for the PIC32 that uses the NU32 library to allow the user to control an
RC servo from a computer interface. The user types an angle for the output shaft of the
RC servo, and the RC servo goes there.

4. Wire a stepper motor to the PIC32 using a dual H-bridge chip. (a) Write a program that
uses the NU32 library to allow you to use your computer to specify a desired motion of
the motor, in degrees. The program then executes the motion. (b) Let the user also specify
the time of the motion. (c) What is the maximum speed, in degrees per second, that the
motor can follow, according to your experiments? How would you alter your program to
support acceleration and deceleration, to allow speeding up to higher speeds than you can
obtain instantaneously? If your program does not use interrupts, how might you alter it to
use interrupts to drive the motor, so the CPU is available for other tasks between ISRs?

5. Modify Code Sample 29.3 (closed_loop.c) to calculate the velocity of the motor in the
ISRs. This is possible because the code uses input capture modules to detect Hall sensor
state changes, and input capture can be used to measure the time between Hall state
changes. Periodically write the velocity to the user’s screen.
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6. Modify an inexpensive three-phase BLDC without Hall sensor feedback to use an external
encoder to provide the feedback needed for closed-loop commutation. Demonstrate
closed-loop commutation, e.g., using closed_loop.c in this chapter.

7. Implement a motion feedback controller for a BLDC on top of the closed-loop
commutation.

8. Modify Code Sample 29.4 (open_loop.c) to prompt the user for a desired velocity, not a
desired PWM.
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APPENDIX A

A Crash Course in C

This appendix provides an introduction to C for readers with no C experience but some
experience in another programming language. It is not intended as a complete reference;
plenty of great C resources already exist and provide a more complete picture. This appendix
applies to C in general, not just C on the Microchip PIC32. We recommend that you start by
programming your computer so you can experiment with C without needing extra equipment
or complication.

A.1 Quick Start in C

To start with C, you need a computer, a text editor, and a C compiler. You use the text editor to
write your C program, a plain text file with a name ending with the extension .c (e.g.,
myprog.c). The C compiler converts this program into machine code that your computer can
execute. There are many free C compilers available; we recommend the gcc C compiler, which
is part of the GNU Compiler Collection (GCC, found at http://gcc.gnu.org). GCC is
available for Windows, Mac OS, and Linux. For Windows, you can download the GCC
collection in MinGW.1 If the installation asks you about what tools to install, make sure to
include the make tools. For Mac OS, you can download the full Xcode environment from the
Apple Developers website. This installation is multiple gigabytes; however, you can opt to
install only the “Command Line Tools for Xcode,” which is smaller and more than sufficient
for getting started with C (and for this appendix).

Many C installations come with an Integrated Development Environment (IDE) complete with
text editor, menus, and graphical tools to assist you with your programming projects. Every
IDE is different, and what we cover in this appendix does not require a sophisticated IDE. We
therefore use only command line tools, meaning that we initiate compilation and run the
program by typing at the command line. In Mac OS, the command line can be accessed from
the Terminal program. In Windows, you can access the command line by searching for cmd or
command prompt. Linux users should run a shell such as bash.

1 You are also welcome to use Visual C from Microsoft. The command line compile command will look a bit
different than what you see in this appendix.
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To use the command line, you must learn some command line instructions. The Mac operating
system is built on top of Unix, which is similar to Linux, so Mac/Unix/Linux use the same
syntax. Windows uses slightly different commands. See the table of a few useful commands
below. You can find more information on how to use these commands as well as others by
searching for command line commands in Unix, Linux, or Windows.

Function Mac/Unix/Linux Windows
Show current directory pwd cd
List directory contents ls dir

Make subdirectory newdir mkdir newdir mkdir newdir
Change to subdirectory newdir cd newdir cd newdir
Move “up” to parent directory cd .. cd ..

Copy file to filenew cp file filenew copy file filenew
Delete file file rm file del file

Delete directory dir rmdir dir rmdir dir
Help on using command cmd man cmd cmd /?

Following the long-established programming tradition, your first C program will simply print
“Hello world!” to the screen. Use a text editor to create the file HelloWorld.c:

#include <stdio.h>
int main(void) {

printf("Hello world!\n");
return 0;

}

Possible text editors include Notepad++ for Windows, TextWrangler for Mac OS, and Gedit
for Linux. You can also try vim or emacs, though they are not easy to get started with!
Whichever editor you use, you should save your file as plain text, not rich text or any other
formatted text.

To compile your program, navigate from the command line to the directory where the program
sits. Then, assuming your command prompt appears as >, type the following at the prompt:

> gcc HelloWorld.c -o HelloWorld

This command should create the executable file HelloWorld in the same directory. (The
argument after the -o output flag is the name of the executable file to be created from
HelloWorld.c.) Now, to execute the program, type
Windows: > HelloWorld

Linux/MacOS: > ./HelloWorld

For Linux/MacOS users, the “.” is shorthand for “current directory,” and the ./ tells your
computer to look in the current directory for HelloWorld. Windows implicitly searches the
current directory for executables, so you need not explicitly specify it.
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If you have succeeded in getting this far, your C installation works and you can proceed. If
not, you may need to get help from friends or the internet.

A.2 Overview

If you are familiar with a high-level language like MATLAB or Python, you may know about
loops, functions, and other programming constructs. You will see that although C’s syntax is
different, the same concepts translate to C. Rather than starting with basic loops, if statements,
and functions, we begin by focusing on important concepts that you must master in C but
which you probably have not dealt with in a language such as MATLAB or Python.

• Memory, addresses, and pointers. Variables are stored at particular addresses in
memory as bits (0’s and 1’s). In C, unlike in MATLAB or Python, it is often useful to
access a variable’s memory address. Special variables called pointers contain the address
of another variable and can be used to access the contents of that address. Although
powerful, pointers can also be dangerous; misusing them can cause all sorts of bugs,
which is why many higher-level languages forgo them completely.

• Data types. In MATLAB, for example, you can simply type a = 1; b = [1.2 3.1416];

c = [1 2; 3 4]; s = ’a string’. MATLAB determines that a is a scalar, b is a vector
with two elements, c is a 2× 2 matrix, and s is a string; automatically tracks the variable’s
type (e.g., a list of numbers for a vector or a list of characters for a string); and sets aside,
or allocates, memory to store them. In C, on the other hand, you must first define the
variable before you ever use it. To use a vector, for example, you must specify the number
and data type of its elements—integers or decimal numbers (floating point). The variable
definition tells the C compiler how much memory it needs to store the vector, the address
of each element, and how to interpret the bits of each element (as integers or floating point
numbers, for example).

• Compiling. MATLAB programs are typically interpreted: the commands are converted to
machine code and executed while the program is running. C programs, on the other hand,
are compiled, i.e., converted to machine-code in advance. This process consists of several
steps whose purpose is to turn your C program into machine-code before it ever runs. The
compiler can identify some errors and warn you about other questionable code. Compiled
code typically runs faster than interpreted code, since the translation to machine code is
done in advance.2

Each of these concepts is described in Section A.3 without going into detail on C syntax. In
Section A.4 we look at sample programs to introduce syntax, then offer more detailed
explanations.

2 The distinction between compiled and interpreted programs is narrowing: many interpreted languages are
actually just-in-time (JIT) compiled, that is program chunks are compiled in advance right before they are
needed.
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A.3 Important Concepts in C

We begin our discussion of C with this caveat:

C consists of an evolving set of standards for a programming language, and any specific C
installation is an “implementation” of C. While C standards require certain behavior from all
implementations, some details are implementation-dependent. For example, the number of
bytes used for some data types is non-standard. We sometimes ignore these details in favor of
clarity and succinctness. Platform- and compiler-specific results are from gcc 4.9.2 running on
an x86_64 compatible processor.

A.3.1 Data Types

Binary and hexadecimal

On a computer, programs and data are represented by sequences of 0’s and 1’s. A 0 or 1 may
be represented by two different voltages (low and high) held and controlled by a logic circuit,
for example. Each of these units of memory is called a bit.

A sequence of bits may be interpreted as a base-2 or binary number, just as a sequence of
digits in the range 0 to 9 is commonly treated as a base-10 or decimal number.3 In the decimal
numbering system, a multi-digit number like 793 is interpreted as 7 ∗ 102 + 9 ∗ 101 + 3 ∗ 100;
the rightmost column is the 100 (or 1’s) column, the next column to the left is the 101 (or 10’s)
column, the next column to the left is the 102 (or 100’s) column, and so on. Similarly, the
rightmost column of a binary number is the 20 column, the next column to the left is the 21

column, etc. Converting the binary number 00111011 to its decimal representation, we get

0 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = 32+ 16+ 8+ 2+ 1 = 59.

The leftmost digit in a multi-digit number is called the most significant digit, and the
rightmost digit, corresponding to the 1’s column, is called the least significant digit. For
binary representations, these are often called the most significant bit (msb) and least
significant bit (lsb), respectively.

We specify that a sequence of numbers is base-2 by writing it as 001110112 or 0b00111011,
where the b stands for “binary.”

To convert a base-10 number x to binary:

1. Initialize the binary result to all zeros and k to a large integer, such that 2k is known to be
larger than x.

3 Bit is a portmanteau of binary and digit.
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2. If 2k ≤ x, place a 1 in the 2k column of the binary number and set x to x− 2k.
3. If x = 0 or k = 0, we are finished. Else set k to k − 1 and go to line 2.

An alternative base-10 to binary conversion algorithm builds the binary number from the
rightmost to leftmost bit.

1. Divide x by 2.
2. The next digit (from right to left) is the remainder (so 1 if x is odd, 0 if x is even).
3. x= the quotient. (So if x were 5, the new x is 2, and if x were 190 the new x is 95).
4. Repeat process until x= 0.

Compared to base-10, base-2 has a closer connection to actual hardware. Binary can be
inconvenient for human reading and writing, however, due to the large number of digits.
Therefore we often group four binary digits together (taking values 0b0000 to 0b1111, or 0 to
15 in base-10) and represent them with a single character using the numbers 0 to 9 or the
letters A to F. This base-16 representation is called hexadecimal or hex for short:Thus we can

base-2 (binary) base-16 (hex) base-10 (decimal) base-2 (binary) base-16 (hex) base-10 (decimal)
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

write the eight-digit binary number 0b00111011, or 0011 1011, more succinctly in hex as 3B, or
3B16 or 0x3B to clarify that it is a hex number. The corresponding decimal number is
3 ∗ 161 + 11 ∗ 160 = 59.

Bits, bytes, and data types

Bits of memory are grouped together in groups of eight called bytes. A byte can be written in
binary or hexadecimal (e.g., 0b00111011 or 0x3B), and can represent values between 0 and
28 − 1 = 255. Sometimes the four bits represented by a single hex digit are referred to as a
nibble. (Get it?)

A word is a grouping of multiple bytes. The number of bytes in a word depends on the
processor, but four-byte words are common, as with the PIC32. A word 01001101 11111010

10000011 11000111 in binary can be written in hexadecimal as 0x4DFA83C7. The most
significant byte (MSB) is the leftmost byte, 0x4D in this case, and the least significant byte
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(LSB) is the rightmost byte 0xC7. The msb is the leftmost bit of the MSB, a 0 in this case, and
the lsb is the rightmost bit of the LSB, a 1 in this case.

A byte is the smallest unit of memory that has its own address. The address of the byte is a
number that represents the byte’s location in memory. Suppose your computer has 4 gigabytes
(GB), or 4 ×230 = 232 bytes, of RAM.4 Then to find the value stored in a particular byte, you
need at least 32 binary digits (8 hex digits or 4 bytes) to specify the address.

An example showing the first eight addresses in memory is given below. Here we show the
lowest address on the right, but we could have made the opposite choice.

    7           6           5           4           3           2           1           0        Address

11001101    00100111    01110001    01010111    01010011    00011110    10111011    01100010      Value
...

Assume that the byte at address 4 is part of the representation of a variable. Do these 0’s and
1’s represent an integer, or part of an integer? A number with a fractional component?
Something else?

The answer lies in the type of the variable at that address. In C, before you use a variable, you
must define it and its type, telling the compiler how many bytes to allocate for the variable (its
size) and how to interpret the bits.5

The most common data types come in two flavors: integers and floating point numbers
(numbers with a decimal point). Of the integers, the two most common types are char, often
used to represent keyboard characters, and int.6 Of the floating point numbers, the two most
common types are float and double. As we will see shortly, a char uses 1 byte and an
int usually uses 4, so two possible interpretations of the data held in the eight memory
addresses could be

    7           6           5           4           3           2           1           0        Address

11001101    00100111    01110001    01010111    01010011    00011110    10111011    01100010      Value

int char

...

4 In common usage, a kilobyte (KB) is 210 = 1024 bytes, a megabyte (MB) is 220 = 1, 048, 576 bytes, a gigabyte
is 230 = 1, 073, 741, 824 bytes, and a terabyte (TB) is 240 = 1, 099, 511, 627, 776 bytes. To remove confusion
with the common SI prefixes that use powers of 10 instead of powers of 2, these are sometimes referred to
instead as kibibyte, mebibyte, gibibyte, and tebibyte, where the “bi” refers to “binary.”

5 In C you can declare or define a variable. They use similar syntax, but a declaration simply gives the name and
the type of the variable, while a definition also allocates the memory to hold it. We avoid using the distinction for
now and just call everything a definition.

6 char is derived from the word “character.” People pronounce char variously as “car” (as in “driving the car”),
“care” (a shortening of “character”), and “char” (as in charcoal), and some just punt and say “character.”
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where byte 0 is used to represent a char and bytes 4-7 are used to represent an int, or

    7           6           5           4           3           2           1           0        Address

11001101    00100111    01110001    01010111    01010011    00011110    10111011    01100010      Value
...

char int

where bytes 0-3 are used to represent an int and byte 4 represents a char. Fortunately we do
not usually have to worry about how variables are packed into memory.

Below we describe the common data types. Although the number of bytes used for each type
is not the same for every processor, the numbers given are common on modern computers.
(Differences for the PIC32 are noted in Table A.1.) Example syntax for defining variables is
also given. Note that most C statements end with a semicolon.

char
Example definition:
char ch;

This syntax defines a variable named ch to be of type char. chars are the smallest data type,
using only one byte. They are often interpreted according to the “ASCII table” (pronounced
“ask-key”), the American Standard Code for Information Interchange, which maps the values
0 to 127 to letters, numbers, and other characters (Figure A.1). (The values 128 to 255 map to
an “extended” ASCII table.) For example, the values 48 to 57 map to the characters ’0’ to ’9’,
65 to 90 map to the uppercase letters ’A’ to ’Z’, and 97 to 122 map to the lowercase letters ’a’
to ’z’. The assignments

ch = ’a’;

and

ch = 97;

are equivalent, as C equates characters inside single quotation marks with their ASCII table
numerical value.

Depending on the C implementation, char may be treated by default as unsigned, i.e., taking
values from 0 to 255, or signed, taking values from −128 to 127. If you use the char to
represent a standard ASCII character, the distinction does not matter. If, however, you use the
char data type for integer math on small integers, you should use the specifier signed or
unsigned, as appropriate. For example, we could use the following definitions, where
everything after // is a comment:
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ASCII Table

0 NULL 16 DLE 32 space 48 0 64 @ 80 P 96 ‘ 112 p
1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 q
2 STX 18 DC2 34 " 50 2 66 B 82 R 98 b 114 r
3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 c 115 s
4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t
5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 e 117 u
6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 f 118 v
7 BELL 23 ETB 39 ’ 55 7 71 G 87 W 103 g 119 w
8 BACKSPACE 24 CAN 40 ( 56 8 72 H 88 X 104 h 120 x
9 TAB 25 EM 41 ) 57 9 73 I 89 Y 105 i 121 y

10 NEWLINE 26 SUB 42 * 58 : 74 J 90 Z 106 j 122 z
11 VT 27 ESC 43 + 59 ; 75 K 91 [ 107 k 123 {
12 FORMFEED 28 FS 44 , 60 < 76 L 92 \ 108 l 124 |
13 RETURN 29 GS 45 - 61 = 77 M 93 ] 109 m 125 }
14 SO 30 RS 46 . 62 > 78 N 94 ˆ 110 n 126 ˜
15 SI 31 US 47 / 63 ? 79 O 95 _ 111 o 127 DEL

Figure A.1
The 128 standard ASCII characters. The first 32 characters are non-printing characters and the

names of most of them are obscure. Values 128 to 255 (or −128 to −1) correspond to the extended
ASCII table.

unsigned char ch1; // ch1 can take values 0 to 255
signed char ch2; // ch2 can take values -128 to 127

int (also known as signed int or signed)
Example definition:
int i,j;
signed int k;
signed n;

ints typically use four bytes (32 bits) and take values from −(231) to 231 − 1 (approximately
±2 billion). In the example syntax, each of i, j, k, and n are defined to be the same data type.

We can use specifiers to get the following integer data types: unsigned int or simply
unsigned, a four-byte integer taking nonnegative values from 0 to 232 − 1; short int, short,
signed short, or signed short int, all meaning the same thing: a two-byte integer taking
values from −(215) to 215 − 1 (i.e., −32, 768 to 32, 767); unsigned short int or unsigned
short, a two-byte integer taking nonnegative values from 0 to 216 − 1 (i.e., 0 to 65, 535); long
int, long, signed long, or signed long int, often consisting of eight bytes and representing
values from −(263) to 263 − 1; and unsigned long int or unsigned long, an eight-byte integer
taking nonnegative values from 0 to 264 − 1. A long long int data type may also be
available.
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float
Example definition:
float x;

This syntax defines the variable x to be a four-byte “single-precision” floating point number.

double
Example definition:
double x;

This syntax defines the variable x to be an eight-byte “double-precision” floating point
number. The data type long double (quadruple precision) may also be available, using 16
bytes (128 bits). These types allow the representation of larger numbers, to more decimal
places, than single-precision floats.

The sizes of the data types, both on a typical x86_64 computer with gcc and on the PIC32, are
summarized in Table A.1. Note the differences; C lets the compiler determine these details.
The C99 standard introduces data types such as int32_t (32-bit signed integer) and unit8_t

(8-bit unsigned integer) which are guaranteed to be the specified size across platforms and
compilers.

Table A.1: Data type sizes on two different machines

Type # bytes on x86_64 # bytes on PIC32
char 1 1

short int 2 2
int 4 4

long int 8 4
long long int 8 8

float 4 4
double 8 4

long double 16 8

Using the data types

If your program requires floating point calculations, you can choose between float, double,
and long double data types. The advantages of smaller types are that they use less memory
and computations with them (e.g., multiplies, square roots, etc.) may be faster. The advantage
of the larger types is the greater precision in the representation (e.g., smaller roundoff error).

If your program needs integer calculations, you should use integer rather than floating point
data types due to the higher speed of integer math and the ability to represent a larger range of
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integers for the same number of bytes.7 You can decide whether to use signed or unsigned
chars, or {signed/unsigned} {short/long} ints. The considerations are memory usage,
possibly the time of the computations, and whether the type can represent a sufficient range of
integer values.8 For example, if you decide to use unsigned chars for integer math to save
memory, and you add two of them with values 100 and 240 and assign to a third unsigned

char, you will get a result of 84 due to integer overflow. This example is illustrated in the
program overflow.c in Section A.4.

Representations of data types

A simple representation for integers is the sign and magnitude representation. In this
representation, the msb represents the sign of the number (0 = positive, 1 = negative), and the
remaining bits represent the magnitude of the number. The sign and magnitude method
represents zero twice (positive and negative zero) and is not often used.

A more common representation for integers is called two’s complement. This method also
uses the msb as a sign bit, but it only has a single representation of zero. The two’s
complement representation of an 8-bit char is given below:

binary signed char, base-10 unsigned char, base-10
00000000 0 0
00000001 1 1
00000010 2 2
00000011 3 3

...
01111111 127 127
10000000 −128 128
10000001 −127 129

...
11111111 −1 255

As the binary representation is incremented, the two’s complement (signed) interpretation of
the binary number also increments, until it “wraps around” to the most negative value when
the msb becomes 1 and all other bits are 0. The signed value then resumes incrementing until

7 Just as a four-byte float can represent fractional values that a four-byte int cannot, a four-byte int can
represent more integers than a four-byte float can. See the type conversion example program typecast.c in
Section A.4 for an example.

8 Computations with smaller data types are not always faster than with larger data types. It depends on the
architecture.
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it reaches −1 when all bits are 1. To negate a number using two’s complement arithmetic,
invert all of the bits and add one. For example, 1 (0b00000001) becomes −1 (0b11111111).
What happens when you perform the negation procedure on zero?

Another representation choice is endianness. The little-endian representation of an int stores
the least significant byte at the lowest address (ADDRESS) and the most significant byte at
highest (ADDRESS+3) (remember, little-lowest-least), while the big-endian convention is the
opposite, storing the most significant byte at the lowest address (ADDRESS) and the least
significant byte at the highest address (ADDRESS+3).9 The convention used depends on the
processor. For definiteness in this appendix, we always assume little-endian representation,
which is used by x86_64 (most likely your computer’s architecture) and the PIC32.

floats, doubles, and long doubles are commonly represented in the IEEE 754 floating point
format

value = (−1)s × b× 2c, (A.1)

where one bit is used to represent the sign (s = 0 for positive, s = 1 for negative);
m = 23/52/112 bits are used to represent the significand b (also known as the mantissa) in the
range 1 to 2 − 2−m; and n = 8/11/15 bits are used to represent the exponent c in the range
−(2n−1) + 2 to 2n−1 − 1, where n and m depend on whether the type uses 4/8/16 bytes.
Certain exponent and significand combinations are reserved for representing special cases like
positive and negative infinity and “not a number” (NaN).

Specifically for a four-byte float, the 32 bits of the IEEE 754 representation are

s︸︷︷︸
sign bit

e7 e6 e5 e4 e3 e2 e1 e0︸ ︷︷ ︸
8 bits of exponent c

f23 f22 . . . f2 f1︸ ︷︷ ︸
23 bits of significand b

.

The exponent c in (A.1) is equal to e− 127, where e is the unsigned integer value of the eight
bits of e, ranging from 0 to 28 − 1 = 255. (The values e = 0 and e = 255 are reserved to
represent special cases, like ±infinity and “not a number.”) The significand b in (A.1) is
given by

b = 1 +
23∑

i=1

fi 2−i,

so b ranges from 1 to 2 − 2−23.

9 These phrases come from Gulliver’s Travels by Jonathan Swift, where Lilliputians fanatically divide themselves
according to which end of a soft-boiled egg they crack open.
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See Exercise 14 to experiment with two’s complement and IEEE 754 floating point
representations.

Rarely do you need to worry about the specific bit-level representation of the different data
types: endianness, two’s complement, IEEE 754, etc. You tell the compiler to store values and
retrieve values, and it handles implementing the representations.

A.3.2 Memory, Addresses, and Pointers

Consider the following C syntax:

int i;
int *ip;

These definitions may appear to define the variables i and *ip of type int; however, the
character * cannot be part of a variable name. The variable name is actually ip, and the special
character * means that ip is a pointer to something of type int. Pointers store the address of
another variable; in other words, they “point” to another variable. We often use the words
“address” and “pointer” interchangeably.

When the compiler sees the definition int i, it allocates four bytes of memory to hold the
integer i. When the compiler sees the definition int *ip, it creates the variable ip and
allocates to it whatever amount of memory is needed to hold an address, a platform-dependent
quantity.10 The compiler also remembers the data type that ip points to, int in this case, so
when you use ip in a context that requires a pointer to a different data type, the compiler may
generate a warning or an error. Technically, the type of ip is “pointer to type int.”

Important! Defining a pointer only allocates memory to hold the pointer. It does not allocate
memory for a pointee variable to be pointed at. Also, simply defining a pointer does not initialize
it to point to anything valid. Do not use pointers without explicitly initializing them!

When we want the address of a variable, we apply the address (or reference) operator to the
variable, which returns a pointer to the variable (its address). In C, the address operator is
written &. Thus the following command assigns the address of i to the pointer ip:

ip = &i; // ip now holds the address of i

10 When computers switched from the 32-bit x86 to the 64-bit x86_64 architecture, code that relied on pointers
being 32 bits long were in trouble; x86_64 uses 64-bit long pointers!
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The address operator always returns the lowest address of a multi-byte type. For example, if
the four-byte int i occupies addresses 0x0004 to 0x0007 in memory, &i will return 0x0004.11

If we have a pointer (an address) and we want the contents at that address, we apply the
dereference operator to the pointer. In C, the dereference operator is written *. Thus the
following command stores the value at the address pointed to by ip in i:

i = *ip; // i now holds the contents at the address ip

However, you should never dereference a pointer until it has been initialized to point to
something using a statement such as ip = &i.

As an analogy, consider the pages of a book. A page number can be considered a pointer,
while the text on the page can be considered the contents of a variable. So the notation &text

would return the page number (pointer or address) of the text, while *page_number would
return the text on that page (but only after page_number is initialized to point at a page of text).

Even though we are focusing on the concept of pointers, and not C syntax, let us look at some
sample C code, remembering that everything after // on the same line is a comment:

int i,j; // define i, j as type int
int *ip; // define ip as type "pointer to type int"
ip = &i; // set ip to the address of i (& "references" i)
i = 100; // put the value 100 in the location allocated by the compiler for i
j = *ip; // set j to the contents of the address ip (* dereferences ip),

// i.e., 100
j = j+2; // add 2 to j, making j equal to 102
i = *(&j); // & references j to get the address, then * gets contents; i is set

// to 102
*(&j) = 200; // content of the address of j (j itself) is set to 200; i is unchanged

The use of pointers can be powerful, but also dangerous. For example, you may accidentally
try to access an illegal memory location. The compiler is unlikely to recognize this during
compilation, and you may end up with a “segmentation fault” when you execute the code.12

This kind of bug can be difficult to find, and dealing with it is a C rite of passage. More on
pointers in Section A.4.8.

11 The address my actually be a “virtual” address rather than a physical location in memory. The computer
automatically translates the value of &i to an actual physical address, when needed.

12 A good name for a program like this is coredumper.c.
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A.3.3 Compiling

The process loosely referred to as “compilation” actually consists of four steps:

1. Preprocessing. The preprocessor takes the program.c source code and produces an
equivalent .c source code, performing operations such as removing comments. Section
A.4.3 discusses the preprocessor in more detail.

2. Compiling. The compiler turns the preprocessed code into assembly code for the specific
processor. The C code becomes a set of instructions that directly correspond to actions
that the processor can perform. The compiler can be configured with several options that
impact the assembly code generated. For example, the compiler can generate assembly
code that increases execution time to reduce the amount of memory needed to store the
code. Assembly code generated by a compiler can be inspected with a standard text editor.
Coding directly in assembly is still a popular, if painful (or fun), way to program
microcontrollers.

3. Assembling. The assembler converts the assembly instructions into processor-dependent
machine-level binary object code. This code cannot be examined using a text editor.13

Object code is called relocatable, in that the exact memory addresses for the data and
program statements are not specified.

4. Linking. The linker takes one or more object code files and produces a single executable
file. For example, if your code includes pre-compiled libraries, such as the C standard
library that allows you to print to the screen (described in Sections A.4.3 and A.4.14), this
code is included in the final executable. The data and program statements in the various
object code files are assigned to specific memory locations.

In our HelloWorld.c program, this entire process is initiated by the single command line
statement

> gcc HelloWorld.c -o HelloWorld

If our HelloWorld.c program used any mathematical functions in Section A.4.7, the
compilation would be initiated by

> gcc HelloWorld.c -o HelloWorld -lm

where the -lm flag tells the linker to link the math library, which may not be linked by default
like other libraries are.

If you want to see the intermediate results of the preprocessing, compiling, and assembling
steps, Exercise 42 provides an example.

For more complex projects requiring compilation of several files into a single executable or
specifying various options to the compiler, it is common to create a Makefile that specifies

13 Well, you can view it in a text editor, but it will be incomprehensible.
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how the compilation should be performed, and to then use the command make to actually
execute the commands to create the executable. Details on the use of Makefiles is beyond the
scope of this appendix; however, we use one extensively when programming the PIC32.
Section A.4.15 gives a simple example of compiling multiple C files into single executable
using a Makefile.

A.4 C Syntax

So far we have seen only glimpses of C syntax. Let us begin our study of C syntax with a few
simple programs. We then jump to a more complex program, invest.c, that demonstrates
many of the major elements of C structure and syntax. If you can understand invest.c and can
create programs using similar elements, you are well on your way to mastering C. We defer
the more detailed descriptions of the syntax until after introducing invest.c.

Printing to screen

Because it is the simplest way to see the results of a program, as well as a useful tool for
debugging, let us start with the function printf for printing to the screen.14 We have already
seen it in HelloWorld.c. Here’s a slightly more interesting example. Let us call this program
file printout.c.

#include <stdio.h>

int main(void) {

int i;
float f;
double d;
char c;

i = 32;
f = 4.278;
d = 4.278;
c = ’k’; // or, by ASCII table, c = 107;

printf("Formatted output:\n");
printf(" i = %4d c = ’%c’\n",i,c);
printf(" f = %19.17f\n",f);
printf(" d = %19.17f\n",d);
return 0;

}

14 Programs called debuggers (such as gdb) also help you debug, allowing you to step through your program line
by line as it runs.
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The first line of the program

#include <stdio.h>

tells the preprocessor that the program will use functions from the “standard input and output”
library, one of many code libraries provided in standard C installations that extend the power
of the language. The stdio.h function used in printout.c is printf, covered in more detail in
Section A.4.14.

The next line

int main(void) {

starts the block of code that defines the main function. The main code block is closed by the
final closing brace }. Each C program has exactly one main function, and program execution
begins there. The type of main is int, meaning that the function should end by returning a
value of type int. In our case, it returns a 0, which indicates to the operating system that the
program has terminated successfully.

The next four lines define and allocate memory for four variables with four different types.
The following lines assign values to those variables. The printf lines will be discussed after
we look at the output.

Now that you have created printout.c, you can create the executable file printout and run it
from the command line. Make sure you are in the directory containing printout.c, then type
the following:

> gcc printout.c -o printout
> printout

(Again, you may have to use ./printout to tell your computer to look in the current directory.)
Here is the output:

Formatted output:
i = 32 c = ’k’
f = 4.27799987792968750
d = 4.27799999999999958

The main purpose of this program is to demonstrate formatted output from the code

printf("Formatted output:\n");
printf(" i = %4d c = ’%c’\n",i,c);
printf(" f = %19.17f\n",f);
printf(" d = %19.17f\n",d);

Inside the function call to printf, everything inside the double quotation marks is printed to
the screen, but some character sequences have special meaning. The \n sequence creates a
newline. The % is a special character, indicating that some data will be printed, and for each %
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in the double quotes, there must be a variable or other expression in the comma-separated list
at the end of the printf call. The %4d means that an int type variable is expected, and it will be
displayed right-justified using four spaces. (If the number has more than four digits, it will
take as much space as is needed.) The %c means that a char is expected. The %19.17f means
that a float or double will be printed right-justified over 19 spaces with 17 spaces after the
decimal point. If you did not care how many decimal places were displayed, you could have
simply used %f and let the C implementation default make the choice for you.15 More details
on printf can be found in Section A.4.14.

The output of the program also shows that neither the float f nor the double d can represent
4.278 exactly, though the double-precision representation comes closer.

Data sizes

Since we have focused on data types, our next program measures how much memory is used
by different data types. Create a file called datasizes.c that looks like the following:

#include <stdio.h>

int main(void) {
char a;
char *bp;
short c;
int d;
long e;
float f;
double g;
long double h;
long double *ip;

printf("Size of char: %2ld bytes\n",sizeof(a)); // "% 2 ell d"
printf("Size of char pointer: %2ld bytes\n",sizeof(bp));
printf("Size of short int: %2ld bytes\n",sizeof(c));
printf("Size of int: %2ld bytes\n",sizeof(d));
printf("Size of long int: %2ld bytes\n",sizeof(e));
printf("Size of float: %2ld bytes\n",sizeof(f));
printf("Size of double: %2ld bytes\n",sizeof(g));
printf("Size of long double: %2ld bytes\n",sizeof(h));
printf("Size of long double pointer: %2ld bytes\n",sizeof(ip));
return 0;

}

The first lines in the main function define nine variables, telling the compiler to allocate space
for these variables. Two of these variables are pointers. The sizeof() operator returns the
number of bytes allocated in memory for its argument. You can use sizeof() on either a
variable or a type (i.e., sizeof(int)); here we use it exclusively on variables.

15 printf does not distinguish between doubles and floats, so use %f for both.
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Here is the output of the program:

Size of char: 1 bytes
Size of char pointer: 8 bytes
Size of short int: 2 bytes
Size of int: 4 bytes
Size of long int: 8 bytes
Size of float: 4 bytes
Size of double: 8 bytes
Size of long double: 16 bytes
Size of long double pointer: 8 bytes

We see that, on an x86_64 computer with gcc, ints and floats use four bytes, short ints two
bytes, long ints and doubles eight bytes, and long doubles 16 bytes. Regardless of whether it
points to a char or a long double, a pointer (address) uses eight bytes, meaning we can
address a maximum of (28)8 = 2568 bytes of memory. Considering that corresponds to almost
18 quintillion bytes, or 18 billion gigabytes, we should have enough available addresses (at
least for the time-being)!

Overflow

Now let us try the program overflow.c, which demonstrates the issue of integer overflow
mentioned in Section A.3.1.

#include <stdio.h>

int main(void) {
char i = 100, j = 240, sum;
unsigned char iu = 100, ju = 240, sumu;
signed char is = 100, js = 240, sums;

sum = i+j;
sumu = iu+ju;
sums = is+js;

printf("char: %d + %d = %3d or ASCII %c\n",i,j,sum,sum);
printf("unsigned char: %d + %d = %3d or ASCII %c\n",iu,ju,sumu,sumu);
printf("signed char: %d + %d = %3d or ASCII %c\n",is,js,sums,sums);
return 0;

}

In this program we initialize the values of some of the variables when they are defined. You
might also notice that we are assigning a signed char a value of 240, even though the range
for that data type is −128 to 127. So something fishy is happening. The program outputs:

char: 100 + -16 = 84 or ASCII T
unsigned char: 100 + 240 = 84 or ASCII T
signed char: 100 + -16 = 84 or ASCII T
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Notice that, with our C compiler, chars are the same as signed chars. Even though we
assigned the value of 240 to js and j, they contain the value −16 because the binary
representation of 240 has a 1 in the 27 column. For the two’s complement representation of a
signed char, this column indicates whether the value is positive or negative. Finally, we notice
that the unsigned char ju is successfully assigned the value 240 since its range is 0 to 255, but
the addition of iu and ju leads to an overflow. The correct sum, 340, has a 1 in the 28 (or 256)
column, but this column is not included in the 8 bits of the unsigned char. Therefore we see
only the remainder of the number, 84. The number 84 is assigned the character T in the
standard ASCII table.

Type conversion

Continuing our focus on data types, we try another simple program that illustrates what
happens when you mix data types in mathematical expressions. This program uses a helper
function in addition to the main function. We name this program typecast.c.

#include <stdio.h>

void printRatio(int numer, int denom) { // printRatio is a helper function
double ratio;

ratio = numer/denom;
printf("Ratio, %1d/%1d: %5.2f\n",numer,denom,ratio);
ratio = numer/((double) denom);
printf("Ratio, %1d/((double) %1d): %5.2f\n",numer,denom,ratio);
ratio = ((double) numer)/((double) denom);
printf("Ratio, ((double) %1d)/((double) %1d): %5.2f\n",numer,denom,ratio);

}

int main(void) {
int num = 5, den = 2;

printRatio(num,den); // call the helper function
return(0);

}

The helper function printRatio “returns” type void since it does not return a value. It takes
two ints as arguments and calculates their ratio in three different ways. In the first, the two
ints are divided and the result is assigned to a double. In the second, the integer denom is
typecast or cast to double before the division occurs, so an int is divided by a double and the
result is assigned to a double.16 In the third, both the numerator and denominator are cast as
doubles before the division, so two doubles are divided and the result is assigned to a double.

16 The typecasting does not change the variable denom itself; it simply creates a temporary double version of
denom which is lost as soon as the division is complete.
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The main function defines two ints, num and den, and passes their values to printRatio, where
those values are copied to numer and denom, respectively. The variables num and den are only
available to main, and the variables numer and denom are only available to printRatio, since
they are defined inside those functions.

Execution of any C program always begins with the main function, regardless of where it
appears in the file.

After compiling and running, we get the output

Ratio, 5/2: 2.00
Ratio, 5/((double) 2): 2.50
Ratio, ((double) 5)/((double) 2): 2.50

The first answer is “wrong,” while the other two answers are correct. Why?

The first division, numer/denom, is an integer division. When the compiler sees that there are
ints on either side of the divide sign, it assumes you want integer math and produces a result
that is an int by simply truncating any remainder (rounding toward zero). This value, 2, is
then converted to the floating point number 2.0 so it can be assigned to the double-precision
floating point variable ratio. On the other hand, the expression numer/((double) denom), by
virtue of the parentheses, first produces a double version of denom before performing the
division. The compiler recognizes that you are dividing two different data types, so it
temporarily coerces the int to a double so it can perform a floating point division. This is
equivalent to the third and final division, except that the typecast of the numerator to double is
explicit in the code for the third division.

Thus we have two kinds of type conversions:

• Implicit type conversion, or coercion. This occurs, for example, when a type has to be
converted to carry out a variable assignment or to allow a mathematical operation. For
example, dividing an int by a double will cause the compiler to treat the int as a double

before carrying out the division.
• Explicit type conversion. An explicit type conversion is coded using a casting operator,

e.g., (double) <expression> or (char) <expression>, where <expression> may be a
variable or mathematical expression.

Certain type conversions may result in a change of value. For example, assigning the value of
a float to an int results in truncation of the fractional portion; assigning a double to a float

may result in roundoff error; and assigning an int to a char may result in overflow. Here’s a
less obvious example:

float f;
int i = 16777217;
f = i; // f now has the value 16,777,216.0, not 16,777,217!
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It turns out that 16, 777, 217 = 224 + 1 is the smallest positive integer that cannot be
represented by a 32-bit float. On the other hand, a 32-bit int can represent all integers in the
range −231 to 231 − 1.

Some type conversions, called promotions, never result in a change of value because the new
type can represent all possible values of the original type. Examples include converting a char

to an int or a float to a long double.

As with pointers, typecasts are dangerous and should be used sparingly. Knowing where type
coercion occurs, however, can be crucial. In the example below, the first line performs integer
division and then converts the result to a double, whereas the second line performs floating
point division.

double f = 3/2; // yields 1.0!
double g = 3.0/2.0; // yields 1.5

We will see more on use of parentheses (Section A.4.1), the scope of variables (Section
A.4.5), and defining and calling helper functions (Section A.4.6).

Advanced: Pointers can be used in conjunction with typecasts to view the same data in different
ways. For example, the declaration unsigned short s = 0xAB12 stores 0xAB12 in memory as
two consecutive bytes: 0x12 0xAB (remember, the LSB is in the lowest address on a little-endian
processor). Performing (*&s) dereferences the address &s and treats the memory location as an
unsigned short because &s has type unsigned short *; thus, the expression yields 0xAB12.
Performing *(unsigned char *)&s yields 0x12 because the typecast converts the pointer &s into
a pointer to an unsigned char *. Dereferencing such a pointer yields an unsigned char, which
is only one byte long. Pointers always refer to the lowest address of the variable, so the result is
0x12 not 0xAB. On a big-endian system, however, the result would be 0xAB.

A more complete example: invest.c

Until now we have been dipping our toes in the C pool. Now let us dive in headfirst.

Our next program is called invest.c, which takes an initial investment amount, an expected
annual return rate, and a number of years, and returns the growth of the investment over the
years. After performing one set of calculations, it prompts the user for another scenario, and
continues this way until the data entered is invalid. The data is invalid if, for example, the
initial investment is negative or the number of years to track is outside the allowed range.

The real purpose of invest.c, however, is to demonstrate the syntax and several useful
features of C.

Here’s an example of compiling and running the program. The only data entered by the user
are the three numbers corresponding to the initial investment, the growth rate, and the number
of years.
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> gcc invest.c -o invest
> invest
Enter investment, growth rate, number of yrs (up to 100): 100.00 1.05 5
Valid input? 1

RESULTS:

Year 0: 100.00
Year 1: 105.00
Year 2: 110.25
Year 3: 115.76
Year 4: 121.55
Year 5: 127.63

Enter investment, growth rate, number of yrs (up to 100): 100.00 1.05 200
Valid input? 0
Invalid input; exiting.
>

Before we look at the full invest.c program, let us review two principles that should be
adhered to when writing a longer program: modularity and readability.

• Modularity. You should break your program into a set of functions that perform specific,
well-defined tasks, with a small number of inputs and outputs. As a rule of thumb, no
function should be longer than about 20 lines. (Experienced programmers often break this
rule of thumb, but if you are a novice and are regularly breaking this rule, you are likely
not thinking modularly.) Almost all variables you define should be “local” to (i.e., only
recognizable by) their particular function. Global variables, which can be accessed by all
functions, should be minimized or avoided altogether, since they break modularity,
allowing one function to affect the operation of another without the information passing
through the well-defined “pipes” (input arguments to a function or its returned results). If
you find yourself typing the same (or similar) code more than once, that’s a good sign you
should determine how to write a single function and just call that function from multiple
places. Modularity makes it much easier to develop large programs and track down the
inevitable bugs.

• Readability. You should use comments to help other programmers, and even yourself,
understand the purpose of the code you have written. Variable and function names should
be chosen to indicate their purpose. Be consistent in how you name variables and
functions. Any “magic number” (constant) used in your code should be given a name and
defined at the beginning of the program, so if you ever want to change this number, you
can just change it at one place in the program instead of every place it is used. Global
variables and constants should be written in a way that easily distinguishes them from
more common local variables; for example, you could WRITE CONSTANTS IN
UPPERCASE and Capitalize Globals. You should use whitespace (blank lines, spaces,
tabbing, etc.) consistently to make it easy to read the program. Use a fixed-width font
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(e.g., Courier) so that the spacing/tabbing is consistent. Modularity (above) also improves
readability.

The program invest.c demonstrates readable modular code using the structure and syntax of
a typical C program. In the program’s comments, you will see references of the form
==SecA.4.3== that indicate where you can find more information in the review of syntax that
follows the program.

/******************************************************************************
* PROGRAM COMMENTS (PURPOSE, HISTORY)
******************************************************************************/

/*
* invest.c
*
* This program takes an initial investment amount, an expected annual
* return rate, and the number of years, and calculates the growth of
* the investment. The main point of this program, though, is to
* demonstrate some C syntax.
*
* References to further reading are indicated by ==SecA.B.C==
*
*/

/******************************************************************************
* PREPROCESSOR COMMANDS ==SecA.4.3==
******************************************************************************/

#include <stdio.h> // input/output library
#define MAX_YEARS 100 // constant indicating max number of years to track

/******************************************************************************
* DATA TYPE DEFINITIONS (HERE, A STRUCT) ==SecA.4.4==
******************************************************************************/

typedef struct {
double inv0; // initial investment
double growth; // growth rate, where 1.0 = zero growth
int years; // number of years to track
double invarray[MAX_YEARS+1]; // investment array ==SecA.4.9==

} Investment; // the new data type is called Investment

/******************************************************************************
* GLOBAL VARIABLES ==SecA.4.2, A.4.5==
******************************************************************************/

// no global variables in this program

/******************************************************************************
* HELPER FUNCTION PROTOTYPES ==SecA.4.2==
******************************************************************************/

int getUserInput(Investment *invp); // invp is a pointer to type ...
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void calculateGrowth(Investment *invp); // ... Investment ==SecA.4.6, A.4.8==
void sendOutput(double *arr, int years);

/******************************************************************************
* MAIN FUNCTION ==SecA.4.2==
******************************************************************************/

int main(void) {

Investment inv; // variable definition, ==SecA.4.5==

while(getUserInput(&inv)) { // while loop ==SecA.4.13==
inv.invarray[0] = inv.inv0; // struct access ==SecA.4.4==
calculateGrowth(&inv); // & referencing (pointers) ==SecA.4.6, A.4.8==
sendOutput(inv.invarray, // passing a pointer to an array ==SecA.4.9==

inv.years); // passing a value, not a pointer ==SecA.4.6==
}
return 0; // return value of main ==SecA.4.6==

} // ***** END main *****

/******************************************************************************
* HELPER FUNCTIONS ==SecA.4.2==
******************************************************************************/

/* calculateGrowth
*
* This optimistically-named function fills the array with the investment
* value over the years, given the parameters in *invp.
*/

void calculateGrowth(Investment *invp) {

int i;

// for loop ==SecA.4.13==
for (i = 1; i <= invp->years; i= i + 1) { // relational operators ==SecA.4.10==

// struct access ==SecA.4.4==
invp->invarray[i] = invp->growth * invp->invarray[i-1];

}
} // ***** END calculateGrowth *****

/* getUserInput
*
* This reads the user’s input into the struct pointed at by invp,
* and returns TRUE (1) if the input is valid, FALSE (0) if not.
*/

int getUserInput(Investment *invp) {

int valid; // int used as a boolean ==SecA.4.10==

// I/O functions in stdio.h ==SecA.4.14==
printf("Enter investment, growth rate, number of yrs (up to %d): ",MAX_YEARS);
scanf("%lf %lf %d", &(invp->inv0), &(invp->growth), &(invp->years));

// logical operators ==SecA.4.11==
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valid = (invp->inv0 > 0) && (invp->growth > 0) &&
(invp->years > 0) && (invp->years <= MAX_YEARS);

printf("Valid input? %d\n",valid);

// if-else ==SecA.4.12==
if (!valid) { // ! is logical NOT ==SecA.4.11==

printf("Invalid input; exiting.\n");
}
return(valid);

} // ***** END getUserInput *****

/* sendOutput
*
* This function takes the array of investment values (a pointer to the first
* element, which is a double) and the number of years (an int). We could
* have just passed a pointer to the entire investment record, but we decided
* to demonstrate some different syntax.
*/
void sendOutput(double *arr, int yrs) {

int i;
char outstring[100]; // defining a string ==SecA.4.9==

printf("\nRESULTS:\n\n");
for (i=0; i<=yrs; i++) { // ++, +=, math in ==SecA.4.7==

sprintf(outstring,"Year %3d: %10.2f\n",i,arr[i]);
printf("%s",outstring);

}
printf("\n");

} // ***** END sendOutput *****

A.4.1 Basic Syntax

Comments

Everything after a /* and before the next */ is a comment. Comments are removed during the
preprocessing step of compilation. They help make the purpose of the program, function,
loop, or statement clear to yourself or other programmers.17 Keep the comments neat and
concise for program readability. Some programmers use extra asterisks or other characters to
make the comments stand out (see the examples in invest.c), but all that matters is that
/* starts the comment and the next */ ends it.

If your comment is short, you can use // instead. Everything after // and before the next
carriage return will be ignored. The // style comments originate from C++ but most modern C
compilers support them.

17Reading your own code after several months away from it is often like reading someone else’s code!
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Semicolons

A code statement must be completed by a semicolon. Some exceptions to this rule include
preprocessor commands (see PREPROCESSOR COMMANDS in the program and Section A.4.3) and
statements that end with blocks of code enclosed by braces { }. A single code statement may
extend over multiple lines of the program listing until it is terminated by a semicolon (see, for
example, the assignment to valid in the function getUserInput).

Braces and blocks of code

Blocks of code are enclosed in braces { }. Examples include entire functions (see the
definition of the main function and the helper functions), blocks of code executed inside of a
while loop (in the main function) or for loop (in the calculateGrowth and sendOutput

functions), as well as other examples. In invest.c, braces are placed as shown here

while (<expression>) {
/* block of code */

}

but this style is equivalent

while (<expression>)
{
/* block of code */

}

as is this

while (<expression>) { /* block of code */ }

Which brings us to...

Whitespace

Whitespace, such as spaces, tabs, and carriage returns, is only required where it is needed to
recognize keywords and other syntax. The whole program invest.c could be written on a
single line, for example. Indentations and line breaks should be used consistently, however, to
make the program readable. Insert line breaks after each semicolon. Statements within the
same code block should be left-justified with each other and statements in a code block nested
within another code block should be indented with respect to the parent code block. Text
editors should use a fixed-width font so that alignment is clear. Most editors provide
fixed-width fonts and automatic indentation to enhance readability.
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Parentheses

C has rules defining the order in which operations in an expression are evaluated, much like
standard math rules that say 3+ 5 ∗ 2 evaluates to 3+ (10) = 13, not (8) ∗ 2 = 16. If uncertain
about the default order of operations, use parentheses ( ) to enclose sub-expressions. For
example, 3 + (40/(4 ∗ (3 + 2))) evaluates to 3 + (40/(4 ∗ 5)) = 3 + (40/20) = 3 + 2 = 5,
whereas 3 + 40/4 ∗ 3 + 2 evaluates to 3 + 30 + 2 = 35.

A.4.2 Program Structure

invest.c demonstrates a typical structure for a program written in one .c file. When you write
larger programs, you may wish to divide your program into multiple files, to increase
modularity. Section A.4.15 discusses C programs that consist of multiple source code files.

Let us consider the seven major sections of the program in order of appearance. PROGRAM
COMMENTS describe the purpose of the program. PREPROCESSOR COMMANDS define constants and
“header” files that should be included, giving the program access to library functions that
extend the power of the C language. This section is described in more detail in Section A.4.3.
In some programs, it may be helpful to define a new data type, as shown in DATA TYPE

DEFINITIONS. In invest.c, several variables are packaged together in a single record or struct
data type, as described in Section A.4.4. Any GLOBAL VARIABLES are then defined. These are
variables that are available for use by all functions in the program. Because of this special
status, the names of global variables could be Capitalized or otherwise written in a way to
remind the programmer that they are not local variables (Section A.4.5). Generally, global
variables should be avoided because they violate modularity.

The next section of the program contains the HELPER FUNCTION PROTOTYPES of the various
helper functions. A prototype of a function declares the name, argument types, and return
types of a function that will be defined later. Prototypes are used to allow code to call
functions that have not yet been fully defined or are defined elsewhere (perhaps in another
source file). For example, the function printRatio has a return type of void, meaning that it
does not return a value. It takes two arguments, each of type int. The function getUserInput

returns an int and takes a single argument: a pointer to a variable of type Investment, a data
type defined a few lines above the getUserInput prototype.

The next section of the program, MAIN FUNCTION, is where the main function is defined. Every
program has exactly one main function, where the program starts execution. The main function
returns an int. By convention, it returns 0 if it executes successfully, and otherwise returns a
nonzero value. In invest.c, main takes no arguments, hence the void in the argument list.
Some programs accept arguments on the command line; these can be passed as arguments to
main. For example, we could have written invest.c to run with a command such as this:
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> invest 100.0 1.05 5

To allow this, main would have been defined with the following syntax:

int main(int argc, char *argv[]) {

Then when the program is invoked as above, the integer argc would be set to four, the number
of whitespace-separated strings on the command line, and argv would point to a array of four
strings, where the string argv[0] is ’invest’, argv[1] is ’100.0’, etc. You can learn more about
arrays and strings in Section A.4.9.

Finally, the last section of the program is the definition of the HELPER FUNCTIONS whose
prototypes were given earlier. It is not strictly necessary that the helper functions have
prototypes, but if not, every function should be defined before it is used by any other function.
For example, none of the helper functions uses another helper function, so they could have all
been defined before the main function, in any order, and their function prototypes eliminated.
The names of the variables in a function prototype and in the actual definition of the function
need not be the same; for example, the prototype of sendOutput uses variables named arr and
years, whereas the actual function definition uses arr and yrs. What matters is that the
prototype and actual function definition have the same number of arguments, of the same
types, and in the same order. In fact, in the arguments of the function prototypes, you can
leave out variable names altogether, and just keep the comma separated list of argument data
types; however, including the names serves as additional documentation and is generally a
good practice.

A.4.3 Preprocessor Commands

In the preprocessing stage of compilation, all comments are removed from the program.
Additionally, the preprocessor performs actions when encountering the following
preprocessor commands, recognizable by the # character:

#include <stdio.h> // input/output header
#define MAX_YEARS 100 // constant indicating max number of years to track

Include files

The first preprocessor command in invest.c indicates that the program will use standard C
input/output functions. The file stdio.h is called a header file for the library. This file is
readable by a text editor and contains constants, function prototypes, and other included
headers that are made available to the program. The preprocessor replaces the
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#include <stdio.h> command with the contents of the header file stdio.h.18 Examples of
function prototypes that are included are

int printf(const char *Format, ...);
int sprintf(char *Buffer, const char *Format, ...);
int scanf(const char *Format, ...);

Each of these three functions is used in invest.c. If the program were compiled without
including stdio.h, the compiler would generate a warning or an error due to the lack of
function prototypes. See Section A.4.14 for more information on using the stdio input and
output functions.

During the linking stage, the object code of invest.c is linked with the object code for printf,
sprintf, and scanf in your C installation. Libraries like the C standard library provide access
to functions beyond the basic C syntax. Other useful libraries (and header files for the C
standard library) are briefly described in Section A.4.14.

Constants

The second line defines the constant MAX_YEARS to be equal to 100. The preprocessor searches
for each instance of MAX_YEARS in the program and replaces it with 100. If we later decide that
the maximum number of years to track investments should be 200, we can change the
definition of this constant in one place, instead of in several places. Since MAX_YEARS is
constant, not a variable, it can never be assigned another value somewhere else in the program.
To indicate that it is not a variable, a common convention is to write constants in
UPPERCASE. This is not required by C, however. We should emphasize that the preprocessor
performs a text substitution, as if you used the “find and replace” feature of your text editor.
So, in this example, the preprocessor literally replaces every occurrence of MAX_YEARS with the
number 100.

Macros

One more use of the preprocessor is to define simple function-like macros that you may use in
more than one place in your program. Constants, as described above, are technically a simple
macro. Here’s an example that converts radians to degrees:

#define RAD_TO_DEG(x) ((x) * 57.29578)

18 The preprocesser searches for header files in directories specified by the “include path.” If the header file
header.h sits in the same directory as invest.c, we would write #include "header.h" instead of
#include <header.h>.
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The preprocessor searches for any instance of RAD_TO_DEG(x) in the program, where x can be
any text, and replaces it with ((x) * 57.29578). For example, the initial code

angle_deg = RAD_TO_DEG(angle_rad);

is replaced by

angle_deg = ((angle_rad) * 57.29578);

Note the importance of the outer parentheses in the macro definition. If we had instead used
the preprocessor command

#define RAD_TO_DEG(x) (x) * 57.29578 // don’t do this!

then the code

answer = 1.0 / RAD_TO_DEG(3.14);

would be replaced by

answer = 1.0 / (3.14) * 57.29578;

which is very different from

answer = 1.0 / ((3.14) * 57.29578);

Moral: if the expression you are defining is anything other than a single constant, enclose it in
parentheses, to tell the compiler to evaluate the expression first.

As a second example, the macro

#define MAX(A,B) ((A) > (B) ? (A):(B))

returns the maximum of two arguments. The ? is the ternary operator in C, which has the form

<test> ? return_value_if_test_is_true : return_value_if_test_is_false

The preprocessor replaces

maxval = MAX(13+7,val2);
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with

maxval = ((13+7) > (val2) ? (13+7):(val2));

Why define a macro instead of just writing a function? One reason is that the macro may
execute slightly faster, since no passing of control to another function and no passing of
variables is needed. Most of the time, you should use functions.

A.4.4 Typedefs, Structs, and Enums

In simple programs, you will do just fine with the data types int, char, float, double, and
variations. Sometimes you may find it useful to create an alias for a data type, using the
following syntax:

typedef <type> newtype;

where <type> is an existing data type and newtype is its alias. Then, you can define a new
variable x of type newtype by

newtype x;

For example, you could write

typedef int days_of_the_month;
days_of_the_month day;

You might find it satisfying that your variable day (taking values 1 to 31) is of type
days_of_the_month, but the compiler will still treat it as an int. However, if you use this type a
lot and later want to change it, using the typedef provides one location to make the change
rather than needing to go through your whole program: you can think of a typedef as a
constant but for data types.

In addition to aliasing existing data types, you can also create new types that combine several
variables into a single record or struct. We gather investment information into a single struct

in invest.c:

typedef struct {
double inv0; // initial investment
double growth; // growth rate, where 1.0 = zero growth
int years; // number of years to track
double invarray[MAX_YEARS+1]; // investment values

} Investment; // the new data type is called Investment
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Notice how the struct {...} replaces the data type int in our previous typedef example. This
syntax creates a new data type Investment with a record structure, with fields named inv0 and
growth of type double, years of type int, and invarray, an array of doubles.19 (Arrays are
discussed in Section A.4.9.) With this new type definition, we can define a variable named inv

of type Investment:

Investment inv;

This definition allocates sufficient memory to hold the two doubles, the int, and the array of
doubles. We can access the contents of the struct using the “.” operator:

int yrs;
yrs = inv.years;
inv.growth = 1.1;

An example of this kind of usage is seen in main.

Referring to the discussion of pointers in Sections A.3.2 and A.4.8, if we are working with a
pointer invp that points to inv, we can use the “->” operator to access the contents of the
record inv:

Investment inv; // allocate memory for inv, an investment record
Investment *invp; // invp will point to something of type Investment
int yrs;
invp = &inv; // invp points to inv
inv.years = 5; // setting one of the fields of inv
yrs = invp->years; // inv.years, (*invp).years, and invp->years are all identical
invp->growth = 1.1;

Examples of this usage are seen in calculateGrowth() and getUserInput(). Using the operator
a->b is equivalent to doing (*a).b, dereferencing the struct pointer and accessing a specific
field.

Another data type you can create is called an enum, short for “enumeration.” Although
invest.c does not use an enumeration, they can be useful for describing a type that can take
one of a limited set of values. For example, if you wanted a function to use a cardinal direction
you could define an enumeration as follows:

typedef enum {NORTH, SOUTH, EAST, WEST} Direction;

19 The typedef is actually aliasing an anonymous struct with the name Investment. You can omit the typedef,
but then you create a type that must be referred to as struct Investment rather than Investment. The
typedef provides a more convenient syntax when you use the type.
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Each item in the enum gets assigned a constant numerical value. You can explicitly state this
value, or use the default compiler-provided values, which start at zero and increment by one
for each element. For example, the declaration above is equivalent to

typedef enum {NORTH = 0, SOUTH = 1, EAST = 2, WEST = 3} Direction;

You can use an enum as you would any other data type.

A.4.5 Defining Variables

Variable names

Variable names can consist of uppercase and lowercase letters, numbers, and underscore
characters ’_’. You should generally use a letter as the first character; var, Var2, and
Global_Var are all valid names, but 2var is not. C is case sensitive, so the variable names var
and VAR are different. A variable name cannot conflict with a reserved keyword in C, like int

or for. Names should be succinct but descriptive. The variable names i, j, and k are often used
for integer counters in for loops, and pointers often begin with ptr_, such as ptr_var, or end
with p, such as varp, to remind you that they are pointers. Regardless of how you choose to
name your variables, adopting a consistent naming convention throughout a program aids
readability.

Scope

The scope of a variable refers to where it can be used in the program. A variable may be
global, i.e., usable by any function, or local to a specific function or piece of a function. A
global variable is one that is defined in the GLOBAL VARIABLES section, outside of and before
any function that uses it. Such variables can be referred to or altered in any function.20

Because of this special status, global variables are often Capitalized. Global variable usage
should be minimized for program modularity and readability.

A local variable is one that is defined in a function. Such a variable is only usable inside that
function, after the definition.21 If you choose a local variable name var that is also the name of
a global variable, inside that function var will refer to the local variable, and the global
variable will not be available. It is not good practice to choose local variable names to be the

20 You could also define a variable outside of any function definition but after some of the function definitions. This
quasi-global variable would be available to all functions defined after the variable is defined, but not those
before. This practice is discouraged, as it makes the code harder to read.

21 Since we recommend that each function be brief, you can define all local variables in that function at the
beginning of the function, so we can see in one place what local variables the function uses. Some programmers
prefer instead to define variables just before their first use, to minimize their scope. Older C specifications
required that all local variables be defined at the beginning of a code block enclosed by braces { }.
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same as global variable names, as it makes the program confusing to understand and is often
the source of bugs.

The parameters to a function are local to that function’s definition, as in sendOutput at the end
of invest.c:

void sendOutput(double *arr, int yrs) { // ...

The variables arr and yrs are local to sendOutput.

Otherwise, local variables are defined at the beginning of the function code block by syntax
similar to that shown in the function main.

int main(void) {
Investment inv; // Investment is a variable type we defined
// ... rest of the main function ...

Since this definition appears within the function, inv is local to main. Had this definition
appeared before any function definition, inv would be a global variable.

A global variable can be declared as static:

static int i;

The static specifier means that the global variable can only be used from within the given .c

file; other files cannot use the variable. If you must use a global variable, you should declare it
static if possible. Preventing other .c files in a multi-file C program from accessing the
variable helps increase modularity and reduce bugs.

Variables can also have qualifiers attached to their types. There are two main qualifiers in C,
const and volatile. The const qualifier prevents the “variable” from being modified. The
definition

const int i = 3;

sets i to 3, and i can never be changed after that. The volatile qualifier is used extensively in
embedded programming, and indicates that the variable may change outside of the normal
flow of the program (i.e., due to interrupts, Chapter 6) that the compiler cannot know about in
advance. Therefore, the compiler should not assume anything about the current value of a
volatile variable. Here is an example usage:

volatile int i;
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We discuss volatile more fully in Chapter 6.

Qualifiers can also be applied to pointers. The syntax, however, can be a bit tricky. The first
two definitions below make cp a const pointer, meaning that the content pointed to by cp (i.e.,
*cp) is constant: the value of cp, however, may change. The third definition makes the pointer
cp itself constant, but the contents pointed to by cp may change. The fourth line makes both
the pointer and the data that the pointer references constant.

const int * cp; // pointer to const data
int const * cp; // pointer to const data
int * const cp; // pointer to data, value of cp is const
const int * const cp; // pointer and data are const

Definition and initialization

When a variable is defined, memory for the variable is allocated. In general, you cannot
assume anything about the contents of the variable until you have initialized it. For example, if
you want to define a float x with value 0.0, the command

float x;

is insufficient. The memory allocated may have random 0’s and 1’s already in it, and the
allocation of memory does not generally change the current contents of the memory. Instead,
you can use

float x = 0.0;

to initialize the value of x when you define it. Equivalently, you could use

float x;
x = 0.0;

but, when possible, it is better to initialize a variable when you define it, so you do not
accidentally use an uninitialized value.

Static local variables

Each time a function is called, its local variables are allocated space in memory. When the
function completes, its local variables are discarded, freeing memory. If you want to keep the
results of some calculation by the function after the function completes, you could return the
results from the function or store them in a global variable. Sometimes, a better alternative is
to use the static modifier in the local variable definition, as in the following program:

#include <stdio.h>
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void myFunc(void) {
static char ch=’d’; // this local variable is static, allocated and initialized

// only once during the entire program
printf("ch value is %d, ASCII character %c\n",ch,ch);
ch = ch+1;

}

int main(void) {
myFunc();
myFunc();
myFunc();
return 0;

}

The static modifier in the definition of ch in myFunc means that ch is only allocated, and
initialized to ’d’, the first time myFunc is called during the execution of the program. This
allocation persists after the function returns, and the value of ch is remembered. The output of
this program is

ch value is 100, ASCII character d
ch value is 101, ASCII character e
ch value is 102, ASCII character f

Numerical values

Just as you can assign an integer a base-10 value using commands like ch=100, you can assign
a number written in hexadecimal notation by putting “0x” at the beginning of the digit
sequence, e.g.,

unsigned char ch = 0x64; // ch now has the base-10 value 100

This form may be convenient when you want to directly control bit values. This is often useful
in microcontroller applications. Some C compilers, including the PIC32 C compiler, allow
specifying bits directly using the following syntax:

unsigned char ch = 0b1100100; // ch now has the base-10 value 100

A.4.6 Defining and Calling Functions

A function definition consists of the function’s return type, function name, argument list, and
body (a block of code). Allowable function names follow the same rules as variable names.
The function name should make the purpose of the function clear; for example, getUserInput
(which gets input from the user) in invest.c.

If the function does not return a value, it has return type void, as with calculateGrowth. If it
does return a value, such as getUserInput which returns an int, the function should end with
the command
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return val;

where val is a variable with the same type as the function’s return type. The main function
returns an int and should return 0 upon successful completion.

The function definition

void sendOutput(double *arr, int yrs) { // ...

indicates that sendOutput returns nothing and takes two arguments, a pointer to type double

and an int. When the function is called with the statement

sendOutput(inv.invarray, inv.years);

the invarray and years fields of the inv structure in main are copied to sendOutput, which now
has its own local copies of these variables, stored in arr and yrs. The difference between the
two is that yrs is just data, while arr is a pointer, holding the address of the first element of
invarray, i.e., &(inv.invarray[0]). (Arrays will be discussed in more detail in Section A.4.9.)
Since sendOutput now has the memory address of the beginning of this array, it can directly
access, and potentially change, the original array seen by main. On the other hand, sendOutput
cannot, by itself change the value of inv.years in main, since it only has a copy of that value,
not the actual memory address of main’s inv.years. sendOutput takes advantage of its direct
access to the inv.invarray to print out all the values stored there, eliminating the need to copy
all the values of the array from main to sendOutput. To prevent the function from changing the
contents of arr we could have (and probably should have) declared the parameter const, as in
double const * arr.

The function calculateGrowth, which is called with a pointer to main’s inv data structure,
takes advantage of its direct access to the invarray field to change the values stored there.

When a function is passed a pointer argument, it is called a pass by reference; the argument is
a reference (address, or pointer) to data. When a function is passed non-pointer data, it is
called a pass by value; data is copied but not an address.

If a function takes no arguments and returns no value, we can define it as void myFunc(void).
The function is called using

myFunc();

A.4.7 Math

Standard binary math operators (operators on two operands) include +, -, *, and /. These
operators take two operands and return a result, as in
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ratio = a/b;

If the operands are the same type, then the CPU carries out a division (or add, subtract,
multiply) specific for that type and produces a result of the same type. In particular, if the
operands are integers, the result will be an integer, even for division (fractions are rounded
toward zero). If one operand is an integer type and the other is a floating point type, the integer
type will generally be coerced to a floating point to allow the operation (see the typecast.c

program description of Section A.4).

The modulo operator % takes two integers and returns the remainder of their division, i.e.,

int i;
i = 16 % 7; // i is now equal to 2

C also provides +=, -=, *=, /=, %= to simplify some expressions, as shown below:

x = x * 2; // these two lines
x *= 2; // are equivalent

y = y + 7; // these two lines
y += 7; // are equivalent

Since adding one to an integer or subtracting one from an integer are common operations in
loops, these have a further simplification. For an integer i, we can write

++i; // adds 1 to i, equivalent to i = i+1;
--i; // equivalent to i = i-1;

In fact we also have the syntax i++ and i–. If the ++ or – come in front of the variable, the
variable is modified before it is used in the rest of the expression. If they come after, the
variable is modified after the expression has been evaluated. So

int i = 5, j;
j = (++i)*2; // after this line, i is 6 and j is 12

but

int i = 5,j;
j = (i++)*2; // after this line, i is 6 and j is 10

But your code would be much more readable if you just wrote i++ before or after
the j = i*2 line.
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If your program includes the C math library with the preprocessor command #include

<math.h>, you have access to a much larger set of mathematical operations, some of which are
listed here:

int abs (int x); // integer absolute value
double fabs (double x); // floating point absolute value
double cos (double x); // all trig functions work in radians,

not degrees
double sin (double x);
double tan (double x);
double acos (double x); // inverse cosine
double asin (double x);
double atan (double x);
double atan2 (double y, double x); // two-argument arctangent
double exp (double x); // base e exponential
double log (double x); // natural logarithm
double log2 (double x); // base 2 logarithm
double log10 (double x); // base 10 logarithm
double pow (double x, double y); // raise x to the power of y
double sqrt (double x); // square root of x

These functions also have versions for floats. The names of those functions are identical,
except with an ’f’ appended to the end, e.g., cosf.

When compiling programs using math.h, you may need to include the linker flag -lm, e.g.,

gcc myprog.c -o myprog -lm

to tell the linker to link with the math library.

A.4.8 Pointers

It’s a good idea to review the introduction to pointers in Section A.3.2 and the discussion of
call by reference in Section A.4.6. In summary, the operator & references a variable, returning
a pointer to (the address of) that variable, and the operator * dereferences a pointer, returning
the contents of the address.

These statements define a variable x of type float and a pointer ptr to a variable of type float:

float x;
float *ptr;

At this point, the assignment

*ptr = 10.3;
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would result in undefined behavior, because the pointer ptr does not currently point to
anything. The following code would be valid:

ptr = &x; // assign ptr to the address of x; x is the "pointee" of ptr
*ptr = 10.3; // set the contents at address ptr to 10.3; now x is equal to 10.3
*(&x) = 4 + *ptr; // the * and & on the left cancel each other; x is set to 14.3

Since ptr is an address, it is an integer (technically the type is “pointer to type float”), and we
can add and subtract integers from it. For example, say that ptr contains the value n, and then
we execute the statement

ptr = ptr + 1; // equivalent to ptr++;

If we now examined ptr, we would find that it has the value n+ 4. Why? Because the
compiler knows that ptr points to the type float, so when we add 1 to ptr, the assumption is
that we want to increment by one float in memory, not one byte. Since a float occupies four
bytes, the address ptr must increase by 4 to point to the next float. The ability to increment a
pointer in this way can be useful when dealing with arrays, next.

A.4.9 Arrays and Strings

One-dimensional arrays

An array of five floats can be defined by

float arr[5];

We could also initialize the array at the time we define it:

float arr[5] = {0.0, 10.0, 20.0, 30.0, 40.0};

Each of these definitions allocates five floats in memory, accessed by arr[0] (initialized to
0.0 above) through arr[4] (initialized to 40.0). The elements are stored consecutively, as per
Figure A.2. The assignment

arr[5] = 3.2;

[4] [3] [2] [1] [0]

Figure A.2
A float array with five elements, as stored in memory. The dashed lines separate bytes and the solid

lines separate floats. Each float has four bytes.
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is a mistake, since only arr[0..4] have been allocated. This statement will compile
successfully because compilers do not check for indexing arrays out of bounds. The best result
at this point would be for your program to crash, to alert you to the fact that you are
overwriting memory that may be allocated for another purpose. More insidiously, the program
could seem to run just fine, but with difficult-to-debug erratic behavior.22 Bottom line: never
access arrays out of bounds!

In the expression arr[i], i is an integer called the index, and arr[i] is of type float. The
variable arr by itself points to the first element of the array, and is equivalent to &(arr[0]).
The address &(arr[i]) is at arr plus i*4 bytes, since the elements of the array are stored
consecutively, and a float uses four bytes. Both arr[i] and *(arr+i) are correct syntax to
access the ith element of the array. Since the compiler knows that arr is a pointer to the
four-byte type float, the address represented by (arr+i) is i*4 bytes higher than the
address arr.

Consider the following code:

float arr[5] = {0.0, 10.0, 20.0, 30.0, 40.0};
float *ptr;
ptr = arr + 3;
// arr[0] contains 0.0 and ptr[0] = arr[3] = 30.0
// arr[0] is equivalent to *arr; ptr[0] is equivalent to *ptr and *(arr+3);
// ptr is equivalent to &(arr[3])

If we would like to pass the array arr to a function that initializes each element of the array,
we could call

arrayInit(arr,5);

or

arrayInit(&(arr[0]),5);

The function definition for arrayInit might look like

void arrayInit(float *vals, int length) {

int i;

for (i=0; i<length; i++) vals[i] = i*10.0;
// equivalently, we could substitute the line below for the line above
// for (i=0; i<length; i++) {*vals = i*10.0; vals++;}

}

22 The mistake could potentially be exploited as a security flaw.
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The pointer vals in arrayInit is set to point to the same location as arr in the calling function.
Therefore vals[i] refers to the same memory contents that arr[i] does.

Note that arr does not carry any information on the length of the array, so we must send the
length separately to arrayInit.

Strings

A string is an array of chars. The definition

char s[100];

allocates memory for 100 chars, s[0] to s[99]. We could initialize the array with

char s[100] = "cat"; // note the double quotes

This places a ’c’ (integer value 99) in s[0], an ’a’ (integer value 97) in s[1], a ’t’ (integer
value 116) in s[2], and a value of 0 in s[3], corresponding to the NULL (’\0’) character and
indicating the end of the string. (You could also do this, less elegantly, by initializing just
those four elements using braces as we did with the float array above.)

You notice that we allocated more memory than was needed to hold “cat.” Perhaps we will
append something to the string in future, so we might want to allocate that extra space just in
case. But if not, we could have initialized the string using

char s[] = "cat";

and the compiler would only assign the minimum memory needed (four bytes in this case,
three for each character and one for the NULL character).

The function sendOutput in invest.c shows an example of constructing a string using sprintf,
a function provided by stdio.h. Other functions for manipulating strings are provided in
string.h. Both of these headers are described briefly in Section A.4.14.

Multi-dimensional arrays

The definition

int mat[2][3];

allocates memory for 6 ints, mat[0][0] to mat[1][2], which can be thought of as a
two-dimensional array, or matrix. These occupy a contiguous region of memory, with
mat[0][0] at the lowest memory location, followed by mat[0][1], mat[0][2], mat[1][0],
mat[1][1], and mat[1][2]. This matrix can be initialized using nested braces,
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int mat[2][3] = {{0, 1, 2}, {3, 4, 5}};

Higher-dimensional arrays can be created by simply adding more indexes. In memory, a
“row” of the rightmost index is completed before incrementing the next index to the left.

Static vs. dynamic memory allocation

A command of the form float arr[5] is called static memory allocation, meaning that the
size of the array is known at compile time. Another option is dynamic memory allocation,
where the size of the array can be chosen at run time.23 With the C standard library header
stdlib.h included using the preprocessor command #include <stdlib.h>, the syntax

float *arr; // arr is a pointer to float, but no memory has been allocated for the array
int i=5;
arr = (float *) malloc(i * sizeof(float)); // allocate the memory

allocates arr[0..4], and

free(arr);

releases the memory when it is no longer needed. It is crucial to remember to free memory
allocated with malloc when you are finished with it, so you do not run out of memory if you
repeatedly allocate memory.24 If malloc cannot allocate the requested memory, perhaps
because the computer is out of memory, it returns a NULL pointer (i.e., arr will have value 0).
You must always check that the result of malloc is valid before continuing with your program.

A.4.10 Relational Operators and TRUE/FALSE Expressions

== equal
!= not equal

>, >= greater than, greater than or equal to
<, <= less than, less than or equal to

Relational operators operate on two values and evaluate to 0 or 1. A 0 indicates that the
expression is FALSE and a 1 indicates that the expression is TRUE. For example, the
expression (3>=2) is TRUE, so it evaluates to 1, while (3<2) evaluates to 0, or FALSE.

23 Dynamic memory is allocated from the heap, a portion of memory set aside for dynamic allocation (and
therefore is not available for statically allocated variables and program code). You may have to adjust linker
options setting the size of the heap. See Chapter 5.3.

24 malloc tracks the size of the block associated with the address arr, so you do not need to tell free how much
memory to release.
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The most common mistake with relational operators is using = to test for equality instead of
==. For example, using the if conditional syntax (Section A.4.12), the test

int i = 2;
if (i = 3) { // error: this is an assignment, not a test!!

printf("Test is true.");
}

always evaluates to TRUE, because the expression (i=3) assigns the value of 3 to i, and the
expression evaluates to 3. Any nonzero value is treated as logical TRUE. If the condition is
written (i==3), it will operate as intended, evaluating to 0 (FALSE).

Be aware of potential pitfalls in checking equality of floating point numbers. Consider the
following program:

#include <stdio.h>
#define VALUE 3.1
int main(void) {

float x = VALUE;
double y = VALUE;
if (x == VALUE) {
printf("x is equal to %f.\n",VALUE);

} else {
printf("x is not equal to %f!\n",VALUE);

}
if (y == VALUE) {
printf("y is equal to %f.\n",VALUE);

} else {
printf("y is not equal to %f!\n",VALUE);

}
return 0;

}

You might be surprised to see that your program says that x is not equal while y is! In fact,
neither x nor y are exactly 3.1 due to roundoff error in the floating point representation.
However, by default, the constant 3.1 is treated as a double, so the double y carries the
identical (wrong) value. If you want a constant to be treated explicitly as a float, you can
write it as 3.1F, and if you want it to be treated as a long double, you can write it as 3.1L.

A.4.11 Logical and Bitwise Operators

∼ bitwise NOT
& bitwise AND
| bitwise OR
∧ bitwise XOR
>> shift bits to the right (shifting in 0’s from the left)
<< shift bits to the left (shifting in 0’s from the right)
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Bitwise operators act directly on the bits of the operand(s), as in the following example:

unsigned char a=0xC, b=0x6, c; // in binary, a is 0b00001100 and b is 0b00000110
c = ˜a; // NOT; c is 0xF3 or 0b11110011
c = a & b; // AND; c is 0x04 or 0b00000100
c = a | b; // OR; c is 0x0E or 0b00001110
c = a ˆ b; // XOR; c is 0x0A or 0b00001010
c = a >> 3; // SHIFT RT 3; c is 0x01 or 0b00000001, one 1 is shifted off the

right end
c = a << 3; // SHIFT LT 3; c is 0x60 or 0b01100000, 1’s shifted to more

significant digits

Much like the math operators, we also have the assignment expressions &=, |=, ˆ=, >>=, and
<<=, so a &= b is equivalent to a = a&b.

A.4.12 Conditional Statements

if-else

The basic if-else construct takes this form:

if (<expression>) {
// execute this code block if <expression> is TRUE, then exit

}
else {
// execute this code block if <expression> is FALSE

}

If the code block is a single statement, the braces are not necessary; however, good practice
dictates that you should always use braces, in case you want to add additional statements later.
The else and the block after it can be eliminated if no action needs to be taken when
<expression> is FALSE.

if-else statements can be made into arbitrarily long chains:

if (<expression1>) {
// execute this code block if <expression1> is TRUE, then exit this if-else chain

}
else if (<expression2>) {
// execute this code block if <expression2> is TRUE, then exit this if-else chain

}
else {
// execute this code block if both expressions above are FALSE

}

An example if statement is in getUserInput.
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switch

If you would like to check if the value of a single expression is one of several possibilities, a
switch may be simpler, clearer, and faster than a chain of if-else statements. Here is an
example:

char ch;
// ... omitting code that sets the value of ch ...
switch (ch) {

case ’a’: // execute these statements if ch has value ’a’
<statement>;
<statement>;
break; // exit the switch statement

case ’b’:
// ... some statements
break;

case ’c’:
// ... some statements
break;

default: // execute this code if none of the previous cases applied
// ... some statements

}

Notice the break; statement after each case. These statements are required to prevent the code
from “falling through” to the next case, which is usually undesirable.

A.4.13 Loops

for loop

A for loop has the following syntax:

for (<initialization>; <test>; <update>) {
// code block
}

If the code block consists of only one statement, the surrounding braces can be eliminated, but
it is a good idea to use them anyway.

The sequence is as follows: at the beginning of the loop, the <initialization> statement is
executed. Then the <test> is evaluated. If it is TRUE, the code block is executed, the <update>
is performed, and we return to the <test>. If it is FALSE, the for loop exits.

The following for loop is in calculateGrowth:

for (i = 1; i <= invp->years; i = i + 1) {
invp->invarray[i] = invp->growth*invp->invarray[i-1];

}
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The <initialization> step sets i = 1. The <test> is TRUE if i is less than or equal to the
number of years we will calculate growth in the investment. If it is TRUE, the value of the
investment in year i is calculated from the value in year i-1 and the growth rate. The <update>

adds 1 to i. In this example, the code block is executed for i values of 1 to invp->years.

It is possible to perform more than one statement in the <initialization> and <update> steps
by separating the statements by commas. For example, we could write

for (i = 1, j = 10; i <= 10; i++, j--) { /* code */ };

if we want i to count up and j to count down.

while loop

A while loop has the following syntax:

while (<test>) {
// code block

}

First, the <test> is evaluated, and if it is FALSE, the while loop exits. If the test is TRUE, the
code block is executed and we return to the <test>.

In main of invest.c, the while loop executes until the function getUserInput returns 0, i.e.,
FALSE. getUserInput collects the user’s input and returns an int that is 0 if the user’s input is
invalid and 1 if it is valid.

do-while loop

This is similar to a while loop, except the <test> is executed at the end of the code block,
guaranteeing that the loop is executed at least once.

do {
// code block

} while (<test>);

break and continue

If anywhere in the loop’s code block the command break is encountered, the program will exit
the loop. If the command continue is encountered, the rest of the commands in the code block
will be skipped, and control will return to the <update> in a for loop or the <test> in a while

or do-while loop. Examples:

while (<test1>) {
if (<test2>) {

break; // jump out of the while loop
}
// ...

}
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while (<test1>) {
if (<test2>) {
continue; // skip the rest of the loop and go back to <test1>

}
x = x+3;

}

Use break and continue judiciously; they can make your code difficult to read. If you find
yourself relying on numerous break and continue statements in a single loop, you may want to
rethink your approach.

A.4.14 The C Standard Library

C comes with a standard library, aspects of which you can use by including the appropriate .h
header file. The header file provides data types, function prototypes and macros required for
part of the library.25 We have already seen examples of standard header files such as stdio.h,
which contains input/output functions; math.h in Section A.4.7; and stdlib.h in Section A.4.9.
Third-party libraries can also be included by including their header files and linking with them.

It is well beyond our scope to provide details on the C standard library. Here we highlight a
few particularly useful functions in stdio.h, string.h, and stdlib.h.

Input and output: stdio.h

int printf(const char *Format, ...);

The function printf is used to print to the “standard output,” which, for a PC, is typically the
screen. It takes a formatting string Format and a variable number of extra arguments,
determined by the formatting string, as indicated by the ... notation. The keyword const

means that printf cannot change the string Format.

An example comes from our program printout.c:

int i;
float f;
double d;
char c;

25 Reminder: if you include <math.h>, you should also compile your program with the -lm flag, so the math
library is linked during the linking stage. The math library is logically part of the C standard library, it just
happens to be in a different file.
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i = 32;
f = 4.278;
d = 4.278;
c = ’k’; // or, by ASCII table, c = 107;

printf("Formatted output:\n");
printf(" i = %4d c = ’%c’\n",i,c);
printf(" f = %19.17f\n",f);
printf(" d = %19.17f\n",d);

which produces the output

Formatted output:
i = 32 c = ’k’
f = 4.27799987792968750
d = 4.27799999999999958

The formatting strings consist of plain text, the special character \n that prints a newline, and
directives of the form %4d and %19.17f. Each directive indicates that printf will be looking for
a corresponding variable in the argument list to insert into the output. A non-exhaustive list of
directives is given here:

%d Print an int. Corresponding argument should be an int.
%u Print an unsigned int. Corresponding argument should be an integer data type.
%ld Print a long int.
%f Print a double or a float. Corresponding argument should be a float or a double.
%c Print a character according to the ASCII table. Argument should be char.
%s Print a string. Argument should be a pointer to a char (first element of a string),

terminated with a NULL character (’\0’).
%x Print an unsigned int as a hexadecimal number.

The directive %d can be written instead as %4d, for example, meaning that four spaces are
allocated to write the integer, which will be right-justified in that space with unused spaces
blank. The directive %f can be written instead as %6.3f, indicating that six spaces are reserved
to write out the variable, with one of those spaces being the decimal point and three of the
spaces after the decimal point.

int sprintf(char *str, const char *Format, ...);

Instead of printing to the screen, sprintf prints to the string str. An example of this is in
sendOutput. The string str must have enough memory allocated to fit the results.

int scanf(const char *Format, ...);

The function scanf is a formatted read from the “standard input,” which is typically the
keyboard. Arguments to scanf consist of a formatting string and pointers to variables where
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the input should be stored. Typically the formatting string consists of directives like %d, %f,
etc., separated by whitespace. The directives are similar to those for printf, except they do not
accept spacing modifiers (like the 5 in %5d).

One notable difference between formatting strings is that, unlike printf, scanf does
distinguish between floats and doubles. To read a double with scanf use %lf rather than %f.

For each directive, scanf expects a pointer to a variable of that type in the argument list. A
very common mistake is the following:

int i;
scanf("%d",i); // WRONG! We need a pointer to the variable.
scanf("%d",&i); // RIGHT.

The pointer allows scanf to put the input into the right place in memory.

getUserInput uses the statement

scanf("%lf %lf %d", &(invp->inv0), &(invp->growth), &(invp->years));

to read in two doubles and an int and place them into the appropriate spots in the investment
data structure. scanf ignores the whitespace (tabs, newlines, spaces, etc.) between the inputs.

int sscanf(char *str, const char *Format, ...);

Instead of scanning from the keyboard, scanf scans the string pointed to by str.

FILE* fopen(const char *Path, const char *Mode);
int fclose(FILE *Stream);
int fscanf(FILE *Stream, const char *Format, ...);
int fprintf(FILE *Stream, const char *Format, ...);

These commands are for reading from and writing to files. Say you have a file named
inputfile, sitting in the same directory as the program, with information your program needs.
The following code would read from it and then write to the file outputfile.

int i;
double x;
FILE *input, *output;
input = fopen("inputfile","r"); // "r" means you will read from this file
output = fopen("outputfile","w"); // "w" means you will write to this file
fscanf(input,"%d %lf",&i,&x);
fprintf(output,"I read in an integer %d and a double %lf.\n",i,x);
fclose(input); // these streams should be closed ...
fclose(output); // ... at the end of the program

Normally, you would check the return value of fopen. If it returns NULL, than it failed to open
the file.
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int fputc(int character, FILE *stream);
int fputs(const char *str, FILE *stream);
int fgetc(FILE *stream);
char* fgets(char *str, int num, FILE *stream);
int puts(const char *str);

These commands write (put) a character or string to a file, get a character or string from a file,
or write a string to the screen. The variable stdin is a FILE * that corresponds to keyboard
input, and stdout is a FILE * that corresponds to screen output.

String manipulation: string.h

char* strcpy(char *destination, const char *source);

Given two strings, char destination[100],source[100], we cannot simply copy one to the
other using the assignment destination = source. Instead we use
strcpy(destination,source), which copies the string source (until reaching the string
terminator character, integer value 0) to destination. The string destination must have
enough memory allocated to hold the source string.

char* strcat(char *destination, const char *source);

Appends the string in source to the end of the string destination, which must be large enough
to hold the concatenated string.

int strcmp(const char *s1, const char *s2);

Returns 0 if the two strings are identical, a positive integer if the first unequal character in s1 is
greater than s2, and a negative integer if the first unequal character in s1 is less than s2.

size_t strlen(const char *s);

The type size_t is an unsigned integer type. strlen returns the length of the string s, where
the end of the string is indicated by the NULL character (’\0’).

void* memset(void *s, int c, size_t len);

memset writes len bytes of the value c (converted to an unsigned char) starting at the
beginning of the string s. So
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char s[10];
memset(s,’c’,5);

would fill the first five characters of the string s with the character ’c’ (or integer value 99).
This can be a convenient way to initialize a string.

General purpose functions in stdlib.h

void* malloc(size_t objectSize)

malloc is used for dynamic memory allocation. An example use is in Section A.4.9.

void free(void *objptr)

free is used to release memory allocated by malloc. An example use is in Section A.4.9.

int rand()

It is sometimes useful to generate random numbers, particularly for games. The code

int i;
i = rand();

places in i a pseudo-random number between 0 and RAND_MAX, a constant which is defined in
stdlib.h (2,147,483,647 in our gcc installation). To convert this to an integer between 1 and
10, you could follow with

i = 1 + (int) ((10.0*i)/(RAND_MAX+1.0));

One drawback of the code above is that calling rand multiple times will lead to the same
sequence of random numbers every time the program runs. The usual solution is to “seed” the
random number algorithm with a different number each time, and this different number is
often taken from a system clock. The srand function is used to seed rand, as in the example
below:

#include <stdio.h> // allows use of printf()
#include <stdlib.h> // allows use of rand() and srand()
#include <time.h> // allows use of time()

int main(void) {
int i;
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srand(time(NULL)); // seed the random number generator with the current time
for (i=0; i<10; i++) printf("Random number: %d\n",rand());
return 0;

}

If we take out the line with srand, this program produces the same ten “random” numbers
every time we run it. Note that this program includes the time.h header to allow the use of the
time function.

void exit(int status)

When exit is invoked, the program exits with the exit code status. stdlib.h defines
EXIT_SUCCESS with value 0 and EXIT_FAILURE with value −1, so that a typical call to exit

might look like

exit(EXIT_SUCCESS);

A.4.15 Multiple File Programs and Libraries

So far our programs have used the C Standard Library, which provides several functions,
including printf and scanf. Accessing these functions is possible because:

1. The preprocessor command #include <stdio.h> inserts the header file stdio.h into the
current compilation unit, providing function prototypes for library functions.

2. The linker links the pre-compiled library object code in the C Standard Library with your
program.

Thus, using a library usually requires header files and object code. We could also loosely
define a library to consist of a header file and a C file (without a main function) containing
source code for the library functions.

The purpose of a library is to collect functions that are likely to be useful in multiple programs
so you do not have to rewrite the code for each program. The same principles apply when
dividing your project into multiple source files. Think about what functions may be generally
useful yet related and put them into their own file. Having code in multiple files not only
promotes reuse, but it also isolates your project’s components making them easier to test and
debug. Many libraries evolve from a collection of source files that were designed for one
particular project, but prove more generally useful.

Let us look at an example.

A simple example: The rad2volume library

Pretend you want to write several programs that need to calculate the volume of a sphere given
its radius. You could copy and paste the formula into all of your programs. If, however, you
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made some mistake and wanted to fix it, you would then need to find where you used the
formula in every program and change it. By placing the formula in a function, in its own file,
you only need to make one correction to fix everything.

In this example, you decide to write one helper C file, rad2volume.c, with a function double

radius2Volume(double r) that can be used by other C files. For good measure, you decide to
make the constant MY_PI available also. To test your new rad2volume library consisting of
rad2volume.c and rad2volume.h, you create a main.c file that uses it. The three files are given
below.

// ***** file: rad2volume.h *****
#ifndef RAD2VOLUME_H // "include guard"; don’t include twice in one compilation
#define RAD2VOLUME_H // second line of the "include guard"

#define MY_PI 3.1415926 // constant available to files including rad2Volume.h
double radius2Volume(double r); // prototype available to files including rad2Volume.h

#endif // third line, and end, of "include guard"

// ***** file: rad2volume.c *****
#include <math.h> // for the function pow
#include "rad2volume.h" // if the header is in the same directory, use "quotes"

static double cuber(double x) { // this function is not available externally
return pow(x,3.0);

}

double radius2Volume(double rad) { // function definition
return (4.0/3.0)*MY_PI*cuber(rad);

}

// ***** file: main.c *****
#include <stdio.h>
#include "rad2volume.h"

int main(void) {
double radius = 3.0, volume;
volume = radius2Volume(radius);
printf("Pi is approximated as %25.23lf.\n",MY_PI);
printf("The volume of the sphere is %8.4lf.\n",volume);
return 0;

}

The C file rad2volume.c contains two functions, cuber and radius2Volume. The function cuber

is only meant for internal, private use by rad2volume.c, so there is no prototype in
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rad2volume.h and it is also declared static so it is not visible to other source files. The
function radius2Volume is meant for public use by other C files, so a prototype for
radius2Volume is included in the library header file rad2volume.h. The constant MY_PI is also
meant for public use, so it is defined in rad2volume.h. Now radius2Volume and MY_PI are
available to any file that includes rad2volume.h. In this case, they are available to main.c and
rad2volume.c. Typically, it is good practice for the implementation file to #include its own
header; this prevents problems relating to a mismatch between function prototypes and
function definitions.

Each of main.c and rad2volume.c is compiled independently to create the object code files
main.o and rad2volume.o. The linker combines these files into the final executable. main.c
compiles successfully because it has a prototype for rad2Volume from including rad2volume.h,
and it expects that, during the linking stage, rad2Volume will be present. If no object code
passed to the linker defines rad2Volume then a linker error occurs.

Note the three lines making up the include guard in rad2volume.h. During preprocessing of a
C file, if rad2volume.h is included, the macro RAD2VOLUME_H is defined. If the same C file tries
to include rad2volume.h again, the include guard will recognize that RAD2VOLUME_H already
exists and therefore skip the prototype and constant definition, down to the #endif. Without
include guards, if we wrote a .c file including both header1.h and header2.h, for example, not
knowing that header2.h already includes header1.h, header1.h would be included twice,
possibly causing errors.

The two C files, rad2volume.c and main.c, can be compiled into object code using the
commands

gcc -c rad2volume.c -o rad2volume.o
gcc -c main.c -o main.o

where the -c flag indicates that the source code should be compiled and assembled, but not
linked. The result is the object files rad2volume.o and main.o. The two object files can be
linked into a final executable using

gcc rad2volume.o main.o -o myprog

Instead of typing these three lines, the single command

gcc rad2volume.c main.c -o myprog

will automatically compile and link the files.

Executing myprog, the output is

Pi is approximated as 3.14159260000000006840537.
The volume of the sphere is 113.0973.
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More general multi-file projects

Generalizing from the previous example, a header file declares constants, macros, new data
types, and function prototypes that are needed by the files that #include them. A header file
can be included by C source files or other header files. Figure A.3 illustrates a project
consisting of one C source file with a main function and two helper C source files without a
main function. (Every C program has exactly one .c file with a main function.) Each of the
helper C files has its own header file. This project also has another header file, general.h,
without an associated C file. This header contains general constant, macro, and data type
definitions that are not specific to either helper source file or the main C file. The arrows
indicate that the pointed-to file #includes the pointed-from header file.

Assuming that all the files are in the same directory, the project in Figure A.3 can be built by
the following four commands, which create three object files (one for each source file) and
link them together into myprog:

gcc -c main.c -o main.o
gcc -c helper1.c -o helper1.o
gcc -c helper2.c -o helper2.o
gcc main.o helper1.o helper2.o -o myprog

The build is illustrated in Figure A.4. Each C file is compiled independently and requires the
constants, macros, data types, and function prototypes needed to successfully compile and
assemble into an object file. During compilation of a single C file, the compiler neither has nor
needs access to the source code for functions in other C files. If main.c uses a function in
helper1.c, for example, it needs only a prototype of the function, provided by helper1.h. The
prototype tells the compiler the return type of the function and what arguments it takes,
allowing the compiler to check if the code in main.c uses the function properly. Calls to the
function from main.o are linked to the actual function in helper1.o at the linker stage.

main.c helper2.chelper1.c

helper2.h

general.h

helper1.h

Figure A.3
An example project consisting of three C files and three header files. Arrows point from header files

to files that include them.
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main.c

helper2.h

general.h

helper1.h

helper1.c

helper1.h

general.h

helper2.c

helper2.h

general.h

main.ohelper2.ohelper1.o

Link

myprog

Preprocess,
compile,

assemble

Preprocess,
compile,

assemble

Preprocess,
compile,

assemble

Figure A.4
The building of the project in Figure A.3.

Another benefit of splitting your project comes during compilation. If a .c file and the header
files it includes do not change, then the .c file need not be compiled every time you build your
project; the existing .o file may be used during the linking stage.

According to Figures A.3 and A.4, main.c has the following preprocessor commands:

#include "general.h"
#include "helper1.h"
#include "helper2.h"

The preprocessor replaces these commands with copies of the files general.h, helper1.h, and
helper2.h. But when it includes helper1.h, it finds that helper1.h tries to include a second
copy of general.h (see Figure A.3; helper1.h has a #include "general.h" command). Since
general.h has already been copied in, it should not be copied again; otherwise we would have
multiple copies of the same function prototypes, constant definitions, etc. The include guards
prevent this duplication from happening.

In summary, the general.h, helper1.h, and helper2.h header files contain definitions that are
made public to files including them. We might see the following items in the helper1.h header
file, for example:
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• an include guard
• other include files
• constants and macros defined with #define made public (and which may also be used by

helper1.c)
• new data types (which may also be used by helper1.c)
• function prototypes of those functions in helper1.c which are meant to be used by other

files

If a variable, function prototype, or constant is private to one C file, you should define it with
the static keyword in the C file and not include it in the header file.

A header file like helper1.h could also have the declaration

extern int Helper1_Global_Var; // no space is allocated by this declaration

where helper1.c has the global variable definition

int Helper1_Global_Var; // space is allocated by this definition

Then any file including helper1.h would have access to the global variable
Helper1_Global_Var allocated by helper1.c. Global variables defined in helper1.c with the
static keyword are private to helper1.c and cannot be accessed by other files. If you have to
use global variables (which should be avoided generally), declare them static whenever
possible. Only in rare circumstances should you need to use extern.

Makefiles

When you are ready to build your executable, you can type the gcc commands at the command
line, as we have seen previously. A Makefile simplifies the process, particularly for multi-file
projects, by specifying the dependencies and commands needed to build the project. A
Makefile for our rad2volume example is shown below, where everything after a # is a
comment.

# ***** file: Makefile *****
# Comment: This is the simplest of Makefiles!

# Here is a template:
# [target]: [dependencies]
# [tab] [command to execute]

# The thing to the left of the colon in the first line is what is created,
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# and the thing(s) to the right of the colon are what it depends on. The second
# line is the action to create the target. If the things it depends on
# haven’t changed since the target was last created, no need to do the action.
# Note: The tab spacing in the second line is important! You can’t just use
# individual spaces.

# "make myprog" or "make" links two object codes to create the executable
myprog: main.o rad2volume.o

gcc main.o rad2volume.o -o myprog

# "make main.o" produces main.o object code; depends on main.c and rad2volume.h
main.o: main.c rad2volume.h

gcc -c main.c -o main.o

# "make rad2volume.o" produces rad2volume.o; depends on one .c and one h file
rad2volume.o: rad2volume.c rad2volume.h

gcc -c rad2volume -o rad2volume.o

# "make clean" throws away any object files to ensure make from scratch
clean:

rm *.o

With this Makefile in the same directory as your other files, you should be able to type the
command make [target],26 where [target] is myprog, main.o, rad2volume.o, or clean. If the
target depends on other files, make will make sure those are up to date first, and if not, it will
call the commands needed to create them. For example, make myprog triggers a check of
main.o, which triggers a check of main.c and rad2volume.h. If either of those have changed
since the last time main.o was made, then main.c is compiled and assembled to create a new
main.o before the linking step.

The command make with no target specified will make the first target (which is myprog in
this case).

Ensure that your Makefile is saved without any extensions (e.g., .txt) and that the commands
are preceded by a tab (not spaces).

There are many more sophisticated uses of Makefiles which you can learn about from other
sources.

A.5 Exercises
1. Install C, create the HelloWorld.c program, and compile and run it.
2. Explain what a pointer variable is, and how it is different from a non-pointer variable.
3. Explain the difference between interpreted and compiled code.

26 In some C installations make is named differently, like nmake for Visual Studio or mingw32-make. If you can
find no version of make, you may not have selected the make tools installation option when you performed the C
installation.
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4. Write the following hexadecimal (base-16) numbers in eight-digit binary (base-2) and
three-digit decimal (base-10). Also, for each of the eight-digit binary representations,
give the value of the most significant bit. (a) 0x1E. (b) 0x32. (c) 0xFE.
(d) 0xC4.

5. What is 33310 in binary and 10111101112 in hexadecimal? What is the maximum value,
in decimal, that a 12-bit number can hold?

6. Assume that each byte of memory can be addressed by a 16-bit address, and every 16-bit
address has a corresponding byte in memory. How many total bits of memory do you
have?

7. (Consult the ASCII table.) Let ch be of type char. (a) The assignment ch = ’k’ can be
written equivalently using a number on the right side. What is that number? (b) The
number for ’5’? (c) For ’=’? (d) For ’?’?

8. What is the range of values for an unsigned char, short, and double data type?
9. How many bits are used to store a char, short, int, float, and double?

10. Explain the difference between unsigned and signed integers.
11. (a) For integer math, give the pros and cons of using chars vs. ints. (b) For floating point

math, give the pros and cons of using floats vs. doubles. (c) For integer math, give the
pros and cons of using chars vs. floats.

12. The following signed short ints, written in decimal, are stored in two bytes of memory
using the two’s complement representation. For each, give the four-digit hexadecimal
representation of those two bytes. (a) 13. (b) 27. (c) −10. (d) −17.

13. The smallest positive integer that cannot be exactly represented by a four-byte IEEE 754
float is 224 + 1, or 16,777,217. Explain why.

14. Give the four bytes, in hex, that represent the following decimal values: (a) 20 as an
unsigned int. (b) −20 as a two’s complement signed int. (c) 1.5 as an IEEE 754 float.
(d) 0 as an IEEE 754 float.
To verify your answers, use the program typereps.c below. This program allows the user
to enter four bytes as eight hex characters, then prints the value of those four bytes when
they are interpreted as an unsigned int, a two’s complement signed int, an IEEE 754
float, or four consecutive chars. To do this, the program creates a new data type
four_types_t consisting of four bytes, or 32 bits. These same 32 bits are interpreted as
either an unsigned int, int, float, or four chars depending on whether we reference the
bits using the fields u, i, f, or char0–char3 in the union.

#include <stdio.h>

typedef union { // a new data type consisting of four bytes
unsigned int u; // the 32 bits interpreted as an unsigned int
int i; // the same 32 bits interpreted as a two’s complement int
float f; // the same 32 bits interpreted as an IEEE 754 single prec float
struct {

char char0:8; // bits 0 - 7 interpreted as char, called char0
char char1:8; // bits 8 - 15 interpreted as char, called char1
char char2:8; // bits 16 - 23 interpreted as char, called char2
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char char3:8; // bits 24 - 31 interpreted as char, called char3
};

} four_types_t; // the new type is called four_types_t

int main(void) {
four_types_t val;

while (1) { // exit the infinite loop using ctrl-c or similar
printf("Enter four bytes as eight hex characters 0-f, e.g., abcd0123: ");
scanf("%x",&val.u);
printf("\nThe 32 bits in hex: %x\n",val.u);
printf("The 32 bits as an unsigned int, in decimal: %u\n",val.u);
printf("The 32 bits as a signed int, in decimal: %d\n",val.i);
printf("The 32 bits as a float: %.20f\n",val.f);
printf("The 32 bits as 4 chars: %c %c %c %c\n\n",

val.char3, val.char2, val.char1, val.char0);
}
return 0;

}

Below is a sample output. Note that only the ASCII values 32-126 have a visible printed
representation, so the printouts as chars are meaningless in the first two examples.

Enter four bytes as eight hex characters 0-f, e.g., abcd0123: c0000000

The 32 bits in hex: c0000000
The 32 bits as an unsigned int, in decimal: 3221225472
The 32 bits as a signed int, in decimal: -1073741824
The 32 bits as a float: -2.00000000000000000000
The 32 bits as 4 chars: ?

Enter four bytes as eight hex characters 0-f, e.g., abcd0123: ff800000

The 32 bits in hex: ff800000
The 32 bits as an unsigned int, in decimal: 4286578688
The 32 bits as a signed int, in decimal: -8388608
The 32 bits as a float: -inf
The 32 bits as 4 chars: ? ?

Enter four bytes as eight hex characters 0-f, e.g., abcd0123: 48494a4b

The 32 bits in hex: 48494a4b
The 32 bits as an unsigned int, in decimal: 1212762699
The 32 bits as a signed int, in decimal: 1212762699
The 32 bits as a float: 206121.17187500000000000000
The 32 bits as 4 chars: H I J K

You can easily modify the code to allow the user to enter the four bytes as a float or int
to examine their hex representations.

15. Write a program that prints out the sign, exponent, and significand bits of the IEEE 754
representation of a float entered by the user.

16. Technically the data type of a pointer to a double is “pointer to type double.” Of the
common integer and floating point data types discussed in this chapter, which is the most
similar to this pointer type? Assume pointers occupy eight bytes.
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17. To keep things simple, let us assume we have a microcontroller with only 28 = 256 bytes
of RAM, so each address is given by a single byte. Now consider the following code
defining four global variables:

unsigned int i, j, *kp, *np;

Let us assume that the linker places i in addresses 0xB0..0xB3, j in 0xB4..0xB7, kp in
0xB8, and np in 0xB9. The code continues as follows:

// (a) the initial conditions, all memory contents unknown
kp = &i; // (b)
j = *kp; // (c)
i = 0xAE; // (d)
np = kp; // (e)
*np = 0x12; // (f)
j = *kp; // (g)

For each of the comments (a)-(g) above, give the contents (in hexadecimal) at the
address ranges 0xB0..0xB3 (the unsigned int i), 0xB4..0xB7 (the unsigned int j),
0xB8 (the pointer kp), and 0xB9 (the pointer np), at that point in the program, after
executing the line containing the comment. The contents of all memory addresses are
initially unknown or random, so your answer to (a) is “unknown” for all memory
locations. If it matters, assume little-endian representation.

18. Invoking the gcc compiler with a command like gcc myprog.c -o myprog actually
initiates four steps. What are the four steps called, and what is the output of each step?

19. What is main’s return type, and what is the meaning of its return value?
20. Give the printf statement that will print out a double d with eight digits to the right of

the decimal point and four spaces to the left.
21. Consider three unsigned chars, i, j, and k, with values 60, 80, and 200, respectively. Let

sum also be an unsigned char. For each of the following, give the value of sum after
performing the addition. (a) sum = i+j; (b) sum = i+k; (c) sum = j+k;

22. For the variables defined as

int a=2, b=3, c;
float d=1.0, e=3.5, f;

give the values of the following expressions. (a) f = a/b; (b) f = ((float) a)/b; (c) f =

(float) (a/b); (d) c = e/d; (e) c = (int) (e/d); (f) f = ((int) e)/d;

23. In each snippet of code in (a)-(d), there is an arithmetic error in the final assignment of
ans. What is the final value of ans in each case?

a. char c = 17;
float ans = (1 / 2) * c;

b. unsigned int ans = -4294967295;

c. double d = pow(2, 16);
short ans = (short) d;

d. double ans = ((double) -15 * 7) / (16 / 17) + 2.0;
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24. Truncation is not always bad. Say you wanted to store a list of percentages rounded down
to the nearest percent, but you were tight on memory and cleverly used an array of chars
to store the values. For example, pretend you already had the following snippet of code:

char percent(int a, int b) {
// assume a <= b
char c;
c = ???;
return c;

}

You cannot simply write c = a / b. If ab = 0.77426 or ab = 0.778, then the correct return
value is c = 77. Finish the function definition by writing a one-line statement to replace c
= ???.

25. Explain why global variables work against modularity.
26. What are the seven sections of a typical C program?
27. You have written a large program with many functions. Your program compiles without

errors, but when you run the program with input for which you know the correct output,
you discover that your program returns the wrong result. What do you do next? Describe
your systematic strategy for debugging.

28. Erase all the comments in invest.c, recompile, and run the program to make sure it still
functions correctly. You should be able to recognize what is a comment and what is not.
Turn in your modified invest.c code.

29. The following problems refer to the program invest.c. For all problems, you should
modify the original code (or the code without comments from the previous problem) and
run it to make sure you get the expected behavior. For each problem, turn in the modified
portion of the code only.
a. Using if, break and exit. Include the header file stdlib.h so we have access to the

exit function (Section A.4.14). Change the while loop in main to be an infinite loop
by inserting an expression <expr> in while(<expr>) that always evaluates to 1
(TRUE). (What is the simplest expression that evaluates to 1?) Now the first
command inside the while loop gets the user’s input. if the input is not valid, exit
the program; otherwise continue. Next, change the exit command to a break

command, and see the different behavior.
b. Accessing fields of a struct. Alter main and getUserInput to set inv.invarray[0] in

getUserInput, not main.
c. Using printf. In main, before sendOutput, echo the user’s input to the screen. For

example, the program could print out You entered 100.00, 1.05, and 5.
d. Altering a string. After the sprintf command of sendOutput, try setting an element

of outstring to 0 before the printf command. For example, try setting the third
element of outstring to 0. What happens to the output when you run the program?
Now try setting it to ’0’ instead and see the behavior.
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e. Relational operators. In calculateGrowth, eliminate the use of <= in favor of an
equivalent expression that uses !=.

f. Math. In calculateGrowth, replace i=i+1 with an equivalent statement using +=.
g. Data types. Change the fields inv0, growth, and invarray[] to be float instead of

double in the definition of the Investment data type. Make sure you make the correct
changes everywhere else in the program.

h. Pointers. Change sendOutput so that the second argument is of type int *, i.e., a
pointer to an integer, instead of an integer. Make sure you make the correct changes
everywhere else in the program.

i. Conditional statements. Use an else statement in getUserInput to print Input is

valid if the input is valid.
j. Loops. Change the for loop in sendOutput to an equivalent while loop.
k. Logical operators. Change the assignment of valid to an equivalent statement using

|| and !, and no &&.
30. Consider this array definition and initialization:

int x[4] = {4, 3, 2, 1};

For each of the following, give the value or write “error/unknown” if the compiler will
generate an error or the value is unknown. (a) x[1] (b) *x (c) *(x+2) (d) (*x)+2 (e) *x[3]
(f) x[4] (g) *(&(x[1]) + 1)

31. For the (strange) code below, what is the final value of i? Explain why.
int i,k=6;
i = 3*(5>1) + (k=2) + (k==6);

32. As the code below is executed, give the value of c in hex at the seven break points
indicated, (a)-(g).

unsigned char a=0x0D, b=0x03, c;
c = ˜a; // (a)
c = a & b; // (b)
c = a | b; // (c)
c = a ˆ b; // (d)
c = a >> 3; // (e)
c = a << 3; // (f)
c &= b; // (g)

33. In your C installation, or by searching on the web, find a listing of the header file
stdio.h. Find the function prototype for one function provided by the library, but not
mentioned in this appendix, and describe what that function does.

34. Write a program to generate the ASCII table for values 33 to 127. The output should be
two columns: the left side with the number and the right side with the corresponding
character. Turn in your code and the output of the program.

35. We will write a simple bubble sort program to sort a string of text in ascending order
according to the ASCII table values of the characters. A bubble sort works as follows.
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Given an array of n elements with indexes 0 to n− 1, we start by comparing elements 0
and 1. If element 0 is greater than element 1, we swap them. If not, leave them where
they are. Then we move on to elements 1 and 2 and do the same thing, etc., until finally
we compare elements n− 2 and n− 1. After this, the largest value in the array has
“bubbled” to the last position. We now go back and do the whole thing again, but this
time only comparing elements 0 up to n− 2. The next time, elements 0 to n− 3, etc.,
until the last time through we only compare elements 0 and 1.
Although this simple program bubble.c could be written in one function (main), we are
going to break it into some helper functions to get used to using them. The function
getString will get the input from the user; the function printResult will print the sorted
result; the function greaterThan will check if one element is greater than another; and the
function swap will swap two elements in the array. With these choices, we start with an
outline of the program that looks like this.

#include <stdio.h>
#include <string.h>
#define MAXLENGTH 100 // max length of string input

void getString(char *str); // helper prototypes
void printResult(char *str);
int greaterThan(char ch1, char ch2);
void swap(char *str, int index1, int index2);

int main(void) {
int len; // length of the entered string
char str[MAXLENGTH]; // input should be no longer than MAXLENGTH
// here, any other variables you need

getString(str);
len = strlen(str); // get length of the string, from string.h
// put nested loops here to put the string in sorted order
printResult(str);
return(0);

}

// helper functions go here

Here’s an example of the program running. Everything after the first colon is entered by
the user. Blank spaces are written using an underscore character, since scanf assumes
that the string ends at the first whitespace.

Enter the string you would like to sort: This_is_a_cool_program!
Here is the sorted string: !T____aacghiilmoooprrss

Complete the following steps in order. Do not move to the next step until the current step
is successful.
a. Write the helper function getString to ask the user for a string and place it in the

array passed to getString. You can use scanf to read in the string. Write a simple
call in main to verify that getString works as you expect before moving on.
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b. Write the helper function printResult and verify that it works correctly.
c. Write the helper function greaterThan and verify that it works correctly.
d. Write the helper function swap and verify that it works correctly.
e. Now define the other variables you need in main and write the nested loops to

perform the sort. Verify that the whole program works as it should.
Turn in your final documented code and an example of the output of the program.

36. A more useful sorting program would take a series of names (e.g., Doe_John) and scores
associated with them (e.g., 98) and then list the names and scores in two columns in
descending order. Modify your bubble sort program to do this. The user enters a name
string and a number at each prompt. The user indicates that there are no more names by
entering 0 0.
Your program should define a constant MAXRECORDS which contains the maximum number
of records allowable. You should define an array, MAXRECORDS long, of struct variables,
where each struct has two fields: the name string and the score. Write your program
modularly so that there is at least a sort function and a readInput function of type int

that returns the number of records entered.
Turn in your code and example output.

37. Modify the previous program to read the data in from a file using fscanf and write the
results out to another file using fprintf. Turn in your code and example output.

38. Consider the following lines of code:
int i, tmp, *ptr, arr[7] = {10, 20, 30, 40, 50, 60, 70};

ptr = &arr[6];
for(i = 0; i < 4; i++) {
tmp = arr[i];
arr[i] = *ptr;
*ptr = tmp;
ptr–;

}

a. How many elements does the array arr have?
b. How would you access the middle element of arr and assign its value to the variable

tmp? Do this two ways, once indexing into the array using [] and the other with the
dereferencing operator and some pointer arithmetic. Your answer should only be in
terms of the variables arr and tmp.

c. What are the contents of the array arr before and after the loop?
39. The following questions pertain to the code below. For your responses, you only need to

write down the changes you would make using valid C code. You should verify that your
modifications actually compile and run correctly. Do not submit a full C program for this
question. Only write the changes you would make using legitimate C syntax.

#include <stdio.h>
#define MAX 10

void MyFcn(int max);
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int main(void) {
MyFcn(5);
return(0);

}

void MyFcn(int max) {
int i;
double arr[MAX];

if(max > MAX) {
printf("The range requested is too large. Max is %d.\n", MAX);
return;

}
for(i = 0; i < max; i++) {

arr[i] = 0.5 * i;
printf("The value of i is %d and %d/2 is %f.\n", i, i, arr[i]);

}
}

a. while loops and for loops are essentially the same thing. How would you write an
equivalent while loop that replicates the behavior of the for loop?

b. How would you modify the main function so that it reads in an integer value from the
keyboard and then passes the result to MyFcn? (This replaces the statement
MyFcn(5);.) If you need to use extra variables, make sure to define them before you
use them in your snippet of code.

c. Change main so that if the input value from the keyboard is between −MAX and MAX,
you call MyFcn with the absolute value of the input. If the input is outside this range,
then you simply call MyFcn with the value MAX. How would you make these changes
using conditional statements?

d. In C, you will often find yourself writing nested loops (a loop inside a loop) to
accomplish a task. Modify the for loop to use nested loops to set the ith element in
the array arr to half the sum of the first i− 1 integers, i.e., arr[i] = 1

2

∑i−1
j=0 j. (You

can easily find a formula for this that does not require the inner loop, but you should
use nested loops for this problem.) The same loops should print the value of each
arr[i] to 2 decimal places using the %f formatting directive.

40. If there are n people in a room, what is the chance that two of them have the same
birthday? If n = 1, the chance is zero, of course. If n > 366, the chance is 100%. Under
the assumption that births are distributed uniformly over the days of the year, write a
program that calculates the chances for values of n = 2 to 100. What is the lowest value
n∗ such that the chance is greater than 50%? (The surprising result is sometimes called
the “birthday paradox.”) If the distribution of births on days of the year is not uniform,
will n∗ increase or decrease? Turn in your answer to the questions as well as your C code
and the output.

41. In this problem you will write a C program that solves a “puzzler” that was presented on
NPR’s CarTalk radio program. In a direct quote of their radio transcript, found here
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http://www.cartalk.com/content/hall-lights?question, the problem is described as
follows:

RAY: This puzzler is from my “ceiling light” series. Imagine, if you will, that you
have a long, long corridor that stretches out as far as the eye can see. In that corridor,
attached to the ceiling are lights that are operated with a pull cord.

There are gazillions of them, as far as the eye can see. Let us say there are 20,000
lights in a row.

They’re all off. Somebody comes along and pulls on each of the chains, turning on
each one of the lights. Another person comes right behind, and pulls the chain on
every second light.

TOM: Thereby turning off lights 2, 4, 6, 8 and so on.
RAY: Right. Now, a third person comes along and pulls the cord on every third

light. That is, lights number 3, 6, 9, 12, 15, etc. Another person comes along and pulls
the cord on lights number 4, 8, 12, 16 and so on. Of course, each person is turning on
some lights and turning other lights off.

If there are 20,000 lights, at some point someone is going to come skipping along
and pull every 20,000th chain.

When that happens, some lights will be on, and some will be off. Can you predict
which lights will be on?

You will write a C program that asks the user the number of lights n and then
prints out which of the lights are on, and the total number of lights on, after the last (nth)
person goes by. Here’s an example of what the output might look like if the user enters
200:

How many lights are there? 200

You said 200 lights.
Here are the results:
Light number 1 is on.
Light number 4 is on.
...
Light number 196 is on.
There are 14 total lights on!

Your program lights.c should follow the template outlined below. Turn in your code
and example output.

/**************************************************************************
* lights.c
*
* This program solves the light puzzler. It uses one main function
* and two helper functions: one that calculates which lights are on,
* and one that prints the results.
*
***************************************************************************/

#include <stdio.h>
#include <stdlib.h> // allows the use of the "exit()" function

http://www.cartalk.com/content/hall-lights?question
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#define MAX_LIGHTS 1000000 // maximum number of lights allowed

// here’s a prototype for the light toggling function
// here’s a prototype for the results printing function

int main(void) {

// Define any variables you need, including for the lights’ states

// Get the user’s input.
// If it is not valid, say so and use "exit()" (stdlib.h, Sec 1.2.16).
// If it is valid, echo the entry to the user.

// Call the function that toggles the lights.
// Call the function that prints the results.

return(0);
}

// definition of the light toggling function
// definition of the results printing function

42. We have been preprocessing, compiling, assembling, and linking programs with
commands like

gcc HelloWorld.c -o HelloWorld

The gcc command recognizes the first argument, HelloWorld.c, is a C file based on its .c
extension. It knows you want to create an output file called HelloWorld because of the -o

option. And since you did not specify any other options, it knows you want that output to
be an executable. So it performs all four of the steps to take the C file to an executable.
We could have used options to stop after each step if we wanted to see the intermediate
files produced. Below is a sequence of commands you could try, starting with your
HelloWorld.c code. Do not type the “comments” to the right of the
commands!

> gcc HelloWorld.c -E > HW.i // stop after preprocessing, dump into file HW.i
> gcc HW.i -S -o HW.s // compile HW.i to assembly file HW.s and stop
> gcc HW.s -c -o HW.o // assemble HW.s to object code HW.o and stop
> gcc HW.o -o HW // link with stdio printf code, make executable HW

At the end of this process you have HW.i, the C code after preprocessing (.i is a standard
extension for C code that should not be preprocessed); HW.s, the assembly code
corresponding to HelloWorld.c; HW.o, the unreadable object code; and finally the
executable code HW. The executable is created from linking your HW.o object code with
object code from the stdio (standard input and output) library, specifically object code
for printf.
Try this and verify that you see all the intermediate files, and that the final executable
works as expected. (An easier way to generate the intermediate files is to use gcc
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HelloWorld.c -save-temps -o HelloWorld, where the -save-temps option saves the
intermediate files.)
If our program used any math functions, the final linker command would be

> gcc HW.o -o HW -lm // link with stdio and math libraries, make
executable HW

The C standard library is linked automatically, but often the math library is not, requiring
the extra -lm option.
The HW.i and HW.s files can be inspected with a text editor, but the object code HW.o and
executable HW cannot. We can try the following commands to make viewable versions:

> xxd HW.o v1.txt // can’t read obj code; this makes viewable v1.txt
> xxd HW v2.txt // can’t read executable; make viewable v2.txt

The utility xxd just turns the first file’s string of 0’s and 1’s into a string of hex characters,
represented as text-editor-readable ASCII characters 0..9, A..F. It also has an ASCII
sidebar: when a byte (two consecutive hex characters) has a value corresponding to a
printable ASCII character, that character is printed. You can even see your message
“Hello world!” buried there!
Take a quick look at the HW.i, HW.s, and v1.txt and v2.txt files. No need to understand
these intermediate files any further. If you do not have the xxd utility, you could create
your own program hexdump.c instead:

#include <stdio.h>
#define BYTES_PER_LINE 16

int main(void) {
FILE *inputp, *outputp; // ptrs to in and out files
int c, count = 0;
char asc[BYTES_PER_LINE+1], infile[100];

printf("What binary file do you want the hex rep of? ");
scanf("%s",infile); // get name of input file
inputp = fopen(infile,"r"); // open file as "read"
outputp = fopen("hexdump.txt","w"); // output file is "write"

asc[BYTES_PER_LINE] = 0; // last char is end-string
while ((c=fgetc(inputp)) != EOF) { // get byte; end of file?

fprintf(outputp,"%x%x ",(c >> 4),(c & 0xf)); // print hex rep of byte
if ((c>=32) && (c<=126)) asc[count] = c; // put printable chars in asc
else asc[count] = ’.’; // otherwise put a dot
count++;
if (count==BYTES_PER_LINE) { // if BYTES_PER_LINE reached

fprintf(outputp," %s\n",asc); // print ASCII rep, newline
count = 0;

}
}
if (count!=0) { // print last (short) line

for (c=0; c<BYTES_PER_LINE-count; c++) // print extra spaces
fprintf(outputp," ");
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asc[count]=0; // add end-string char to asc
fprintf(outputp," %s\n",asc); // print ASCII rep, newline

}
fclose(inputp); // close files
fclose(outputp);
printf("Printed hexdump.txt.\n");
return(0);

}

Further Reading
Bronson, G. J. (2006). A first book of ANSI C (4th ed.). Boston, MA: Course Technology Press.
Kernighan, B. W., & Ritchie, D. M. (1988). The C programming language (2nd ed.). Upper Saddle River, NJ:

Prentice Hall.



APPENDIX B

Circuits Review

This appendix is meant as a brief refresher on basic analysis of circuits with resistors,
capacitors, inductors, diodes, bipolar junction transistors, and operational amplifiers, at the
level they are used in this book. In particular, this appendix does not cover the general
frequency response of circuits with complex impedance. It also does not cover digital circuit
design; in this book, most logical operations are performed by the PIC32.

B.1 Basics

Primary quantities of interest in circuit analysis and design are voltage and current.

Voltage is an effort variable, analogous to force in mechanical systems. In fact, voltage is
sometimes referred to as electromotive force. Just as a force causes a mass to move, a voltage
causes electrons (and therefore current) to flow. The unit of voltage is a Volt (V). Voltage is
measured across elements (e.g., the voltage, or potential, at the positive terminal of a 9 V
battery is 9 V greater than at the negative terminal). By defining the voltage at a particular
point in a circuit as 0 V, or ground (GND), it is possible to refer to the voltage at a point,
implicitly comparing it to ground.

Current is a flow variable, analogous to velocity in mechanical systems. The unit of current is
an Ampere (A), commonly shortened to amp. Current is measured as a flow through circuit
elements. Current into a circuit element must equal the current coming out of the element, and
therefore current can only flow around a closed loop. It cannot, for example, flow into an
element and stop there.

Just as force times velocity is power in mechanical systems, voltage times current is power in
electrical systems. The unit of power is the Watt (W), and 1 W = 1 A × 1 V. For example,
Figure B.1 shows a generic circuit element (perhaps a battery, resistor, capacitor, diode, etc.).
The voltage V across the element is defined to be positive if the potential is higher at the end
of the element labeled +; otherwise V is negative. The current I through the element is defined
to be positive if it is in the direction of the arrow, from + to −; otherwise I is negative.1 With

1 Note: The labeling of the ends of the element as + and − does not necessarily indicate which end has higher
potential. It just indicates the convention chosen to call the voltage positive or negative. Similarly, the arrow does
not necessarily indicate which direction the current actually flows.
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Figure B.1
Defining positive voltage V across, and current I through, a circuit element.
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Figure B.2
The same circuit drawn two different ways, with a battery of voltage V and four generic elements,

A through D.

these conventions, the power consumed by the element is P = IV . When IV > 0, the element
is consuming electrical power, either dissipating it (as with a resistor) or storing it as energy
(as with a capacitor or inductor). When IV < 0, the element is providing electrical power (e.g.,
a battery or a discharging capacitor). The unit of energy is the Joule (J), and 1 J = 1 W × 1 s.

Figure B.2 shows a circuit with a battery of voltage V and four generic elements, labeled A
through D. The voltages across the elements are VA through VD. The current I1 flows through
the battery, A, and B; I2 flows through C; and I3 flows through D. The same circuit is drawn in
two different ways. In one, a battery is drawn explicitly, allowing a closed loop for current to
be clearly visualized. In the other, which is more common in circuit schematics, the closed
loop through the battery is left implicit. This circuit also introduces the ground symbol the
voltage level defined as zero volts (at the negative terminal of the battery in this case).

To solve for voltages and currents in this circuit, we use Kirchhoff’s current law (KCL) and
Kirchhoff’s voltage law (KVL). KCL says that current is preserved at any node: current into
the node is equal to current out of the node. In Figure B.2, there are two nodes where currents
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come together, indicated by dots, and each provides the same equation:

I1 = I2 + I3.

KVL says that the sum of voltages around any closed loop must be zero. As you step around a
loop, add voltages from elements where you proceed from the − terminal to the + terminal,
and subtract voltages from elements where you proceed from the + terminal to the − terminal.
For example, there are three loops in Figure B.2: through the battery, A, B, and C; through the
battery, A, B, and D; and through C and D. These yield the following equations, respectively:

V − VA − VB − VC = 0

V − VA − VB − VD = 0

VC − VD = 0.

Only two of these equations are independent. For example, the third equation can be used to
show that the first two are equivalent.

We now have three independent equations (one from KCL and two from KVL) to solve for
seven unknowns in the circuit: the three currents I1, I2, and I3, and the four voltages across the
elements, VA, VB, VC, and VD. To get four more equations, we need the constitutive laws of
the elements, relating the voltages across the elements to the currents through them. Let us
begin with the constitutive laws of the common linear circuit elements: resistors, capacitors,
and inductors.

B.2 Linear Elements: Resistors, Capacitors, and Inductors

Resistors, capacitors, and inductors are called linear circuit elements because the voltages
across the elements are proportional to the current, time integral of the current, or derivative of
the current, respectively. The symbols, units, constitutive laws, and information about power
and energy are summarized in Table B.1. Resistors only dissipate power, as heat, while

Table B.1: The three linear circuit elements and the constitutive laws relating the current I
through them and the voltage V across them

Element Schematic Symbol Unit Constitutive Law Power (W) Energy Stored ( J)

Resistor
+ _

R Ohm (�) V = IR I2R dissipated 0

Capacitor
+ _

C Farad (F) I = C dV
dt CV dV

dt
1
2 CV2

Inductor
+ _

L Henry (H) V = L dI
dt LI dI

dt
1
2 LI2
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I1

I2

I3

RA = 10 Ω

RB = 20 Ω

RC = 30 Ω RD = 40 Ω

V = 5 V

Figure B.3
A resistor network.

capacitors and inductors do not dissipate any power, but either charge (consuming electrical
power and storing it as energy) or discharge (providing electrical power).

Figure B.3 shows the circuit of Figure B.2 with the generic elements replaced by resistors. We
can solve for the four voltages across the resistors and the three currents by simultaneously
solving the seven KCL, KVL, and constitutive law equations:

KCL: I1 = I2 + I3

KVL: 0 = V − VA − VB − VD

0 = VC − VD

Constitutive laws: VA = I1RA

VB = I1RB

VC = I2RC

VD = I3RD

Substituting the battery voltage V = 5 V and the resistances RA = 10 �, RB = 20 �,
RC = 30 �, and RD = 40 �, the currents and voltages can be solved as

I1 = 0.106 A, I2 = 0.061 A, I3 = 0.045 A

VA = 1.061 V, VB = 2.121 V, VC = 1.818 V, VD = 1.818 V .
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Table B.2: Equivalent resistance, capacitance, and
inductance of elements in series and parallel

Elements In Series In Parallel
Resistors R1, R2 R1 + R2 R1R2/(R1 + R2)

Capacitors C1, C2 C1C2/(C1 + C2) C1 + C2
Inductors L1, L2 L1 + L2 L1L2/(L1 + L2)

According to our sign convention, where I is defined as positive if it flows from the
terminal labeled + to the terminal labeled −, the power consumed by the battery
is −I1V = −(0.106 A)(5 V) =−0.53 W. Since the power consumed is negative, the battery
is providing power. The power consumed by RA is I1VA = I21RA = 0.112 W. The power
consumed by RB, RC, and RD can be calculated as 0.225, 0.112, and 0.081 W, respectively,
and the sum of the power dissipated by the resistors is 0.53 W, equal to the power provided by
the battery, as we would expect.

If any of the elements were capacitors or inductors, those constitutive laws would relate the
current through a capacitor to the rate of change of the voltage, or the voltage across an
inductor to the rate of change of current. Instead of simply solving linear equations as above,
we must now solve linear differential equations. In this book we do not delve into analysis of
linear circuits with arbitrary combinations of resistors, inductors, and capacitors, but focus on
circuits with resistors only, as above, as well as circuits with resistors and either a single
capacitor or a single inductor (Section B.2.1). Such circuits cover many practical cases of
interest in mechatronics.

In Figure B.3, the resistors RA and RB are said to be in series. The resistors RC and RD are said
to be in parallel. A simple derivation shows that resistors in series act like a single resistor of
greater resistance, Rseries = RA + RB, and resistors in parallel act like a single resistor of lesser
resistance (since there are now two paths for the current to follow),
Rparallel = RCRD/(RC + RD). Similar relationships can be derived for capacitors and inductors
(Table B.2).

The last linear element we will use is the potentiometer, or pot for short (Figure B.4). A pot is
a resistor with three connections: the terminals at either end, like a regular resistor, and a third
connection called the wiper. The wiper is an electrical contact that can slide from one end of
the resistor to the other, creating a variable resistance between the wiper and the end
connections. If R+ is the resistance between the + terminal of the resistor and the wiper, and
R− is the resistance between the − terminal and the wiper, then the sum of R+ and R− always
equals R, where R is the total resistance of the pot between the two ends. Pots often come
packaged in rotary knobs, and turning the knob moves the wiper to allow R+ and R− to be
varied from approximately 0 to R.
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+ _

Wiper

Figure B.4
Symbol for a potentiometer.

B.2.1 Time Response of RC and RL Circuits

Figure B.5(a)–(d) shows four circuits, each consisting of a resistor R and either a capacitor C
or an inductor L. For mechatronics, circuits with resistors and a single inductor are important
for understanding the behavior of motors, which have significant inductance. Circuits with
resistors and a single capacitor are often used for signal filtering.

The circuits in Figure B.5(a)–(d) are powered by a time-varying voltage Vin(t) that
periodically switches between Vhi > 0 and 0 V relative to ground. Let us focus on the circuit
in Figure B.5(a), where Vout = VC is the voltage across the capacitor.

Vout

R

C

(a)

+

_

+
_

Vout
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L

(d)

(e)

(f)

V  (t) in
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V  (t) inV  (t) in
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0.37Vhi
V    (t) out
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V  (t) in

Response of circuits (a,d)

Vhi

0

V    (t) out

t

V    (t) out

t

V  (t) in

Response of circuits (b,c)

Figure B.5
(a–d) RC circuits and RL circuits. (e) Response of the circuits in (a) and (d) to a changing Vin(t).

Note the discontinuity in time in the middle of the plot, to allow the response to reach steady state.
(f) Response of the circuits in (b) and (c) to a changing Vin(t).
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KVL tells us that the circuit in Figure B.5(a) satisfies

Vin(t) = VR(t) + VC(t) = I(t)R+ 1

C

∫ t

0
I(s) ds.

Assume that the input voltage Vin(t) is equal to Vhi, and has been for a long time so that any
transients have died out. Current flowing through the capacitor has charged it up until, in
steady state, the capacitor is fully charged to a voltage VC = Vhi and an energy 1

2CV
2
hi.

Therefore there is no voltage across the resistor, so I = 0. The capacitor is acting like an
open circuit.

The key point is that the voltage across the capacitor VC(t) cannot be discontinuous in time if
current is finite. For example, VC cannot change from 0 to 5 V instantaneously; it takes time
for the current to integrate to develop a voltage across the capacitor.

Now consider what happens when Vin(t) instantly changes from Vhi to 0 V. Since the voltage
across the capacitor cannot change instantaneously, just after the switch occurs, the voltage
across the capacitor is still Vhi. This means that the voltage across the resistor R is −Vhi.
Therefore current must be flowing from ground through the capacitor and resistor. By KVL,
and the constitutive law of the resistor, we can calculate the current I just after the switch at
time t = 0 (let us call this time 0+):

Vin(0
+) = 0 = VR(0

+) + VC(0+) = I(0+)R+ Vhi → I(0+) = −Vhi
R

.

This negative current begins to discharge the energy stored in the capacitor, and therefore the
voltage across the capacitor begins to drop. To solve for dVC/dt, the rate of change of the
voltage across the capacitor, at time 0+, we use the constitutive law of the capacitor:

I(0+) = −Vhi
R

= C
dVC
dt

(0+) → dVC
dt

(0+) = −Vhi
RC

.

If the capacitor continued to discharge at this rate, it would fully discharge in RC seconds.

Of course the capacitor does not continue to discharge at this rate; the rate slows as the voltage
across the capacitor drops. To fully solve for VC(t) using KVL and the constitutive law of the
capacitor, we solve the first-order linear differential equation

0 = I(t)R+ VC(t)

0 = C
dVC
dt

(t)R+ VC(t)

dVC
dt

(t) = − 1

RC
VC(t) (B.1)
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to get

VC(t) = V0e−t/RC (B.2)

where the initial voltage V0 is Vhi. This is an exponential decay to zero as t → ∞. The time
constant of the decay is τ = RC, in seconds. One time constant after the switch, the voltage is
VC(τ ) = V0e−1 = 0.37V0; the voltage has decayed by 63%. After 3τ , the voltage has decayed
to 5% of its initial value.

Note that the time constant τ = RC is large if R is large, since the large resistance limits the
current to charge or discharge the capacitor, or if C is large, because it takes more time for the
current to charge or discharge energy in the capacitor, which is 1

2CV
2
C.

If instead Vin(t) has been at 0 V for a long time and then switches to Vhi at t = 0, a similar
derivation yields

Vout = VC(t) = Vhi(1 − e−t/RC),

a rise from 0 V asymptoting at Vhi. The voltage across the capacitor rises to 63% (95%) of Vhi
after time τ (3τ ).

Figure B.5(e) shows a plot of the fall and rise of the voltage Vout(t) = VC(t) in the circuit in
Figure B.5(a) in response to a Vin(t) occasionally switching between Vhi and 0.

In Figure B.5(b), the positions of the capacitors and the resistors are reversed, so
Vout = VR = Vin(t) − VC(t). The response of Vout(t) to the switching Vin(t) is shown in Figure
B.5(f). In this case, Vout spikes to −Vhi on a falling edge of Vin(t), then decays back to zero,
and spikes to Vhi on a rising edge of Vin(t), then decays back to zero.

In summary, the output of the circuit in Figure B.5(a) is a smoothed version of Vin(t), where
the output gets smoother as RC gets larger, while the output in circuit in Figure B.5(b)
responds most strongly at the times of the switches of Vin(t). Smoothing is characteristic of a
low-pass filter, while strong response to signal changes is characteristic of a high-pass filter;
see Section B.2.2.

The circuits in Figure B.5(c) and (d) can be analyzed similarly, now using the constitutive law
VL = L dI/dt for the inductor instead of I = C dVC/dt for the capacitor. It is also important to
realize that the inductor does not allow current to change discontinuously, as a discontinuous
current implies an unbounded voltage L dI/dt across the inductor. It takes time to charge or
discharge the energy in the inductor, 1

2LI
2, and therefore I cannot change instantaneously.

Based on this analysis, we see that the response of the RL circuit in Figure B.5(c) is that
shown in Figure B.5(f), but now with a time constant τ = L/R. Similarly, the response of the
RL circuit in Figure B.5(d) is shown in Figure B.5(e), again with a time constant τ = L/R.
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Table B.3: Summary of capacitor and inductor behavior

Element Rule Enforced Discharged Charged
Capacitor Continuous voltage Wire Open circuit
Inductor Continuous current Open circuit Wire

Note that the time constant is large if R is small, since the low resistance does not dissipate
much power for a given current, or if L is large, since it takes longer to charge or discharge the
inductor’s energy 1

2LI
2.

Some rules of analyzing circuits with a capacitor or inductor are summarized in Table B.3.
When a capacitor is initially discharged, it lets current flow freely (like a wire), and when it is
fully charged, it behaves like an open circuit (no current flows). When an inductor is initially
discharged, it behaves like an open circuit (it takes time for current to build up as initially all
voltage is claimed by L dI/dt), and when it is fully charged and dI/dt = 0, it lets current flow
freely with no voltage across it (like a wire).

Application: Switch debouncing

Figure B.6 illustrates a closing mechanical switch, nominally generating a clean falling edge
from GND to V . In practice, mechanical switches tend to bounce; the two metal contacts
impact and bounce before coming into steady contact. The result is a V0(t) that rapidly
switches between V and GND before settling at GND. Switch bounce is a common problem,
and programs responding to button presses should not respond to the bounces.

To remedy the signal bounce, a debouncing circuit, as shown in Figure B.6, can be used. First,
an RC filter is used to slow down the voltage variations, creating the signal V1(t). Because the

V

V0

V

V2V1

1/6 of 74HC14 hex
Schmitt trigger inverter

R

C

V  (t)2

V  (t)0
Bouncing

V  (t)1
Vh

V

Figure B.6
(Left) Bounces on the closing of a mechanical switch generate the output signal V0(t) on the right.

(Middle) A debouncing circuit. The bouncing signal is RC filtered, creating the signal V1(t). This
signal then passes through a Schmitt trigger inverter, creating a single clean rising edge V2(t). (Right)

The signals V0(t), V1(t), and V2(t). The Schmitt trigger hysteresis voltages Vh and V� are shown on
the signal V1(t).
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bouncing transitions occur quickly, the signal V1(t) changes little during the bouncing. Once
the bouncing has ended, V1(t) drops steadily to zero, according to the RC time constant.

The signal V1 is then fed to a digital output Schmitt trigger chip. The purpose of a Schmitt
trigger is to implement hysteresis: if the input is currently low, the output does not change
until the input has risen past a voltage Vh; if the input is high, the output does not change until
the input has dropped below a voltage V�; and Vh > V�. This hysteresis means that small
variations of the input signal should not change the output signal. Further, a Schmitt trigger
inverter makes the digital output opposite the input. The 74HC14 chip has six Schmitt trigger
inverters on it.

Because the Schmitt trigger inverter ignores the small voltage variations at V1(t) during
bouncing, it does not change its output until the switch contact is steady. The end result of the
debouncing circuit, V2(t), is a single clean rising edge, after the bounces have terminated.

Since it is unlikely that you will need to press and release a button in less than 10 ms, it is not
unreasonable to choose RC ≈ 10 ms.

There are other debouncing circuits, and debouncing can instead be performed in software.
See Exercise 16 of Chapter 6.

B.2.2 Frequency Response of RC and RL Circuits

In the previous section we focused on the time response of RC and RL circuits in response to
step changes in voltage. The step response is helpful to understand, as microcontrollers and
some sensors output digital signals. We should remember, however, that by Fourier
decomposition, any periodic signal of frequency f can be represented by a sum of sinusoids of
frequency f , 2f , 3f , etc. For example, the 50% duty cycle square wave of amplitude 1 and
frequency f in Figure B.7 can be represented by an infinite sum of sinusoids at frequencies f ,
3f , 5f , etc. Therefore it is useful to understand the behavior of circuits in response to
sinusoidal inputs.

(4/p) sin(2pft) (4/p) sin(2pft) +
(4/(3p)) sin(6pft)

(4/p) sin(2pft) +
(4/(3p)) sin(6pft) +
(4/(5p)) sin(10pft)

 (4/p) sin(2pft) +
(4/(3p)) sin(6pft) +
(4/(5p)) sin(10pft) +
(4/(7p)) sin(14pft)

Figure B.7
The lowest four frequency components of a Fourier decomposition of a square wave of amplitude 1

and frequency f .
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If the input to a linear system, like an RCL circuit, is a sinusoid of the form
Vin(t) = A sin(2π ft), the output is a scaled, phase-shifted sinusoid of the same frequency,
Vout(t) = G(f )A sin(2π ft + φ(f )), where the system’s gain G(f ) and phase φ(f ) are a function
of the frequency f of the input (Figure B.8). Collectively the gain G(f ) and the phase φ(f ) are
called the frequency response of the system. For periodic non-sinusoidal input signals like the
square wave in Figure B.7, the output is the sum of the individually scaled and shifted
sinusoids that constitute the Fourier decomposition of the input.

Each of the RC and RL circuits in Figure B.5 is a linear system, with Vin(t) as input and
Vout(t) as output. Without derivation (take a linear systems or circuits course!), the frequency
responses of the circuits are plotted in Figure B.9, where Figure B.9(a) is the frequency
response G(f ) and φ(f ) of the circuits in Figure B.5(a) and (d), and Figure B.9(b) is the
frequency response of the circuits in Figure B.5(b) and (c). Note that the frequency and gain

A

A/ √2   

f = – 45�
Input

Output

Figure B.8
An example linear system time response to a sinusoidal input of amplitude A. The output is phase

shifted by φ = −45◦ and scaled by a gain G = 1/
√
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Figure B.9
(a) The frequency response of a first-order low-pass filter, e.g., the circuits in Figure B.5(a)

and (d). (b) The frequency response of a first-order high-pass filter, e.g., the circuits in
Figure B.5(b) and (c).
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are plotted on log scales, to cover larger ranges of values and to more clearly show the
essential features of the response.

The frequency response in Figure B.9(a) corresponds to a low-pass filter (LPF). This name
comes from the fact that low-frequency sinusoids are passed from the input to the output with
little change: G ≈ 1 and φ ≈ 0. As the frequency increases, the gain drops and the output
signal begins to lag the input signal (φ < 0). At the cutoff frequency fc = 1/(2πτ), where
τ = RC for the RC circuits and τ = L/R for the RL circuits, the gain has dropped to
G(fc) = 1/

√
2 and the phase has dropped to φ(fc) = −45◦. Beyond the cutoff frequency the

gain drops by a factor of 10 for every increase in the frequency by a factor of 10, so
G(10fc) ≈ 0.1 and G(100fc) ≈ 0.01. The phase φ continues to drop, asymptoting at −90◦ at
high frequencies.

The frequency response in Figure B.9(b) corresponds to a high-pass filter (HPF). This name
comes from the fact that high-frequency sinusoids are passed from the input to the output with
little change: G ≈ 1 and φ ≈ 0. As the frequency decreases, the gain drops and the output
signal begins to lead the input signal (φ > 0). At the cutoff frequency fc = 1/(2πτ), the gain
has dropped to G(fc) = 1/

√
2 and the phase has risen to φ(fc) = 45◦. Beyond the cutoff

frequency the gain drops by a factor of 10 for every decrease in the frequency by a factor of
10, so G(0.1fc) ≈ 0.1 and G(0.01fc) ≈ 0.01. This means that DC (constant) signals are
completely suppressed by the filter. The phase φ continues to rise with decreasing frequency,
asymptoting at 90◦ at low frequencies.

Low-pass and high-pass filters are useful for isolating a signal of interest from other signals
summed with it. For example, LPFs can be used to smooth and suppress high-frequency noise
on a sensor line. HPFs can be used to suppress DC signals and only look for sudden changes
in a sensor reading, just as the output depicted in Figure B.5(f) is largest when the input
suddenly changes value and drops to zero when the signal is constant.

The LPFs and HPFs illustrated in Figure B.9 are called first order because the circuit response
is described by a first-order differential equation, e.g., (B.1). First-order filters have relatively
slow rolloff—in the cutoff frequencies, the filter gain drops by only a factor of 10 for every
factor of 10 in frequency. By using more passive elements, it is possible to design
second-order filters with a gain rolloff of 100 for every factor of 10 in frequency, which are
better at suppressing signals at frequencies we want to eliminate with less effect on signals at
frequencies we want to preserve. Higher-order filters, with even steeper rolloff, can be
constructed by putting first- and second-order filters in series. LPFs and HPFs can also be
combined to create bandpass filters, which suppress frequency components below some fmin

and above some fmax, or bandstop or notch filters, which suppress frequency components
between fmin and fmax.

Filters constructed purely with resistors, capacitors, and inductors are called passive filters, as
these circuit elements do not generate power. More sophisticated active filters can be created
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using operational amplifiers (Section B.4). These circuits have the advantage of having high
input impedance (drawing very little current from Vin) and low output impedance (capable of
supplying a lot of current at Vout while maintaining the desired behavior as a function of Vin).

The gain (or magnitude) portion of the frequency response is often written in terms of decibels
asMdB, where

MdB = 20 log10G.

So a gain of 1 corresponds to 0 dB, a gain of 0.1 corresponds to −20 dB, and a gain of 100
corresponds to 40 dB.

B.3 Nonlinear Elements: Diodes and Transistors

Nonlinear circuit elements are critical for computing and nearly all modern circuits. Two
common types of nonlinear elements are diodes and transistors. While there are many kinds of
transistors, in this section we focus on bipolar junction transistors (BJTs), notably excluding
field effect transistors (FETs), which are extraordinarily useful and come in many different
varieties. In keeping with the spirit of this appendix, we do not get into the semiconductor
physics of these nonlinear elements, but focus on simplified models that facilitate analysis.

Analyzing circuits with simplified models of nonlinear elements is quite different from
circuits with only linear elements. We do not simply write a set of equations and solve them.
Instead, a nonlinear element can operate in different regimes (two regimes for a diode:
conducting and not conducting; and three regimes for a BJT: off, linear, and saturated), each
regime with its own governing equations. In principle, we have to solve a complete set of
circuit equations for each possible combination of regimes for the nonlinear elements in the
circuit. All but one of these guesses at the operating regimes will be wrong, leading to
equations and inequalities without valid solutions.

B.3.1 Diodes

Figure B.10 shows the circuit symbol and the simplified current-voltage behavior of a diode.
When the voltage across the diode is less than the forward bias voltage Vd ≥ 0, no current
flows through the diode. When current flows, it is only allowed to flow in the direction
indicated in Figure B.10, from anode to cathode, and the voltage across the diode is Vd. It is
never possible to have a voltage greater than Vd across the diode. A typical forward bias
voltage for a diode is around 0.7 V, but other values are also possible.

Figure B.11(a) shows a simple resistor-diode circuit. Assume Vin = 5 V and Vd = 0.7 V. To
solve for Vout, we analyze the circuit for the two possible cases of the diode: conducting or not
conducting.
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Figure B.10
(Left) The circuit symbol for a diode, indicating positive current and positive voltage. (Right) The

simplified current-voltage relationship for a diode with forward bias voltage Vd.
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Figure B.11
(a) A resistor-diode circuit. (b) The output voltage Vout for a sawtooth Vin. The output voltage is

equal to the input voltage for Vin < Vd, but the output voltage is capped at Vd by the diode.
Reversing the direction of the diode would cause the output to track the input for Vin > −Vd, and

the voltage would never drop below −Vd.

• Case 1: diode is not conducting. In this case, we know I = 0, so there is no voltage drop
across the resistor, so Vout = Vin = 5 V. But we know that the diode can never have more
than Vd = 0.7 V across it. Therefore this regime is not valid.

• Case 2: diode is conducting. Since the diode is conducting in this case, we know that the
voltage across the diode is the forward bias voltage Vd = 0.7 V. Therefore the current I
must be (5 V− 0.7 V)/R from the constitutive law of the resistor. This current is flowing
in the right direction (positive current) and therefore does not violate the current-voltage
relationship of the diode, so this is a valid solution.

Figure B.11(b) illustrates Vout as Vin follows a sawtooth profile, showing that Vout can never
exceed Vd. The power dissipated by the diode when current I flows is IVd.

A light-emitting diode (LED) is just a diode that emits visible or invisible light when current
flows. A typical forward bias voltage for an LED is 1.7 V.

If a large negative voltage is placed across a diode, it may break down, allowing negative
current to flow. While this is a failure mode for most diodes, for Zener diodes it is the intended
use. Zener diodes are designed to have specific (and often relatively small) negative
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Figure B.12
(Left) The circuit symbol for an NPN transistor, showing the collector, base, and emitter.

(Right) A resistor-transistor circuit.

breakdown voltages and to allow current to flow easily while at that breakdown voltage. Zener
diodes can be used in voltage regulator applications.

B.3.2 Bipolar Junction Transistors

Bipolar junction transistors come in two flavors: NPN and PNP. We will focus on the NPN
BJT, then return to the PNP.

Figure B.12 shows the circuit symbol for an NPN BJT. It has three connections: the collector
(C), base (B), and emitter (E). Current flows into the collector and base, and the sum of those
currents flows out of the emitter, IE = IC + IB. The voltage drop from the base to the emitter is
denoted VBE and the voltage drop from the collector to the emitter is written VCE. In normal
usage, IC, IB, IE, and VCE are all nonnegative.

The basic function of the NPN BJT is to attempt to generate a collector current that amplifies
the base current, IC = βIB, where β is the gain of the transistor (also commonly referred to as
hFE). A typical value of β is 100. Depending on the amount of base current flowing, the
transistor can be in one of three modes—off, linear, or saturated—and each mode provides
three equations governing the transistor voltages and currents:

• Linear: IB > 0 and VCE > VCE,sat. In this mode, the collector current is IC = βIB, and the
transistor is not yet saturated, so if IB increases, IC will also increase. Saturation occurs
when VCE drops to the collector-emitter saturation voltage VCE,sat, which is commonly
around 0.2 V or so. In the linear mode, VBE is equal to VBE,on, the PN junction diode
voltage drop from the base to the emitter. A typical value is VBE,on = 0.7 V. Governing
equations: IC = βIB, VBE = VBE,on, and IE = IC + IB.
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• Off: IB = 0. This means that IC = 0 and therefore IE = 0. VBE is less than VBE,on.
Governing equations: IB = IC = IE = 0.

• Saturated: IB > 0 and VCE = VCE,sat. In this mode the collector cannot provide more
current even if the base current increases; the transistor is saturated. This is because the
voltage between the collector and emitter cannot drop below VCE,sat. This means that the
relationship IC = βIB no longer holds. Governing equations: VCE = VCE,sat,
VBE = VBE,on, and IE = IC + IB.

When IE > 0, the power dissipated by the transistor is IBVBE,on + ICVCE,sat.

Figure B.12 shows an NPN BJT in a common emitter circuit, so called because the emitter is
attached to ground (“common”). We can determine the transistor’s operating mode as a
function of Vin:

• Off: Vin ≤ VBE,on. Input voltages in this range do not provide enough voltage to turn on
the base-emitter PN junction while also providing a base current IB > 0. Since IC = 0,
there is no voltage drop across RC, and Vout = V .

• Saturated: Vin ≥ VBE,on + RB(V − VCE,sat)/(βRC). When the transistor is saturated, the
output voltage is Vout = VCE,sat, and the voltage across RC is V − VCE,sat. This means
IC = (V − VCE,sat)/RC. At the boundary between the linear and saturated regions, the
relationship IC = βIB is still satisfied, so IB = IC/β. So the minimum Vin for saturation is
the sum of VBE,on and the voltage drop IBRB across the base resistor.

• Linear: All Vin between the off and saturated regimes. In this regime,
IB = (Vin − VBE,on)/RB and IC = βIB, so

Vout = V − ICRC = V − βRC
RB

(Vin − VBE,on).

To increase the gain of a transistor we can use two transistors, Q1 and Q2, as a Darlington
pair (Figure B.13(a)). The two collectors are connected and the emitter of Q1 feeds the base
of Q2. The two together act like a single transistor, with the base of Q1 as the base of the pair

E

B

C

E

B C

IB

IE

IC

(a) (b)

Q1

Q2

Figure B.13
(a) An NPN Darlington pair. (b) A PNP BJT.
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and the emitter of Q2 as the emitter of the pair, but now the overall gain is β1β2. VBE,on for the
Darlington pair is the sum of the individual base-emitter voltages.

Finally, Figure B.13(b) shows the circuit symbol for a PNP transistor. For a PNP BJT,
IC = βIB as with the NPN, but now IB and IC flow out of the transistor and IE = IC + IB flows
into it. At saturation, VE is greater than VC (typically by about 0.2 V), and when the transistor
is on, the voltage drop from VE to VB is approximately 0.7 V. The PNP BJT is off if IB = 0; it
is saturated if IB > 0 and the voltage drop from VE to VC indicates saturation; and otherwise it
is in the linear mode.

B.4 Operational Amplifiers

The circuit symbol for an operational amplifier (op amp) is shown in Figure B.14(a). Apart
from the power supply inputs, the op amp has two inputs, a noninverting input labeled + and
an inverting input labeled −, and one output. Figure B.14(b) shows a particular chip, the 8-pin
Texas Instruments TLV272, which has two op amps.

An ideal op amp obeys the following rules:

1. Input impedance is infinite. No current flows in or out of the inputs.
2. Output impedance is zero. The op amp can produce any current necessary to satisfy the

following rule.
3(a). If there is no feedback connection between the output and the inputs, then the output

satisfies Vout = G(Vin+ − Vin−), where the gain G is very large, effectively infinite.
(The output goes to its maximum positive or negative value if Vin+ and Vin− are
different.)

3(b). If there is a current path from the output to the inverting input (negative feedback), for
example through a capacitor or resistor, then the voltage at the two inputs are equal.
This is because the large gain G of the op amp attempts to eliminate the voltage
difference Vin+ − Vin−.

Almost all useful op amp circuits have negative feedback, so rule 3(b) applies.

+
_

+_

+ _

1IN−

1OUT

1IN+

GND

2OUT

VDD

2IN−

2IN+

(a) (b)

Vin+ Vout

V _in

Figure B.14
(a) The op amp circuit symbol. (b) The 8-pin TLV272 integrated circuit, with two op amps.
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Figure B.15
Common op amp circuits. Of these circuits, note that only the unity gain buffer and the

noninverting amplifier present the very high input impedance of the op amp at the Vin input; in the
other circuits, the input impedance is dominated by external resistors or capacitors. See Section B.5

for a discussion of input impedance.

Figure B.15 shows several useful circuits built with op amps. To analyze these circuits,
remember that no current flows in or out of the op amp inputs (current only flows through the
external resistors and capacitors), and since there is negative feedback in each of them, the
voltages at the two inputs are equal.

For example, to analyze the weighted summer circuit, we recognize that both inputs are at 0 V
(ground). Therefore the currents flowing through R, 2R, and 4R are simply V2/R, V1/(2R),
and V0/(4R). Since no current flows in or out of the − input, these currents sum to give the
current I through the feedback resistor Rf , and the output voltage is simply Vout = −IRf . If the
input voltages Vi are binary, this circuit provides an analog voltage representation of the
three-digit binary number V2V1V0, where V2 represents the most significant bit (since it
provides the most current) and V0 represents the least significant bit. If instead the three
resistors R, 2R, 4R are replaced by variable resistances set by potentiometers, the weighted
summer is similar to an audio mixer.

The response of the integrator circuit is obtained by recognizing that the current flowing from
Vin is I = −Vin/R and that

Vout = −VC = − 1

C

∫
I(t) dt = − 1

RC

∫
Vin(t) dt.

If Vin is constant at zero, ideally Vout should also be zero. In practice, however, the voltage
across the capacitor is likely to drift due to nonidealities of the op amp (Section B.4.1),
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including slight input offset. For this reason, it is good practice to put another resistor in
parallel with the capacitor. This resistor serves to slowly bleed off capacitor charge,
counteracting voltage drift. This resistance should be much larger than R to prevent significant
impact on the circuit’s behavior at frequencies of interest.

The voltage follower circuit simply implements Vout = Vin, but it is quite useful because it
draws essentially no current from the source providing Vin (such as a sensor) while being able
to provide significant current at the output. For this reason the circuit is sometimes called a
unity gain buffer: the op amp provides a buffer that prevents the circuit connected to the output
of the op amp from affecting the behavior of the circuit connected to the input of the op amp.
This allows individual circuits to be designed and tested modularly, then cascaded using
buffers in between (Section B.5).

One application of the unity gain buffer is to implement an RC LPF or HPF (Section B.2.2).
By cascading a unity gain buffer, then a passive RC LPF or HPF, we get the ideal frequency
response of the passive filter but with high input impedance, as opposed to the relatively low
input impedance of the passive filter alone. There are many more sophisticated higher-order
op amp filter designs that achieve better attenuation at frequencies to be suppressed; consult
any text on the design of op amp filters. In particular, for LPFs, HPFs, bandpass, and notch
filters, popular filters are Butterworth, Chebyshev, and Bessel filters, each with somewhat
different properties. These names refer to the form of the mathematical transfer function from
input to output. To implement these transfer functions using op amps, resistors, and
capacitors, there are different types of circuit designs; popular choices are the Sallen-Key
circuit topology and the multiple feedback circuit topology.

B.4.1 Practical Op Amp Considerations

If you want to purchase an op amp chip, you will find that there are tens of thousands to
choose from! How do you choose? Op amp data sheets can be bewildering to read, with many
different characteristics, most of them depending on the particular operating condition (the
power supply voltage, the load at the output, etc.). Here are a few characteristics to consider,
along with the values for the flexible and inexpensive TLV272.

• Supply voltage range. An op amp has both a minimum and a maximum allowable
voltage across the power supply lines. TLV272: 2.7-16 V.

• Output voltage swing (rail-to-rail or not). The maximum outputs of some op amps do
not reach all the way to the power supply rails, falling short by 1 V or more. Other op
amps are rail-to-rail, meaning that the output voltage can come close to the power supply
rails. The TLV272 is rail-to-rail, with a maximum output voltage swing to within about
0.1 V of the rails.
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• Input voltage range. Even if the output goes rail-to-rail, the differential inputs may not
be allowed to approach the rails. TLV272: inputs can go rail-to-rail.

• Output current. The maximum amount of current that can be provided by a single
output. TLV272: up to 100 mA.

• Unity gain bandwidth. This is a specification of how fast the op amp output can change.
For an input signal at this frequency, the effective gain of the amplifier (which we
assumed to be infinite) has dropped to one. TLV272: 3 MHz.

• Slew rate. This is another measure of how fast the output can change, in V/s. TLV272:
2.4V/µs.

• Input bias current. There is actually a very small current at the inputs (we assumed it to
be zero). This is the typical average of those input currents. TLV272: 1 pA.

• Input offset current. This is the typical difference between the two input currents.
TLV272: 1 pA.

• Input offset voltage. Ideally zero voltage difference at the inputs would cause zero
voltage at the open-loop output. In practice, the input levels may have to be slightly
different to achieve a zero voltage output. TLV272: 0.5 mV.

• Common-mode rejection ratio. The ideal amplifier amplifies only the difference
between the voltages at the + and − inputs, but there is actually a small amplification of
the common voltage between them. For example, if the voltage V+ is 5.1 V and the
voltage V− is 5.0 V, the usual amplifier gain acts on the 0.1 V difference while the
common-mode gain acts on the average, 5.05 V. The CMRR specifies the ratio of the
differential gain to the common-mode gain. TLV272: 80 dB (or 10,000).

• Number of op amps. Some chips have more than one op amp. TLV272: two op amps.
• Packaging. Op amps come in different types of packaging. DIP packages are easiest to

work with for breadboard prototyping. TLV272: available in a variety of packages,
including an 8-pin DIP.

• Price. Price increases for higher bandwidth and slew rates, higher output current, lower
offset voltage, higher common-mode rejection ratio, rail-to-rail operation, etc. TLV272:
about one dollar.

B.4.2 Single Supply Design and Virtual Ground

When using an op amp in microcontroller applications, often the only power supply available
is a positive voltage rail and ground (no negative rail), and the positive voltage may be small
(e.g., 3.3 V). First of all, this likely means that a rail-to-rail op amp should be used, to
maximize the output voltage range, and it should be capable of being powered by the
microcontroller voltage (e.g., 3.3 V). Secondly, notice that many of the standard op amp
circuits (Figure B.15) provide an output voltage that has a sign opposite of the input voltage,
which the op amp cannot produce if there is no negative rail.
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Figure B.16
Creating a virtual ground at V/2.

One way to handle this issue is to introduce a virtual ground at a voltage halfway between the
positive supply rail and ground, effectively creating a bipolar supply about this virtual ground.
Figure B.16 illustrates the idea. A unity gain buffer is used in combination with a voltage
divider to create a virtual ground at V/2. The capacitor helps stabilize the reference voltage to
any transients on the power supply line. This virtual ground is then used in place of ground in
the inverting circuits in Figure B.15. Inverted voltages are now with respect to V/2 instead
of 0.

Since the op amp likely sinks or sources less current than a typical power supply, care should
be taken to make sure that these limits are never exceeded.

B.4.3 Instrumentation Amps

An instrumentation amp is a specialized amplifier designed to precisely amplify the difference
in voltage between two inputs, Vout = G(Vin+ − Vin−). Like an op amp, it has inputs Vin+ and
Vin−, but unlike an op amp, it is not used with a negative feedback path. Instead, an
instrumentation amp like the Texas Instruments INA128 allows you to connect a single
external resistor RG to determine the gain G, where

G = 1 + 50 k�

RG
.

The INA128 is typically used to implement gains G from 1 (RG = ∞, i.e., no connection at
the gain resistor inputs) to 10,000 (RG ≈ 5 �).

Other instrumentation amps allow you to choose from a fixed set of very precise gains, not
dependent on an external resistor (with its associated tolerance). These are sometimes called
programmable-gain instrumentation amps, and an example is the TI PGA204, which uses two
digital inputs to choose gains of 1, 10, 100, or 1000. A related design is the TI INA110,
offering gains of 1, 10, 100, 200, or 500.

Instrumentation amps distinguish themselves in their very high common-mode rejection ratio
(120 dB for the INA128). Instrumentation amps are typically more expensive than op amps,
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e.g., in the range of 10 to 20 USD for quantities of one. If you are trying to save money, you
can build your own difference-and-gain circuit using multiple op amps, but you will not
achieve the same performance as an instrumentation amp.

B.5 Modular Circuit Design: Input and Output Impedance

One way to design a complex circuit is to design subcircuits, each with a specific function,
and then cascade them so that the output of one circuit is the input of another. Modular circuit
design is similar to modular code design: each subcircuit has a specific function and
well-defined inputs and outputs.

Modularity requires that connecting the output of circuit A to the input of circuit B does not
change the behavior of either circuit. Modularity is assured if circuit A has low output
impedance (it can source or sink a lot of current with little change in the output voltage) and
circuit B has high input impedance (it draws little current at the input).2 For constant (DC)
voltages and currents, if a change �I in the current drawn from the output of a circuit causes a
change of voltage �V , then the DC output impedance (or simply the output resistance, since
the voltage is DC) is |�V/�I|. A circuit’s input resistance can be measured similarly. High
input impedance means that a change in input voltage gives a very small change in input
current.

Input and output impedance are generally frequency dependent. For sinusoidal signals of any
frequency ω = 2π f , the impedance of a resistor is simply its resistance R. The magnitude of
the impedance of an inductor is ωL, meaning that the impedance increases linearly with
ω—the impedance is zero at DC and infinite at infinite frequency. The magnitude of the
impedance of a capacitor is 1/(ωC), indicating that the impedance magnitude is infinite at DC
and zero at infinite frequency.

As a simple DC example, consider the following design problem. We want to provide a user
the ability to choose an input voltage between 0 and 3 V by turning a potentiometer knob. So
we decide the circuit B will be a 10 k� potentiometer with one end at 3 V and the other end at
0 V, with the wiper providing the user’s input signal. No 3 V supply is available, however;
there is only a 6 V supply. So we decide to design a circuit A, a voltage divider consisting of
two resistors of resistance R, to create the 3 V reference. The output of circuit A becomes the
input for circuit B (see Figure B.17).

Let us say we choose R = 100 k� for the voltage divider. Then the currents in Figure B.17 can
be calculated using

2 It is actually the ratio of input impedance to output impedance that matters. This ratio should ideally be multiple
orders of magnitude.
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Figure B.17
A voltage divider circuit A feeding a potentiometer circuit B.

I1 = I2 + I3

6V = I1 100 k� + I2 100 k�

I2 100 k� = I3 10 k�

to find I1 = 55µA, I2 = 5µA, and I3 = 50µA. This means the voltage divider actually
creates a voltage at the output of A of 6 V − (55 µA)(100 k�) = 0.5 V instead of 3 V. Circuit
B “loads” or “pulls down” the output of circuit A. The output impedance R of circuit A is too
high relative to the 10 k� input impedance of circuit B, defeating circuit modularity. Our
attempt to design circuits A and B independently and put them together has failed.

On the other hand, if we choose R = 100 � for the voltage divider, we find that
I1 = 30.15 mA, so VA = 2.985 V, very close to our target of 3 V. The output impedance of
circuit A is much lower, so modularity is more closely achieved. This comes at the cost of
greater power dissipated by the voltage divider, V2/R = (6 V)2/200 � = 180 mW vs.
(6 V)2/200 k� = 0.18 mW.

Op amps, with their high input impedance and low output impedance, are quite useful in
achieving circuit modularity. In particular, a unity gain buffer between the output A and input
B in Figure B.17 would eliminate any loading of the circuit A by circuit B, allowing us to use
higher resistances for R and therefore wasting less power.

Further Reading
Hambley, A. R. (2000). Electronics (2nd ed.). Upper Saddle River, NJ: Prentice Hall.
Horowitz, P., & Hill, W. (2015). The art of electronics (3rd ed.). New York, NY: Cambridge University Press.



APPENDIX C

Other PIC32 Models

As of this writing, there are nearly 200 different PIC32 models, arranged in six major families:
PIC32MX1xx/2xx, PIC32MX3xx/4xx, PIC32MX5xx/6xx/7xx (from which our
PIC32MX795F512H was chosen), PIC32MX1xx/2xx/5xx 64-100 pins,
PIC32MX330/350/370/430/450/470, and PIC32MZ. The five PIC32MX families all use the
MIPS32 M4K processor as the CPU, at speeds of 40-120 MHz, while the MZ family has a
different architecture and uses the MIPS32 microAptiv microprocessor as the CPU at up to
200 MHz. “MIPS32” refers to CPU architectures and associated assembly language
instructions licensed by Microchip from Imagination Technologies.

The main differences between the families are the CPU architecture (MIPS32 M4K vs.
microAptiv), CPU clock speeds, amount of RAM and flash, physical packaging, available
peripherals, number of pins, and the extent to which the pins can be mapped to different
functions. This appendix provides a brief introduction to the features of the different families.

C.1 The PIC32MX5xx/6xx/7xx Family

Devices in the PIC32MX5xx/6xx/7xx family have names of the form

PIC32MX 5, 6, or 7
︸ ︷︷ ︸

communication options

x x
︸︷︷︸

other model options

F yyy
︸︷︷︸

flash in KB

H or L
︸ ︷︷ ︸

64 or 100 pins

The 5xx series has full-speed USB and CAN peripherals, the 6xx series has full-speed USB
and Ethernet, and the 7xx series has full-speed USB, Ethernet, and CAN. The xx code can be
34, 64, 75, or 95, corresponding to other model options, but primarily indicating the amount of
RAM available (16, 32, 64, and 128 KB, respectively). The yyy code indicates the amount of
flash memory, in KB. (All devices in this family also have an additional 12 KB of boot flash.)
Devices ending in H have 64 pins and devices ending in L have 100 pins. Therefore the
PIC32MX795F512H has full-speed USB, CAN, and Ethernet; 128 KB of RAM; 512 KB of
flash; and 64 pins.

The M4K CPU can operate at up to 80 MHz for all devices in the PIC32MX5xx/6xx/7xx
family. All devices have full-speed USB, five 16-bit counter/timers with up to two 32-bit
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counter/timers, five input capture devices, five output compare modules with 16-bit resolution,
16 10-bit ADC inputs, six UARTs, two comparators, DMA, and PMP. Devices with 64 pins
have three SPI and four I2C peripherals; devices with 100 pins have four SPI and five I2C
peripherals. All devices are available only in surface mount packages.

C.2 PIC32MX3xx/4xx Family

PIC32MX3xx/4xx devices are the first to have appeared in the PIC32 line. The M4K CPU can
operate at up to 80 MHz for most devices in this family, but a few devices are limited to
40 MHz. Devices in this family have up to 32 KB of RAM and 512 KB of flash and have
names of the form

PIC32MX 3 or 4
︸ ︷︷ ︸

3: no USB; 4: with USB

xx
︸︷︷︸

20, 40, or 60

F yyy
︸︷︷︸

flash in KB

H or L
︸ ︷︷ ︸

64 or 100 pins

Thus the PIC32MX460F512H has full-speed USB, 32 KB of RAM (with the “60” option),
512 KB of flash, and 64 pins.

Devices in the PIC32MX3xx/4xx family have similar capabilities to those in the
PIC32MX5xx/6xx/7xx family, except they do not offer Ethernet or CAN, have fewer UART,
SPI, and I2C peripherals, and have only one 32-bit counter/timer.

C.3 PIC32MX1xx/2xx Family

PIC32MX1xx/2xx devices are more recent than the 3xx/4xx and 5xx/6xx/7xx families. They
are smaller devices, coming in 28-, 36-, and 44-pin devices. The 28-pin devices are available
in DIP (dual inline package), convenient for breadboarding. The maximum CPU clock speed
for a 1xx/2xx device is 40 or 50 MHz, depending on the model. The 1xx/2xx devices do not
have a prefetch cache module; they run at full speed pulling instructions from flash.

Devices in this family have up to 64 KB of RAM and 256 KB of flash and have names of
the form

PIC32MX 1 or 2
︸ ︷︷ ︸

1: no USB; 2: with USB

xx
︸︷︷︸

other model options

F yyy
︸︷︷︸

flash in KB

B, C, or D
︸ ︷︷ ︸

28, 36, or 44 pins

The xx code can be 10, 20, 30, 50, or 70, which correspond to 4, 8, 16, 32, or 64 KB of RAM,
respectively. Thus the PIC32MX230F064B has full-speed USB, 16 KB of RAM, 64 KB of
flash, and 28 pins.

Devices in this family differ from the 5xx/6xx/7xx family in that they have only 3 KB of boot
flash; fewer ADC inputs; fewer UART, SPI, and I2C peripherals; and no Ethernet or CAN.
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The 1xx/2xx devices have three comparator modules instead of two, programmable with up to
32 reference voltages as compared to the 16 of the 5xx/6xx/7xx family. Other interesting new
features, which we have not seen in the previous models, include Peripheral Pin Select (PPS),
audio interface by SPI, and charge-time measurement for capacitive touch sensing, as
discussed below.

PPS allows a wide range of digital-only peripherals to be assigned flexibly to different device
pins, a major feature for low-pin-count devices like PIC32MX1xx/2xx devices. While a pin of
our PIC32MX795F512H can support several possible peripherals, devices with PPS have
much more flexibility in mapping certain peripherals to different pins. A remappable
peripheral does not have default I/O pins; SFRs must be configured to assign the peripheral to
specific pins before it can be used. Examples of peripherals that can be remapped by PPS
include UARTs, SPI modules, counter/timer inputs, input capture, output compare, and
interrupt-on-change inputs. Some peripherals cannot be remapped, such as I2C peripherals
and ADC inputs, because of special requirements on the I/O circuitry for those peripherals.

The 1xx/2xx devices’ SPI modules support audio interface protocols for 16-, 24-, and 32-bit
audio data. One example is the Inter-IC Sound (I2S) protocol, which allows the transmission
of two channels of digital audio data using the SPI peripheral. The I2S capability allows a
1xx/2xx device to communicate with digital audio equipment as either the master or slave.

Finally, the 1xx/2xx’s Charge-Time Measurement Unit (CTMU) provides a current source to
interface with an external capacitive touch sensor, such as a capacitive on/off button or even an
x-y touchpad. The CTMU is used with one or more ADC channels to measure the capacitance
of one or more analog capacitive sensors.

C.4 PIC32MX1xx/2xx/5xx 64-100 Pin Family

The PIC32MX1xx/2xx/5xx 64-100 pin family expands on the features of the
PIC32MX1xx/2xx family, which includes PPS, CTMU, and audio interface protocols. The
M4K CPU operates at speeds up to 50 MHz, and the devices have 64 or 100 pins and up to
64 KB of RAM and 512 KB of flash. These devices feature more analog input channels (up to
48), more UART and SPI peripherals, and some models feature USB and CAN. Device names
have the form

PIC32MX 1, 2, or 5
︸ ︷︷ ︸

communication options

xx
︸︷︷︸

other model options

F yyy
︸︷︷︸

flash in KB

H or L
︸ ︷︷ ︸

64 or 100 pins

The 1xx series has neither CAN nor USB, the 2xx series features full-speed USB but no CAN,
and the 5xx series has both full-speed USB and CAN. The code xx can be 20, 30, 50, or 70,
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corresponding to 8, 16, 32, or 64 KB of RAM, respectively. Thus the PIC32MX570F512H
offers both USB and CAN and has 64 KB of RAM, 512 KB of flash, and 64 pins.

C.5 PIC32MX330/350/370/430/450/470 Family

The PIC32MX330/350/370/430/450/470 family differs from the PIC32MX1xx/2xx/5xx
64-100 pin family by offering 12 KB of boot flash, up to 128 KB of RAM, and CPU speeds up
to 120 MHz, the fastest in the PIC32MX families. Devices in this family have two SPI
channels (compared to the three or four of the PIC32MX1xx/2xx/5xx 64-100 pin family) and
do not offer CAN. 4xx devices in this family offer full-speed USB while 3xx devices do not.

C.6 PIC32MZ Family

The most recent addition to the PIC32 line, the PIC32MZ family is the most advanced.
Devices in this family have names of the form

PIC32MZ xxxx
︸︷︷︸

flash in KB

three-letter code yyy
︸︷︷︸

number of pins

The number of pins (yyy) is either 064, 100, 124, or 144. The three-letter code indicates
whether the PIC32 has CAN modules; an external bus interface (EBI), described below; a
floating point unit (FPU) for fast floating point operations; and a Crypto Engine, a hardware
module used to accelerate applications requiring encryption, decryption, and authentication.
PIC32MZs currently have up to 512 KB of RAM.

All PIC32MZs have a much larger boot flash segment (160 KB), nine 16-bit counter/timers
configurable to up to four 32-bit counter/timers, nine output compares with up to 32-bit
resolution, nine input captures, six UARTs, up to five I2C modules, up to six SPI modules
supporting audio interfaces, PPS for more flexible pin remapping, Ethernet, and high-speed
USB, as opposed to the slower full-speed USB of the PIC32MX models. PIC32MZs do not
currently have a CTMU.

Two new capabilities on the PIC32MZ are the 50 MHz External Bus Interface (EBI) and the
50 MHz Serial Quad Interface (SQI). SQI is similar to SPI, except it has four data lines and
supports single lane, dual lane, and quad lane modes of operation. In single lane mode, it is
identical to SPI. EBI allows a high-speed connection to external memory devices, like NOR
flash devices or SRAM, allowing you to seamlessly address external memory in your C code.

The PIC32MZ family also has several different peripheral buses, each potentially clocked at
different frequencies.
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Certainly the biggest difference of the PIC32MZ family from PIC32MX devices is its different
microprocessor, the MIPS32 microAptiv core. The microAptiv CPU can be clocked at up to
200 MHz, and it has multiple shadow register sets, a larger number of interrupt sources, and
new assembly instructions and hardware to accelerate digital signal processing calculations.
Other capabilities of the microAptiv core can be found in Section 50 of the Reference Manual.

C.7 Conclusion

To learn more about a specific PIC32 model, first consult the Data Sheet for the appropriate
PIC32 family to learn the specific capabilities of each model. After that, you can consult the
sections of the Reference Manual for more information. You will find it helpful to be armed
with the knowledge of the features that your PIC32 model has or does not have, since the
Reference Manual is currently written to cover all PIC32 models. After that, you can modify
the sample code provided in this book for your particular PIC32, or start with sample code
provided by Microchip.
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A
Absolute encoders, 326–327, 326f
ADC_max_rate.c program,

153–154
Analog input. See Analog-to-digital

converter (ADC)
Analog output

DC analog output, 137–139,
138f

time-varying, 140
Analog-to-digital converter (ADC),

24, 395
AD1CHS, 151
ADC_max_rate.c program,

153–154
AD1CON1, 149
AD1CON2, 150
AD1CON3, 151
AD1CSSL, 151
AD1PCFG, 149
block diagram, 145, 146f
clock period, 148
current sensor, 480
data format, 148
DC motor control, 480
dual buffer mode, 149
input scan and alternating modes,

148
input voltages, 145
interrupts, 148
manual sampling and conversion,

152
multiplexers, 147
sampling and conversion

initiation events, 148
sampling and conversion timing,

146–147
unipolar differential mode, 148
voltage reference, 148

Angular velocity
absolute encoders, 326–327,

326f
gyro, 330, 331f
incremental encoder, 324–326,

325f
magnetic encoders, 327, 333f
potentiometer, 323–324, 324f
resolver, 327–328, 327f
tachometer, 328

B
Battery, 588, 21f
Bipolar junction transistors (BJT),

601–603, 601f , 602f
Bipolar stepper motor, 498–499,

498f
Bootloaded programs, 51–53,

62–63
Brushed permanent magnet direct

current (DC) motor, 415,
416f

back-emf, 405–406
brushless motors, 403
electrical constant ke, 403–405,

416
electrical time constant Te,

413–414, 418
factors, 403–405
friction, 410–412, 411f , 419
loop of wire, 400, 401, 401f , 402
Lorentz force law, 399, 400f
max continuous current Icont,

417
max continuous torque τcont, 417
max efficiency ηmax, 420
max mechanical power Pmax,

420

mechanical time constant Tm,
414, 419

motor constant km, 412–413,
417, 422f

motor efficiency, 410–412, 411f
motor windings, 412–413, 422f
no-load current I0, 419
no-load speed ω0, 419
nominal voltage Vnom, 419
non-negative torque, 402, 402f
Pittman brushed DC motor, 403,

404f
power rating P, 419
rotor inertia J, 418
short-circuit damping B, 415,

417
speed constant ks, 403–405,

417
speed-torque curve, 406–410,

407f , 408f , 409f , 410f
stall current Istall, 420
stall torque τstall, 420
terminal inductance L, 417–418,

417f
terminal resistance R, 415
torque constant kt, 403–405,

415–416
voltage, 405

Brushless DC (BLDC) motor
advantages, 500
vs. brushed DC motors, 500
disadvantage, 500
Hall effect sensors, 501
Hall sensor feedback

commutation, 507
library, 504–505
open-loop driving, 510
PIC32 interface, 504, 504f
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Brushless DC (BLDC) motor
(Continued)

Pittman ELCOM SL
4443S013, 501–502, 502f ,
503f

quadcopters, 509
three-phase motor driver,

502–503, 504f
working principle, 500–501,

500f

C
CAN. See Controller area network

(CAN)
Change notification interrupts,

118–119
Circular buffer, 168–169, 169f , 172
Clock stretching, 193
Comparator

analog output, 231
block diagram, 227, 228f
CMSTAT, 229
CMxCON, 227
CVRCON, 229
inverting (–) input, 227
noninverting (+) input, 227
vs. voltage, 230

Context save and restore, 97,
103–104

Continuous operating region,
408–409

Controller area network (CAN), 22
addresses, 257
bit rate, 250–251
bit stuffing, 251
CAN frame, 250–251
CiCFG, 253
CiCON, 253
CiFIFOBA, 255
CiFIFOCONn, 255
CiFIFOINTn, 256
CiFIFOUAn, 256
CiFLTCONr, 254
CiRXFn, 255
CiRXMr, 255
CiTREC, 254
dominant state, 249, 250
FIFOs, 252
interframe spacing, 251

interrupt vectors, 256–257
light control, 261–262
loopback mode, 260
message buffer, 252
receive messages, 258–260, 259f
recessive state, 249–250
SOF bit, 251
transceiver, 249, 250f
transmitting messages, 257–258,

258f
two wires bus, 249, 250f

Core timer interrupt
central processing unit, 101
configuration, 101
disabling interrupts, 101,

107–111
enabling interrupts, 101,

107–111
IFSx, 101
ISR, 100
priority and subpriority, 101

Counters/timers, 128–129
asynchronous counting, 124
block diagram, 123, 124f
duration, 125, 130
fixed frequency ISR, 128
interrupt flag, 127, 127t
PBCLK pulses, 124
period match, 123
period register, 123, 127
synchronous counting, 124
T1CONbits, 126
Timerx, 127
TxCONbits, 125, 126
Type A vs. Type B, 125

C programming language
blocks of code, 540
comments, 539
conditional statements, 559–560
data sizes, 531–532
Data Types, 518–521
dynamic memory allocation, 557
function definition, 550–551
integer overflow, 532–533
logical operators, 558
loops, 560–562
MATLAB/Python, 517
memory, addresses, and pointers,

526
multi-dimensional arrays,

556–557

one-dimensional arrays,
554–556, 554f

pointers, 553–554
preprocessor commands, 542
printing to screen, 529–531
program structure, 541–542
Quick start, 515–517
relational operators, 557
standard binary math operators,

551–553
standard library (see Library)
static memory allocation, 557
strings, 556
type conversion, 533–535
typedefs, structs, and enums,

545–547
variables, 547
whitespace, 540

Current sensor, 587
ADC, 480
Hall effect, 339
resistor and amplifier, 337–339,

338f

D
Data terminal equipment (DTE),

159, 161
Data Types

binary and hexadecimal,
518–519

bits and bytes, 519–521
compilation, 528–535
float, double, and long double,

523–524
sign and magnitude

representation, 524–526
DC motor control

ADC, 480
block diagram, 450–451, 450f
client code, 473
control with PWM, 445–447,

446f , 447f
Copley controls, 453–455, 453f ,

454f
current control, 452–453
current sensor wiring and

calibration, 478–480, 479f
data collection, 488
decisions, 470–471
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EMI, 449
encoder menu options, 475–476,

475f
encoder testing, 474–475
gain storage, 487–488
hardware components, 459–460,

460f
H-bridge, 480–482, 481f . see

also (H-bridge)ITEST
mode, 482–483

LCD display, 488
model-based control, 488
motion control, 451–452, 452f
nested control loops, 450–451,

450f
operating mode, 477–478
optoisolators, 449, 450
PI current controller, 482–483
position control, 484
PWM, 480–482
real-time data, 488–489
regeneration, 447–449, 448f
software (see Software)
terminal emulator, 471
trajectory tracking, 484–485
trapezoidal moves, 489, 489f

Device Configuration
Register, 97

DFT. See Discrete Fourier
transform (DFT)

Digital inputs and outputs (DIO)
AD1PCFGbits, 117
buffered and open drain, 115
change notification, 118–119
external pull-up resistor, 115,

116f
LATxbits, 117
ODCxbits, 117
PORTxbits, 117
simplePIC.c, 119
TRISAbits, 117

Digital signal processing (DSP)
aliasing, 342–344, 342f , 343f
dsp_fft_fir.c code, 368
dsp library, 369, 370, 370t
filtering signals (see Finite

impulse response (FIR)
filter)

fixed-point format, 364, 369–370

frequency domain representation
(see Discrete Fourier
transform (DFT))

header file, 364
low-pass-filtered signal, 364,

365f
MATLAB client code, 366
MIPS functions, 364
nudsp_fft_1024 function, 371
nudsp_fir_1024 function, 371
nudsp_qform_scale function,

370–371
Python users, 365
sampled signals, 342–344, 342f ,

343f
weighted sums, calculation (see

Infinite impulse response
(IIR) filters)

DIO. See Digital inputs and outputs
(DIO)

Diodes, 599–601, 600f
Direct Memory Access controller

(DMAC), 22
Disassembly file

bit manipulation version, 74
delay(), 74, 76
jump/branch, 75
LATAINV = 0x20 command,

73, 74
stack, 76
timing.c, 73

Discrete Fourier transform (DFT)
complex numbers, 344
FFT, 345–346, 346f , 347, 348f ,

349–353, 350f
frequency components, 344–345
normalized frequency, 344
N-periodic signal, 344

DMAC. See Direct Memory Access
controller (DMAC)

Drivers
header files, 274
static and dynamic modes, 274
timers (see Timer (TMR) driver)
UART (see Universal

asynchronous
receiver/transmitter
(UART))

DSP. See Digital signal processing
(DSP)

DTE. See Data terminal equipment
(DTE)

Dual buffer mode, 149

E
Electric actuators

linear brushless motors, 512
RC servos, 494–495, 495f
solenoids, 491–493, 492f
speakers, 493–494
stepper motors, 495–499, 496f ,

497f , 498f
voice coil actuators, 493–494,

494f
Electromagnetic interference

(EMI), 449
Electromotive force, 587

F
Fast Fourier transform (FFT)

analog signal, 345, 346f
DC component, 362–363
design tools,

363
inverse FFT, 349–353, 350f
lowest nonzero frequency,

345–346
MATLAB, 347, 348f
sample square wave, 362
sinusoidal component, 363, 364f
zero padding, 345

Feedforward control, 381, 382f
FIFOs. See First-in first-out queues

(FIFOs)
Finite impulse response (FIR) filter

convolution, 352f , 353
examples, 358–366, 358f , 359f ,

360f , 361f
filter coefficients, 350–351, 351f
frequency response, 353
high-order filters, 357
impulse response, 351, 353
MATLAB, 357, 358
order of filter, 351
running average calculation (see

Moving average filter
(MAF))

scaled and time-shifted impulses,
351–353
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Finite state machines (FSMs)
callback function, 274
non-blocking function, 273
states and transitions, 272–273,

273f
task, 273–274
UART, 276

FIR filter. See Finite impulse
response (FIR) filter

First-in first-out queues (FIFOs)
receiving data, 160–161,

168–169, 252
transmitting data, 160–161,

168–169, 252
Flash memory

buffer declaration, 241
flashbasic.c, 243
flash_op function, 242
output, 243
RTSP, 239
SFRs, 240–241

Force sensor, 334–336, 335f , 336f
Frequency response

RC circuits, 596–599, 596f , 597f
RL circuits, 596–599, 596f , 597f

FSMs. See Finite state machines
(FSMs)

G
Gated accumulation mode, 125
Gearing, 427–428, 428f

backdrivability, 429
backlash, 428–429
ball and lead screws, 430, 431f
bevel gears, 430, 431f
efficiency, 428
factors, 434
harmonic drive, 430, 431f
inertia matching, 434–435
input and output limits, 429
planetary gearhead, 429–430,

431f
rack and pinion, 430, 431f
reflected inertia, 432–434, 433f
speed-torque curve, 431–432,

432f
spur gearhead, 429, 431f
worm gear, 430, 431f

H
Hall effect sensors, 332–333, 333f ,

339, 501
Hardware

configuration bits, 28
flow control, 161
NU32 development (see NU32

development
board)

peripherals (see PIC32
architecture)

physical memory map, 27–28
pin functions, 18, 18f , 19t
SFR, 20
specifications, 17

Harmony
abstraction, 267–268
app.h file, 291
application implementation, 292
code generation, 268
drivers (see Drivers)
file and directory structure,

289–290
FSM, 272–274
installation directory, 268–269
main function, 291
Makefile, 290–291
middleware, 269
PLIB functions, 270–271
portable code, 268
setup, 270
SFR layer, 269, 269f
system_definitions.h file,

293
system_init.c file, 293
system_interrupt.c file, 294
system services, 269
system_tasks.c file, 295
USB devices (see Universal

serial bus (USB) devices)
H-bridge

bidirectional operation, 440f ,
441

current amplification, 439–440,
440f

flyback diode, 440–441, 440f
linear push-pull amplifier, 440f ,

442–450
microcontroller pin, 439, 440f
PHASE/ENABLE mode, 444

switches, 444
Texas Instruments DRV8835,

444, 445, 445f
unipolar power supply, 443, 443f

High-speed sampling, 154
Human interface device (HID)

API function, 299
callbacks, 312
client code, 297
compiler command line, 297
configuration_descriptors,

311
device class definition, 301
device_descriptor, 311
documentation, 303
event handlers, 312
hid.h, 302, 303, 305
initialization and opening

function, 313
macros, 301–302
Makefile and

NU32bootloaded.ld,
299–300

string descriptor, 305, 312
system_config.h, 303
system_definitions.h.,

305
talkingHID.c file, 300
variables, 312
vendor and product identifiers,

299
Hybrid stepper motor, 497, 497f

I
I2C communication.

See Inter-integrated circuit
(I2C) communication

IEC. See Interrupt enable control
(IEC)

IFSx. See Interrupt flag status
(IFSx)

Incremental encoder, 324–326,
325f

Inertial measurement unit (IMU),
330–332

Infinite impulse response (IIR)
filters

Chebyshev and Butterworth
filters, 362
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generalization, 361–362
roundoff errors, 362
sample signal, 358f , 362, 363f

Input capture (IC)
ICxBUF, 223
ICxCON, 222
modules, 221, 222f
PWM signal, 223

Inter-integrated circuit (I2C)
communication

accelerometer/magnetometer,
203–204

bus collision, 193
clock stretching, 193
data transaction, 192–193
I2CxADD, 195
I2CxBRG, 195
I2CxCON, 194
I2CxMSK, 195
I2CxRCV, 195
I2CxSTAT, 194
interrupt-based master, 200–201
main program, 199
master code, 196
multiple devices, 208
OLED screen, 205, 205f
slave code, 197–198, 200
timing diagram, 191–192, 192f
two wires, 191
typical bus connection, 191, 192f

Inter-integrated circuit (I2C)
modules, 24

Interrupt enable control (IEC), 93
Interrupt flag status (IFSx), 93
Interrupt priority control (IPCy), 93
Interrupt request (IRQ), 25, 93
Interrupt service routine (ISR), 25

central processing unit, 97
circular buffer, 168–169, 169f ,

172
configuration, 99
context save and restore, 92
core timer interrupt, 99–100
counters/timers, 128
decimation, 168, 169
exception memory, 92
external interrupt inputs, 98–99,

102–103
IECx and IFSx, 93
interrupt vector, 92, 93

IPCy, 93
IRQs, 93
multi-vector mode (see Core

timer interrupt)
real-time control applications, 91
SFRs, 98–99, 103–104
single vector mode, 93
SRS, 97
TMR driver, 285–287
volatile qualifier, 106

Interrupt vector, 92, 93
IPCy. See Interrupt priority control

(IPCy)
IRQ. See Interrupt request (IRQ)
ISR. See Interrupt service routine

(ISR)
ITEST mode, 482–483

K
Kirchhoff’s current law (KCL),

588–589
Kirchhoff’s voltage law (KVL),

588–589

L
LCD library

circuit diagram, 63, 64f
HD44780, 63
header file, 64
LCDwrite.c program, 65
PMP, 215–216

LED. See Light-emitting diode
(LED)

Library
bootloaded programs, 62–63
definition, 59
input and output library, 562
LCD library, 63–64,

64f
Makefile, 572
middleware, 66
multi-file projects, 570–572
NU32 library, 59, 61
peripheral libraries, 66–67
printf and scanf, 567
rad2volume library, 567–568
stdlib.h functions, 566
string manipulation, 565

talkingPIC.c program, 60–61
Light-emitting diode (LED)

ADC, 395
block diagram, 388, 388f
features, 396
MATLAB interface, 391–394
OC1, 389–390
open-loop PWM waveform,

390–391
phototransistor, 387–388, 388f
PI controller, 395–396
printGainsToLCD() function,

395
wiring and testing, 389, 389f

Light sensors
photocell, 319, 320f
photodiode, 319–321, 320f
photointerrupter, 322, 322f
phototransistor, 321, 322f
reflective object sensor, 323,

323f
Linear circuit elements, 589–599,

19t, 31f , 29t
Linear variable differential

transformer (LVDT), 328,
329f

Lorentz force law, 332
Low-pass filtering

FIR filters, 357
PWM signals, 137–139, 140

M
MAF. SeeMoving average filter

(MAF)
Magnetic encoders, 327, 333f
Magnetic field sensing, 332–333,

333f
Map file

data memory report, 81
heap, 78, 83
kseg1 boot memory, 80
kseg1 data memory usage, 82
kseg0 program memory usage,

79, 80, 82
my_cat_string, 82, 83
out.map file, 79
program flash, 78
.sdata, 82
stack, 78–79
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Microelectromechanical systems
(MEMS)

accelerometer, 329–330, 330f
gyroscopes/gyros, 330, 331f
IMU, 330–332

Middleware. See Universal serial
bus (USB) devices

Modularity, 608–609
Motor sizing. See Gearing
Moving average filter (MAF)

causal vs. acausal filters,
356–357

frequency response, 356
sensor signal, 353, 354f
smoothed and delayed version,

353–354
test frequencies, 354, 355f , 356,

356f
Multi-vector mode

central processing unit, 101
configuration, 101
disabling interrupts, 101,

107–111
enabling interrupts, 101,

107–111
IFSx, 101
ISR, 100
priority and subpriority, 101

N
Non-volatile memory (NVM), 239,

240–241
NU32 development board, 4, 4f

LEDs and USER button, 30, 31f
PICkit 3 programmer, 30–31, 31f
pinout, 28, 29t
voltage regulators, 28–30

NU32 library, 61
NVM. See Non-volatile memory

(NVM)

O
Ohmic heating, 408–409
OLED screen. See Organic light

emitting diode (OLED)
screen

Operational amplifiers
characteristics, 605–606

circuit symbol, 603, 603f
8-pin TLV272 integrated

circuit, 603, 603f
feedback, 603
impedance, 603
instrumentation amp, 607–608
integrator circuit, 604–605, 604f
single supply design, 606–607,

607f
virtual ground, 606–607, 607f
voltage follower circuit, 604f ,

605
weighted summer circuit, 604,

604f
Optical encoders, 324, 325f
Organic light emitting diode

(OLED) screen, 205, 205f
Output compare (OC)

DC analog output, 137–139
dual compare mode, 133
OCxCON, 134
OCxR, 136
OCxRS, 136
PWMmodes, 133, 134, 134f ,

136
single compare modes, 133
time-varying analog output, 140

P
Parallel master port (PMP), 24

address pins, 213
configuration, 214
LCD library, 215–216
master modes, 213–214
PMADDR, 215
PMAEN, 215
PMDIN, 215
PMMODE, 214
strobes, 213–214

Period match, 123
Period register (PRx), 123, 127
Peripheral library (PLIB), 270–271
Permanent magnet stepper motors,

495–496, 496f
Physical memory map, 27–28
PIC32 architecture, 20, 21f

analog input, 24
bus matrix, 25
CAN, 22

central processing unit, 25
change notification, 23
comparators, 25
counters/timers, 23
digital input and output, 21–22
DMA controller, 22
Ethernet, 22
flash and RAM, 26
in-circuit debugger, 22
input capture, 23
inter-integrated circuit, 24
interrupt controller, 25
output compare, 23
PMP, 24
prefetch cache module, 26
RTCC, 24
SPI, 23–24
SYSCLK, PBCLK and

USBCLK, 25, 26–27
UART, 24
USB, 22
WDT, 23

PIC32MX330/350/370/430/450/470
family, 614

PIC32MX1xx/2xx family, 612–613
PIC32MX3xx/4xx family, 612
PIC32MX5xx/6xx/7xx family,

611–612
PIC32MX1xx/2xx/5xx 64-100 pin

family, 613–614
PIC32MZ family, 614–615
PID controller. See Proportional-

integral-derivative (PID)
controller

PMP. See Parallel master port
(PMP)

Polling mode, 284
Position-sensitive detector (PSD),

334, 334f
Potentiometer, 591, 31f
Power-saving modes

idle and sleep modes, 234
SFRs and configuration bits,

234–235
Prefetch cache module, 26, 77–78
Proportional integral (PI)

controller, 395–396
Proportional-integral-derivative

(PID) controller
block diagram, 375, 376f
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control saturation, 378
derivative, 377
empirical gain tuning, 380–381,

381f
error difference and sum, 378
force proportional, 376
integer math vs. floating point

math, 378
integrator anti-windup

protection, 379
model-based control, 381–383,

382f
pseudocode, 377
reference signal, 376
sensor noise, quantization, and

filtering, 379
step error response, 375
time integral, 377
timestep and delays, 378
variants, 379–380, 380t

PSD. See Position-sensitive
detector (PSD)

Pulse width modulation (PWM)
signals, 445–447, 446f ,
447f

DC analog output, 137–139,
138f

input capture, 223
pulse train, 134, 136
software, 463
time-varying analog output, 140
waveform, 134f , 136, 137f

Python programming language, 173

Q
Quadcopters, 509
Quickstart
<COMportA>, 12
bootloader utility, 6–7
hardware, 4
Harmony’s version, 10
loading, 9–10
simplePIC.c, 7, 8
software, 4–6
talkingPIC.c, 11, 12
terminal emulator, 3
types, 3
USB port, 10
XC32 installation, 8

R
Random access memory (RAM), 26

context save and restore, 92
FIFOs, 252, 257
heap, 78, 83
physical memory map, 27–28
.sdata, 82
SRAM, 183–184
stack, 78–79
virtual memory map, 35–37, 36f

Real-time clock and calendar
(RTCC), 24

Receiving data (RX)
DTE, 159
FIFOs, 160–161, 168–169, 252
interrupts, 165

Run-time self-programming
(RTSP), 239, 240–241

S
Sample and hold amplifier (SHA),

145
Satic random-accessmemory

(SRAM), 183–184
Sensors

accelerometer, 329–330, 330f
buttons and switches, 318–319,

318f
current-sense resistor and

amplifier, 337–339, 338f
force sensor, 334–336, 335f ,

336f
GPS, 339
gyroscopes/gyros, 330, 331f
hall effect sensors, 332–333,

333f , 339
IMU, 330–332
infrared distance sensor,

333–334, 334f
lights (see Light sensors)
prismatic joints, 328–329, 329f
signal conditioning, 317
temperature, 336–337, 337f
transduction principles, 317
ultrasonic distance sensor,

333–334, 334f
Serial data in (SDI) pin, 177, 178f
Serial data out (SDO) pin, 177,

178f

Serial peripheral interface (SPI),
23–24

interrupt vector, 181
LSM303D accelerometer/

magnetometer, 178f ,
186–187, 187f

SDI, SDO, and SCK pins, 177,
178f

spi_loop.c., 181–182
SPIxBRG, 181
SPIxBUF, 180
SPIxCON, 179
SPIxSTAT, 180
SRAM, 183–184

SFRs. See Special function
registers (SFRs)

Shadow register set (SRS), 97,
103–104

simplePIC.c program, 37
ADC, 49
archiver, 38
arguments, 53, 54
assembler, 38, 54
compilation, 38, 39f , 54
DIO, 119
extern variable, 46
Harmony, 49
hex file, 8, 54
include files, 46
installation, 54
libraries, 45
linker, 38, 54
LSM303D accelerometer/

magnetometer, 186
NU32bootloaded.ld linker

script, 50–51
pins RA4, RA5, and

RD13, 43
POSITION, LENGTH, and

MASK constants, 49
preprocessor, 38, 54
RTCALRM, 47
SFRs, 40–42, 41f
statements, 48
structs, 47
TCS/TCKP, 48
_ _TRISAbits_t data type, 47
type _ _RTCALRMbits_t, 47
USER button, 7
XC32 compiler, 44–46
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simplePIC.c program
(Continued)

xc.h, 44–46
XC32 installation, 8

Software
angle, 464
average error, 460, 461f
bootloaded vs. standalone

programs, 51–53
command line utilities, 55
command prompt, 5
cubic trajectory, 466
current controller, 464, 464f
current gains, 463
current sensor, 461, 462
data types, 470
debugging, 467
encoder, 462, 463
features, 461, 462f
FTDI Virtual COM Port Driver, 5
get mode, 466
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275–276
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function, 275
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