
A.10 MIPS R2000 Assembly Language A-49

.text <addr> Subsequent items are put in the user text seg-
ment. In SPIM, these items may only be instruc-
tions or words (see the .word directive below).
If the optional argument addr is present, subse-
quent items are stored starting at address addr.

.word w1,..., wn Store the n 32-bit quantities in successive mem-
ory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata,
and .sdata).

Encoding MIPS Instructions

Figure A.10.2 explains how a MIPS instruction is encoded in a binary number.
Each column contains instruction encodings for a field (a contiguous group of
bits) from an instruction. The numbers at the left margin are values for a field. For
example, the j opcode has a value of 2 in the opcode field. The text at the top of a
column names a field and specifies which bits it occupies in an instruction. For
example, the op field is contained in bits 26–31 of an instruction. This field
encodes most instructions. However, some groups of instructions use additional
fields to distinguish related instructions. For example, the different floating-point
instructions are specified by bits 0–5. The arrows from the first column show
which opcodes use these additional fields.

Instruction Format

The rest of this appendix describes both the instructions implemented by actual
MIPS hardware and the pseudoinstructions provided by the MIPS assembler. The
two types of instructions are easily distinguished. Actual instructions depict the
fields in their binary representation. For example, in

Addition (with overflow)

the add instruction consists of six fields. Each field’s size in bits is the small num-
ber below the field. This instruction begins with 6 bits of 0s. Register specifiers
begin with an r, so the next field is a 5-bit register specifier called rs. This is the
same register that is the second argument in the symbolic assembly at the left of
this line. Another common field is imm16, which is a 16-bit immediate number.

add rd, rs, rt
0 rs rt rd 0 0x20

6 5 5 5 5 6

A-50 Appendix A Assemblers, Linkers, and the SPIM Simulator

FIGURE A.10.2 MIPS opcode map. The values of each field are shown to its left. The first column shows the values in base 10 and the second
shows base 16 for the op field (bits 31 to 26) in the third column. This op field completely specifies the MIPS operation except for 6 op values: 0, 1, 16,
17, 18, and 19. These operations are determined by other fields, identified by pointers. The last field (funct) uses “f” to mean “s” if rs = 16 and op = 17
or “d” if rs = 17 and op = 17. The second field (rs) uses “z” to mean “0”, “1”, “2”, or “3” if op = 16, 17, 18, or 19, respectively. If rs = 16, the operation is
specified elsewhere: if z = 0, the operations are specified in the fourth field (bits 4 to 0); if z = 1, then the operations are in the last field with f = s. If rs
= 17 and z = 1, then the operations are in the last field with f = d.

10
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

10
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

10
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

16
00
01
02
03
04
05
06
07
08
09
0a
0b
0c
0d
0e
0 f
10
11
12
13
14
15
16
17
18
19
1a
1b
1c
1d
1e
1 f
20
21
22
23
24
25
26
27
28
29
2a
2b
2c
2d
2e
2 f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3 f

rs
(25:21)
mfcz

cfcz

mtcz

ctcz

copz
copz

(17:16)
bczf
bczt
bczfl
bcztl

tlbr
tlbwi

tlbwr

tlbp

eret

deret

rt
(20:16)
bltz
bgez
bltzl
bgezl

tgei
tgeiu
tlti
tltiu
tegi

tnei

bltzal
bgezal
bltzall
bgczall

cvt.s.f
cvt.d.f

cvt.w.f

c.f.f
c.un.f
c.eq.f
c.ueq.f
c.olt.f
c.ult.f
c.ole.f
c.ule.f
c.sf.f
c.ngle.f
c.seq.f
c.ngl.f
c.lt.f
c.nge.f
c.le.f
c.ngt.f

funct(5:0)funct(5:0)
sll

srl
sra
sllv

srlv
srav
jr
jalr
movz
movn
syscall
break

sync
mfhi
mthi
mflo
mtlo

mult
multu
div
divu

add
addu
sub
subu
and
or
xor
nor

slt
sltu

tge
tgeu
tlt
tltu
teq

tne

if z = 1,
f = d

if z = 1,
f = s

if z = 0

if z = 1 or z = 2

0
1
2
3

funct
(4:0)

sub.f
add.f

mul.f
div.f
sqrt.f
abs.f
mov.f
neg.f

round.w.f
trunc.w.f
cell.w.f
floor.w.f

movz.f
movn.f

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

clz
clo

funct(5:0)
madd
maddu
mul

msub
msubu

(16:16)
movf
movt

0
1

(16:16)
movf.f
movt.f

0
1

op(31:26)

j
jal
beq
bne
blez
bgtz
addi
addiu
slti
sltiu
andi
ori
xori
lui
z = 0
z = 1
z = 2

beql
bnel
blezl
bgtzl

lb
lh
lwl
lw
lbu
lhu
lwr

sb
sh
swl
sw

swr
cache
ll
lwc1
lwc2
pref

ldc1
ldc2

sc
swc1
swc2

sdc1
sdc2

A.10 MIPS R2000 Assembly Language A-51

Pseudoinstructions follow roughly the same conventions, but omit instruction
encoding information. For example:

Multiply (without overflow)

In pseudoinstructions, rdest and rsrc1 are registers and src2 is either a regis-
ter or an immediate value. In general, the assembler and SPIM translate a more
general form of an instruction (e.g., add $v1, $a0, 0x55) to a specialized form
(e.g., addi $v1, $a0, 0x55).

Arithmetic and Logical Instructions

Absolute value

Put the absolute value of register rsrc in register rdest.

Addition (with overflow)

Addition (without overflow)

Put the sum of registers rs and rt into register rd.

Addition immediate (with overflow)

Addition immediate (without overflow)

Put the sum of register rs and the sign-extended immediate into register rt.

mul rdest, rsrc1, src2 pseudoinstruction

abs rdest, rsrc pseudoinstruction

add rd, rs, rt
0 rs rt rd 0 0x20

6 5 5 5 5 6

addu rd, rs, rt
0 rs rt rd 0 0x21

6 5 5 5 5 6

addi rt, rs, imm
8 rs rt imm

6 5 5 16

addiu rt, rs, imm
9 rs rt imm

6 5 5 16

A-52 Appendix A Assemblers, Linkers, and the SPIM Simulator

AND

Put the logical AND of registers rs and rt into register rd.

AND immediate

Put the logical AND of register rs and the zero-extended immediate into

register rt.

Count leading ones

Count leading zeros

Count the number of leading ones (zeros) in the word in register rs and put

the result into register rd. If a word is all ones (zeros), the result is 32.

Divide (with overflow)

Divide (without overflow)

Divide register rs by register rt. Leave the quotient in register lo and the re-

mainder in register hi. Note that if an operand is negative, the remainder is

unspecified by the MIPS architecture and depends on the convention of the

machine on which SPIM is run.

and rd, rs, rt
0 rs rt rd 0 0x24

6 5 5 5 5 6

andi rt, rs, imm
0xc rs rt imm

6 5 5 16

clo rd, rs
0x1c rs 0 rd 0 0x21

6 5 5 5 5 6

clz rd, rs
0x1c rs 0 rd 0 0x20

6 5 5 5 5 6

div rs, rt
0 rs rt 0 0x1a

6 5 5 10 6

divu rs, rt
0 rs rt 0 0x1b

6 5 5 10 6

A.10 MIPS R2000 Assembly Language A-53

Divide (with overflow)

Divide (without overflow)

Put the quotient of register rsrc1 and src2 into register rdest.

Multiply

Unsigned multiply

Multiply registers rs and rt. Leave the low-order word of the product in reg-

ister lo and the high-order word in register hi.

Multiply (without overflow)

Put the low-order 32 bits of the product of rs and rt into register rd.

Multiply (with overflow)

Unsigned multiply (with overflow)

Put the low-order 32 bits of the product of register rsrc1 and src2 into regis-

ter rdest.

div rdest, rsrc1, src2 pseudoinstruction

divu rdest, rsrc1, src2 pseudoinstruction

mult rs, rt
0 rs rt 0 0x18

6 5 5 10 6

multu rs, rt
0 rs rt 0 0x19

6 5 5 10 6

mul rd, rs, rt
0x1c rs rt rd 0 2

6 5 5 5 5 6

mulo rdest, rsrc1, src2 pseudoinstruction

mulou rdest, rsrc1, src2 pseudoinstruction

A-54 Appendix A Assemblers, Linkers, and the SPIM Simulator

Multiply add

Unsigned multiply add

Multiply registers rs and rt and add the resulting 64-bit product to the 64-bit

value in the concatenated registers lo and hi.

Multiply subtract

Unsigned multiply subtract

Multiply registers rs and rt and subtract the resulting 64-bit product from the

64-bit value in the concatenated registers lo and hi.

Negate value (with overflow)

Negate value (without overflow)

Put the negative of register rsrc into register rdest.

NOR

Put the logical NOR of registers rs and rt into register rd.

madd rs, rt
0x1c rs rt 0 0

6 5 5 10 6

maddu rs, rt
0x1c rs rt 0 1

6 5 5 10 6

msub rs, rt
0x1c rs rt 0 4

6 5 5 10 6

msub rs, rt
0x1c rs rt 0 5

6 5 5 10 6

neg rdest, rsrc pseudoinstruction

negu rdest, rsrc pseudoinstruction

nor rd, rs, rt
0 rs rt rd 0 0x27

6 5 5 5 5 6

A.10 MIPS R2000 Assembly Language A-55

NOT

Put the bitwise logical negation of register rsrc into register rdest.

OR

Put the logical OR of registers rs and rt into register rd.

OR immediate

Put the logical OR of register rs and the zero-extended immediate into register rt.

Remainder

Unsigned remainder

Put the remainder of register rsrc1 divided by register rsrc2 into register

rdest. Note that if an operand is negative, the remainder is unspecified by the

MIPS architecture and depends on the convention of the machine on which

SPIM is run.

Shift left logical

Shift left logical variable

not rdest, rsrc pseudoinstruction

or rd, rs, rt 0 rs rt rd 0 0x25

6 5 5 5 5 6

ori rt, rs, imm
0xd rs rt imm

6 5 5 16

rem rdest, rsrc1, rsrc2 pseudoinstruction

remu rdest, rsrc1, rsrc2 pseudoinstruction

sll rd, rt, shamt
0 rs rt rd shamt 0

6 5 5 5 5 6

sllv rd, rt, rs
0 rs rt rd 0 4

6 5 5 5 5 6

A-56 Appendix A Assemblers, Linkers, and the SPIM Simulator

Shift right arithmetic

Shift right arithmetic variable

Shift right logical

Shift right logical variable

Shift register rt left (right) by the distance indicated by immediate shamt or

the register rs and put the result in register rd. Note that argument rs is ig-

nored for sll, sra, and srl.

Rotate left

Rotate right

Rotate register rsrc1 left (right) by the distance indicated by rsrc2 and put

the result in register rdest.

Subtract (with overflow)

sra rd, rt, shamt
0 rs rt rd shamt 3

6 5 5 5 5 6

srav rd, rt, rs
0 rs rt rd 0 7

6 5 5 5 5 6

srl rd, rt, shamt
0 rs rt rd shamt 2

6 5 5 5 5 6

srlv rd, rt, rs
0 rs rt rd 0 6

6 5 5 5 5 6

rol rdest, rsrc1, rsrc2 pseudoinstruction

ror rdest, rsrc1, rsrc2 pseudoinstruction

sub rd, rs, rt
0 rs rt rd 0 0x22

6 5 5 5 5 6

A.10 MIPS R2000 Assembly Language A-57

Subtract (without overflow)

Put the difference of registers rs and rt into register rd.

Exclusive OR

Put the logical XOR of registers rs and rt into register rd.

XOR immediate

Put the logical XOR of register rs and the zero-extended immediate into reg-

ister rt.

Constant-Manipulating Instructions

Load upper immediate

Load the lower halfword of the immediate imm into the upper halfword of reg-

ister rt. The lower bits of the register are set to 0.

Load immediate

Move the immediate imm into register rdest.

Comparison Instructions

Set less than

subu rd, rs, rt
0 rs rt rd 0 0x23

6 5 5 5 5 6

xor rd, rs, rt
0 rs rt rd 0 0x26

6 5 5 5 5 6

xori rt, rs, imm
0xe rs rt Imm

6 5 5 16

lui rt, imm
0xf 0 rt imm

6 5 5 16

li rdest, imm pseudoinstruction

slt rd, rs, rt
0 rs rt rd 0 0x2a

6 5 5 5 5 6

A-58 Appendix A Assemblers, Linkers, and the SPIM Simulator

Set less than unsigned

Set register rd to 1 if register rs is less than rt, and to 0 otherwise.

Set less than immediate

Set less than unsigned immediate

Set register rt to 1 if register rs is less than the sign-extended immediate, and

to 0 otherwise.

Set equal

Set register rdest to 1 if register rsrc1 equals rsrc2, and to 0 otherwise.

Set greater than equal

Set greater than equal unsigned

Set register rdest to 1 if register rsrc1 is greater than or equal to rsrc2, and

to 0 otherwise.

Set greater than

sltu rd, rs, rt
0 rs rt rd 0 0x2b

6 5 5 5 5 6

slti rt, rs, imm
0xa rs rt imm

6 5 5 16

sltiu rt, rs, imm
0xb rs rt imm

6 5 5 16

seq rdest, rsrc1, rsrc2 pseudoinstruction

sge rdest, rsrc1, rsrc2 pseudoinstruction

sgeu rdest, rsrc1, rsrc2 pseudoinstruction

sgt rdest, rsrc1, rsrc2 pseudoinstruction

A.10 MIPS R2000 Assembly Language A-59

Set greater than unsigned

Set register rdest to 1 if register rsrc1 is greater than rsrc2, and to 0 otherwise.

Set less than equal

Set less than equal unsigned

Set register rdest to 1 if register rsrc1 is less than or equal to rsrc2, and to

0 otherwise.

Set not equal

Set register rdest to 1 if register rsrc1 is not equal to rsrc2, and to 0 otherwise.

Branch Instructions

Branch instructions use a signed 16-bit instruction offset field; hence they can jump
215 – 1 instructions (not bytes) forward or 215 instructions backwards. The jump
instruction contains a 26-bit address field. In actual MIPS processors, branch
instructions are delayed branches, which do not transfer control until the instruc-
tion following the branch (its "delay slot") has executed (see Chapter 6). Delayed
branches affect the offset calculation, since it must be computed relative to the
address of the delay slot instruction (PC + 4), which is when the branch occurs.
SPIM does not simulate this delay slot, unless the -bare or -delayed_branch
flags are specified.

In assembly code, offsets are not usually specified as numbers. Instead, an
instructions branch to a label, and the assembler computes the distance between
the branch and the target instructions.

In MIPS32, all actual (not pseudo) conditional branch instructions have a "likely"
variant (for example, beq’s likely variant is beql), which does not execute the

sgtu rdest, rsrc1, rsrc2 pseudoinstruction

sle rdest, rsrc1, rsrc2 pseudoinstruction

sleu rdest, rsrc1, rsrc2 pseudoinstruction

sne rdest, rsrc1, rsrc2 pseudoinstruction

A-60 Appendix A Assemblers, Linkers, and the SPIM Simulator

instruction in the branch’s delay slot if the branch is not taken. Do not use these
instructions; they may be removed in subsequent versions of the architecture. SPIM
implements these instructions, but they are not described further.

Branch instruction

Unconditionally branch to the instruction at the label.

Branch coprocessor false

Branch coprocessor true

Conditionally branch the number of instructions specified by the offset if the

floating point coprocessor’s condition flag numbered cc is false (true). If cc is

omitted from the instruction, condition code flag 0 is assumed.

Branch on equal

Conditionally branch the number of instructions specified by the offset if

register rs equals rt.

Branch on greater than equal zero

Conditionally branch the number of instructions specified by the offset if

register rs is greater than or equal to 0.

b label pseudoinstruction

bc1f cc label
0x11 8 cc 0 Offset

6 5 3 2 16

bc1t cc label
0x11 8 cc 1 Offset

6 5 3 2 16

beq rs, rt, label
4 rs rt Offset

6 5 5 16

bgez rs, label
1 rs 1 Offset

6 5 5 16

A.10 MIPS R2000 Assembly Language A-61

Branch on greater than equal zero and link

Conditionally branch the number of instructions specified by the offset if

register rs is greater than or equal to 0. Save the address of the next instruction

in register 31.

Branch on greater than zero

Conditionally branch the number of instructions specified by the offset if

register rs is greater than 0.

Branch on less than equal zero

Conditionally branch the number of instructions specified by the offset if

register rs is less than or equal to 0.

Branch on less than and link

Conditionally branch the number of instructions specified by the offset if

register rs is less than 0. Save the address of the next instruction in register 31.

Branch on less than zero

Conditionally branch the number of instructions specified by the offset if

register rs is less than 0.

bgezal rs, label
1 rs 0x11 Offset

6 5 5 16

bgtz rs, label
7 rs 0 Offset

6 5 5 16

blez rs, label
6 rs 0 Offset

6 5 5 16

bltzal rs, label
1 rs 0x10 Offset

6 5 5 16

bltz rs, label
1 rs 0 Offset

6 5 5 16

A-62 Appendix A Assemblers, Linkers, and the SPIM Simulator

Branch on not equal

Conditionally branch the number of instructions specified by the offset if

register rs is not equal to rt.

Branch on equal zero

Conditionally branch to the instruction at the label if rsrc equals 0.

Branch on greater than equal

Branch on greater than equal unsigned

Conditionally branch to the instruction at the label if register rsrc1 is greater

than or equal to rsrc2.

Branch on greater than

Branch on greater than unsigned

Conditionally branch to the instruction at the label if register rsrc1 is greater

than src2.

Branch on less than equal

bne rs, rt, label
5 rs rt Offset

6 5 5 16

beqz rsrc, label pseudoinstruction

bge rsrc1, rsrc2, label pseudoinstruction

bgeu rsrc1, rsrc2, label pseudoinstruction

bgt rsrc1, src2, label pseudoinstruction

bgtu rsrc1, src2, label pseudoinstruction

ble rsrc1, src2, label pseudoinstruction

A.10 MIPS R2000 Assembly Language A-63

Branch on less than equal unsigned

Conditionally branch to the instruction at the label if register rsrc1 is less than

or equal to src2.

Branch on less than

Branch on less than unsigned

Conditionally branch to the instruction at the label if register rsrc1 is less than

rsrc2.

Branch on not equal zero

Conditionally branch to the instruction at the label if register rsrc is not equal to 0.

Jump Instructions

Jump

Unconditionally jump to the instruction at target.

Jump and link

Unconditionally jump to the instruction at target. Save the address of the next

instruction in register $ra.

bleu rsrc1, src2, label pseudoinstruction

blt rsrc1, rsrc2, label pseudoinstruction

bltu rsrc1, rsrc2, label pseudoinstruction

bnez rsrc, label pseudoinstruction

j target
2 target

6 26

jal target
3 target

6 26

A-64 Appendix A Assemblers, Linkers, and the SPIM Simulator

Jump and link register

Unconditionally jump to the instruction whose address is in register rs. Save

the address of the next instruction in register rd (which defaults to 31).

Jump register

Unconditionally jump to the instruction whose address is in register rs.

Trap Instructions

Trap if equal

If register rs is equal to register rt, raise a Trap exception.

Trap if equal immediate

If register rs is equal to the sign extended value imm, raise a Trap exception.

Trap if not equal

If register rs is not equal to register rt, raise a Trap exception.

Trap if not equal immediate

If register rs is not equal to the sign extended value imm, raise a Trap exception.

jalr rs, rd
0 rs 0 rd 0 9

6 5 5 5 5 6

jr rs
0 rs 0 8

6 5 15 6

teq rs, rt
0 rs rt 0 0x34

6 5 5 10 6

teqi rs, imm
1 rs 0xc imm

6 5 5 16

teq rs, rt
0 rs rt 0 0x36

6 5 5 10 6

teqi rs, imm
1 rs 0xe imm

6 5 5 16

A.10 MIPS R2000 Assembly Language A-65

Trap if greater equal

Unsigned trap if greater equal

If register rs is greater than or equal to register rt, raise a Trap exception.

Trap if greater equal immediate

Unsigned trap if greater equal immediate

If register rs is greater than or equal to the sign extended value imm, raise a

Trap exception.

Trap if less than

Unsigned trap if less than

If register rs is less than register rt, raise a Trap exception.

Trap if less than immediate

tge rs, rt
0 rs rt 0 0x30

6 5 5 10 6

tgeu rs, rt
0 rs rt 0 0x31

6 5 5 10 6

tgei rs, imm
1 rs 8 imm

6 5 5 16

tgeiu rs, imm
1 rs 9 imm

6 5 5 16

tlt rs, rt
0 rs rt 0 0x32

6 5 5 10 6

tltu rs, rt
0 rs rt 0 0x33

6 5 5 10 6

tlti rs, imm
1 rs a imm

6 5 5 16

A-66 Appendix A Assemblers, Linkers, and the SPIM Simulator

Unsigned trap if less than immediate

If register rs is less than the sign extended value imm, raise a Trap exception.

Load Instructions

Load address

Load computed address—not the contents of the location—into register rdest.

Load byte

Load unsigned byte

Load the byte at address into register rt. The byte is sign-extended by lb, but

not by lbu.

Load halfword

Load unsigned halfword

Load the 16-bit quantity (halfword) at address into register rt. The halfword is

sign-extended by lh, but not by lhu.

tltiu rs, imm
1 rs b imm

6 5 5 16

la rdest, address pseudoinstruction

lb rt, address
0x20 rs rt Offset

6 5 5 16

lbu rt, address
0x24 rs rt Offset

6 5 5 16

lh rt, address
0x21 rs rt Offset

6 5 5 16

lhu rt, address
0x25 rs rt Offset

6 5 5 16

A.10 MIPS R2000 Assembly Language A-67

Load word

Load the 32-bit quantity (word) at address into register rt.

Load word coprocessor 1

Load the word at address into register ft in the floating-point unit.

Load word left

Load word right

Load the left (right) bytes from the word at the possibly unaligned address into

register rt.

Load doubleword

Load the 64-bit quantity at address into registers rdest and rdest + 1.

Unaligned load halfword

lw rt, address
0x23 rs rt Offset

6 5 5 16

lwc1 ft, address
0x31 rs ft Offset

6 5 5 16

lwl rt, address
0x22 rs rt Offset

6 5 5 16

lwr rt, address
0x26 rs rt Offset

6 5 5 16

ld rdest, address pseudoinstruction

ulh rdest, address pseudoinstruction

A-68 Appendix A Assemblers, Linkers, and the SPIM Simulator

Unaligned load halfword unsigned

Load the 16-bit quantity (halfword) at the possibly unaligned address into

register rdest. The halfword is sign-extended by ulh, but not ulhu.

Unaligned load word

Load the 32-bit quantity (word) at the possibly unaligned address into register

rdest.

Load linked

Load the 32-bit quantity (word) at address into register rt and start an atomic

read-modify-write operation. This operation is completed by a store condi-

tional (sc) instruction, which will fail if another processor writes into the block

containing the loaded word. Since SPIM does not simulate multiple proces-

sors, the store conditional operation always succeeds.

Store Instructions

Store byte

Store the low byte from register rt at address.

Store halfword

Store the low halfword from register rt at address.

ulhu rdest, address pseudoinstruction

ulw rdest, address pseudoinstruction

ll rt, address
0x30 rs rt Offset

6 5 5 16

sb rt, address
0x28 rs rt Offset

6 5 5 16

sh rt, address
0x29 rs rt Offset

6 5 5 16

A.10 MIPS R2000 Assembly Language A-69

Store word

Store the word from register rt at address.

Store word coprocessor 1

Store the floating-point value in register ft of floating-point coprocessor at ad-

dress.

Store double coprocessor 1

Store the double word floating-point value in registers ft and ft + 1 of float-

ing-point coprocessor at address. Register ft must be even numbered.

Store word left

Store word right

Store the left (right) bytes from register rt at the possibly unaligned address.

Store doubleword

Store the 64-bit quantity in registers rsrc and rsrc + 1 at address.

sw rt, address
0x2b rs rt Offset

6 5 5 16

swc1 ft, address
0x31 rs ft Offset

6 5 5 16

sdc1 ft, address
0x3d rs ft Offset

6 5 5 16

swl rt, address
0x2a rs rt Offset

6 5 5 16

swr rt, address
0x2e rs rt Offset

6 5 5 16

sd rsrc, address pseudoinstruction

A-70 Appendix A Assemblers, Linkers, and the SPIM Simulator

Unaligned store halfword

Store the low halfword from register rsrc at the possibly unaligned address.

Unaligned store word

Store the word from register rsrc at the possibly unaligned address.

Store conditional

Store the 32-bit quantity (word) in register rt into memory at address and com-

plete an atomic read-modify-write operation. If this atomic operation is suc-

cessful, the memory word is modified and register rt is set to 1. If the atomic

operation fails because another processor wrote to a location in the block con-

taining the addressed word, this instruction does not modify memory and

writes 0 into register rt. Since SPIM does not simulate multiple processors, the

instruction always succeeds.

Data Movement Instructions

Move

Move register rsrc to rdest.

Move from hi

ush rsrc, address pseudoinstruction

usw rsrc, address pseudoinstruction

sc rt, address
0x38 rs rt Offset

6 5 5 16

move rdest, rsrc pseudoinstruction

mfhi rd
0 0 rd 0 0x10

6 10 5 5 6

A.10 MIPS R2000 Assembly Language A-71

Move from lo

The multiply and divide unit produces its result in two additional registers, hi

and lo. These instructions move values to and from these registers. The mul-

tiply, divide, and remainder pseudoinstructions that make this unit appear to

operate on the general registers move the result after the computation finishes.

Move the hi (lo) register to register rd.

Move to hi

Move to lo

Move register rs to the hi (lo) register.

Move from coprocessor 0

Move from coprocessor 1

Coprocessors have their own register sets. These instructions move values be-

tween these registers and the CPU’s registers.

Move register rd in a coprocessor (register fs in the FPU) to CPU register rt.

The floating-point unit is coprocessor 1.

mflo rd
0 0 rd 0 0x12

6 10 5 5 6

mthi rs
0 rs 0 0x11

6 5 15 6

mtlo rs
0 rs 0 0x13

6 5 15 6

mfc0 rt, rd
0x10 0 rt rd 0

6 5 5 5 11

mfc1 rt, fs
0x11 0 rt fs 0

6 5 5 5 11

A-72 Appendix A Assemblers, Linkers, and the SPIM Simulator

Move double from coprocessor 1

Move floating-point registers frsrc1 and frsrc1 + 1 to CPU registers rdest

and rdest + 1.

Move to coprocessor 0

Move to coprocessor 1

Move CPU register rt to register rd in a coprocessor (register fs in the FPU).

Move conditional not zero

Move register rs to register rd if register rt is not 0.

Move conditional zero

Move register rs to register rd if register rt is 0.

Move conditional on FP false

Move CPU register rs to register rd if FPU condition code flag number cc is 0.

If cc is omitted from the instruction, condition code flag 0 is assumed.

mfc1.d rdest, frsrc1 pseudoinstruction

mtc0 rd, rt
0x10 4 rt rd 0

6 5 5 5 11

mtc1 rd, fs
0x11 4 rt fs 0

6 5 5 5 11

movn rd, rs, rt
0 rs rt rd 0xb

6 5 5 5 11

movz rd, rs, rt
0 rs rt rd 0xa

6 5 5 5 11

movf rd, rs, cc
0 rs cc 0 rd 0 1

6 5 3 2 5 5 6

A.10 MIPS R2000 Assembly Language A-73

Move conditional on FP true

Move CPU register rs to register rd if FPU condition code flag number cc is 1.

If cc is omitted from the instruction, condition code bit 0 is assumed.

Floating-Point Instructions

The MIPS has a floating-point coprocessor (numbered 1) that operates on single
precision (32-bit) and double precision (64-bit) floating-point numbers. This
coprocessor has its own registers, which are numbered $f0–$f31. Because these
registers are only 32 bits wide, two of them are required to hold doubles, so only
floating-point registers with even numbers can hold double precision values. The
floating-point coprocessor also has 8 condition code (cc) flags, numbered 0–7,
which are set by compare instructions and tested by branch (bc1f or bc1t) and
conditional move instructions.

Values are moved in or out of these registers one word (32 bits) at a time by
lwc1, swc1, mtc1, and mfc1 instructions or one double (64 bits) at a time by
ldc1 and sdc1 described above, or by the l.s, l.d, s.s, and s.d pseudoin-
structions described below.

In the actual instructions below, bits 21–26 are 0 for single precision and 1 for
double precision. In the pseudoinstructions below, fdest is a floating-point reg-
ister (e.g., $f2).

Floating-point absolute value double

Floating-point absolute value single

Compute the absolute value of the floating-point double (single) in register fs

and put it in register fd.

Floating-point addition double

movt rd, rs, cc
0 rs cc 1 rd 0 1

6 5 3 2 5 5 6

abs.d fd, fs
0x11 1 0 fs fd 5

6 5 5 5 5 6

abs.s fd, fs
0x11 0 0 fs fd 5

add.d fd, fs, ft
0x11 0x11 ft fs fd 0

6 5 5 5 5 6

A-74 Appendix A Assemblers, Linkers, and the SPIM Simulator

Floating-point addition single

Compute the sum of the floating-point doubles (singles) in registers fs and ft

and put it in register fd.

Floating-point ceiling to word

Compute the ceiling of the floating-point double (single) in register fs, con-

vert to a 32-bit fixed-point value, and put the resulting word in register fd.

Compare equal double

Compare equal single

Compare the floating-point double (single) in register fs against the one in ft

and set the floating-point condition flag cc to 1 if they are equal. If cc is omitted,

condition code flag 0 is assumed.

Compare less than equal double

Compare less than equal single

add.s fd, fs, ft
0x11 0x10 ft fs fd 0

6 5 5 5 5 6

ceil.w.d fd, fs
0x11 0x11 0 fs fd 0xe

6 5 5 5 5 6

ceil.w.s fd, fs
0x11 0x10 0 fs fd 0xe

c.eq.d cc fs, ft
0x11 0x11 ft fs cc 0 FC 2

6 5 5 5 3 2 2 4

c.eq.s cc fs, ft
0x11 0x10 ft fs cc 0 FC 2

6 5 5 5 3 2 2 4

c.le.d cc fs, ft
0x11 0x11 ft fs cc 0 FC 0xe

6 5 5 5 2 2 4

c.le.s cc fs, ft
0x11 0x10 ft fs cc 0 FC 0xe

6 5 5 5 3 2 2 4

A.10 MIPS R2000 Assembly Language A-75

Compare the floating-point double (single) in register fs against the one in ft

and set the floating-point condition flag cc to 1 if the first is less than or equal

to the second. If cc is omitted, condition code flag 0 is assumed.

Compare less than double

Compare less than single

Compare the floating-point double (single) in register fs against the one in ft

and set the condition flag cc to 1 if the first is less than the second. If cc is omit-

ted, condition code flag 0 is assumed.

Convert single to double

Convert integer to double

Convert the single precision floating-point number or integer in register fs to

a double (single) precision number and put it in register fd.

Convert double to single

Convert integer to single

Convert the double precision floating-point number or integer in register fs to

a single precision number and put it in register fd.

c.lt.d cc fs, ft
0x11 0x11 ft fs cc 0 FC 0xc

6 5 5 5 3 2 2 4

c.lt.s cc fs, ft
0x11 0x10 ft fs cc 0 FC 0xc

6 5 5 5 3 2 2 4

cvt.d.s fd, fs
0x11 0x10 0 fs fd 0x21

6 5 5 5 5 6

cvt.d.w fd, fs
0x11 0x14 0 fs fd 0x21

6 5 5 5 5 6

cvt.s.d fd, fs
0x11 0x11 0 fs fd 0x20

6 5 5 5 5 6

cvt.s.w fd, fs
0x11 0x14 0 fs fd 0x20

6 5 5 5 5 6

A-76 Appendix A Assemblers, Linkers, and the SPIM Simulator

Convert double to integer

Convert single to integer

Convert the double or single precision floating-point number in register fs to

an integer and put it in register fd.

Floating-point divide double

Floating-point divide single

Compute the quotient of the floating-point doubles (singles) in registers fs

and ft and put it in register fd.

Floating-point floor to word

Compute the floor of the floating-point double (single) in register fs and put

the resulting word in register fd.

Load floating-point double

cvt.w.d fd, fs
0x11 0x11 0 fs fd 0x24

6 5 5 5 5 6

cvt.w.s fd, fs
0x11 0x10 0 fs fd 0x24

6 5 5 5 5 6

div.d fd, fs, ft
0x11 0x11 ft fs fd 3

6 5 5 5 5 6

div.s fd, fs, ft
0x11 0x10 ft fs fd 3

6 5 5 5 5 6

floor.w.d fd, fs
0x11 0x11 0 fs fd 0xf

6 5 5 5 5 6

floor.w.s fd, fs 0x11 0x10 0 fs fd 0xf

l.d fdest, address pseudoinstruction

A.10 MIPS R2000 Assembly Language A-77

Load floating-point single

Load the floating-point double (single) at address into register fdest.

Move floating-point double

Move floating-point single

Move the floating-point double (single) from register fs to register fd.

Move conditional floating-point double false

Move conditional floating-point single false

Move the floating-point double (single) from register fs to register fd if con-

dition code flag cc is 0. If cc is omitted, condition code flag 0 is assumed.

Move conditional floating-point double true

Move conditional floating-point single true

l.s fdest, address pseudoinstruction

mov.d fd, fs
0x11 0x11 0 fs fd 6

6 5 5 5 5 6

mov.s fd, fs
0x11 0x10 0 fs fd 6

6 5 5 5 5 6

movf.d fd, fs, cc
0x11 0x11 cc 0 fs fd 0x11

6 5 3 2 5 5 6

movf.s fd, fs, cc
0x11 0x10 cc 0 fs fd 0x11

6 5 3 2 5 5 6

movt.d fd, fs, cc
0x11 0x11 cc 1 fs fd 0x11

6 5 3 2 5 5 6

movt.s fd, fs, cc
0x11 0x10 cc 1 fs fd 0x11

6 5 3 2 5 5 6

A-78 Appendix A Assemblers, Linkers, and the SPIM Simulator

Move the floating-point double (single) from register fs to register fd if con-

dition code flag cc is 1. If cc is omitted, condition code flag 0 is assumed.

Move conditional floating-point double not zero

Move conditional floating-point single not zero

Move the floating-point double (single) from register fs to register fd if pro-

cessor register rt is not 0.

Move conditional floating-point double zero

Move conditional floating-point single zero

Move the floating-point double (single) from register fs to register fd if pro-

cessor register rt is 0.

Floating-point multiply double

Floating-point multiply single

Compute the product of the floating-point doubles (singles) in registers fs and

ft and put it in register fd.

movn.d fd, fs, rt
0x11 0x11 rt fs fd 0x13

6 5 5 5 5 6

movn.s fd, fs, rt
0x11 0x10 rt fs fd 0x13

6 5 5 5 5 6

movz.d fd, fs, rt
0x11 0x11 rt fs fd 0x12

6 5 5 5 5 6

movz.s fd, fs, rt
0x11 0x10 rt fs fd 0x12

6 5 5 5 5 6

mul.d fd, fs, ft
0x11 0x11 ft fs fd 2

6 5 5 5 5 6

mul.s fd, fs, ft
0x11 0x10 ft fs fd 2

6 5 5 5 5 6

A.10 MIPS R2000 Assembly Language A-79

Negate double

Negate single

Negate the floating-point double (single) in register fs and put it in register fd.

Floating-point round to word

Round the floating-point double (single) value in register fs, convert to a 32-

bit fixed-point value, and put the resulting word in register fd.

Square root double

Square root single

Compute the square root of the the floating-point double (single) in register fs

and put it in register fd.

Store floating-point double

neg.d fd, fs
0x11 0x11 0 fs fd 7

6 5 5 5 5 6

neg.s fd, fs
0x11 0x10 0 fs fd 7

6 5 5 5 5 6

round.w.d fd, fs
0x11 0x11 0 fs fd 0xc

6 5 5 5 5 6

round.w.s fd, fs
0x11 0x10 0 fs fd 0xc

sqrt.d fd, fs
0x11 0x11 0 fs fd 4

6 5 5 5 5 6

sqrt.s fd, fs
0x11 0x10 0 fs fd 4

6 5 5 5 5 6

s.d fdest, address pseudoinstruction

A-80 Appendix A Assemblers, Linkers, and the SPIM Simulator

Store floating-point single

Store the floating-point double (single) in register fdest at address.

Floating-point subtract double

Floating-point subtract single

Compute the difference of the floating-point doubles (singles) in registers fs

and ft and put it in register fd.

Floating-point truncate to word

Truncate the floating-point double (single) value in register fs, convert to a 32-

bit fixed-point value, and put the resulting word in register fd.

Exception and Interrupt Instructions

Exception return

Set the EXL bit in coprocessor 0’s Status register to 0 and return to the instruc-

tion pointed to by coprocessor 0’s EPC register.

s.s fdest, address pseudoinstruction

sub.d fd, fs, ft
0x11 0x11 ft fs fd 1

6 5 5 5 5 6

sub.s fd, fs, ft
0x11 0x10 ft fs fd 1

6 5 5 5 5 6

trunc.w.d fd, fs
0x11 0x11 0 fs fd 0xd

6 5 5 5 5 6

trunc.w.s fd, fs
0x11 0x10 0 fs fd 0xd

eret
0x10 1 0 0x18

6 1 19 6

A.11 Concluding Remarks A-81

System call

Register $v0 contains the number of the system call (see Figure A.9.1) provid-

ed by SPIM.

Break

Cause exception code. Exception 1 is reserved for the debugger.

No operation

Do nothing.

Programming in assembly language requires a programmer to trade off helpful
features of high-level languages—such as data structures, type checking, and con-
trol constructs—for complete control over the instructions that a computer exe-
cutes. External constraints on some applications, such as response time or
program size, require a programmer to pay close attention to every instruction.
However, the cost of this level of attention is assembly language programs that are
longer, more time-consuming to write, and more difficult to maintain than high-
level language programs.

Moreover, three trends are reducing the need to write programs in assembly
language. The first trend is toward the improvement of compilers. Modern com-
pilers produce code that is typically comparable to the best handwritten code—
and is sometimes better. The second trend is the introduction of new processors
that are not only faster, but in the case of processors that execute multiple instruc-
tions simultaneously, also more difficult to program by hand. In addition, the

syscall
0 0 0xc

6 20 6

break code
0 code 0xd

6 20 6

nop
0 0 0 0 0 0

6 5 5 5 5 6

A.11 Concluding Remarks A.11

