

 Programming 32-bit
Microcontrollers in C

 Exploring the PIC32

This page intentionally left blank

Programming 32-bit
Microcontrollers in C

Exploring the PIC32

Lucio Di Jasio

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
 Linacre House, Jordan Hill, Oxford OX2 8DP, UK

 Copyright © 2008, Elsevier Inc. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

 Permissions may be sought directly from Elsevier ’ s Science & Technology Rights
Department in Oxford, UK: phone: (�44) 1865 843830, fax: (�44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://elsevier.com), by selecting “ Support & Contact ”
then “ Copyright and Permission ” and then “ Obtaining Permissions. ”

 Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

 Library of Congress Cataloging-in-Publication Data
 Application submitted

 British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

 ISBN: 978-0-7506-8709-6

 For information on all Newnes publications
visit our Web site at www.books.elsevier.com

 08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Typeset by Charon Tec Ltd (A Macmillan Company), Chennai, India
www.charontec.com

 Printed in the United States of America

 Dedicated to my son, Luca.

This page intentionally left blank

 Acknowledgments

 Once more this project would have never been possible if I did not have 110% support
from my wife Sara, who understands my passion(s) and constantly encourages me to
pursue them. Special thanks go to Steve Bowling and to Garry Champ. Their passion
and experience in embedded control application caused them to volunteer for reviewing
the technical content of this book. While Garry did not know what he was signing up
to, Steve should have known better having been my primary technical resource for the
previous book. I owe big thanks also to Patrick Johnson, who enthusiastically supported
this book idea from the very beginning and pulled all the stops to make sure that I would
be able to work in direct contact with his most advanced design and application teams
working on the PIC32 project. Thanks to Joe Triece, “ the architect ” , for being always
available to me and always curious about my experiences and impressions. Thanks to
Joe Drzewiecky for assembling such a complex tool suite, always working hard to make
MPLAB© IDE a better tool. Special thanks also go to the entire PIC32 application team
headed by Nilesh Rajbharti and a special mention to Adrian Aur, Dennis Lehman, Larry
Gass and Chris Smith for addressing quickly all my questions and offering so much help
and insight into the inner workings of the microcontroller, the peripherals and its libraries.
But I would like to extend my gratitude to all my friends, the colleagues at Microchip
Technology and the many embedded control engineers I have been honored to work with
over the years. You have so profoundly influenced my work and shaped my experience in
the fantastic world of embedded control.

 Finally, since the publication of my previous book on Programming 16-bit
microcontrollers in C, I have received so much feedback and so many readers have
written to me to congratulate but also to point out errors and issues. This has been a very
humbling but also rewarding experience and I want to thank you all. I tried to incorporate
as many of your suggestions as possible in this new work but I am still looking for your
continued support and advice.

This page intentionally left blank

 Contents

 Introduction .. xix

 Part 1 : Exploring .. 1
 Day 1: The Adventure Begins .. 3

 The Plan ...3
 Preparation ..3
 The Adventure Begins ...6
 Compiling and Linking ...8
 The Linker Script ...10
 Building the First Project ..11
 Using the Simulator ...12
 Finding a Direction ..14
 The JTAG Port ...16
 Testing PORTB ..17
 Mission Debriefing ..19
 Notes for the Assembly Experts ..20
 Notes for the PIC MCU Experts ..22
 Notes for the C Experts ...22
 Tips & Tricks ...22
 Exercises ..23
 Books ...24
 Links ..24

 Day 2: Walking in Circles ... 25
 The Plan ...25
 Preparation ...25
 The Exploration ...27
 While Loops ..28

 An Animated Simulation ...31
 Using the Logic Analyzer ..35
 Debriefing ..37
 Notes for the Assembly Experts ..38
 Notes for the 8-Bit PIC Microcontroller Experts ..38
 Notes for the 16-Bit PIC Microcontroller Experts ..38
 Notes for the C Experts ...39
 Notes for the MIPS Experts ...39
 Tips & Tricks ...39
 Notes on Using the Peripheral Libraries ...40
 Exercises ..42
 Books ...42
 Links ..42

 Day 3: Message in a Bottle ... 43
 The Plan ...43
 Preparation ...43
 The Exploration ...43
 Do Loops ...44
 Variable Declarations ..45
for Loops ...47
 More Loop Examples ..48
 Arrays ..49
 Sending a Message ..50
 Testing with the Logic Analyzer ...53
 Testing with the Explorer 16 Demonstration Board ..54
 Testing with the PIC32 Starter Kit ..55
 Debriefing ..57
 Notes for the Assembly Experts ..57
 Notes for the PIC Microcontroller Experts ...58
 Notes for the C Experts ...58
 Tips & Tricks ...59
 Exercises ..60
 Books ...60
 Links ..60

 Day 4: NUMB3RS .. 61
 The Plan ...61
 Preparation ...61
 The Exploration ...61
 On Optimizations (or Lack Thereof) ...64
 Testing ...64

x Contents

 Going long long ..65
 Integer Divisions ...67
 Floating Point ..69
 Measuring Performance ..70
 Debriefing ..73
 Notes for the Assembly Experts ..73
 Notes for the 8-Bit PIC® Microcontroller Experts ..75
 Notes for the 16-Bit PIC and dsPIC® Microcontroller Experts 76
 Tips & Tricks ...77
 Exercises ..78
 Books ...79
 Links ..79

 Day 5: Interrupts ... 81
 The Plan ...81
 Preparation ...81
 The Exploration ...81
 Interrupts and Exceptions ..82
 Sources of Interrupt ...84
 Interrupt Priorities ...85
 Interrupt Handlers Declaration ..88
 The Interrupt Management Library ...90
 Single Vector Interrupt Management ..90
 Managing Multiple Interrupts ...95
 Multivectored Interrupt Management ..98
 A Simple Application ..103
 The Secondary Oscillator ..108
 The Real-Time Clock Calendar (RTCC) ...109
 Debriefing ..111
 Notes for the PIC Microcontroller Experts ...111
 Tips & Tricks ...112
 Exercises ..113
 Books ...113
 Links ..113

 Day 6: Memory ... 115
 The Plan ...115
 Preparation ...115
 The Exploration ...116
 Memory Space Allocation ...118
 Looking at the MAP ..123
 Pointers ..127

Contents xi

 The Heap ...128
 The PIC32MX Bus ..129
 PIC32MX Memory Mapping ..130
 The Embedded-Control Memory Map ..134
 Debriefing ..135
 Notes for the C Experts ...135
 Notes for the Assembly Experts ..136
 Notes for the PIC Microcontroller Experts ...136
 Tips & Tricks ...137
 Exercises ..137
 Books ...138
 Links ..138

 Part 2: Experimenting ... 139
 Day 7: Running .. 141

 The Plan ...141
 Preparation ...141
 The Exploration ...142
 Performance vs. Power Consumption ...144
 The Primary Oscillator Clock Chain ...146
 The Peripheral Bus Clock ..147
 Initial Device Configuration ..148
 Setting Configuration Bits in Code ...150
 Heavy Stuff ..152
 Ready, Set, Go! ..158
 Fine-Tuning the PIC32: Configuring Flash Wait States ..160
 Fine-Tuning the PIC32: Enabling the Instruction and Data Cache 163
 Fine-Tuning the PIC32: Enabling the Instruction Pre-Fetch 164
 Fine-Tuning the PIC32: Final Notes ...165
 Debriefing ..167
 Notes for the Assembly Experts ..167
 Notes for the PIC® Microcontroller Experts ...167
 Tips & Tricks ...168
 Exercises ..171
 Books ...171
 Links ..171

 Day 8: Communication ... 173
 The Plan ...173
 Preparation ...173
 The Exploration ...174

xii Contents

 Synchronous Serial Interfaces ...174
 Asynchronous Serial Interfaces ...176
 Parallel Interfaces ..177
 Synchronous Communication Using the SPI Modules ...178
 Testing the Read Status Register Command ...182
 Writing Data to the EEPROM ...186
 Reading the Memory Contents ..187
 A 32-bit Serial EEPROM Library ...187
 Testing the New SEE Library ..191
 Debriefing ..193
 Notes for the C Experts ...193
 Notes for the Explorer 16 Experts ...193
 Notes for the PIC24 Experts ..194
 Tips & Tricks ...194
 Exercises ..195
 Books ...196
 Links ..196

 Day 9: Asynchronous Communication .. 197
 The Plan ...197
 Preparation ...197
 The Exploration ...197
 UART Configuration ...200
 Sending and Receiving Data ...202
 Testing the Serial Communication Routines ...204
 Building a Simple Console Library ...206
 Testing a VT100 Terminal ...209
 The Serial Port as a Debugging Tool ...211
 The Matrix Project ...211
 Debriefing ..214
 Notes for the C Experts ...214
 Notes for the PIC® Microcontroller Experts ...215
 Tips & Tricks ...215
 Exercises ..216
 Books ...216
 Links ..217

 Day 10: Glass � Bliss .. 219
 The Plan ...219
 Preparation ...219
 The Exploration ...219
 HD44780 Controller Compatibility ...221

Contents xiii

 The Parallel Master Port ..223
 Configuring the PMP for LCD Module Control ...224
 A Small Library of Functions to Access an LCD Display ..225
 Building an LCD Library and Using the PMP Library ...231
 Creating the include and lib Directories ..237
 Advanced LCD Control ...240
 Progress Bar Project ..241
 Debriefing ..245
 Notes for the PIC24 Experts ..245
 Tips & Tricks ...246
 Exercises ..246
 Books ...247
 Links ..247

 Day 11: It ’ s an Analog World ... 249
 The Plan ...249
 Preparation ...249
 The Exploration ...249
 The First Conversion ...253
 Automating Sampling Timing ...254
 Developing a Demo ...255
 Creating Our Own Mini ADC Library ..257
 Fun and Games ..258
 Sensing Temperature ...261
 Debriefing ..266
 Notes for the PIC24 Experts ..266
 Tips & Tricks ...267
 Exercises ..267
 Books ...268
 Links ..268

 Part 3: Expansion ... 269
 Day 12: Capturing User Inputs ... 271

 The Plan ...271
 Preparation ...271
 Buttons and Mechanical Switches ...272
 Button Input Packing ...275
 Button Inputs Debouncing ...277
 Rotary Encoders ..280
 Interrupt-Driven Rotary Encoder Input ...283
 Keyboards ..288
 PS/2 Physical Interface ..288

xiv Contents

 The PS/2 Communication Protocol ...289
 Interfacing the PIC32 to the PS/2 ..290
 Input Capture ...290
 Testing Using a Stimulus Scripts ...296
 The Simulator Profiler ...301
 Change Notification ...302
 Evaluating Cost ...308
 I/O Polling ...309
 Testing the I/O Polling Method ...314
 Cost and Efficiency Considerations ..317
 Keyboard Buffering ...319
 Key Code Decoding ..324
 Debriefing ..328
 Notes for the PIC24 Experts ..329
 Tips & Tricks ...329
 Exercises ..330
 Books ...330
 Links ..331

 Day 13: UTube ... 333
 The Plan ...333
 Preparation ...333
 The Exploration ...334
 Generating the Composite Video Signal ...337
 The Output Compare Modules ..342
 Image Buffers ..345
 Serialization, DMA, and Synchronization ..346
 Completing a Video Library ..353
 Testing the Composite Video ...357
 Measuring Performance ..360
 Seeing the Dark Screen ...360
 Test Pattern ..362
 Plotting ..364
 A Starry Night ...366
 Line Drawing ...368
 Bresenham Algorithm ...370
 Plotting Math Functions ..373
 Two-Dimensional Function Visualization ...376
 Fractals ..381
 Text ..389
 Printing Text on Video ...391
 Text Test ..394

Contents xv

 The Matrix Reloaded ...395
 Debriefing ..398
 Notes for the PIC24 Experts ..399
 Tips & Tricks ...399
 Exercises ..401
 Books ...402
 Links ..402

 Day 14: Mass Storage .. 403
 The Plan ...403
 Preparation ...403
 The Exploration ...404
 The Physical Interface ...405
 Interfacing to the Explorer 16 Board ...406
 Starting a New Project ...407
 Selecting the SPI Mode of Operation ..408
 Sending Commands in SPI Mode ...408
 Completing the SD Card Initialization ..411
 Reading Data from an SD/MMC Card ..413
 Writing Data to an SD/MMC Card ...416
 Testing the SD/MMC Interface ...419
 Debriefing ..424
 Tips & Tricks ...425
 Exercises ..426
 Books ...426
 Links ..426

 Day 15: File I/O ... 427
 The Plan ...427
 Preparation ...427
 The Exploration ...428
 Sectors and Clusters ..428
 The File Allocation Table ..429
 The Root Directory ..430
 The Treasure Hunt ...433
 Opening a File ...444
 Reading Data from a File ..454
 Closing a File ...459
 The Fileio Module ...460
 Testing fopenM() and freadM() ..463
 Writing Data to a File ..465
 Closing a File, Take Two ...471

xvi Contents

 Accessory Functions ..473
 Testing the Complete Fileio Module ...476
 Code Size ...480
 Debriefing ..481
 Tips & Tricks ...481
 Exercises ..482
 Books ...482
 Links ..483

 Day 16: Musica, Maestro! .. 485
 The Plan ...485
 Preparation ...485
 The Exploration ...486
 OC PWM Mode ...488
 Testing the PWM as a D/A Converter ...490
 Producing Analog Waveforms ...492
 Reproducing Voice Messages ..497
 A Media Player ..498
 The WAVE File Format ...500
 The Play() Function ..501
 The Audio Routines ...510
 A Simple WAVE File Player ...513
 Debriefing ..515
 Tips & Tricks ...516
 Exercises ..516
 Books ...516
 Links ..517
 Disclaimer ...517
 Final Note for the Experts ...517

Index .. 519

Contents xvii

This page intentionally left blank

 Introduction

 The first step in almost every rehabilitation program is A- Acknowledge . . . your
limitations. So this is how I need to start this book, I will admit it: I am an
8-bitter !

 I have been programming 8-bit microcontrollers since I was in high school and for most
of my professional career. And there is worse, while I am relatively fluent in several high
level programming languages, I truly love assembly programming!

 There, I said it! I love that kick that I get when I know I used every single machine cycle
in every microsecond my embedded applications run. I am also obsessed with control:
I like to know of every configuration bit in every peripheral I use. As a consequence,
in general, I don ’ t trust compilers or other people ’ s libraries unless I really cannot live
without them or I have them completely disassembled.

 So why would I write a book about 32-bit programming in C?

 In fact I started what I should call my “ rehabilitation program ” a couple of years ago
by approaching the programming of 16-bit microcontrollers first. The introduction of
the PIC24 family of microcontrollers gave me the motivation to try and migrate to C
programming with a new and exciting architecture. As a result of my experience, I wrote
the first book: “ Programming 16-bit microcontrollers in C. Learning to fly the PIC24 ” .
But by the time the book was published, rumors circulated in Microchip that a new 32-bit
chip had just come out of the “ ovens ” and I had to have one!

 I ’ ll spare you the details of how I got my hands around one of the very first test chips,
but what you need to know is that in a matter of days I had most of the code, originally
developed for the PIC24 book, ported and running on the PIC32 plugged in my old
Explorer16 board.

xx Introduction

 Microchip marketing folks will tell you that the PIC32 architecture was specifically
designed so to make the “ migration ” from 8-bit and 16-bit PIC architectures smooth and
seamless, but I had to see it with my eyes to believe it.

 So who better than an assembly-loving, control-obsessed, 8-bitter can tell you about the
exploration of the PIC32?

 Who Should Read this Book?
 The PIC32 turns out to be a remarkably easy to use device, but nonetheless, it is a truly
powerful machine based on a well established 32-bit core (MIPS) and supported by a
large number of tools, libraries and documentation. This book can only offer you a small
glimpse into such a vast world and in fact I call it a first “ exploration ” . It is my strong
belief that learning should be fun, and I hope you will have a good time with some
of the “ playful ” exercises and projects I present throughout each chapter in the book.
However you will need quite some preparation and hard work in order to be able to digest
the material I am presenting at a pace that will accelerate rapidly through the first few
chapters.

 This book is meant for programmers of a basic to intermediate level of experience, but
not for “ absolute ” beginners; so don ’ t expect me to start with the basics of the binary
numbers, the hexadecimal notation or the fundamentals of programming. Although,
we will briefly review the basics of C programming as it relates to the applications for
the latest generation of general-purpose 32-bit microcontrollers, before moving on to
more challenging projects. My assumption is that you, the reader, belong to one of the
following four categories:

● Embedded Control programmer: experienced in assembly-language micro-
controllers programming, but with only a basic understanding of the C language.

● PIC® microcontroller expert: with a basic understanding of the C language.

● Student or professional: with some knowledge of C (or C��) programming
for PCs.

● Other SLF (superior life forms): I know programmers don ’ t like to be classified
that easily so I created this special category just for you!

 Depending on your level and type of experience, you should be able to find something
of interest in every chapter. I worked hard to make sure that every one of them contained

Introduction xxi

both C programming techniques and new hardware peripherals details. Should you already
be familiar with both, feel free to skip to the experts section at the end of the chapter, or
consider the additional exercises, book references and links for further research/reading.

 A special note is reserved for those of you who have already read my previous book on
programming 16-bit microcontrollers in C. First of all let me thank you, then let me explain
why you will get a certain sensation of deja vu. No, I did not try to cheat my way through
the old 16-bit material to produce a new book, but I have re-produced most of the projects
to demonstrate practically the main claims of the PIC32 architecture and toolset: its
seamless migration from 8 and 16-bit PIC applications, the vastly increased performance
and nonetheless the great ease of use. For you, at the end of every chapter, I have included
a special section where I detail the differences encountered, the enhancements and other
information that will help you port your applications faster and with greater confidence.

 These are some of the things you will learn:

● The structure of an embedded-control C program: loops, loops and more loops

● Basic timing and I/O operations

● Basic embedded control multitasking in C, using the PIC32 interrupts

● New PIC32 peripherals, in no specific order:

 1. Input Capture

 2. Output Compare

 3. Change Notification

 4. Parallel Master Port

 5. Asynchronous Serial Communication

 6. Synchronous Serial Communication

 7. Analog-to-Digital conversion

● How to control LCD displays

● How to generate video signals

● How to generate audio signals

● How to access mass-storage media

● How to share files on a mass-storage device with a PC

xxii Introduction

 Structure of the Book
 Each chapter of the book is offered as a day of exploration in the 32-bit embedded
programming world. There are three parts. The first part contains six small chapters
of increasing levels of complexity. In each chapter, we will review one basic hardware
peripheral of the PIC32MX family of microcontrollers and one aspect of the C language,
using the MPLAB C32 compiler (Student Version included in the CD-ROM). In each
chapter, we will develop at least one demonstration project. Initially, such projects will
require exclusive use of the MPLAB SIM software simulator (a part of the MPLAB
toolsuite included in the CD-ROM), and no actual hardware will be necessary; although,
an Explorer 16 demonstration board or a PIC32 Starter kit might be used.

 In the second part of the book, titled “ Experimenting ” and containing five more chapters,
an Explorer 16 demonstration board (or third-party equivalent) will become more critical,
as some of the peripherals used will require real hardware to be properly tested.

 In the third part of the book, titled “ Expansion ” , there are five larger chapters. Each one
of them builds on the lessons learned in multiple previous chapters while adding new
peripherals to develop projects of greater complexity. The projects in the third part of the
book require the use of the Explorer 16 demonstration board and basic prototyping skills
too (yes, you might need to use a soldering iron). If you don ’ t want to or you don ’ t have
access to basic PCB prototyping tools, an ad hoc expansion board (AV32) containing all
the circuitry and components necessary to complete all the demonstration projects will be
made available on the companion web site: http://www.exploringpic32.com

 All the source code developed in each chapter is also available for immediate use on the
companion CD-ROM.

 What this Book is Not
 This book is not a replacement for the PIC32 datasheet, reference manual and
programmer ’ s manual published by Microchip Technology. It is also not a replacement
for the MPLAB C32 compiler user ’ s guide, and all the libraries and related software tools
offered by Microchip. Copies are available on the companion CD-ROM, but I expect you
to download the most recent versions of all those documents and tools from Microchip ’ s
Web site (http://www.microchip.com). Familiarize yourself with them and keep them
handy. I will often refer to them throughout the book, and I might present small block
diagrams and other excerpts here and there as necessary. But, my narration cannot replace

Introduction xxiii

the information presented in the official manuals. Should you notice a conflict between
my narration and the official documentation, ALWAYS refer to the latter. However
please send me an email if a conflict arises, I will appreciate your help and I will publish
any correction and useful hint I will receive on the companion web site: http://www.
exploringpic32.com

 This book is also not a primer on the C language. Although a review of the language is
performed throughout the first few chapters, the reader will find in the references several
suggestions on more complete introductory courses and books on the subject.

 Checklists
 Although this book is not directly making references to aviation and flight training
as my previous book was, I decided to maintain some important elements introduced
there.

 The use of checklists to perform every single procedure before and during each project
is one of them. Pilots don ’ t use checklists because the procedures are too long to be
memorized or because they suffer from short memory problems. They use checklists
because it is proven that the human memory can fail, and tends to do so more often
when stress is involved. Pilots can perhaps afford less mistakes than other categories,
and they value safety above their pride. There is nothing really dangerous that you, as a
programmer can do or forget to do, while developing code for the PIC32. Nonetheless,
I have prepared a number of simple checklists to help you perform the most common
programming and debugging tasks. Hopefully, they will help you in the early stages,
when learning to use the new PIC32 toolset or later if you are, like most of us, alternating
between several projects and development environments from different vendors.

 New Project Setup
 Project � Project Wizard Start
 Step 1: Device PIC32MX360F512L
 Step 2: ToolSuite MPLAB C32 C Compiler
 Step 3: NewProject dialog box Select BROWSE
 Folder Select or create new
 Project name Type new name here
 Step 4: Copy files Only if necessary
 Step 5: Complete wizard Click on Finish

 Manual Device Configuration (if not using pragmas)
 Configure � Configuration Bits Open window
 Configuration bits set in ocde Unchecked
 ICE/ICD Comm channel select ICE EMUC2/EMUD2 share with PGCD2
 Boot Flash Write Protect Boot Flash is writable
 Code Protect Protection Disabled
 Oscillator Selection bits Primary OSC with PLL (XT, HS, EC)
 Secondary Oscillator Enable Enabled
 Internal External Switchover Disabled
 Primary Oscillator Configuration XT osc mode
 CLKO output signal active on OSCO Disabled
 Peripheral Clock Divisor PB clock is Sys clock/2
 Clock Switching and Monitor Disabled and clock monitor disabled
 Watchdog Timer Postscaler Any
 Watchdog Timer Enable Disabled
 PLL Input Divider 2 � Divider
 PLL Multiplier 18 � Multiplier
 System PLL output clock divider PLL Divide by 1

 Create New File and Add to Project
 Project � AddNewProjectFile Assign name (.c or .h)
 File � Open Select “\c32\include\Template.c”
 if main source file & using pragmas Select “\c32\include\Template wPragmas.c”
 Header/comments Copy
 Add code As needed
 File � Save Select
 Project � SaveProject Select

 MPLAB SIM Debugger Setup
 Debugger � Select Tool Select MPLAB SIM
 Debugger � Settings Select
 1. Osc/Trace Tab Select
 1.1 Processor Frequency 72 MHz
 1.2 Trace Options Trace All
 2. Animation/Real Time Updates Select Tab
 2.1 Animate Step Slow 500 ms/Fast 10 ms
 3. Apply/OK Select

 PIC32MX Family Characteristics
 Vdd range 2.0 V to 3.6 V
 Digital input pins 5 V tolerant
 Analog input pins 0 V to 3.6 V max

 MPLAB ICD2 In Circuit Debugger Setup
 Target Board Power Up
 ICD2 to Target Connect
 ICD2 to PC Connect (wait for triple ding-dong)
 Debugger � SelectTool Select MPLAB ICD2
 Debugger � Settings Select
 1. Status Tab Select
 1.1 Automatically Connect Verify NOT Checked
 2. Power Tab Select
 2.1 Power target from ICD2 Verify NOT Checked
 3. Program Tab Select
 3.1 Allow ICD2 to select ranges Verify Checked
 3.2 Program after successful build Select if desired (not recommended)
 3.3 Run after successful program Select if desired (not recommended)
 OK button Click
 Debugger � Connect Select

Emergency: USB Drivers Re-start (Debugger fails to connect)
 Debugger � SelecTool Select None
 Project � Close Save Project and close
 File � Exit Terminate MPLAB
 USB cable Disconnect
 Target Cycle Power
 MPLAB Launch
 USB cable Connect (wait for enumeration)
 Debugger � SelecTool Select Debugger model
 Debugger � Connect Select (not required for REAL ICE)

 Emergency: Breakpoint Cannot Be Set (debugging)
 1. Verify the C source code line is not commented
 2. Verify you have not used more than six breakpoints (see breakpoints list F2)
 3. Verify the C source line does not contain only a variable declaration
 4. Verify the C source file is part of the Project Files list
 5. Verify the project has been Built before placing a breakpoint

 Explorer16 Demonstration Board
 Power Supply 9 V to 15 V (reversed polarity protected)
 Main oscillator 8 MHz crystal (use 4 � PLL to obtain 32MHz)
 Secondary oscillator 32,768 Hz (connected to TMR1 oscillator)

The Pilot Checklist – MPLAB® IDE Quick Start Guide

 Project Build
 1 . Project � Build Configuration Select “Debug”
 2. Project � BuildOptions � P

roject
 Open Dialog box

 2.1 Directories Tab Select
 2.2 Show Directories for: Select “Include Search path”
 2.3 “New” Button Press
 2.4 “ . . . ” Button Press and select “\C32\include” directory
 3. MPLAB PIC32 C Compiler

Tab
 Select

 3.1 Categories Select “General”
 3.2 Generate debugging

information
 Checked

 3.3 Categories Select Optimization
 3.4 Optimization Level Select 0 during debugging
 3.5 All other optimization options Unchecked during debugging
 4. MPLAB PIC32 Linker Tab Select
 4.1 Categories Select “General”
 4.2 Heap Size Assign generously if malloc() used
 5 . OK button Click
 Add all (.c) (.h) and (.o) required Use “Add Files to a Project” checklists (A, B or C)
 Project � BuildAll
 or Project � Make

 Select (CTRL�F10)
 Select (F10) if only a few modules modified

 Adding Files to a Project Method A
 View � Project Checked
 Project � AddFilesToProject Select
 1. Select directory If required
 2. Select files of type (.c), (.h) or (.o)
 3. Select File name
 Project � SaveProject Select

 Adding Files to a Project Method B (text files only)
 File � Open Open existing file
 With cursor inside Editor Right Click
 Editor pop up menu Select AddToProject
 Project � SaveProject Select

 Adding Files to a Project Method C (from Project window)
 View � Project Checked
 With cursor on File folder Right Click
 Project pop up menu Select Add Files . . .
 Project � SaveProject Select

 Simulator Logic Analyzer Setup
 View � SimulatorLogicAnalyzer Select
 Debugger � Settings � Osc/Trace Select
 TraceOptions � TraceAll Verify Checked
 Channels button Click
 Available Signals Select all required
 Signals Order Move Up/Down
 OK button Click

 PIC32MX360F512L Characteristics
 Maximum operating speed 72 MHz
 General Purpose RAM available 32,768 bytes
 FLASH Program memory 512k bytes

 MPLAB REAL ICE In Circuit Debugger Setup
 Target Board Power Up
 ICD2 to Target Connect
 ICD2 to PC Connect (wait for enumeration)
 Debugger � SelectTool Select MPLAB REAL ICE

 PIC32 Starter Kit In Circuit Debugger Setup
 PIC32 Starter Kit to Target Connect

 Target Board Power Up
 PIC32 Starter Kit to PC Connect (Wait for enumeration)
 Debugger � SelectTool Select PIC32MX Starter Kit

Emergency: Lost Cursor while Single Stepping/Animate
 Program Counter value Check in MPLAB status bar (bottom)
 1. Place cursor on first line of main() Execute Run To Cursor
 2. Continue single stepping until the cursor reappears in the main program
 3. Search for the PC in the Memory

Window
 Else Most likely you Stepped IN a library

 function
 1. Place the cursor on the next Cstatement execute Run To Cursor
 2. If you have one or more breakpoints already set, execute Run
 IF all else seems to fail
 Send RESET command and start
again

 Emergency: After Pressing Halt, MPLAB Freeze (ICD2 debugging)
 Wait!
 1. MPLAB could be uploading the content of a large variable/array in the Watch window
 2. MPLAB could be refreshing the Special Function Registers window (if open)
 3. MPLAB could be updating the Disassembly window (if open)
 4. MPLAB could be updating the Local Variables window (if open and contains a large
object)
 After regaining control, close any data window or remove any large object before
continuing

The Pilot Checklists – MPLAB® IDE Quick Start Guide (Debugginh and Emergencies)

This page intentionally left blank

 Exploring
 P A R T 1

This page intentionally left blank

 The Adventure Begins

 The Plan
 This will be our first experience with the PIC32 32-bit microcontroller and, for some of
you, the first project with the MPLAB® IDE Integrated Development Environment and
the MPLAB C32 language suite. Even if you have never heard of the C language, you
might have heard of the famous “ Hello World! ” programming example. If not, let me
tell you about it.

 Since the very first book on the C language, written by Kernighan and Ritchie several
decades ago, every decent C language book has featured an example program containing
a single statement to display the words “ Hello World ” on the computer screen. Hundreds,
if not thousands, of books have respected this tradition, and I don ’ t want my books to be
the exception. However, our example will be just a little different. Let ’ s be realistic—we
are talking about programming microcontrollers because we want to design embedded -
control applications. Though the availability of a monitor screen is a perfectly safe
assumption for any personal computer or workstation, this is definitely not the case in the
embedded-control world. For our first embedded application we ’ d better stick to a more
basic type of output: a digital I/O pin. In a later and more advanced chapter, we will be
able to interface to an LCD display and/or a terminal connected to a serial port. But by
then we will have better things to do than writing “ Hello World! ”

 Preparation
 Whether you are planning a small outdoor trip or a major expedition to the Arctic, you ’ d
better make sure you have the right equipment with you. Our exploration of the PIC32
architecture is definitely not going to be a matter of life or death, but you will appreciate

D A Y 1

4 Day 1

the convenience of following the few simple steps outlined here before getting your foot
out the door . . . ahem, I mean before starting to type the first few lines of code.

 So, let ’ s start by verifying that we have all the necessary pieces of equipment ready and
installed (from the attached CD-ROM and/or the latest version available for download from
Microchip ’ s PIC32 Web site at www.microchip.com/PIC32). You will need the following:

● MPLAB IDE, free Integrated Development Environment (v8.xx or later)

● MPLAB SIM, free software simulator (included in MPLAB)

● MPLAB C32, C compiler (free Student Edition)

Now let ’ s use the New Project Setup checklist to create a new project with the MPLAB
IDE. From the Project menu, select the Project Wizard . This will bring up a short but
useful sequence of little dialog boxes that will guide us through the few steps required to
create a new project in an orderly and clean way:

 1. The first dialog box will ask you to choose a specific device model. Select the
PIC32MX360F512L device and click Next . Although we will use only the
simulator, and for the purpose of this project we could use pretty much any PIC32
model, we will stick to this particular part number throughout our exploration.

 2. In the second dialog box, select the PIC32 C-Compiler Tool Suite and click
Next . Many other tool suites are available for all the other PIC© architectures, and
at least one other tool suite is already available for development on the PIC32 in
assembly; don ’ t mix them up!

 3. In the third dialog box, you are asked to assign a name to the new project file.
Instead click the Browse button and create a new folder. Name the new folder
Hello , and inside it create the project file Hello World , then click Next .

 4. In the fourth dialog box, simply click Next to proceed to the following dialog
box since there is no need to copy any source files from any previous projects or
directories.

 5. Click Finish to complete the project setup.

 Since this is our first time, let ’ s continue with the following additional steps:

 6. Open a new editor window by selecting File | New , typing the Ctrl � N keyboard

 shortcut or by clicking the corresponding (New File) button in the MPLAB

standard toolbar.

The Adventure Begins 5

 7. Type the following three comment lines:

 /*
 ** Hello Embedded World!
 */

 8. Select File | Save As to save the file as Hello.c.

 9. Now right-click with your mouse on the editor window to bring up the editor ’ s
context menu and select the Add To Project item. This will tell MPLAB that
the newly created file is an integral part of the project.

 10. Select Project | Save Project to save the project.

 Figure 1.1 : The “ Hello World ” Project window.

 Note

 You will notice that, after saving the file, the color of the three lines of text in the editor window
changes to green. This is because the MPLAB Editor has been able to recognize your file as a
C language source file (the .c extension tipped it off) and is now applying the default context-
sensitive color rules. According to theses rules, green is the color assigned to comments, blue is
the color assigned to language keywords, and black is used for all the remaining code.

 Once you are finished, your project window should look like the one in Figure 1.1 . If you
cannot see the project window, select View | Project . A small check mark should appear
next to the item in the View menu. Also make sure that the Files tab is selected. We will
review the use of the other tab (Symbols) in a later chapter.

6 Day 1

 Depending on your personal preferences, you might now want to “ dock ” this window to
assign it a specific place on your workspace rather than keeping it floating. You can do
so by right-clicking with your mouse on the title bar of the small window to access the
context menu and selecting the Dockable option. You can then drag it to the desired edge
of the screen, where it will stick and split the available space with the editor.

 The Adventure Begins
 It is time to start writing some code. I can sense your trepidation, especially if you have
never written any C code for an embedded-control application before. Our first line of
code is:

 #include < p32xxxx.h >

 This is not yet a proper C statement but an instruction for the preprocessor (which feeds
the compiler) with the request to include the content of a device-specific file before
proceeding any further. The pic32xxxx.h file, in its turn, contains more #include
instructions designed so that the file relative to the device currently selected in the project
is included. That file in our case is p32mx360f512 l.h. We could have used its name
directly, but we chose not to in order to make the code more independent and hopefully
easier to port, in the future, to new projects using different models.

 If you decide to further inspect the contents of the p32m x 360f512 l.h file (it is a simple
text file that you can open with the MPLAB editor), you will see that it contains an
incredibly long list of definitions for all the names of the internal special-function
registers (often referred to in the documentation as the SFRs) of the chosen PIC32 model.
If the include file is accurate, those names reflect exactly those being used in the device
datasheet and the PIC32 reference manual.

 Here is a segment of the p32m x 360f512 l.h file in which the special-function register that
controls the watchdog module (WDTCON) and each of its individual bits are assigned their
conventional names:

 ...
 extern volatile unsigned int WDTCON__attribute__
((section(" sfrs ")));
 typedef union {
 struct {
 unsigned WDTCLR:1;

The Adventure Begins 7

 unsigned WDTWEN:1;
 unsigned SWDTPS0:1;
 unsigned SWDTPS1:1;
 unsigned SWDTPS2:1;
 unsigned SWDTPS3:1;
 unsigned SWDTPS4:1;
 unsigned :7;
 unsigned FRZ:1;
 unsigned ON:1;

};

 ...

 Back to our Hello.c source file; let ’ s add a couple more lines that will introduce you to
the main() function:

 main()
 {

 }

 What we have now is already a complete, although still empty and pretty useless, C
language program. In between those two curly brackets is where we will soon put the first
few instructions of our embedded-control application.

 Independently of this function position in the file, whether in the first lines on top or
the last few lines in a million-lines file, the main() function is the place where the
microcontroller will go first at power-up or after each subsequent reset. This is actually an
oversimplification. After a reset or at power-up, but before entering the main() function,
the microcontroller will execute a short initialization code segment automatically
inserted by the MPLAB C32 linker. This is known as the Startup code or crt0 code (or
simply c0 in the traditional C language literature). The Startup code will perform basic
housekeeping chores, including the all important initialization of the stack, among many
other things.

 Our mission is to activate for the first time one or more of the output pins of the PIC32.
For historical reasons, and to maintain the greatest compatibility possible with the many
previous generations of PIC microcontrollers, the input/output (I/O) pins of the PIC32 are
grouped in modules or ports, each comprising up to 16 pins, named in alphabetical order
from A to H. We will start logically from the first group known as PortA. Each port has

8 Day 1

several special-function registers assigned to control its operations; the main one, and the
easiest to use, carries traditionally the same name as the module (PORTA).

 Notice how, to distinguish the control register name from the module name in the
following, we will use a different notation for the two: PORTA (all uppercase) will be used
to indicate one of the control registers; PortA will refer to the entire peripheral module.

 According to the PIC32 datasheet, assigning a value of 1 to a bit in the PORTA register
turns the corresponding output pin to a logic high level (3.3 V). Vice versa, assigning a
value of 0 to the same bit will produce a logic level low on the output pin (0 V).

 Assignments are easy in C language—we can insert a first assignment statement in our
project as in the following example:

 #include < p32xxxx.h >

 main()
 {
 PORTA = 0xff;

 }

 First, notice how statements in C must be terminated with a semicolon. Then notice how
they resemble mathematical equations—they are not!

An assignment statement has a right side, which is computed first. A resulting value is
obtained (in this case it was simply a constant expressed in hexadecimal notation) and it
is then transferred to the left side, which acts as a receiving container. In this case it was
the special-function PORTA register of the microcontroller.

Note

In C language, by prefixing the literal value with 0x (zero x), we indicate the use of the
hexadecimal radix. For historical reasons a single 0 (zero) prefix is used for the octal notation
(does anybody use octal anymore?). Otherwise the compiler assumes the default decimal radix.

 Compiling and Linking
 Now that we have completed the main() and only function of our first C program, how
do we transform the source into a binary executable?

The Adventure Begins 9

 Using the MPLAB Integrated Development Environment (IDE), it ’ s very easy! It ’ s
a matter of a single click of your mouse in an operation called a Project Build . The
sequence of events is actually pretty long and complex, but it is mainly composed of
two steps:

 1. Compiling . The MPLAB C32 compiler is invoked and an object code file (.o)
is generated. This file is not yet a complete executable. Though most of the
code generation is complete, all the addresses of functions and variables are
still undefined. In fact this is also called a relocatable code object . If there
are multiple source files, this step is repeated for each one of them.

 2. Linking . The linker is invoked and a proper position in the memory space is
found for each function and each variable. Also, any number of precompiler
object code files and standard library functions may be added at this time, as
required. Among the several output files produced by the linker is the actual
binary executable file (.hex).

 All this is performed in a very rapid sequence as soon as you ask MPLAB to build
your project. Each group of files, as presented in the project window (refer back to
Figure 1.1), will be used during the project build to assist in the compiling or linking
phase:

● Every source code (.c) file in the Source Files list will be compiled to produce
relocatable object files.

● Each additional object file in the Object Files list will then be linked together with
the previous object files.

● The Library Files list will also be used during the linking process to search for
and extract library modules that contain functions, if any have been used in the
project.

● Finally, the Linker Script section might contain an additional file that can be used
to provide additional instructions to the linker to change the order and priority of
each data and code section as they are assembled in the final binary executable
file. The MPLAB C32 tool suite offers a default linker script mechanism that
is sufficient for most general applications and certainly for all the applications
we will review in this book. As a consequence, for the rest of this book we will
safely leave this section of the project window empty, accepting the default setting
provided.

10 Day 1

 The last two sections of the project window are treated differently:

● The Header Files section is designed to contain the names of the include files (.h)
used. However, they don ’ t get processed directly by the compiler. They are listed
here only to document the project dependencies and for your convenience; if you
double-click them they will open immediately in the editor window.

● The Other Files section is designed to contain the names of any additional file, not
included in any of the previous categories but used in the project. Once more this
section serves a documentation purpose more than anything else.

 The Linker Script
 Just like the p32xxxx.h include file tells the compiler about the names (and sizes) of
device-specific SFRs, the (default) linker script informs the linker about the SFRs ’
predefined position in memory (according to the selected device datasheet). It also
provides other essential services such as:

● Listing the total amount of FLASH memory available

● Listing the total amount of RAM memory available

● Listing their respective address ranges

● Listing the position of critical entry points such as the reset and exception vectors

● Listing the position of the interrupt vectors and the vectors table

● Listing the position of the device configuration words

● Including additional processor-specific object files

● Determining the position and size of the software stack and the heap (via
parameters passed from MPLAB project files, as we will see in the next chapters)

 Now, if you are curious like me, you might want to take a look inside. The linker script
file, it turns out, is a simple text file, although with the .ld extension. It can be opened
and inspected using the MPLAB editor. Assuming you accepted the default values when
you installed MPLAB on your hard drive, you will find the default linker script for
the PIC32MX360F512L microcontroller by opening the procdefs.ld file found in the
following directory:

 C:\Program Files\Microchip\PIC32-Tools\pic32-libs\proc\

32MX360F512L

The Adventure Begins 11

Wow, I know, my head is spinning, too! It took me half an hour to find my way through
the labyrinth of subdirectories created during the MPLAB installation. But the reality is
that the linker will find it and use it automatically, and you will hardly ever have to see or
worry about it again. Here is a segment of the script where the address of the reset vector,
the general exception vector, and a few other critical entry points are defined:

 ...
/**
 * Memory Address Equates
 **
 _RESET_ADDR = 0xBFC00000;
 _BEV_EXCPT_ADDR = 0xBFC00380;
 _DBG_EXCPT_ADDR = 0xBFC00480;
 _DBG_CODE_ADDR = 0xBFC02000;
 _GEN_EXCPT_ADDR = _ebase_address + 0 x 180;
 ...

 Figure 1.2 : The content of the Output Window Build tab after a successful build.

 Note

 Don ’ t try to open the procdefs.ld from Windows Explorer or using the default Windows
Notepad application; it won ’ t look pretty. This file was generated in a Unix environment and
does not contain the standard end-of-line sequence used by Windows programs. Instead use the
MPLAB Editor as I suggested.

 Building the First Project
 Select the option Build All from the Project menu or click the corresponding (Build
All) button in the project toolbar. MPLAB will open a new window; the content of yours
should be very similar to what I obtained, shown in Figure 1.2 .

12 Day 1

 Should you prefer a command-line interface, you will be pleased to learn that there are
alternative methods to invoke the compiler and the linker and achieve the same results
without using the MPAB IDE, although you will have to refer to the MPLAB C32
compiler user guide for instructions. In this book, we will stick with the MPLAB IDE
interface and will use the appropriate checklists to make it even easier.

 Using the Simulator
 Select Debugger | Select Tool | MPLAB SIM to choose and activate the software simulator
as the main debugging tool for this project. I recommend that you get in the habit of using
the MPLAB SIM debugger setup checklist to configure a number of parameters that will
improve your simulation experiences, although we won ’ t need it during this first simulation.
Let ’ s perform instead another and all-important general configuration step of MPLAB itself.

 Select the Configure | Settings item from the MPLAB menu and, inside the large and
complex dialog box that will pop up, select the Debugger tab.

 As illustrated in Figure 1.3 , I recommend that you check three of the options available to
instruct MPLAB to automatically perform a few useful tasks:

● Save all the files you changed in the Editor window before running the code.

 Figure 1.3 : MPLAB Settings dialog box Debugger tab.

The Adventure Begins 13

● Remove existing breakpoints before importing a new executable.

● After any device reset, position the debugger cursor at the beginning of the main
function.

 The last task, in particular, might seem redundant, but it is not. If you remember, as was
briefly mentioned at the beginning of this chapter, there is a small segment of code (crt0
or Startup code) that the linker places automatically for us between the actual reset vector
and our code. If we do not instruct MPLAB otherwise, the simulator will attempt to step
through it, and since there is no C source code to show for it, it would have to happen in
the disassembly window. Not that there would be anything wrong with that; actually, I
invite you to try that sometime to inspect this mysterious (but so useful) segment of code.
The fact is that we are just not ready for it yet and, after all, our focus in this exploration
is 100 percent on the C language programming of the PIC32 rather than the underlying
MIPS assembly.

 If all is well, before trying to execute the code let ’ s also open a Watch window and add
the PORTA special-function register to it:

 1. Select View | Watch from the main menu to access the Watch window (see
 Figure 1.4).

 2. Type or select PORTA in the SFR selection list (top left).

 3. Click the Add SFR button.

 4. Press the simulator reset button (Reset) in the Debug toolbar or select
Debugger | Reset.

 Figure 1.4 : MPLAB IDE Watch window.

14 Day 1

 5. Observe the contents of the PORTA register; it should be cleared (all zeroes) at reset.

 6. Also notice that a large green arrow has appeared right next to the first opening
curly bracket of the main function. It points at the part of our code that is going
to be executed next.

 7. Now, since we need to learn to walk before we “ run, ” let ’ s use the (Step

 Over) or the (Step In) buttons in the Debugger toolbox, or the Debugger |
Step In and Debugger | Step Over commands from the main menu, to execute
the one and only statement in our first program.

 8. Observe how the content of PORTA changes in the watch window. Or, I should
say, notice how nothing happens. Surprise!

 Finding a Direction
 It is time to hit the books, specifically the PIC32MX datasheet (Chapter 13 focuses on
the I/O ports detail). PortA is a pretty complex, 12-pin-wide port. Each one of the pins is
controlled by a small block of logic, represented in Figure 1.5 .

 Figure 1.5 : Block diagram of a typical PIC32 I/O port structure.

Dedicated port module

RD ODCFG

D Q

ODCFG

TRIS

D Q

Q

I/O Cell

I/O pinLAT

Q

0

1

CK

CK

EN

EN

D Q

Q

1

0
D

CKQ

Q D

CKQ

Q
CK
EN

DATA Bus
PBclock

WR ODCFG

RD TRIS

WR TRIS

WR LAT
WR PORT

RD LAT

RD PORT

Sleep

PBclock
Synchronization

The Adventure Begins 15

 Although completely understanding the diagram in Figure 1.5 is beyond the scope of our
explorations today, we can start by making a few simple observations. There are only
three signals that eventually reach the I/O cell. They are the data output, the data input,
and the tristate control signals. The latter is essential to decide whether the pin is to be
used as an input or an output, which is often referred to as the direction of the pin.

 From the datasheet, again, we can determine the default direction for each pin—that is, in
fact, configured as an input after each reset or power up event. This is a safety feature and
a standard for all PIC microcontrollers. The PIC32 makes no exception.

 The TRISA special-function register allows us to change the direction of each individual
pin on PortA. The rule is simple to remember:

● Clear a bit to 0 for an O utput pin.

● Set a bit to 1 for an I nput pin.

 So, we need to add at least one more assignment to our program if we want to change the
direction of all the pins of PortA to output and see their status change. Here is how our
simple project looks after the addition:

 #include < p32xxxx.h >

 main()
 {
 // configure all PORTA pins as output
 TRISA = 0;
 PORTA = 0xff;

 }

 We can now retest the code by repeating the following few steps:

 1. Rebuild the project (select Project | Build All , use Ctrl � F10, or click the Build
All button in the project toolbox).

 2. Execute a couple of single-steps and . . . you have it (see Figure 1.6)!

 If all went well, you should see the content of PORTA change to 0xFF , highlighted in the
Watch window in red. Hello Embedded World!

16 Day 1

 The JTAG Port
 Our first choice of PortA was dictated partially by the alphabetical order and partially by
the fact that on the Explorer16 demonstration boards, PortA pins, RA0 through RA7 , are
conveniently connected to 8 LEDs. So, if you try and execute this example code on the
actual demo board using an in-circuit debugger, you will have the satisfaction of seeing
all the LEDs turn on, nice and bright . . . or perhaps not?

There is one more important detail affecting the operation of a few PortA pins that you
need to be aware of. Where previous generations of PIC microcontrollers used a two-wire
protocol to connect to an in-circuit programmer and/or debugger, known as the ICSP/
ICD interface , the PIC32 offers an additional interface, widely adopted among 32-bit
architectures, known as the JTAG interface .

Note

The PIC24 experts will not fail to point out that several 16-bit large pin-count devices were
already offering JTAG to support boundary scan features. With the PIC32 architecture, the
JTAG functionality is extended to include all programming and debugging features.

 Figure 1.6 : The Watch window after PortA content has changed!

 In fact, for all debugging and programming purposes, the JTAG and the ICSP/ICD
interface are now equivalent and the choice between the two will be dictated more by
personal preference, the availability and cost of (Microchip own and third-party) tools,
and/or the number of pins required. In this last respect, the ICSP/ICD interface has a
small advantage over the JTAG interface since it requires only half the microcontroller
I/Os. On the other side, if the boundary scan functionality is required, the JTAG interface
is the one and only option.

 As a consequence of the decision to offer both interfaces, the designers of the PIC32
had to make sure that both debugging options were available by default upon reset or

The Adventure Begins 17

power-up of the device. The JTAG port pins are multiplexed with PortA pins RA0 , RA1 ,
RA4 , and RA5 , over which they take priority.

 The PIC32 Starter Kit is an example of a programming and debugging tool that uses the
JTAG port. The MPLAB REAL ICE and the MPLAB ICD2 instead use the traditional
ICSP/ICD port.

 If you intend to test the code developed so far on the Explorer 16 board using the
MPLAB REAL ICE or the MPLAB ICD2 in circuit debuggers, you will have to
remember to disable the JTAG port to gain access to all the pins of PortA and therefore
all the LEDs. Here is all it takes:

 // disable the JTAG port

 DDPCONbits.JTAGEN = 0;

 After all, only one more assignment statement needs to be added at the top of the main
function. Instead of assigning a new value to the entire DDPCON register (in charge of
the configuration of the Debug Data Ports), we used the special C language notation to
access individual bits (or groups of bits) within a word. We will expand on these subjects
in the next few chapters.

 If you intend to test the code on the Explorer 16 board using the PIC32 Starter Kit and
a 100-pin PIM adapter, you must not disable the JTAG port. You will still have control
on the remaining pins of PortA: RA2 , RA3 , RA6 , and RA7 . Don ’ t be envious; you have
three more LEDs that you can control on the Starter Kit board itself, connected to PortD
instead: RD0 , RD1 , and RD2 . In fact, even if you don ’ t have an Explorer 16 board but just
a PIC32 Starter Kit, you could change the code in the previous examples, replacing all
references to PortA registers with the PortD equivalents: TRISD and PORTD . Perhaps it
will be less spectacular but equally instructive!

 Testing PORTB
 To complete our day of exploration, we will now investigate the use of one more I/O
port, PortB. It is simple to edit the program and replace the two PortA control registers
assignments with TRISB and PORTB .

 Rebuild the project and follow the same steps we did in the previous exercise and
you ’ ll get a new surprise: The same code that worked for PortA does not work for
PortB!

18 Day 1

 Don ’ t panic—I did it on purpose. I wanted you to experience a little PIC32 migration
pain. It will help you learn and grow stronger.

 It is time to go back to the datasheet and study in more detail the PIC32 pin-out
diagrams. There are two fundamental differences between the 8-bit PIC microcontroller
architectures and the new 16- and 32-bit architectures:

● Most PortB pins are multiplexed with the analog inputs of the Analog-to-Digital
Converter (ADC) peripheral. The 8-bit architecture reserved PortA pins primarily
for this purpose; the roles of the two ports have been swapped!

● If a peripheral module input/output signal is multiplexed on an I/O pin, as soon
as the module is enabled, it takes complete control of the I/O pin—independently
of the direction (TRISx) control register content. In the 8-bit architectures it was
up to the user to assign the correct direction to each pin, even when a peripheral
module required its use.

 By default, pins multiplexed with “ analog ” inputs are disconnected from their “ digital ”
input ports. This explains what was happening during our last attempt. All PortB pins
of the PIC32 are, by default at power-up, assigned an analog input function; therefore,
reading the PORTB register returns all 0 s. Notice, though, that the output latch of PortB
has been correctly set, although we cannot see it through the PORTB register. To verify it,
check the contents of the LATB register instead.

 To reconnect the PortB input pins to the digital inputs, we have to act on the ADC module
configuration. From the datasheet, we learn that the SFR AD1PCFG controls the analog/
digital assignment of each pin (see Figure 1.7).

 Assigning a 1 to each bit in the AD1PCGF SFR will accomplish the task and convert the
pin into a digital input. Our new and complete program example is now:

 #include < p32xxxx.h >

 main()
 {

 // configure all PORTB pins as output
 TRISB=0, // all PORTB as output
 AD1PCFG=0xffff; // all PORTB as digital
 PORTB=0xff;

 }

The Adventure Begins 19

 This time, compiling and single-stepping through it will give us the desired results (see
 Figure 1.8).

 Mission Debriefing
 After each expedition, there should be a brief review. Sitting on a comfortable chair in
front of a cool glass of . . . water, it ’ s time to reflect on what we have learned from this
first experience.

 Writing a C program for a PIC32 microcontroller can be very simple, or at least no more
complicated than an assembly or 8-bit equivalent project. Two or three instructions,
depending on which port we plan to use, can give us direct control over the most basic tool
available to the microcontroller for communication with the rest of the world: the I/O pins.

r-0

bit 31 bit 24

— — — — — — — —
r-0 r-0 r-0 r-0 r-0 r-0 r-0

r-0

bit 23 bit 16

— — — — — — — —
r-0 r-0 r-0 r-0 r-0 r-0 r-0

R/W-0

bit 15 bit 8

PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

R/W-0

Legend:
R � Readable bit
U � Unimplemented bit

W � Writable bit P � Programmable bit r � Reserved bit
-n � Bit Value at POR: (‘0’, ‘1’, x � Unknown)

bit 7

bit 31-16 Reserved: Reserved for future use, maintain as ‘0’

Note: The AD1PCFG register functionality will vary depending on the number of ADC inputs available on the
 seleced device. Please refer to the specific device data sheet for additional details on this register.

PCFG<15:0>: Anlog Input Pin Configuration Control bits

1 � Anlog input pin in Digital mode, port read input enabled, ADC input multiplexer input for this
 analog input connected to AVss
0 � Anlog input pin in Analog mode, digital port read will return as a ‘1’ without regard to the voltage
 on the pin, ADC samples pin voltage

bit 15-0

bit 0

PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

 Figure 1.7 : AD1PCFG: ADC port configuration register.

20 Day 1

 Also, there is nothing the MPLAB C32 compiler can do to read our minds. Just as in
assembly, we are responsible for setting the correct direction of the I/O pins. We are still
required to study the datasheet and learn about the small differences between the 8-bit
and 16-bit PIC microcontrollers we might be familiar with and the new 32-bit breed.

 As high level as the C programming language is thought to be, writing code for
embedded-control devices still requires us to be intimately familiar with the finest details
of the hardware we use.

 Notes for the Assembly Experts
 If you have difficulties blindly accepting the validity of the code generated by the
MPLAB C32 compiler, you might find comfort in knowing that, at any given point in
time, you can decide to switch to the Disassembly Listing view (see Figure 1.9). You can
quickly inspect the code generated by the compiler, since each C source line is shown in a
comment that precedes the segment of code it generated.

 Figure 1.8 : Hello Embedded World using PortB.

The Adventure Begins 21

 Figure 1.9 : Disassembly Listing window.

 You can even single-step through the code and do all the debugging from this view,
although I strongly encourage you not to do so or limit the exercise to a few exploratory
sessions as we progress through the first chapters of this book. Satisfy your curiosity, but
gradually learn to trust the compiler. Eventually, use of the C language will give a boost
to your productivity and increase the readability and maintainability of your code.

 As a final exercise, I would encourage you to open the Memory Usage Gauge window by
selecting View | Memory Usage Gauge (see Figure 1.10).

 Figure 1.10 : MPLAB IDE Memory Usage Gauge window.

22 Day 1

 Don ’ t be alarmed, even though we wrote only three lines of code in our first example and
the amount of program memory used appears to be already up to 490 or more words. This
is not an indication of any inherent inefficiency of the C language. There is a minimum
block of code that is always generated (for our convenience) by the MPLAB C32
compiler. This is the Startup code (crt0) that we mentioned briefly before. We will return
to it, in more detail, in the following chapters as we will discuss variable initialization,
memory allocation, and interrupts.

 Notes for the PIC MCU Experts
 Those of you who are familiar with the PIC16, PIC18, and even the PIC24 architecture
will find it interesting that all PIC32 SFRs are now 32-bit wide. But in particular, if you
are familiar with the PIC24 and dsPIC architecture, it might come to you as a surprise that
the ports did not scale up! Even if PORTA and TRISA are now 32-bit wide registers, the
PortA module still groups fewer than 16 pins, just like in the PIC24. You will realize in the
following chapters how this has several positive implications for easy code migration up
from the 16-bit architectures while granting optimal performance to the 32-bit core.

 Whether you are coming from the 8-bit or the 16-bit PIC/dsPIC world, with the PIC32
peripheral set you will feel at home in no time!

 Notes for the C Experts
 Certainly we could have used the printf() function from the standard C libraries.
In fact they are readily available with the MPLAB C32 compiler. But we are targeting
embedded-control applications and we are not writing code for multigigabyte
workstations. Get used to manipulating low-level hardware peripherals inside the PIC32
microcontrollers. A single call to a library function, like printf() , could have added
several kilobytes of code to your executable. Don ’ t assume a serial port and a terminal
or a text display will always be available to you. Instead develop a sensibility for the
 “ weight ” of each function and library you use in light of the limited resources available in
the embedded design world.

 Tips & Tricks
The PIC32MX family of microcontrollers is based on a 3 V CMOS process with a 2.0 V
to 3.6 V operating range. As a consequence, a 3.3 V power supply (Vdd) is used on most

The Adventure Begins 23

applications and demonstration boards; this limits the output voltage of each I/O pin
when producing a logic high output. Interfacing to 5 V legacy devices and applications,
though, is really simple:

● To drive a 5 V output, use the ODCx control registers (ODCA for PortA, ODCB for
PortB, and so on) to set individual output pins in open-drain mode and connect
external pull-up resistors to a 5 V power supply.

● Digital input pins instead are already capable of tolerating up to 5 V. They can be
connected directly to 5 V input signals.

Watch out

Be careful with I/O pins that are multiplexed with analog inputs (most PortB pins, for example);
they cannot tolerate voltages above 3.6 V!

 Exercises
 If you have the Explorer 16 board and an in-circuit debugger:

● Use the MPLAB REAL ICE Debugging or the MPLAB ICD2 Debugging
checklists to help you prepare the project for debugging.

● Insert the instructions required to disable the JTAG port.

● Test the PortA example, connecting the Explorer 16 board and checking the visual
output on LED0-7.

 If you have the PIC32 Starter Kit:

● Use the PIC32 Starter Kit Debugging checklist to help you prepare the project for
debugging.

● Modify the code to operate on PortD, but do not disable the JTAG port.

● Test the code by checking the visual output on LED0-2 on the PIC32 Starter Kit
itself.

 In both cases you can:

● Test the PortB example by connecting a voltmeter (or DMM) to pin RB0 , if you
can identify it on your board, and watching the needle move between 0 and 3.3 V
as you single-step through the code.

24 Day 1

 Books
Kernighan, B., and Ritchie, D., The C Programming Language (Prentice-Hall,

Englewood Cliffs, NJ). When you read or hear programmers talk about the “K&R,”
also known as “the white book,” they mean this book. The C language has evolved
quite a bit since the first edition was published in 1978. The second edition (1988)
includes the more recent ANSI C standard definitions of the language, which are
closer to the standard the MPLAB C32 compiler adheres to (ISO/IEC 9899:1990 also
known as C90).

 Links
 http://en.wikibooks.org/wiki/C_Programming . This is a Wiki-book on C programming

and as such it is a bit of a work in progress. It’s convenient if you don’t mind doing
all your reading online. Hint: Look for the chapter called “A Taste of C” to find
the omnipresent “Hello World!” example.

 Walking in Circles

 The Plan
 It is funny how many stories of expeditions gone wrong culminate with a revealing
moment where the explorers realize they got desperately lost and have been walking in
circles for a while. In embedded-control programming it ’ s the opposite: Our programs
need a framework, a structure so that the flow of code can be managed, and this usually is
built around one main loop .

 Today we will review the basics of the loops syntax in C, and we ’ ll also take the
opportunity to introduce a first peripheral module: the 16-bit Timer1. Two new MPLAB©

SIM features will be used for the first time: the Animate mode and the Logic Analyzer view.

 Preparation
 For this second lesson, we will need the same basic software components we installed
(from the attached CD-ROM and/or the latest versions available for download from
Microchip ’ s Web site) and used before, including:

● MPLAB IDE (Integrated Development Environment)

● MPLAB SIM (software simulator)

● MPLAB C32 compiler (free Student Edition)

 We will also reuse the New Project Setup checklist to create a new project with the
MPLAB IDE.

D A Y 2

26 Day 2

 Select the Project Wizard from the Project menu and proceed through the few steps that
follow:

 1. The first dialog box will ask you to choose a specific device model. Select the
PIC32MX360F512L device and click Next .

 2. In the second dialog box, select the PIC32 C-Compiler Tool Suite and click
Next . Make sure to select the C compiler suite, not the assembly suite!

 3. In the third dialog box, you are asked to assign a name to the new project file.
Instead, click the Browse button and create a new folder. Name the new folder
Loops , and inside it create the project file Loops, then click Next .

 4. In the fourth dialog box, simply click Next to proceed to the following dialog
box, since there is no need to copy any source files from any previous projects
or directories.

 5. Click Finish to complete the project wizard.

 6. Open a new editor window by selecting File | New , typing the Ctrl + N keyboard

 shortcut, or clicking the corresponding (New File) button in MPLAB
standard toolbar.

 7. Type the following three comment lines:

 /*
 ** Loops
 */

 8. Select File | Save As to save the file as Loops.c.

 9. Now right-click with your mouse on the editor window to bring up the editor ’ s
context menu and select the Add To Project item. This will tell MPLAB that
the newly created file is an integral part of the project.

 10. Select Project | Save Project to save the project.

 Soon, after you repeat these same steps a few more times, they will become automatic
to you, but you will always have the option to refer to the Create New File and Add to
Project checklists conveniently included in this book.

Walking in Circles 27

 The Exploration
 One of the key questions that might have come to mind after you worked through the
previous lesson is, “ What happens when all the code in the main() function has been
executed? ” Well, nothing really happens, literally!

 When the main() function terminates and returns back to the startup code (crt0), a
new function _exit() is called and the PIC32 remains stuck there in a tight loop from
which it can escape only if a processor reset is performed. Notice that this is something
that depends on the MPLAB C32 tool suite and that is not a C language proper feature.
C compilers normally are designed to return control to an operating system when the
main() function returns, but as you understand, there is no operating system to return to
in our case.

 Note

 The _exit() function, just like the startup code, is not visible in the editor window (not our
code) and is not visible even from the disassembly window (not a library). The only way you
can find out about it is if you open the Memory window and you select the Code View pane.

 The good news is that we can easily define a replacement for the _exit() function
if we have a better idea of what to do with it. We could, for example, mimic what the
MPLAB C30 tool suite used to do for PIC24 and dsPIC applications—that is, insert
a reset instruction in there and have the entire application repeat over and over again.
But what we truly want in embedded control is an application that runs continuously,
from the moment the power switch has been flipped on until the moment it is turned off.
So, letting the program run through entirely, reset, and execute again might seem like a
convenient way to arrange the application so that it keeps repeating as long as there is
 “ juice. ”

 The reset option might work in a few limited cases, but what you will soon discover is
that running in this “ loop, ” you develop a “ limp. ” Upon reaching the end of the program,
executing the reset instruction takes the microcontroller back to the reset vector to
again execute the startup code. As short as the startup can be, it will make the loop very
unbalanced. Going through all the SFR and global variable initializations each time is
probably not necessary and it will certainly slow down the application. A better option,
instead, is to code a proper application main loop ourselves. To begin, let ’ s review the
most basic control flow mechanisms available in C language.

28 Day 2

 While Loops
 In C there are at least three ways to code a loop. Here is the first: the while loop:

 while (x)
 {
 // your code here ...

 }

 Anything you put in between those two curly brackets {} will be repeated for as long as the
logic expression in parenthesis (x) returns a true value. But what is a logic expression in C?

 First of all, in C there is no distinction between logic expressions and arithmetic
expressions . In C, the Boolean logic true and false values are represented just as integer
numbers with a simple rule:

● false is represented by the integer 0

● true is represented by any integer except 0

 So 1 is “ true, ” but so are 13 and -278 !

 To evaluate logic expressions, a number of logic operators are defined, such as:

|| the “ logic OR ” operator
 & & the “ logic AND ” operator
! the “ logic NOT ” operator

 These operators consider their operands as logical (Boolean) values using the rule
mentioned previously, and they return a logical value. Here are some trivial examples
(assume that a = 17 and b = 1 , or in other words they are both true):

(a || b) is true
(a & & b) is true
(!a) is false

 There are, then, a number of operators that compare numbers (integers of any kind, and
floating-point values too) and return logic values. They are:

== the “ equal-to ” operator, notice it is composed of two equal signs to distinguish it
from the “ assignment ” operator we used before.

!= the “ NOT-equal to ” operator

Walking in Circles 29

> the “ greater-than ” operator
>= the “ greater-or-equal to ” operator
< the “ less-than ” operator
< = the “ less-or-equal to ” operator

 Here are some examples (assuming a = 10):

(a > 1) is true
(-a >= 0) is false
(a == 17) is false
(a != 3) is true

 Back to the while loop: We said that as long as the expression in parentheses produces
a true logic value (that is, any integer value but 0), the program execution will continue
around the loop. When the expression produces a false logic value, the loop will terminate
and the execution will continue from the first instruction after the closing curly bracket.

 Notice that the evaluation of the expression is done first, before the curly bracket content
is executed (if it ever is), and is then reevaluated each time.

 Here are a few curious loop examples to consider:

 while (0)
 {
 // your code here ...

 }

 A constant false condition means that the loop will never be executed. This is not very
useful. In fact I believe we have a good candidate for the “ world ’ s most useless code ”
contest!

 Here is another example:

 while (1)
 {
 // your code here ...

 }

 A constant true condition means that the loop will execute forever. This is useful and
is in fact what we will use for our main program loops from now on. For the sake of

30 Day 2

readability, a few purists among you will consider using a more elegant approach,
defining a couple of constants:

 #define FALSE 0
 #define TRUE !FALSE

 And using them consistently in their code, as in:

 While (TRUE)
 {
 // your code here ...

 }

 It is time to add a few new lines of code to the loops.c source file and put the while loop
to good use:

 #include < p32xxxx.h>
 main()
 {
// initialization
 DDPCONbits.JTAGEN = 0; // disable the JTAG port
 TRISA = 0xff00; // PORTA pin 0..7 as output

 // application main loop
 while(1)
 {
 PORTA = 0xff; // turn pin 0–7 on
 PORTA = 0; // turn all pin off

 }

 }

 The structure of this example program is essentially the structure of every embedded
control program written in C. There will always be two main parts:

● The initialization , which includes both the device peripherals initialization and
variables initialization, executed only once at the beginning

● The main loop , which contains all the control functions that define the application
behavior and is executed continuously

Walking in Circles 31

 An Animated Simulation
 Use the Project Build checklist to compile and link the loops.c program. Also use the
MPLAB SIM Simulator Setup checklist to prepare the software simulator.

 To test the code in this example with the simulator, I recommend you use the Animate
mode (Debugger | Animate). In this mode, the simulator executes one C program line at
a time, pausing shortly after each one to give us time to observe the immediate results. If
you add the PORTA special-function register to the Watch window, you should be able to
see its value alternating rhythmically between 0xff and 0x00 .

 The speed of execution in Animate mode can be controlled with the Debug | Settings
dialog box, selecting the Animation/Real Time Updates tab, and modifying the
Animation Step Time parameter, which by default is set to 500 ms. As you can imagine,
the Animate mode can be a valuable and entertaining debugging tool, but it gives you
quite a distorted idea of what the actual program execution timing will be. In practice,
if our example code was to be executed on a real hardware target, say an Explorer16
demonstration board (where the PIC32 is running at, say, 72 MHz), the LEDs, connected
to the PortA output pins, would blink too fast for our eyes to notice. In fact, each LED
would be turned on and off several million times each second.

 To slow things down to a point where the LEDs would blink nicely just a couple of times
per second, I propose we use a timer so that in the process we learn to use one of the
key peripherals integrated in all PIC® microcontrollers. For this example we will choose
Timer1, the first of five modules available inside the PIC32MX360FJ512L models (see
 Figure 2.1). This is one of the most flexible and simple peripheral modules. All we need
is to take a quick look at the PIC32 datasheet, check the block diagram and the details of
the Timer1 control registers, and find the ideal initialization values.

 We quickly learn that there are three SFRs that control most Timer1 functions. They are:

● TMR1 , which contains the 16-bit counter value

● T1CON , which controls the activation and the operating mode of the timer

● PR1 , which can be used to produce a periodic reset of the timer (not required here)

 We can clear the TMR1 register to start counting from zero:

 TMR1 = 0;

32 Day 2

 Then we can initialize T1CON so that the timer will operate in a simple configuration,
where:

● Timer1 is activated: TON = 1

● The main MCU clock serves as the source (Fpb): TCS = 0

● The prescaler is set to the maximum value (1:256): TCKPS = 11

● The input gating and synchronization functions are not required, since we use the
MCU internal clock directly as the timer clock: TGATE = 0 , TSYNC = 0

● We do not worry about the behavior in IDLE mode: SIDL = 0 (default)

Virtual
Address

Name

T1CONBF80_0600 31:24

23:16

15:8

7:0 TGATE

ON

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
28/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

SIDL TMWDIS TMWIP

TSYNC TCSTCKPS�1:0�

FRZ

— — — — — — — —
— —

—

— — —

—

—
—

—
—

—
—
—

 Figure 2.2 : T1CON : Timer1 control register.

PR1

16-bit Comparator

TMR1
1

0

TSYNC (T1CON�2�)
Equal

Reset

SOSCO / T1CK

SOSCI

SOSCEN

PBCLK

1

1

ON (T1CON�15�)

0 0

0
Prescaler

1, 8, 64, 256

X

TCS (T1CON�1�)

TGATE (T1CON�6�)

2

TCKPS�1:0�
(T1CON�5:4�)

0

1 Q

Q

D

T11F
Event Flag

TGATE (T1CON�6�)

Sync

Gate
Sync

 Figure 2.1 : 16-bit Timer1 module block diagram.

Walking in Circles 33

 Once we assemble all the bits in a single 32-bit value, to assign to T1CON , we get:

 T1CON = 1000 0000 0011 0000

 or, in a more compact hexadecimal notation:

 T1CON = 0x8030;

 Once we are done initializing the timer, we enter a loop where we just wait for TMR1 to
reach the desired value set by the constant DELAY .

 while(TMR1 < DELAY)
 {
// wait

 }

 Assuming a 36 MHz peripheral bus clock frequency will be used, we need to assign
quite a large value to DELAY to obtain a delay of about a quarter of a second. In fact, the
following formula dictates the total delay time produced by the loop:

Tdelay (Fpb) * * DELAY� 256

 With Tdelay � 256 ms and resolving for DELAY , we obtain the value 36000 :

 #define DELAY 36000

 By putting two such delay loops in front of each PORTA assignment inside the main loop,
we get our latest and best code example:

 /*
 ** Loops
 */
 #include <p32xxxx.h>

 #define DELAY 36000 // 256 ms

 main()
 {
 // 0. initialization
 DDPCONbits.JTAGEN = 0; // disable JTAGport, free up PORTA
 TRISA = 0xff00; // all PORTA as output
 T1CON = 0x8030; // TMR1 on, prescale 1:256 PB=36 MHz
 PR1 = 0xFFFF; // set period register to max

34 Day 2

 // 1. main loop
 while(1)
 {
 //1.1 turn all LED ON
 PORTA = 0xff;
 TMR1 = 0;
 while (TMR1 < DELAY)
 {
 // just wait here

 }

 // 1.2 turn all LED OFF
 PORTA = 0;
 TMR1 = 0;
 while (TMR1 < DELAY)
 {
 // just wait here

 }
 } // main loop

 } // main

 Note

 Programming in C, the number of opening and closing curly brackets tends to increase rapidly
as your code grows. After a very short while, even if you stick religiously to the best indentation
rules, it can become difficult to remember which closing curly brackets belong to which
opening curly brackets. By putting little reminders (comments) on the closing brackets, I try to
make the code easier to follow and more readable. Also, by using the Ctrl � M shortcut in the
editor window, you can quickly jump and alternate between matching brackets in your code.

 It is time now to build the project and verify that it is working. If you have an Explorer 16
demonstration board available, you could try to run the code right away. The LEDs should
flash at a comfortably slow pace, with a frequency of about two flashes per second.

 Trying to run the same code with the MPLAB SIM simulator, though, you will discover
that things are now way too slow. I don ’ t know how fast your PC is, but on mine, MPLAB
SIM cannot get anywhere close to the execution speed of a true PIC32 microcontroller.

Walking in Circles 35

 If you use the Animate mode, things get even worse. As we saw before, the animation
adds a further delay of about half a second between the execution of each individual line
of code. So, for pure debugging purposes, on the simulator feel free to change the DELAY
constant to a much smaller value—36, for example!

 Using the Logic Analyzer
 To complete this lesson and make things more entertaining, after building the project I
suggest we play with a new simulation tool: the MPLAB SIM Logic Analyzer.

 The Logic Analyzer gives you a graphical and extremely effective view of the recorded
values for any number of the device output pins, but it requires a little care in the initial
setup.

 Before anything else, you should make sure that the Tracing function of the simulator is
turned on:

 1. Select the Debug | Settings dialog box and then choose the Osc / Trace tab.

 2. In the Tracing options section, check the Trace All box.

 3. Now you can open the Analyzer window from the View | Simulator Logic
Analyzer menu.

 Figure 2.3 : MPLAB SIM Logic Analyzer window.

36 Day 2

 4. Now click the Channels button, to bring up the channel selection dialog box.

 Figure 2.4 : Logic Analyzer Channels Configuration dialog box.

 5. From here, you can select the device output pins you would like to visualize. In
our case, select RA0 and click Add =>.

 6. Click OK to close the channel selection dialog box.

 For future reference, all the preceding steps are listed in the Logic Analyzer Setup
checklist.

 7. Run the simulation by pressing the (Run) button on the Debugger toolbar,
selecting the Debugger | Run menu, or pressing the F9 shortcut key.

 8. After a short while, press the (Halt) button on the Debugger toolbar, select
the Debugger | Halt menu, or press the F5 shortcut key.

 The Logic Analyzer window should display a neat square wave plot, as shown in
 Figure 2.5 .

Walking in Circles 37

 Debriefing
 In this brief excursion, we learned about the way the MPLAB C32 compiler deals with
program termination. For the first time, we gave our little project a bit of structure—
separating the main() function in an initialization section and an infinite main loop. To
do so, we learned about the while loop statements, and we took the opportunity to touch
briefly on the subject of logical expressions evaluation. We closed the day with a final
example, where we used a timer module for the first time and we played with the Logic
Analyzer window to plot the RA0 pin output.

 We will return to all these elements, so don ’ t worry if you have more doubts now than
when we started; this is all part of the learning experience.

 Figure 2.5 : The Logic Analyzer window after running the Loops project.

38 Day 2

 Notes for the Assembly Experts
 Logic expressions in C can be tricky for the assembly programmer who is used to dealing
with binary operators of identical names (AND, OR, NOT . . .). In C there is a set of
binary operators, too, but I purposely avoided showing them in this lesson to avoid mixing
things up. Binary logic operators take pairs of bits from each operand and compute the
result according to the defined table of truth. Logic operators, on the other hand, look at
each operand (independently of the number of bits used) as a single Boolean value.

 See the following examples on byte sized operands:

 11110101 11110101 (TRUE)
 binary OR 00001000 logical OR 00001000 (TRUE)

 -------- --------

 gives 11111101 gives 00000001 (TRUE)

 Notes for the 8-Bit PIC Microcontroller Experts
 I am sure you noticed: Timer0 has disappeared! The good news is, you are not going
to miss it. In fact, the remaining five timers of a PIC32 are so loaded with features that
there is no functionality in Timer0 that you are going to feel nostalgic about. All the
SFRs that control the timers have similar names to the ones used on PIC16 and PIC18
microcontrollers and are pretty much identical in structure. Still, keep an eye on the
datasheet; the designers managed to cram in several new features, including:

● All timers are now 16 bits wide.

● Each timer has a 16-bit period registers.

● A new 32-bit mode timer-pairing mechanism is available for Timer2/3 and
Timer4/5.

● A new external clock gating feature has been added on Timer1.

 Notes for the 16-Bit PIC Microcontroller Experts
 For the PIC24 and dsPIC experts among you there will be no surprises with the PIC32.
The timer modules are designed to be highly compatible with the previous 16-bit
generation architecture. In fact, the same is true for all the peripheral modules of the

Walking in Circles 39

PIC32MX family, with the PIC24 H series being the closest. Still, occasionally here
and there the step up to a 32-bit bus has offered opportunities for improvements that the
designers of the PIC32 could not resist.

 The most dramatic difference, though, is represented by the decoupling between the
core bus clock and the peripherals bus clock. This is a radical departure, for the first
time in the PIC architectures history, from all previous generations ’ bus designs. It
was a necessary step that allows the MIPS core of the PIC32 to be free from the speed
limitations of the Flash memory array and of the peripheral modules, to achieve much
higher performance levels without sacrificing compatibility while operating within a very
low power budget. In the next chapters we will learn more about the two internal buses,
the oscillator module, and their proper configuration.

 Notes for the C Experts
 If you are used to programming in C on a personal computer or workstation, you expect
that, upon termination of the main() function, control will be returned to the operating
system. Though several real-time operating systems (RTOSs) are available for the PIC32,
a large number of applications won ’ t need and won ’ t use one. This is certainly true for
all the simple examples in this book. By default, the MPLAB C32 compiler assumes that
there is no operating system to return control to.

 Notes for the MIPS Experts
 The MIPS experts among you might have been looking for a mention of the core 32-bit
timer (yes, there are truly six timers inside the PIC32) and the hardware control registers
typically offered for access through the coprocessor 0 (CP0) instructions. It was tempting
to mention them, but I intentionally avoided it and decided not to use any of them for
as long as possible. My purpose is to force you, the reader, to familiarize yourself with
the PIC environment in which the MIPS core has been implanted. My intention is to
demonstrate the use of the PIC32 and its peripherals as a true PIC microcontroller, the
fastest ever designed so far, but still a true PIC machine.

 Tips & Tricks
 Some embedded applications are designed to run their main loops for months or years
in a row without ever being turned off or receiving a reset command. But the control

40 Day 2

registers of a microcontroller are simple RAM memory cells. The probability that a
power supply fluctuation (un-detected by the brown-out reset circuit), an electromagnetic
pulse emitted by some noisy equipment in the proximity, or even a cosmic ray could alter
their contents is a small but finite number. Given enough time (years) and depending
on the application, you might see it happen. When you design applications that have
to operate reliably on huge time scales, you should start seriously considering the need
to provide a periodic “ refresh ” of the most important control registers of the essential
peripherals used by the application.

 Group the sequence of initialization instructions in one or more functions. Call the
functions once at power-up, before entering the main loop, but also make sure that inside
the main loop the initialization functions are called when idling and no other critical task
is pending, so that every control register is reinitialized periodically.

 Notes on Using the Peripheral Libraries
 The MPLAB C32 tool suite comes with a complete set of standard C libraries and an
additional set of peripherals libraries designed to simplify and standardize the use of all the
internal resources of the PIC32. The peripheral libraries are specifically designed to provide
an even higher level of compatibility with previous Microchip 16-bit architectures and in
particular with the PIC24 series of microcontrollers. The following example uses the timers ’
library timer.h to exemplify the advantages and disadvantages of relying on libraries.

 Should we need to initialize the Timer1 module using the peripheral libraries, as in the
 “ loops ” projects we developed today, in place of the direct access to the Timer1 module
registers:

 TMR1 = 0;
 T1CON = 0x8030; // or TMR1bits.ON = 1; TMR1bits.TCKPS=3;

 PR1 = 0xFFFF;

 we could use the following code:

 WriteTimer1(0);

 OpenTimer1(T1_ON | T1_PS_1_256, 0xFFFF);

 The clear advantage is that you don ’ t need to add many comments to the two lines of code;
they read pretty well already. This code is self-documenting. Additionally, if you misspell
one of the parameter names, the compiler will promptly complain and point it out.

Walking in Circles 41

 But it is not all roses, either. Although the function parameters are checked for spelling
errors, in most cases there is no way for the compiler to tell whether you used the right
parameter for the right function. For example, when configuring Timer2, the following
error would go undetected:

 OpenTimer2(T2_ON | T1_PS_1_256, 0xFFFF);

 It seems a pretty innocent mistake, but it would probably cause you to spend a few
hours scratching your head to understand why the Timer2 prescaler is configured wrong,
whereas it is all fine by the compiler.

 The best advantage of using the libraries, the abstraction they offer, is also another
source of potential frustration. Since they hide the implementation details from us, we
are not given to know if, for example, the TMR1 register is already being cleared by the
OpenTimer1() function or if we need to do it ourselves before invoking it. It turns out it
is not, but you can verify that only if you visually get access to the library source files or
you inspect them in the disassembly listing.

 Further, although the PIC32MX device datasheet defines the official names for all the
control registers (T1CON) and for each bit inside them (TCKPS), the parameters defined
in the peripheral libraries have different names and spelling (T1_PS_1_256), although
they try to mimic them closely. The new names can be found only in a separate set of
documentation. You need to either study the Peripheral Library User Guide or inspect the
timer.h include file and verify where each parameter is defined.

 So, my personal recommendation regarding the use of the peripheral libraries is one of
cautious and deliberate choice on a case-by-case basis. For some simple peripherals such
as the I/O ports and the timers, I cannot see much of an advantage in using the library.
After all, to select the correct parameters, you will still need to learn about each and every
bit in each control register and be familiar with their meaning and correlation. Besides, is
WriteTimer1(0); really that much more readable than TMR1=0; ?

 When the complexity of the peripheral module is greater and the work the library
functions are performing for us bring more value, such as is the case, for example, of the
DMA library we will use later in the book, I recommend we take advantage of it.

 In any case, throughout the rest of the book you will have several examples of both types
of approaches and, as is often the case, it will be your personal programming style that
will dictate when and where you will feel comfortable using the peripheral libraries,
direct register access, or a mix of the two.

42 Day 2

 Exercises
 1. Output a counter on the PortA pins instead of the alternating on and off patterns.

Use PortD if you have a PIC32 Starter Kit.

 2. Use a rotating pattern instead of alternating on and off.

 3. Rewrite the loops project using exclusively peripheral library functions to control
PortA pins; set, configure, and read the timer; and disable the JTAG port if necessary.

 Books
 Ullman , L. , and Liyanage , M. , C Programming (Peachpit Press , Berkeley, CA , 2005) .

 This is a fast-reading and modern book, with a simple step-by-step introduction to the
C programming language.

 Links
http://en.wikipedia.org/wiki/Control_flow#Loops . A wide perspective on programming

languages and the problems related to coding and taming loops.

http://en.wikipedia.org/wiki/Spaghetti_code . Your code gets out of control when your
loops start knotting . . .

 Message in a Bottle

 The Plan
 Yesterday we learned that there is a loop at the core of every embedded-control application,
and we learned to code it in C using the while statement. Today we will continue
exploring a variety of other techniques available to the C programmer to perform loops.
Along the way, we will take the opportunity to briefly review integer variable declarations
and increment and decrement operators, quickly touching on array declarations and usage.
By the end of the day you will be ready for a hopefully entertaining project that will make
use of all the knowledge you acquired during the day by creating a survival tool you ’ ll find
essential should you ever be stranded on a deserted island.

 Preparation
 In this lesson we will continue to use the MPLAB© SIM software simulator, but once
more an Explorer 16 demonstration board could add to the entertainment. In preparation
for the new demonstration project, you can use the New Project Setup checklist to create
a new project called Message and a new source file called Message.c.

 The Exploration
 In a while loop, a block of code enclosed by two curly brackets is executed if, and for as
long as, a logic expression returns a Boolean true value (not zero). The logic expression is
evaluated before the loop, which means that if the expression returns false right from the
beginning, the code inside the loop might never be executed.

D A Y 3

44 Day 3

Do Loops
 If you need a type of loop that gets executed at least once but only subsequent repetitions
are dependent on a logic expression, you have to look at a different type of loop.

 Let me introduce you to do loop syntax:

 do {
 // your code here ...

 } while (x);

 Don ’ t be confused by the fact that the do loop syntax is using the while keyword again
to close the loop; the behavior of the two is very different.

 In a do loop, the code found between the curly brackets is always executed first;
only then is the logic expression evaluated. Of course, if all we want to get is an infinite
loop for our main() function, it makes no difference if we choose the do or the
while:

 main()
 {
 // initialization code
 ...

 // main application loop
 do {
 ...

 } while (1)

 } // main

 Looking for curious cases, we might analyze the behavior of the following loop:

 do{
 // your code segment here ...

 } while (0);

 You will realize that the code segment inside the loop is going to be executed once and,
no matter what, only once. In other words, the loop syntax around the code is, in this
case, a total waste of your typing efforts and another good candidate for the “ most useless
piece of code in the world ” contest.

Message in a Bottle 45

 Let ’ s now look at a more useful example, where we use a while loop to repeatedly
execute a piece of code for a predefined and exact number of times. First, we need a
variable to perform the count. In other words, we need to allocate one or more RAM
memory locations to store a counter value.

 Note

 In the previous two lessons we have been able to skip, almost entirely, the subject of variable
declarations because we relied exclusively on the use of what are in fact predefined variables:
the special-function registers of the PIC32.

 Variable Declarations
 We can declare an integer variable with the following syntax:

int i;

 Since we used the keyword int to declare i as a 32-bit (signed) integer, the MPLAB
C32 compiler will make arrangements for 4 bytes of memory to be used. Later, the
linker will determine where those 4 bytes will be allocated in the physical RAM
memory of the selected PIC32 model. As defined, the variable i will allow us to count
from a negative minimum value �2,147,483,648 to a maximum positive value of
�2,147,483,647. This is quite a large range of values—so large that most 8- and 16-bit
compilers would have been so generous only for the next type up in the hierarchy of
integer types, known as long , as in:

long l;

 But this is one of the advantages of using a 32-bit microcontroller. The arithmetic and
logic unit (ALU) of the PIC32 is actually performing all arithmetic operations with equal
ease (same number of clock cycles) for 32-bit integers just as it would for a 16-bit or an
8-bit integer. The MPLAB C32 compiler therefore defaults immediately to 32-bit for the
basic integer type (int) and makes long just a synonym for it.

 This is all nice and dandy from a performance point of view, but it comes with a price in
terms of memory space. The RAM memory space allocated to hold each integer variable
in your program is now double what it used to be on an 8 or 16-bit PIC© microcontroller.
Though it is true that we have more of it on the PIC32 models, RAM often remains one
of the most precious resources in an embedded-control application.

46 Day 3

 So if you don ’ t have a use for the huge range of values that the PIC32 ’ s int and long
types can offer and you are looking for a smaller counter, and you can accept a range of
values from, say, �128 to �127, you can use the char integer type instead:

char c;

 The MPLAB C32 compiler will use only 8 bits (a single byte) to hold c .

 If a range of values from �32768 and �32767 is more what you were looking for, the
short integer type is the right type for you:

short s;

 The MPLAB C32 compiler will use only 16 bits (two bytes) to hold s . All four types can
further be modified by the unsigned attribute, as in:

 unsigned char c; // ranges from 0..255
 unsigned short s; // ranges from 0..65,535
 unsigned int i; // ranges from 0..4,294,967,295

 unsigned long l; // ranges from 0..4,294,967,295

 Now, if you really need a large range of values, nothing beats the long long type and
its unsigned variant:

 long long l; // ranges from -263 to +263-1

 unsigned long long l; // ranges from 0 to +264

 Note

 The MPLAB C32 compiler will allocate 64 bits (8 bytes or RAM) for each long long
variable, which can seem like a lot, but the workload you can expect from the PIC32 to crunch
these numbers is not going to be much different than what it used to be for a PIC16 to work on
a simple 16-bit integer.

 There are then variable types defined for use in floating-point arithmetic:

 float f; // defines a 32 bit floating point

 long double d; // defines a 64 bit floating point

 But for our looping purposes, let ’ s stick with integers for now.

Message in a Bottle 47

for Loops
 Returning to our counter example, all we need is a simple integer variable to be used as
index/counter, capable of covering the range from 0 to 5. Therefore, a char integer type
will do:

 char i; // declare i as an 8-bit integer with sign

 i = 0; // init the index/counter
 while (i<5)
 {
 // insert your code here ...
 // it will be executed for i= 0, 1, 2, 3, 4

 i = i+1; // increment

 }

 Whether counting up or down, this is something you are going to do a lot in your
everyday programming life. In C language, there is a third type of loop that has been
designed specifically to make coding this common case easy. It is called the for loop,
and this is how you would have used it in the previous example:

 for (i=0; i<5; i=i+1)
 {
 // insert your code here ...
 // it will be executed for i=0, 1, 2, 3, 4

 }

 You will agree that the for loop syntax is compact, and it is certainly easier to write. It
is also easier to read and debug later. The three expressions separated by semicolons and
enclosed in the brackets following the for keyword are exactly the same three expressions
we used in the prior example:

● Initialize the index

● Check for termination using a logic expression

● Advance the index/counter, in this case incrementing it

48 Day 3

 You can think of the for loop as an abbreviated syntax of the while loop. In fact, the
logic expression is evaluated first and, if it ’ s false from the beginning, the code inside the
loop ’ s curly brackets may never be executed.

 Perhaps this is also a good time to review another convenient shortcut available in C. There
is a special notation reserved for the increment and decrement operations that uses the
operators:

 ++ increment , as in: i++; is equivalent to: i = i+1;

-- decrement , as in: i--; is equivalent to: i = i-1;

 There will be much more to say on the subject in later chapters, but this will suffice for now.

 More Loop Examples
 Let ’ s see some more examples of the use of the for loop and the increment/decrement
operators. First, a count from 0 to 4:

 for (i=0; i<5; i++)
 {
 // insert your code here ...
 // it will be executed for i= 0, 1, 2, 3, 4

 }

 Then a count down from 4 to 0:

 for (i=4; i>=0; i--)
 {
 // insert your code here ...
 // it will be executed for i= 4, 3, 2, 1, 0

 }

 Can we use the for loop to code an (infinite) main program loop? Sure we can! Here is an
example:

 main()
 {
 // 0. initialization code
 // insert your initialization code here ...

Message in a Bottle 49

 // 1. the main application loop
 for (; 1;)
 {
 // insert your main loop here ...

 }

 } // main

 If you like it, feel free to use this form. As for me, from now on I will stick to the while
syntax (it is just an old habit).

 Arrays
 Before starting to code our next project, we need to review one last C language feature:
array variable types . An array is just a contiguous block of memory containing a given
number of identical elements of the same type. Once the array is defined, each element
can be accessed via the array name and an index. Declaring an array is as simple as
declaring a single variable—just add the desired number of elements in square brackets
after the variable name:

 char c[10]; // declares c as an array of 10 x 8-bit integers
 short s[10]; // declares s as an array of 10 x 16-bit integers

 int i[10]; // declares i as an array of 10 x 32-bit integers

 The same squared-brackets notation is used to refer to the content or assign a value to
each element of an array, as in:

 a = c[0]; // copy the value of the 1st element of c
into a

 c[1] = 123; // assign the value 123 to the second element
of c

 i[2] = 12345; // assign the value 12,345 to the third element
of i

 i[3] = 123* i[4]; // compute 123 x the value of the fifth element

of i

50 Day 3

 It is when we manipulate arrays that the for type of loop comes in very handy. Let ’ s
see an example where we declare an array of 10 integers and we initialize each element
of the array to a constant value of 1:

 int a[10]; // declare array of 10 integers: a[0], a[1],
a[2] ... a[9]

 int i; // to be used as the loop index
 for (i=0; i<10; i++)
 {
 a[i] = 1;

 }

 Sending a Message
 It ’ s time to take all the new elements of the C language we have reviewed so far and
put them to use in our next project. We will try once more to communicate with the
outside world, this time using an entire row of LEDs connected to PortA, as they
happen to be connected on the Explorer 16 demo board, flashing in a rapid sequence
so that when we move the board left and right rhythmically they will display a short
text message.

 How about “ Hello World! ” or perhaps more modestly “ HELLO ” ? Here is the code:

 #include <p32xxxx.h>

 // 1. define timing constants
 #define SHORT_DELAY 400
 #define LONG_DELAY 3200

 Note

 In C language, the first element of an array has index 0, whereas the last element has index N -1,
where N is the declared array size.

Message in a Bottle 51

 // 2. declare and initialize an array with the message bitmap
 char bitmap[30] = {
 0xff, // H
 0x08,
 0x08,
 0xff,
0,
0,
 0xff, // E
 0x89,
 0x89,
 0x81,
0,
0,
 0xff, // L
 0x80,
 0x80,
 0x80,
0,
0,
 0xff, // L
 0x80,
 0x80,
 0x80,
0,
0,
 0x7e, // O
 0x81,
 0x81,
 0x7e,
0,
 0
};

 // 3. the main program
 main()
 {
 // disable JTAG port
 DDPCONbits.JTAGEN = 0;

 // 3.1 variable declarations
 int i; // i will serve as the index

52 Day 3

 // 3.2 initialization
 TRISA = 0xff00; // PORTA pins connected to LEDs are outputs
 T1CON = 0x8030; // TMR1 on, prescale 1:256 Tpb=36 MHz
 PR1 = 0xFFFF; // max period (not used)

 // 3.3 the main loop
 while(1)
 {
 // 3.3.1 display loop, hand moving to the right
 for(i=0; i<30; i++)
 { // update the LEDs
 PORTA = bitmap[i];
 // short pause
 TMR1 = 0;
 while (TMR1 < SHORT_DELAY)
 {
 }

 } // for i

 // 3.3.2 long pause, hand moving back to the left
 PORTA = 0; // turn LEDs off
 // long pause
 TMR1 = 0;
 while (TMR1 < LONG_DELAY)
 {
 }

 } // main loop

 } // main

 In section 1, we define a couple of timing constants so that we can control the flashing
sequence speed for execution and debugging.

 In section 2, we declare and initialize an 8-bit integer array of 30 elements, each
containing an LED configuration in the sequence.

 Hint

 Convert the hex values in the array initialization to binary on a piece of paper and, using a
highlighter or a red pen, mark each 1 on the page to see the message emerge.

Message in a Bottle 53

 Section 3 contains the main program, with the variable declarations (3.1) at the top,
followed by the microcontroller initialization (3.2) and eventually the main loop (3.3).

 The main (while) loop, in turn, is further divided in two sections: Section 3.3.1 contains
the actual LED Flash sequence, composed of 30 steps, to be played when the board is
swept from left to right. A for loop is used for accessing each element of the array, in
order. A while loop is used to wait on Timer1 for the proper sequence timing. Section
3.3.2 contains a pause for the sweep back, implemented using a while loop with a longer
delay on Timer1.

 Testing with the Logic Analyzer
 To test the program, we will initially use the MPLAB SIM software simulator and the
Logic Analyzer window:

 1. Build the project using the Project Build check list.

 2. Open the Logic Analyzer window.

 3. Click the Channel button to add, in order, all the I/O pins from RA0 to RA7
connected to the row of LEDs.

 The MPLAB SIM Setup and Logic Analyzer Setup checklists will help you make sure
that you don ’ t forget any detail.

 4. Then I suggest you go back to the editor window and set the cursor on the first
instruction of the 3.3.2 section.

 5. Right-click to select the context menu and choose the Run to Cursor command.
This will let the program execute the entire portion containing the message output
(3.3.1) and will stop just before the long delay.

 6. As soon as the simulation halts on the cursor line, you can switch to the Logic
Analyzer window and verify the output waveforms. They should look like
 Figure 3.1 .

 To help you visualize the output, I added a few red dots to represent the LEDs being
turned on during the first few steps of the sequence. If you squeeze your eyes a bit and
imagine you see an LED on wherever the corresponding pin is at the logic high level, you
will be able to read the message.

54 Day 3

 Testing with the Explorer 16 Demonstration Board
 If you have an actual Explorer 16 demonstration board and an MPLAB REAL ICE
programmer and debugger available, the fun can be doubled:

 1. Use the Setup checklist for your in circuit debugger of choice.

 2. Use the Device Configuration checklist to verify that the device configuration
bits are properly set for use with the Explorer 16 demonstration board.

 3. Use the Programming checklist to program the PIC32 in circuit.

 After dimming the light a bit in the room, you should be able to see the message flashing
as you “ shake ” the board. The experience is going to be far from perfect, though. With
the Simulator and the Logic Analyzer window, we can choose which part of the sequence
we want to visualize with precision and “ freeze ” it on the screen. On the demonstration
board, you might find it quite challenging to synchronize the board ’ s movement with the
LED sequence.

 Figure 3.1 : Snapshot of the Logic Analyzer window after the first sweep.

Message in a Bottle 55

 Consider adjusting the timing constants to your optimal speed. After some experimentation,
I found that the values 400 and 3200, respectively, for the short and long delays were ideal,
but your preferences might differ.

 Testing with the PIC32 Starter Kit
 If you have a PIC32 Starter Kit, it will be harder but not impossible to adapt our example
to use only the three available LEDs connected to the PortD pins RD0 , RD1 , and RD2 .
Unfortunately, even if you get hold of a PIM adapter board to attach the Starter Kit to an
Explorer 16 board, you won ’ t be able to see the demo in its full glory, because the Starter
Kit uses the JTAG port, and that means that four out of the eight LEDs on PortA are not
available.

 This is not fair. In fact, I believe we need to change our strategy and find another way to
send our message out to the world with the PIC32 Starter Kit. The idea is to use the old
and trusty Morse code! Here is the sequence of light flashes required:

 H E L L O

. - . . . - . . - - -

 The rules are simple: Once chosen a basic pulse length for the dot (a couple tenths of a
second), every other interval is required to generate a proper Morse code message based
on integer multiples of it. A dash will be three times longer. The pause between dash and
dots is going to be one single dot long, the pause between letters will be three dots long,
and finally the pause between words will be five dots long. Once more, we can encode
the entire message using an array of alternating 1s and 0s. Here is the modified code
example:

 #include <p32xxxx.h>

 // 1. define timing constant
 #define DOT_DELAY 18000

 // 2. declare and initialize an array with the message bitmap
 char bitmap[] = {
 // H
 1,0,1,0,1,0,1,0,0,0,
 // E .
 1,0,0,0,
 // L .-..
 1,0,1,1,1,0,1,0,1,0,0,0,

56 Day 3

 // L .-..
 1,0,1,1,1,0,1,0,1,0,0,0,
// ---
 1,1,1,0,1,1,1,0,1,1,1,
 // end of word
 0,0,0,0,0
};

 // 3. the main program
 main()
 {
 // 3.1 variable declarations
 int i; // i will serve as the index

 // 3.2 initialization
 TRISD = 0; // all PORTD as output
 T1CON = 0x8030; // TMR1 on, prescale 1:256 PB=36 MHz
 PR1 = 0xFFFF; // max period (not used)

 // 3.3 the main loop
 while(1)
 {

 // 3.3.1 display loop, spell a letter at a time
 for(i=0; i<sizeof(bitmap); i++)
 {

 PORTD = bitmap[i];

 // short pause
 TMR1 = 0;
 while (TMR1 < DOT_DELAY)
 {
 }

 } // for i

 } // main loop

 } // main

 Notice that, to avoid having to count the dots and dashes manually to allocate the right
amount of space for the bitmap array, I used a little trick. By leaving the square brackets
([]) empty in the declaration of the array, I essentially told the compiler to figure out by

Message in a Bottle 57

itself the right size based on the number of integers used in the follow list (between curly
brackets {}). Of course, this would have not worked if there had been no initialization list
immediately following the array declaration. A problem would have occurred later in the
for loop if I had no other way to know how many elements had eventually been added
to the array. Luckily, the sizeof() function came to my rescue, giving me a byte count
(the size of the array in bytes), and since each array element is a char type integer, that
coincides with the exact number of elements I was looking for.

 Debriefing
 In this lesson we reviewed the declaration of a few basic variable types, including integers
and floating points of different sizes. Array declarations and their initialization were also
used to create an original “ shaking ” LED display first and Morse code later, using for
loops to send messages to the world.

 Notes for the Assembly Experts
 The ++ and -- operators are actually much smarter than you might think. If the variable
they are applied to is an integer, as in our trivial examples, there is little they can do to
help, apart from saving you a few keystrokes. But if they are applied to a pointer (which
is a variable type that contains a memory address), they actually increase the address by
the exact number of bytes required to represent the quantity pointed to. For example, a
pointer to 16-bit integers will increment its address by two, while a pointer to a 32-bit
integer will increment its address by four, and so on.

 The increment and decrement operators can also be applied inside a generic expression to
operate before or after a variable content is fetched. Here are a few examples (assuming
the initial conditions a=0 and b=1):

a = b++; // a = 1, b = 2

 In this first case, a is assigned the value of b first, and b is incremented later.

a = ++b; // a = 2, b = 2

 In this second case, b is incremented first and then its (new) value is passed to a .

 Use these interesting options with moderation, though. The actual convenience (as in
reduction of keystrokes) is counterbalanced by an increased obfuscation of the code.

58 Day 3

As per a potential increase in the efficiency, it is most probably negligible. In fact,
whether you use the increment/decrement operators or not, the MPLAB C32 compiler
optimizer, even at the lowest settings, can probably do a better job of optimizing the use
of the PIC32 registers in a generic expression without you having to fiddle with these
details.

 Let me add one last word on loops. It can be confusing to see so many options: Should
you test the condition at the beginning or the end? Should you use the for type or not?
The fact is, in some situations the algorithm you are coding will dictate which one to use,
but in many situations you will have a degree of freedom, and more than one type might
do. Choose the one that makes your code more readable, and if it really doesn ’ t matter, as
in the main loop, just choose the one you like and be consistent.

 Notes for the PIC Microcontroller Experts
 Depending on the target microcontroller architecture and ultimately the arithmetic and
logic unit (ALU), operating on bytes versus operating on word quantities can make a big
difference in terms of code compactness and efficiency. In the PIC16 and PIC18 8-bit
architectures there is a strong incentive to use byte-sized integers wherever possible; in
the PIC32, 32-bit word-sized integers can be manipulated with the same efficiency. The
only limiting factor, preventing us from always using 32-bit integers with the MPLAB
C32 compiler, is the consideration of the relative preciousness of the internal resources of
the microcontroller, and in this case the RAM memory.

 Notes for the C Experts
 Even if PIC32 microcontrollers have a relatively large RAM memory, larger than the
Flash memory of most 8-bit microcontrollers, embedded-control applications will always
have to contend with the reality of cost and size limitations. If you learned to program
in C on a PC or a workstation, you probably never thought twice about using an int
whenever you needed an integer. Well, this is the time to think again. Shaving one byte at
a time off the requirements of your application might, in some cases, mean you ’ re able to
fit in a smaller PIC32 microcontroller, saving fractions of a dollar that when multiplied
by the thousands or millions of units (depending on your production run rates) can mean
real money added to the bottom line of your company. In other words, if you learn to

Message in a Bottle 59

keep the size of your variables to the strict minimum necessary, you will become a better
embedded-control designer. Ultimately, this is what engineering is all about.

 Tips & Tricks
 Since the first day I have introduced you to the mysteries of the startup (crt0) code, that
little piece of code that the linker places automatically in between the main function and the
reset vector. Today you might have not realized how the crt0 code helped us once more. In
this last project we declared an array called bitmap[] and we asked for it to be initialized
with a specific series of values, but the array, being a data structure, resides in RAM during
execution. It is one of the crt0 code responsibilities to copy the contents of the array from
a table in Flash memory to RAM, immediately before the main program execution.

 Another useful service performed by the crt0 code is to initialize every globally
declared variable to 0 . In most cases this will have the effect of making your code safer
and more predictable (you always initialize your variables before use, don ’ t you?), but it
will come at a cost. If you have large arrays allocated in RAM, and even if you chose not
to initialize them explicitly, it will take a small but finite amount of time to the crt0 code
to fill them with zeros before your main program will be able to execute. In embedded-
control applications, there can be cases when this delay is not acceptable. In some
applications, a few microseconds can make the difference between blowing an expensive
power MOSFET, for example, or having your application recovering fast and safe from
a critical reset condition. In these special cases you can define the special function
_on_reset() , as in the following example:

 void _on_reset(void)
 {
 // something urgent that needs to be done immediately
// after a reset or at power up

 your code here ...

 }

 This function will replace an empty place holder that the crt0 code is normally calling
before getting to the initialization part. Be careful, though, to make it short and not to make
too many assumptions at this point. First, remember that this function will be called every
time the PIC32 goes through a reset sequence. Second, apart from the stack, you cannot
count on your program functions and global variables to be available and initialized yet!

60 Day 3

 Exercises
 1. Improve the display/hand synchronization, waiting for a button to be pressed

before the hand sweep is started.

 2. Add a switch to sense the sweep movement reversal and play the LED sequence
backward on the back sweep.

 Books
 Rony , P. , Larsen , D. , and Titus , J. , The 8080A Bugbook, Microcomputer Interfacing And

Programming (Howard W. Sams & Co., Inc , Indianapolis, IN , 1976) . This is the book
that introduced me to the world of microprocessors and changed my life forever. No
high-level language programming here, just the basics of assembly programming and
hardware interfacing. (Too bad this book is already considered museum material; see
link below.)

 Links
 www.bugbookcomputermuseum.com/BugBook-Titles.html . A link to the “ Bugbooks

museum ” ; 30 years since the introduction of the Intel 8080 microprocessor and it is
like centuries have already passed.

 http://en.wikipedia.org/wiki/Morse_code . Learn about the Morse code, its history, and its
applications.

 NUMB3RS

 The Plan
 Just yesterday we learned about different types of C variables, and we stressed the
importance of using the right type of variable for each application to preserve a precious
resource: RAM. I don ’ t know about you, but I am now very curious about putting those
variables to work and seeing how the MPLAB© C32 compiler performs basic arithmetic
on them. Knowing that the PIC32 has a set of 32 “ working ” registers and a 32-bit ALU,
I am expecting to see some very efficient code, but I also want to compare the relative
performance of the same operation performed on different data types and, in particular,
floating-point types. Hopefully after today we will have a better understanding of how
to balance performance and memory resources, real-time constraints, and complexity to
better fit the needs of our embedded-control applications.

 Preparation
 This entire lesson will be performed exclusively with software tools that include the
MPLAB IDE, MPLAB C32 compiler, and the MPLAB SIM simulator.

 Use the New Project Setup checklist to create a new project called NUMB3RS and a new
source file called NUMB3RS.c .

 The Exploration
 To review all the available data types, I recommend you take a look at the MPLAB C32
User Guide. You can start in Chapter 1.5, where you can find a first list of the supported
integer types (see Table 4.1).

D A Y 4

62 Day 4

 As you can see, there are 10 different integer types specified in the ANSI C standard,
including char, int, short, long, and long long , both in the signed (default)
and unsigned variant. The table shows the number of bits allocated specifically by the
MPLAB C32 compiler for each type and, for your convenience, spells out the minimum
and maximum values that can be represented.

 It is expected that when the type is signed, one bit must be dedicated to the sign itself.
The resulting absolute value is halved, while the numerical range is centered around zero.
We have also noted before (in our previous explorations) how the MPLAB C32 compiler
treats int and long as synonyms by allocating 32 bits (4 bytes) for both of them. In fact,
8-, 16-, and 32-bit quantities can be processed with equal efficiency by the PIC32 ALU.
Most of the arithmetic and logic operations on these integer types can be coded by the
compiler using single assembly instructions that can be executed very quickly—in most
cases, in a single clock cycle.

 The long long integer type (added to the ANSI C extensions in 1999) offers 64-bit
support and requires 8 bytes of memory. Since the PIC32 core is based on the MIPS
32-bit architecture, operations on long long integers must be encoded by the compiler
using short sequences of instructions inserted inline. Knowing this, we are already
expecting a small performance penalty for using long long integers; what we don ’ t
know is how large it will be.

 Table 4.1 : MPLAB C32 integer types comparison table .

Type Bits Min Max

 char, signed char 8 �128 127

 unsigned char 8 0 255

 short, signed short 16 �32768 32767

 unsigned short 16 0 65535

 int, signed int, long, signed long 32 � 2 31 231 � 1

 unsigned int, unsigned long 32 0 232 � 1

 long long, signed long long 64 � 2 63 263 � 1

 unsigned long long 64 0 264 � 1

NUMB3RS 63

 Let ’ s look at a first integer example; we ’ ll start by typing the following code:

 main ()
 {
 int i,j,k;
 i = 1234; // assign an initial value to i
 j = 5678; // assign an initial value to j
 k = i * j; // multiply and store the result in k

 }

 After building the project (Project | Build All or Ctrl�F10), we can open the
Disassembly window (View | Disassembly Listing) and take a look at the code
generated by the compiler:

 12: i = 1234;
 9D00000C 240204D2 addiu v0,zero,1234
 9D000010 AFC20000 sw v0,0(s8)
 13: j = 5678;
 9D000014 2402162E addiu v0,zero,5678

 9D000018 AFC20004 sw v0,4(s8)

 Even without knowing the PIC32 (MIPS) assembly language, we can easily identify
the two assignments. They are performed by loading the literal values to register v0
first and from there to the memory locations reserved for the variable i (pointed to
by the S8 register), and later for variable j (pointed to by the S8 register with an
offset of 4).

 In the following line, the multiplication is performed by transferring the values from
the locations reserved for the two integer variables i and j back to registers v0 and v1
and then performing a single 32-bit multiplication mul instruction. The result, available
in v0 , is stored back into the locations reserved for k (pointed to by S8 with an offset
of 8)—pretty straightforward!

 14: k = i*j;
 9D00001C 8FC30000 lw v1,0(s8)
 9D000020 8FC20004 lw v0,4(s8)
 9D000024 70621002 mul v0,v1,v0

 9D000028 AFC20008 sw v0,8(s8)

64 Day 4

 On Optimizations (or Lack Thereof)
 You will notice how the overall program, as compiled, is somewhat redundant. The value
of j, for example, is still available in register v0 when it is reloaded again—just before the
multiplication. Can ’ t the compiler see that this operation is unnecessary?

 In fact, the compiler does not see things this clearly; its role is to create “ safe ” code,
avoiding (at least initially) any assumption and using standard sequences of instructions.
Later on, if the proper optimization options are enabled, a second pass (or more) is
performed to remove the redundant code. During the development and debugging phases
of a project, though, it is always good practice to disable all optimizations because
they might modify the structure of the code being analyzed and render single-stepping
and breakpoint placement problematic. In the rest of this book we will consistently
avoid using any compiler optimization option; we will verify that the required levels of
performance are obtained regardless.

 Testing
 To test the code, we can choose to work with the simulator from the Disassembly
Listing window itself, single-stepping on each assembly instruction. Or we can choose to

 Note

 It is beyond the scope of this book to analyze in detail the MIPS assembly programming
interface, but I am sure you will find it interesting to note that the mul instruction, like all
other arithmetic instructions of the MIPS core, has three operands—although in this case the
compiler is using the same register (v0) as both one of the sources and the destination. Note
how the MIPS core belongs to the so-called load and store class of machines, as all arithmetic
operands have first to be fetched from RAM into registers (load) before arithmetic operations
can be performed, and later the result has to be transferred back to RAM (store). Finally, if you
are even minimally interested in the MIPS assembly, note how the compiler chose to use the
addiu instruction to load more efficiently a literal word into a register. In reality this performs
an addition of an immediate value with a second operand that was chosen to be the aptly named
register zero .

NUMB3RS 65

work from the C source in the editor window, single-stepping through each C language
statement (recommended). In both cases, we can:

 1. Open the Local Variables window (View | Locals) to see immediately listed, in a
small and convenient window, all the variables defined inside the current function
(main()).

 2. Open the Watch window (View | Watch) and add the v0 and v1 registers using
the Add SFR combo box.

 3. Single-step (Debugger | Step Over or F8) through the next few program lines,
observing the effects on the variables in the Watch window. As we noted before,
when the value of a variable in the Watch window or the Locals window changes,
it is highlighted in red.

 If you need to repeat the test, perform a Reset (Debugger | Reset | Processor Reset), but
don ’ t be surprised if the second time you run the code the contents of the local variables
appear magically in place before you initialize them. Local variables (defined inside
a function) are not cleared by the Startup code; therefore, if the RAM memory is not
cleared between reruns, the RAM locations used to hold the variables i , j , and k will
have preserved their contents.

 Going long long
 At this point, modifying only the first line of code, we can change the entire program to
perform operations on 64-bit integer variables:

 main ()
 {
 long long i,j,k;

 i = 1234; // assign an initial value to i
 j = 5678; // assign an initial value to j
 k = i * j; // multiply and store the result in k

 }

 Rebuilding the project, and switching again to the Disassembly Listing window
(if you had the editor window maximized and you did not close the Disassembly
Listing window, you could use the Ctrl � Tab command to quickly alternate between the

66 Day 4

editor and the Disassembly Listing), we can see how the newly generated code is a bit
longer than the previous version. Though the initializations are still straightforward, the
multiplication is now performed using several more instructions:

 15: k = i*j;
 9D00002C 8FC30000 lw v1,0(s8)
 9D000030 8FC20008 lw v0,8(s8)
 9D000034 00620019 multu v1,v0
 9D000038 00002012 mflo a0
 9D00003C 00002810 mfhi a1
 9D000040 8FC30000 lw v1,0(s8)
 9D000044 8FC2000C lw v0,12(s8)
 9D000048 70621802 mul v1,v1,v0
 9D00004C 00A01021 addu v0,a1,zero
 9D000050 00431021 addu v0,v0,v1
 9D000054 8FC60008 lw a2,8(s8)
 9D000058 8FC30004 lw v1,4(s8)
 9D00005C 70C31802 mul v1,a2,v1
 9D000060 00431021 addu v0,v0,v1
 9D000064 00402821 addu a1,v0,zero
 9D000068 AFC40010 sw a0,16(s8)

 9D00006C AFC50014 sw a1,20(s8)

 The PIC32 ALU can process only 32 bits at a time, so the 64-bit multiplication is actually
performed as a sequence of 32-bit multiplications and additions. The sequence used by
the compiler is generated with pretty much the same technique that we learned to use
in elementary school, only performed on a 32-bit word at a time rather than one digit
at a time. In practice, to perform a 64-bit multiplication using 32-bit instructions, there
should be four multiplications and three additions, but you will note that the compiler has
actually inserted only three multiplication instructions. What is going on here?

 The fact is that multiplying two long long integers (64-bit each) will produce a 128-bit
wide result. But in the previous example, we have specified that the result will be stored
in yet another long long variable, therefore limiting the result to a maximum of
64 bits. Doing so, we have clearly left the door open for the possibility (not so remote)
of an overflow, but we have also given the compiler the permission to safely ignore the
most significant bits of the result. Knowing those bits are not going to be missed, the
compiler has eliminated completely the fourth multiplication step, so in a way, this is
already optimized code.

NUMB3RS 67

 Integer Divisions
 If we perform a similar analysis of the division operation on integer variables as in the
previous examples, we will rapidly confirm how char , short , and int types are all
treated the same as well:

 main ()
 {
 int i, j, k;

 i = 1234;
 j = 5678;
 k = i/j;

 } // main

 The code produced by the compiler is extremely compact and uses a single div assembly
instruction.

 15: k = i/j;
 9D00001C 8FC30000 lw v1,0(s8)
 9D000020 8FC20004 lw v0,4(s8)
 9D000024 0062001A div v1,v0
 9D000028 004001F4 teq v0,zero
 9D00002C 00001012 mflo v0

 9D000030 AFC20008 sw v0,8(s8)

 Note

 Basic math tells us that the multiplication of two n -bit-wide integer values produces a
2n -bit-wide integer result. The C compiler knows this, but if we fail to provide a recipient
with enough room to contain the result of the operation, or if there is simply no larger integer
type available, as is the case of the multiplication of two long long integers, it has no
choice but to discard (quietly) the most significant bits of the result. It is our responsibility not
to let this happen by choosing the right integer types for the range of values used in our
application. If necessary, you can predetermine the number of bits in the result of any product
by finding the indexes of the first non-zero-bit (msb) for each operand and adding them
together. If the sum is larger than the number of bits of the recipient type, you know there will
be an overflow!

68 Day 4

 It is only when we analyze the case of a 64-bit division that we find that the compiler is
using a different technique:

 main ()
 {
 long long i, j, k;

 i = 1234;
 j = 5678;
 k = i/j;

 } // main

 In fact, recompiling and inspecting the new code in the Disassembly Listing window
we reveal a misleadingly short sequence of instructions leading to a subroutine
call (jal).

 15: k = i/j;
 9D000030 8FC40010 lw a0,16(s8)
 9D000034 8FC50014 lw a1,20(s8)
 9D000038 8FC60018 lw a2,24(s8)
 9D00003C 8FC7001C lw a3,28(s8)
 9D000040 0F40001A jal 0x9d000068
 9D000044 00000000 nop
 9D000048 AFC20020 sw v0,32(s8)

 9D00004C AFC30024 sw v1,36(s8)

 The subroutine itself will appear in the disassembly listing, after all the main function
code. This subroutine is clearly separated and identified by a comment line that indicates
it is part of a library, a module called libgcc2.c. The source for this routine is actually
available as part of the complete documentation of the MPLAB C32 compiler and can be
found in a subdirectory under the same directory tree where the MPLAB C32 compiler
has been installed on your hard disk.

 By selecting a subroutine in this case, the compiler has clearly made a compromise.
Calling the subroutine means adding a few extra instructions and using extra space on
the stack. On the other hand, fewer instructions will be added each time a new division
(among long long integers) is required in the program; therefore, overall code space
will be preserved.

NUMB3RS 69

 Floating Point
 Beyond integer data types, the MPLAB C32 compiler offers support for a few more data
types that can capture fractional values—the floating-point data types. There are three
types to choose from (see Table 4.2) corresponding to two levels of resolution: float ,
double , and long double .

 Table 4.2 : MPLAB C32 floating-point
types comparison table.

Type Bits

 Float 32

 Double 64

 Long double 64

 Notice how the MPLAB C32 compiler, by default, allocates for both the double and the
long double types the same number of bits, using the double precision floating-point
format defined in the IEEE754 standard.

 Since the PIC32 doesn ’ t have a hardware floating-point unit (FPU), all operations on
floating-point types must be coded by the compiler using floating-point arithmetic
libraries whose size and complexity are considerably larger/higher than any of the integer
libraries. You should expect a major performance penalty if you choose to use these data
types, but, again, if the problem calls for fractional quantities to be taken into account, the
MPLAB C32 compiler certainly makes dealing with them easy.

 Let ’ s modify our previous example to use floating-point variables:

 main ()
 {
 float i,j,k;

 i = 12.34; // assign an initial value to i
 j = 56.78; // assign an initial value to j
 k = i * j; // store the result in k

 }

 After recompiling and inspecting the Disassembly Listing window, you will immediately
notice that the compiler has chosen to use a subroutine instead of inline code.

70 Day 4

 Changing the program again to use a double-precision floating-point type, long double,
produces very similar results. Only the initial assignments seem to be affected, and all we
can see is, once more, a subroutine call.

 The C compiler makes using any data type so easy that we might be tempted to
always use the largest integer or floating-point type available, just to stay on the safe
side and avoid the risk of overflows and underflows. On the contrary, though, choosing
the right data type for each application can be critical in embedded control to balance
performance and optimize the use of resources. To make an informed decision, we need
to know more about the level of performance we can expect when choosing the various
precision data types.

 Measuring Performance
 Let ’ s use what we have learned so far about simulation tools to measure the actual
relative performance of the arithmetic libraries (integer and floating-point) used by the
MPLAB C32 compiler. We can start by using the software simulator ’ s (MPLAB SIM)
built-in StopWatch tool, with the following code:

 #include <p32xxxx.h>

 main ()
 {
 char c1, c2, c3;
 short s1, s2, s3;
 int i1, i2, i3;
 long long ll1, ll2, ll3;
 float f1,f2, f3;
 long double d1, d2, d3;

 c1 = 12; // testing char integers (8-bit)
 c2 = 34;
 c3 = c1 * c2;

 s1 = 1234; // testing short integers (16-bit)
 s2 = 5678;
 s3= s1 * s2;

 i1 = 1234567; // testing (long) integers (32-bit)
 i2 = 3456789;
 i3= i1 * i2;

NUMB3RS 71

 ll1 = 1234; // testing long long integers (64-bit)
 ll2 = 5678;
 ll3= ll1 * ll2;

 f1 = 12.34; // testing single precision floating point
 f2 = 56.78;
 f3= f1 * f2;

 d1 = 12.34; // testing double precision floating point
 d2 = 56.78;
 d3= d1 * d2;

 } // main

 After compiling and linking the project, open the StopWatch window (Debugger |
StopWatch) and position the window according to your preferences (see Figure 4.1).
(Personally I like it docked to the bottom of the screen so that it does not overlap with the
editor window and it is always visible and accessible.)

 Figure 4.1 : The MPLAB SIM StopWatch window.

Zero the StopWatch timer and execute a Step-Over command (Debug | StepOver or
press F8). As the simulator completes updating the StopWatch window, you can manually
record the execution time required to perform the integer operation. The time is provided
by the simulator in the form of a cycle count and an indication in microseconds derived
by the cycle count multiplied by the simulated clock frequency, a parameter specified in
the Debugger Settings (the Debugger | Settings | Osc/Trace tab).

 Proceed by setting the cursor over the next multiplication, and execute a Run To Cursor
command or simply continue StepOver until you reach it. Again, Zero the StopWatch,

72 Day 4

execute a Step-Over , and record the second time. Continue until all five types have been
tested (see Table 4.3).

 Table 4.3 : Relative performance test results using MPLAB C32 rev. 0.20
(all optimizations disabled) .

 Multiplication Test Width
 (Bits)

 Cycle Count Performance Relative to:

Int Float

 Char integer (char) 8 6 1 —

 Short integer (short) 16 6 1 —

 Integer (int, long) 32 6 1 —

 Long integer (long long) 64 21 3.5 —

 Single precision FP (float) 32 71 11.8 1

 Double precision FP (long double) 64 159 26.5 2.23

 Table 4.3 records the results (cycle counts) in the first column, with two more columns
showing the relative performance ratios obtained by dividing the cycle count of each
row by the cycle count recorded for two reference types. Don ’ t be alarmed if you happen
to record different values; several factors can affect the measure. Future versions of the
compiler could possibly use more efficient libraries, and/or optimization features could
be introduced or enabled at the time of testing.

 Keep in mind that this type of test lacks any of the rigorousness required by a true
performance benchmark. What we are looking for here is just a basic understanding of
the impact on performance that we can expect from choosing to perform our calculations
using one data type versus another. We are looking for the big picture—relative orders
of magnitude. For that purpose, the table we just obtained can already give us some
interesting indications.

 As expected, 32-bit operations appear to be the fastest, whereas long long integer
(64-bit) multiplications are about four times slower. Single precision floating-point
operations require more effort than integer operations. Multiplying 32-bit floating-point
numbers requires one order of magnitude more effort than multiplying 32-bit integers.
From here, going to double precision floating-point (64-bit) about doubles the number
of cycles required.

NUMB3RS 73

 So, when should we use floating-point, and when should we use integer arithmetic?

 Beyond the obvious, from the little we have learned so far we can perhaps extract the
following rules:

 1. Use integers every time you can, i.e. when fractions are not required or when the
algorithm can be rewritten for integer arithmetic.

 2. Use the smallest integer type that will not produce an overflow or underflow
if you want to save on RAM memory space, but once you are not using 64-bit
integers, you will not see any further performance improvement from going to
any integer type smaller than 32-bit.

 3. If you have to use a floating-point type (fractions are required), expect an order-
of-magnitude reduction in the performance of the compiled program.

 4. Double precision floating-point (long double) seems to only reduce the
performance further, by a factor of two.

 Keep in mind also that floating-point types offer the largest value ranges but also are
always introducing approximations. As a consequence, floating-point types are not
recommended for financial calculations. Use long long integers, if necessary, and
perform all operations in cents (instead of dollars and fractions).

 Debriefing
 In this lesson, we have learned not only what data types are available and how much
memory is allocated to them but also how they affect the resulting compiled program in
terms of code size and execution speed. We used the MPLAB SIM simulator StopWatch
tool to measure the number of instruction cycles required for the execution of a series of
basic arithmetic operations. Some of the information we gathered will be useful to guide
our actions in the future when we ’ re balancing our needs for precision and performance
in embedded-control applications.

 Notes for the Assembly Experts
 The brave few assembly experts that have attempted to deal with floating-point
numbers in their applications tend to be extremely pleased and forever thankful for the

74 Day 4

great simplification achieved by the use of the C compiler. Single or double precision
arithmetic becomes just as easy to code as integer arithmetic has always been.

 When using integer numbers, though, there is sometimes a sense of loss of control,
because the compiler hides the details of the implementation and some operations might
become obscure or much less intuitive/readable. Here are some examples of conversion
and byte manipulation operations that can induce some anxiety:

● Converting an integer type into a smaller or larger one

● Extracting or setting the most or least significant byte of a 16-bit or 32-bit data
type

● Extracting or setting one bit out of an integer variable

 The C language offers convenient mechanisms for covering all such cases via implicit
type conversions, as in:

 short s; // 16-bit
 int i; // 32-bit

 i = s;

 The value of s is transferred into the two LSBs of i, and the two MSBs of i are
cleared.

 Explicit conversions (called type casting) might be required in some cases where the
compiler would otherwise assume an error, as in:

 short s; // 16-bit
 int i; // 32-bit

 s = (short) i;

(short) is a type cast that results in the two MSBs of i to be discarded as i is forced
into a 16-bit value.

 Bit fields are used to cover the conversion to and from integer types that are smaller than
1 byte. The PIC32 library files contain numerous examples of definitions of bit fields for
the manipulation of all the control bits in the peripheral ’ s SFRs.

NUMB3RS 75

 Here is an example extracted from the include file used in our project, where the Timer1
module control register T1CON is defined and each individual control bit is exposed in a
structure defined as T1CONbits:

 extern unsigned int T1CON;
 extern union {
 struct {
 unsigned :1;
 unsigned TCS:1;
 unsigned TSYNC:1;
 unsigned :1;
 unsigned TCKPS0:1;
 unsigned TCKPS1:1;
 unsigned TGATE:1;
 unsigned :6;
 unsigned TSIDL:1;
 unsigned :1;
 unsigned TON:1;

};
 struct {
 unsigned :4;
 unsigned TCKPS:2;

};

 } T1CONbits;

 You can access each bit field using the “ dot ” notation, as in the following example:
 T1CONbits.ON = 1;

 Notes for the 8-Bit PIC® Microcontroller Experts
 The PIC microcontroller user who is familiar with the 8-bit PIC microcontrollers
and their respective compilers will notice a considerable improvement in performance,
both with integer arithmetic and with floating-point arithmetic. The 32-bit ALU
available in the PIC32 architecture is clearly providing a great advantage by
manipulating up to four times the number of bits per cycle, but the performance
improvement is further accentuated by the availability of up to 32 working registers,
which make the coding of critical arithmetic routines and numerical algorithms more
efficient.

76 Day 4

 Notes for the 16-Bit PIC and dsPIC® Microcontroller
Experts
 Users of the MPLAB C30 compiler will have probably noticed by now how the new
MPLAB C32 compiler assigns different widths to common integer types. For example,
the int and short types used to be synonyms of 16-bit integers for the MPLAB C30
compiler. Although short is still a 16-bit integer, for the MPLAB C32 compiler int is
now really a synonym of the long integer type. In other words, int has doubled its size.
You might be wondering what happens to the portability of code when such a dramatic
change is factored in.

 The answer depends on which way you are looking at the problem. If you are porting the
code “ up, ” or, in other words, you are taking code written for a 16-bit PIC architecture to
a 32-bit PIC architecture, most probably you are going to be fine. Global variables will
use a bit more RAM space and the stack might grow as well, but it is also likely that the
PIC32 microcontroller model you are going to use has much more RAM to offer. Since
the new integer type is larger than that used in the original code, if the code was properly
written, you don ’ t have to worry about overflows and underflows.

 On the contrary, if you are planning on porting some code “ down, ” even if this is just
being contemplated as a future option, you might want to be careful. If you are writing
code for a PIC32 and rely on the int type to be 32-bit large, you might have a surprise
later when the same code will be compiled into a 16-bit wide integer type by the MPLAB
C30 compiler. The best way to avoid any ambiguity on the width of your integers is to
use exact-width types.

 A special set of exact-width integer types is offered by the inttypes.h library. They include
the following types:

 int8_t Always an 8-bit signed type.

 uint8_t Always an 8-bit unsigned type.

 int16_t Always a 16-bit signed type.

 uint16_t Always a 16-bit unsigned type.

 int32_t Always a 32-bit signed type.

 uint32_t Always a 32-bit unsigned type.

 int64_t Always a 64-bit signed type.

 uint64_t Always a 64-bit unsigned type.

NUMB3RS 77

 If you use them when necessary, you can make your code more portable but also more
readable because they will help highlight the portions of your code that are dependent on
integer size.

 Note

 Another useful and sometimes misunderstood integer type is size_t , defined in the stddef.h
library. It is meant to be used every time you need a variable to contain the size of an object in
memory expressed in bytes. It is guaranteed by each ANSI compiler to have the right range so
that it ’ s always able to contain the size of the largest object possible for a given architecture. As
expected, the function sizeof() , but also most of the functions in the string.h library, makes
ample use of it.

 Tips & Tricks
 Math Libraries

 The MPLAB C32 compiler supports several standard ANSI C libraries, including these:

● limits.h contains many useful macros defining implementation-dependent limits,
such as, for example, the number of bits composing a char type (CHAR_BIT) or
the largest integer value (INT_MAX).

● float.h contains similar implementation-dependent limits for floating-point data
types, such as, for example, the largest exponent for a single precision
floating-point variable (FLT_MAX_EXP).

● math.h contains trigonometric functions, rounding functions, logarithms, and
exponentials but also many useful constants like pi (M_PI) .

 Complex Data Types

 The MPLAB C32 compiler supports complex data types as an extension of both integer
and floating-point types. Here is an example declaration for a single precision
floating-point type:

 __complex__ float z;

 Note

 Notice the use of a double underscore before and after the keyword complex.

78 Day 4

 The variable z so defined has now a real and an imaginary part that can be individually
addressed using, respectively, the syntax:

 __real__ z

 and

 __imag__ z

 Similarly, the next declaration produces a complex variable of 32-bit integer type:

 __complex__ int x;

 Complex constants are easily created adding the suffix i or j , as in the following
examples:

 x = 2 + 3j;

 z = 2.0f + 3.0fj;

 All standard arithmetic operations (+,-,*,/) are performed correctly on complex data
types. Additionally, the ~ operator produces the complex conjugate.

 Complex types could be pretty handy in some types of applications, making the code
more readable and helping avoid trivial errors. Unfortunately, as of this writing, the
MPLAB IDE support of complex variables during debugging is only partial, giving
access only to the “ real ” part through the Watch window and the mouse-over function.

 Exercises
 1. Write a program that uses Timer2 as a stopwatch for real-time performance

measurements.

 2. If the width of Timer2 is not sufficient, use Timer2 and Timer3 joined in the new
32-bit timer mode.

 3. Test the relative performance of the division for the various data types.

 4. Test the performance of the trigonometric functions relative to standard arithmetic
operations.

 5. Test the relative performance of the multiplication for complex data types

NUMB3RS 79

 Books
 Britton , Robert. , MIPS Assembly Language Programming (Prentice Hall , 2003) . It might

seem strange to you that I am suggesting a book about assembly programming. Sure,
we set off with the intention to learn programming in C, but if you ’ re like me, you
won ’ t resist the curiosity and you will want to learn the assembly of the PIC32 MIPS
core as well.

 Links
http://en.wikipedia.org/wiki/Taylor_series . If you are curious, this site shows how the

C compiler can approximate some of the functions in the math library.

This page intentionally left blank

 Interrupts

 The Plan
 For reasons of efficiency, size, and ultimately cost, in the embedded-control world the
smallest applications, which happen to be implemented in the highest volumes, most
often cannot afford the “ luxury ” of a multitasking operating system and use the interrupt
mechanisms instead to “ divide their attention ” among the many tasks at hand. Interrupts
provide a very strong mechanism for real-time control, allowing our applications to deal
with asynchronous external events. Unfortunately, the C programming language does
not incorporate the concept of interrupts in its model, leaving the embedded-control
programmer with the only choice of defining interrupts as a special kind of function.

 Today we will see how the MPLAB© C32 compiler allows us to easily manage the
interrupt mechanisms offered by the PIC32 microcontroller architecture.

 Preparation
 This entire lesson will be performed exclusively with software tools, including the
MPLAB IDE, the MPLAB C32 compiler, and the MPLAB SIM simulator.

 Use the New Project Setup checklist to create a new project called Interrupts and a new
source file, similarly called interrupts.c.

 The Exploration
 An interrupt is an internal or external event that requires quick attention from the CPU.
The PIC32 architecture provides a rich interrupt system that can manage as many as

D A Y 5

82 Day 5

64 distinct sources of interrupts. If necessary, each interrupt source can have a unique
piece of code, called the interrupt service routine (ISR) or interrupt handler, directly
associated with it, to provide the required response action. Interrupts can be completely
asynchronous with the execution flow of the main program. They can be triggered at any
point in time and in an unpredictable order.

 Responding quickly to interrupts is essential to allow prompt reaction to the trigger event
and a fast return to the main program execution flow. Therefore, the goal is to minimize
the interrupt latency , defined as the time between the triggering event and the execution
of the first instruction of the ISR. In the PIC32 architecture, the latency is extremely
short. Although it is fixed for each given interrupt source—only three or four instruction
cycles—other mechanisms common among all 32-bit architectures, such as the cache
and the bus arbitration module that we will review in detail in future expeditions, may
affect the overall response time, adding a small amount of nondeterminism. A deep
understanding of the interrupt mechanism will help us minimize and possibly cancel its
effect on our applications.

 The MPLAB C32 compiler will help us manage the complexity of the interrupt system
by providing a few language extensions and a rich set of functions included in the plib.h
library.

 Interrupts and Exceptions
 To the MIPS core running inside the PIC32, all interrupts fall generally under the
category of exceptions . This is a very broad category of events that gathers pretty much
anything that can disrupt the normal flow of a program. A reset command produces an
exception, an error in a division can produce an exception, but also access to a memory
address that is not implemented (or restricted) will produce an exception, and the list
goes on and on. Interrupts, after all, are the most benign kind of exception that can occur.
The MIPS core relies on a few vectors (pointers to functions) located conveniently in
separate RAM, program memory, or both regions to cover all possible types of exceptions
(see Table 5.1). It is once more the role of the Startup code to place such vectors and
offer default handlers for all the essential exceptions an embedded control application
might need.

 Don ’ t worry if not all the entries in Table 5.1 make sense to you. Some of them refer
to advanced features that we will encounter and discuss in a later chapter. Some are
related to features, part of the MIPS architecture, that have no practical application in the
PIC32MX implementation.

Interrupts 83

 The basic MIPS interrupt mechanism provides for a single vector inside the exception
table, and therefore a single interrupt service routine, to be dedicated to all possible
interrupts events. Once the interrupt (exception) occurs, the content of a special register
(known as cause) gives the service routine all the information necessary to identify the
trigger event and the most appropriate action to take in response. To be able to resume
execution after the interrupt has been dealt with, it is fundamental for an interrupt service
routine to be able to save the processor context (prologue) before taking any action and
to be able to restore it (epilogue) later exactly as it was before the interruption. The exact
prologue and epilogue sequences can be somewhat convoluted and their analysis is
beyond the scope of our exploration. For now, it will suffice to know that the MPLAB C32
compiler makes all this automatic and safe by allowing us to define “ special ” C functions
for use as interrupt handlers, as long as a few limitations are kept in consideration, such as:

● Interrupt service functions are not supposed to return any value (use type void).

● No parameter can be passed to the function (use parameter void).

● They cannot be called directly by other functions.

● Ideally, they should not call any other function.

 The first three limitations should be pretty obvious given the nature of the interrupt
mechanism—since it is triggered by an asynchronous event, there cannot be parameters
or a return value because there is no proper function call in the first place. The last is
more of a recommendation to keep in mind for efficiency considerations.

 Table 5.1 : Exception vectors table of the PIC32 architecture.

 Exception Source Memory Region Description

 Reset and NMI Program Normal reset and nonmaskable interrupt entry point.

 On-chip debug Program Used by the ICD and EJTAG interfaces to enable in
circuit debugging features.

 Cache error RAM or Program Error condition specific to the cache mechanism.

 TLB refill RAM or Program Not used on PIC32 because a fixed address translation
scheme (FMT) is used in place of a full MMU.

 General exception RAM or Program All other types of exceptions.

 Interrupt RAM or Program The proper interrupt vector.

84 Day 5

 Sources of Interrupt
 The following events can be used to trigger an interrupt. Among the external sources
available for the PIC32FJ512MX360L, there are:

● 5 � external pins with level trigger detection

● 22 � external pins connected to the Change Notification module

● 5 � Input Capture modules

● 5 � Output Compare modules

● 2 � serial port interfaces (UARTs)

● 4 � synchronous serial interfaces (SPI and I 2 C)

● 1 � Parallel Master Port

 Among the internal sources, we count:

● 1 � 32 internal (core) timer

● 5 � 16-bit timers

● 1 � analog-to-digital converter

● 1 � Analog Comparators module

● 1 � real-time clock and calendar

● 1 � Flash controller

● 1 � fail-safe clock monitor

● 2 � software interrupts

● 4 � DMA channels

 Other models of PIC32 may have a different mix of internal and external interrupt
sources. Many of these sources in their turn can generate several different interrupts. For
example, a serial port interface peripheral (UART) can generate three types of interrupt:

● When new data has been received and is available in the receive buffer for
processing

Interrupts 85

● When data in the transmit buffer has been sent and the buffer is empty, ready and
available to transmit more

● When an error condition has been generated and action might be required to
reestablish communication

 By design, up to a total of 96 independent events could be managed by the PIC32
interrupt control module. That ’ s a lot of interrupts!

 Of course, when multiple sources of interrupts are enabled and used by an application,
there is a need for the ISR to identify the specific one at hand and to be able to branch to
an appropriate segment of code to deal with it. As we will see shortly, several flags and
additional control mechanisms assist the programmer with this task.

 Interrupt Priorities
 Each interrupt source has seven associated control bits, grouped logically in various
special-function registers:

● The Interrupt Enable bit (typically represented with the name of the interrupt
source peripheral followed by the suffix – IE in the device datasheet), a single bit
of data:

 1. When cleared, the specific trigger event is prevented from generating
interrupts.

 2. When set, it allows the interrupt to be processed.

 At power-on, all interrupt sources are disabled by default.

● The Interrupt Flag (typically represented with a suffix -IF), a single bit of data,
is set each time the specific trigger event is activated, independently of the status
of the enable bit. Notice that, once set, it must be cleared (manually) by the user.
In other words it must be cleared before exiting the ISR, or the same interrupt
service routine will be immediately called again.

● The Group Priority Level (typically represented with a suffix -IP). Interrupts can
have up to seven levels of priority (from ipl1 to ipl7). Should two interrupt
events occur at the same time, the highest priority event will be served first.
Three bits encode the priority level of each interrupt source. At any given point,
the PIC32 execution priority-level value is kept in the MIPS core status register.

86 Day 5

Interrupts with a priority level lower than the current value will be ignored. At
power-on, all interrupt sources are assigned a default level of ipl0 , once more
assuring that all interrupts are disabled.

● The Subpriority Level . Two more bits are allocated to define four more possible
levels of priority within a priority group. If two events of the same priority level
occur simultaneously, the one with the highest subpriority will be selected first.
Once an interrupt of a given priority group is selected, though, any following
interrupts of the same level (even if of higher subpriority) will be ignored until the
current interrupt (flag) has been cleared.

 Within an assigned priority level, a relative (default) priority among the various sources in
a fixed order of appearance is defined for any given PIC32 model. When everything else
fails (both group and subgroup priorities are identical), it is the natural order to decide
between two simultaneous events (see Table 5.2).

(continued)

 Table 5.2 : Interrupt sources of the PIC32FJ512MX360L.

 Natural
Order

 Macro
Abbreviation

 IRQ Symbol

 Description

 0 (highest) CT _CORE_TIMER_IRQ Core Timer Interrupt

 1 CS0 _CORE_SOFTWARE_0_IRQ Core Software Interrupt 0

 2 CS1 _CORE_SOFTWARE_1_IRQ Core Software Interrupt 1

 3 INT0 _EXTERNAL_0_IRQ External Interrupt 0

 4 T1 _TIMER_1_IRQ Timer 1 Interrupt

 5 IC1 _INPUT_CAPTURE_1_IRQ Input Capture 1 Interrupt

 6 OC1 _OUTPUT_COMPARE_1_IRQ Output Compare 1 Interrupt

 7 INT1 _EXTERNAL_1_IRQ External Interrupt 1

 8 T2 _TIMER_2_IRQ Timer 2 Interrupt

 9 IC2 _INPUT_CAPTURE_2_IRQ Input Capture 2 Interrupt

 10 OC2 _OUTPUT_COMPARE_2_IRQ Output Compare 2 Interrupt

 11 INT2 _EXTERNAL_2_IRQ External Interrupt 2

Interrupts 87

 Table 5.2 : (Continued)

 Natural
Order

 Macro
Abbreviation

 IRQ Symbol

 Description

 12 T3 _TIMER_3_IRQ Timer 3 Interrupt

 13 IC3 _INPUT_CAPTURE_3_IRQ Input Capture 3 Interrupt

 14 OC3 _OUTPUT_COMPARE_3_IRQ Output Compare 3 Interrupt

 15 INT3 _EXTERNAL_3_IRQ External Interrupt 3

 16 T4 _TIMER_4_IRQ Timer 4 Interrupt

 17 IC4 _INPUT_CAPTURE_4_IRQ Input Capture 4 Interrupt

 18 OC4 _OUTPUT_COMPARE_4_IRQ Output Compare 4 Interrupt

 19 INT4 _EXTERNAL_4_IRQ External Interrupt 4

 20 T5 _TIMER_5_IRQ Timer 5 Interrupt

 21 IC5 _INPUT_CAPTURE_5_IRQ Input Capture 5 Interrupt

 22 OC5 _OUTPUT_COMPARE_5_IRQ Output Compare 5 Interrupt

 23 SPI1E _SPI1_ERR_IRQ SPI 1 Fault

 24 SPI1TX _SPI1_TX_IRQ SPI 1 Transfer Done

 25 SPI1RX _SPI1_RX_IRQ SPI 1 Receiver Done

 26 U1E _UART1_ERR_IRQ UART 1 Error

 27 U1RX _UART1_RX_IRQ UART 1 Receiver

 28 U1TX _UART1_TX_IRQ UART 1 Transmitter

 29 I2C1B _I2C1_BUS_IRQ I2C 1 Bus Collision Event

 30 I2C1S _I2C1_SLAVE_IRQ I2C 1 Slave Event

 31 I2C1M _I2C1_MASTER_IRQ I2C 1 Master Event

 32 CN _CHANGE_NOTICE_IRQ Input Change Interrupt

 33 AD1 _ADC_IRQ ADC Convert Done

 34 PMP _PMP_IRQ Parallel Master Port Interrupt

 35 CMP1 _COMPARATOR_1_IRQ Comparator 1 Interrupt

(continued)

88 Day 5

 Interrupt Handlers Declaration
 The MPLAB C32 compiler gives us two options to declare a function as “ the ” default
interrupt handler (vector 0) at a given interrupt priority (ipl1 , for example), using
either the attribute syntax as follows:

 void __attribute__ ((interrupt(ipl1),vector(0)))
 InterruptHandler(void)

 Table 5.2 : (Continued)

 Natural
Order

 Macro
Abbreviation

 IRQ Symbol

 Description

 36 CMP2 _COMPARATOR_2_IRQ Comparator 2 Interrupt

 37 SPI2E _SPI2_ERR_IRQ SPI 2 Fault

 38 SPI2TX _SPI2_TX_IRQ SPI 2 Transfer Done

 39 SPI2RX _SPI2_RX_IRQ SPI 2 Receiver Done

 40 U2E _UART2_ERR_IRQ UART 2 Error

 41 U2RX _UART2_RX_IRQ UART 2 Receiver

 42 U2TX _UART2_TX_IRQ UART 2 Transmitter

 43 I2C2B _I2C2_BUS_IRQ I2C 2 Bus Collision Event

 44 I2C2S _I2C2_SLAVE_IRQ I2C 2 Slave Event

 45 I2C2M _I2C2_MASTER_IRQ I2C 2 Master Event

 46 FSCM _FAIL_SAFE_MONITOR_IRQ Fail-safe Clock Monitor Interrupt

 47 RTCC _RTCC_IRQ Real Time Clock Interrupt

 48 DMA0 _DMA0_IRQ DMA Channel 0 Interrupt

 49 DMA1 _DMA1_IRQ DMA Channel 1 Interrupt

 50 DMA2 _DMA2_IRQ DMA Channel 2 Interrupt

 51 DMA3 _DMA3_IRQ DMA Channel 3 Interrupt

 . . .

 56 (lowest) FCE _FLASH_CONTROL_IRQ Flash Control Event

Interrupts 89

 {
 // your interrupt service routine code here. . .

 } // interrupt handler

 or the pragma syntax, as follows:

 #pragma interrupt InterruptHandler ipl1 vector 0
 void InterruptHandler(void)
 {
 // interrupt service routine code here. . .

 } // interrupt handler

 In both cases the result is that the compiler treats the function InterruptHandler()
with the respect due to a proper ISR, including prologue and epilogue code sequences
that provide safe context save and restore.

 The MPLAB C32 compiler uses the __attribute__ (()) mechanism in this and
many other circumstances as a way to specify special attributes that modify the behavior
of the compiler without violating the C language syntax. Personally, I find this syntax too
cryptic; the double underscore, before and after, and the double parentheses in particular
are hard on my eyes. My preferred way around the problem is to use a macro (defined in
sys/attribs.h) that has the additional advantage of resembling the one found in previous
PIC24 and dsPIC libraries:

__ISR(v, ipl)

 In the following example, the __ISR macro is used to the same effect of the previous
code snippet:

 void __ISR(0, ipl1) InterruptHandler (void)
 {
 // interrupt service routine code here. . .

 } // interrupt handler

 The choice between the two syntax styles is yours and might well depend on your very
personal preferences and previous experiences. Further, should you ever need to port
code from a different compiler, chances are that one of the two methods will match your
original source code more closely. So keep both in mind; you never know when they
might come in handy.

90 Day 5

 The Interrupt Management Library
 With up to 96 possible sources of interrupts, to manage the sophisticated priority
mechanisms made available by the PIC32 interrupt controller module, we can definitely
use a little help in the shape of a small library int.h provided as part of the standard
PIC32 toolset.

 We can invoke it directly, as in:

#include < int.h >

 or indirectly as part of the entire peripherals support library:

#include < plib.h >

 In both cases we gain access to a good number of precious little functions and macros
(recognizable by the lower case m- prefix), including these:

● INTEnableSystemSingleVectoredInt(); is a function that follows a
precise sequence of initialization of the interrupt control module (as prescribed
in the device datasheet) to enable the basic interrupt management mode of the
PIC32. The unusually long function name is worth typing because it relieves us
from a considerable burden, making our code easy and safe.

● mXXSetIntPriority(x); is actually just a placeholder for a long list
of similar macros (replace the XX with the interrupt source abbreviations
from Table 5.2 to obtain each macro name). It assigns a given priority level
(from 0 to 7) to the chosen interrupt source. The amount of work performed is
not much in this case, but there is a considerable convenience factor because
we are spared the painful search on the device datasheet for the correct IPCxx
register where the –IP bits corresponding to the chosen interrupt source can be
selected.

● mXXClearIntFlag(); is a macro that is, once more, representative of an entire
class of macros that allow us to clear the interrupt flag (–IF bit) of the chosen
interrupt source.

 Single Vector Interrupt Management
 Without any further hesitation, let ’ s start laying out a first example that will use an ISR to
service a timer. We will enable the Timer2 module, setting its period to a count of 15 and

Interrupts 91

requesting that an interrupt be generated. The global variable count will be incremented
at each period by the interrupt service routine:

 /*
 ** Single Interrupt Vector test
 */
 #include � p32xxxx.h �
 #include � plib.h �

 int count;

 #pragma interrupt InterruptHandler ipl1 vector 0
 void InterruptHandler(void)
 {
 count++;
 mT2ClearIntFlag();

 } // Interrupt Handler

 main()
 {
 // 1. init timers
 PR2 = 15;
 T2CON = 0x8030;

 // 2. init interrupts
 mT2SetIntPriority(1);
 INTEnableSystemSingleVectoredInt();
 mT2IntEnable(1);

 // 3. main loop
 while(1);

 } // main

 There is one fundamental action that each interrupt handler (no matter how simple) is
responsible for, and that is clearing the interrupt flag before returning. This is pretty much
all our ISR is required to do beside incrementing count .

 Notice also that in the main() function, after the the initialization (//1.) of the timer
control register and period register, the interrupt configuration (//2.) is completed
before enabling the interrupt source. Also, the Timer2 interrupt priority (1) must match
the priority level declared by the #pragma syntax (ipl1).

92 Day 5

 The same code can obviously be written the “ hard way, ” without using the int.h library
but making direct access to the special function registers responsible for the configuration
of the interrupt controller:

 /*
 ** Single Interrupt vector test
 */
 #include <p32xxxx.h>

 #define _T2IE IEC0bits.T2IE
 #define _T2IF IFS0bits.T2IF
 #define _T2IP IPC2bits.T2IP

 int count;

 void __ISR(0, ipl1) InterruptHandler(void)
 {
 count++;
 _T2IF = 0;

 } // interrupt handler

 main()
 {
 // 1. init timers
 PR2 = 15;
 T2CON = 0x8030;

 // 2. init interrupts
 _T2IP = 1;
 INTEnableSystemSingleVectoredInt();
 _T2IE = 1;

 // 3. main loop
 while(1);

 } // main

 Note

 The compiler needs to know the priority level of the interrupt routine in order to use the correct
prologue and epilogue. In fact, as we will learn shortly, interrupts of ipl7 should be given a
special treatment, shorter prologue/epilogue, since they benefit from the availability of the
alternate register set for a fast context switch.

Interrupts 93

 It is once more a matter of personal choice. Feel free to choose the style you like or that
you find more intuitive and readable for your application.

 Now it is time to get a new project ready for some hands-on interrupt testing:

 1. Save the source file (of your choice) as single.c and, using the New Project
checklist, create a new project single.mcp and add the source file to it.

 2. Prepare the MPLAB SIM simulator for use as the debugging tool using the
MPLAB SIM Setup checklist.

 3. Now build the project using the Project | Build command (or the Ctrl � F10
shortcut).

 4. Open the Watch window (View | Watch) and add the global symbol count ,
selecting it in the combo box and clicking the Add Symbol button.

 5. Select the TMR2 register in the SFR combo box and click the Add SFR button to
add it to the Watch window.

 6. Place a breakpoint, inside the interrupt handler routine, on the line where count is
incremented and choose Animate (or Run) to execute the code.

 If all went well, you should see that the program execution has stopped after a short
while, reaching the breakpoint inside the interrupt handler. Although the code had been
 “ stuck ” for a while inside the (empty) main loop, upon reaching its period (set in the
PR2 register), the Timer2 generated an interrupt request and the interrupt handler was
transferred control.

 Continuing with the animation (or running again) you will see that count keeps being
incremented each time the execution of the main loop is briefly “ interrupted. ”

 Notice that each time you reach the breakpoint, in the Watch window the value of
count is constantly updated and shown in red (since it keeps changing), but the value

 Note for the PIC24 AND dsPIC Experts

 Unfortunately, the “ shortcut ” symbols _T2IF , _T2IE , and _T2IP that used to be so
conveniently defined in the standard include files for the PIC24 and dsPIC architectures are no
more part of the standard include files of the MPLAB C32 compiler. If you are porting some
16-bit code and need the compatibility, you will have to follow my example and redefine the
shortcuts you need by hand on a case-by-case basis.

94 Day 5

of TMR2 is always the same and, perhaps surprisingly, not zero. In fact, when the Timer2
module reaches the value set in the period register (PR2), it does reset while it generates
a new interrupt, but it also proceeds counting while the PIC32 starts the execution of
the interrupt handler. By the time the interrupt handler prologue is completed and the
program counter reaches the breakpoint, Timer2 is already showing a value of 2. What we
have just done, perhaps involuntarily, is to obtain a rough measure of the interrupt handler
overhead. Since we chose to use a prescaler of 1:8 for the Timer2 clock input, a count of
2 indicates that the prologue to the interrupt service routines occupies (at least) 16 clock
cycles, equivalent to the execution of 16 instructions. You can verify it, if you are curious,
by inspecting the code produced by the compiler in the Disassembly window.

 But what would have happened if we had not selected a large prescale value (1:8) or
if we had selected a shorter period? Of course you can test it by yourself with minor
modifications to the example code. You will see how the interrupt routine gets called

 Figure 5.1 : Screenshot of the single.c project.

Interrupts 95

over and over and there is no more time spent inside the main loop. Not a big loss in our
simple example, I agree, but in a practical application this would be a disaster. When the
interrupts are too many, too frequent, or simply poorly managed, the main program can be
stalled completely. It is our responsibility to make sure that the interrupt handler routine,
including its prologue and epilogue, is not using up all the available processor cycles.

 Managing Multiple Interrupts
 If multiple sources of interrupts are used by an application, assigning different priority
levels to each source solves only one part of the problem. The priority decides who gets
served first if two or more interrupt events happen simultaneously. But when one of the
(many) interrupts is being served, the others will have to wait for their turn to be served.
However, in some cases the application requires not only multiple interrupts but the
ability to nest the interrupt calls. When a lower-priority interrupt is being served and the
ISR is being executed, a higher-priority interrupt might require immediate attention, in its
turn interrupting the handler.

 To enable nesting of interrupt calls, you will have to “ manually ” reenable interrupts
immediately upon entry in the interrupt handler (using a MIPS assembly instruction)
instead of waiting for the epilogue code to do it automatically upon exit.

 Here is a simple example that extends our first project in an imaginary application where
Timer3 is used to produce a second periodic interrupt of high(er) priority (level 3):

 /*
 ** Single Vector Interrupt Nesting
 */
 #include � p32xxxx.h �
 #include � plib.h �

 int count;

 void __ISR(0, ipl1) InterruptHandler(void)
 {
 // 1. re-enable interrupts immediately (nesting)
 asm(" ei ");

 // 2. check and serve the highest priority first
 if (mT3GetIntFlag())

96 Day 5

 {
 count++;
 // clear the flag and exit
 mT3ClearIntFlag();

 } // _T3

 // 3. check and serve the lower priority
 else if (mT2GetIntFlag())
 {
 // spend a LOT of time here!
 while(1);

 // before clearing the flag and exiting
 mT2ClearIntFlag();

 } // _T2
 } // Interrupt Handler

 main()
 {
 // 4. init timers
 PR3 = 20;
 PR2 = 15;
 T3CON = 0x8030;
 T2CON = 0x8030;

 // 5. init interrupts
 mT2SetIntPriority(1);
 mT3SetIntPriority(3);
 INTEnableSystemSingleVectoredInt();
 mT2IntEnable(1);
 mT3IntEnable(1);

 // main loop
 while(1);

 } // main

 Notice how in // 1. the ei MIPS assembly instruction is used to reenable interruptions
immediately upon entry in the handler. Omit this line of code and your interrupts will be
queued automatically and served sequentially.

 Also, in // 2. we use for the first time the new macro mT3GetIntFlag() from the int.h
library that, intuitively enough, allows us to test the Timer3 interrupt flag. Since multiple

Interrupts 97

interrupts are enabled, we need such a test to verify which one caused the interruption at
hand. We test the highest-priority interrupt source first, and we proceed down the priority
list in // 3. until all the sources enabled by the application are considered.

 To build and test the new code, follow these simple steps:

 1. Save this code as nesting.c and add it to the project using one of the many options
(checklists) available.

 2. Remove single.c from the project.

 3. Build the project.

 4. Place a breakpoint on the line where count is incremented.

 5. Add TMR3 to the Watch window to keep an eye on the new timer value.

 6. Click Animate and observe what happens.

 If all goes as planned, you will observe the following sequence of events unfold under
your eyes:

 1. The main initialization code in //4. and // 5. is executed straight through.

 2. The application main loop is entered, and there we stay while the timers keep
counting.

 3. Timer2 reaches its period first, resets, and generates the first interrupt (level 1).

 4. The interrupt handler is called and the selection process begins.

 5. After the test in //3. succeeds, the culprit is found, and the handler portion relative
to the Timer2 interrupt is executed.

 6. This is a “ long ” loop, and the processor is stuck here for a while.

 7. Timer3 reaches its period, resets, and generates a new interrupt of higher priority
(level 3).

 8. The first interrupt handler is . . . interrupted, and a new interrupt handler begins.

 9. The selection process takes us immediately inside the handler portion that takes
care of Timer3, where count is incremented and the breakpoint puts an end to
the simulation.

98 Day 5

 So we did observe an interrupt . . . interrupting an interrupt handler. If you proceed with
the animation from here, now you will see the whole process unroll back.

 10. The Timer3 interrupt flag is cleared.

 11. The (nested) handler terminates.

 12. Control returns to the first handler.

 13. From here, in a normal application, we would see the Timer2 handler terminate
and return to the main loop where it all started.

 But don ’ t hold your breath; this is not going to happen this time, as you might have
noticed. To make things more “ interesting, ” I have designed the portion of the interrupt
handler that takes care of the Timer2 interrupt (marked as // 3.) to be an infinite loop.
This is clearly an exaggeration meant to give us ample opportunity to observe the higher-
priority interrupt kicking in.

 The nesting scheme can be repeated at multiple levels for as long as the stack has
room and your mind can follow the nesting Russian dolls ’ game. In practice, I strongly
discourage you to ever indulge in more than a two-level nesting scheme. It is just too easy
to get into some pretty convoluted situations where it is going to be very hard for you
to debug your way out. If you find yourself considering such a case, stop immediately,
take a deep breath, and think again. This is probably a sign that you don ’ t have your
priority scheme well thought out, your handlers are too long, or both things at once. Most
probably, there is a better and cleaner way to arrange things.

 Multivectored Interrupt Management
 The basic PIC32 interrupt service mechanism, we have seen so far, is not too dissimilar
from the early 8-bit PIC® architectures, where all interrupt sources were funneled by a
single interrupt vector into a single interrupt service routine. This arrangement allows
for a great simplicity, but even considering the exceptional speed of the PIC32 (and its
ability to execute one instruction per clock cycle), the need to save the processor context
followed by the need to proceed through a sequential review of all enabled sources of
interrupts can produce considerable overhead. As a consequence, a noticeable delay
might be added in responding to a critical event.

 To provide the smallest possible overhead and give lightning response to high-priority
interrupts, the PIC32 offers an alternative mechanism that uses vectored interrupts and

Interrupts 99

multiple register sets . In particular, the PIC32MX family offers a 64-vector table and two
complete sets of 32 working registers that can be swapped automatically.

 Notice that, although there can be as many as 96 interrupt sources in the PIC32
architecture, the maximum number of vectors is limited to 64 by the underlying MIPS
core. As a consequence, the PIC32 designers have arranged for some interrupts that
belong to the same peripheral to be grouped into the same vector (see Table 5.3).

 Table 5.3 : Vector table for the PIC32MX360F512L .

 Vector Number Vector Symbol Notes

 0 _CORE_TIMER_VECTOR

 1 _CORE_SOFTWARE_0_VECTOR

 2 _CORE_SOFTWARE_1_VECTOR

 3 _EXTERNAL_0_VECTOR

 4 _TIMER_1_VECTOR

 5 _INPUT_CAPTURE_1_VECTOR

 6 _OUTPUT_COMPARE_1_VECTOR

 7 _EXTERNAL_1_VECTOR

 8 _TIMER_2_VECTOR

 9 _INPUT_CAPTURE_2_VECTOR

 10 _OUTPUT_COMPARE_2_VECTOR

 11 _EXTERNAL_2_VECTOR

 12 _TIMER_3_VECTOR

 13 _INPUT_CAPTURE_3_VECTOR

 14 _OUTPUT_COMPARE_3_VECTOR

 15 _EXTERNAL_3_VECTOR

 16 _TIMER_4_VECTOR

 17 _INPUT_CAPTURE_4_VECTOR

 18 _OUTPUT_COMPARE_4_VECTOR

(continued)

100 Day 5

 Table 5.3 : (Continued)

 Vector Number Vector Symbol Notes

 19 _EXTERNAL_4_VECTOR

 20 _TIMER_5_VECTOR

 21 _INPUT_CAPTURE_5_VECTOR

 22 _OUTPUT_COMPARE_5_VECTOR

 23 _SPI1_VECTOR Groups all three SPI1 interrupts.

 24 _UART1_VECTOR Groups all three UART1 interrupts.

 25 _I2C1_VECTOR Groups all I2C1 interrupts.

 26 _CHANGE_NOTICE_VECTOR

 27 _ADC_VECTOR

 28 _PMP_VECTOR

 29 _COMPARATOR_1_VECTOR

 30 _COMPARATOR_2_VECTOR

 31 _SPI2_VECTOR Groups all three SPI2 interrupts.

 32 _UART2_VECTOR Groups all three UART2 interrupts.

 33 _I2C2_VECTOR Groups all I2C2 interrupts.

 34 _FAIL_SAFE_MONITOR_VECTOR

 35 _RTCC_VECTOR

 36 _DMA0_VECTOR

 37 _DMA1_VECTOR

 38 _DMA2_VECTOR

 39 _DMA3_VECTOR

 . . .

 44 _FCE_VECTOR

Interrupts 101

 Assigning a separate vector (pointing to a separate handler function) to each group of
interrupt sources eliminates the need to test sequentially all possible sources of interrupt
to find the one that needs to be served. But for a greater boost to the response time, the
alternate register set can be a real bonus. Upon entry into the interrupt handler, the PIC32
can now simply swap the entire working registers set with a “ fresh ” new one instead of
having to save the entire context on the stack with the long (standard) prologue sequence.

 Further, nesting vectored interrupts is still a valid option to increase the responsiveness of
the system when one or more lower-priority interrupts need to give way to higher-priority
ones. But, since there is only one alternate set of registers, often referred to as the shadow
registers , it would be dangerous to perform the swap twice. To prevent this kind of
situation, the register set “ swap ” is performed automatically but only for interrupt sources
of the highest level (ipl7).

 With little effort, we should be able to transform the previous example to take advantage
of the multivectored interrupt mode:

 1. Split the single interrupt handler into two separate functions.

 2. In the __ISR macro, replace the single default vector 0 with the appropriate
vector number (found in Table 5.3) for each interrupt source/handler.

 3. Remove the interrupt flag test; it is now implicit, and each handler is called only
when the related interrupt source has raised the flag.

 4. Set the Timer3 interrupt priority to level 7 to use the alternate register set feature.
Remember to match the assigned level with the __ISR() declaration.

 5. Replace the initialization function call with the new multivectored version:
INTEnableSystemMultiVectoredInt(); .

 6. Send me an email if you managed to type the preceding function call
without any typo on your first try. Courtesy of the PIC32 libraries ’ team, you
could be the winner of a yet-to-be-determined grand prize for the “ longest-
functioncallspelledwithouterrorsatfirsttry ” contest!

 Here is the new code that you will save as multiple.c and replace as the main file in our
project:

 /*
 ** Multiple Vector Interrupt
 */

102 Day 5

 #include <p32xxxx.h>
 #include <plib.h>

 int count;

 void __ISR(_TIMER_3_VECTOR, ipl7) T3InterruptHandler(void)
 {
 // 1. T3 handler is responsible for incrementing count
 count++;

 // 2. clear the flag and exit
 mT3ClearIntFlag();

 } // T3 Interrupt Handler

 void __ISR(_TIMER_2_VECTOR, ipl1) T2InterruptHandler(void)
 {
 // 3. re-enable interrupts immediately (nesting)
 asm(" ei ");

 // 4. T2 handler code here
 while(1);

 // 5. clear the flag and exit
 mT2ClearIntFlag();

 } // T2 Interrupt Handler

 main()
 {
 // 5. init timers
 PR3 = 20;
 PR2 = 15;
 T3CON = 0x8030;
 T2CON = 0x8030;

 // 6. init interrupts
 mT2SetIntPriority(1);
 mT3SetIntPriority(7);
 INTEnableSystemMultiVectoredInt();
 mT2IntEnable(1);
 mT3IntEnable(1);

 // 7. main loop
 while(1);

 } // main

Interrupts 103

 If you build and animate the project, just as we did in the previous exercise, you should
be able to verify that things are now working very much the same.

 The Timer2 interrupt kicks in first and keeps the processor busy for . . . well, a very long
time. But a Timer3 interrupt manages to interrupt the handler once more and update the
count variable. In both cases, you will have noticed how the execution was transferred
immediately and very efficiently to the right routine (if we have used the right vector
numbers). What is not immediately obvious is how the response to the Timer3 interrupt
has been faster than that to Timer2 (and any previous example) because of a much shorter
handler prologue. If you want proof, you can switch to the Disassembly window and
directly compare the two interrupt handler prologues. You will verify that the Timer3
interrupt handler requires half the instructions (and therefore time) than the low priority
Timer2 handler prologue. The difference will only increase, in a practical application, as
the main program grows in complexity and more registers need to be saved in the prologue.

 Note

 Even when we use the alternate register set feature, there is a need for a short prologue. In fact,
when we enter a high-priority handler (ipl7) with a fresh register set, we have to initialize at
least the stack pointer (one of the registers itself), copying it from the previous set. We also
need to modify the interrupt priority mask (IM) of the PIC32, in the Status register, to disable
lower-priority interrupts. The resulting (shortest possible) prologue still requires about seven
assembly instructions.

 A Simple Application
 Adding a few more lines of code, we can transform our previous examples into a more
practical application where Timer1 is used to maintain a real-time clock keeping track of
tenths of a second, seconds, and minutes. As a simple visual feedback, we will use the lower
8 bits of PortA as a binary display showing the running seconds. Here is how to proceed:

● Declare a few new integer variables that will act as the seconds and minutes
counters:

 int dSec = 0;
 int Sec = 0;
 int Min = 0;

● Have the interrupt service routine increment the tenths of a second counter:

 dSec++;

104 Day 5

 Note: For simplicity in this chapter we will assume the PIC32 is configured for operation
with a single 16MHz system and pheripheral clock. In Chapter 7 we will review in more
details the oscillator module and we will learn how to operate at much higher clock
frequencies squeezing the maximum performance out of the device.

 A few additional lines of code will be added to take care of the carryover into seconds
and minutes.

● Set the Timer1 prescaler to 1:64 to help achieve the desired period:

 T1CON=0x8020;

● Set the period register for Timer1 to a value that (assuming a 16 MHz peripheral
clock with a 62.5ns period) will give us a 1/10th of a second period between
interrupts:

 PR1=25000-1; // 25,000 * 64 * 62.5ns=0.1 s

● Set PortA (LSB) as output and disable the JTAG port to gain full control of
all LEDs:

 DDPCONbits.JTAGEN = 0;

 TRISA = 0xff00;

● Add code inside the main loop to continuously refresh the content of PortA (LSB)
with the current value of the seconds counter:

 PORTA = Sec;

 Save the new code as clock.c and replace it as the new project source file. Here is what it
should look like:
 /*
 ** A real time clock
 **
 ** example 5
 */

 #include <p32xxxx.h>
 #include <plib.h>

 int dSec = 0;
 int Sec = 0;
 int Min = 0;

 // 1. Timer1 interrupt service routine
 void __ISR(0, ipl1) T1Interrupt(void)

Interrupts 105

 {
 // 1.1 increment the tens of a second counter

 dSec++;

 if (dSec > 9) // 10 tens in a second
 {

 dSec = 0;
 Sec++; // increment the seconds counter

 if (Sec > 59) // 60 seconds make a minute
 {
 Sec = 0;
 Min++; // increment the minute counter

 if (Min > 59) // 59 minutes in an hour
 Min = 0;

 } // minutes
 } // seconds

 // 1.2 clear the interrupt flag
 mT1ClearIntFlag();

 } //T1Interrupt

 main()
 {
 // 2.1 init I/Os
 DDPCONbits.JTAGEN = 0; // disable JTAG port
 TRISA=0xff00; // set PORTA LSB as output

 // 2.2 configure Timer1 module
 PR1 = 25000-1; // set the period register
 T1CON = 0x8020 ; // enabled, prescaler 1:64, internal clock

 // 2.3 init interrupts
 mT1SetIntPriority(1);
 mT1ClearIntFlag();
INTEnableSystemSingleVectoredInt();
 mT1IntEnable(1);

 // 2.4. main loop
 while(1)
 {
 // your main code here

106 Day 5

 PORTA=Sec;
 } // main loop

 } // main

 To test the new project using the MPLAB SIM simulator, follow these simple steps:

 1. Open the Watch window (dock it to your favorite spot).

 2. Add the following variables:

● dSec , select from the Symbol pull-down box, then click Add Symbol .

● TMR1 , select from the SFR pull-down box, then click Add SFR .

● Status , select from the SFR pull-down box, then click Add SFR .

 3. Open the Simulator StopWatch window (Debugger | StopWatch).

 4. Set a breakpoint on the first instruction of the interrupt response routine after 1.1.
Set the cursor on the line and from the right-click menu, select Set Breakpoint ,
or simply double-click. By setting the breakpoint here, we will be able to observe
whether the interrupt is actually being triggered.

 5. Execute a Run (Debugger | Run or press F9). The simulation should stop
relatively quickly, with the program counter cursor (the green arrow) pointing
right at the breakpoint inside the ISR.

 So we did stop inside the interrupt service routine! This means that the trigger event
was activated; that is, the Timer1 reached a count of 24,999 (remember, though, that
the Timer1 count starts with 0; therefore, 25,000 counts have been performed), which,
multiplied by the prescaler value, means that 25,000 � 64, or exactly 1.6 million, cycles
have elapsed.

 The StopWatch window will confirm that the total number of cycles executed so far is,
in fact, slightly higher than 1.6 million. The StopWatch count includes the time required
by the initialization part of our program, too. At the PIC32 ’ s execution rate (16 million
instructions per second), this all happened in a tenth of a second!

 From the Watch window, we can now observe the current value of the processor interrupt
priority mask (IM), a bit field inside the Status register. Since we are inside an ISR that
was configured to operate at level ipl1 , we should be able to verify that bits 10 thru 15
of the status register (Status) contain the value 1 .

Interrupts 107

 In Figure 5.2 , I have circled the portion of the Status register containing the interrupt
mask (IM) bit field, as shown in the Watch window. Also, the StopWatch shows the
time lapsed (in milliseconds) from start to the first breakpoint. Single-stepping from the
current position (using either the StepOver or the StepIn commands), we can monitor
the execution of the next few instructions inside the ISR. Upon its completion, we can
observe how the interrupt mask returns back to zero:

 1. After executing another Run command, we should find ourselves again with the
program counter (represented graphically by the green arrow) pointing inside the
ISR. This time, you will notice that exactly 1.6 million cycles have been added to
the previous count.

 2. Add the Sec and Min variables to the Watch window.

 3. Execute the Run command a few more times to verify that, after 10 iterations, the
seconds counter Sec is incremented.

 Figure 5.2 : Screenshot Clock.c simulation.

108 Day 5

 To test the minutes increment, you might want to remove the current breakpoint and
place a new one a few lines below; otherwise you will have to execute the Run command
exactly 600 times!

 1. Place the new breakpoint on the Min++ statement in 1.2.

 2. Execute Run once and observe that the seconds counter has already been cleared.

 3. Execute the Step Over command once and the minute counter will be
incremented.

 The interrupt routine has been executed 600 times, in total, at precise intervals of one
tenth of a second. Meanwhile, the code present in the main loop has been executed
continuously to use the vast majority of the grand total of 960 billion cycles. In all
honesty, our demo program did not make much use of all those cycles, wasting them
all in a continuous update of the PortA content. In a real application, we could have
performed a lot of work, all the while maintaining a precise real-time clock count.

 The Secondary Oscillator
 There is another feature of the PIC32 Timer1 module (common to all previous
generations of 8-bit and 16-bit PIC microcontrollers) that we could have used to obtain
a real-time clock. In fact, there is a low-frequency oscillator (known as the secondary
oscillator) that can be used to feed the Timer1 module instead of the high-frequency
clock. Since it is designed for low-frequency operation (typically it is used in conjunction
with an inexpensive 32,768 Hz crystal), it requires very little power to operate. And since
it is independent from the main clock circuit, it can be maintained in operation when
the main clock is disabled and the processor enters one of the many possible low-power
modes. In fact, the secondary oscillator is an essential part for many of those low-power
modes. In some cases it is used to replace the main clock, in others it remains active only
to feed the Timer1 or a selected group of peripherals.

 To convert our previous example for use with the secondary oscillator, we will need to
perform only a few minor modifications, such as:

● Change the interrupt routine to count only seconds and minutes; the much slower
clock rate does not require the extra step for the tenth of a second:

 // 1. Timer1 interrupt service routine
 void __ISR(0, ipl1) T1Interrupt(void)

Interrupts 109

 {
// 1.1
 Sec++; // increment the seconds counter

 if (Sec > 59) // 60 seconds make a minute
 {
 Sec = 0;
 Min++; // increment the minute counter
 if (Min > 59) // 59 minutes in an hour

 Min = 0;
 } // minutes

 // 1.2 clear the interrupt flag
 mT1ClearIntFlag();

 } //T1Interrupt

● Change the period register to generate one interrupt every 32,768 cycles:

 PR1 = 32768-1; // set the period register

● Change the Timer1 configuration word (the prescaler is not required anymore):

 T1CON = 0x8002; // enabled, prescaler 1:1, use secondary

oscillator

 Unfortunately, you will not be able to immediately test this new configuration with the
simulator, since the secondary oscillator input is not fully supported by MPLAB SIM.

 In a later lesson we will learn how a new set of tools will help us generate a stimulus file
that could also be used to provide a convenient emulation of a 32 kHz crystal connected
to the T1CK and SOSCI pins of the PIC32.

 The Real-Time Clock Calendar (RTCC)
 Building on the previous two examples, we could evolve the real-time clock
implementations to include the complete functionality of a calendar, adding the count of
days, days of the week, months, and years.

 These few new lines of code would be executed only once a day, once a month, or once
a year and therefore would produce no decrease whatsoever in the performance of the
overall application. Although it would be somewhat entertaining to develop such code
once, considering leap years and working out all the details, the PIC32MX family already
has a complete Real-Time Clock and Calendar (RTCC) module built in and ready for use.

110 Day 5

How convenient! Not only does it work from the same low-power secondary oscillator,
but it comes with all the bells and whistles, including a built in Alarm function that can
generate interrupts. In other words, once the module is initialized, it is possible to activate
the RTCC module and wait for an interrupt to be generated. For example, the interrupt
can be set for the exact month, day, hour, minute, and second you desire once a year (or,
if set on February 29, even once every four years!).

 This is what the interrupt service routine would look like:

 // 1. RTCC interrupt service routine
 void __ISR(0, ipl1) RTCCInterrupt(void)
 {
 // 1.1 your code here, will be executed only once a year
 // or once every 365 x 24 x 60 x 60 x 16,000,000 MCU cycles
 // that is once every 504,576,000,000,000 MCU cycles

 // 1.2 clear the interrupt flag
 mRTCCClearIntFlag();

 } // RTCCInterrupt

 To initialize the RTCC module, though, we will need to substantially modify the main
program. The proper configuration of the RTCC module requires a number of registers to
be accessed in the right order and filled with the correct data. Fortunately, as part of the
standard PIC32 peripheral libraries including plib.h, we gain access to a powerful set of
functions that make the entire process quite painless. Here is all the code required:

 main()
 {
 // 2.1 init I/Os
 DDPCONbits.JTAGEN = 0; // disable JTAG port
 TRISA = 0xff00; // set PORTA LSB as output

 // 2.2 configure RTCC module
 RtccInit(); // inits the RTCC
 // set present time
 rtccTime tm; tm.sec=0x15; tm.min=0x30; tm.hour=01;
 // set present date
 rtccDate dt;
 dt.wday=0; dt.mday=0x15; dt.mon=0x10; dt.year=0x07;
 RtccSetTimeDate(tm.l, dt.l);

Interrupts 111

 // set desired alarm to Feb 29th
 dt.wday=0; dt.mday=0x29; dt.mon=0x2;
 RtccSetAlarmTimeDate(tm.l, dt.l);

 // 2.2 init interrupts,
 mRTCCSetIntPriority(1);
 mRTCCClearIntFlag();
 INTEnableSystemSingleVectoredInt();
 mRTCCIntEnable(1);

 // 2.3. main loop
 while(1)
 {
 // your main code here
 // . . .

 } // main loop

 } // main

 Debriefing
 In this lesson, we have seen how an interrupt service routine can be simple to code,
thanks to the language extensions built into the MPLAB C32 compiler and the powerful
interrupt control mechanisms offered by the PIC32 architecture. Interrupts can be an
extremely efficient tool in the hands of the embedded-control programmer to help manage
multiple tasks while maintaining precious timing and resources constraints. At the same
time, they can be an extremely powerful source of trouble. In the PIC32 reference manual
and the MPLAB C32 User Guide, you will find much more useful information than we
could possibly cram into one single day of exploration. Today we took the opportunity to
learn more about the uses of Timer1 and the secondary low-power oscillator, and we got a
glimpse of the features of the powerful Real-Time Clock and Calendar (RTCC) module.

 Notes for the PIC Microcontroller Experts
 Notice that on the PIC32 architecture, a pair of convenient instructions allow enabling
and disabling of all interrupts at once. If there are portions of code that require all interrupts
to be temporarily disabled, you can use the following inline assembly commands:

 asm(" di ");
 . . . // protected code here

 asm(" ei ");

112 Day 5

 But if the portion of code you want to protect from interrupts could be used at times
when you don ’ t know whether interrupts are already enabled/disabled, you might
want to use a bit more caution and call one of the following two functions from the
plib.h library:

● INTDisableInterrupts(); not only disables interrupts but also returns a
value corresponding to the original interrupts status.

● When you ’ re finished, use INTRestoreInterrupts(status); to restore the
original system status.

 Tips & Tricks
 According to the PIC32 datasheet, to activate the secondary low-power oscillator, you
need to set the SOSCEN bit in the OSCCON register. But before you rush to type the code
in the last example and try to execute it on a real target board, notice that the OSCCON
register, containing vital controls for the MCU affecting the choice of the main active
oscillator and its speed, is protected by a locking mechanism. As a safety measure, you
will have to perform a special unlock sequence first or your command will be ignored.
The PIC32MX peripheral libraries come to our rescue in this case with a number of
useful functions that manipulate the oscillator module configuration and perform all the
necessary lock and unlock sequences, including:

● mOSCEnableSOSC() , lets us enable or disable (mOSCDisableSOSC()) the
external secondary oscillator (SOSC) at run time.

● OSCConfig(), can change dynamically (during program execution) the desired
clock source, the PLL multiplier, PLL postscaler, and/or the FRC divisor.

● mOSCSetPBDIV() , lets us change the Peripheral Bus clock divider dynamically.
Use this function with great caution because it will simultaneously affect the
operation of all your peripherals.

 Note

 Changing the clock source will succeed only if the Clock Switching configuration bit is
enabled. Check your settings in the Configure | Configuration bits menu or your configuration
bit #pragmas.

Interrupts 113

 Two additional functions take care of reconfiguring the PIC32MX for IDLE and SLEEP
mode operation:

● mPowerSaveSleep() , stops both the system clock and the peripheral bus clock
of the PIC32 and the device goes into an ultra low-power mode. Any reset and
active asynchronous (remember the peripheral clock is stopped) peripheral ’ s
event will wake up the device, even if the corresponding interrupt is not enabled.
Examples of valid wakeup sources are Change Notification module inputs,
External Interrupt pins, Reset, and Brown Out signals.

● mPowerSaveIdle() , stops the system clock but leaves the peripheral clock
running. Any active peripheral interrupt source can wake up the device. Examples
of valid wakeup sources are UART, SPI, Timers, Input Capture, Output Compare,
and most other peripherals.

 Exercises
 Write interrupt-based routines for the following peripherals:

 1. Edge selectable interrupts

 2. Change notification interrupts

 3. Output compare

 Books
 Curtis , Keith E. , Embedded Multitasking (Newnes , Burlington, MA , 2006) . Keith

knows multitasking and what it takes to create small and efficient embedded-control
applications.

 Links
http://en.wikipedia.org/wiki/Interrupts . This is a great starting point to learn about

interrupts.

http://en.wikipedia.org/wiki/Computer_multitasking . To continue with multitasking,
especially keeping an eye on real-time multitasking and asynchronous events
handling.

This page intentionally left blank

 Memory

 The Plan
 The beauty of using a completely integrated, single-chip microcontroller device lies
in its reduced size, its increased robustness, and the convenience of having a complete
set of peripherals harmoniously preassembled for us, ready for use. Unfortunately, as
most embedded-control designers quickly realize, it is the amount of available memory
(Flash and RAM) that most often seems to dictate the cost and availability of a product.
Learning how to make the most use of both is imperative.

 Today we will review the basics of string declaration and manipulation in C language as
an excuse to investigate the memory allocation techniques used by the MPLAB® C32
compiler. The PIC32 core offers some pretty advanced features never before seen on 8- or
16-bit PIC® architectures. These include the ability to remap memory spaces, to cache
memory contents, and to share the memory bus with a direct memory access (DMA)
mechanism. We will use several tools, including the Disassembly Listing window, the
Memory window, and the Map file, to investigate how the MPLAB C32 compiler and
linker operate in combination to generate the most compact and efficient code.

 Preparation
 This lesson will be performed exclusively with software tools, including the MPLAB
IDE, the MPLAB C32 compiler, and the MPLAB SIM simulator.

 Use the New Project Setup checklist to create a new project called Strings and a new
source file, similarly called strings.c .

D A Y 6

116 Day 6

 The Exploration
 Strings are treated in C language as simple ASCII character arrays. Every character
composing a string is assumed to be stored sequentially in memory in consecutive 8-bit
integer elements of the array. After the last character of the string, an additional byte
containing a value of 0 (represented in a character notation with ' \0') is added as a
termination flag.

 Note

 This is just a convention that applies to the standard C string manipulation library string.h. It
would be entirely possible, for example, to define a different library that, for example, stores
strings in arrays where the first element is used to record the length of the string. In fact, Pascal
programmers will be very familiar with this method.

 Let ’ s get started by reviewing the declaration of a variable containing a single character:

 char c;

 As we have seen from the previous lessons, this is how we declare an 8-bit integer
(character) that is treated as a signed value (� 128 ..�127) by default.

 We can declare and initialize it with a numerical value:

 char c = 0x41;

 Or we can declare and initialize it with an ASCII value:

 char c = ' a ' ;

 Note the use of the single quotes for ASCII character constants. The result is the same,
and to the C compiler there is absolutely no distinction between the two declarations;
characters are numbers.

 We can now declare and initialize a string as an array of 8-bit integers (characters):

 char s[5] = { ' H ' , 'E', ' L ' , 'L', ' O ' };

 In this example, we initialized the array using the standard notation for numerical arrays.
But we could have also used a far more convenient notation (a shortcut) specifically
created for string initializations:

 char s[5] = " HELLO " ;

Memory 117

 To further simplify things and save you from having to count the number of characters
composing the string (thus preventing human errors), you can use the following notation:

 char s[] = " HELLO " ;

 The MPLAB C32 compiler will automatically determine the number of characters
required to store the string while automatically adding a termination character (zero)
that will be useful to the string manipulation routines later to correctly identify the
string length. So, the preceding example is, in truth, equivalent to the following
declaration:

 char s[6] = { ' H ' , 'E', ' L ' , 'L', ' O ' , '\0' };

 Assigning a value to a char (8-bit integer) variable and performing arithmetic on it is no
different than performing the same operation on any integer type:

 char c; // declare c as an 8-bit signed integer
 c = ' a ' ; // assign the value ' a ' from the ASCII table
 c ++; // increment it . . .

 // it will represent the ASCII character ' b '

 The same operations can be performed on any element of an array of characters (string),
but there is no simple shortcut, similar to the one used above, for the initialization that
can assign a new value to an entire string:

 char s[15]; // declare s as a string of 15 characters

 s = " Hello! " ; // Error! This does not work!

 Including the string.h file at the top of your source file, you ’ ll gain access to numerous
useful functions that will allow you to:

● Copy the content of a string onto another:

 strcpy(s, " HELLO "); // s : " HELLO "

● Append (or concatenate) two strings:

 strcat(s, " WORLD "); // s : " HELLO WORLD "

● Determine the length of a string:

 i = strlen(s); // i : 11

 and many more.

118 Day 6

 Memory Space Allocation
 Though a compiler ’ s job is that of generating the code that manipulates variables, it is
the linker that is responsible for deciding where variables are to be placed in memory,
finding a physical address for every object in the memory space(s) available. Just as with
numerical initializations, every time a string variable is declared and initialized, as in:

 char s[] = " Exploring the PIC32 " ;

 three things happen:

● The MPLAB C32 linker reserves a contiguous set of memory locations (in RAM
space) to contain the variable—20 bytes in the preceding example. This space is
part of the so-called data section.

● The MPLAB C32 linker stores the initialization value in a 20-byte-long table
(in Flash program space). This space is part of the rodata code section or read-
only section.

● The MPLAB C32 compiler creates a small routine that will be called before the
main() function (part of the Startup code we mentioned in previous chapters) to
copy the values into RAM, therefore initializing the variable.

 In other words, the string “ Exploring the PIC32 ” ends up using twice the space you
would expect, because a copy of it is stored in Flash program memory and space is
reserved for it in RAM memory, too. Additionally, you must consider the initialization
code and the time spent in the actual copying process. If the string is not supposed to be
manipulated during the program execution but is only used “ as is, ” transmitted to a serial
port or sent to a display, there is no need to waste precious resources. Declaring the string
as a constant will save RAM space and initialization code and time:

 const char s[] = " Exploring the PIC32 " ;

 Now the MPLAB C32 linker will only allocate space in program memory, in the rodata
code section, where the string will be directly accessible. The string will be treated by the
compiler as a direct pointer into program memory and, as a consequence, there will be no
need to waste RAM space.

 In the previous examples of this lesson, we saw other strings implicitly defined as
constants—for example, when we wrote:

 strcpy(s, " HELLO ");

Memory 119

 The string “ HELLO ” was implicitly defined as of const char type and similarly
assigned to the rodata section in program memory.

 Note

 If the same constant string is used multiple times throughout the program, the MPLAB C32
compiler will automatically store only one copy in the rodata section to optimize memory
use, even if all optimization features of the compiler have been turned off.

 We will start investigating these issues with the MPLAB SIM simulator and the
following short snippet of code:

 /*
 ** Strings
 */
 #include < p32xxxx.h >
 #include < string.h >

 // 1. variable declarations
 const char a[] = " Exploring the PIC32 " ;
 char b[100] = " Initialized " ;

 // 2. main program
 main()
 {
 strcpy(b, " MPLAB C32 "); // assign new content to b

 } // main

 1. Build the project using the Project Build checklist.

 2. Add the Watch window (and dock it to the preferred position).

 3. Select the two variables a and b from the symbol selection box and
click the Add Symbol button to add them to the Watch window
(see Figure 6.1).

 A little � symbol enclosed in a box will identify these variables as arrays and will
allow you to expand the view to identify each individual element (see Figure 6.2).

120 Day 6

 By default, MPLAB shows each element of the array as hex values, but you can change
the display to ASCII characters or to reflect your personal preferences:

 1. Select one element of the array with the left button of your mouse.

 2. Right-click to show the Watch window menu.

 3. Select Properties (the last item in the menu).

 You will be presented with the Watch window Properties dialog box (see Figure 6.3).

 From this dialog box you can change the format used to display the content of the
selected array element, but you can also observe the Memory field (grayed) that tells you
where the selected variable is allocated: data or code space.

 Figure 6.2 : String Expanded view.

 Figure 6.1 : Watch window containing two strings.

Memory 121

 If you select the Properties dialog box for the constant string a , you will notice that the
memory space is indicated as Program, confirming that the constant string is using only
the minimum amount of space required in the Flash program memory of the PIC32 and
no RAM needs to be assigned to it.

 On the contrary, the Properties dialog box will reveal how the string b is allocated in a
File Register, or in other words RAM memory.

 Each variable value can be simultaneously presented in multiple formats by adding new
columns to the table inside the Watch window:

 1. Select the top row of the table inside the Watch window (in the column to the
right of the default Value column).

 2. Select any of the additional formats (check Char , for example).

 3. Repeat for as many formats as you want, or have space for, inside the window.

 Figure 6.3 : The Watch window Properties dialog box.

122 Day 6

 Continuing our investigation, notice how the string a appears to be already initialized; the
Watch window shows it ’ s ready to use, right after the project build.

 The string b , on the other hand, appears to be still empty, uninitialized. Only when we
enable the MPLAB SIM simulator and we click the reset button for the first time to reach
the beginning of the main function is the string b initialized with the proper value (see
 Figure 6.4).

 Figure 6.4 : The string b after the Startup code execution.

 As we have seen, b is allocated in RAM space, and the Startup code must be executed
first for the variable to be initialized and “ ready for use. ”

 Once more we can use the Disassembly Listing window to observe the code produced by
the compiler:

 14: // 2. main program
 15: main()
 16: {
 9D000018 27BDFFE8 addiu sp,sp, - 24
 9D00001C AFBF0014 sw ra,20(sp)
 9D000020 AFBE0010 sw s8,16(sp)
 9D000024 03A0F021 addu s8,sp,zero
 17: strcpy(b, " MPLAB C32 "); // assign new content to b
 9D000028 3C02A000 lui v0,0xa000

Memory 123

 9D00002C 24440000 addiu a0,v0,0
 9D000030 3C029D00 lui v0,0x9d00
 9D000034 2445074C addiu a1,v0,1868
 q9D000038 0F400016 jal 0x9d000058
 9D00003C 00000000 nop
 18: } // main
 9D000040 03C0E821 addu sp,s8,zero
 9D000044 8FBF0014 lw ra,20(sp)
 9D000048 8FBE0010 lw s8,16(sp)
 9D00004C 27BD0018 addiu sp,sp,24
 9D000050 03E00008 jr ra

 9D000054 00000000 nop

 We can see that the main() function is short and followed by the strcpy()
library function full disassembly appended at the bottom of the listing. Don ’ t let the
length and apparent complexity of the function distract you; it is a pretty optimized
piece of code that is designed to take maximum advantage of the 32-bit bus and
cache system used by the PIC32. Its analysis is beyond the scope of our
explorations today.

 You should instead appreciate that this is the only routine attached. Although the
string.h library contains dozens of functions, and the include file string.h contains the
declarations for all of them, the linker is wisely appending only the functions that are
actually being used.

 Looking at the Map
 Another tool we have at our disposal to help us understand how strings (and in
general any array variable) are initialized and allocated in memory is the . map file .
This text file, produced by the MPLAB C32 linker, can be easily inspected with the
MPLAB editor and is designed specifically to help you understand and resolve
memory allocation issues.

 To find this file, look for it in the main project directory where all the project source
files are. Select File | Open and then browse until you reach the project directory.
By default the MPLAB editor will list all the .c files, but you can change the File Type
field to .map (see Figure 6.5).

124 Day 6

 Map files tend to be pretty long and verbose, but by learning to inspect only a few critical
sections, you will be able to find a lot of useful data. Essentially this file is composed of
three parts:

● The List of Included Archive Members . This is a list of filenames of all the library
modules and object files the linker considered to build the project, followed by the
file that caused it to be included and the specific symbol that was required. Most
of these files are included automatically by the linker script, but you will promptly
recognize a line containing our main object file strings.o, where we called the
function strcpy() that in turn caused strcpy.o to be linked in. Here is the line
that documents it:

 C:/Program Files/Microchip/../pic32mx/lib\libc.a(strcpy.o)

 Strings.o (strcpy)

● The Memory Configuration Table. This contains the position and size of each
memory area, both data and program, used by the project. This is supposed to fit
the configuration of the specific PIC32 device chosen. Here is the table:

 Memory Configuration

 Name Origin Length
 Attributes
 kseg0_program_mem 0x9d000000 0x00080000 xr
 kseg0_boot_mem 0x9fc00490 0x00000970
 exception_mem 0 x9fc01000 0x00001000
 kseg1_boot_mem 0xbfc00000 0x00000490
 debug_exec_mem 0xbfc02000 0x00000ff0
 config3 0xbfc02ff0 0x00000004

 Figure 6.5 : Selecting the .map file type.

Memory 125

 config2 0xbfc02ff4 0x00000004
 config1 0xbfc02ff8 0x00000004
 config0 0xbfc02ffc 0x00000004
 kseg1_data_mem 0xa0000000 0x00008000 w !x
 sfrs 0xbf800000 0x00100000

default 0x00000000 0xffffffff

 You will find some of the area names to be intuitively understandable, whereas
others (that follow a long MIPS tradition) will look rather arcane.

● The Linker Script and Memory Map. This is the longest part containing a
seemingly interminable list of memory section names. Each one of the memory
sections is eventually placed by the linker in one of the memory areas listed
previously, according to strict rules defined in the linker script. The sections we
are most interested in are the following:

 1. .reset section, containing the code that will be placed by the linker at the reset
vector. This is normally filled with a default handler (_reset()):
 .reset 0xbfc00000 0x10 C:/ . . . /pic32mx/lib/crt0.o
 0xbfc00000 _reset

 2. .vector_x sections—there are 64 of them, each associated to the corresponding
interrupt handler. They will be empty unless your program is using the specific
interrupt handler.
 .vector_0 0x9fc01200 0x0

 3. .startup section, where the C0 initialization code is placed.
 .startup 0x9fc00490 0x1e0 C:/ . . . /lib/crt0.o

 4. .text sections—you will find many of them, where all the code generated by the
MPLAB C32 compiler from your source files is placed. Here is the specific part
produced by our main() function:
 .text 0x9d000018 0x40 Strings.o
 0 x 9d000018 main

 Note

 The name of this section (.text), although somewhat misleading, follows a long tradition among
C compilers. It has been used since the original implementation of the very first C compiler.

126 Day 6

 5. .rodata section, where read-only (constant) data is placed in program memory
space. Here we can find space for our constant string a , for example:
 .rodata 0x9d000738 0x20 Strings.o
 0x9d000738 a

 6. .data section, where RAM memory is allocated for global variables.
 .data 0xa0000000 0x64 Strings.o
 0xa0000000 b

 7. And finally a pointer to the .data1 section, where the initialization value, ready
for the C0 code to load into the b variable, is placed, once more, in program
memory space:
 *(.data1)
 0x9d00076c _data_image_begin=LOADADDR(data)

 To verify what can be really found at such addresses, we will need to use the Memory
window (select View | Memory). Here select the Data View tab to visualize the memory
contents in classic hex dump format. Then right-click with the mouse pointer inside
the Memory window and choose Go To from the context menu (or press Ctrl � G) to
activate the Go To dialog box (Figure 6.6).

 Figure 6.6 : The Memory window Go To dialog box.

 In the Hex Address field, type the address found above (0x9d0076c) and press the
Go To button. The Memory window will center around the selected address where you
will be able to recognize the initialization value we have been looking for.

 Address 00 04 08 0C ASCII

 1D00_0760 9D0003AC 9D0004F4 9D000578 74696E49 x... Init

 1D00_0770 696C6169 0064657A 00000000 00000000 ialized.

Memory 127

 Pointers
Pointers are variables used to refer indirectly (point to) other variables or part of their
contents. Pointers and strings go hand in hand in C programming; in general they are a
powerful mechanism to work on any array data type. They ’ re so powerful, in fact, that
they are also one of the most dangerous tools in a programmer ’ s hands and a source of a
disproportionately large share of programming bugs. Some programming languages, such
as Java, have gone to the extreme of completely banning the use of pointers in an effort
to make the language more robust and verifiable.

 The MPLAB C32 compiler takes advantage of the PIC32 architecture to manage with
ease large amounts of data memory and program memory (up to 4GB). The MPLAB
C32 compiler makes no distinction between pointers to data memory objects and const
objects allocated in program memory space. This allows a single set of standard functions
to manipulate variables and/or generic memory blocks as needed from both spaces.

 The following classic program example compares the use of pointers versus indexing to
perform sequential access to an array of integers:

 int *pi; // define a pointer to an integer
 int i; // index/counter
 int a[10]; // the array of integers

 // 1. sequential access using array indexing
 for(i=0; i < 10; i++)
 a[i] = i;

 // 2. sequential access using a pointer
 pi=a;
 for(i=0; i < 10; i++)
 {
 *pi = i;
 pi++;

 }

 In 1. we performed a simple for loop, and at each round in the loop we used i as an
index in the array. To perform the assignment, the compiler will have to multiply the
value of i by the size of the array element in bytes (4) and add the resulting offset to the
initial address of the array a .

128 Day 6

 In 2. we initialized a pointer to point to the initial address of the array a . At each round in
the loop we simply used the pointer indirection operator (*) to perform the assignment;
then we simply incremented the pointer.

 Comparing the two cases, we see how, by using the pointer, we can save at least one
multiplication step for each round in the loop. If inside the loop the array element is used
more times, the performance improvement will be proportionally greater.

 Pointer syntax can become very “ concise ” in C, allowing for some pretty effective code
to be written but also opening the door to more bugs.

 At a minimum, you should become familiar with the most common contractions. The
previous snippet of code is more often reduced to the following:

 // 2. sequential access to array using pointers
 for(i=0, p=a; i < 10; i++)

 *pi++ = i;

 Also note that an empty pointer—that is, a pointer without a target—is assigned a special
value NULL , which is implementation specific and defined in stddef.h.

 The Heap
 One of the advantages offered by the use of pointers is the ability to manipulate objects
that are defined dynamically (at run time) in memory. The heap is the area of data memory
reserved for such use, and a set of functions, part of the standard C library stdlib.h,
provides the tools to allocate and free the memory blocks. They include at a minimum the
two fundamental functions: malloc() and free().

 void *malloc(size_t size);

 The first function takes a block of memory of requested size from the heap and returns a
pointer to it.

 void free(void *ptr);

 The second function returns the block of memory pointed to by ptr to the heap.

 The MPLAB C32 linker places the heap in the RAM memory space left unused above all
project global variables and the reserved stack space. Although the amount of memory

Memory 129

left unused is known to the linker, you will have to explicitly instruct the linker to reserve
an exact amount for use by the heap, the default size being zero.

 Use the Project | BuildOptions | Project menu command to open the Build Options
dialog box, select the MPLAB PIC32 Linker tab, and define the heap size in bytes.

 As a general rule, allocate the largest amount of memory possible. This will allow the
malloc() function to make the most efficient use of available memory. After all, if it is
not assigned to the heap, it will remain unused.

 The PIC32MX Bus
 If the previous section, exploring techniques employed by the MPLAB C32 compiler and
linker for the allocation of variables, had your head spinning and you feel a little dizzy,
you might want to take a break now!

 If on the contrary it only served to increase your curiosity, follow me for a little longer as
we continue the exploration to investigate the reasons for the architectural foundations of
the PIC32 memory bus.

 The PIC32 architecture is different from all previous PIC microcontroller architectures
(both 8- and 16-bit) with which you might be familiar. The PIC32 follows the more
traditional Von Neumann model instead of the classic (PIC) Harvard model. The big
difference is that two completely separate and independent buses are no longer available.
A single large (32-bit) bus gives access to both the Program Memory (Flash) and Data
Memory (RAM) now.

 The Von Neumann approach allows for a more economical implementation (two separate
32-bit buses would have been very expensive) and at the same time provides a simpler
unified programming model, eliminating the need for the many “ tricks ” used by 8- and
16-bit Harvard architectures to allow access to data tables in program memory and finally
removing important barriers, allowing for the first time a PIC processor to execute code
from RAM memory!

 It would seem that all these advantages would be immediately offset by a reduction in
performance, but this is not the case. In fact a five-stage pipeline mechanism and a pre-
fetch cache mechanism are used to allow efficient access to the bus while maintaining an
unprecedented sustained execution rate of one instruction per clock cycle .

130 Day 6

 Given the same clock frequency—say, 20 MHz—a PIC32 can execute up to four times
more instructions per second than a PIC16 or PIC18. That is 20 million instructions per
second where a PIC16 or PIC18 would only execute 5 million instructions per second. It
also means that it can execute twice the number of instructions per second that a PIC24,
dsPIC30 or dsPIC33 would, given the same clock. If you consider that each one of the
PIC32 instructions can now directly manipulate an integer quantity that is 32 bits wide
(rather than 8 bits or 16 bits), you can start to get a sense of the effective increase in
computational power provided by the PIC32.

 In the next chapter we will look further into the operation of the PIC32 oscillator and
clock management circuits. We will also review in more detail the operation of the
instruction pre-fetch and data cache to help us understand where the new performance
limits of the PIC32 architecture are and how we can configure the device for optimal
performance and power consumption levels.

 PIC32MX Memory Mapping
 The MIPS core at the heart of the PIC32 has a number of advanced features designed to
allow the separation of the memory space dedicated to an application or applications from
that of an operating system via the use of a memory management unit (MMU) and two
distinct modes of operation: user and kernel . Since the PIC32MX family of devices is
clearly targeting embedded-control applications that most likely would not require much
of that complexity, the PIC32 designers replaced the MMU with a simpler fixed mapping
translation (FMT) unit and a bus matrix (BMX) control mechanism.

 The FMT allows the PIC32 to conform to the programming model used by all other
MIPS-based designs so that standardized address spaces are used. This fixed but

 Note

 Later, in the next chapter, we will have the opportunity to look in detail at the operation of the
memory cache module and analyze its impact on device performance. Without anticipating too
much here, I would like to point out an important detail. The PIC32 core and the cache module
are actually connected by two separate 32-bit buses called I and D . They allow the processor to
simultaneously request instructions and data from the cache. So the PIC32 is really a Harvard
or a Von Neumann machine? I ’ ll leave you to decide. What matters to me is that it is just so fast
and efficient!

Memory 131

compatible scheme simplifies the design of tools and application and the porting of code
to the PIC32 while considerably reducing the size and therefore cost of the device.

 The BMX allows a level of flexibility in partitioning the main memory areas. It also
helps control the arbitration of access to memory between the CPU data and instruction
fetch requests, the DMA peripheral requests, and the In-Circuit Debugger (ICD) logic.

 Table 6.1 illustrates the relatively complex translation table and the resulting memory
map of the PIC32MX family of devices. It could be intimidating at first look, but if you
follow me through the next few paragraphs you will find it . . . well, understandable.

 Table 6.1 : PIC32MX translation table and memory map .

 Memory
Type

 Virtual Addresses Physical Addresses Size in Bytes

 Begin Address End Address Begin Address End Address Calculation

 K
er

na
l A

dd
re

ss
 S

pa
ce

 Boot
Flash

 0xBFC00000 0xBFC02FFF 0x1FC00000 0x1FC02FFF 12 KB

 Program
Flash1

 0xBD000000 0xBD000000 �
BMXPUPBA � 1

 0x1D000000 0x1D00000 �
BMXPUPBA � 1

 BMXPUPBA

 Program
Flash2

 0x9D000000 0x9D000000 �
BMXPUPBA � 1

 0x1D000000 0x1D000000 �
BMXPUPBA � 1

 BMXPUPBA

 RAM
(Data)

 0x80000000 0x80000000 �
BMXDKPBA � 1

 0x00000000 BMXDKPBA � 1 BMXDKPBA

 RAM
(Prog)

 0x80000000 �
BMXDKPBA

 0x80000000 �
BMXDUDBA � 1

 BMXDKPBA BMXDUDBA � 1 BMXDUDBA�
BMXDKPBA

 Peripheral 0xBF800000 0xBF8FFFFF 0x1F800000 0x1F8FFFFF 1 MB

 U
se

r
A

dd
re

ss
 S

pa
ce

 Program
Flash

 0x7D000000 �
BMXPUPBA

 0x7D000000 �
PFM Size � 1

 0xBD000000�
BMXPUBPA

 0xBD000000 �
PFM Size � 1

 PFM Size �
BMXPUBPA

 RAM
(Data)

 0x7F000000 �
BMXDUDBA

 0x7F000000 �
BMXDUPBA � 1

 0xBF000000�
BMXDUDBA

 0xBF000000 �
BMXDUPBA � 1

 BMXDUPBA �
BMXDUDBA

 RAM
(Prog)

 0x7F000000 �
BMXDUPBA

 0x7F000000 �
RAM Size 3 � 1

 0xBF000000 �
BMXDUPBA

 0xBF000000 �
RAM Size 3 � 1

 DRM Size �
BMXDUPBA

 Notes:
1 Program Flash virtual addresses in the non-cacheable range (KSEG1).
2 Program Flash virtual addresses in the cacheable and prefetchable range (KSEG0).
3 The RAM size varies between PIC32MX device variants.

132 Day 6

 First, let ’ s find out where the main memory blocks (RAM and Flash memory) of the
PIC32 are physically located inside the 32-bit addressing space (see Figure 6.7). Check
the physical address column and you will find that RAM begins at address 0x00000000,
and Flash memory begins at 0x1D000000. Finally, all peripherals (SFRs) are found in the
block that begins at address 0x1F800000, and a 12 K portion of Flash memory is found at
address 0x1FC00000 for use by a bootloader.

0x00000000 0x1D000000 0x1F800000 0x1FC00000 0xFFFFFFFF

RAM FLASH
S
F
R

B
O
O
T

 Figure 6.7 : PIC32 physical addressing space.

 Access to those memory areas can be required for different purposes. The PIC32
designers wanted to make sure that we would be able to impose special “ rules ” to protect
the applications from common (programming) errors isolating regions of memory. For
example, when running an operating system (OS), we might desire to prevent application
code to touch data (RAM) areas that are part of the OS. In other words, user code must
not be allowed to access the kernel data . The BMX control unit is the one that performs
the first layer of manipulation (see Figure 6.8). Through some of its control registers, we
can split the main physical memory areas in slices of variable size. For example, using
the BMXPUPBA register, we can split a portion of the Flash memory to be remapped for
use only in user mode at physical address 0xBD000000 and higher. Similarly, RAM
data memory can be split into four slices using the registers BMXDKPBA and BMXDUDBA ,
separating kernel data from user data memory and then splitting further each piece of
memory for programs that want to execute from RAM to achieve higher performance;
RAM maximum access speed is typically much higher than Flash memory, even when a
cache mechanism is taken into account.

 This is where the FMT (or more generically, an MMU) adds a new layer of complexity to
the entire system, translating all physical addresses into virtual addresses and shuffling

Memory 133

things around a bit. This is meant to create two widely separate address spaces where
your programs can run: one for user applications in the lower half of the 32-bit addressing
space (below 0x80000000) and one for kernel (above 0x80000000) in accordance with
the standard practice of all MIPS-based processors. These correspond to the two halves
of Table 6.1 , where the first two columns show you the new virtual addresses assigned to
each memory area in the corresponding mode.

0x00000000 BMXDUDBA 0xBF000000+
BMXDUDBA

0xFFFFFFFFBMXDKDBA 0xBF000000+
BMXDUPBA

Kernel
RAM

(Data)

User
RAM

(Data)

User
RAM

(Prog)

Kernel
RAM

(Prog)

 Figure 6.8 : Bus matrix RAM partitioning.

 Note

 The only addresses the MPLAB C32 compiler and linker are concerned with, as seen in the
early part of this chapter, are virtual addresses!

 For clarity, Figure 6.9 illustrates the resulting virtual memory map as seen by an
application program running in user mode.

 Notice how the Boot Flash memory is not mapped at all in user mode. There is no virtual
address that will allow a user program to touch the protected area. No matter how bad,
the code is running in user mode; it cannot harm the underlying operating system (or
bootloader).

 Similarly, notice how the peripherals (SFRs) don ’ t have a corresponding mapping in the
user virtual address space. Again, no matter how bad the user code is, it cannot reach the
hardware and modify or cripple the device configuration.

134 Day 6

 The Embedded-Control Memory Map
 All this is nice and dandy if you are planning to run a heavyweight OS with all the
bells and whistles, but in most embedded-control applications you will not use all these
features. All your code will most likely always be running in kernel mode only, at the
same level as an OS would. And even when you ’ re using an OS, you will find that most
real-time operating systems (RTOSs) don ’ t use these features either, favoring speed of
execution and efficiency over “ protection. ” This is a reasonable choice for embedded
control. The application code is “ well known ” ; it is supposed to be robust and well tested
and should therefore be trusted!

 This is great news because it means that from now on, we can completely ignore the
bottom half of Table 6.1 and concentrate all our attention on only the kernel mode virtual
map (see Figure 6.10)!

 A final note is required to clarify the reason for two virtual address spaces being
dedicated to the kernel program Flash memory. They are traditionally referred to as
kseg0 and kseg1 in the MIPS literature. If you look at the Physical Addresses columns in
 Table 6.1 , you will notice that eventually both point to the same physical memory space.
The difference is only in the way the memory cache mechanism will manage the two
virtual addresses. If a program is executing from the first virtual address space (kseg1),
the memory cache is automatically disabled. Vice versa, portions of code that are placed

0x7F000000+
BMXDUDBA

0x7F000000+
BMXDUPBA

0x80000000

User Space Kernel Space

Generate an immediate
exception if access is

attempted!

0xFFFFFFFF

0x00000000

0x7D000000

User
RAM
(Data)

User
RAM
(Prog)

User
FLASH

 Figure 6.9 : User mode virtual memory map.

Memory 135

in the kseg0 segment will be accessible by the cache mechanism. We will learn more in
the next few chapters about the reason for this choice and the consequences for your code
performance.

 Debriefing
 Today we have quickly reviewed the basics of string declaration and manipulation. We
have also touched briefly on the use of pointers and dynamic memory allocation. We have
seen how the .map file can help us identify where and how the memory of the PIC32 will
be used by our applications. But today we have also explored the bus matrix module of
the PIC32 and learned how it provides us with a very flexible mechanism to control the
segmentation and access to blocks of Flash and RAM memory. Although many embedded-
control applications will only use the most basic (default) configuration, the PIC32MX
architecture offers a standard address space layout that makes it compatible with a wide
range of tools and operating systems already available for the MIPS architecture.

 Notes for the C Experts
 In the C language, strings are defined as simple arrays of characters. The C language
model has no concept of different memory regions (RAM vs. Flash). The const attribute

0x80000000+
BMXDKPBA

User Space Kernel Space

0xFFFFFFFF0x00000000 0x9D000000 0xBD0000000x80000000
0xBF800000

0xBFC00000

RAM
(Data)

 RAM
(Prog)

FLASH
Un-

Cached
(Kseg1)

S
F
R

B
O
O
T

FLASH

(Kseg0)
Cached

 Figure 6.10 : PIC32 Embedded-control (kernel mode) virtual memory map.

136 Day 6

is normally used in C language, together with most other variable types, only to assist
the compiler in catching common parameter usage errors. When a parameter is passed to
a function as a const or a variable is declared as a const , the compiler can in fact help
flag any following attempt to modify it. The MPLAB C32 compiler extends this semantic
in a very natural way, allowing us to provide hints to the compiler and linker to make
more efficient use of the memory resources.

 Notes for the Assembly Experts
 The string.h library contains many block manipulation functions that can be useful, via the
use of pointers, to perform operations on any type of data arrays, not just strings. They are:

● memcpy() , to copy the content of any block of memory to a new address

● memmove() , to move the contents of a block of memory to a new location

● memcmp() , to compare the contents of two blocks of memory

● memset() , to initialize the contents of a block of memory

 The ctype.h library instead contains functions that help discriminate individual characters
according to their positions in the ASCII table, to discriminate lowercase from uppercase,
and/or to convert between the two.

 Notes for the PIC Microcontroller Experts
 Since the PIC32MX program memory is implemented using (single-voltage) Flash
technology, programmable at run time during code execution, it is possible to design
bootloader -based applications—that is, applications that automatically “ update ” part or
all of their own code.

 It is also possible to utilize a section of the Flash program memory as a nonvolatile
memory (NVM) storage area. Some pretty basic limitations apply, though. For example,
Flash memory can only be deleted in large blocks, called pages , composed of 1,024
words before data can be written one word at a time or in smaller blocks called rows
composed of 128 words.

 The PIC32 peripheral library comes to our assistance, offering a small set of functions
(NVM.H) dedicated to the manipulation of on-chip Flash memory. Perhaps the most
powerful function of the lot is NVMProgram() , capable of writing a block of arbitrary

Memory 137

length to a given virtual address, automatically performing the necessary partitioning
when page boundaries are crossed.

 Tips & Tricks
 String manipulation can be fun in C once you realize how to make the zero termination
character work for you efficiently. Take, for example, the mycpy() function:

 void mycpy(char *dest, char * src)
 {
 while(*dest++ = *src++);

 }

 This is quite a dangerous piece of code, since there is no limit to how many characters
could be copied, there is no check as to whether the dest pointer is pointing to a buffer
that is large enough, and you can imagine what would happen should the src string be
missing the termination character. It would be very easy for this code to continue beyond
the allocated variable spaces and to corrupt the entire contents of the data memory. Ah,
the power of pointers!

 Soon we will explore the DMA module and we ’ ll discover its ability to share the PIC32
memory bus to perform fast data transfers between memory and peripherals. We ’ ll also
explore using the DMA module to move large blocks of data between different memory
buffers very efficiently. In fact, a few of the DMA functions in the PIC32 peripheral library
are dedicated to the use of DMA channels to perform string and block manipulations,
including DmaChnMemcpy(), DmaChnStrcpy() , and DmaChnStrncpy() . In the same
set of functions can be found DmaChnMemCrc() , which does not transfer any data but
feeds the CRC module with the contents of a given (no matter how large) block of data.
Alternatively, a CRC calculation can automatically be performed during any block transfer
performed by the DMA module by calling the CrcAttachChannel() function.

 Exercises
 You can develop new string manipulation functions to perform the following operations:

 1. Search sequentially for a string in an array of strings.

 2. Implement a binary string search.

 3. Develop a simple hash table management library.

138 Day 6

 Books
 Wirth , N. , Algorithms � Data Structures � Programs (Prentice-Hall , Englewood Cliffs,

NJ , 1976) . With unparalleled simplicity, Wirth, the father of the Pascal programming
language, takes you from the basics of programming all the way up to writing your
own compiler. They tell me this book is no longer easy to find; however hard it might
be to locate a copy, I promise you it will be worth the effort!

 Links
 http://en.wikipedia.org/wiki/Pointers#Support_in_various_programming_languages .

Learn more about pointers and see how they are managed in various programming
languages.

 Experimenting

 Congratulations! You have endured the first six days of exploration and gained the
necessary confidence to complete simple projects using the MPLAB PIC32 software tool
suite. As a consequence, in the next group of lessons, more is going to be expected of
you!

 In the second part of this book, we continue exploring one by one the fundamental
peripherals that allow a PIC32 to interface with the outside world. Since the complexity
of the examples will grow a little bit, having a PIC32 chip at hand is highly recommended
so that you will be able to test the many practical example projects. A PIC32 Starter
Kit with a PIM adapter and/or an actual PIC32MX processor module (PIM) and any
of the compatible in-circuit debuggers will do. I will also refer often to the Explorer 16
demonstration board, but any compatible third-party tool that offers similar features or
allows for a small prototyping area can be used just as effectively.

 P A R T 2

This page intentionally left blank

 Running

 The Plan
 In the six previous days of exploration, we have gradually begun reviewing the most
basic concepts of C programming as they apply to embedded control and in particular as
they apply to the PIC32MX architecture. We have also started to familiarize ourselves
with the basic features of the PIC32 that affect its performance, such as the 32-bit
multiplier, the interrupt system, the register set(s), and the memory management module.
But so far, we have only been counting the number of assembly instructions looking
inside the disassembly window, or counting the instruction cycles, using the MPLAB®

SIM simulator StopWatch. In all cases we avoided any direct reference to time when
considering the execution of code, using peripherals (timers) when necessary to provide
delays of any length. Even when discussing interrupts or comparing the efficiency of
various numeric types, we have not yet established any hard relationship with the actual
speed of execution of our code. This was done on purpose, to isolate different subjects
and keep the level of complexity growing gradually. Before we can understand how fast
we can make a PIC32 truly “ run, ” we need to study two new critical systems: the clock
system and the memory cache system. Both are new to the PIC® architecture and are
essential if you want to fine-tune the PIC32 engine for maximum performance.

 Preparation
 Today, in addition to the usual software tools, including the MPLAB IDE and
the MPLAB C32 compiler, you will need real hardware to be able to perform our
experiments. It does not matter if you have a PIC32 Starter Kit or any of the other
in-circuit debuggers connected to an Explorer 16 demonstration board. You will need the
real thing—a PIC32MX chip “ running ” on the hardware platform of your choice.

D A Y 7

142 Day 7

 Use the New Project Setup checklist to create a new project called Running and a new
source file, similarly called running.c .

 The Exploration
 Let ’ s start by taking a look at the main clock circuit of the PIC32MX family. As you can
see from the block diagram in Figure 7.1 , this is a complex piece of hardware with which
it will require some time to become familiar.

 For those of you already knowledgeable about the previous generations of 8-bit PIC
microcontrollers, most of this diagram will look somewhat familiar. For those of you
familiar with the dsPIC33 and PIC24 H families in particular, it will look exceptionally
similar! This is of course no coincidence. All PIC microcontrollers, since the very first
PIC16C54, have sported a flexible oscillator circuit, and this flexibility has been extended
generation after generation, evolving gradually into the present form as offered on the
PIC32MX. Let ’ s see what can be done, and most importantly, why!

 Looking at the left side of the block diagram, you will notice that there are five oscillators
or clock sources. Two of them use internal oscillators and three of them require external
crystals or oscillator circuits:

● Internal oscillator (FRC) is designed for high-speed operation with low power
consumption. It requires no external components and provides a relatively
accurate nominal 8 MHz clock (� 2%) after calibration.

● Internal low-frequency and low-power oscillator (LPRC) is designed for
low-speed operation with low power consumption. Requires no external
components and provides a basic (low accuracy) 32 kHz clock.

● External primary oscillator (POSC) is designed for high-speed operation with
accurate (quartz-based) operation. Up to 20 MHz crystals can be connected
directly (to the OSCI, OSCO pins) while two gain settings are available:
XT for typical quartzes below 10 MHz and HS for quartzes at or above
the 10 MHz frequency.

● External low-frequency and low-power oscillator (also known as the secondary
oscillator, SOSC) is designed for low-speed and low-power operation with
external crystals of 32,768 Hz. It can be used as the main oscillator for the entire
chip or just as the source for the Timer1 and RTCC modules. Its high accuracy
makes it the ideal clock source for applications that need exact timekeeping.

Running 143

● External clock source (EC) mode allows an external circuit to completely replace
the oscillator and provide the microcontroller a square wave input of any desired
frequency.

 These five sources offer a basic range of choices to generate an input clock signal of
desired frequency, power consumption, and accuracy, but much more can be done with

PLL

Secondary Oscillator

SOSCEN and FSOSCEN

SOSCO

SOSCI

Timer1, RTCC

OSCI

OSCO

Primary Oscillator
(POSC)

XTPLL, HSPLL,

XT, HS, EC

CPU, Peripherals

Peripherals

FRCDIV�2:0�

WDT, PWRT

8 MHz typical

FRC

32 kHz typical

FRC
Oscillator

LPRC
Oscillator

SOSC

LPRC

Clock Control Logic

Fail-Safe
Clock

Monitor

FRCDIV

ECPLL, FRCPLL

TUN�5:0�

div 16

FSCM INT

FSCM Event

Postscaler

FPLLIDIV�2:0�
PBDIV�1:0�

FRC /16

Postscaler
div x

PLL Multiplier
COSC�2:0�

COSC�2:0�

FIN
div x div y

FPLLMULT�2:0�

PLL Output Divider
PLLODIV�2:0�

PLL Input Divider

32.768 kHz

PLLMULT�2:0�

NOSC�2:0�

OSWENFSCMEN�1:0�

PBCLK

 Figure 7.1 : PIC32MX clock block diagram.

144 Day 7

the following stages, illustrated on the right side of the block diagram. In fact, the clock
produced by each source can be further multiplied and/or divided to offer an even wider
selection of frequencies.

 Performance vs. Power Consumption
 It is beyond the scope of this book to illustrate all possible options for each clock source,
but it is important that you understand the reason why the designers of the PIC32 went
through all this effort to offer you so many different ways to produce what is, after all,
a simple square wave.

 In embedded control, but also in consumer applications, whether your application is
portable—battery powered—or has a dedicated power supply of sorts, two important
constraints apply:

● Power consumption will dictate the size and cost of the power supply circuit you
will have to design. If battery operated, this parameter will dictate the size and
cost of the battery, or vice versa, the life (hours of operation) of your application.

● Performance, however measured, will dictate how much work your application
will be able to perform in a given amount of time. For some real-time
applications, this parameter can be a total deal breaker.

 As is often the case, in embedded-control application design, the two constraints are
in direct conflict. To obtain a greater amount of work from a given circuit, we want to
maximize the clock speed. But because of the laws of physics that govern the operation
of any CMOS integrated circuit, the higher the clock speed provided, the higher is the
power consumption of the device. The two entities are in fact linked inexorably in a
linear relationship: Double the clock and you will double the amount of work produced,
but you will also see a corresponding increase in the power consumption of the device.

 Note

 The power consumption will not double as you double the frequency. There is a static
component and a dynamic component to the power consumption of each CMOS device. The
first one remains constant independent from the clock frequency; it is only the dynamic part
that will grow.

Running 145

 Much can and has been done inside the PIC32 to make sure that the greatest amount of
work is produced for any given ounce of power. For example, the PIC32MX datasheet
(only the advanced datasheet is available at the time of this writing) reports on the
electrical characteristics of the device that, when operating at the frequency of 4 MHz,
a typical current consumption of 11 mA will be observed (at 3.3 V and 25	C). But at
72 MHz and in the same conditions, the same device will consume just 64 mA.

 As good as these numbers are, it is still our responsibility to find the correct balance
between performance and power consumption for each application so to minimize cost,
reduce size, or simply maximize the battery life (and, let me add, “ fight global warming
as well ” !).

 Not only does it make no sense to run an applications at 72 MHz when the same job can
be done at 4 MHz, but also consider the fact that most applications operate in different
modes at different times. Although it might seem overkill, I will make a parallel with a
cell phone application. Most of the time, the cell phone is in standby just waiting for a
button to be pressed to awake it. At other times it could be performing simple functions
such as searching through a contact book and updating information on the internal
memory. Then only a small fraction of the time will be spent performing some hard
number crunching, digital signal processing, and running an algorithm to compress and
decompress the audio input and output streams.

 Similar conditions can be found in many embedded-control (and consumer) applications,
and the higher the flexibility of the clock circuit, the better you will be able to manage the
power consumption of the application. To help you obtain the most complete set of power
management options, the PIC32 clock module offers the following features:

● Run-time switching between internal and external oscillator sources

● Run-time control over the clock dividers

● Run-time control over the PLL circuit (clock multiplier)

● IDLE modes, where the CPU is halted and individual peripherals continue to operate

● SLEEP mode, where the CPU and peripherals are halted and awaiting a specific
event (set of) to awaken

● Separate control (divider) over the peripheral clock (PBCLK), so that when the
CPU is required to operate with a high-frequency clock, the power consumption
of the peripheral modules can be optimized

146 Day 7

 The Primary Oscillator Clock Chain
 We will begin our exploration at the primary oscillator clock signal chain, since it is
the most common and, in many of the following chapters, we will need to develop
demonstration projects that will require either a high level of performance or high clock
accuracy. As you can verify visually, on the Explorer 16 demonstration board and PIC32
Starter Kit, an 8 MHz crystal is connected across the OSCI and OSCO pins. At this
frequency (below 10 MHz) it is recommended we set the primary oscillator for
operation in XT mode.

 Depending on the application, we are immediately confronted with two possibilities. We
could use the 8 MHz input signal as is or feed it to a multiplier (PLL) circuit. The appeal
of the second option is obvious, but with it comes the need to learn more about PLL
circuits.

 Phase locked loops (PLLs) are complex little circuits, but the designers have managed
to hide all the complexity of the PIC32 PLL from us with the condition that we respect
a few simple rules. First, we need to feed it with a specific input frequency range
(� 4 MHz). Second, we need to allow it time to stabilize or “ lock ” before we attempt to
execute code and synchronize with it. A simple control mechanism is provided (via the
OSCCON register illustrated in Figure 7.2) to select the frequency multiplication factor
(PLLMULT) and to verify the proper locking (SLOCK).

U-0
— —

—

—

——

—

bit 31

bit 23

bit 15

U-0 R-0 R-0

COSC�2:0�

R-0 U-0

U-0 R/W-x R/W-x R/W-x

R/W-0 R/W-x R/W-x

R/W-x R/W-x R/W-x

R/W-0R/W-0
SOSCEN OSWENCF

r-0
SLPENSLOCK

r-0 R-0 R/W-0 R/W-0R/W-0
CLKLOCK

bit 7

R/W-x R/W-x R/W-xR-0 U-0

bit 24

bit 16

bit 8

bit 0

R/W-x R/W-x R/W-x

FRCDIV�2:0�

PLLMULT�2:0�

NOSC�2:0�

PBDIV�1:0�SOSCRDYDRMEN

PLLODIV�2:0�

 Figure 7.2 : The OSCCON register.

Running 147

 So when using the Explorer 16 board or the PIC32 Starter Kit, to respect the first rule
we will need to reduce the input frequency from 8 MHz to 4 MHz. Looking at the block
diagram in Figure 7.1 or the simplified diagram in Figure 7.3 , you will notice how the
input divider is conveniently available to us to perform the first frequency reduction.

4 MHz 72 MHz8 MHz

System
Clock

72 MHz

Input
Divider PLL

Output
Divider

1 : 2 1 � 18 1 : 1

 Figure 7.3 : Primary oscillator clock chain.

 The multiplication factor of the PLL can be selected among a number of values ranging
from 15� all the way up to 24� and it is controlled by the PLLMULT bits. Since the
maximum operating frequency of the PIC32MX is (at the time of this writing) restricted
to 75 MHz, selecting a factor of 18� will give 72 MHz, the closest match compatible
with the device operating specifications. The output divider block provides us with a
final opportunity to manage the clock frequency. When we will need the maximum
performance, we will leave the output divider set to a 1:1 ratio. Should our application
require it, we will be able to reduce the power consumption by dividing the output
frequency all the way down to 1:256 th or approximately 280 kHz. Below this frequency
we would be much better served by using the secondary oscillator (SOSC), its operating
range is in fact between 32 kHz and 100 kHz, or by the low power internal oscillator
(LPRC) operating at approximately 32 kHz. For our reference, from the advanced
datasheet we learn that the typical power consumption of the PIC32 when operating off
the LPRC would be just 200
A!

 The Peripheral Bus Clock
 As another way to optimize performance and power consumption in an application, the
PIC32 feeds a separate clock signal to all the peripherals. This is obtained by sending the
System clock through yet another divide circuit (extending further the chain of modules
illustrated in Figure 7.3), producing the PB clock signal. Very often a high processor
speed means that a large prescaler is required in front of a timer to obtain the required
timing, or a large baud rate divider is required for a serial port (more on this later).
Thanks to the peripheral bus divider, the share of power consumed by the peripheral bus
can be reduced while the processor is free to operate at maximum speed.

148 Day 7

 This feature is controlled by the PBDIV bits found, once more, inside the OSCCON
register. A reasonable value that we have been using so far and we will continue to use
consistently for the peripheral bus across all future example projects will be 36 MHz
corresponding to 1:2 ratio between the system clock and the PB clock.

 Initial Device Configuration
 The ability to control the clock at run time gives us a great tool to manage power, but
what happens when the device is first activated, at power-up?

 As you might know, there is a group of bits known as the configuration bits stored in the
nonvolatile (Flash) memory of the PIC32. These bits provide the initial configuration
of the device. The oscillator module uses a few of those bits to get the initial setting
for the OSCCON register. These are the configuration bits you can set using the MPLAB
Configure | Configuration Bits . . . menu.

 It is about time that we review the settings I have been recommending that you use since
the beginning using the Device Configuration checklist.

 My recommended configuration for all the exercises in this book is represented in
 Figure 7.4 . It includes the following options, in order of importance for the oscillator
configuration:

 1. Use the primary oscillator with PLL circuit.

 2. Select the XT mode for the primary oscillator.

 Figure 7.4 : Device Configuration dialog box.

Running 149

 3. Set the PLL input divider to 1:2 ratio (to produce a 4 MHz input as we have
seen).

 4. Set the PLL multiplier to 18�.

 5. Set the PLL output divider to 1:1 ratio (to produce a 72 MHz system clock output).

 6. Set the peripheral clock divider to 1:2 ratio (to produce a 36 MHz PB clock
output).

 The following additional options complete the configuration:

 7. Enable the clock output. This can be disabled when using any of the internal
oscillators to gain control of an additional I/O pin.

 8. Disable the secondary oscillator. (You will be able to enable it later, at run time.)

 9. Disable the internal/external oscillator switchover. (We will use only the
external crystal in all exercises, but you might experiment with other settings.)

 Finally, the following options are commonly used during debugging and development:

 10. Share DBG2 and PGM2 if you are using the ICD/ICSP interface. (This depends
on your in circuit debugger of choice.)

 11. Allow the Boot Flash to be modified (Bootloader write protection off).

 12. Disable code protection (at least during development).

 13. Disable the Watchdog timer.

 14. Disable clock switching and FailSafe Clock Monitor.

 Once set, these configuration bits are stored in the workspace file (.mcw) and will be
programmed into the device configuration bits by your programming tool of choice each
time new code is programmed into the device.

 By comparing Figures 7.2 and 7.4 , you will notice that the value of the PLL input divider
is present only as a configuration bit option, but it cannot be modified via the OSCCON
register. If you reflect on this, you will find it is logical. Since the external crystal value
cannot change (unless the part is unsoldered from the PCB and a new one of different
frequency is put in its place), there is no possible reason to modify the input divider value
at run time. If the value set by the configuration bits was incorrect in the first place, the
PLL multiplier would not be working and the PIC32 could not execute any code anyway.

150 Day 7

 Setting Configuration Bits in Code
 As a way to make the project code self-documenting and to avoid any possible future
mishap (should the project file be lost and the source code of an application used with the
wrong settings), the MPLAB C32 compiler offers one additional mechanism to assign
values to the device configuration bits. It is based on the use of the #pragma config
directive.

 Since the number of configuration bits and their values can change from device to device,
MPLAB offers a list of the available options for each PIC32 device model as part of the
Help system. Select Help | Topic to open the help system selection dialog box, and click
PIC32MX Config Settings (see Figure 7.5).

 Figure 7.5 : MPLAB Help Topics dialog box.

 Select the device model that you are using, PIC32MX360F512L , and then identify the
correct syntax to be used for each configuration bit. Table 7.1 shows the PLL output
divider example.

Running 151

 Multiple configuration bits can be set inside a #pragma config statement by separating
them with a comma, as in the following example, where I have reproduced the standard
oscillator settings as described previously:

 #pragma config POSCMOD=XT, FNOSC=PRIPLL

 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1

 Notice that if a parameter is not specified in the #pragma , it will assume the default value
as specified in the device datasheet.

 Let ’ s complete the configuration with one more #pragma statement to set the peripheral
bus clock divider, disable the watchdog and the code protection, and to enable
programming of the boot memory as required for all our future projects (at least during
the development phase):

 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 My recommendation is that you place this code at the top of the source file containing the
main function in each new project.

 To avoid conflicts with the configuration bits set by MPLAB in the Configuration Bits
dialog box (refer back to Figure 7.4), make sure to check the Configuration Bits Set
in Code check box.

 Table 7.1 : PLL output divider values

 FPLLODIV = DIV_1 Divide by 1

 FPLLODIV = DIV_2 Divide by 2

 FPLLODIV = DIV_4 Divide by 4

 FPLLODIV = DIV_8 Divide by 8

 FPLLODIV = DIV_16 Divide by 16

 FPLLODIV = DIV_32 Divide by 32

 FPLLODIV = DIV_64 Divide by 64

 FPLLODIV = DIV_256 Divide by 256

152 Day 7

 Heavy Stuff
 It is time to write some tough code, program it on a PIC32 Starter Kit or an Explorer 16
demonstration board, and start measuring the actual performance of the PIC32MX.

 See what I found in my code archives! Buried in a remote subdirectory of my hard drive,
back from the old days at university when I studied the basics of digital signal processing,
I wrote this code:

 // input vector
 unsigned char inB[N_FFT];

 // input complex vector
 float xr[N_FFT];
 float xi[N_FFT];

 // Fast Fourier Transformation
 void FFT(void)
 {
 int m, k, i, j;
 float a, b, c, d, wwr, wwi, pr, pi;

 // FFT loop
 m = N_FFT/2;
 j = 0;
 while(m > 0)
 { /* log(N) cycle */
 k = 0;
 while(k < N_FFT)
 { // batterflies loop

 Note

 When the Configuration Bits Set in Code check box is checked, the entire contents of the dialog
box are grayed out. This is the default for every new project. Be careful, though—if you forget
to set the #pragma config statement in your code, you ’ ll end up with the default device
configuration, as described in the device datasheet. This default configuration is designed for
 “ safe ” operation and most of its settings are conflicting or incorrect for use during development.
I chose not to set the configuration bit in code in the first few chapters of the book to avoid the
 “ distraction ” in your code and to avoid having to anticipate too much too soon. From now on,
the choice is yours!

Running 153

 for(i = 0; i < m; i++)
 { // batterfly
 a = xr[i+k]; b = xi[i+k];
 c = xr[i+k+m]; d = xi[i+k+m];
 wwr=wr[i<<j]; wwi = wi[i<<j];
pr=a-c; pi = b-d;

 xr[i+k] = a + c;
 xi[i+k] = b + d;
 xr[i+k+m] = pr * wwr - pi * wwi;
 xi[i+k+m] = pr * wwi + pi * wwr;

 } // for i
 k += m<<1;
 } // while k
 m >>= 1;
 j++;

 } // while m

 } // FFT

 This is the Fast Fourier Transform (FFT) function, one of the most common digital signal
processing tools, albeit in a simplified form designed to operate on a set of samples
whose size is purposely chosen as a power of two. The FFT is an efficient algorithm
to compute the discrete Fourier transform (DFT) and its inverse, that is, what takes us
from a signal time domain representation to the same signal in the frequency domain
representation and back. In other words, if you supply as input to an FFT function an
array of values (inB[]) that represent samples of an input signal, the function will
return a new array containing values corresponding to the amplitudes of each harmonic
(sinusoidal component) of the input signal—i.e., the signal frequency spectrum. FFTs are
of great importance to a wide variety of applications beyond digital signal processing,
including solving partial differential equations and algorithms for quick multiplication of
very large integers. Many studies have been done on how to optimize FFTs and determine
the minimum possible number of arithmetic operations required to perform them on a
given data set. But we are not interested in optimizing the algorithm here; on the contrary,
we will use the “ scholastic ” implementation as an example of an algorithm requiring
heavy floating-point arithmetic for our performance-testing purposes.

 Actually, the algorithm illustrated previously represents only a part of the work that a
complete discrete Fourier transform implementation requires. To obtain the necessary
accuracy, the input data set must first be windowed before use. Think of it as though a

154 Day 7

segment of the input signal was cut abruptly and its sharp edges at the extremities need to
be filed to smooth out the algorithm response:

 // apply Hann window to input vector
 void windowFFT(unsigned char *s)
 {

 int i;
 float *xrp, *xip, *wwp;

 // apply window to input signal

 xrp = xr; xip = xi; wwp = ww;
 for(i=0; i < N_FFT; i++)
 {
 *xrp++ = (*s++ - 128) * (*wwp++);
 *xip++ = 0;

 } // for i

 } // windowFFT

 After the FFT, the modulus of the (complex) output must be taken and scaled back in
place, in this case overwriting the input array:

 void powerScale(unsigned char *r)
 {

 int i, j;
 float t, max;
 float xrp, xip;

 // compute signal power (in place) and find maximum
 max = 0;
 for(i=0; i < N_FFT/2; i++)
 {
 j = rev[i];
 xrp = xr[j];
 xip = xi[j];
 t = xrp*xrp + xip*xip;
 xr[j] = t;
 if (t > max)
 max = t;

 }

 // bit reversal, scaling of output vector as unsigned char

Running 155

 max = 255.0/max;
 for(i=0; i < N_FFT/2; i++)
 {
 t = xr[rev[i]] * max;
 *r++ = t;

 }

 } // powerScale

 To streamline operation and avoid obvious inefficiencies, a minimum of housekeeping is
typically performed ahead of time by initializing a few arrays containing frequently used
values such as the so-called rotations array , the window array itself, and the bit reversal
array. Here is how we define them and the initialization function we can use:

 // input vector
 unsigned char inB[N_FFT];
 volatile int inCount;

 // rotation vectors
 float wr[N_FFT/2];
 float wi[N_FFT/2];

 // bit reversal vector
 short rev[N_FFT/2];

 // window
 float ww[N_FFT];
 void initFFT(void)
 {
 int i, m, t, k;
 float *wwp;

 for(i=0; i < N_FFT/2; i++)
 {
// rotations
 wr[i] = cos(PI2N * i);
 wi[i] = sin(PI2N * i);

 // bit reversal
 t = i;
 m = 0;
 k = N_FFT-1;
 while (k > 0)

156 Day 7

 {
 m = (m < < 1)+(t & 1);
 t = t > > 1;
 k = k > > 1;

 }
 rev[i]=m;

 } // for i

 // initialize Hanning window vector
 for(wwp=ww, i=0; i < N_FFT; i++)

 *wwp++ = 0.5 - 0.5 * cos(PI2N * i);

 } // initFFT

 Scared? Confused? Don ’ t be! Take this code as is; it ’ s heavy stuff. The larger N_FFT, the
number of samples in your input array, the harder it gets for our PIC32 to work on it.

 All we need to do, for now, is to package it nicely in a source file, save it as fft.c, and
then add it to the source files of a new project that we will call Running.

 To keep things clean and tidy, let ’ s also prepare a small include file fft.h where we will
define all the symbols required to use the fft.c module.

 /*
 ** FFT.h
 **
 ** power of two optimized algorithm
 */

 #include < math.h >

 #define N_FFT 256 // samples must be power of 2
 #define PI2N 2 * M_PI/N_FFT

 extern unsigned char inB[];
 extern volatile int inCount;

 // preparation of the rotation vectors
 void initFFT(void);

 // input window
 void windowFFT(unsigned char *source);

 // fast fourier transform
 void FFT(void);

Running 157

 // compute power and scale output

 void powerScale(unsigned char *dest);

 Add fft.h to the include files of the Running project as well.

 Next let ’ s create our project main source file. How about run.c for a name (see
 Figure 7.6)?

 Figure 7.6 : The Running project ’ s Project window.

 Let ’ s add the configuration bit settings at the very top of the source code for
maximum visibility, and let ’ s include the fft.h file as well since we will soon use all its
functions:

 /*
 ** Run.c
 **
 */
 // configuration bit settings
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FWDTEN=OFF, CP=OFF, BWP=OFF

158 Day 7

 #include < p32xxxx.h >
 #include < plib.h >

 #include " fft.h "

 Now let ’ s create a main function that, in order, will perform the following:

 1. Initializations:

 1.1. The initFFT() function needs to be called first:

 1.1. Filling the input buffer (inB[]) with a test signal, a sinusoid for simplicity:

 main()
 {

 int i, t;
 double f;

 // 1. initializations
 initFFT();

 // test sinusoid
 for (i=0; i < N_FFT; i++)
 {

 f = sin(2 * PI2N * i);
 inB[i] = 128+(unsigned char) (120.0 * f);

 } // for

 2. The actual FFT algorithm, composed of the sequence of three function calls:

 // 2. perform FFT algorithm
 windowFFT(inB);
 FFT();

 powerScale(inB);

 3. A main (infinite) loop where it can rest after the exhausting performance:

 // 3. infinite loop
 while(1);

 } // main

 Ready, Set, Go!
 At this point we could already build the project, program a device, and, using a couple of
breakpoints and a manual stopwatch, we could try to capture the actual time required. But

Running 159

the effort would be extremely tedious and imprecise. I have a better idea: Why don ’ t we
make the PIC32 time itself?

 We can use, once more, one of the five 16-bit timers available or, for the occasion, we
could experiment using for the first time a “ pair ” of timer modules combined to form a
32-bit timer. This option is available for the pairs formed by Timer2 and Timer3 together
as well as Timer4 and Timer5. The latter pair is used in the following example, to bracket
the FFT sequence:

 // init 32-bit timer4/5
 OpenTimer45(T4_ON | T4_SOURCE_INT, 0);

 // clear the 32-bit timer count
 WriteTimer45(0);

 // insert FFT function calls here

 // read the timer count

 t = ReadTimer45();

 Notice how I used the functions from the timer.h library, and including plib.h at the top of
the program, we automatically included all the peripheral libraries at once.

 The OpenTimerXX() function allows us to configure the timer, selecting the clock
source and the prescaler value. It is equivalent to writing directly to the TxCON register as
we did in the previous explorations, if only slightly more readable. The main drawback,
as often is the case for these peripheral libraries, is that you won ’ t find the list of valid
parameters to use (such as T4_SOURCE_INT) inside the device datasheet where the timer
module is described; you will have to rely instead on a separate document (the library
manual) and often resort to inspecting personally the include file—timer.h in this case. It
is in fact by inspecting this file (you can open it with the MPLAB Editor) that you will
learn how, when used as a pair, the correct parameters to pass to the initialization function
are taken from those of the first module of the pair (T4 in our case).

 The function WriteTimerXX() , as you would expect, allows us to set the initial counter
value and effectively start our stopwatch, while the function ReadTimerXX() will read
a 32-bit count value. It won ’ t stop our stopwatch, but it will take a reading at that precise
moment; that is what we need.

 Let ’ s open the Watch window by selecting the View | Watch menu and Add the symbol
t to it. Unless you have already configured the Watch window to use decimal as the

160 Day 7

default format, click with the right mouse button on top of the symbol t to activate
the Watch window context menu, and choose Properties . Select Decimal as the default
representation for this variable.

 Now you are ready to build our project and program it onto the device with your
development tool of choice. Set a breakpoint on the line containing the infinite loop,
press Run , and sit back and relax while the PIC32 works hard to solve the problem
for you. After a short while, MPLAB will come back alive as the PIC32 reaches the
breakpoint, and we will be able to read the timed value from the 32-bit integer variable t .
In my case it turned out to be 6,140,495!

 Well, at least now you understand why I suggested we use a 32-bit timer. As fast as a fast
Fourier transform can be, it is hard work, and a 16-bit timer would not suffice to keep
track of such a large number of cycles.

 Converting the timer count in actual seconds, milliseconds, and microseconds is not hard
if we remember how we configured the oscillator and the primary clock path. The PIC32
system bus clock frequency was set to 72 MHz, while all the peripherals were provided a
36 MHz peripheral bus clock. Dividing the timer value by the peripheral bus frequency,
we obtain:

T t Fpb s� � �/ , , / , , .6 142 543 36 000 000 0 17062

 We can automate the conversion by asking the PIC32 to do it for us from now on—just
add the following line of code after the stopwatch capture:

f t E ;� /36 6

 This will reuse the variable f to perform the division using floating-point arithmetic.
Add f to the Watch window so that, from now on, we will get to see the result of our
experiments expressed correctly in seconds and fractions (see Figure 7.7).

 Fine-Tuning the PIC32: Configuring Flash Wait States
 Whether you think that 170 ms is a good time in which to perform a 256-point FFT or
not, of one thing I am sure: The PIC32 can do better. In fact, beyond selecting the fastest
clock speed and properly configuring the oscillator module, a number of advanced
mechanisms on the PIC32 still require our attention to achieve the fine tuning that will

Running 161

provide us with the highest possible level of performance. The number-one limitation
to the performance of an embedded control processor is the speed of its Flash memory.
Unfortunately, once more, there is a conflict of interest; the fastest available Flash
memory banks are also the ones requiring the highest power consumption.

 The designers of the PIC32 found that a perfect balance could be obtained by using a
low-power Flash memory and decoupling the PIC32 core system bus from the memory
bus by providing the ability to add a number of wait states (corresponding to up to seven
clock cycles), during which the processor is stalled waiting for data to be fetched from
the Flash memory. Depending on the difference in speed between memory and core,
an increasing number of wait states might be required. By default, at power-up this
mechanism is set for the safest possible condition that is reached by setting the maximum
number of wait states. Hence there is an opportunity for us to reduce the number to the
minimal possible value, given the actual operating specifications of the device. The
number of wait states is controlled by the CHECON special function register
(see Figure 7.8) and in particular by the PFMWS bits.

 We could directly assign values, between 0 and 7, to the CHECON register ’ s bits, as in the
following example:

 CHECONbits.PFMWS = 7; // set max number of waitstates

 But we would have to assume the responsibility for identifying the minimum safe number
of wait states for the worst-case operating conditions of our application (relying on the
electrical characteristics from the device datasheet). In fact, should we use the wrong
number of wait states, the execution of code from Flash memory could become erratic,

 Figure 7.7 : Testing the PIC32 performance using a 32-bit timer.

162 Day 7

and to make things worse, this would become detectable only under specific extreme
conditions of power supply voltage and temperature.

 As a better alternative, we can use an ad hoc library function provided with the PIC32MX
peripheral libraries: SYSTEMConfigWaitStatesAndPB(freq). The function requires
the system clock frequency to be passed as an integer parameter and was designed by the
PIC32 application support team to set the “ recommended ” minimum wait states for the
given system clock frequency, taking all the guesswork away.

U-0

U-0

U-0

U-0 U-0

U-0

U-0 U-0

r-0 r-0

U-0 U-0 U-0

U-0

U-0

U-0

U-0
PREFEN[1:0] PFMWS[2:0]

DCSZ[1:0]

R/W-0 R/W-0 R/W-1 R/W-1 R/W-1

R/W-0R/W-0

R/W-0
CHECOH

31 30 29

21 20 19 18 17 16

28 27 26 25 24

23

15 14 13 12 11 10 9 8

01234567

22

U-0 U-0 U-0 U-0 U-0 U-0 U-0

 Figure 7.8 : The CHECON control register.

 Note

 The . . . AndPB part of the function name is supposed to remind us that the same function will
also automatically modify the peripheral clock frequency setting of the PB divider as required
to keep the peripheral bus always below 50 MHz. As it happens, this is exactly what we had the
system configured for (at power-up) anyway.

 So it is time to give a second try at our project, with the added “ tuning ” of the wait states
performed by the following line of code (placed inside the initialization section of our
main() function):

 SYSTEMConfigWaitStatesAndPB(72000000L);

 Rebuild the Running project and reprogram your development board. Let the application
run once more until it reaches the breakpoint (see Figure 7.9).

Running 163

 Now, this is an improvement! We just reduced the FFT execution time from 170 ms to
42 ms. This is better than a 4� speed improvement.

 Fine-Tuning the PIC32: Enabling the Instruction
and Data Cache
 But there is so much more we can do. As we understand more of the PIC32 architecture,
we notice that between the MIPS core bus and the memory bus there is actually an
entirely new module: the cache . Think of it as a small but very fast block of RAM
memory sitting between the processor and the Flash memory. Every time the processor
fetches an instruction or a word of data from the Flash memory, the cache module will
keep a copy but will also remember the address. When and if the processor needs the
same data again (from the same address) in the (near) future, the cache will quickly be
able to retrieve it, avoiding any new access to the Flash memory block (and avoiding all
wait states eventually associated).

 The larger a cache memory module, the higher the probability that a copy of a specific
piece of data or instruction will be found in it. The reverse is also true: The shorter the
inner loop of a given algorithm, the higher the impact that the availability of the cache
module will have on its performance. This is because once all the cache is filled and a
new instruction is fetched, the content of the cache must be “ rotated, ” and the oldest or
least recently used instruction/data needs to be overwritten by the new information.

 Unfortunately, cache memory is, by its very nature, very expensive, and the PIC32MX
designers had to balance costs and benefits by setting the maximum capacity of 16 lines
of 16 bytes each, for a total of 64 complete 32-bit instructions, equivalent to 256 bytes.

 Figure 7.9 : The PIC32 performance after wait states tuning.

164 Day 7

 There is much more flexibility (and therefore complexity) involved in the inner workings
of the PIC32 cache module, but we don ’ t need to know much more for now to decide that
we like the cache module and we want to activate it. In fact, by default at power-on, it is
disabled, and as in the previous case, there is a convenient library function (defined in the
pcache.h module) awaiting our call:

 CheKseg0CacheOn();

 Figure 7.10 : The PIC32 performance after enabling the cache.

 Note

 The Kseg0 is the virtual memory space where MPLAB C32 allocates all the code segments
produced by compiling our project codes by default. You will remember that code placed in this
address space “ can ” be cached, whereas code place in Kseg1 will not be cached, regardless of
the cache module settings and status.

 Rebuild the Running project and reprogram your development board. Let the application
run once more until it reaches the breakpoint (see Figure 7.10).

 Now, this is another important improvement! We just reduced the FFT execution time
from 42 ms to 20 ms. This is a further 2� speed improvement.

 Fine-Tuning the PIC32: Enabling the Instruction Pre-Fetch
 But we are far from finished. The cache module of the PIC32 has another important
feature to offer that promises similarly large rewards once enabled. It is the ability

Running 165

to perform instructions pre-fetching. That is, the cache module not only records the
instructions being fetched by the PIC32 core; it also “ runs ahead ” and reads a whole
block of four instructions (four words of 32 bits) at a time. If the code is executed
sequentially, the next three memory fetches will be performed with the equivalent of zero
wait states. Every time a branch is executed, breaking the sequential flow of the program,
the pre-fetched cached data is discarded and the correct next instruction is loaded but
without any additional penalty beyond the required wait states.

 The cache pre-fetch is disabled by default at power-up, and the PREFEN bits in the
CHECON register control the behavior of the module. They can be set by directly accessing
the SFR or by using the macro mCheConfigure() defined in the pcache.h library:

 mCheConfigure(CHECON | 0 x 30);

 After appending this line of code to the list of initialization calls inside the main()
function, let ’ s rebuild the Running project and reprogram the development board. Let the
application run once more until it reaches the breakpoint (see Figure 7.11).

 Figure 7.11 : The PIC32 performance after enabling the cache.

 We once more reduced the FFT execution time from 20 ms to 16.4 ms. This is a further
20-percent performance improvement.

 Fine-Tuning the PIC32: Final Notes
 As anticipated, the complexity of the cache module is considerable, and the number
of additional possible “ tricks ” is practically unlimited if you dare dig deeper. I will
mention only one last option related to accessing the RAM memory. As it happens, even

166 Day 7

regular RAM memory access is by default slowed by the presence of a single wait state.
Its presence is already greatly mitigated by the cache, and the impact on the overall
processor performance can be further reduced by the efficiency of the compiler and
its use of the processor registers. Nonetheless, it is worth trying to disable it using the
mBMXDisableDRMWaitState() function.

 In my experiments, this produced an almost unnoticeable performance improvement, but
the mileage can vary greatly with the nature of the application (see Figure 7.12).

 Figure 7.12 : The PIC32 performance after removing the RAM wait states.

 After rebuilding the project with the added last fine-tuning step, we obtained an
additional 1-percent performance improvement.

 In summary, in only four lines of code we have been able to produce an almost
unimaginable performance improvement compared to our initial measurements using the
default configuration at start-up. We went from 170.62 ms down to 16.45 ms, equivalent
to a 10� speed performance boost to our FFT algorithm!

 // configure PB frequency and the number of wait states
 SYSTEMConfigWaitStatesAndPB(72000000L);

 // enable the cache for max performance
 CheKseg0CacheOn();

 // enable instruction prefetch
 mCheConfigure(CHECON | 0 x 30);

 // disable RAM wait states

 mBMXDisableDRMWaitState();

Running 167

 Fortunately, the PIC32 support team has been preparing a shortcut for us, a single simple
library function that, from now on, will allow us to perform all of the above optimizations
in a single function call:

 SYSTEMConfigPerformance(72000000L);

 A precious little function that fine-tunes the Flash memory and RAM access while
unleashing the power of the cache and pre-fetch module of the PIC32. How about
renaming it SportTuning() or RacingMode() ?

 Debriefing
 Step by step, today we learned to tune up the engine of the PIC32, first in coarse steps,
then gradually in finer steps, until we have been able to squeeze the most performance
out of the machine. Keep in mind that the tuning process is very much dependent on
the task at hand. Different applications will respond differently to each turn of the
various “ control knobs ” we have touched today. Also, the result obtained is by no means
representative of the fastest FFT implementation possible on a PIC32. In fact, we have
deliberately chosen not to modify the original algorithm in any way, to highlight instead
the relative performance gains obtained by our use of various hardware features available
on the PIC32MX architecture. In the process we have also learned something new about
the peripherals set and, in particular, the PIC32 timer modules that allow us to combine
them in pairs to produce 32-bit timers.

 Notes for the Assembly Experts
 Once more we have resisted the temptation to use any hand optimization, avoiding
any use of the assembly language. In reality, those of you who want to learn more
about the PIC32 assembly will soon discover that there are powerful instructions in the
PIC32 instruction set that we could have used to further boost the performance of the
microcontroller in many signal processing applications. In particular, I am referring
to the multiply and accumulate instructions, or multiply and add (MADD), as they are
known in MIPS lingo.

 Notes for the PIC® Microcontroller Experts
 Thanks to the cache and the pre-fetch mechanism, the PIC32 can execute “ almost ” one
instruction per clock cycle, even when operating at the maximum clock frequency while

168 Day 7

using a low-power Flash memory. The operative word here is “ almost, ” since we cannot
be sure that this happens all the time. The cache is inevitably going to generate misses
here and there; for example, the MCU will have to wait from time to time while a group
of words is loaded by the pre-fetch mechanism or a new word of data is loaded into the
cache. The more your code revolves around a short loop that fits entirely in the PIC32
cache memory (256 bytes), the smaller the percentage of misses you will experience. By
the way, although we don ’ t have the time and space to cover the subject in the necessary
depth in this book, most of the control registers inside the cache module are actually there
to allow us some insight into the workings of the cache and to help us “ profile ” a specific
piece of code.

 So, can we claim that the PIC32 is a 72 MIPS machine, meaning that is it really executing
72 million instructions per second? I think the wise answer is “ mostly ” yes, but . . . it
depends on your code and how well you can get the cache to work for you.

 Tips & Tricks
 One powerful tool, available as part of the MPLAB IDE, is the Data Monitor and Control
Interface, or DCMI for friends and fans. You can activate it by selecting Tools | DCMI
on the MPLAB IDE main menu. When used in combination with any of the in circuit
debuggers and even the MPLAB SIM simulator, it can provide us with a window into
the device data space by producing graphics but also letting us “ interactively ” modify
the data with a sort of configurable graphical user interface (GUI). In particular, when
playing with the FFT you might be interested in checking the shape of the input signal
we synthesized (sinusoid) and in visualizing the output of the FFT routine. Once in the
DCMI window, follow the next few steps in exact order:

 1. Click the Dynamic Data View tab.

 2. Check the Graph1 check box.

 3. Right-click with your mouse on the first graph to expose the context menu.

 4. Select Configure Data Source (see Figure 7.13).

 5. Select the inB buffer among the list of Global Symbols.

 6. Click the OK button.

 Now set a breakpoint on the line containing the OpenTimer45() call, just following the
inB[] buffer initialization, and run the program.

Running 169

 As the program halts you should see the content of the inB[] buffer nicely visualized
inside the Dynamic Data View window (see Figure 7.14).

 It ’ s a 2 Hz sinusoid, or I should say a sinusoid whose period is half the input sample count.

 Now we can set a second breakpoint on the line where the ReadTimer45() function is
called, after the FFT is performed and the scaling is performed to visualize the output.
Remember that the output of an FFT contains only half the size of the input number of
samples, so you can change the Sample Count field of the visualization to 128 instead of
the default value (256) automatically offered by the DCMI. Also maximize the window to
obtain a better detail (see Figure 7.15).

 Figure 7.13 : DCMI Dynamic Data View Properties dialog box.

170 Day 7

 Figure 7.15 : Dynamic Data View of the FFT output: The signal spectrum.

 Figure 7.14 : Dynamic Data View of the input signal.

Running 171

 As you can see, the one and only peak in the signal power spectrum is easily found on the
X-axis (considering the sample count starts from 1) at the position that would correspond
to a frequency of 2 Hz (or two periods within the input sample count). Verify that this is
exactly what we have designed the input test signal to be!

 Exercises

 1. Verify the shape and size of the output of the FFT (real and imaginary
components) before the power scaling.

 2. Remove the windowing and observe if and how the spectrum of the signal
appears to change.

 3. Use multiple input sinusoids to create a composite signal and observe the FFT
output.

 4. Experiment with allocating (more) cache space (lines) to the data space and
observe the resulting performance changes.

 Books
 Sweetman, Dominic, See MIPS Run , second edition (2006). This is a must-read if

you want to truly understand the most advanced features of the PIC32 MIPS
core. The second edition is recommended because it focuses on the more modern
implementations of the MIPS cores and adds notes on Linux kernel implementation
details. (Don ‘ t try this at home on the PIC32MX . . . not just yet.)

 Links
http://en.wikipedia.org/wiki/FFT . Helpful in learning more about uses of and methods to

perform a Fast Fourier Transform.

http://en.wikipedia.org/wiki/Spectral_music . FFt can be fun! Think graphics, but also
think music composition.

 http://en.wikipedia.org/wiki/Window_function . No, we ’ re not talking about those
windows; these windows can dramatically change your views!

172 Day 7

http://wn.wikipedia.org/wiki/CPU_cache . The PIC32MX is the first PIC microcontroller
to use a cache mechanism. It is worth looking deeper in the subject to understand
which decisions and compromises the designers of the PIC32 had to make to
maximize performance while delivering an inexpensive product.

 Communication

 The Plan
 Except for the most basic embedded-control applications, it is very likely that you will
soon find that your application needs to communicate with other more or less intelligent
devices. They could be personal computers, sensors, displays, or other microcontrollers
on the same board or remote. To reduce cost, you will be looking for a solution that uses
a small number of pins and wires and that will steer your search in the direction of a
serial communication interface.

 In embedded control, communication is equally a matter of understanding the protocols
as well as the characteristics of the physical media available. Learning to choose the right
communication interface for the application can be as important as knowing how to use it.

 Today we will compare the basic communication peripherals available in all the general-
purpose devices of the new PIC32MX family. In particular we will explore asynchronous
serial communication interfaces (UART) and synchronous serial communication
interfaces (SPI and I 2 C), comparing their relative strengths and limitations for use in
embedded control applications.

 Preparation
 In addition to the usual software tools, including the MPLAB® IDE, MPLAB C32
compiler student version, and the MPLAB SIM simulator, this lesson will require the use
of the Explorer 16 demonstration board and one of the In-Circuit Debugging tools such
as the MPLAB ICD2, MPLAB ICD3, MPLAB REAL ICE, or PIC32 Starter Kit. If you
intend to use the latter, though, you will need the special PIC32 Starter Kit adapter (PIM).

D A Y 8

174 Day 8

 The Exploration
 The PIC32MX family offers seven communication peripherals that are designed to
assist in all common embedded-control applications. As many as six of them are serial
communication peripherals; they transmit and receive a single bit of information at a
time. They are:

● 2 � the Universal Asynchronous Receiver and Transmitters (UARTs)

● 2 � the SPI synchronous serial interfaces

● 2 � the I 2 C synchronous serial interfaces

 The main difference between a synchronous interface (like the SPI or I 2 C) and an
asynchronous one (like the UART) is in the way the timing information is passed from
transmitter to receiver. Synchronous communication peripherals need a physical line
(a wire) to be dedicated to the clock signal, providing synchronization between the two
devices. The device(s) that originates the clock signal is typically referred to as the
master , as opposed to the device(s) that synchronizes with it, called the slave(s) .

 Synchronous Serial Interfaces
 The I 2 C interface (see Figure 8.1), for example, uses two wires and therefore two pins of
the microcontroller: one for the clock (SCL) and one bidirectional for the data (SDA).

PIC32
I2C interface

I2C Peripheral
Clock (SCL)

Data (SDA) (Master) (Slave)

 Figure 8.1 : I 2 C interface block diagram.

 The SPI interface (see Figure 8.2) instead separates the data line in two, one for the input
(SDI) and one for the output (SDO), requiring one extra wire but allowing simultaneous
(faster) data transfer in both directions.

 To connect multiple devices to the same serial communication interfaces (a bus
configuration), the I 2 C interface requires a 10-bit address to be sent over the data line

Communication 175

before any actual data is transferred. This slows the communication but allows the same
two wires (SCL and SDA) to be used for as many as (theoretically) 1,000 devices. Also,
the I 2 C interface allows multiple devices to act as masters and share the bus using a
simple arbitration protocol.

 The SPI interface (see Figure 8.3), on the other side, requires an additional physical line,
the slave select (SS), to be connected to each device. In practice this means that in using
an SPI bus, as the number of connected devices grows, the number of I/O pins required
on the PIC32 grows proportionally with them.

Clock

Data
SDO

SDO

SDI

SDI

SCKSCK

PIC32
SPI interface

SPI Peripheral

 Figure 8.2 : SPI interface block diagram.

PIC32
SPI interface

SPI
Peripheral

(Slave #1)

SPI
Peripheral

(Slave #2)

SDO
SDI

SCK

 SS SS
SDO
SDI

SCK

SDI
SDO

SCK

CS1

CS2

CSN

. . .

 Figure 8.3 : SPI bus block diagram.

 Sharing an SPI bus among multiple masters is theoretically possible but practically very
rare. The main advantages of the SPI interface are truly its simplicity and the speed that
can be one order of magnitude higher than that of the fastest I 2 C bus (even without taking
into consideration the details of the protocol-specific overhead).

176 Day 8

 Asynchronous Serial Interfaces
 In asynchronous communication interfaces (see Figure 8.4), there is no clock line,
whereas typically two data lines—TX and RX, respectively—are used for input and
output, and optionally two more lines can be used to provide a hardware handshake.
The synchronization between transmitter and receiver is obtained by extracting timing
information from the data stream itself. Start and stop bits are added to the data, and
precise formatting (with a fixed baud rate) must be set to allow reliable data transfers.

PIC32
UART interface

Asynchronous
Peripheral

Optional Handshake
RTS

RTS

CTS

CTS

Data
TX

TX

RX

RX

 Figure 8.4 : Asynchronous serial interface block diagram.

 Several asynchronous serial interface standards dictate the use of special transceivers to
improve the noise immunity, extending the physical connection distance up to several
thousand feet.

 Each serial communication interface has its advantages and disadvantages. Table 8.1
summarizes the most important ones as well as the most common applications.

(continued)

 Table 8.1 : Serial interfaces comparison table.

Synchronous Asynchronous

Peripheral SPI I2C UART

 Max bit rate 20 Mbit/s 1 Mbit/s 500 kbit/s

 Max bus size Limited by number of
pins

 128 devices Point to point
(RS232), 256 devices
(RS485)

 Number of pins 3 � n � CS 2 2(�2)

Communication 177

 Parallel Interfaces
 The Parallel Master Port (PMP) completes the list of basic communication interfaces of
the PIC32. The PMP has the ability to transfer up to 16 bits of information at a time while
providing several address lines to interface directly to most commercially available LCD
display modules (alphanumeric and graphic modules with integrated controller) as well
as Compact Flash memory cards (or CF-I/O cards), printer ports, and an almost infinite
number of other basic 8- and 16-bit parallel devices available on the market and featuring
the standard control signals: -CS, -RD, and -WR.

 Today we begin focusing specifically on the use of a synchronous serial interface, the
SPI. In the next few days we will also cover the asynchronous serial interface and
the PMP.

Table 8.1 : (Continued)

Synchronous Asynchronous

Peripheral SPI I2C UART

 Pros Simple, low cost, high
speed

 Small pin count,
allows multiple
masters

 Longer distance
(use transceivers
for improved noise
immunity)

 Cons Single master, short
distance

 Slowest, short distance Requires accurate
clock frequency

 Typical application Direct connection
to many common
peripherals on same
PCB

 Bus connection with
peripherals on same
PCB

 Interface with
terminals, personal
computers, and other
data acquisition
systems

 Examples Serial EEPROMs
(25CXXX series),
MCP320X A/D
converter, ENC28J60
Ethernet controller,
MCP251X CAN
controller . . .

 Serial EEPROMs
(24CXXX series),
MCP98XX temperature
sensors, MCP322x A/D
converters . . .

 RS232, RS422, RS485,
LIN bus, MCP2550
IrDA interface . . .

178 Day 8

 Synchronous Communication Using the SPI Modules
 The SPI interface is perhaps the simplest of all the available interfaces, although the
PIC32 implementation is particularly rich in options and interesting features.

 The SPI interface (see Figure 8.5) is essentially composed of a shift register. Bits are
simultaneously shifted in, most significant bit (MSb) first, from the SDI line and shifted
out from the SDO line in synch with the clock on the SCK pin. The size of the shift
register can vary from 8, 16, or 32 bits.

Internal
Data Bus

SPIxBUF

SPIxTXB

Transmit

Receive

SPIxSR

bit 0SDIx

SDOx

SSx

Clock
Control

Shift
Control

Edge
Select

Baud Rate
Generator

PBCLK

Enable Master ClockNote: Acces SPIxTXB and SPIxRXB registers via
 SPIxBUF register.

SCKx

SPIxRXB

Registers share address SPIxBUF

Slave Select
and Frame

Sync Control

 Figure 8.5 : The SPI module block diagram.

 If the device is configured as a bus master, the clock is generated internally, derived
from the peripheral bus clock (Fpb) by a baud rate generator, and output on the SCK pin.
Otherwise, the device is a bus slave and the clock is received from the SCK pin.

Communication 179

 As for all other peripherals we will encounter, the essential configuration options are
controlled by the SFR SPIxCON and the baud rate generator control register SPIxBRG
(see Figure 8.6).

R/W-0
FRMSYNCFRMEN

bit 31 bit 24

FRMPOL — — — — —
R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0

R/W-0
FRZON

bit 15 bit 8

SIDL DISSDO MODE32 MODE16 SMP CKE
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

R/W-0
CKPSSEN

bit 7 bit 0

MSTEN — — — — —
R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0

U-0

bit 23 bit 16

———— — — SPIFE —
U-0 U-0 U-0 U-0 U-0 R/W-0 U-0

 Figure 8.6 : The SPIxCON control register.

 Notice in Figure 8.6 that the lower (least significant) 16 bits of the SPIxCON register
contain all the essential configuration bits, whereas the top 16 bits contain control bits that
refer only to advanced features of the SPI port (framed modes). This makes the SPIxCON
control register compatible with the previous generations of 16-bit PIC® microcontrollers,
since the top bits default to zero.

 To demonstrate the basic functionality of the SPI peripheral we will use the Explorer 16
demo board, on which the PIC32 SPI2 module is connected to a 25LC256 EEPROM
device, often referred to as a Serial EEPROM (or SEE, or sometimes just E 2 , pronounced
e-squared). This is a small and inexpensive device that contains 256 Kbits, or 32 Kbytes,
of nonvolatile high-endurance memory.

 Use the New Project Setup checklist to create a new project called SPI and a new source
file, similarly called spi2.c .

 The most direct way to configure the SPI2 module for communication with the serial
memory device is by manually assigning the correct value to each bit of the SPI2CON
register. According to the 25LC256 device datasheet (DS21822), downloadable from

180 Day 8

the Microchip Web site, the SEE responds to a short list of 8-bit commands that must
be supplied via the SPI interface with the following setting (notice in parentheses the
corresponding values of the control bits in the SPI2CON register):

● 8-bit mode (MODE16 = 0, MODE32 = 0)

● Clock IDLE level is low, clock ACTIVE is high (CKP = 0)

● Serial output changes on transition from ACTIVE to IDLE (CKE = 1)

 We will also need to configure the PIC32 to act as the SPI bus master (MSTEN = 1),
since the memory is a slave-only device—in other words, it expects to receive a clock
signal on the SCK pin.

 The resulting configuration value can be defined as a constant that will be later assigned
to the SPI2CON register:

 // peripheral configurations

 #define SPI_CONF 0 x 8120 // SPI on, 8-bit master, CKE=1,CKP=0

 To determine the baud rate, we will use Equation 8.1 (from the PIC32 datasheet):

 Equation 8.1: Formula to determine SPI clock frequency.

F
F

SPIxBRGSCK
PB�

�2 1* ()

 We can either use the SPI2BRG default value (0 at power-up, giving a baud rate divider of
1:2) or assign an appropriate value to slow the communication and correspondingly help
reduce the EEPROM power consumption—for example:

 #define SPI_BAUD 15 // clock divider Fpb/(2 * (15+1))

 With such settings, the baud rate divider is set to 1:32 of Fpb, corresponding to about
280 kHz when the PIC32 is configured for a 9 MHz peripheral bus as set and documented
by the following few lines that we will place at the top of our source code:

 // configuration bit settings, Fcy=72 MHz, Fpb=9 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1

 #pragma config FPBDIV=DIV_8, FWDTEN=OFF, CP=OFF, BWP=OFF

Communication 181

 From the Explorer 16 User Guide (DS51589 Appendix A board schematic), we learn that
pin 12 of PortD (RD12) is connected to the memory chip-select (CS) pin. Notice that this
is an active low input. A couple of definitions will help make our code more readable:

 // I/O definitions
 #define CSEE _RD12 // select line for EEPROM

 #define TCSEE _TRISD12 // tris control for CSEE pin

 We can now write the peripheral initialization part of our demonstration program:

 // 1. init the SPI peripheral
 TCSEE = 0; // make SSEE pin output
 CSEE = 1; // de-select the EEPROM
 SPI2CON = SPI_CONF; // select mode and enable

 SPI2SPI2BRG = SPI_BAUD; // select clock speed

 We can now write a small function that will be used to transfer data to and from the serial
EEPROM device:

 // send one byte of data and receive one back at the same time
 int writeSPI2(int i)
 {
 SPI2BUF = i; // write to buffer for TX
 while(!SPI2STATbits.SPIRBF); // wait for transfer complete
 return SPI2BUF; // read the received value

 }//writeSPI2

 The writeSPI2() is a truly bidirectional transfer function. It immediately
writes a character to the transmit buffer and then enters a loop to wait for the receive
flag to be set to indicate that the transmission was completed as well as data was
received back from the device. The data received is then returned as the value of the
function.

 When we ’ re communicating with the memory device, though, there are situations
when a command is sent to the memory, but there is no immediate response. There are
also cases when data is read from the memory device, but no further commands need
to be sent by the PIC32. In the first case (for example, the write command), the return
value of the function can simply be ignored. In the second case (for example, the read
command), a dummy value can be sent to the memory while shifting in data from the
device.

182 Day 8

 The 25LC256 datasheet contains accurate depictions of all seven possible command
sequences that can be used to read or write data to and from the memory device.
A small table of constants can help encode and document all such commands in
our code:

 // 25LC256 Serial EEPROM commands
 #define SEE_WRSR 1 // write status register
 #define SEE_WRITE 2 // write command
 #define SEE_READ 3 // read command
 #define SEE_WDI 4 // write disable
 #define SEE_STAT 5 // read status register

 #define SEE_WEN 6 // write enable

 Before we attempt any more complex task, let ’ s test the little code we have assembled
so far to verify that communication with the device can be properly established. For
example, we can use the Read Status Register (SEE_STAT) command to interrogate the
EEPROM and obtain the value of its internal status register.

 Testing the Read Status Register Command
 After sending the appropriate command byte (SEE_STAT) with a first call to the
writeSPI2() function, we will need to send a second (dummy) byte to capture the
response from the memory device (see Figure 8.7).

CS

SCK

SI

Instruction

High-impedance
SO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 1

7 6 5 4 3 2 1 0

0 1

Data from STATUS register

 Figure 8.7 : The complete Read Status Register command timing sequence.

Communication 183

 Sending any command to the SEE requires, at a minimum, the following four-step
sequence:

 1. Activate the memory, taking the CS pin low.

 2. Shift out the 8-bit command.

 3. Depending on the specific command, send or receive multiple bytes
of data.

 4. Deactivate the memory (taking high the CS pin) to complete the command.
After this step the memory will go back to a low-power consumption standby
mode.

 In practice, the following code is required to perform the complete Read Status Register
operation:

 // Check the Serial EEPROM status
 CSEE = 0; // select the Serial EEPROM
 writeSPI2(SEE_STAT); // send a READ STATUS COMMAND
 i = writeSPI2(0); // send dummy, read data

 CSEE = 1; // deselect to complete command

 The complete project listing should look like:

 /*
 ** SPI2
 **
 */
 #include < p32xxxx.h >

 // configuration bit settings, Fcy=72 MHz, Fpb=9 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_8, FWDTEN=OFF, CP=OFF, BWP=OFF

 // I/O definitions
 #define CSEE _RD12 // select line for Serial EEPROM
 #define TCSEE _TRISD12 // tris control for CSEE pin

 // peripheral configurations
 #define SPI_CONF 0 x 8120 // SPI on, 8-bit master,CKE=1,CKP=0
 #define SPI_BAUD 15 // clock divider Fpb/(2 * (15+1))

184 Day 8

 // 25LC256 Serial EEPROM commands
 #define SEE_WRSR 1 // write status register
 #define SEE_WRITE 2 // write command
 #define SEE_READ 3 // read command
 #define SEE_WDI 4 // write disable
 #define SEE_STAT 5 // read status register
 #define SEE_WEN 6 // write enable

 // send one byte of data and receive one back at the same time
 int writeSPI2(int i)
 {

 SPI2BUF = i; // write to buffer for TX
while(!SPI2STATbits.SPIRBF); // wait for transfer complete
 return SPI2BUF; // read the received value

 }//writeSPI2

 main ()
 {
 int i;
 // 1. init the SPI peripheral
 TCSEE = 0; // make SSEE pin output
 CSEE = 1; // de-select the Serial EEPROM
 SPI2CON = SPI_CONF; // select mode and enable SPI2
 SPI2BRG = SPI_BAUD; // select clock speed
 // main loop
 while(1)
 {

// 2. Check the Serial EEPROM status
 CSEE = 0; // select the Serial EEPROM
 writeSPI2(SEE_STAT); // send a READ STATUS COMMAND
 i=writeSPI2(0); // send/receive
 CSEE=1; // deselect terminate command

 } // main loop

 } // main

 Follow the Debugger Setup checklist appropriate for your tool of choice to enable the
In-Circuit Debugger and prepare the project configuration. Then follow the Project Build
checklist to compile and link the demo code. Then:

 1. After connecting the Explorer 16 demo board, program the PIC32 selecting
the Debugger | Program option. By default MPLAB will choose the smallest

Communication 185

range of memory required to transfer the project code into the device so that
programming time will be minimized. After a few seconds, the PIC32 should be
programmed, verified, and ready to execute.

 2. Add the Watch window to the project.

 3. Select i in the symbol selection box, then click the Add Symbol button.

 4. Set the cursor on the last line of code in the main loop (containing the CSEE
deselect) and set a breakpoint (double-click).

 5. Start the execution by selecting the Debugger | Run command.

 6. When the execution terminates, the contents of the 25LC256 memory Status
Register should have been transferred to the variable i, visible in the Watch
window.

 Unfortunately, you will be disappointed to learn that the default status of the 25LC256
memory (at power-on) is represented by the value 0 � 00 (see Table 8.2).

 Table 8.2 : The 25LC256 Serial EEPROM status register.

7 6 5 4 3 2 1 0

 W/R – – – W/R W/R R R

 WPEN x x x BP1 BP0 WEL WIP

 W/R � writable/readable; R � read-only.

 In fact, from Table 8.2 , which illustrates the contents of the EEPROM status register,
and from the device datasheet we learn that, at power-on, the Block Protection bits
(BP1 and BP0) are supposed to be cleared unless a block code protection had been set,
the Write Enable Latch (WEL) is disabled, and no Write In Progress (WIP) flag should be
active.

 Not a very telling result for our little test program. So, to spice up things a little we could
start by setting the Write Enable Latch before interrogating the Status Register; it would
be great to see bit 1 set.

186 Day 8

 Let ’ s insert the following code before Section 2 that we will promptly renumber to 2.2:

 // 2.1 send a Write Enable command
 CSEE = 0; // select the Serial EEPROM
 writeSPI2(SEE_WEN); // send command, ignore data

 CSEE=1;

 1. Rebuild the project.

 2. Reprogram the device.

 3. Run (or Run to Cursor).

 If everything went well, you will see now the variable i in the Watch window turn red
and show a value of 2. Now, these are the great satisfactions that you can get only by
developing code for a powerful 32-bit embedded controller!

 More seriously, now that the Write Enable latch has been set, we can add a write
command and start “ modifying ” the contents of the EEPROM device. We can write a
single byte at a time, or we can write a long string, up to a maximum of 64 bytes, all in a
single sequence/command called Page Write. Read more on the datasheet about address
restrictions that apply to this mode of operation, though.

 Writing Data to the EEPROM
 After sending the write command, 2 bytes of address must be supplied before
the actual data is shifted out. The following code exemplifies the correct write
sequence:

 // send a Write command
 CSEE = 0; // select the Serial EEPROM
 writeSPI2(SEE_WRITE); // send command, ignore data
 writeSPI2(ADDR_MSB); // send MSB of memory address
 writeSPI2(ADDR_LSB); // send LSB of memory address
 writeSPI2(data); // send the actual data
 // send more data here to perform a page write

 CSEE = 1; // start actual EEPROM write cycle

 Notice how the actual EEPROM write cycle initiates only after the CS line is
brought high again. Also, it will be necessary to wait for a time (Twc) specified

Communication 187

in the memory device datasheet for the cycle to complete before a new command
can be issued.

 There are two methods to make sure that the memory is allowed the right amount of time
to complete the write command. The simplest one consists of inserting a fixed delay after
the write sequence. The length of such a delay should be longer than the maximum cycle
time specified in the memory device datasheet (Twc max = 5 ms).

 A better method consists of checking the Status Register contents before issuing any
further read/write command, then waiting for the Write In Progress (WIP) flag to be
cleared; this will also coincide with the Write Enable bit (WEN) being reset. By doing
so, we will be waiting only the exact minimum amount of time required by the memory
device in the current operating conditions.

 Reading the Memory Contents
 Reading back the memory contents is even simpler. Here is a snippet of code that will
perform the necessary sequence:

 // send a Write command
 CSEE = 0; // select the Serial EEPROM
 writeSPI2(SEE_READ); // send command, ignore data
 writeSPI2(ADDR_MSB); // send MSB of memory address
 writeSPI2(ADDR_LSB); // send LSB of memory address
 data=writeSPI2(0); // send dummy, read data
 // read more data here sequentially incrementing the address
 CSEE = 1; // terminate the read sequence

 // and return to low power

 The read sequence can be indefinitely extended by sequentially reading the entire
memory contents if necessary and, upon reaching the last memory address (0x7FFF),
rolling over and starting from 0x0000 again.

 A 32-Bit Serial EEPROM Library
 We can now assemble a small library of functions dedicated to accessing the 25LC256
serial EEPROM. The library will hide all the details of the implementation, such as the
SPI port used, specific sequences, and timing details. It will expose instead only two
basic commands to read and write integer data types (32-bit) to a generic (black box)
nonvolatile storage device.

188 Day 8

 Let ’ s create a new project using the Project Wizard and the usual checklist. An
appropriate name could be SEE . After creating a new source file see.c , we can copy most
of the definitions we prepared in the SPI project:

 /*
 ** SEE Access Library
 */

 #include " p32xxxx.h "
 #include " see.h "

 // I/O definitions
 #define CSEE _RD12 // select line for Serial EEPROM
 #define TCSEE _TRISD12 // tris control for CSEE pin

 // peripheral configurations
 #define SPI_CONF 0 x8120 // SPI on, 8-bit master,CKE=1,CKP=0
 #define SPI_BAUD 15 // clock divider Fpb/(2 * (15+1))

 // 25LC256 Serial EEPROM commands
 #define SEE_WRSR 1 // write status register
 #define SEE_WRITE 2 // write command
 #define SEE_READ 3 // read command
 #define SEE_WDI 4 // write disable
 #define SEE_STAT 5 // read status register

 #define SEE_WEN 6 // write enable

 Let ’ s also copy the initialization code, the write function, and the status register read
commands. Each one will become a separate function:

 // send one byte of data and receive one back at the same time
 int writeSPI2(int i)
 {
SPI2BUF = i; // write to buffer for TX
while(!SPI2STATbits.SPIRBF); // wait for transfer complete
return SPI2BUF; // read the received value

 }// writeSPI2

 void initSEE(void)
 {
 // init the SPI2 peripheral
 CSEE = 1; // de-select the Serial EEPROM
 TCSEE = 0; // make SSEE pin output

Communication 189

 SPI2CON = SPI_CONF; // enable the peripheral
 SPI2BRG = SPI_BAUD; // select clock speed

 }// initSEE

 int readStatus(void)
 {
 // Check the Serial EEPROM status register
 int i;
 CSEE = 0; // select the Serial EEPROM
 writeSPI2(SEE_STAT); // send a READ STATUS COMMAND
 i = writeSPI2(0); // send/receive
 CSEE = 1; // deselect terminate command
 return i;

 } // readStatus

 To create a function that reads an integer value from nonvolatile memory, first
we verify that any previous command (write) has been correctly terminated by
reading the status register. A sequential read of 2 bytes is used to assemble an integer
value:

 int readSEE(int address)
 { // read a 32-bit value starting at an even address

 int i;

 // wait until any work in progress is completed
 while (readStatus() & 0 x 1); // check WIP

 // perform a 16-bit read sequence (two byte sequential read)
 CSEE = 0; // select the Serial EEPROM
 writeSPI2(SEE_READ); // read command
 writeSPI2(address >> 8); // address MSB first
writeSPI2(address & 0xfc); // address LSB (word aligned)
 i = writeSPI2(0); // send dummy, read msb
 i = (i << 8)+ writeSPI2(0); // send dummy, read lsb
 i = (i << 8)+ writeSPI2(0); // send dummy, read lsb
 i = (i< < 8)+ writeSPI2(0); // send dummy, read lsb
 CSEE = 1;
 return (i);

 }// readSEE

190 Day 8

 Finally, the write enable function can be created by extracting the short segment of code
used to access the Write Enable latch from our previous project and adding a page write
sequence:

 void writeEnable(void)
 {
 // send a Write Enable command
 CSEE = 0; // select the Serial EEPROM
 writeSPI2(SEE_WEN); // write enable command
 CSEE = 1; // deselect to complete the command

 }// writeEnable

 void writeSEE(int address, int data)
 { // write a 32-bit value starting at an even address

 // wait until any work in progress is completed

 while (readStatus() & 0 x 1) // check the WIP flag

 // Set the Write Enable Latch
 writeEnable ();

 // perform a 32-bit write sequence (4 byte page write)
 CSEE = 0; // select the Serial EEPROM
 writeSPI2(SEE_WRITE); // write command
 writeSPI2(address > > 8); // address MSB first
 writeSPI2(address & 0xfc); // address LSB (word aligned)
 writeSPI2(data > > 24); // send msb
 writeSPI2(data > > 16); // send msb
 writeSPI2(data > > 8); // send msb
writeSPI2(data); // send lsb
 CSEE = 1;

 }// writeSEE

 More functions could be added at this point to access short (16-bit) or long long
(64-bit) data types, for example, but for our proof of concept this will suffice.

 Note that the page write operation (see the 25LC256 memory datasheet for details) requires
the address to be aligned on a power of two boundaries (in our case, just an address divisible
by 4 will do). The requirement must be extended to the read function for consistency.

 Save the code in the see.c file and add it to the project using one of the three methods
shown in the checklists. You can either use the editor right-click menu and select

Communication 191

Add to Project or by right-clicking on the project window on the Source Files branch
and choosing Add Files , then selecting the see.c file from the current project directory.

 To make a few selected functions from this module accessible to other applications,
create a new file, see.h, and insert the following declarations:

 /*
 ** SEE Access library
 **
 ** encapsulates 25LC256 Serial EEPROM
 ** as a NVM storage device for PIC32 + Explorer16 applications
 */

 // initialize access to memory device
 void initSEE(void);

 // 32-bit integer read and write functions
 // NOTE: address must be an even value between 0 x 0000 and 0 x 3ffc
 // (see page write restrictions on the device datasheet)
 int readSEE (int address);

 void writeSEE(int address, int data);

 This will expose only the initialization function and the integer read/write functions,
hiding all other details of the implementation.

 Add the see.h file to the project by right-clicking in the project windows on the Header
Files icon and selecting it from the current project directory.

 Testing the New SEE Library
 To test the functionality of the library, we can create a test application containing a few
lines of code that repeatedly read the contents of a memory location (at address 16),
increment its value, and write it back to the memory.

 /*
 ** SEE Library test
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=9 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_8, FWDTEN=OFF, CP=OFF, BWP=OFF
 #include < p32xxxx.h >
 #include " see.h "

192 Day 8

 main ()
 {
 int data;

 // initialize the SPI2 port and CS to access the 25LC256
 initSEE();
 // main loop
 while (1)
 {
 // read current content of memory location
 data = readSEE(16);
 // increment current value
 data++; // < -set brkpt here

 // write back the new value
 writeSEE(16, data);
 //address++;

 } // main loop

 } //main

 1. Save this file as SEEtest.c and add it to the current project, too.

 Invoking the Build All command, you will observe the MPLAB C32 compiler to work
sequentially on the two source files (.c) and later the linker to combine the object codes to
produce an output executable (.hex).

 2. Add data to the Watch window.

 3. Set a breakpoint on the line immediately following the read command to allow us
to test the proper operation of the SEE library.

 4. Click the Run command and watch the program stop after the first read.

 5. Note the value of data and then Run again. It should increment continuously, and
even when resetting the program or completely disconnecting the board from the
power supply to reconnect it later, we will observe that the contents of location 16
will be preserved and successively incremented.

 Careful—if the main program loop is left running indefinitely without any breakpoint,
the library test program will quickly turn into a test of the Serial EEPROM endurance.
In fact, the loop will continue to reprogram location 16 at a rate that will be mostly

Communication 193

dependent on the actual Twc of the device. In a best-case scenario (maximum
Twc � 5 ms), this will mean 200 updates every second. Or, in other terms, the theoretical
endurance limit of the EEPROM (1,000,000 cycles) will be reached in 5,000 seconds, or
slightly less than one hour and a half of continuous operation.

 Debriefing
 Today we have just started our exploration of the serial interfaces, comparing the basic
differences among them and reviewing some of their most common uses in embedded
control. In particular, we have experimented briefly with the SPI module in its simplest
configuration to gain access to a 25LC256 Serial EEPROM memory, one of the most
common types of nonvolatile memory peripherals used in embedded-control applications.
The small library module we developed will hopefully be useful to you in future
applications, to provide additional nonvolatile storage (32 K bytes) to your applications
on the Explorer 16.

 Notes for the C Experts
 The C programmer used to developing code for large workstations and personal
computers will be tempted to further develop the library to include the most flexible and
comprehensive set of functions. My word of advice is to resist, hold your breath, and
count to 10, especially before you start adding any new parameter to the library functions.
In the embedded-control world, passing more parameters means using up more stack
space, spending more time copying data to and from the stack, and in general producing a
larger output code. Keep the libraries simple and therefore easy to test and maintain. This
does not mean that proper object-oriented programming practices should not be followed.
On the contrary, our example can be considered an example of object encapsulation ,
since most of the details of the SPI interface and Serial EEPROM internal workings have
been hidden from the user, who is provided instead with a simple interface to a generic
storage device organized in 32-bit words.

 Notes for the Explorer 16 Experts
 One of the least-known features of the Explorer 16 board is related to the use of two
digital multiplexer devices (74HCT4053) present on the board and marked U6 and
U7. The first one in particular was added to the board to allow the swap of the SDI
and SDO lines of the SPI1 port reaching the PICTail™ connectors so that two

194 Day 8

Explorer 16 boards could be cross-connected and the two microcontrollers could
exchange data. The swap is controlled by the RB12 pin when configured as a digital
output and pulling low (otherwise a pull-up resistor takes care of things). Proper
connection requires, of course, that one of the two microcontrollers be configured as
master, therefore producing the SCK signal, and the other as slave. Also keep in mind
that only one of the two boards can be connected to the power supply; the other will be
powered via the PIC Tail connector. Similarly, RB13 and RB14 , in conjunction with the
U7 multiplexer, are designed to allow cross-connection via the UART1 serial interface.

 Notes for the PIC24 Experts
 The SPI module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differences
that will affect your code while you ’ re porting an application to the PIC32:

 1. The SPIxCON register control bits layout has been updated to resemble more
closely the layout of most other peripherals so that the module ON , FRZ , and IDL
bits are now located in the standard position (bit 15, bit 14, bit 13). They used to
be found in the SPIxSTAT register.

 2. The upper half of the SPIxCON register (being now expanded to 32 bits) provides
room for the framing control bits (FRMEN, SPIFSD ...) previously located in a
second control register SPIxCON2 .

 3. The new MODE32 bit now selects the 32-bit mode operation.

 4. The clock prescaler/divider of the SPI module (which used to be a two-tier 3 � 2
bit prescaler) is expanded to a full 9-bit baud rate generator module cleanly
controlled by a separate register SPIxBRG .

 Tips & Tricks
 If you store important data in an external nonvolatile memory (SEE), you might want
to put some additional safety measures in place (both hardware and software). From a
hardware perspective, make sure that:

● Adequate power supply decoupling (capacitor) is provided close to the device.

● A pull-up resistor (10 k Ohm) is provided on the Chip Select line, to avoid
floating during the microcontroller power-up and reset.

Communication 195

● An additional pull-down resistor (10 k Ohm) can be provided on the SCK clock
line to avoid clocking of the peripheral during power-up, when the PIC32 I/Os
might be floating (tri-state).

● Verify clean and fast power-up and down slopes are provided to the
microcontroller to guarantee reliable Power-On Reset (POR) operation.
If necessary, add an external voltage supervisor (see MCP809 devices for
example).

 A number of software methods can then be employed to prevent even the most remote
possibility that a program bug or the proverbial cosmic ray might trigger the write
routine. Here are some suggestions:

● Avoid reading and especially updating the SEE content right after power-up.
Allow a few milliseconds for the power supply to stabilize (this will be heavily
application dependent).

● Add a software write-enable flag, and demand that the calling application set the
flag before calling the write routine, possibly after verifying some application-
specific entry condition.

● Add a stack-level counter; each function in the stack of calls implemented by the
library should increment the counter upon entry and decrement it on exit. The
write routine should refuse to perform if the counter is not at the expected level.

● Some users refuse to use the SEE memory locations corresponding to the
first address (0x0000) and/or the last address (0xffff), believing they could be
statistically more likely to be subject to corruption.

● More seriously, store two copies of each essential piece of data, performing two
separate calls to the write routine. If each copy contains a checksum or, simply by
comparison, when reading it back, it will be easy to identify a memory corruption
problem and possibly recover.

 Exercises
 Although the PIC32 SPI peripheral module operates off the peripheral clock system that
could be ticking as fast as 50 MHz, few peripherals can operate at such speeds at 3 V.
Specifically, the 25LC256 series Serial EEPROMs, operate with a maximum clock rate of
5 MHz when the power supply is in the 2.5 V to 4.5 V range. This means that the fastest

196 Day 8

SPI port configuration compatible with the memory device can be obtained with a baud
rate generator configured for 1:8 operation (36 MHz/8 � 4.5 MHz). A sequential read
command could therefore provide a maximum throughput close to 4 Mbit per second
or 512 Kbytes per second. Even at such a rate, the PIC32 would be able to execute
140 instructions before each new byte of data is received. This means that in our simple
SEE application example, a lot of processing power is wasted sitting in loops and waiting
for each byte to be transferred.

 1. Develop a more advanced library based on an interrupt-driven state machine and/
or using the DMA to make a more efficient use of the PIC32 processing power.
We explore the use of the DMA in conjunction with the SPI port in Chapter 13,
although it won ’ t be to interface to a serial EEPROM but for more mundane and
fun applications.

 2. Try enabling the new 32-bit mode of the SPI module to accelerate basic read and
write word operation. But watch out: The SEE commands are byte wide, so you
will probably need to switch back and forth between 8- and 32-bit modes. Are
you really going to save any time/code?

 Books
 Eady , F. , Networking and Internetworking with Microcontrollers (Newnes , Burlington,

MA , 2004) . An entertaining introduction to serial communication in embedded
control. The author explores the basic synchronous and asynchronous communication
interfaces to help 8-bit microcontrollers communicate.

 Links
www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE & nodeId=1406 & dDoc

Name=en010003 . Use this link or search the Microchip Website for a free software
tool called Total Endurance Software. It will help you estimate the endurance you can
expect from a given NVM device in your actual application conditions. It will give
you an indication of the total number of e/w cycles or the number of expected years
of your application life before a certain target failure rate is reached.

 Asynchronous Communication

 The Plan
 Once you remove the clock line from the serial interface between two devices, what you
obtain is an asynchronous communication interface. Whether you want full bidirectional
(duplex) communication or just half-duplex (one direction at a time), multipoint, or
point-to-point communication, there are many asynchronous protocols that can make
communication possible and allow for efficient use of the media. In this lesson we will
review the PIC32 asynchronous serial communication interface modules, UART1 and
UART2, to implement a basic RS232 interface. We will develop a console library that
will be handy in future projects for interface and debugging purposes.

 Preparation
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer
16 demonstration board, your In-Circuit Debugger of choice, and a PC with an RS232
serial port (or a serial to USB adapter). You will also need a terminal emulation program.
If you are using the Microsoft Windows operating system, the HyperTerminal application
will suffice (Start|Programs | Accessories | Communication | HyperTerminal).

 The Exploration
 The UART interface is perhaps the oldest interface used in the embedded-control
world. Some of its features were dictated by the need for compatibility with the

D A Y 9

198 Day 9

first mechanical teletypewriters. This means that at least some of its technology has
centuries ’ -old roots.

 On the other hand, nowadays finding an asynchronous serial port on a new computer
(and especially on a laptop) is becoming a challenge. The serial port has been declared
a “ legacy interface, ” and for several years now, strong pressure has been placed on
computer manufacturers to replace it with the USB interface. Despite the decline in
their popularity and the clearly superior performance and characteristics of the USB
interface, asynchronous serial interfaces are strenuously resisting in the world of
embedded applications because of their great simplicity and extremely low cost of
implementation.

 Four main classes of asynchronous serial application are still being used:

 1. RS232 point-to-point connection. Often simply referred to as “ the serial port ” ;
used by terminals, modems, and personal computers using +12V/�12V
transceivers.

 2. RS485 (EIA-485) multi-point serial connection. Used in industrial applications;
uses a 9-bit word and special half-duplex transceivers.

 3. LIN bus. A low-cost, low-voltage bus designed for noncritical automotive
applications. It requires a UART capable of baud rate autodetection.

 4. Infrared wireless communication. Requires a 38–40 kHz signal modulation and
optical transceivers.

 The PIC32 ’ s UART modules can support all four major application classes and packs a
few more interesting features, too.

 To demonstrate the basic functionality of a UART peripheral, we will use the
Explorer16 demo board where the UART2 module is connected to an RS232 transceiver
device and to a standard 9 poles D female connector. This can be connected to
any PC serial port or, in absence of the “ legacy interface ” as mentioned above, to an
RS232 to USB converter device. In both cases the Windows HyperTerminal program
will be able to exchange data with the Explorer16 board with a basic configuration
setting.

 Asynchronous Communication 199

 The first step is the definition of the transmission parameters. The options include:

● Baud rate

● Number of data bits

● Parity bit, if present

● Number of stop bits

● Handshake protocol

 For our demo we will choose the fast and convenient configuration:115200, 8, N, 1, CTS/
RTS—that is:

● 115,200 baud

● 8 data bits

● No parity

● 1 stop bit

● Hardware handshake using the CTS and RTS lines

Baud Rate Generator

IrDA®

Hardware Flow Control

BCLKx

UxRX

UxTX

UARTx Receiver

UARTx Transmitter

UxRTS

UxCTS

 Figure 9.1 : Simplified UART modules block diagram.

200 Day 9

 UART Configuration
 Use the New Project Setup checklist to create a new project called Serial and a new
source file, similarly called serial.c . We will start by adding a few useful I/O definitions
to help us control the hardware handshake lines:

 /*
 ** Asynchronous Serial Communication
 ** UART2 RS232 asynchronous communication demonstration code
 */

 #include < p32xxxx.h >

 // I/O definitions for the Explorer16
 #define CTS _RF12 // Clear To Send, input
 #define RTS _RF13 // Request To Send, output

 #define TRTS TRISFbits.TRISF13 // Tris control for RTS pin

 The hardware handshake is especially necessary in communicating with a Windows
terminal application, since Windows is a multitasking operating system and its
applications can sometimes experience long delays that would otherwise cause significant
loss of data. We will use one I/O pin as an input (RF12 on the Explorer 16 board) to sense
when the terminal is ready to receive a new character (Clear To Send), and one I/O pin as
an output (RF13 on the Explorer 16 board) to advise the terminal when our application is
ready to receive a character (Request To Send).

 To set the baud rate, we get to play with the Baud Rate Generator (U2BREG), a 16-bit
counter that feeds on the peripheral bus clock. From the device datasheet we learn that
in the normal mode of operation (BREGH=0) it operates off a 1:16 divider versus a high-
speed mode (BREGH=1) where its clock operates off a 1:4 divider. A simple formula,
published on the datasheet, allows us to calculate the ideal setting for our configuration
(see Equation 9.1).

 Equation 9.1. UART Baud Rate with UxBREG = 1.

Baud Rate
F

U BRG

U BRG
F

Baud Rate

PB

PB

�
� �

� � �

4 1

4
1

• ()

•

 Asynchronous Communication 201

 In our case, Equation 9.1 translates to the following expression:
U2BREG � (36,000,000/4/115,200) � 1 � 77.125

 To decide how to best round out the result, we need a 16-bit integer after all. We will use
the reverse formula to calculate the actual baud rate and determine the percentage error:
Error � ((Fpb/4/(U2BREG+1)) � baud rate)/baud rate %

 Rounding up to a value of 77, we obtain an actual baud rate of 115,384 baud with an
error of just 0.2 percent—well within acceptable tolerance. However, with a value of 78
we obtain 113,924 baud, a larger 1.1 percent error but still within the acceptable tolerance
range for a standard RS232 port (� 2 percent).

 We can therefore define the constant BRATE as:

 #define BRATE 77 // 115,200 Bd (BREGH=1)

 Two more constants will help us define the initialization values for the UART2 main
control registers called U2MODE and U2STA (see Figure 9.2).

U-0

— — — — — — — —

— — — — — — — —

U-0 U-0 U-0 U-0 U-0 U-0 U-0

U-0

R/W-0 R/W-0 R/W-0

R/W-0 R/W-0 R/W-0
ABAUD RXINV BRGH PDSEL�1:0� STSEL

bit 24

bit 16

bit 8

bit 0bit 7

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
WAKE LPBACK

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

RTSMD UEN�1:0�IRENSIDL
bit 15

ON FRZ

U-0 U-0 U-0 U-0 U-0 U-0 U-0

bit 31

bit 23

 Figure 9.2 : The UxMODE control registers.

 The initialization value for U2MODE will include the BREGH bit, the number of stop
bits, and the parity bit settings.

 #define U_ENABLE 0 x 8008 // enable,BREGH=1, 1 stop, no parity

202 Day 9

 The initialization for U2STA will enable the transmitter and clear the error flags
(see Figure 9.3):

 #define U_TX 0 x0400 // enable tx, clear all flags

U-0
— — — — — — —

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0

R/W-0

R/W-0 R/W-0 R/W-0

R/W-0 R/W-0 R/W-0
ADDEN RIDLE PERR FERR OERR RXDA

bit 24

bit 16

bit 8

bit 0bit 7

R-1 R-0 R-0 R/C-0 R-0
URXISEL�1:0�

R/W-0 R/W-0 R/W-0 R-0 R-1

TRMTTXBFTXENTXBRKRXENTXINV
bit 15

UTXISEL�1:0�

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ADDR�7:0�

R/W-0 R/W-0

ADM_EN

bit 31

bit 23

 Figure 9.3 : The UxSTA control registers.

 Using the constants defined above, let ’ s initialize the UART2module, the baud rate
generator, and the I/O pins used for the handshake:

 void initU2(void)
 {

 U2BRG = BRATE; // initialize the baud rate generator
 U2MODE = U_ENABLE; // initialize the UART module
 U2STA = U_TX; // enable the Transmitter
 TRTS = 0; // make RTS an output pin
 RTS = 1; // set RTS default status (not ready)

 } // initU2

 Sending and Receiving Data
 Sending a character to the serial port is a three-step procedure:

 1. Make sure that the terminal (PC running Windows HyperTerminal) is ready.
Check the Clear to Send (CTS) line. CTS is an active low signal; that is, while it
is high, we better wait patiently.

 Asynchronous Communication 203

 2. Make sure that the UART is not still busy sending some previous data. PIC32
UARTs have a four-level-deep FIFO buffer, so all we need to do is wait until
at least the top level frees up; in other words, we need to check for the transmit
buffer full flag UTXBF to be clear.

 3. Finally, transfer the new character to the UART transmit buffer (FIFO).

 All of the above can be nicely packaged in one short function that we will call putU2() ,
respecting a rule that wants all C language I/O libraries (stdio.h) to use the put- prefix
to offer a series of character output functions such as putchar() , putc() , fputc() and
so on:

 int putU2(int c)
 {
 while (CTS); // wait for !CTS, clear to send
 while (U2STAbits.UTXBF); // wait while Tx buffer full
 U2TXREG = c;
 return c;

 } // putU2

 To receive a character from the serial port, we will follow a very similar sequence:

 1. Alert the terminal that we are ready to receive by asserting the RTS signal (active
low).

 2. Patiently wait for something to arrive in the receive buffer, checking the URXDA
flag inside the UART2 status register U2STA .

 3. Fetch the character from the receive buffer (FIFO).

 Again, all of the above steps can be nicely packaged in one last function:

 char getU2(void)
 {
 RTS=0; // assert Request To Send !RTS
 while (!U2STAbits.URXDA); // wait for a new char to arrive
 RTS=1;
 return U2RXREG; // read char from receive buffer

 } // getU2

204 Day 9

 Testing the Serial Communication Routines
 To test our serial port control routines, we can now write a small program that will
initialize the serial port, send a prompt, and let us type on the terminal keyboard while
echoing each character back to the terminal screen:

 main()
 {

 char c;

 // 1. init the UART2 serial port
 initU2();

 // 2. prompt
 putU2(' > ');

 // 3. main loop
 while (1)
 {

 // 3.1 wait for a character
 c = getU2();

 // 3.2 echo the character
 putU2(c);

 } // main loop

 } // main

 1. Build the project first, then follow the standard checklist to activate the Debugger
and to program the Explorer 16.

 2. Connect the serial cable to the PC (directly or via a Serial-to-USB converter) and
configure HyperTerminal for the same communication parameters: 115200, n, 8,
1, RTS/CTS on the available COM port.

 3. Click the HyperTerminal Connect button to start the terminal emulation.

 4. Select Run from the Debugger menu to execute the demonstration
program.

 Asynchronous Communication 205

 If HyperTerminal is already set to provide an echo for each character sent, you will
see double—literally! To disable this functionality, first hit the Disconnect button on
HyperTerminal. Then select File | Properties to open the Properties dialog box, and
select the Settings Pane tab (see Figure 9.4). This will be a good opportunity to set a
couple more options that will come in handy in the rest of the exploration.

 Figure 9.4 : The HyperTerminal Properties dialog box Settings pane.

 Note

 I recommend, for now, that you do not attempt to single-step or use breakpoints or the
RunToCursor function when using the UART! See the “ Tips & Tricks ” section at the end of the
chapter for a detailed explanation.

206 Day 9

 5. Select the VT100 terminal emulation mode so that a number of commands
(activated by special “ escape ” strings) will become available and will give us
more control over the cursor position on the terminal screen.

 6. Select ASCII Setup to complete the configuration. In particular, make sure that
the Echo typed characters locally function is not checked (this will immediately
improve your . . . vision). See Figure 9.5 .

 7. Also check the Append line feeds to incoming line ends option. This will
make sure that every time an ASCII carriage return (\r) character is received, an
additional line feed (\n) character is inserted automatically.

 Figure 9.5 : ASCII Setup dialog box.

 Building a Simple Console Library
 To transform our demo project in a proper terminal console library that could become
handy in future projects, we need only a couple more functions that will complete the

 Asynchronous Communication 207

puzzle: a function to print an entire (zero-terminated) string and a function to input a full
text line. Printing a string is, as you can imagine, the simple part:

 int puts(char *s)
 {

 while(*s) // loop until *s == ' \0 ' , end of string
 putU2(*s++); // send char and point to the next one

 putU2(' \r '); // terminate with a cr / line feed

 } // puts

 It is just a loop that keeps calling the putU2() function to send, one after the other, each
character in the string to the serial port.

 Reading a text string from the terminal (console) into a string buffer can be equally
simple, but we have to make sure that the size of the buffer is not exceeded (should the
user type a really long string), and we have to convert the carriage return character at the
end of the line in a proper \0 character for the string termination:

 char *getsn(char *s, int len)
 {

 char *p = s; // copy the buffer pointer
 do{
 *s = getU2(); // wait for a new character
 if (*s== ' \r ') // end of line, end loop
 break;

 s++; // increment buffer pointer
 len - - ;

 } while (len > 1); // until buffer full

 *s= ' \0 ' ; // null terminate the string

 return p; // return buffer pointer

 } // getsn

 In practice, the function as presented would prove very hard to use. There is no echo of
what is being typed, and the user has no room for error. Make only the smallest typo and
the entire line must be retyped. If you ’ re like me, you make a lot of typos all the time,
and the most battered key on your keyboard is the Backspace key. A better version of the

208 Day 9

getsn() function must include character echo and at least provisions for the Backspace
key to perform basic editing. It really takes only a couple more lines of code. The echo
is quickly added after each character is received. The Backspace character (identified
by the ASCII code 0x8) is decoded to move the buffer pointer one character backward
(as long as we are not at the beginning of the line already). We must also output a speci-
fic sequence of characters to visually remove the previous character from the terminal
screen:

 char *getsn(char *s, int len)
 {

 char *p = s; // copy the buffer pointer
 int cc = 0; // character count
 do{

 *s = getU2(); // wait for a new character
 putU2(*s); // echo character

 if ((*s == BACKSPACE) & & (s > p))
 {

 putU2(' '); // overwrite the last character
 putU2(BACKSPACE);
 len++;
 s - - ; // back the pointer
 continue;

 }
 if (*s== ' \n ') // line feed, ignore it
 continue;

 if (*s== ' \r ') // end of line, end loop
 break;

 s++; // increment buffer pointer
 len - - ;

 } while (len > 1); // until buffer full

 *s = ' \0 ' ; // null terminate the string

 return p; // return buffer pointer

 } // getsn

 Asynchronous Communication 209

 Put all the functions in a separate file that we will call conU2.c. Then create a small
header file conU2.h, to decide which functions (prototypes) and which constants to
publish and make visible to the outside world:

 /*
 ** CONU2.h
 ** console I/O library for Explorer16 board
 */

 // I/O definitions for the Explorer16
 #define CTS _RF12 // Cleart To Send, in, HW handshake
 #define RTS _RF13 // Request To Send, out, HW handshake
 #define BACKSPACE 0 x 8 // ASCII backspace character code

 // init the serial port UART2, 115200, 8, N, 1, CTS/RTS
 void initU2(void);

 // send a character to the serial port
 int putU2(int c);

 // wait for a new character to arrive to the serial port
 char getU2(void);

 // send a null terminated string to the serial port
 int puts(char *s);

 // receive a null terminated string in a buffer of len char

 char * getsn(char *s, int n);

 Testing a VT100 Terminal
 Since we have enabled the VT100 terminal emulation mode (see the previous
HyperTerminal settings), we now have a few commands available to better control
the terminal screen and cursor position, such as:

● clrscr() , to clear the terminal screen

● home() , to move the cursor to the home position in the upper-left corner of the
screen

 These commands are performed by sending so-called “ escape sequences, ” defined in
the ECMA-48 standard (also ISO/IEC 6429 and ANSI X3.64), also referred to as ANSI

210 Day 9

escape codes. They all start with the characters ESC (ASCII 0 x 1b) and the character
[(left square bracket).

 // useful macros for VT100 terminal emulation
 #define clrscr() putsU2(" \x1b[2J ")

 #define home() putsU2(" \x1b[1,1H ")

 To test the console library we can now write a small program that will:

 1. Initialize the serial port

 2. Clear the terminal screen

 3. Send a welcome message/banner

 4. Send a prompt character

 5. Read a full line of text

 6. Print the text on a new line

 Save the following code in a new file that we will call CONU2test.c:

 /*
 ** CONU2 Test
 ** UART2 RS232 asynchronous communication demonstration code
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include < p32xxxx.h >
 #include " CONU2.h "

 #define BUF_SIZE 128

 main()
 {

 char s[BUF_SIZE];

 // 1. init the console serial port
 initU2();

 Asynchronous Communication 211

 // 2. text prompt
 clrscr();
 home();
 puts(" Exploring the PIC32! ");

 // 3. main loop
 while (1)
 {

 // 3.1 read a full line of text
 getsn(s, sizeof(s));
 // 3.2 send a string to the serial port
 puts(s);

 } // main loop

 }// main

 1. Create a new project using the New Project checklist, and add all three files
conU2.h, conU2.c, and conU2test.c to the project and build all.

 2. Use the appropriate debugger checklist to connect and program the Explorer 16
board.

 3. Test the editing capabilities of the new console library you just completed.

 The Serial Port as a Debugging Tool
 Once you have a small library of functions to send and receive data to a console through
the serial port, you have a new powerful debugging tool available. You can strategically
position calls to print functions to present the content of critical variables and other
diagnostic information on the terminal. You can easily format the output to the most
convenient format for you to read. You can add input functions to set parameters that can
help better test your code, or you can use the input function to simply pause the execution
and give you time to read the diagnostic output when required. This is one of the oldest
debugging tools, effectively used since the first computer was invented and connected to
a teletypewriter.

 The Matrix Project
 To finish today ’ s exploration on a more entertaining note, let ’ s develop a new demo
project that we will call the matrix . The intent is that of testing the speed of the serial

212 Day 9

port and the PC terminal emulation by sending large quantities of text to the terminal and
clocking its performance. The only problem is that we don ’ t (yet) have access to a large
storage device from which to extract some meaningful content to send to the terminal. So
the next best option is that of “ generating ” some content using a pseudo-random number
generator. The stdlib.h library offers a convenient rand() function that returns a positive
integer between 0 and RAND_MAX (which, in the MPLAB C32 implementation, can be
verified to be equal to the largest signed 32-bit integer available).

 Using the “ reminder of ” operator (denoted by the % symbol in C language), we can
reduce its output to any smaller integer range and, in our example, produce a subset of
values that corresponds to ASCII printable characters only. The following statement, for
example, will produce only characters in the range from 33 to 127 :

 putU2(33+(rand()%94));

 To generate a more appealing and entertaining output, especially if you happened to
watch the movie The Matrix , we will present the (random) content by columns instead
of rows. We will use the pseudo-random number generator to change the content and the
 “ length ” of each column as we periodically redraw the entire screen:

 /*
 ** The UART Matrix
 **
 */
 #include < p32xxxx.h >
 #include < stdlib.h >

 #include " CONU2.h "

 #define COL 40
 #define ROW 23
 #define DELAY 3000

 main()
 {

 int v[40]; // length of each column
 int i, j, k;

 // 1. initializations
 T1CON = 0 x 8030; // TMR1 on, prescale 256, int clock (Tpb)
 initU2(); // initialize UART (115200, 8N1, CTS/RTS)
 clrscr(); // clear the terminal (VT100 emulation)

 Asynchronous Communication 213

 // 2. randomize the sequence
 getU2(); // wait for a character input
 srand(TMR1); // use the current timer value as seed

 // 3. init each column length
 for(j = 0; j < COL; j++)

 v[j]=rand()%ROW;

 // 4. main loop
 while(1)
 {

 home();

 // 4.1 refresh the entire screen, one row at a time
 for(i=0; i < ROW; i++)
 {

 // 4.1.1 refresh one column at a time
 for(j=0; j < COL; j++)
 {

 // update each column
 if (i < v[j])
 putU2(33 + (rand()%94));
 else
 putU2(' ');

 // additional column spacing
 putU2(' ');

 } // for j

 // 4.1.2 empty string, advance to next line
 puts(" ");

 } // for i

 // 4.2 randomly increase or reduce each column length
 for(j=0; j < COL; j++)
 {
 switch (rand()%3)

 {
 case 0: // increase length
 v[j]++;
 if (v[j] > ROW)
 v[j]=ROW;
 break;

214 Day 9

 case 1: // decrease length
 v[j] - - ;
 if (v[j] < 1)
 v[j]=1;
 break;

 default:// unchanged
 break;

 } // switch
 } // for j
 } // main loop

 } // main

 Forget the performance—watching this code run is fun. It is too fast anyway; in fact, you
will have to add a small delay loop (inside the for loop in 4.1) to make it more pleasing
to the eye:

 // 4.1.0 delay to slow down the screen update
 TMR1 = 0;

 while(TMR1 � DELAY);

 Note

 Remember to take the blue pill next time!

 Debriefing
 In this lesson we developed a small console I/O library while reviewing the basic
functionality of the UART module for operation as an RS232 serial port. We connected
the Explorer 16 board to a VT100 terminal (emulated by Windows HyperTerminal).
We will take advantage of this library in the next few lessons to provide us with a new
debugging tool and possibly as a user interface for more advanced projects.

 Notes for the C Experts
 I am sure that, at this point, you are wondering about the possibility of using the more
advanced library functions defined in the stdio.h library, such as printf() , to direct the
stdout output stream to the UART2 peripheral. Not only is this possible, but you can
consider it done!

 Asynchronous Communication 215

 In addition, the stdio.h library defines two helper functions, _mon_putc() and _mon_
getc() , that can be used to customize the behavior of the standard library. They are
declared with the attribute weak , which means that the MPLAB C32 linker won ’ t
complain about you trying to redefine them. In fact, you are supposed to redefine them in
order to implement new functionalities, such as using the SPI port as your input/output
stream or redirecting the output to an LCD display and so on.

 Note

 Remember that whether you customize the stdio.h functions or not, you are always responsible
for the proper interface initialization. So before the first call to printf() , make sure
the UART2 or your communication peripheral of choice is enabled and the baud rate is set
correctly.

 Notes for the PIC® Microcontroller Experts
 Sooner or later, every embedded control designer will have to come to terms with the
USB bus. If, for now, a small “ dongle ” (converting the serial port to a USB port) can be a
reasonable solution, eventually you will find opportunities and designs that will actually
benefit from the superior performance and compatibility of the USB bus. Several 8- and
16-bit PIC microcontroller models already incorporate a USB Serial Interface Engine
(SIE) as a standard communication interface. Microchip offers a free USB software stack
with drivers and ready-to-use solutions for the most common classes of application.

 One of them, known as the Communication Device Class (CDC), makes the USB
connection look completely transparent to the PC application so that even HyperTerminal
cannot tell the difference. Most important, you will not need to write and/or install any
special Windows drivers. When writing the application in C, you won ’ t even notice the
difference, if not for the absence of a need to specify any communication parameter.
In USB there is no baud rate to set, no parity to calculate, no port number to select
(incorrectly), and the communication speed is so much higher . . .

 Tips & Tricks
 As we mentioned during one of the early exercises presented in this lesson, single-
stepping through a routine that enables and uses the UART to transmit and receive
data from the HyperTerminal program is a bad idea. You will be frustrated seeing the

216 Day 9

HyperTerminal program misbehave and/or simply lock up and ignore any data sent to it
without any apparent reason.

 To understand the problems, you need to know more about how the MPLAB ICD2
in circuit debugger operates. After executing each instruction when in single-step
mode or upon encountering a breakpoint, the ICD2 debugger not only stops the CPU
execution but also “ freezes ” all the peripherals. It freezes them, as in dead-cold-ice all
of a sudden; not a single clock pulse is transmitted through their digital veins. When this
happens to a UART peripheral that is busy in the middle of a transmission, the output
serial line (TX) is also frozen in the current state. If a bit was being shifted out in that
precise instant, and specifically if it was a 1, the TX line will be held in the “ break ”
state (low) indeterminately. The HyperTerminal program, on the other side, would sense
this permanent “ break ” condition and interpret it as a line error. It will assume that
the connection is lost and it will disconnect. Since HyperTerminal is a pretty “ basic ”
program, it will not bother letting you know what is going on; it will not send a beep, not
an error message, nothing—it will just lock up!

 If you are aware of the potential problem, this is not a big deal. When you restart your
program with the ICD2, you will only have to remember to click the HyperTerminal
Disconnect button first and then the Connect button again. All operations will resume
normally.

 Exercises
 1. Write a console library with buffered I/O (using interrupts) to minimize the

impact on program execution (and debugging).

 2. Develop a simple command-line interpreter that recognizes a small defined set of
keywords to assist in debugging by inspecting and modifying the value of RAM
memory locations and/or providing hexadecimal memory dumps of the Flash
memory.

 Books
 Axelson , J. , Serial Port Complete , second edition (Lakeview Research , Madison,

WI , 2007) . This new edition was published just in time for me to include it here.
The author is most famous for her USB Complete ” book (see below), considered
the reference book for all embedded-control programmers. Over time she has

 Asynchronous Communication 217

developed and maintained a whole series completely dedicated to serial and parallel
communication interfaces.

 Axelson , J. , USB Complete , third edition (Lakeview Research , Madison, WI , 2005) . By
the time you read this book, most probably new models of the PIC32MX family will
have been announced offering USB communication capabilities. So, I thought you
might appreciate this recommendation. Jan Axelson ’ s book has reached the third
edition already. She has continued to add material at every step and still managed to
keep things very simple.

 Eady , F. , Implementing 802.11 with Microcontrollers: Wireless Networking for Embedded
Systems Designers (Newnes , Burlington, MA , 2005) . Fred brings his humor
and experience in embedded programming to make even wireless networking seem
easy.

 Links
 http://en.wikipedia.org/wiki/ANSI_escape_code . This is a link to the complete table of

ANSI escape codes as implemented by the VT100 HyperTerminal emulation.

www.cs.utk.edu/~shuford/terminal/dec.html . This is a real dive into a piece of the history
of computers. I used these terminals; does this make me look old?

This page intentionally left blank

 Glass = Bliss

 The Plan
 I would be surprised if you told me that on your desk next to your PC there was still a
large and bulky CRT computer monitor. In a matter of a few years the entire personal
computer industry has shifted to the new technology: flat LCD panels of ever larger size
and higher resolution. In the embedded-control world, something similar has happened.
LED seven-segment displays are so 1990s! Small LCD displays have become ubiquitous
and, besides consuming a fraction of the power of their LED counterparts, they provide
alphanumeric output (i.e., they support text) and, ever more often, graphics as well. But
wait, maybe there is already another generation of organic LED displays (OLEDs) just
around the corner and ready to demand revenge.

 In this lesson, we will learn how to interface with a small and inexpensive LCD alphanumeric
display module. This project will be a good excuse for us to learn and use the Parallel Master
Port (PMP), a flexible parallel interface available on all PIC32MX microcontrollers.

 Preparation
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require only the use of the
Explorer 16 demonstration board and your In-Circuit Debugger of choice (PIC32 Starter
kit, ICD2, REAL ICE, or the like).

 The Exploration
 The Explorer 16 board can accommodate three different types of dot-matrix,
alphanumeric LCD display modules and one type of graphic LCD display module. By

D A Y 1 0

220 Day 10

default, it comes with a simple “ 2-rows by 16-character ” display and a 3V alphanumeric
LCD module (most often a Tianma TM162JCAWG1) compatible with the industry-
standard HD44780 controllers. These LCD modules are complete display systems
composed of the LCD glass, column, and row multiplexing drivers; power supply
circuitry; and an intelligent controller, all assembled together in so-called Chip On
Glass (COG) technology. Thanks to this high level of integration, the circuitry required
to control the dot-matrix display is greatly simplified. Instead of the hundreds of pins
required by the column-and-row drivers to directly control each pixel, we can interface to
the module with a simple 8-bit parallel bus using just 11 I/Os.

 On alphanumeric modules (see Figure 10.1) in particular, we can directly place ASCII
character codes into the LCD module controller RAM buffer (known as the Display
Data RAM buffer, or DDRAM). The output image is produced by an integrated character
generator (a table) using a 5 � 7 grid of pixels to represent each character. The table
(see Figure 10.2) typically contains an extended ASCII character set in the sense that
it has been somewhat merged with a small subset of Japanese Kata Kana characters
as well some symbols of common use. While the character generator table is mostly
implemented in the display controller ROM, various display models offer the possibility
to extend the character set by modifying/creating new characters (from 2 to 8) accessing
a second small internal RAM buffer (the Character Generator RAM buffer, or
CGRAM).

�3.3V

�3.3V

R44 RD4/RMWR

RD5/PMRD

RB15/PMAD

VEE

1

2

3

4
5

6 E

DB0 RE0/PMD0

LCD1

RE1/PMD1

RE2/PMD2

RE3/PMD3

RE4/PMD4_1

RE5/PMD5_1

RE6/PMD6_1

RE7/PMD7_1

7

8

10

11

12
13

14

9
DB1

DB2

DB3

DB4

DB5

DB6

DB7

R/W

RS

Vo

VCC

CNC
R43

1.3K

10K

 Figure 10.1 : Default alphanumeric LCD module connections.

 Glass � Bliss 221

 HD44780 Controller Compatibility
 As mentioned, the 2 � 16 LCD module used in the Explorer 16 board is one among a
vast selection of LCD display modules available on the market in configurations ranging
from 1 to 4 lines of 8, 16, 20, 32, and up to 40 characters each and that are compatible
with the original HD44780 chipset, today considered an industry standard.

 The HD44780 compatibility means that the integrated controller contains just two
separately addressable 8-bit registers: one for ASCII data and one for commands/status.
The standard sets of commands shown in Tables 10.1 and 10.2 can be used to set up and
control the display.

 Thanks to this commonality, any code we will develop to drive the LCD on the Explorer
16 board will be immediately available for use with any of the other HD44780-
compatible alphanumeric LCD display modules.

Char.code

����0000

����0001

����0010

����0011

����0100

����0101

����0110

����0111

����1000

����1001

����1010

����1011

����1100

����1101

����1110

����1111

0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1

 Figure 10.2 : Character generator table used by HD44780-compatible
LCD display controllers.

222 Day 10

 Table 10.1 : The HD44780 instruction set.

 Instruction Code Description Execution
Time RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

 Clear
display

 0 0 0 0 0 0 0 0 0 1 Clears display and returns
cursor to the home position
(address 0).

 1.64 mS

 Cursor
home

 0 0 0 0 0 0 0 0 1 * Returns cursor to home
position (address 0). Also
returns display being shifted
to the original position.
DDRAM contents remain
unchanged.

 1.64 mS

 Entry
mode set

 0 0 0 0 0 0 0 1 I/D S Sets cursor move direction
(I/D), specifies to shift the
display (S). These operations
are performed during data
read/write.

 40 uS

 Display
on/off
control

 0 0 0 0 0 0 1 D C B Sets on/off of all display
(D), cursor on/off (C), and
blink of cursor position
character (B).

 Cursor/
display
shift

 0 0 0 0 0 1 S/C R/L * * Sets cursor move or
display shift (S/C),
shift direction (R/L).
DDRAM contents remain
unchanged.

 40 uS

 Function
set

 0 0 0 0 1 DL N F * * Sets interface data length
(DL), number of display
lines (N), and character
font (F).

 Set
CGRAM
address

 0 0 0 1 CGRAM address Sets the CGRAM address.
CGRAM data is sent and
received after this setting.

 40 uS

 Set
DDRAM
address

 0 0 1 DDRAM address Sets the DDRAM address.
DDRAM data is sent and
received after this setting

 40 uS

 Read busy
flag and
address
counter

 0 1 BF CGRAM/DDRAM address Reads busy flag (BF),
indicating internal operation
is being performed, and
reads CGRAM or DDRAM
address counter contents
(depending on previous
instruction).

 0 uS

 Write to
CGRAM or
DDRAM

 1 0 write data Writes data to CGRAM or
DDRAM.

 40 uS

 Read from
CGRAM or
DDRAM

 1 1 read data Reads data from CGRAM or
DDRAM.

 40 uS

 Glass � Bliss 223

 The Parallel Master Port
 The simplicity of the 8-bit bus shared by all these display modules is remarkable. Beside
the eight bidirectional data lines (which, by enabling a special “ nibble ” mode, could be
reduced to just four for further I/O saving), there is:

● An Enable strobe line (E)

● A Read/Write selection line (R/W)

● An address line (RS) for the register selection

 It would be simple enough to control the 11 I/Os by accessing manually (bit banging) the
individual PORTE and PORTD pins to implement each bus sequence, but we will take
this opportunity instead to explore the capabilities of a new peripheral introduced with
the PIC24 architecture and enhanced in the PIC32 architecture: the Parallel Master Port
(PMP). This addressable parallel port was designed to ease access to a large number of
external parallel devices of common use, ranging from analog-to-digital converters, RAM
buffers, ISA bus compatible interfaces, LCD display modules, and even hard disk drives
and Compact Flash cards.

 Table 10.2 : HD44780 command bits.

 Bit Name Setting/Status

 I/D 0 � Decrement cursor position 1 � Increment cursor position

 S 0 � No display shift 1 � Display shift

 D 0 � Display off 1 � Display on

 C 0 � Cursor off 1 � Cursor on

 B 0 � Cursor blink off 1 � Cursor blink on

 S/C 0 � Move cursor 1 � Shift display

 R/L 0 � Shift left 1 � Shift right

 DL 0 � 4-bit interface 1 � 8-bit interface

 N 0 � 1/8 or 1/11 Duty (1 line) 1 � 1/16 Duty (2 lines)

 F 0 � 5 � 7 dots 1 � 5 � 10 dots

 BF 0 � Can accept instruction 1 � Internal operation in progress

224 Day 10

 You can think of the PMP as a sort of flexible I/O bus added to the PIC32 architecture
that relieves the microcontroller of the mundane task of managing slow external
peripherals. The PMP offers:

● Eight- or 16-bit bidirectional data path

● Up to 64 k of addressing space (16 address lines)

● Six additional strobe/control lines, including:

 1. Enable

 2. Address latch

 3. Read and write (separate or combined)

 4. Chip Select (2x)

 The PMP can also be configured to operate in slave mode to attach, as an addressable
peripheral, to a larger microprocessor/microcontroller system.

 Both bus read and bus write sequences are fully programmable so that not only can the
polarity and choice of control signals be configured to match the target bus, the timing can
also be finely tuned to adapt to the speed of the peripherals to which we want to interface.

 Configuring the PMP for LCD Module Control
 As in all other PIC32 peripherals, there is a set of control registers dedicated to the PMP
configuration. The first and most important one is PMCON. You will recognize the familiar
sequence of control bits common to all the modules xxCON registers (see Figure 10.3).

 The list of control registers that we will need to initialize is a bit longer this time and
also includes PMMODE,PMADDR,PMSTAT,and PMAEN. They are packed with powerful
options and they all require your careful consideration. Instead of proceeding through a
lengthy review of each and every one of them, I will list only the key choices required
specifically by the LCD module interface:

● PMP enabled

● Fully demultiplexed interface (separate data and address lines will be used)

● Enable strobe signal (on pin RD4)

● Read signal (on pin RD5)

 Glass � Bliss 225

● Enable strobe active high

● Read active high, write active low

● Master mode with read and write signals on the same pin (RD5)

● Eight-bit bus interface (using PORTE pins)

● Only one address bit is required, so we will choose the minimum configuration,
including PMA0 (on pin RB15) and PMA1 (unused)

 Also, considering that the typical LCD module is an extremely slow device, we will
better select the most generous timing, adding the maximum number of wait states
allowed at each phase of a read or write sequence:

● 4 � Tpb wait for data set up before read/write

● 15 � Tpb wait between R/W and enable

● 4 � Tpb wait data set up after enable

 A Small Library of Functions to Access an LCD Display
 Create a new project called Liquid using the New Project checklist and a new source file
liquid.c to start creating a small LCD interface library.

U-0

bit 31

bit 23

bit 15

bit 7

R/W-0
ON

CSF1 CSF0 ALP CS2P CS1P WRSP RDSP

FRN SIDL ADRMUX1 ADRMUX0 PTWREN PTRDEN
R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0

bit 16

bit 8

bit 0

bit 24

U-0 U-0 U-0 U-0 U-0 U-0 U-0

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

— — — — — — — —

—

—

 Figure 10.3 : PMCON control register.

226 Day 10

 We will start writing the LCD initialization routine first. It is natural to start with the
initialization of the PMP port key control registers:

 void LCDinit(void)
 {

 // PMP initialization
 PMCON = 0x83BF; // Enable the PMP, long waits
 PMMODE = 0x3FF; // Master Mode 1

 PMPEN = 0x0001; // PMA0 enabled

 After these steps, we are able to communicate with the LCD module for the first time,
and we can follow a standard LCD initialization sequence as recommended by the
manufacturer. The initialization sequence must be timed precisely (see the HD44780
instruction set for details) and cannot be initiated before at least 30 ms have been
granted to the LCD module to proceed with its own internal initialization (power on
reset) sequence. For simplicity and safety, we will hardcode a delay in the LCD module
initialization function, and we will use the Timer1 module to obtain simple but precise
timing loops for all subsequent steps:

 // init TMR1
 T1CON = 0x8030; // Enabled,1:256 Fpb, 1 tick ~ 6 us

 // wait for >30 ms

 TMR1 = 0; while(TMR1<6000); // 6000 x 6 us = 36 ms

 For our convenience, we will also define a couple of constants that will hopefully help us
make the following code more readable:

 #define LCDDATA 1 // RS = 1 ; access data register
 #define LCDCMD 0 // RS = 0 ; access command register

 #define PMDATA PMDIN1 // PMP data buffer

 To send each command to the LCD module, we will select the command register (setting
the address PMA0 = RS = 0) first. (see Figure 10.4).

 Then we will start a PMP write sequence by depositing the desired command byte in the
PMP data output buffer:

 PMADDR = LCDCMD; // command register (ADDR = 0)

 PMDATA = 0x38; // set: 8-bit interface, 2 lines, 5x7

 Glass � Bliss 227

 The PMP will perform the complete bus write sequence as follows:

 1. The address will be published on the PMP address bus (PMA0).

 2. The content of PMDATA will be published on the PMP data bus (PMD0-PMD7).

 3. The R/W signal will be asserted low (RD5).

 4. After 4 � Tpb (Tb) the strobe signal E will be asserted high.

 5. After 15 � Tpb (Tm) the Enable strobe will be de-asserted.

 6. After 4 � Tpb (Te) the data will be removed from the bus.

 Notice how this sequence is quite long as it extends for 20 � Tpb or more than 0.5 us
after the PIC32 has initiated it. In other words, the PMP will still be busy executing
part of this sequence while the PIC32 will have already executed at least another 40
instructions or more. Since we are going to wait for a considerably longer amount of
time anyway (� 40 us) to allow the LCD module to execute the command, we will not
worry about the time the PMP requires to complete the command; we ’ ll just have to wait
patiently.

 TMR1 = 0; while(TMR1<8); // 8 x 6 us = 48 us

RS (PMA0)

R/W (RD5)

E (RD4)

PMD0-7 (RE0-7)

Tm

Tb

Te

 Figure 10.4 : PMP-to-LCD display 8-bit interface write command sequence.

228 Day 10

 We will then proceed similarly with the remaining steps of the LCD module initialization
sequence:

 PMDATA = 0x0c; // ON, no cursor, no blink
 TMR1 = 0; while(TMR1<8); // 8 x 6 us = 48 us
 PMDATA = 0x01; // clear display
 TMR1 = 0; while(TMR1<300); // 300 x 6 us = 1.8 ms

 PMDATA = 0x06; // increment cursor, no shift

 TMR1 = 0; while(TMR1<300); // 300 x 6 us = 1.8 ms

 After the LCD module initialization, things will get a little easier and the timing loops
will no longer be necessary, because we will be able to use the LCD module Read Busy
Flag command. This will tell us whether the integrated LCD module controller has
completed the last command and is ready to receive and process a new one. To read the
LCD status register containing the LCD busy flag, we will need to instruct the PMP
to execute a bus read sequence. This is a two-step process: First, we initiate the read
sequence by reading (and discarding) the contents of the PMP data buffer (PMPDIN) a
first time. When the PMP sequence is completed, the data buffer will contain the actual
value read from the bus, and we will read its contents from the PMP data buffer again.
But how can we tell when the PMP read sequence is complete?

 Simple: We can check the PMP busy flag (PMMODEbits.BUSY) in the PMMODE control
register (see Figure 10.5).

PMDIN

RD5

Status

LCD DisplayPMP

LCDBUSY

RS

R/W Data

Command

E

RE0

RE7

RB15

RD4

PMADDR

PMMODE

PMPBUSY

...

 Figure 10.5 : PMP-to-LCD connection block diagram.

 Glass � Bliss 229

 In summary, to check the LCD module busy flag, we will need to check the PMP busy
flag first to make sure that any previous command is completed, issue a read command,
wait for the PMP busy flag again, and only at this point will we gain access to the actual
LCD module status register contents, including the LCD busy flag.

 By passing the register address as a parameter to the read function, we will obtain a more
generic function that will be able to read the LCD status register or the data register, as in
the following code:

 char readLCD(int addr)
 {

 int dummy;
 while(PMMODEbits.BUSY); // wait for PMP to be available
 PMADDR = addr; // select the command address
 dummy = PMDATA; // init read cycle, dummy read
 while(PMMODEbits.BUSY); // wait for PMP to be available
 return(PMDATA); // read the status register

 } // readLCD

 The LCD module status register contains two pieces of information: the LCD busy flag
and the LCD RAM pointer current value. We can use two simple macros, busyLCD()
and addrLCD() , to split the two pieces and a third one, getLCD() , to access the data
register:

 #define busyLCD() readLCD(LCDCMD) & 0x80
 #define addrLCD() readLCD(LCDCMD) & 0x7F

 #define getLCD() readLCD(LCDDATA)

 Using the busyLCD() function we can create a function to write data or commands to the
LCD module:

 void writeLCD(int addr, char c)
 {
 while(busyLCD());
 while(PMMODEbits.BUSY); // wait for PMP to be available
 PMADDR = addr;
 PMDATA = c;

 } // writeLCD

230 Day 10

 A few additional macros will help complete the library:

● putLCD() will send ASCII data to the LCD module:
 #define putLCD(d) LCDwrite(LCDDATA, (d))

● cmdLCD() will send generic commands to the LCD module:
 #define cmdLCD(c) writeLCD(LCDCMD, (c))

● homeLCD() will reposition the cursor on the first character of the first row:
 #define homeLCD() writeLCD(LCDCMD, 2)

● clrLCD() will clear the entire contents of the display:
 #define clrLCD() writeLCD(LCDCMD, 1)

 And finally, for our convenience, we might want to add putsLCD() , a function that will
send an entire null terminated string to the display module:

 void putsLCD(char *s)
 {
 while(*s)
 putLCD(*s++);

 }//putsLCD

 Let ’ s put all of our work together, adding a short main function:

 main(void)
 {

// initializations
 initLCD();

 // put a title on the first line
 putsLCD("Exploring ");

 // put the cursor on the second line (addr 0x40)
 cmdLCD(0x80 | 0x40);
 putsLCD(“ the PIC32");

 // main loop, empty for now
 while (1)
 {
 }

 } // main

 Glass � Bliss 231

 If all went well, after building the project and programming the Explorer 16 board with
the debugger of choice, you will now have the great satisfaction of seeing the title string
showing, split between the two rows of the LCD display.

 Building an LCD Library and Using the PMP Library
 The exact same functionality can be obtained using the specific PMP peripheral library
by including the pmp.h library or simply including plib.h. Four functions in particular
provide us with all the tools we need to control the PMP and dialog with the LCD
display:

● mPMPOpen() , which helps us configure the parallel master port

● PMPSetAddress() , which allows us to set the address register

● PMPMasterWrite() , which initiates a basic write sequence

● mPMPMasterReadByte() , which initiates a basic read sequence and returns a
byte value

 Since we are at it, we will not only rewrite the code to use the more descriptive macros
and definitions offered by the library, we will also rearrange the code a little so to
transform it into a practical little library of its own to be used in the near future in other
projects with the Explorer 16 demonstration board.

 Let ’ s start by creating a new project that we will call LCD library . Then let ’ s create
a new source file called LCDlib.c . Here is the new initLCD() function as expressed
using the PMP library functions and macros:

 void initLCD(void)
 {

 // PMP initialization
 mPMPOpen(PMP_ON | PMP_READ_WRITE_EN | 3,

 PMP_DATA_BUS_8 | PMP_MODE_MASTER1 |
 PMP_WAIT_BEG_4 | PMP_WAIT_MID_15 |
 PMP_WAIT_END_4,
 0x0001, // only PMA0 enabled
 PMP_INT_OFF); // no interrupts used

 // wait for >30 ms
 Delayms(30);

232 Day 10

 //initiate the HD44780 display 8-bit init sequence
 PMPSetAddress(LCDCMD); // select command register
 PMPMasterWrite(0x38); // 8-bit int, 2 lines, 5x7
 Delayms(1); //>48 us

 PMPMasterWrite(0x0c); // ON, no cursor, no blink
 Delayms(1); //>48 us

 PMPMasterWrite(0x01); // clear display
 Delayms(2); //>1.6 ms

 PMPMasterWrite(0x06); // increment cursor, no shift
 Delayms(2); //>1.6 ms

 } // initLCD

 Notice how I exaggerated the timing delays in the initialization sequence in order to
use a single delay function that operates in basic increments of 1 millisecond called
Delayms(). We will see shortly how and where to define it.

 Here are the other core functions that will populate our simple LCD library:

 char readLCD(int addr)
 {

 PMPSetAddress(addr); // select register
 mPMPMasterReadByte(); // initiate read sequence
 return mPMPMasterReadByte(); // read actual data

 } // readLCD

 void writeLCD(int addr, char c)
 {

 while(busyLCD());
 PMPSetAddress(addr); // select register
 PMPMasterWrite(c); // initiate write sequence

 } // writeLCD

 If you found in the previous project (Liquid) that setting the cursor on the second
line of the display was a bit awkward, you will agree that adding a little smarts to the
putsLCD() function could be helpful. In particular, it would be nice to allow the routine

 Glass � Bliss 233

to interpret a few special characters, like the line end , tab, and the new line , similarly to
the way a serial port and/or a console are expected to.

 void putsLCD(char *s)
 {

 char c;
 while(*s)
 {

 switch (*s)
 {
 case '\n': // point to second line
 setLCDC(0x40);
 break;

 case '\r': // home, point to first line
 setLCDC(0);
 break;

 case '\t': // advance next tab (8) positions
 c = addrLCD();
 while(c & 7)
 {

 putLCD(' ');
 c++;

 }
 if (c > 15) // if necessary move to second line

 setLCDC(0x40);
 break;

 default: // print character
 putLCD(*s);
 break;

 } //switch
 s++;

} //while

 } //putsLCD

 This way, printing a string containing (or terminating) with the character \n (new line)
will set the cursor to the beginning of the second line of the LCD display. A \r character
(line end) will place the cursor back to the beginning of the first line, and \t character
(tab) will produce the expected result.

234 Day 10

 A standard header and a few #include statements will complete the module:

 /*
 ** LCDlib.c
 */
 #include <p32xxxx.h>
 #include <plib.h>
 #include <explore.h>
 #include <LCD.h>

 #define PMDATA PMDIN

 Save the LCDlib.c code file we just completed and then start a new source file in the
MPLAB editor window. This will be the include file LCD.h , which will complete the
library by publishing all the macros and function prototypes required:

 /*
 **
 ** LCD.h
 **
 */
 #define HLCD 16 // LCD width=16 characters
 #define VLCD 2 // LCD height=2 rows

 #define LCDDATA 1 // address of data register
 #define LCDCMD 0 // address of command register

 void initLCD(void);
 void writeLCD(int addr, char c);
 char readLCD(int addr);

 #define putLCD(d) writeLCD(LCDDATA, (d))
 #define cmdLCD(c) writeLCD(LCDCMD, (c))

 #define clrLCD() writeLCD(LCDCMD, 1)
 #define homeLCD() writeLCD(LCDCMD, 2)

 #define setLCDG(a) writeLCD(LCDCMD, (a & 0x3F) | 0x40)
 #define setLCDC(a) writeLCD(LCDCMD, (a & 0x7F) | 0x80)

 #define busyLCD() (readLCD(LCDCMD) & 0x80)
 #define addrLCD() (readLCD(LCDCMD) & 0x7F)
 #define getLCD() readLCD(LCDDATA)

 void putsLCD(char *s);

 Glass � Bliss 235

 Finally, to test the newly created LCD library, let ’ s write a small new test program that
we will call LCDlib test.c :

 /*
 ** LCDlib test
 **
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include <p32xxxx.h>

 #include <LCD.h>

 main()
 {

 initLCD();

 clrLCD();
 putsLCD("Exploring \nthe \tPIC32");

 while(1);

 }

THE EXPLORER.C LIBRARY
To help us initialize the PIC32 for maximum performance (see Day 7), vectored
interrupts (see Day 5) and use the features offered by the Explorer16 board (such as the
LED bar, see Day 1–3), at this point, we should start aggregating in a new small library a
couple of handy functions. We will keep adding gradually new functions to it in the next
few chapters but here is its first incarnation:

/*
** Explore.c
**
*/

#include <p32xxxx.h>
#include <plib.h>
#include <explore.h>

236 Day 10

void initEX16(void)
{
 // 1. disable the JTAG port to make the LED bar
 // available if not using the Starter Kit
#ifndef PIC32_STARTER_KIT
 mJTAGPortEnable(0);
#endif

 // 2. Sysytem config performance
 SYSTEMConfigPerformance(FCY);

 // 7. allow vectored interrupts
 INTEnableSystemMultiVectoredInt(); // Interrupt vectoring

 // 8. PORTA output LEDs0..6, make RA7 an input button
 LATA = 0;
 TRISA = 0xFF80;

} // initEX16

//
void _general_exception_handler(unsigned c, unsigned s)
{
 while (1);
} // exception handler
//

/*
** Simple Delay functions
**
** uses: Timer1
** Notes: Blocking function
*/

void Delayms(unsigned t)
{
 T1CON = 0x8000; // enable TMR1, Tpb, 1:1
 while (t--)
 { // t x 1ms loop
 TMR1 = 0;
 while (TMR1 < FPB/1000);
 }
} // Delayms

 Glass � Bliss 237

The corresponding include file: explore.h will gather as well some useful definitions and
the first two functions’ prototypes:

/*
** Explore.h
**
*/
#defi ne FALSE 0
#defi ne TRUE !FALSE
#defi ne FCY 72000000L
#defi ne FPB 36000000L

// uncomment the following line if using the PIC32 Starter Kit
//#defi ne PIC32_STARTER_KIT

// function prototypes
void initEX16(void);
void Delayms(unsigned);

 Creating the include and lib Directories
 To keep our files in order and our projects clean and tidy, we should apply a little discipline
here and start grouping all the simple libraries we created so far two subdirectories:

● include , where we will put all the .h files created for the simple libraries we
worked on so far, including:
 1. explore.h

 2. LCD.h

 3. conU2.h

 4. SEE.h

● lib , where we will put all the corresponding .c modules, including:
 1. explore.c

 2 . LCDlib.c

 3 . conU2.c

 4. SEE.c

238 Day 10

 From now on we will refer automatically to these modules by adding the include
directory to the include search path of each new project. The sequence of steps required
will be the following:

 1. Open the Build Options dialog box (see Figure 10.6) by choosing Project |
BuildOptions . . . | Project .

 2. In the “ Show Directories for ” box, select Include Search Path .

 Figure 10.6 : Build options for project dialog box.

 3. Click the New button to create a new empty entry.

 Glass � Bliss 239

 Figure 10.7 : Browse for folder dialog box.

 4. Select the . . . button on the rightmost edge to open the Browse dialog box (see
 Figure 10.7).

 5. Select our new include directory.

 6. Click OK to close the dialog box.

 7. Click OK to accept the new setting.

 8. Save the project by selecting Project | SaveProject ,

With these settings, we will be able to refer to the LCD.h file with the default include
statement, as in:

 #include <LCD.h>

 without needing to add details of the path required to reach the directory where the file is
actually stored.

240 Day 10

 Advanced LCD Control
 If you felt that the preceding discussion was not too complex or perhaps not rewarding
enough, here we have some more interesting stuff and a new challenge for you to
consider.

 When we introduced the HD44780 compatible alphanumeric LCD modules, we
mentioned how the display content was generated by the LCD module controller using
a table, the character generator, located in ROM. But we also mentioned the possibility
to extend the character set with user-defined symbols using an additional RAM buffer
(known as the CGRAM). Writing to the CGRAM, it is possible to create from two to
eight new character patterns, depending on the LCD display model. Of course, if we had
32 user-defined characters, we could almost turn the entire alphanumeric display into
a complete graphical display. Unfortunately, the most popular and inexpensive LCD
modules, in particular the ones used on the Explorer 16 board, have only space for two
user-defined characters. Still, there are a number of interesting things we can do with
those. In the following, for example, we use just one of the two user-defined characters to
illustrate how to develop a simple progress bar effect.

 We will need a function to set the LCD module RAM buffer pointer to the beginning of
the CGRAM area using the Set CGRAM Address command, or better a macro that uses
the writeLCD() function:

 #define setLCDG(a) writeLCD(LCDCMD, (a & 0x3F) | 0x40)

 Once the buffer pointer is set on the CGRAM and specifically at the beginning of the
buffer (setLCDG(0)), we can use the putLCD() function to place 8 bytes of data in

 Note

 Notice the use of the angled brackets (��) as opposed to the double quotes (“ ”) syntax. The
difference between the two notations lies in where the compiler will look for the file to be
included. The double quotes method we used in all previous projects tells the compiler to look
for a file inside the current project directory. The angled brackets, on the other hand, tell the
compiler to look for the file inside a series of directories known as the include search path that
typically contains all the compiler-specific (MPLAB C32) library directories defined during the
installation of the program on our computer but also all the additional directories we listed in

the Include Search Path dialog box.

 Glass � Bliss 241

the buffer. Each byte of data will contribute 5 bits (LSb) to the construction of the eight
rows composing the new character pattern. After repositioning the buffer pointer into the
DDRAM area (using the macro setLCDC(0)), we can use the newly defined character
with the ASCII code 0x00 .

 Notice that by convention, although the first line of the display corresponds to addresses
from 0 to 15 of the DDRAM buffer, the second line is always found at addresses from
0x40 to 0x4f independently of the display width—the number of characters that
compose each line of the actual display.

 Progress Bar Project
 It is time to start our last project for the day. We ’ ll call it Progress . Let ’ s proceed with the
usual New Project checklist, and remember at the end to add the include directory in the
include search path .

 A new source file, ProgressBar.c , can be immediately created by inserting the standard
template and include statements list:

 /*
 **
 ** Progress Bar
 **
 */
 // configuration bit settings, Fcy = 72MHz, Fpb = 36 MHz
 #pragma config POSCMOD = XT, FNOSC = PRIPLL
 #pragma config FPLLIDIV = DIV_2, FPLLMUL = MUL_18, FPLLODIV = DIV_1
 #pragma config FPBDIV = DIV_2, FWDTEN = OFF, CP = OFF, BWP = OFF
 #include <p32xxxx.h>
 #include <explore.h>

 #include <LCD.h>

 We could draw a blocky progress bar using just a string of (up to) 16 “ brick ” characters
that can be obtained from the LCD font table by selecting the code 0xff, giving a solid
5 � 8 black pixels pattern. But to obtain a finer resolution and smoother motion, we can
exploit instead the user-defined character feature we just learned to use. The trick is to
build most of the progress bar with (5 � 8) bricks and then define a single new character
of the required thickness for the tip (see Figure 10.8).

242 Day 10

 Here is the code required to define a progress bar tip of given thickness:

 void newBarTip(int i, int width)
 {

 char bar;
 int pos;

 // save cursor position
 while(busyLCD());
 pos = addrLCD();

 // generate a new character at position i
 // set the data pointer to the LCD CGRAM buffer
 setLCDG(i*8);

 // as a horizontal bar (0-4)x thick moving left to right
 // 7 pixel tall
 if (width > 4)
 width = 0;

72%

0xff

brick brick tip

0xff 0x00

 Figure 10.8 : Drawing a progress bar.

 Glass � Bliss 243

 else
 width = 4 - width;

 for(bar=0xff; width > 0; width--)
 bar<<=1; // bar >>= 1; if right to left

 // fill each row (8) with the same pattern
 putLCD(bar);
 putLCD(bar);
 putLCD(bar);
 putLCD(bar);
 putLCD(bar);
 putLCD(bar);
 putLCD(bar);
 putLCD(bar);
 // restore cursor position
 setLCDC(pos);

 } // newBarTip

 Given this essential building block, drawing an actual progress bar requires only a few
more lines of code:

 void drawProgressBar(int index, int imax, int size)
 { // index is the current progress value

 // imax is the maximum value
 // size is the number of character positions available
 int i;

 // scale the input values in the available space
 int width=index * (size*5)/imax;

 // generate a character to represent the tip
 newBarTip(TIP, width % 5); // user defined character 0

 // draw a bar of solid blocks
 for (i=width/5; i>0; i--)

 putLCD(BRICK); // filled block character

 // draw the tip of the bar
 putLCD(TIP); // use character 0

 } // drawProgressBar

244 Day 10

 As you can see, to make the drawProgressBar() function really friendly, I included a
little scaling of the input values so that the bar itself can be made to fit the desired number
of spaces on the LCD display and the progress level is made relative to a given maximum
value passed as a parameter. To put it to the test, we ’ ll define a loop where a counter
value (index) is cycling slowly through a range of values from 0 to 99. Each value is
shown in the first three characters of the first line of the display. The rest of the line is
filled with the progress bar.

 main(void)
 {

 int index;
 char s[8];

 // LCD initialization
 initLCD();

 index = 0;

 // main loop
 while(1)
 {

 clrLCD();

 sprintf(s, "%2d", index);
 putsLCD(s); putLCD('%');

 // draw bar
 drawProgressBar(index, 100, HLCD-3);

 // advance and keep index in boundary
 index++;
 if (index > 99)
 index=0;

 // slow down the action
 Delayms(100);

 } // main loop

 } // main

 Notice that it is important to slow the execution of the main loop by inserting a small
delay; otherwise the refresh of the display is so rapid that all we get to see is a sort of
ghostly faint image. Remember, LCD displays are slow little things; be patient with them!

 Glass � Bliss 245

 Finally, before you start building the project, remember to add all the required library
modules we used. You will need to select the project window and right-click the source
files to Add file. Browse to the lib directory we created today and select both the
explore.c module (that will give us the Delayms() function) and the LCDlib.c module.

 Now build the project, program the Explorer 16 board with the debugger of your choice,
and observe the code running and drawing a progress bar that moves smoothly from left
to right to fill the entire top line of the LCD display. This is true (glass) bliss!

 Debriefing
 Today we learned how to use the Parallel Master Port to interface to an alphanumeric
LCD display module, just one of many common devices that require an 8-bit parallel
interface. Since the LCD display modules are relatively slow peripherals, it might
seem that there has been little or no significant advantage in using the PMP instead of a
traditional bit-banged I/O solution. In reality, even when accessing such simple and slow
peripherals, the use of the PMP can provide two important benefits:

● The timing, sequence, and multiplexing of the control signals are always
guaranteed to match the configuration parameters, eliminating the risk of
dangerous bus collisions and/or unreliable operation as a consequence of coding
errors or unexpected execution and timing conditions (interrupts, bugs, and so on).

● The MCU is completely free from tending at the external (peripheral) bus,
allowing simultaneous execution of any number of higher-priority tasks without
disruption of the interface timing.

 Notes for the PIC24 Experts
 The PMP module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differences
that will affect your code while porting an application to the PIC32:

 1. The PMCON register control bits layout has been updated to resemble more closely
the layout of most other peripherals so that the module ON , FRZ , and IDL bits are
now located in the standard position (bit 15, bit 14, bit 13).

 2. The PMBE output signal has been removed.

 3. The PMPTTL control bit is now found in the PMCON register to select Schmitt trigger
or TTL input levels. It used to be part of the PADCFG1 register on the PIC24.

246 Day 10

 4. In the PMMODE register, the IRQM=11 and IRQM=10 selections have been
modified.

 5. The PMPEN register is now renamed PMAEN . This has been similarly updated on
the latest revision of the PIC24 datasheets as well.

 6. A single PMDIN and a single PMDOUT registers (now 32 bits wide) give
simultaneous access to all data buffers.

 Tips & Tricks
 Though basic alphanumeric displays are pretty much standardized around the HD44780
controller interface and command set, things are very different when it comes to
graphic displays. A variety of controllers are being currently offered with very different
capabilities. The most common controllers for small LCD displays are probably the New
Japan Radio (NJU6679) used in many monochrome displays (up to 128 � 128) and using
a parallel interfaces very similar to the HD44780. But the new trend is represented by
the serially interfaced EPSON (S1D15G10) controllers used in many inexpensive color
LCD displays, often referred to as “ Nokia knock-offs ” because their low price is mostly
driven by the large volumes of production supposedly achieved on the latest generations
of multimedia phones. OLED displays are also going the way of the serial interfaces
(SPIs). Finally, when the resolution of the display grows beyond the QVGA (320*240),
you can no longer rely on finding a complete controller chip on glass, and you have to
start producing a complex synchronized waveform while continuously refreshing the
screen. A QVGA or more advanced display peripheral module becomes a necessity.

 Exercises
 1. As suggested in the previous explorations using asynchronous serial interfaces,

it is possible to redirect the output of the stdio.h library routines, such as
printf() , to the LCD display. Redefine the _mon_putc() Function (see the
MPLAB C32 C Library Guide for details) to send characters to the LCD via the
parallel master port interface.

 2. LCD displays are typically very slow devices. A lot of processing power is
wasted while the PIC32 is waiting for the LCD display to perform a command.
Using a buffering mechanism and timer interrupts implement a background LCD
display interface. (A basic example of such a mechanism is provided in the LCD.
c code provided with the Explorer 16 demonstration board for the PIC24 and
dsPIC platforms).

 Glass � Bliss 247

 Books
 Bentham, Jeremy, TCP/IP Lean: Web Servers for Embedded Systems (CMP Books,

Lawrence, KS).This book will take you one level of complexity higher, showing you
how the TCP/IP protocols, the foundation of the Internet, can be easily implemented
in a “ few ” lines of C code. The author knows how to keep things “ lean ” as necessary
in every embedded-control application.

 Links
www.microchip.com/graphics . Microchip is offering graphic libraries capable of

supporting the most popular LCD display controllers for the 16-bit and 32-bit
architectures. Check the availability of free and third-party supported libraries on the
Web Graphic Design Center. www.microchip.com/stellent/idcplg?IdcService � SS_
GET_PAGE & nodeId � 1824 & appnote � en011993. This is a link to Microchip
Application Note 833, a free TCP/IP stack for all PICmicros. www.microchip.
com/stellent/idcplg?IdcService�SS_GET_PAGE&nodeId�1824&appnote�en01
2108. Application Note 870 describes a Simple Network Management Protocol for
Microchip TCP/IP stack-based applications.

This page intentionally left blank

 It ’ s an Analog World

 The Plan
 We live in an analog world. Temperature, humidity, and pressure but also voltages and
currents are analog. If we want our embedded-control applications to interact with the
outside world, we need to learn to interpret analog information and convert it to digital
so that a microcontroller can elaborate it and possibly produce an analog output again.
The analog-to-digital converter module is one of the key interfaces to the “ real ” world.
The PIC32MX family was designed with embedded-control applications in mind and
therefore is ideally prepared to deal with the analog nature of this world. A fast analog-
to-digital converter (ADC), capable of 500,000 conversions per second, is available on all
models with an input multiplexer that allows you to monitor a number of analog inputs
quickly and with high resolution. In this lesson we will learn how to use the 10-bit ADC
module available on the PIC32MX family to perform two simple measurements on the
Explorer 16 board: reading a voltage input from a potentiometer first and a voltage input
from a temperature sensor later.

 Preparation
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer
16 demonstration board and the In-Circuit Debugger of your choice.

 The Exploration
 The first step in using the ADC, like any other peripheral module inside the PIC32, is
to familiarize yourself with the module building blocks and the key control registers.

D A Y 1 1

250 Day 11

Yes, this means reading the datasheet once more, and even the Explorer 16 User Guide, to
find out the schematics.

 We can start by looking at the ADC module block diagram (see Figure 11.1).

 This is a pretty sophisticated structure that offers many interesting capabilities:

● Up to 16 input pins can be used to receive the analog inputs.

● Two input multiplexers can be used to select different input analog channels and
different reference sources each.

AVDD

AN0

V
R

 S
el

ec
t

M
U

X
 A

M
U

X
 B

AN1

AN2

AN3

AN4

AN5

Comparator

Internal Data Bus

Conversion Logic

16

AN6

AN7

AN8

AN9

AN10

AN11

AN12

AN13

Sample Control Control Logic
Conversion Control

VINH

VINL

Input MUX Control
Pin Cofig. Control

AN14

AN15

AVSS

VREF�

VINH

VINH

VINL

VINL

VR�

S/H
VR� VR�

DAC

10-Bit SAR

Data Formating

ADC1BUF0:

AD1CON1

AD1CON2

AD1CON3

AD1CHS

AD1PCFG

AD1CSSL

ADC1BUFF

VR�VREF�

 Figure 11.1 : Ten-bit high-speed ADC block diagram.

It’s an Analog World 251

● The output of the 10-bit converter can be formatted for integer or fixed-point
arithmetic, signed or unsigned, 16-bit and 32-bit output.

● The control logic allows for many possible automated conversion sequences to
synchronize the process to the activity of other related modules and inputs.

● The conversion output is stored in a 32-bit-wide, 16-words-deep buffer that can be
configured for sequential scanning or simple FIFO buffering.

 All these capabilities require a number of control registers to be properly configured,
and I understand how, especially at the beginning, the number of options available and
decisions to take could make you a bit dizzy. So we will start by taking the shortest and
simplest approach with the simplest example application: reading the position of the R6
potentiometer on the Explorer 16 board.

�3.3V

R6

10 K

C12

R12 470 RB5/AN5

NL

2

1
3

 Figure 11.2 : Detail of the Explorer 16 demonstration board R6 potentiometer.

 The 10 k Ohm potentiometer is directly connected to the power supply rails so that its
output can span the entire range of values from 3.3 V to the ground reference. It is
connected to the RB5 pin that corresponds to the analog input AN5 of the ADC input
multiplexer.

 After creating a new project using the appropriate checklist, we can create a new source
file pot.c , including the usual header file and adding the definition of a couple useful
constants. The first one, POT , defines the input channel assigned to the potentiometer; the

252 Day 11

second one, AINPUTS , is a mask that will help us define which inputs should be treated as
analog and which ones as digital:

 /*
 ** It ’ s an analog world
 ** Converting the analog signal from a potentiometer
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF
 #include <p32xxxx.h>

 #define POT 5 // 10 k potentiometer on AN5 input

 #define AINPUTS 0xffef // Analog inputs POT, TSENS

 The actual initialization of all the ADC control registers can be best performed by a short
function, initADC() , that will produce the desired initial configuration:

● AD1PCFG will be passed the mask selecting the analog input channels: 0 s will
mark the analog inputs, 1 s will configure the respective pins as digital inputs.

● AD1CON1 will set the conversion to start automatically, triggered by the
completion of the auto-timed sampling phase. Also, the output will be formatted
for a simple unsigned, right-aligned (integer) value.

● AD1CSSL will be cleared because no scanning function will be used (only one
input).

● AD1CON2 will select the use of MUXA and will connect the ADC reference inputs
to the analog input rails AVdd and AVss pins.

● AD1CON3 will select the conversion clock source and divider.

● Finally we set ADON, and the entire ADC peripheral will be activated and ready
for use.

 void initADC(int amask)
 {
 AD1PCFG = amask; // select analog input pins
 AD1CON1 = 0; // manual conversion sequence control
 AD1CSSL = 0; // no scanning required
 AD1CON2 = 0; // use MUXA, AVss/AVdd used as Vref+/-

It’s an Analog World 253

 AD1CON3=0x1F02; // Tad=2+1) x 2 x Tpb=6x27 ns>75 ns
AD1CON1bits.ADON=1; // turn on the ADC

 } //initADC

By keeping amask as a parameter to the initialization routine, we make it flexible so it ’ s
able to accept different (multiple) input channels in future applications.

Note

As for all other peripheral modules found inside the PIC32, a corresponding peripheral library
(adc.h) offers a set of functions and macros that are supposed to simplify or at least make the
code that accesses the ADC module more readable. Because of the great flexibility of the ADC
module, it is my very personal opinion that it is best if you familiarize yourself first with the
low-level details of its operation by directly accessing the few control registers rather than
seeking early refuge in the peripheral library.

 The First Conversion
 The actual analog-to-digital conversion is a two-step process. First we need to take a
sample of the input voltage signal; then we can disconnect the input and perform the actual
conversion of the sampled voltage to a digital value. The two distinct phases are controlled
by two separate control bits in the AD1CON1 register: SAMP and DONE . The timing of the
two phases is important to provide the necessary accuracy of the measurement:

● During the sampling phase, the external signal is connected to an internal
capacitor that needs to be charged up to the input voltage. Enough time must
be provided for the capacitor to track the input voltage, and this time is mainly
proportional to the impedance of the input signal source (in our case, known to
be 10 k Ohm) as well as the internal capacitor value. In general, the longer the
sampling time, the better the result, compatible with the input signal frequency
(not an issue in our case).

● The conversion phase timing depends on the selected ADC clock source. This
is derived by the peripheral bus clock signal via a divider or, alternatively, by a
dedicated RC oscillator. The RC option, although appealing for its simplicity, is
a good choice when a conversion needs to be performed when the PIC32 is in
a low-power mode, when the peripheral clock can be turned off. The oscillator
clock divider on the other end is a better option in more general cases since it

254 Day 11

provides synchronous operation with the peripheral bus and therefore a better
rejection of the internal noise. The conversion clock should be the fastest possible,
compatibly with the specifications of the ADC module.

 Here is a basic conversion routine:

 int readADC(int ch)
 {
 AD1CHSbits.CH0SA = ch; // 1. select analog input
 AD1CON1bits.SAMP = 1; // 2. start sampling
 T1CON = 0xs8000; TMR1 = 0; // 3. wait for sampling time
 while (TMR1 < 100); //
 AD1CON1bits.SAMP = 0; // 4. start the conversion
 while (!AD1CON1bits.DONE); // 5. wait conversion complete
 return ADC1BUF0; // 6. read result

 } // readADC

 Automating Sampling Timing
 As you can see, using this basic method, we have been responsible for providing the
exact timing of the sampling phase, dedicating a timer to this task and performing two
waiting loops. But on the PIC32 ADC module, the sampling phase can be self-timed up
to a maximum of 32 � Tad periods. Whether we can use this feature or not will depend
ultimately on the product of the source impedance and the ADC input capacitance. By
setting the SSRC bits in the AD1CON1 register to the 0x 7 configuration, we can enable an
automatic start of conversion upon termination of the self-timed sampling period. The
sampling period itself is selected by the AD1CON3 register SAM bits. Here is a new and
improved example that uses the self-timed sampling and conversion trigger:

 void initADC(int amask)
 {
 AD1PCFG = amask; // select analog input pins
 AD1CON1 = 0x00E0; // automatic conversion after sampling
 AD1CSSL = 0; // no scanning required
 AD1CON2 = 0; // use MUXA, use AVdd & AVss as Vref+/-
 AD1CON3 = 0x1F3F; // Tsamp = 32 x Tad;
 AD1CON1bits.ADON = 1; // turn on the ADC

 } //initADC

It’s an Analog World 255

 Notice how making the conversion-start, triggered automatically by the completion of the
self-timed sampling phase, gives us two advantages:

● Proper timing of the sampling phase is guaranteed without requiring us to use any
timed delay loop and/or other resource.

● One command (start of the sample phase) suffices to complete the entire sampling
and conversion sequence.

 With the ADC so configured, starting a conversion and reading the output is a trivial
matter:

● AD1CHS selects the input channel for MUXA.

● Setting the SAMP bit in AD1CON1 starts the timed-sampling phase, immediately
followed by the conversion.

● The DONE bit will be set in the AD1CON1 register as soon as the entire sequence is
completed and a result is ready.

● Reading the ADC1BUF0 register will immediately return the desired conversion
result.

 int readADC(int ch)
 {
 AD1CHSbits.CH0SA = ch; // 1. select input channel
 AD1CON1bits.SAMP = 1; // 2. start sampling
 while (!AD1CON1bits.DONE); // 3. wait conversion complete
 return ADC1BUF0; // 4. read conversion result

 } // readADC

 Developing a Demo
 All that remains to do at this point is to figure out an entertaining way to put the
converted value to use on the Explorer 16 demo board. The LEDs connected to PORTA
are an intriguing choice, but those of you using a PIC32 Starter Kit would not be able to
enjoy the experience, since most of the PORTA pins would be tied up by the JTAG port.
Instead we will use the LCD library developed in the previous chapter to display a
blocky bar graph. Yes, we could use the nice and smooth progress bar developed in the

256 Day 11

previous chapter (Day 10) but I don ’ t want you to get distracted by the details. Here is
the main routine we will use to test our analog-to-digital conversion functions:

 main ()
 {

 int i, a;

// initializations
 initADC(AINPUTS); // initialize the ADC
 initLCD(); // initialize the LCD display

 // main loop
 while(1)
 {

 a = readADC(POT); // select the POT input and convert

 // reduce the 10-bit result to a 4 bit value (0..15)
 // (divide by 64 or shift right 6 times
 a >> = 6;

 // draw a bar on the display
 clrLCD();
 for (i=0; i<=a; i++)
 putLCD(0xFF);

 // slow down to avoid flickering
 Delayms(200);

 } // main loop

 } // main

 After the call to the ADC initialization routine, we can initialize the LCD display module.
Then in the main loop we perform the conversion on AN5 and we reformat the output to
fit our special display requirements. As configured, the 10-bit conversion output will be
returned as a right-aligned integer in a range of values between 0 and 1023 . By dividing
that value by 64 (or, in other words, shifting it right six times) we can reduce the range to a
0 to 15 value. Printing the resulting number of “ bricks ” gives a blocky bar whose length
is proportional to the position of the potentiometer.

 Remember to add an #include < > statement for the LCD.h library and add to the
project source files list both the explore.c and LCDlib.c modules we placed in the lib
directory.

It’s an Analog World 257

 Build the project and, following the usual In Circuit Debugging checklist, program the
Explorer 16 board. If all goes well, you will be able to play with the potentiometer,
moving it from side to side while observing a bar of 16 blocks moving from left to right
correspondingly.

 Creating Our Own Mini ADC Library
 We will use over and over the two simple routines that initialize the ADC module
and perform a single self-timed conversion. Let ’ s separate them into a standalone
small library called ADClib.c that we will add to our new collection inside the lib
directory.

 /*
 ** ADClib.c
 **
 */
 #include <p32xxxx.h>
 #include <ADC.h>

 // initialize the ADC for single conversion, select input pins
 void initADC(int amask)
 {
 AD1PCFG = amask; // select analog input pins
 AD1CON1 = 0x00E0; // auto convert after end of sampling
 AD1CSSL = 0; // no scanning required
 AD1CON2 = 0; // use MUXA, AVss/AVdd used as Vref+/-
 AD1CON3 = 0x1F3F; // max sample time = 31Tad
 AD1CON1SET = 0x8000; // turn on the ADC

 } //initADC

 int readADC(int ch)
 {
 AD1CHSbits.CH0SA = ch; // select analog input channel
 AD1CON1bits.SAMP = 1; // start sampling
 while (!AD1CON1bits.DONE); // wait to complete conversion
 return ADC1BUF0; // read the conversion result

 } // readADC

 Similarly we can isolate the include file LCD.h that offers the basic set of definitions and
prototypes required to access the library functions. We will save it in the include directory.

258 Day 11

 /*
 ** ADC.h
 **
 */
 #define POT 5 // 10 k potentiometer on AN5 input
 #define TSENS 4 // TC1047 Temperature sensor on AN4
 #define AINPUTS 0xffcf // Analog inputs for POT and TSENS

 // initialize the ADC for single conversion, select input pins
 void initADC(int amask) ;

 int readADC(int ch);

 Simple enough. We are ready to proceed with more fun and games!

 Fun and Games
 Okay, I ’ ll admit it, the previous project was not too exciting. After all, we have been
using a 32-bit machine operating at 72 MHz, capable of performing a 10-bit analog-to-
digital conversion several hundred thousands of times per second, only to discard all but
4 bits of the conversion result and watch a blocky bar moving on an LCD display. How
about making it a bit more challenging and playful instead? How about developing a
monodimensional Pac-Man game, or should we call it the “ Pot-Man ” game?

 If you remember the old Pac-Man game—please don ’ t tell me you never heard of it, but
if you really have to, check the link to a Wikipedia entry at the end of this chapter—there
is a hungry little “ thing, ” the Pac, that roams a two-dimensional labyrinth in a desperate
search for food. Now, with a little fantasy, we can imagine a monodimensional reduction
of the game, where the Pac is represented by a single � or � character, depending on the
direction of movement. It is limited to a left/right movement on a line of the LCD display as
it is controlled by the potentiometer position. Bits of food are represented by a * character
and are placed randomly, one at a time, on the same line. As soon as the Pac reaches a piece
of food, it gulps it and moves on, and a new piece is placed in a different location.

 Once more, the pseudo-random number generator function rand() (defined in stdlib.h)
will be very helpful here. All games need a certain degree of unpredictability, and
pseudo-random number generators are the way computer games provide it in a world of
logic and otherwise infinite repetition.

 We can start by modifying the previous project code or typing away from scratch a
brand-new Pot-Man.c file. A new project needs to be created, and I suggest we call

It’s an Analog World 259

it simply POT . Just a few more lines of code are truly needed to perform the simple
animation:

 /*
 ** Pot-Man.c
 **
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include <p32xxxx.h>
 #include <explore.h>
 #include <LCD.h>
 #include <ADC.h>

 main ()
 {
 int a, r, p, n;
 // 1. initializations
 initLCD();
 initADC(AINPUTS);

 // 2. use the first reading to randomize
 srand(readADC(POT));

 // 3. init the hungry Pac
 p = ' < ' ;

 // 4. generate the first random food bit position
 r = rand() % 16;

 // main loop
 while(1)
 {

 // 5. select the POT input and convert
 a = readADC(POT);

 // 6. reduce the 10-bit result to a 4 bit value (0..15)
 // (divide by 64 or shift right 6 times
 a>> = 6;

260 Day 11

 // 7. turn the Pac in the direction of movement
 if (a < n) // moving to the left
 p = ' > ' ;

 if (a > n) // moving to the right
 p = ' < ' ;

 // 8. when the Pac eats the food, generate more food
 while (a == r)

 r=rand() % 16;

 // 9. update display
 clrLCD();
 setLCDC(a); putLCD(p);
 setLCDC(r); putLCD(' * ');

 // 10. provide timing and relative position
 Delayms(200); // limit game speed
 n=a; // memorize previous position

 } // main loop

 } // main

● In 1, we perform the usual initialization of the ADC module and the LCD display.

● In 2, we read the potentiometer value for the first time and we use its position as
the seed value for the pseudo-random number generator. This makes the game
experience truly unique each time, provided the potentiometer is not always found
in the leftmost or rightmost position. That would provide a seed value of 0 or
1023, respectively, every time and therefore would make the game quite repetitive
because the pseudo-random sequence would proceed through exactly the same
steps at any game restart.

● In 3, we assign a first arbitrary direction to the Pac.

● In 4, we determine a first random position for the first bit of food.

● In 5, we are already inside the main loop checking for the latest position of the
potentiometer cursor.

● In 6, we reduce the integer 10-bit value to the four most significant bits to obtain
a value between 0 and 15.

● In 7, we compare the new position with the previous loop position to determine
which way the mouth of the Pac should be facing. If the ADC reading has

It’s an Analog World 261

reduced, it means we moved the potentiometer counter-clockwise. Hence we
will make the Pac turn to the left. Vice versa, if the ADC reading has increased
compared to the previous loop value, the potentiometer must have been turned
clockwise, and we ’ d better turn the Pac to the right.

● In 8, we compare the new position of the Pac—the ADC reading—with the food
position and, if the two coincide (the Pac got his lunch), a new random food
position is immediately calculated. The operation needs to be repeated in a while
loop because each time a new random value (r) is calculated, there is a chance
(exactly 1/16 if our pseudo-random generator is a good one) that the new value
could be just the same. In other words, we could be creating a new “ food nibblet ”
right in the Pac ’ s mouth. Now we don ’ t want that—it would not be very sporting,
don ’ t you agree?

● Finally, in 9, we get to clean the display content and then place the two symbols
for the Pac and the food piece in their respective positions.

● In 10, we close the loop with a short delay and save the Pac ’ s position for the next
loop to compare.

 Don ’ t forget to include in the project the LCDlib.c, ADClib.c, and Explore.c files found
in the lib directory. Build the project and program it onto the Explorer 16 board. You will
have to admit it: Analog-to-digital conversions are so much more entertaining now!

 Sensing Temperature
 Moving on to more serious things, there is a temperature sensor mounted on the Explorer 16
board, and it happens to be a Microchip TC1047A integrated temperature-sensing device with
a nice linear voltage output. This device is very small, it is offered in a SOT-23 (three-pin,
surface-mount) package. The power consumption is limited to 35uA (typ.) while the power
supply can cover the entire range from 2.5 V to 5.5 V. The output voltage is independent from
the power supply and is an extremely linear function of the temperature (typically within
0.5 degree C) with a slope of exactly 10 mV/C. The offset is adjusted to provide an absolute
temperature indication according to the formula shown in Figure 11.3 .

 We can apply our newly acquired abilities to convert the voltage output to digital
information using, once more, the ADC of the PIC32. The temperature sensor is directly
connected to the AN4 analog input channel as per the Explorer 16 board schematic (see
 Figure 11.4).

262 Day 11

 We can reuse the ADC library developed for the previous exercise and put it in a new
project called TEMP , saving the previous source file as Temp.c .

 Let ’ s start modifying the code to include a new constant definition: TSENS for the ADC
input channel assigned to the temperature sensor.

 /*
 ** Temp.c
 ** Converting the analog signal from a TC1047 Temp Sensor
 */

�3.3 V

�3.3 V

C41

R24
RB4/AN4

100

U4

VDO VOUT

VSS

TC10474

3

21

.1
F

 Figure 11.4 : Detail of the Explorer 16 demonstration board TC1047A
temperature sensor.

1.75

V
O

U
T
 (

V
ol

ts
)

VOUT � (10 mV/°C) (Temperature °C) � 500 mV

1.7

1.5

1.3

1.1

0.9

0.7

0.5

0.3

0.1

�40 �30�20�10 0 10 20 30 40 50 60 70 80 90 100 110 120 125

Temperature (°C)

 Figure 11.3 : TC1047 output voltage vs. temperature characteristics.

It’s an Analog World 263

 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include <p32xxxx.h>
 #include <explore.h>
 #include <LCD.h>

 #include <ADC.h>

 As you can see, nothing else needed to change with regard to the ADC configuration or
activation of the conversion sequence. Presenting the result on the LCD display might
be a little tricky, though. Temperature sensors provide a certain level of noise, and to
give a more stable reading it is common to perform a little filtering. Taking groups of
10 samples over a period of a second, for example, and performing an average will give
us a cleaner value to work with.

 a=0;
 for (j=0; j < 10; j++)
 a+=readADC(TSENS); // add up 10 readings

 i=a/10; // divide by 10 to average

 Referring to the formula in Figure 11.3 , we can now calculate the absolute temperature
value as measured by the TC1047 on the Explorer 16 board. In fact, resolving for the
temperature in degrees C, we obtain:

T
Vout mV

mV/C
�

� 500

10

 where:

Vout ADC reading * ADC resolution (mV/bit) �

 Since we have configured the PIC32 ADC module to use as an internal voltage reference
the AVdd line connected to Vdd (3.3 V), and knowing it operates as a 10-bit, we derive
that the ADC resolution is 3.3 mV/bit. Hence the temperature can be expressed as:

T
i

�
�(. *)

;
3 3 500

10

 We could easily print the resulting absolute temperature on the LCD display, but it would
not be fun, would it? How about providing instead a relative temperature indication

264 Day 11

using a single character (cursor) position as an index, or even better, how about using the
temperature as a way to control the monodimensional Pac-Man game we developed in the
previous project? We could heat the sensor by breathing hot air onto the sensor to move it
to the right or blowing cold air on it to move it to left.

 From a practical point of view, it seems easy to implement. We can sample the initial
temperature value just before the main loop and then use it as a reference to determine an
offset for the Pac position relative to the center of the display. In the main loop we will
update the cursor position, moving it to the right as the sensed temperature increases or to
the left as the sensed temperature decreases. Here is the complete code for the new Temp-
Man game, or should we call it the Breathalyzer game instead?

 main ()
 {

 int a, i, j, n, r, p;

 // 1. initializations
 initADC(AINPUTS); // initialize the ADC
 initLCD();

 // 2. use the first reading to randomize
 srand(readADC(TSENS));
 // generate the first random position
 r = rand() % 16;
 p = ' < ' ;

 // 3. compute the average value for the initial reference
 a = 0;
 for (j=0; j<10; j++)
 {

 a+=readADC(TSENS); // read the temperature
 Delayms(100);

 }
 i=a/10; // average

 // main loop
 while(1)
 {

 // 4. take the average value over 1 second
 a = 0;
 for (j=0; j<10; j++)

It’s an Analog World 265

 {
 a += readADC(TSENS); // read the temperature
 Delayms(100);

 }
 a /= 10; // average result

 // 5. compare initial reading, move the Pac
 a=7+(a-i);

 // 6. keep the result in the value range 0..15
 if (a > 15)
 a = 15;

 if (a < 0)
 a = 0;

 // 7. turn the Pac in the direction of movement
 if (a < n) // moving to the left
 p = ' > ' ;

 if (a > n) // moving to the right
 p = ' < ' ;

 // 8. as soon as the Pac eats the food, generate new
 while (a == r)
 r = rand() % 16;

 // 9. update display
 clrLCD();
 setLCDC(r); putLCD(' * ');
 setLCDC(a); putLCD(p);

 // 10. remember previous postion
 n = a;

 } // main loop

 } // main

 You will notice how most of the code has remained absolutely identical to our previous
project/game. The only notable differences are found in the following sections:

● In 3 and in 4, we use a simple average of 10 values taken over a period of a
second instead of a single instantaneous reading.

● In 5, we compute the temperature difference and use it as an offset with respect to
the center position (7).

266 Day 11

● In 6, we check for boundaries. Once the difference becomes negative and more
than 4 bits wide, the display must simply indicate the leftmost position. When
the difference is positive and more than 4 bits wide, the rightmost position must
be used.

● In 10, we don ’ t need further delays because the temperature reading and averaging
already provide already a natural pace to the game.

 Build the project with the usual checklists, remembering to include all the libraries
required. Program it to the Explorer 16 board using the In-Circuit debugger of choice and
give it a try.

 The first problem you will encounter will be to identify the minuscule temperature sensor
on the board. (Hint: It is close to the lower-left corner of the processor module and it
looks just like any surface-mount transistor). The second immediate problem will be
to find the right way to breathe on the board to produce warm or cold air as required to
move the Pac. It is more complex than it might appear. In fact, personally, I found the
cooling part to be the hardest; some friends are suggesting that this might be a problem
related to my current position. If you work in marketing, they say, it ’ s just hot air!

 Debriefing
 In this lesson we have just started scratching the surface and exploring the possibilities
provided by the ADC module of the PIC32. We have used one simple configuration of
the many possible and only a few of the advanced features available. We have tested our
newly acquired capabilities with two types of analog input available on the Explorer 16
board, and hopefully we had some fun in the process.

 Notes for the PIC24 Experts
 The ADC module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differences
that will affect your code while porting an application to the PIC32:

 1. In the AD1CON1 register, the conversion format options are now extended to a
32-bit fractional word.

 2. The CLRASAM control bit has been added to the AD1CON1 register to allow the
conversion sequence to be stopped after the first interrupt.

It’s an Analog World 267

 3. In the AD1CON2 register a new autocalibration mode has been added to reduce
the ADC offset. The OFFCAL control bit has been added to enter the calibration
mode.

 4. The AD1CHS register control bits are now in the upper half of the register 32-bit
word. There is also a single CH0NB0 control bit for the selection of the negative
input of the second input multiplexer.

 Tips & Tricks
 If the sampling time required is longer than the maximum available option (32 � Tad),
you can try to extend Tad first or, a better option, swap things around and enable the
automatic sampling start (at the end of the conversion). This way the sampling circuit
is always open, charging, whenever the conversion is not occurring. Manually clearing
the SAMP bit will trigger the actual conversion start. Further, having Timer3 periodically
clearing the SAMP control bit for you (one of the options for the SSRC bits in AD1CON1)
and enabling the ADC end of conversion interrupt will provide the widest choice of
sampling periods possible for the least amount of MCU overhead possible. No waiting
loops, only a periodic interrupt when the results are available and ready to be fetched.

 Further, not all applications require a complete conversion of analog input values. The
PIC32MX family offers also analog comparator modules (two), with dedicated input
multiplexers. They can assist in those applications in which we need a fast response to an
analog input as it crosses a threshold. No need to set up the ADC, select a channel, and
perform a conversion; the comparison is done continuously. An interrupt (or an output
signal) is produced immediately as the reference voltage is reached.

 Speaking of reference voltages, yet another module, called the Comparator Reference,
effectively representing a small digital-to-analog converter of sorts, can generate up to
32 reference voltages to be used with the comparator modules or independently.

 Exercises
 1. Use the ADC FIFO buffer to collect conversion results and set up Timer3 for

automatic conversion and the interrupt mechanism so that a call is performed only
once the buffer is full and temperature values are ready to be averaged.

 2. Experiment with interfacing other types of analog sensors (using the prototyping
area of the Explorer 16 board) such as pressure sensors, humidity sensors, and

268 Day 11

even accelerometers. Two- and/or three-axis solid-state accelerometers are getting
very inexpensive and readily available. All it takes to interface to them is a few
analog input pins and a fast 10-bit ADC module.

 Books
Baker, Bonnie, A Baker’s Dozen: Real Analog Solutions for Digital Designers (Newnes,

Burlington, MA). For proper care and feeding of an analog-to-digital converter, look
no further than this cookbook.

 Links
www.microchip.com/filterlab. Download the free FilterLab software from the Microchip

Web site; it will help you quickly and efficiently design antialiasing filters for your
analog inputs.

www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2102¶m=
en021419&pageId=79&pageId=79. Temperature sensors are available in many
flavors and a choice of interface options, including direct I2C or SPI digital output.

 Expansion

 Congratulations, you have endured five more days of hard fieldwork. You have learned
to use some of the key hardware peripheral modules of the PIC32MX, and you have put
them to use on the Explorer 16 demo board.

 In the third part of this book we will start developing new projects that will require you
to master several peripheral modules at once. Since the complexity of the examples will
grow a bit more, not only is it recommended you have an actual demonstration board (the
Explorer 16) at hand, but you ’ ll also need the ability to perform small modifications and
utilizing the prototyping area to add new functionality to the demonstration board. Simple
schematics and component part numbers will be offered in the following chapters as
required. On the companion Web site, www.ExploringPIC32.com , you will find additional
expansion boards and prototyping options to help you enjoy even the most advanced
projects.

 P A R T 3

This page intentionally left blank

 Capturing User Inputs

 The Plan
 If analog inputs are the essence of the interface between an embedded-control application
and the outside world, digital inputs are, sadly, the true foundation of the user interface.
As wrong as this might seem, for a long time now we humans have been trained to reduce
our interaction with them, the machines, to buttons and switches. Probably this is because
the alternative, using speech, gestures, and vision, requires such a leap in the complexity
of the interface that we have rather learned to accept the limitation and reduced ourselves
to communicate essentially through ones and zeros. Perhaps this explains the attention
and enthusiasm that some recent innovations are producing as pioneered by video games
and mobile phone manufacturers; think of the Wii accelerometer-filled wand and the
iPhone multitouch sensing screen, for example.

 Today we will explore various methods to capture “ traditional ” user inputs by detecting
the activation of buttons and simple mechanical switches, reading the inputs from
rotary encoders, and eventually interfacing to computer keyboards. This will give
us the motivation to investigate a few alternative methods and evaluate their trade-offs.
We ’ ll implement software state machines, practice using interrupts, and possibly learn
to use a few new peripherals. It ’ s going to be a long day, so be rested and ready to start
at dawn!

 Preparation
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer
16 demonstration board and an In-Circuit Debugger of your choice. You will also need

D A Y 1 2

272 Day 12

a soldering iron and a few components ready at hand to expand the board capabilities
using the prototyping area or a small expansion board. You can check on the companion
Web site (www.exploringPIC32.com) for the availability of expansion boards that will
help you with the experiments.

 Buttons and Mechanical Switches
 Reading the input from a button, a mechanical switch, is one of the most common
activities for an embedded-control application. After all, a single bit of information needs
to be retrieved from a port pin configured as a digital input. But the great speed of a
microcontroller and the mechanical (elastic) properties of the switch require that we pay
some attention to the problem.

 In Figure 12.1 you can see the connection of one of the four buttons present on the
Explorer 16 demonstration board. At idle, the switch offers an open circuit and the input
pin is kept at a logic high level by a pull-up resistor. When the button is pressed, the
contact is closed and the input pin is brought to a logic low level. If we could consider the
switch as an ideal component, the transition between the two states would be immediate
and unambiguous, but the reality is a little different. As represented in Figure 12.2 ,
when the button is pressed and the mechanical contact is established, we obtain all but
a clean transition. The elasticity of the materials, the surface oxidation of the contacts,
and a number of other factors make it so that there can be a whole series of transitions,

�3.3 V

R33

10 k

R34

470

S3

1

2 3

4
RD6

 Figure 12.1 : Explorer 16 button schematic detail.

Capturing User Inputs 273

increasing in number and spaced with the aging and general wear of the device. This
phenomenon, generally referred to as contact bouncing , can continue in the worst cases
for several hundred microseconds if not for milliseconds.

 When the button is released, a similar bouncing effect can be detected as the pressure
between the two contact surfaces is removed and the circuit is opened.

 For a PIC32 operating at a high clock frequency, the timescale of the event is enormous.
A tight loop polling the status of the input line could detect each and every bounce and
count them as numerous distinct activations and releases of the button. In fact, as a first
experiment, we could devise a short piece of code to do just that so we can access the
 “ quality ” of the buttons available on the Explorer 16 board.

 Let ’ s create a new project called Buttons, and let ’ s add a first new source file to it that
we ’ ll call bounce.c :

 /*
 ** bounce.c
 **
 */
 // configuration bit settings, Fcy=72MHz, Fpb=36MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF
 #include <p32xxxx.h>

3.3 V

0 V

Button pressed

Contact bouncing

Button released

 Figure 12.2 : Electrical response of a mechanical switch.

274 Day 12

 main(void)
 {
 int count; // the bounces counter

 count = 0;
 // main loop
 while(1)
 {
 // wait for the button to be pressed
 while (_RD6);

 // count one more button pres s
 count++;

 // wait for the button to be released
 while (! _RD6);

 } // main loop

 } // main

 After initializing an integer counter, we directly enter the main loop, where we wait for
the leftmost button on the board (marked S3 and connected to the RD6 input pin) to
be pressed (transition to logic level low). As soon as we detect the button pressure, we
increment the counter and proceed to the next loop, where we wait for the button to be
released, only to continue in the main loop and start from the top.

 Build the project immediately and program the code on the Explorer 16 board using
your in circuit debugger of choice. To perform our first experiment, you can now run
the code and slowly press the S3 button for a predetermined number of times: let ’ s say
20! Stop the execution and inspect the current value of the variable count . You can
simply move your mouse over the variable in the editor window to see a small popup
message appear (if the MPLAB option is enabled), or you can open the Watch window
and add the variable count to it. (I suggest you set its visualization properties to
Decimal .)

 In my personal experimentation, after 20 button pushes I obtained a value of count
varying generally between 21 and 25. As car manufacturers say: “ Your mileage might
vary ” ! This is actually a very good result, indicating that most of the time there have been
no bounces at all. It ’ s a testament to good-quality contacts, but it also reflects the fact that
the board button has been used very little so far. If we are to design applications that use

Capturing User Inputs 275

buttons and mechanical switches, we have to plan for the worst and consider a substantial
degradation of performance over the life of the product.

 Button Input Packing
 Planning for a general solution to apply to all four buttons available on the Explorer 16
and extensible to an entire array of similar buttons if necessary, we will start developing a
simple function that will collect all the inputs and present them conveniently encoded in a
single integer code. Save the previous source file (Save As) with the new name Buttons.c
and add it to the project (replacing bounce.c):

 int readK(void)
 { // returns 0..F if keys pressed, 0 = none
 int c = 0;

 if (!_RD6) // leftmost button
 c |=8;

 if (!_RD7)
 c |=4;

 if (!_RA7)
 c |=2;

 if (!_RD13) // rightmost button
 c |=1;

 return c;

 } // readK

 In fact, the designers of the of the Explorer 16 board have “ fragmented ” the input
pins, corresponding to the four buttons, between two ports in noncontiguous positions,
probably in an attempt to ease the board layout rather than to please us, the software
developers.

 The function readK() as proposed collects the four inputs and packs them contiguously
in a single integer returned as the function value. Figure 12.3 illustrates the resulting
encoding.

 The position of the buttons is now reflected in the relative position of each bit in the
function return value, with the MSb (bit 3) corresponding to the leftmost button status.
Also, the logic of each input is inverted so that a pressed button is represented by a 1 . As
a result, when called in the idle condition, no button pressed, the function returns 0 , and
when all the buttons are pressed, the function returns a value 0x0f.

276 Day 12

 Notice that we have performed no debouncing yet. All readK() does is grab a picture
of the status of the inputs and present them in a different convenient format. Should we
have a matrix of buttons arranged in a 3 � 4, 4 � 4, or larger keypad, it would be easy to
modify the function while maintaining the output format and leaving untouched the rest
of the code we will develop from here.

 We can quickly modify the main() function to visualize the output on the LCD display
using the LCD.h library we developed in the previous chapters:

 main(void)
 {
 char s[16];
 int b;

 initLCD(); // init LCD display

 // main loop
 while(1)
 {
 clrLCD();
 putsLCD("Press any button\n");
 b = readK();
 sprintf(s, "Code = %X", b);
 putsLCD(s);
 Delayms(100);

 } // main loop

 } // main

 Build the project after adding the LCDlib.c module to the list of the project sources and
program the Explorer 16 board with your In-Circuit Debugger of choice.

Bit 31 S3

RD6 RD7 RA7 RD13

S6 S5 S4

Bit 4 through 31 � 0

Leftmost
button

Rightmost
button

8 4 2 1

 Figure 12.3 : readK() button encoding.

Capturing User Inputs 277

 As you run the simple demo, you will see that as soon as a button is pressed, a new code
is immediately displayed. Multiple buttons can be pressed simultaneously, producing all
possible codes from 0x01 to 0x0f .

 For our convenience, we will add the readK() function to our explore.c library module.
In fact, if you are working with the code provided with the CD-ROM that accompanies
this book, you will notice that the function is already there but under another name,
readKEY() , so as not to create any conflict with the previous and following examples.

 Button Inputs Debouncing
 It is time now to start working on the actual debouncing. The basic technique used to
filter out the spurious commutations of the mechanical switch consists of adding a small
delay after the first input commutation is detected and subsequently verifying that the
output has reached a stable condition. When the button is released, a new short delay is
inserted before verifying once more that the output has reached the idle condition.

 Here is the code for the new function getK() that performs the four steps listed
previously and some more:

 int getK(void)
 { // wait for a key pressed and debounce
 int i=0, r=0, j=0;
 int c;

 // 1. wait for a key pressed for at least .1sec
 do{
 Delayms(10);
 if ((c = readKEY()))
 {
 if (c>r) // if more than one button pressed
 r = c; // take the new code

 i++;
 }
 else
 i=0;

 } while (i<10);

 In 1, we have a do..while loop that, at regular intervals 10ms apart, uses the function
readKEY() to check on the inputs status. The loop is designed to terminate only after

278 Day 12

10 iterations (for a total of 100 ms) during which there has been no bouncing. During that
time, though, the user might have pressed more buttons. The function accommodates for
one or more buttons to be “ added ” over time rather than assuming they will all be pressed
together with absolute synchronicity. The variable r will contain the “ most complete ”
button code.

 // 2. wait for key released for at least .1 sec
i =0;
 do {
 Delayms(10);
 if ((c = readKEY()))
 {
 if (c>r) // if more then one button pressed
 r = c; // take the new code

 i=0;
 j++; // keep counting

 }
 else
 i++;

 } while (i<10);

 In 2, the situation is reversed as buttons are released. The do.. while is designed to
wait for all buttons to be released until the inputs stabilize in the idle condition for at
least 100 ms.

 // 3. check if a button was pushed longer than 500ms
 if (j>50)

 r+=0x80; // add a flag in bit 7 of the code

 In 3, we are actually making use of an additional counter represented by the variable j
that had been added to the second loop. Its role is that of detecting when the button-
pressed condition is prolonged beyond a certain threshold. In this case it ’ s set to 500ms.
When this happens, an additional flag (bit 7) is added to the return code. This can be
handy to provide additional functionalities to an interface without adding more hardware
(buttons) to the Explorer 16 board. So, for example, pressing the leftmost button for a
short amount of time produces the code 0x08. Pressing the same button for more than
half a second will return the code 0x88 instead.

 // 4. return code
 return r;

 } // getK

Capturing User Inputs 279

 It is only in 4 that the button code encoded in the variable r is returned to the calling
program.

 To test the new functionality and verify that we have eliminated all button bouncing, we
can now replace the main() function with the following code and save the resulting file
as Buttons2.c :

 main(void)
 {
 char s[16];
 int b;

 initLCD(); // init LCD display
 putsLCD("Press any button\n");

 // main loop
 while(1)
 {
 b = getK();
 sprintf(s, "Code = %X", b);
 clrLCD();
 putsLCD(s);

 } // main loop

 } // main

 Remember to include the LCDlib.c and explore.c modules found in the lib directory to
the project.

 Replace Buttons2.c in the project source list in place of buttons.c and build the project.
After programming the Explorer 16 board with your in-circuit debugger of choice, run
the code and observe the results on the LCD display.

 First you will notice that contrary to what happened in the previous demo, new codes
are displayed only after buttons are released. The function getK() is in fact a blocking
function . It waits for the user inputs and returns only when a new return code is ready.

 Play with various combinations of buttons, pressing two or three of them more or less
simultaneously, and observe how the order of press and release does not affect the
outcome, simplifying the user input. Try long and short button combinations. You
can modify the threshold or even introduce secondary thresholds for very long button
presses.

280 Day 12

 Once more, because of its usefulness, I suggest we add the getK() function to our
explore.c library module. If you are using the code from the CD-ROM attached to
this book, you will find it already there with the name changed in getKEY() to avoid
conflicts with the examples in this chapter.

 Rotary Encoders
 Another type of input device based on mechanical switches (sometimes replaced
by optical sensors) and very common in many embedded-control applications is the
rotary encoder . In the past we have seen the use of a potentiometer attached to the
PIC32 ADC module to provide user input (and control the position of the Pac-Man),
but rotary encoders are pure digital devices offering a higher degree of freedom. Their
main advantage is that they offer no limitation to the movement in any of the rotation
directions. Some encoders provide information on their absolute position; others of
simpler design and lower cost, known as incremental encoders , provide only a relative
indication of movement.

 In embedded applications, absolute rotary encoders can be used to identify the position
(angle) of a motor/actuator shaft. Incremental encoders are used to detect direction of
motion and speed of motors but also for user interfaces as a rapid input tool to select an
entry in a menu system on a display panel: think of the omnipresent input knob on car
navigators and digital radios. Another good example of a user interface application of an
incremental encoder is a (ball) mouse, assuming you can still find one nowadays. They
used to contain two (optical) rotary encoders to detect relative motion in two dimensions.
In fact, if you think of it, your computer has no idea “ where ” the mouse is at any given
point in time, but it knows exactly how far you moved it and in which direction. Don ’ t
look at modern “ optical ” mice, though; the technology they are based on is completely
different.

 To experiment with a simple and inexpensive rotary encoder (I used an ICW model from
Bourns), I suggest you test your prototyping skills by soldering only a couple of resistors
(10 K Ohm) onto the Explorer 16 board prototyping area and connecting just three wires
between the encoder and the PIC32 I/O pins, as illustrated in Figure 12.4 .

 When so connected, the encoder provides two output waveforms (shown in Figure 12.5)
that can be easily interpreted by the PIC32. Notice that the motion of the encoder is in
steps between detent positions. At each step the encoder produces two commutations,
one on each mechanical switch corresponding to an input pin. The order of the two

Capturing User Inputs 281

commutations tells us about the direction of rotation. Since the two waveforms are
identical but appear to be out of phase by a 90-degree angle, these simple encoders are
often referred to as quadrature encoders .

 At rest, both switches are open and the corresponding input pins are pulled up at a logic
level high. When rotating clockwise, the CHA switch is closed first, bringing the RA9
input pin to a logic low, then the CHB switch is closed, bringing the RA10 pin to a logic
low level. When rotating counter-clockwise, the sequence is inverted. As the encoder
reaches the next detent position, both switches are opened again.

�3.3 V

R2
10 k

CHA

CHB

GND

Rotary encoder

R1
10 k

RA9

RA10

 Figure 12.4 : Rotary encoder interface detail.

Channel B

Closed Circuit

Closed Circuit

Open Circuit

Open Circuit

D D D D D

Channel A
FULL CYCLE PER DETENT (Normally Open in Detent Shown)
CW

 Figure 12.5 : Rotary encoder output waveforms detail.

282 Day 12

 Here is a simple program that can be used to demonstrate how to interface to a rotary
encoder to track the position of a rotating knob and display a relative counter on the LCD
display:

 /*
 ** Rotary.c
 **
 */
 // configuration bit settings, Fcy=72MHz, Fpb=36MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include <p32xxxx.h>
 #include <explore.h>
 #include <LCD.h>

 #define ENCHA _RA9 // channel A
 #define ENCHB _RA10 // channel B

 main(void)
 {
 int i = 0;
 char s[16];

 initLCD();

 // main loop
 while(1)
 {
 while(ENCHA); // detect CHA falling edge
 Delayms(5); // debounce
 i += ENCHB ? 1 : -1;
 while(!ENCHA); // wait for CHA rising edge
 Delayms(5); // debounce

 // display relative counter value
 clrLCD();
 sprintf(s, "%d", i);
 putsLCD(s);

 } // main loop

 } // main

Capturing User Inputs 283

 The idea behind the code in the main loop is based on a simple observation: by focusing
only on one input commutations—say, ENCHA —we can detect motion. By observing the
status of the second input ENCHB immediately after the activation of the first channel,
we can determine the direction of movement. This can be seen in Figure 12.5 as you
move your eyes from left to right (corresponding to a clockwise rotation); when the CHA
switch is closed (represented as a rising edge), the CHB switch is still open (low). But if
you read the same figure from right to left (corresponding to a counter-clockwise rotation
of the encoder), when CHA is closed (rising edge), CHB is already closed (high).

 Since we have not forgotten the lesson about switch bouncing, we have also added a
pair of calls to a delay routine, to make sure that we don ’ t read multiple commutations
when there is really just one. The length of the delays was decided based on information
provided by the encoder manufacturer on the device datasheet. The ICW encoders ’
contacts are in fact rated for a maximum of 5ms bounces when operated at a rotation
speed of 15 RPM.

 Create a new project called Rotary . Save the preceding code as rotary.c and remember
to add our default include directory, as well as the LCDlib.c and explore.c source files
found in the lib directory, to the list of project source files.

 Build and program the Explorer 16, modified for the application, to run the short demo.

 If all went well, you will see a counter displayed in decimal format being continuously
updated on the LCD display as you turn the encoder knob. The counter is a signed
(32-bit) integer and as such it can swing between positive and negative values, depending
on how much and how long you turn clockwise and counter-clockwise.

 Interrupt-Driven Rotary Encoder Input
 The main problem with the simple demonstration code we have just developed is in its
assumption that the entire attention of the microcontroller can be devoted to the task at
hand: detecting the commutations on the CHA and CHB input pins. This is perhaps an
acceptable use of resources when the application is waiting for user input and there are no
other tasks that need to be handled by the microcontroller. But if there are and, as often
is the case, they happen to be of higher priority and importance than our application, we
cannot afford the luxury to use a blocking input algorithm. We need to make the encoder
input a background task.

 As we saw in Day 5, the simplest way to obtain a sort of multitasking capability in
embedded-control applications is to use the PIC32 interrupt mechanisms. A background

284 Day 12

task becomes a small state machine that follows a simple set of rules. In our case,
transforming the algorithm developed in the previous demonstration into a state machine
and drawing its diagram (see Figure 12.6), we learn that only two states are required:

● An idle state (R_IDLE), when the CHA encoder input is not active

● An active state (R_DETECT), when the CHA encoder input is active

ENCHA � high

ENCHA � high

ENCHA � low

ENCHA � low

DetectIdle

Figure 12.6 : Rotary encoder state machine diagram.

 The transitions between the two states are simply expressed in Table 12.1 .

 Table 12.1 : Rotary encoder state machine transition.

State Conditions Effect

 R_IDLE ENCHA active (low) If ENCHB is active, the direction of rotation is
 counterclockwise (d � � 1)
 Transition to R_DETECT state

 ENCHA inactive (high) Set default direction clockwise (d � 1)
 Remain in current state (wait)

 R_DETECT ENCHA inactive (high) Update counter
 Transition to R_IDLE state

 ENCHA active (low) Remain in current state (wait)

 By binding the execution of the state machine to a periodic interrupt produced by one of the
timers (Timer2, for example) we can ensure that the task will be performed continuously
and, with the proper choice of timing, obtain a natural debouncing in the process.

Capturing User Inputs 285

 We can create a new source file that we will call Rotary2.c , starting with the usual
template and the following few declarations:

 /*
 ** Rotary2.c
 **
 */
 // configuration bit settings, Fcy=72MHz, Fpb=36MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include <p32xxxx.h>
 #include <plib.h>
 #include <explore.h>
 #include <LCD.h>

 #define ENCHA _RA9 // encoder channel A
 #define ENCHB _RA10 // encoder channel B
 #define TPMS (FPB/1000) // PB clock ticks per ms

 // state machine definitions
 #define R_IDLE 0
 #define R_DETECT 1

 volatile int RCount;

 char RState;

 Notice that RCount, the variable used to maintain the relative movement counter, is
declared as a volatile to inform the compiler that its value could change unpredictably
at the hands of the interrupt service routine (state machine). This will ensure that the
compiler won ’ t try to optimize access to it in the main() function by making wrong
assumptions, since the variable is never written to in the main loop.

 Choosing to use the vectored interrupt mechanism of the PIC32 for efficiency, we can
code the interrupt service routine as follows:

 void __ISR(_TIMER_2_VECTOR, ipl1) T2Interrupt(void)
 {
 static char d;

286 Day 12

 switch (RState) {
 default:
 case R_IDLE: // waiting for CHA rise
 if (! ENCHA)
 {
 RState = R_DETECT;
 if (! ENCHB)
 d = -1;

 }
 else
 d = 1;

 break;

 case R_DETECT: // waitin for CHA fall
 if (ENCHA)
 {
 RState = R_IDLE;
 RCount += d;

 }
 break;

 } // switch

 mT2ClearIntFlag();

 } // T2 Interrupt

 Finally, a small initialization routine is necessary to set up the initial conditions required
for the Timer2 peripheral (with a 5 ms period) and the state machine to operate correctly:

 void initR(void)
 {
 // init state machine
 RCount = 0; // init counter
 RState = 0; // init state machine

 // init Timer2
 T2CON = 0x8020; // enable Timer2, Fpb/4
 PR2 = 5*TPMS/4; // 5ms period
 mT2SetIntPriority(1);
 mT2ClearIntFlag();
 mT2IntEnable(1);

 } // init R

Capturing User Inputs 287

 The Timer2 interrupt can be set to a level 1 priority, the lowest, since the absolute timing
is not relevant here. Even when rotating the encoder very fast (120 RPM max, according
to the device datasheet), the commutations are going to happen on a timescale that is an
order of magnitude larger (20 ms). Any other task present in your application can, in fact,
be assumed to have a higher priority.

 Finally, here is a new main() function designed to put our rotary encoder routines to the
test by periodically (10 times a second) checking the value of RCount and displaying its
current value on the LCD display:

 main(void)
 {
 int i = 0;
 char s[16];

 initEX16(); // init and enable interrupts
 initLCD(); // init LCD module
 initR(); // init Rotary Encoder

 // main loop
 while(1)
 {
 Delayms(100); // place holder for a complex app.

 clrLCD();
 sprintf(s, "RCount = %d", RCount);
 putsLCD(s);

 } // main loop

 } // main

 Notice the call to the initEX16() function that, if you remember from Day 10,
besides performing the fine tuning of the PIC32 for performance, enables the vectored
interrupt mode.

 Notice also that where the Delayms(100) call is made, in the main() function, you
could actually replace the core of a complex application that will now be able to operate
continuously without being “ blocked ” by the encoder detection routines.

288 Day 12

 Keyboards
 If a few buttons, a keypad, or a rotary encoder offer the possibility to inexpensively accept
user input to an embedded-control application, they pale compared to the convenience of
a real computer keyboard.

With the advent of the USB bus, computers have finally been freed of a number of
 “ legacy ” interfaces that had been in use for decades, since the introduction of the first
IBM PC. The PS/2 mouse and keyboard interface is one of them. The result of this
transition is that a large number of the “ old ” keyboards are now flooding the surplus
market, and even new PS/2 keyboards are selling for very low prices. This creates the
opportunity to give our future PIC32 projects a powerful input capability in return for
very little complexity and cost.

 PS/2 Physical Interface
 The PS/2 interface uses a five-pin DIN (see Figure 12.7) or a six-pin mini-DIN connector.
The first was common on the original IBM PC-XT and AT series but has not been in use
for a while. The smaller six-pin version has been more common in recent years. Once the
different pin-outs are taken into consideration, you will notice that the two are electrically
identical.

 The host must provide a 5 V power supply. The current consumption will vary with
the keyboard model and year, but you can expect values between 50 and 100 mA. (The
original specifications used to call for up to 275 mA max.)

 The data and clock lines are both open-collector with pull-up resistors (1–10 k ohm) to
allow for two-way communication. In the normal mode of operation, it is the keyboard
that drives both lines to send data to the personal computer. When it is necessary, though,
the computer can take control to configure the keyboard and to change the status LEDs
(Caps Lock and Num Lock).

 Note

 Interfacing to a USB keyboard is a completely different deal. You will need a USB host
interface, with all the hardware and software complexity that it implies. New PIC32 models
with USB host peripherals will address these needs, but a discussion of their use and the
command of the USB protocol required are well beyond the scope of this book.

Capturing User Inputs 289

 The PS/2 Communication Protocol
 At idle, both the data and clock lines are held high by the pull-ups (located inside the key-
board). In this condition the keyboard is enabled and can start sending data as soon as a
key has been pressed. If the host holds the clock line low for more than 100 us, any further
keyboard transmissions are suspended. If the host holds the data line low and then releases
the clock line, this is interpreted as a request to send a command (see Figure 12.8).

Male

(Plug)

(a)

(b)

Female

(Socket)

5-pin DIN (AT/XT):
1 – Clock
2 – Data
3 – NC
4 – Ground
5 – Vcc (�5 V)

Male

(Plug)

Female

(Socket)

6-pin mini-DIN (PS/2):
1 – Data
2 – NC
3 – Ground
4 – Vcc (�5 V)
5 – Clock
6 – NC

6

4

1

3

5

2

1
4 2 5

3 3
5 2 4

1

5

3

1 2

4

6

Figure 12.7 : (a) Electrical interface (5-pin DIN) and (b) Physical interface (6-pin DIN).

CLOCK

DATA

BIT 0
BIT 1 BIT 3 BIT 5 BIT 7

STOP

BIT 2 BIT 4 BIT 6 PARITY

START

 Figure 12.8 : Keyboard-to-host communication waveform.

The protocol is a curious mix of synchronous and asynchronous communication protocols
we have seen in previous chapters. It is synchronous since a clock line is provided, but it
is similar to an asynchronous protocol because a start, a stop, and a parity bit are used to

290 Day 12

bracket the actual 8-bit data packet. Unfortunately, the baud rate used is not a standard value
and can change from unit to unit over time, with temperature and the phase of the moon.
In fact, typical values range from 10 to 16 kbits per second. Data changes during the clock
high state. Data is valid when the clock line is low. Whether data is flowing from the host to
the keyboard or vice versa, it is the keyboard that always generates the clock signal.

 Note

 The USB bus reverses the roles as it makes each peripheral a synchronous slave of the host. This
simplifies things enormously for a non real-time, nonpreemptive multitasking operating system like
Windows. The serial port and the parallel port were similarly asynchronous interfaces and, probably
for the same reason, both became legacy with the introduction of the USB bus specification.

 Interfacing the PIC32 to the PS/2
 The unique peculiarities of the protocol make interfacing to a PS/2 keyboard an interesting
challenge, since neither the PIC32 SPI interface nor the UART interface can be used. In fact,
the SPI interface does not accept 11-bit words (8-bit or 16-bit words are the closest options),
whereas the PIC32 UART requires the periodic transmission of special break characters to
make use of the powerful auto baud-rate detection capabilities. Also notice that the PS/2
protocol is based on 5 V level signals. This requires care in choosing which pins can be
directly connected to the PIC32. In fact, only the 5 V-tolerant digital input pins can be used,
which excludes the I/O pins that are multiplexed with the ADC input multiplexer.

 Input Capture
 The first idea that comes to mind is to implement in software a PS/2 serial interface
peripheral using the input capture peripheral (see Figure 12.9).

 Five input capture modules are available on the PIC32MX360F512L, connected to the
IC1-IC5 pins multiplexed on PORTD pins 8, 9, 10, 11, and 12, respectively.

 Each input capture module is controlled by a single corresponding control register
ICxCON and works in combination with one of two timers, either Timer2 or Timer3.

 One of several possible events can trigger the input capture:

● Rising edge

● Falling edge

Capturing User Inputs 291

● Rising and falling edge

● Fourth rising edge

● Sixteenth rising edge

 The current value of the selected timer is recorded and stored in a FIFO buffer to be
retrieved by reading the corresponding ICxBUF register. In addition to the capture event,
an interrupt can be generated after a programmable number of events (each time, every
second, every third or every fourth).

 To put the input capture peripheral to use and receive the data stream from a PS/2
keyboard, we can connect the IC1 input (RD8) to the clock line and configure the
peripheral to generate an interrupt on each and every falling edge of the clock (see
 Figure 12.10).

 After creating a new project that we will call IC and following our usual template, we can
start adding the following initialization code to a new source file we ’ ll call PS2IC.c :

 #define PS2DAT _RG12 // PS2 Data input pin
 #define PS2CLK _RD8 // PS2 Clock input pin (IC1)

Set Flag ICxIF
(in IFSn Register)

System Bus

ICx pin
3

Prescaler
Counter
(1, 4, 16)

Edge Detection Logic
and

Clock Synchronizer

ICxCON
Interrupt

Logic

FIFO
R/W
Logic

ICI�1:0�

ICOV ICBNE(ICxCON�4:3�)

ICM�2:0� (ICxCON�2:0�)
Mode Select

From 16-bit Timers
TMRy TMRx

16

ICTMR
(ICxCON�7�)

16

1 0

ICxBUF

F
IF

O

 Figure 12.9 : Input capture module block diagram.

292 Day 12

 void initKBD(void)
 {
 // init I/Os
 _TRISD8 = 1; // make RD8, IC1 an input pin, PS2 clock
 _TRISG12 = 1; // make RG12 an input pin, PS2 data

 // clear the kbd flag
 KBDReady = 0;

 // init input capture
 IC1CON = 0x8082; // TMR2, int every cap, fall’n edge
 mIC1ClearIntFlag(); // clear the interrupt flag
 mIC1SetIntPriority(1);
 mIC1IntEnable(1); // enable the IC1 interrupt

 // init Timer2
 mT2ClearIntFlag(); // clear the timer interrupt flag
 mT2SetIntPriority(1);
 mT2IntEnable(1); // enable (TMR2 is not active yet)

 } // init KBD

 We will also need to create an interrupt service routine for the IC1 interrupt vector. This
routine will have to operate as a state machine and perform in a sequence the following
steps:

 1. Verify the presence of a start bit (data line low).

 2. Shift in 8 bits of data and compute a parity.

Falling edge
input capture event

Clock line

Data line Valid data

 Figure 12.10 : PS/2 interface bit timing and the input capture trigger event.

Capturing User Inputs 293

 3. Verify a valid parity bit.

 4. Verify the presence of a stop bit (data line high).

 If any of the above checks fails, the state machine must reset and return to the start
condition. When a valid byte of data is received, we will store it in a buffer—think of it as
a mailbox—and a flag will be raised so that the main program or any other “ consumer ”
routine will know a valid key code has been received and is ready to be retrieved. To
fetch the code, it will suffice to copy it from the mailbox first and then clear the flag (see
 Figure 12.11).

Stop

Start Bit

Bitcount � 8

Data � low

Parity � odd

Parity � even

Parity

Data � high Bitcount � 8

 Figure 12.11 : The PS/2 receive state machine diagram.

 The state machine requires only four states and a counter. All the transitions can be
summarized in Table 12.2 .

 Theoretically I suppose we should consider this an 11-state machine, counting each time
the bit state is entered with a different bitcount value as a distinct state. But the four-
state model works best for an efficient C language implementation. Let ’ s define a few
constants and variables that we will use to maintain the state machine:

 // definition of the keyboard PS/2 state machine
 #define PS2START 0
 #define PS2BIT 1
 #define PS2PARITY 2
 #define PS2STOP 3

294 Day 12

 #define TPS (FPB/1000000) // timer ticks per uS
 #define TMAX 500*TPS // 500uS time out limit

 // PS2 KBD state machine and buffer
 int PS2State;
 unsigned char KBDBuf;
 int KCount, KParity;

 // mailbox
 volatile int KBDReady;

 volatile unsigned char KBDCode;

 The interrupt service routine for the input capture IC1 module can finally be implemented
using a simple switch statement:

 void __ISR(_INPUT_CAPTURE_1_VECTOR, ipl1) IC1Interrupt(void)
 { // input capture interrupt service routine
 int d;

 // 1. reset timer on every edge
 TMR2 = 0;

 Table 12.2 : PS/2 receive state machine transitions.

State Conditions Effect

 Start Data � low Init bitcount
 Init parity
 Transition to bit state

 Bit Bitcount � 8 Shift in key code, LSB first (shift right)
 Update parity
 Increment bitcount

 Bitcount � 8 Transition to parity state

 Parity Parity � even Error; transition back to start

 Parity � odd Transition to stop

 Stop Data � low Error; transition back to start

 Data � high Save the key code in buffer
 Set flag
 Transition to start

Capturing User Inputs 295

 switch(PS2State){
 default:
 case PS2START:
 if (! PS2DAT) // verify start bit
 {
 KCount = 8; // init bit counter
 KParity = 0; // init parity check
 PR2 = TMAX; // init timer period
 T2CON = 0x8000; // enable TMR2, 1:1
 PS2State = PS2BIT;

 }
 break;

 case PS2BIT:
 KBDBuf >>=1; // shift in data bit
 if (PS2DAT)
 KBDBuf += 0x80;

 KParity ^= KBDBuf; // update parity
 if (--KCount == 0) // if all bit read, move on
 PS2State = PS2PARITY;

 break;

 case PS2PARITY:
 if (PS2DAT) // verify parity bit
 KParity ^= 0x80;

 if (KParity & 0x80) // if parity odd, continue
 PS2State = PS2STOP;

 else
 PS2State = PS2START;

 break;

 case PS2STOP:
if (PS2DAT) // verify stop bit
 {
 KBDCode = KBDBuf; // save code in mail box
 KBDReady = 1; // set flag, code available
 T2CON = 0; // stop the timer

 }
 PS2State = PS2START;
 break;

 } // switch state machine

296 Day 12

 // clear interrupt flag
 d = IC1BUF; // discard capture
 mIC1ClearIntFlag();

 } // IC1 Interrupt

 Testing Using a Stimulus Scripts
 The small perforated prototyping area can be used to attach a PS/2 mini-DIN connector to
the Explorer 16 demonstration board, the only alternative being the development of a custom
daughter board (PICTail) for the expansion connectors. Before committing to designing such
a board, though, we would like to make sure that the chosen pin-out and code is going to
work. The MPLAB SIM software simulator will once more be our tool of choice.

 In previous chapters we have used the software simulator in conjunction with the Watch
window, the StopWatch, and the Logic Analyzer to verify that our programs were
generating the proper timings and outputs, but this time we will need to simulate inputs as
well. To this end, MPLAB SIM offers a considerable number of options and resources—
so many in fact that the system might seem a bit intimidating. First, the simulator offers
two types of input stimuli:

● Asynchronous ones, typically triggered manually by the user

● Synchronous ones, triggered automatically by the simulator after a scripted
amount of time (expressed in processor cycles or seconds)

 The scripts containing the descriptions of the synchronous stimuli (which can be quite
complex) are prepared using the Stimulus window (see Figure 12.12). You must have the
MPLAB SIM selected as your active debugging tool (Debugger | Select Tool | MPLAB
SIM) to open the Stimulus window by selecting Stimulus | New Workbook from the
Debugger menu. To prepare the simplest type of stimulus script, one that assigns values
to specific input pins (but also entire registers) at given points in time, you can select the
first tab, Pin/Register Actions .

 After selecting the unit of measurement of choice, microseconds in our case, click the
first row of the table that occupies most of the dialog box window space (where it says
 “ click here to Add Signals ”). This will allow you to add columns to the table. Add one
column for every pin for which you want to simulate inputs. In our example, that would
be RG12 for the PS/2 Data line and IC1 for the Input Capture pin that we want connected
to the PS2 Clock line. At this point we can start typing in the stimulus timing table.
To simulate a generic PS/2 keyboard transmission, we need to produce a 10 kHz clock

Capturing User Inputs 297

signal for 11 cycles, as represented in the PS/2 keyboard waveform in Figure 12.6 . This
requires an event to be inserted in the timing table each 50us. As an example, Table 12.3
illustrates the trigger events I recommend you add to the Stimulus window timing table to
simulate the transmission of key code 0x79 .

 Once the timing table is filled, you can save the current content for future use with the Save
button. The file generated will be an ASCII file with the .SBS extension. In theory you
could edit this file manually with an MPLAB IDE editor or any basic ASCII editor, but
you are strongly discouraged from doing so. The format is more rigid than meets the eye
and you might end up trashing it. If you were wondering why the term “ workbook ” is used
for what looks like a simple table, you are invited to explore the other panes (accessible
by clicking the tabs at the top of the dialog box) of the Stimulus window. You will see that
what we are using in this example is just one of the many methods available, representing
a minuscule portion of the capabilities of the MPLAB SIM simulator. A workbook file can
contain a number of different types of stimuli produced by any (or multiple) of those panes.

 Segment of the Stimulus workbook file
 ## SCL Builder Setup File: Do not edit!!

 ## VERSION: 3.60.00.00
 ## FORMAT: v2.00.01
 ## DEVICE: PIC32MX360F512L

 ## PINREGACTIONS
 us

 Figure 12.12 : The Stimulus window.

298 Day 12

 Table 12.3 : SCL Generator timing example for basic.

 Time (us) RG12 IC1 Comment

 0 1 1 Idle state, both lines are pulled up

 100 1 1

 150 0 0 First falling edge, start bit (0)

 200 1 1

 250 1 0 Bit 0, k ey code LSb (1)

 300 0 1

 350 0 0 Bit 1 (0)

 400 0 1

 450 0 0 Bit 2 (0)

 500 1 1

 550 1 0 Bit 3 (1)

 600 1 1

 650 1 0 Bit 4 (1)

 700 1 1

 750 1 0 Bit 5 (1)

 800 1 1

 850 1 0 Bit 6 (1)

 900 0 1

 950 0 0 Bit 7, key code MSb (0)

 1000 0 1

 1050 0 0 Parity bit (0)

 1100 1 1

 1150 1 0 Stop bit (1)

 1200 1 1 Idle

Capturing User Inputs 299

 No Repeat
 RG12
 IC1
 --
 0
 1
 1
 --
 100
 1
 1
 --
 150
 0

 0

 Before we get to use the generated stimulus file, we have to complete the project with
a few final touches. Let ’ s prepare an include file to publish the accessible function:
initKBD() , the flag KBDReady , and the buffer for the received key code KBDCode :

 /*
 **
 ** PS2IC.h
 **
 ** PS/2 keyboard input library using input capture
 */
 extern volatile int KBDReady;
 extern volatile unsigned char KBDCode;

 void initKBD(void);

 Note that there is no reason to publish any other detail of the inner workings of the PS/2
receiver implementation. This will give us freedom to try a few different methods later
without changing the interface. Save this file as PS2IC.h and include it in the project.

 Let ’ s also create a new file, PS2ICTest.c , that will contain the usual template with the
main() routine and will use the PS2IC.c module to test its functionality:

 /*
 ** PS2ICTest.c
 **
 */

300 Day 12

 // configuration bit settings, Fcy=72MHz, Fpb=36MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include <p32xxxx.h>
 #include <explore.h>
 #include "PS2IC.h"

 main()
 {
 int Key;
 initEX16(); // init and enable interrupts
 initKBD(); // initialization routin e
 while (1)
 {
 if (KBDReady) // wait for the fla g
 {
 Key = KBDCode; // fetch the key code
 KBDReady = 0; // clear the flag

 }
 } // main loop

 } //main

 The initEX16() function takes care of the fine tuning of the PIC32 for performance
but also enables the vectored interrupts mode. The call to the initKBD() function takes
care of the PS/2 state machine initialization, sets the chosen input pins, and configures the
interrupts for the Input Capture module. The main loop will wait for the interrupt routine
to raise the KBDready flag, indicating that a key code is available; it will fetch the key
code and copy it in the local variable Key. Finally, it will clear the KBDReady flag, ready
to receive a new character.

Now remember to add the file to the project and build all. Instead of immediately
launching the simulation, select the Stimulus window once more, and click the Apply
button.

 Note

 Keep the Stimulus window open (in the background). Resist the temptation to click the Exit
button, as that would close the workbook and leave us without stimuli.

Capturing User Inputs 301

 Figure 12.13 : In the Output window (MPLAB SIM pane), a stimulus
action has been triggered.

 It is your choice now to proceed by single-stepping or animating through the program to
verify its correct execution. My suggestion is that you place a breakpoint inside the main
loop on the instruction copying KBDCode to the Key variable. Open the Watch window
and add Key from the Symbol list, then RUN .

 After a few seconds, the execution should terminate at the breakpoint, and the content of
Key should reflect the data we sent through the simulated PS/2 stimulus script: 0x79 !

 The Simulator Profiler
 If you were curious about how fast the simulation of a PIC32 could run on your
computer, there is an interesting feature available to you in the MPLAB SIM Debugger
menu: the profile. Select the Profile submenu (Debugger | Profile) and click Reset
Profile (see Figure 12.14).

 This will clear the simulator profile counters and timers. Then click the Reset button and
repeat the simulation (Debugger | Run) until it encounters the breakpoint again. This
time select Debugger | Profiler | Display Profile to display the latest statistics from
MPLAB SIM (see Figure 12.15).

 A relatively long report will be available in the output window (MPLAB SIM pane)
detailing how many times each instruction was used by the processor during the
simulation and, at the very bottom, offering an assessment of the absolute “ simulation ”

 Click the Reset button (or select Debugger | Reset) and watch for the first stimulus to
arrive as the microsecond 0 trigger is fired. Remember, both lines RG12 and IC1 are
supposed to be set high according to our timetable. A message will confirm this in the
Output window (see Figure 12.13).

302 Day 12

 Figure 12.15 : Simulator Profile output.

 Figure 12.14 : The Simulator Profile submenu.

speed. In my case, that turned out to be 1.4 MIPS. A respectable result after all, although
nothing to write home about. Contrary to the simulation of other PIC® microcontrollers,
where these numbers would have compared well with the actual processor real-time
performance, compared to the PIC32 the software simulation (on my laptop) ran at just
1/50th of the actual silicon speed!

 Change Notification
 Though the input capture technique worked all right, there are other options that we
might be curious to explore to interface efficiently with a PS/2 keyboard. In particular

Capturing User Inputs 303

there is another interesting peripheral available on the PIC32 that could offer an
alternative method to implement a PS/2 interface: the Change Notification (CN) module.
There are as many as 22 I/O pins connected with this module, and this can give us
some freedom in choosing the ideal input pins for the PS/2 interface while making sure
they don ’ t conflict with other functions required in our project or already in use on the
Explorer 16 board.

 Only three control registers are associated with the CN module. The CNCON register
contains the basic control bits to enable the module, and the CNEN register contains the
enable bits for each of the CN input pins. Note that only one interrupt vector is available
for the entire CN module; therefore it will be the responsibility of the interrupt service
routine to determine which one has actually changed if more than one is enabled. Finally,
the CNPUE register controls the individual activation of internal pull-up resistors available
for each input pin (see Figure 12.16).

Virtual
Address

BF88_61C0 CNCON 31:24

23:16

15:8

7:0

31:0

31:0

31:0

31:24

23:16

15:8

7:0

31:0

31:0

31:0

31:24

23:16

15:8

7:0

31:0

31:0

31:0

ON

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

FRZ SIDL

Write clears selected bits in CNCON, Read yields undefined

Write sets selected bits in CNCON, Read yields undefined

Write inverts selected bits in CNCON, Read yields undefined

Write clears selected bits in CNEN, Read yields undefined

Write sets selected bits in CNEN, Read yields undefined

Write inverts selected bits in CNEN, Read yields undefined

Write clears selected bits in CNPUE, Read yields undefined

Write sets selected bits in CNPUE, Read yields undefined

Write inverts selected bits in CNPUE, Read yields undefined

CNCONCLR

CNCONSET

CNCONINV

CNEN

CNEN[15:8]

CNEN[7:0]

CNEN[15:8]

CNEN[7:0]

CNENCLR

CNENSET

CNENINV

CNPUE

CNPUECLR

CNPUESET

CNPUEINV

Note 1: CNEN and CNPUE bit(s) are not implemented on 64-pin variants and read as ‘0’

BF88_61C4

BF88_61C8

BF88_61CC

BF88_61D0

BF88_61D4

BF88_61D8

BF88_61DC

BF88_61E0

BF88_61E4

BF88_61E8

BF88_61EC

Name
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5

CNEN
211

CNEN
201

CNEN
191

CNEN
18

CNEN
17

CNEN
16

CNPUE
211

CNPUE
201

CNPUE
191

CNPUE
18

CNPUE
17

CNPUE
16

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

 Figure 12.16 : The CN control registers table.

304 Day 12

Change notifications

Clock line

Data line
Valid data

 Figure 12.17 : PS/2 interface bit timing Change Notification event detail.

 In practice, all we need to support the PS/2 interface is just one of the CN inputs
connected to the PS2 clock line. The PIC32 weak pull-up will not be necessary in this
case since it is already provided by the keyboard. There are 22 pins to choose from,
and we will find a CN input that is not shared with the ADC (remember, we need a 5 V
tolerant input) and is not overlapping with some other peripheral used on the Explorer 16
board. This takes a little studying between the device datasheet and the Explorer 16 user
guide. But once the input pin is chosen, say, CN11 (multiplexed with pin RG9 , the SS line
of the SPI2 module and the PMP module Address line PMA2), a new initialization routine
can be written in just a couple of lines (see Figure 12.17):

 #define PS2DAT _RG12 // PS2 Data input pin
 #define PS2CLK _RG9 // PS2 Clock input pin (CN11)

 void initKBD(void)
 {
 // init I/Os
 _TRISG9 = 1; // make RG9 an input pin
 _TRISG12 = 1; // make RG12 an input pin

 // clear the flag
 KBDReady = 0;

Capturing User Inputs 305

 // configure Change Notification system
 CNENbits.CNEN11 = 1; // enable PS2CLK (CN11)
 CNCONbits.ON = 1; // turn on Change Notification
 mCNSetIntPriority(1); // set interrupt priority >0
 mCNClearIntFlag(); // clear the interrupt flag
 mCNIntEnable(1); // enable interrupt

 } // init KBD

 As per the interrupt service routine, we can use exactly the same state machine used in
the previous example, adding only a couple of lines of code to make sure that we are
looking at a falling edge of the clock line.

 In fact, using the input capture module, we could choose to receive an interrupt only on the
desired clock edge, whereas the change notification module will generate an interrupt both
on falling and rising edges. A simple check of the status of the clock line immediately after
entering the interrupt service routine will help us tell the two edges apart:

 void __ISR(_CHANGE_NOTICE_VECTOR, ipl1) CNInterrupt(void)
 { // change notification interrupt service routine

 // 1. make sure it was a falling edge
 if (PS2CLK == 0)
 {
 switch(PS2State){
 default:
 case PS2START: // verify start bit
 if (! PS2DAT)
 {
 KCount = 8; // init bit counter
 KParity = 0; // init parity check
 PS2State = PS2BIT;

 }
 break;

 case PS2BIT:
 KBDBuf >>=1; // shift in data bit
 if (PS2DAT)
 KBDBuf += 0x80;

 KParity ^= KBDBuf; // update parity
 if (--KCount == 0) // if all bit read, move on
 PS2State = PS2PARITY;

 break;

306 Day 12

 case PS2PARITY:
 if (PS2DAT) // verify parity
 KParity ^= 0x80;

 if (KParity & 0x80) // if parity odd, continue
 PS2State = PS2STOP;

 else
 PS2State = PS2START;

 break;

 case PS2STOP:
 if (PS2DAT) // verify stop bit
 {
 KBDCode = KBDBuf; // save code in mail box
 KBDReady = 1; // set flag, code available

 }
 PS2State = PS2START;
 break;

 } // switch state machine
 } // if falling edge

 // clear interrupt flag
 mCNClearIntFlag();

 } // CN Interrupt

 Add the constants and variables declarations already used in the previous example:

 // definition of the keyboard PS/2 state machine
 #define PS2START 0
 #define PS2BIT 1
 #define PS2PARITY 2
 #define PS2STOP 3

 // PS2 KBD state machine and buffer
 int PS2State;
 unsigned char KBDBuf;
 int KCount, KParity;

 // mailbox
 volatile int KBDReady;

 volatile unsigned char KBDCode;

 Package it all together in a file that we will call PS2CN.c .

Capturing User Inputs 307

 The include file PS2CN.h will be practically identical to the previous example, since we
are going to offer the same interface:

 /*
 **
 ** PS2CN.h
 **
 ** PS/2 keyboard input module using Change Notification
 */

 extern volatile int KBDReady;
 extern volatile unsigned char KBDCode;

 void initKBD(void);

 Create a new project called PS2CN and add both the .c and the .h files to the
project.

 Finally, create a main module to test this new technique. One more time, it will be mostly
identical to the previous project:

 /*
 ** PS2CNTest.c
 **
 */
 // configuration bit settings, Fcy=72MHz, Fpb=36MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include <p32xxxx.h>
 #include <explore.h>
 #include "PS2CN.h"

 main()
 {
 initEX16(); // init and enable interrupts
 initKBD(); // kbd initialization

 while (1)
 {
 if (KBDReady) // wait for the flag
 {

308 Day 12

 PORTA = KBDCode; // fetch the key code
 KBDReady = 0; // clear the flag

 }
 } // main loop

 } //main

 Save the project, then build the project (Project | BuildAll) to compile and link all the
modules. To test the change notification technique, we will use once more MPLAB SIM
stimulus generation capabilities. Once more we will repeat most of the steps performed
in the previous project. Starting with the Stimulus window (Debugger | Stimulus | New
Workbook), we will create a new workbook. Inside the window, create two columns ,
one for the same PS2 Data line connected to RG12 , but the PS2 Clock line will be
connected to the CN11 Change Notification module input this time. Add the same
sequence of stimuli as presented in Table 12.3 , replacing the IC1 input column with
the CN11 column. Save the workbook as PS2CN.sbs and then click the Apply button to
activate the stimulus script.

 We are ready now to execute the code and test the proper functioning of the new PS/2
interface. Open the Watch window and add Key from the symbols list. Then set a
breakpoint inside the main loop on the line where KBDCode is copied to the Key
variable. Finally, perform a reset (Debugger | Reset) and verify that the first event is
triggered (setting both PS/2 input lines high at time 0 us). Run the code (Debugger |
RUN) and, if all goes well, you will see the processor stop at the breakpoint after less
than a second, and you will see the contents of Key to be updated to reflect the key code
0x79 . Success again!

 Evaluating Cost
 Changing from the Input Capture to the Change Notification method was almost too easy.
The two peripherals are extremely potent and, although designed for different purposes,
when applied to the task at hand they performed almost identically. In the embedded
world, though, you should constantly ask yourself if you could solve the problem with
fewer resources even when, as in this case, there seems to be abundance.

 Let ’ s evaluate the real cost of each solution by counting the resources used and their
relative scarcity. In using the Input Capture, we have in fact used one of five IC modules
available in the PIC32MX360F512L model. This peripheral is designed to operate in
conjunction with a timer (Timer2 or Timer3), although we are not using the timing
information in our application but only the interrupt mechanism associated with the

Capturing User Inputs 309

input edge trigger. When using the Change Notification, we are using only one of 22
possible inputs, but we are also taking control of the sole interrupt vector available to this
peripheral. In other words, should we need any other input pin to be controlled by the
change notification peripheral, we will have to share the interrupt vector, adding latency
and complexity to the solution. I would call this a tie.

 I/O Polling
 There is one more method that we could explore to interface to a PS/2 keyboard. It is
the most basic one and it implies the use of a timer, set for a periodic interrupt, and any
5V tolerant I/O pin of the microcontroller. In a way, this method is the most flexible
from a configuration and layout point of view. It is also the most generic since any
microcontroller model, even the smallest and most inexpensive, will offer at least one
timer module suitable for our purpose. The theory of operation is pretty simple. At
regular intervals an interrupt will be generated, set by the value of the period register
associated with the chosen timer (see Figure 12.18).

Sampling points

Clock line

Data line Valid data

 Figure 12.18 : PS/2 interface bit timing I/O polling sampling points.

 We will use Timer4 this time, just because we never used it before, and its associated
period register PR4 . The interrupt service routine T4Interrupt() will sample the status
of the PS/2 Clock line and it will determine whether a falling edge has occurred on the
PS/2 Clock line over the previous period. When a falling edge is detected, the PS/2 Data

310 Day 12

line status will be considered to receive the key code. To determine how frequently we
should perform the sampling and therefore identify the optimal value of the PR4 register,
we should look at the shortest amount of time allowed between two edges on the PS/2
clock line. This is determined by the maximum bit rate specified for the PS/2 interface
that, according to the documentation in our possession, corresponds to about 16 k bit/s.
At that rate, the clock signal can be represented by a square wave with an approximately
50-percent duty cycle and a period of approximately 62.5 us. In other words, the clock
line will stay low for little more than 30 us each time a data bit is presented on the PS/2
Data line, and it will stay high for approximately the same amount of time, during which
the next bit will be shifted out.

 By setting PR4 to a value that will make the interrupt period shorter than 30 us (say
25 us), we can guarantee that the clock line will always be sampled at least once between
two consecutive edges. The keyboard transmission bit rate, though, could be as slow
as 10 k bit/s, giving a maximum distance between edges of about 50 us. In that case we
would be sampling the clock and data lines twice and possibly up to three times between
each clock edge. In other words, we will have to build a new state machine to detect the
actual occurrence of a falling edge and to properly keep track of the PS/2 clock signal
(see Figure 12.19).

Clock � 0, Falling Edge

Clock � 1Clock � 1Clock � 0

State 1State 0

 Figure 12.19 : Clock-polling state machine graph.

 The state machine requires only two states, and all the transitions can be summarized in
the Table 12.4 .

 When a falling edge is detected, we can still use the same state machine developed
in the previous projects to read the data line. It is important to note that in this case

Capturing User Inputs 311

the value of the data line is not guaranteed to be sampled right after the actual falling
edge of the clock line has occurred but instead could be considerably delayed. To
avoid the possibility of reading the data line outside the valid period, it is imperative
to simultaneously sample both the clock and the data line. This will be performed by
copying the value of the two inputs in two local variables (d and k) at the very beginning
of the interrupt service routine. In our example, we will choose to use RG12 (again) for
the data line and RG13 for the clock line. Here is the skeleton implementation of the
Clock-polling state machine illustrated previously:

 #define PS2CLK _RG13 // PS2 Clock output
 #define PS2DAT _RG12 // PS2 Data input pin

 // PS2 KBD state machine and buffer
 int PS2State;
 unsigned char KBDBuf;

 // mailbox
 volatile int KBDReady;
 volatile unsigned char KBDCode;

 void __ISR(_TIMER_4_VECTOR, ipl1) T4Interrupt(void)
 {
 int d, k;

 // sample the inputs clock and data at the same time
 d = PS2DAT;
 k = PS2CLK;

 Table 12.4 : Clock-polling state machine transitions.

State Conditions Effect

 State0 Clock � 0 Remain in State0

 Clock � 1 Rising Edge, Transition to State1

 State1 Clock � 1 Remain in State1

 Clock � 0 Falling edge detected
 Execute the Data state machine
 Transition to State0

312 Day 12

 // keyboard state machine
 if (KState)
 { // previous time clock was high KState 1
 if (!k) // PS2CLK == 0
 { // falling edge detected,
 KState = 0; // transition to State0

 <<<< insert data state machine here >>>>

 } // falling edge
 else
 { // clock still high, remain in State1

 } // clock still high
 } // state 1

 else
 { // state 0
 if (k) // PS2CLK == 1
 { // rising edge, transition to State1
 KState = 1;

 } // rising edge
 else
 { // clocl still low, remain in State0

 } // clock still low
 } // state 0

 // clear the interrupt flag
 mT4ClearIntFlag();

 } // T4 Interrupt

 Thanks to the periodic nature of the polling mechanism we just developed, we can add
a new feature to the PS2 interface to make it more robust with minimal effort. First, we
can add a counter to idle loops of both states of the clock state machine. This way we will
be able to create a timeout to be able to detect and correct error conditions, should the
PS/2 keyboard be disconnected during a transmission or if the receive routine should lose
synchronization for any reason.

 The new transition table (Table 12.5) is quickly updated to include the timeout counter
KTimer.

Capturing User Inputs 313

 The new transition table adds only a few instructions to our interrupt service routine:

 void __ISR(_TIMER_4_VECTOR, ipl1) T4Interrupt(void)
 {
 int d, k;

 // sample the inputs clock and data at the same time
 d = PS2DAT;
 k = PS2CLK;

 // keyboard state machine
 if (KState)
 { // previous time clock was high KState 1
 if (!k) // PS2CLK = 0
 { // falling edge detected,
 KState = 0; // transition to State0
 KTimer = KMAX; // restart the counter

 <<<< insert data state machine here >>>>

 } // falling edge
 else
 { // clock still high, remain in State1

 Table 12.5 : Clock-polling (with timeout) state machine transition table.

State Conditions Effect

 State0 Clock � 0 Remain in State0
 Decrement KTimer
 If KTimer � 0, error
 Reset the data state machine

 Clock � 1 Rising Edge, Transition to State1

 State1 Clock � 1 Remain in State1
 Decrement KTimer
 If KTimer � 0, error
 Reset the data state machine

 Clock � 0 Falling edge detected
 Execute the Data state machine
 Transition to State0
 Restart KTimer

314 Day 12

 KTimer--;
 if (KTimer == 0) // Timeout
 PS2State = PS2START; // Reset data SM

 } // clock still high
 } // Kstate 1
 else
 { // Kstate 0
 if (k) // PS2CLK == 1
 { // rising edge, transition to State1
 KState = 1;

 } // rising edge
 else
 { // clocl still low, remain in State0
 KTimer--;
 if (KTimer = 0) // Timeout
 PS2State = PS2START; // Reset data SM

 } // clock still low
 } // Kstate 0

 // clear the interrupt flag
 mT4ClearIntFlag();

 } // T4 Interrupt

 Testing the I/O Polling Method
 Let ’ s now insert the Data state machine from the previous projects, modified to operate
on the value sampled in d and k at the interrupt service routine entry. It fits entirely in a
single switch statement:

 switch(PS2State){
 default:
 case PS2START:
 if (!d) // PS2DAT == 0
 {
 KCount = 8; // init bit counter
 KParity = 0; // init parity check
 PS2State = PS2BIT;

 }
 break;

Capturing User Inputs 315

 case PS2BIT:
 KBDBuf >>=1; // shift in data bit
 if (d) // PS2DAT == 1
 KBDBuf += 0x80;

 KParity ^= KBDBuf; // calculate parity
 if (--KCount == 0) // all bit read
 PS2State = PS2PARITY;

 break;

 case PS2PARITY:
 if (d) // PS2DAT == 1
 KParity ^= 0x80;

 if (KParity & 0x80) // parity odd, continue
 PS2State = PS2STOP;

 else
 PS2State = PS2START;

 break;

 case PS2STOP:
 if (d) // PS2DAT == 1
 {
 KBDCode = KBDBuf; // write in the buffer
 KBDReady = 1;

 }
 PS2State = PS2START;
 break;

 } // switch

 Let ’ s complete this third module with a proper initialization routine:

 void initKBD(void)
 {
 // init I/Os
 ODCGbits.ODCG13 = 1; // make RG13 open drain (PS2clk)
 _TRISG13 = 1; // make RG13 an input pin (for now)
 _TRISG12 = 1; // make RG12 an input pin

 // clear the kbd flag
 KBDReady = 0;

316 Day 12

 // configure Timer4
 PR4 = 25*TPS - 1; // 25 us
 T4CON = 0x8000; // T4 on, prescaler 1:1
 mT4SetIntPriority(1); // lower priority
 mT4ClearIntFlag(); // clear interrupt flag
 mT4IntEnable(1); // enable interrupt

 } // init KBD

 This is quite straightforward.

 Let ’ s save it all in a module we can call PS2T4.c. Let ’ s create a new include file, too:

 /*
 **
 ** PS2T4.h
 **
 ** PS/2 keyboard input library using T4 polling
 */

 extern volatile int KBDReady;
 extern volatile unsigned char KBDCode;

 void initKBD(void);

 It is practically identical to all previous modules include files, and the main test module
will not be much different either:

 /*
 ** PS2T4 Test
 **
 */
 // configuration bit settings, Fcy=72MHz, Fpb=36MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include <p32xxxx.h>
 #include <explore.h>
 #include "PS2T4.h"

 main()
 {
 initEX16(); // init and configure interrupts
 initKBD(); // initialization routine

Capturing User Inputs 317

 while (1)
 {
 if (KBDReady) // wait for the flag
 {
 PORTA = KBDCode; // fetch the key code
 KBDReady = 0; // clear the flag

 }
 } // main loop

 } //main

 Create a new project T4 and add all three files to it. Build all and follow the same series
of steps used in the previous two examples to generate a stimulus script. Remember that
this time the stimulus for the Clock line must be provided on the RG13 pin. Open the
Watch window and add PORTA and KBDCode . Finally set a breakpoint to the line after
the assignment to PORTA and execute Debug | Run . If all goes well, even this time you
should be able to see PORTA updated in the Watch window and showing a new value of
0x79 . Success again!

 Cost and Efficiency Considerations
 Comparing the cost of this solution to the previous two, we realize that the I/O polling
approach is the one that gives us the most freedom in choosing the input pins and uses only
one resource, a timer, and one interrupt vector. The periodic interrupt can also be seamlessly
shared with other tasks to form a common time base if they all can be reduced to multiples
of the polling period. The time-out feature is an extra bonus; to implement it in the previous
techniques, we would have had to use a separate timer and another interrupt service routine
in addition to the Input Capture or Change Notification modules and interrupts.

 Looking at the efficiency, the Input Capture and the Change Notification methods appear
to have an advantage because an interrupt is generated only when an edge is detected.
Actually, as we have seen, the Input Capture is the best method from this point of view,
since we can select precisely the one type of edge we are interested in—that is, the falling
edge of the PS/2 Clock line.

 The I/O polling method appears to require the longest interrupt routine, but the number
of lines does not reflect the actual weight of the interrupt service routine. In fact, when
we look closer, of the two nested state machines that compose the I/O polling interrupt
service routine, only a few instructions are executed at every call, resulting in a very short
execution time and minimal overhead.

318 Day 12

 To verify the actual software overhead imposed by the interrupt service routines, we can
perform one simple test on each one of the three implementations of the PS/2 interface.
I will use only the last one as an example. We can allocate one of the I/O pins (one of the
LED outputs on PORTA not used by the JTAG port would be a logical choice) to help us
visualize when the microcontroller is inside an interrupt service routine. We can set the
pin on entry and reset it right before exit:

 void __ISR(..) T4Interrupt(void)
 {
 _RA2 = 1; // flag up, inside the ISR

 <<< Interrupt service routine here >>

 _RA2 = 0; // flag down, back to the main

 }

 Using MPLAB SIM simulator Logic Analyzer view, we can visualize it on our computer
screen. Follow the Logic Analyzer checklist so you will remember to enable the Trace
buffer, and set the correct simulation speed. Select the RA0 channel and rebuild the
project.

 To test the first two methods (IC and CN), you will need to open the Stimulus window
and apply the scripts to simulate the inputs. Without them there will be no interrupts
at all. When testing the I/O polling routine, you won ’ t necessarily need it; the Timer4
interrupt keeps coming anyway and, after all, we are interested in seeing how much time
is wasted by the continuous polling when no keyboard input is provided.

 Let MPLAB SIM run for a few seconds, then stop the simulation and switch back to the
Logic Analyzer window. You will have to zoom in quite a bit to get an accurate picture
(see Figure 12.20).

 Activate the cursors and drag them to measure the number of cycles between two
consecutive rising edges of RA2 , marking two successive entries in the interrupt service
routine. Since we selected a 25 us period, you should read 900 cycles between calls (25 us *
36 cycles/us @72 MHz).

 Measuring the number of cycles between a rising edge and a falling edge of RA2 instead
will tell us, with good approximation, how much time we are spending inside the
interrupt service routine; 36 cycles is what I found. The ratio between the two quantities
will give us an indication of the computing power absorbed by the PS/2 interface. In our
case that turns out to be just 4 percent.

Capturing User Inputs 319

 Keyboard Buffering
 Independently from the solution you will choose of the three we have explored
so far, there are a few more details we need to take care of before we can claim to
have completed the interface to the PS/2 keyboard. First, we need to add a buffering
mechanism between the PS/2 interface routines and the “ consumer ” or the main
application. So far, in fact, we have provided a simple mailbox mechanism that can store
only the last key code received. If you investigate further how the PS/2 keyboard protocol
works, you will discover that when a single key is pressed and released, a minimum
of three (and a maximum of five) key codes are sent to the host. If you consider Shift,
Ctrl, and Alt key combinations, things get a little more complicated and you realize
immediately that the single-byte mailbox is not going to be sufficient. My suggestion is to
use at least a 16-byte first-in/first-out (FIFO) buffer. The input to the buffer can be easily
integrated with the receiver interrupt service routines so that when a new key code is
received it is immediately inserted in the FIFO.

 The buffer can be declared as an array of characters, and two pointers will keep track of
the head and tail of the buffer in a circular scheme (see Figure 12.21).

 Figure 12.20 : Logic Analyzer view, measuring the I/O polling period.

320 Day 12

 // circular buffer
 unsigned char KCB[KB_SIZE];

 // head and tail or write and read pointers

 volatile int KBR, KBW;

 Following a few simple rules, we can keep track of the buffer content:

● The write pointer KBW (or head) marks the first empty location that will receive
the next key code.

● The read pointer KBR (or tail) marks the first filled location.

● When the buffer is empty, KBR and KBW are pointing at the same location.

● When the buffer is full, KBW points to the location before KBR .

● After reading or writing a character to/from the buffer, the corresponding pointer
is incremented.

● Upon reaching the end of the array, each pointer will wrap around to the first
element of the array.

 Insert the following snippet of code into the initialization routine:

 // init the circular buffer pointers

 KBR = 0;

 KBW = 0;

KBR

KCB[16]

KBW
Filled

Empty

[0] [1] [15]

 Figure 12.21 : Circular buffer (FIFO).

Capturing User Inputs 321

 Then update the state machine STOP state:

 case PS2STOP:
 if (PS2IN & DATMASK) // verify stop bit
 {
 KCB[KBW] = KBDBuf; // write in the buffer
 // check if buffer full
 if ((KBW+1)%KB_SIZE != KBR)
 KBW++; // else increment ptr

 KBW %= KB_SIZE; // wrap around
 }
 PS2State = PS2START;

 break;

 Notice the use of the % operator to obtain the reminder of the division by the buffer size.
This allows us to keep the pointers wrapping around the circular buffer.

 A few considerations are required for fetching key codes from the FIFO buffer.
In particular, if we choose the input capture or the change notification methods, we will
need to make a new function available (getKeyCode()) to replace the mailbox/flag
mechanism. The function will return FALSE if there are no key codes available in the
buffer and TRUE if there is at least one key code in the buffer, and the code is returned
via a pointer:

 int getKeyCode(char *c)
 {
 if (KBR == KBW) // buffer empty
 return FALSE;

 // else buffer contains at least one key code
 *c = KCB[KBR++]; // extract the first key code
 KBR %= KB_SIZE; // wrap around the pointer

 return TRUE;

 } // getKeyCode

 Notice that the extraction routine modifies only the read pointer; therefore it is safe to
perform this operation when the interrupts are enabled. Should an interrupt occur during
the extraction, there are two possible scenarios:

● The buffer was empty, a new key code will be added, but the getKeyCode()
function will “ notice ” the available character only at the next call.

322 Day 12

● The buffer was not empty, and the interrupt routine will add a new character to the
buffer tail, if there is enough room.

 In both cases there are no particular concerns of conflicts or dangerous consequences.

 But if we choose the polling technique, the timer interrupt is constantly active and we can
use it to perform one more task for us. The idea is to maintain the simple mailbox and
flag mechanism for delivering key codes as the interface to the receive routine and have
the interrupt constantly checking the mailbox, ready to replenish it with the content from
the FIFO. This way we can confine the entire FIFO management to the interrupt service
routine, making the buffering completely transparent and maintaining the simplicity of
the mailbox delivery interface. The new and complete interrupt service routine for the
polling I/O mechanism is presented here:

 void __ISR(_TIMER_4_VECTOR, ipl1) T4Interrupt(void)
 {
 int d, k;

 //_RA2 =1;

 // 1. check if buffer available
 if (!KBDReady & & (KBR!=KBW))
 {
 KBDCode = KCB[KBR++];
 KBR %= KB_SIZE;
 KBDReady = 1; // flag code available

 }

 // 2. sample the inputs clock and data at the same time
 d = PS2DAT;
 k = PS2CLK;

 // 3. Keyboard state machine
 if (KState)
 { // previous time clock was high KState 1
 if (!k) // PS2CLK == 0
 { // falling edge detected,
 KState = 0; // transition to State0
 KTimer = KMAX; // restart the counter

Capturing User Inputs 323

 switch(PS2State){
 default:
 case PS2START:
 if (!d) // PS2DAT == 0
 {
 KCount = 8; // init bit counter
 KParity = 0; // init parity check
 PS2State = PS2BIT;

 }
 break;

 case PS2BIT:
 KBDBuf >>= 1; // shift in data bit
 if (d) // PS2DAT == 1
 KBDBuf += 0x80;

 KParity ^= KBDBuf; // calculate parity
 if (--KCount == 0) // all bit read
 PS2State = PS2PARITY;

 break;

 case PS2PARITY:
 if (d) // PS2DAT == 1
 KParity ^= 0x80;

 if (KParity & 0x80) // parity odd, continue
 PS2State = PS2STOP;

 else
 PS2State = PS2START;

 break;

 case PS2STOP:
 if (d) // PS2DAT == 1
 {
 KCB[KBW] = KBDBuf; // write in the buffer
 // check if buffer full
 if ((KBW+1)%KB_SIZE != KBR)
 KBW++; // else increment ptr

 KBW %= KB_SIZE; // wrap around
 }
 PS2State = PS2START;
 break;

324 Day 12

 } // switch
 } // falling edge
 else
 { // clock still high, remain in State1
 KTimer--;
 if (KTimer == 0) // timeout

 PS2State = PS2START; // reset data SM
 } // clock still high

 } // Kstate 1
 else
 { // Kstate 0
 if (k) // PS2CLK == 1
 { // rising edge, transition to State1
 KState = 1;

 } // rising edge
 else
 { // clocl still low, remain in State0
 KTimer--;
 if (KTimer == 0) // timeout

 PS2State = PS2START; // reset data SM
 } // clock still low

 } // Kstate 0

 // 4. clear the interrupt flag
 mT4ClearIntFlag();

 //_RA2 = 0;

 } // T4 Interrupt

 Key Code Decoding
 So far we have been talking exclusively about key codes, and you might have assumed
that they match the ASCII codes for each key—say, if you press the A key on the keyboard
you would expect the corresponding ASCII code (0x41) to be sent. But things are not that
simple. To maintain a level of layout neutrality, all PC keyboards use scan codes, where
each key is assigned a numerical value that is related to the original implementation of
the keyboard scanning firmware of the first IBM PC, circa 1980. The translation from
scan codes to actual ASCII characters happens at a higher level according to specific
(international) keyboard layouts and, nowadays, is performed by Windows drivers. Keep
in mind also that for historical reasons there are at least three different and partially

Capturing User Inputs 325

compatible “ scan code sets. ” Fortunately, by default, all keyboards support the scan code
set #2, which is the one we will focus on in the following discussion.

 Each time a key is pressed (any key, including a Shift or Ctrl key), the scan code
associated with it is sent to the host; this is called the make code. As soon as the same key
is released, a new (sequence of) codes is sent to the host; this is called the break code.
The break code is typically composed of the same make code but prefixed with 0xF0 .
Some keys have a 2-byte-long make code (typically the Ctrl, Alt, and arrow keys) and
consequently the break code is 3 bytes long (see Table 12.6).

 Table 12.6 : Example of make and break codes used in Scan Code Set 2 (default).

Key Make Code Break Code

 A 1C F0, 1C

 5 2E F0, 2E

 F10 09 F0, 09

 Right Arrow E0, 74 E0, F0, 74

 Right Ctrl E0, 14 E0, F0, 14

 To process this information and translate the scan codes intro proper ASCII, we will need a
table that will help us map the basic scan codes for a given keyboard layout. The following
code will illustrate the translation table for a common U.S. English keyboard layout:

 // PS2 keyboard codes (standard set #2)
 const char keyCodes[128]={

0, F9, 0, F5, F3, F1, F2, F12, //00
0, F10, F8, F6, F4, TAB, ' ' ' , 0, //08
0, 0,L_SHFT, 0,L_CTRL, 'q', ' 1 ' , 0, //10
0, 0, ' z ' , 's', ' a ' , 'w', ' 2 ' , 0, //18
0, ' c ' , 'x', ' d ' , 'e', ' 4 ' , '3', 0, //20
0, ' ' , ' v ' , 'f', ' t ' , 'r', ' 5 ' , 0, //28
0, ' n ' , 'b', ' h ' , 'g', ' y ' , '6', 0, //30
0, 0, ' m ' , 'j', ' u ' , '7', ' 8 ' , 0, //38
0, ' , ' , 'k', ' i ' , 'o', ' 0 ' , '9', 0, //40
0, ' . ' , '/', ' l ' , ';', ' p ' , '-', 0, //48
0, 0, ' \ ' ' , 0, ' [' , '=', 0, 0, //50

326 Day 12

 CAPS, R_SHFT,ENTER, ']', 0,0x5c, 0, 0, //58
0, 0, 0, 0, 0, 0, BKSP, 0, //60
0, ' 1 ' , 0, ' 4 ' , '7', 0, 0, 0, //68
0, ' . ' , '2', ' 5 ' , '6', ' 8 ' , ESC, NUM, //70

F11, ' + ' , '3', ' - ' , '*', ' 9 ' , 0, 0 //78

};

 Notice that the array has been declared as const so that it will be allocated in program
memory space to save precious RAM space.

 It will also be convenient to have available a similar table for the Shift function of
each key:

 const char keySCodes[128] = {
0, F9, 0, F5, F3, F1, F2, F12, //00
0, F10, F8, F6, F4, TAB, '~', 0, //08
0, 0,L_SHFT, 0,L_CTRL, ' Q', ' ! ' , 0, //10
0, 0, ' Z ' , 'S', ' A ' , 'W', ' @ ' , 0, //18
0, ' C ' , 'X', ' D ' , 'E', ' $ ' , '#', 0, //20
0, ' ' , ' V ' , 'F', ' T ' , 'R', ' % ' , 0, //28
0, ' N ' , 'B', ' H ' , 'G', ' Y ' , '^', 0, //30
0, 0, ' M ' , 'J', ' U ' , ' & ' , ' * ' , 0, //38
0, ' < ' , 'K', ' I ' , 'O', ') ' , ' ('', 0, //40
0, ' > ' , '?', ' L ' , ':', ' P ' , '_', 0, //48
0, 0, ' \" ' , 0, ' { ' , '+', 0, 0, //50

 CAPS, R_SHFT,ENTER, ' }', 0, ' | ' , 0, 0, //58
0, 0, 0, 0, 0, 0, BKSP, 0, //60
0, ' 1 ' , 0, ' 4 ' , '7', 0, 0, 0, //68
0, ' . ' , '2', ' 5 ' , '6', ' 8 ' , ESC, NUM, //70

F11, ' + ' , '3', ' - ' , '*', ' 9 ' , 0, 0 //78

};

 For all the ASCII characters, the translation is straightforward, but we will have to
assign special values to the function, Shift, and Ctrl keys. Only a few of them will find a
corresponding code in the ASCII set:

 // special function characters
 #define TAB 0x9
 #define BKSP 0x8
 #define ENTER 0xd

 #define ESC 0x1b

Capturing User Inputs 327

 For all the others we will have to create our own conventions or, until we have a use for
them, we might just ignore them and assign them a common code (0):

 #define L_SHFT 0x12
 #define R_SHFT 0x12
 #define CAPS 0x58
 #define L_CTRL 0x0
 #define NUM 0x0
 #define F1 0x0
 #define F2 0x0
 #define F3 0x0
 #define F4 0x0
 #define F5 0x0
 #define F6 0x0
 #define F7 0x0
 #define F8 0x0
 #define F9 0x0
 #define F10 0x0
 #define F11 0x0

 #define F12 0x0

 The getC() function will perform the basic translations for the most common keys and it
will keep track of the Shift keys status as well as the Caps key toggling:

 int CapsFlag=0;
 char getC(void)
 {
 unsigned char c;

 while(1)
 {

 while(!KBDReady); // wait for a key to be pressed
 // check if it is a break code
 while (KBDCode == 0xf0)
 { // consume the break code
 KBDReady = 0;
 // wait for a new key code
 while (!KBDReady);
 // check if the shift button is released
 if (KBDCode == L_SHFT)

 CapsFlag = 0;

328 Day 12

 // and discard it
 KBDReady = 0;
 // wait for the next key
 while (!KBDReady);

 }
 // check for special keys
 if (KBDCode == L_SHFT)
 {
 CapsFlag = 1;
 KBDReady = 0;

 }
 else if (KBDCode == CAPS)
 {
 CapsFlag = !CapsFlag;
 KBDReady = 0;

 }

 else // translate into an ASCII code
 {
 if (CapsFlag)
 c = keySCodes[KBDCode%128];

 else
 c = keyCodes[KBDCode%128];

 break;
 }

 }
 // consume the current character
 KBDReady = 0;
 return (c);

 } // getC

 Debriefing
 Today we explored several popular mechanisms used in embedded control to obtain user
input. Starting from basic buttons and mechanical switch debouncing, we explored rotary
encoders and analyzed the challenges of interfacing to (PS/2) computer keyboards. This
gave us the perfect opportunity to exercise two new peripheral modules: Input Capture
and Change Notification. We discussed methods to implement a FIFO circular buffer,
and we polished our interrupt management skills a little. We managed to learn something

Capturing User Inputs 329

new about the MPLAB SIM simulator as well, using for the first time asynchronous
input stimuli to test our code. Throughout the entire day our focus has been constantly on
balancing the use of resources and the performance offered by each solution.

 Notes for the PIC24 Experts
 The IC module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differences
that will affect your code while porting an application to the PIC32:

 1. The ICxCON register now follows the standard peripheral module layout and
offers an ON control bit that allows us to disable the module when not used, for
reduced power consumption.

 2. The ICxC32 control bit allows 32-bit capture resolution when the module is used
in conjunction with a timer pair (forming a 32-bit timer).

 3. The ICxFEDGE control bit allows the selection of the first edge (rising or falling)
when the IC module operates in the new mode 6 (ICxM=110).

 The CN module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differences
that will affect your code while porting an application to the PIC32:

 1. A new CNCON register has been added to offer a standard set of control bit,
including ON, FRZ and IDL to better manage the module behavior in low-power
consumption modes.

 2. The CNEN (32-bit) control register now groups all the input pin enable bits previously
contained in two separate (16-bit) registers of the PIC24 (CNEN1 and CNEN2).

 3. Similarly, the CNPUE (32-bit) control register groups all the pull-up enable bits
previously contained in two separate (16-bit) registers of the PIC24 (CNPUE1 and
CNPUE2).

 Tips & Tricks
 Each PS/2 keyboard has an internal FIFO buffer 16 key codes deep. This allows the
keyboard to accumulate the user input, even when the host is not ready to receive.
The host, as we mentioned at the beginning of this chapter, has the option to stall the

330 Day 12

communication by pulling low the Clock line at any given point in time (for at least
100us) and can hold it low for the desired period of time. When the Clock line is released,
the keyboard resumes transmissions. It will retransmit the last key code, if it had been
interrupted, and will offload its FIFO buffer.

 To exercise our right to stall the keyboard transmissions as a host, we have to control the
Clock line with an output using an open drain driver. Fortunately, this is easy with the
PIC32, thanks to its configurable I/O port modules. In fact, each I/O port has an associated
control register (ODCx) that can individually configure each pin output driver to operate in
open-drain mode.

 Note that this feature is extremely useful in general to interface PIC32 outputs to any
5V device. In our example, turning the PS/2 Clock line into an open-drain output would
require only a few lines of code:

 _ODG13 = 1; // cfg PORTG pin 13 output in open-drain mode
 _LATG13 = 1; // initially let the output in pull up

 _TRISG13 = 0; // enable the output driver

 Note that, as usual for all PIC microcontrollers, even if a pin is configured as an output,
its current status can still be read as an input. So there is no reason to switch continuously
between input and output when we alternate sending commands and receiving characters
from the keyboard.

 Exercises
 1. Add a function to send commands to the keyboard to control the status LEDs and

set the key repeat rate.

 2. Replace the stdio.h library input helper function _mon_getc() to redirect the
keyboard input as the stdin stream input.

 3. Add support for a PS/2 mouse interface.

 Books
 Nisley, Ed. The Embedded PCs ISA Bus (Annabooks/Rtc Books , 1997) . Speaking of

legacy interfaces, the ISA bus, the heart of every IBM PC for almost two decades,
is today interestingly surviving in some industrial control “ circles ” (like the PC104
platform) and embedded applications.

Capturing User Inputs 331

 Links
www.computer-engineering.org . This is an excellent Web site where you will find a lot of

useful documentation on the PS/2 keyboard and mouse interface.

www.pc104.com/whatis.html . The PC104 platform, one of the first attempts at bringing
the IBM PC architecture to single-board computers for embedded control.

This page intentionally left blank

 UTube

 The Plan
 Thanks to the recent advancements in the so-called chip-on-glass (COG) technology
and the mass adoption of LCD displays in cell phones and many consumer applications,
small displays with integrated controllers are becoming more and more common and
inexpensive. The integrated controller takes care of the image buffering and performs
simple text and graphics commands for us, offloading our applications from the hard
work of maintaining the display. But what about those cases when we want to have full
control of the screen to produce animations and or simply bypass any limitation of the
integrated controller?

 In today ’ s exploration we will consider techniques to interface directly to a TV screen or,
for that matter, any display that can accept a standard composite video signal. It will be a
good excuse to use new features of several peripheral modules of the PIC32 and review
new programming techniques. Our first project objective will be to get a nice dark screen
(a well-synchronized video frame), but we will soon see to fill it up with several useful
and (why not?) entertaining graphical applications.

 Preparation
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer
16 demonstration board and In-Circuit Debugger of your choice). You will also need a
soldering iron and a few components at hand to expand the board capabilities using the
prototyping area or a small expansion board. You can check on the companion Web site
(www.exploringPIC32.com) for the availability of expansion boards that will help you
with the experiments.

D A Y 1 3

334 Day 13

 The Exploration
 There are many different formats and standards in use in the world of video today, but
perhaps the oldest and most common one is the so called “ composite ” video format. This
is what was originally used by the very first TV sets to appear in the consumer market.
Today it represents the minimum common denominator of every video display, whether
a modern high-definition flat-screen TV of the latest generation, a DVD player, or a
VHS tape recorder. All video devices are based on the same basic concept, that is, the
image is “ painted, ” one line at a time, starting from the top left corner of the screen and
moving horizontally to the right edge, then quickly jumping back to the left edge at a
lower position and painting a second line, and so on and on in a zigzag motion until
the entire screen has been scanned. Then the process repeats and the entire image is
refreshed fast enough for our eyes to be tricked into believing that the entire image
is present at the same time, and if there is motion, that it is fluid and continuous
(see Figure 13.1).

Frame

Line 1

Line 2

Line N

 Figure 13.1 : Video image scanning.

 In different parts of the world, slightly incompatible systems have been developed over
the years, but the basic mechanism remains the same. What changes is the number of
lines composing the image, the refreshing frequency, and the way the color information is
encoded.

UTube 335

 Table 13.1 illustrates three of the most commonly used video standards adopted in the
United States, Europe, and Asia. All those standards encode the “ luminance ” information
(that is, the underlying black-and-white image) together with synchronization information
in a similarly defined composite signal. Figure 13.2 shows the NTSC composite signal in
detail.

Figure 13.2 : NTSC composite signal horizontal line detail.

 Table 13.1 : International video standard examples.

United States Europe and Asia France and Others

 Standard NTSC PAL SECAM

 Frames per second 29.97 * 25 25

 Number of lines 525 625 625

* NTSC used to be 30 frames per second, but the introduction of the new color standard changed it to 29.97,
to accommodate a specific frequency used by the “ color subcarrier ” crystal oscillator.

 The term composite is used to describe the fact that this video signal is used to combine
and transmit in one three different pieces of information: the actual luminance signal and
both horizontal and vertical synchronization information.

White 100

Video

63.5 US

Video

52.6 μS

1.
5

μS

1.
5

μS

Blanking
10.9 μS

4.7 μS

9 ALT
2.5

40 IRE

Back
porch

Sync tip

Front
porch

Blacker
than black

�40

4.7 μS

�40

Set-up
0 BURST

Front
porch

Black – 10

IR
E

 U
ni

ts

336 Day 13

 The horizontal line signal is in fact composed of:

 1. The horizontal synchronization pulse, used by the display to identify the
beginning of each line

 2. The so-called “ back porch, ” the left edge of the dark frame around the image

 3. The actual line luminosity signal; the higher the voltage, the more luminous the
point

 4. The so-called “ front porch, ” producing the right edge of the image

 The color information is transmitted separately, modulated on a high-frequency
subcarrier. A short burst of pulses in the middle of the back porch is used to help
synchronize with the subcarrier. The three main standards differ significantly in the way
they encode the color information but, if we focus on a black-and-white display, we can
ignore most of the differences and remove the color subcarrier burst altogether.

 All these standard systems utilize a technique called interlacing to provide a (relatively)
high-resolution output while requiring a reduced bandwidth. In practice only half the
number of lines is transmitted and painted on the screen in each frame. Alternate frames
present only the odd or the even lines composing the picture so that the entire image
content is effectively updated at the nominal rate (25 Hz and 30 Hz, respectively). The
actual frame rates are effectively double. This is effective for typical TV broadcasting but
can produce an annoying flicker when text and especially horizontal lines are displayed,
as is often the case in computer monitor applications.

 For this reason, all modern computer displays are not using interlaced but instead use
progressive scanning. Most modern TV sets, especially those using LCD and plasma
technologies, perform a deinterlacing of the received broadcast image. In our project we
will avoid interlacing as well, but we ’ ll sacrifice half the image resolution in favor of a
more stable and readable display output. In other words, we will transmit frames of 262
lines (for NTSC) at the double rate of 60 frames per second. Readers who have easier
access to PAL or SECAM TV sets/monitors will find it relatively easy to modify the
project for a 312-line resolution with a refresh rate of 50 frames per second. A complete
video frame signal is represented in Figure 13.3 .

 Notice that, of the total number of lines composing each frame, three line periods are
filled by prolonged synchronization pulses to provide the vertical synchronization
information, identifying the beginning of each new frame. They are preceded and

UTube 337

followed by groups of three additional lines, referred to as the pre- and post-equalization
lines.

 Generating the Composite Video Signal
 If we limit the scope of the project to generating a simple black-and-white image (no gray
shades, no color) and a noninterlaced image as well, we can considerably simplify our
project ’ s hardware and software requirements. In particular, the hardware interface can be
reduced to just three resistors of appropriate value connected to two digital I/O pins. One
of the I/O pins will generate the synchronization pulses and the other I/O pin will produce
the actual luminance signal (see Figure 13.4).

261 262 1 2 3 4 5 6 7 8 9 10 18 19 20 21 22

Image first line
Post-equalizing
pulses

Pre-equalizing
pulses

Vertical sync
pulse

Frame start

 Figure 13.3 : A complete video frame signal.

Video

680

120

R1

R2

120
R3

GND

J

1
2

Sync

RCA Video Conn.

Figure 13.4 : Simple hardware interface for composite video output.

 The values of the three resistors must be selected so that the relative amplitudes of the
luminance and synchronization signals are close to the standard specifications, the signal
total amplitude is close to 1 V peak to peak, and the output impedance of the circuit is

338 Day 13

approximately 75 ohms. With the standard resistor values shown in the previous figure,
we can satisfy such requirements and generate the three basic signal levels required to
produce a black-and-white image (see Table 13.2 and Figure 13.5).

 Table 13.2 : Generating luminance and synchronization pulses.

 Signal Feature Sync Video

 Synch pulse 0 0

 Black level 1 0

 White level 1 1

LINE_T

Frame

White level

Black level

Horizontal
sync
pulse

Line x

~1 V

 Figure 13.5 : Simplified composite video signal.

 Since we are not going to utilize the interlacing feature, we can also simplify the pre-
equalization, vertical synchronization, and post-equalization pulses by producing a single
horizontal synchronization pulse per each period, as illustrated in Figure 13.6

 The problem of generating a complete video output signal can now be reduced to (once
more) a simple state machine that can be driven by a fixed period time base produced by
a single timer interrupt. The state machine will be quite trivial because each state will
be associated with one type of line composing the frame, and it will repeat for a fixed
amount of times before transitioning to the next state (see Figure 13.7) .

UTube 339

 Table 13.3 : Video state machine transitions table.

State Repeat Transition to

 Pre-equal PREEQ_N times Vertical Sync

 Vertical Sync 3 times Post-equal

 Post-equal POSTEQ_N times Image line

 Image line VRES times Pre-equal

261 262 1 2 3 4 5 6 7 8 9 10 18 19 20 21 22

Image first line
Post-equalizing
pulses

Pre-equalizing
pulses

Vertical sync
pulse

Frame start

 Figure 13.6 : Simplified composite video frame (noninterlaced).

Repeat
PREEQ_N
times

Repeat
VRES
times

Repeat
POSTEQ_N
times

Post-
equal

Image
line

Pre-
equal

Vertical
sync

Repeat
VSYNC_N
times

Figure 13.7 : Vertical state machine graph.

 A simple table will help describe the transitions from each state (see Table 13.3).

 Although the number of vertical synchronization lines is fixed and prescribed by the
video standard of choice (NTSC, PAL, and so on), the number of lines effectively
composing the image inside each frame is up to us to define (within limits, of course). In

340 Day 13

fact, although in theory we could use all the lines available to display the largest possible
amount of data on the screen, we will have to consider some practical limitations, in
particular the amount of RAM we are willing to allocate to store the video image inside
the PIC32 microcontroller (see Figure 13.8). These limitations will dictate a specific
number of lines (VRES) to be used for the image, whereas all the remaining lines (up to
the standard line count) will be left blank.

Frame Image

POSTEQ_N

PREEQ_N

LINE_NVRES

 Figure 13.8 : Defining frame and image resolution.

 In practice, if LINE_N is the total number of lines composing a video frame and VRES is
the desired vertical resolution, we will determine a value for PREEQ_N and POSTEQ_N as
follows:

 // timing for composite video vertical state machine
 #ifdef NTSC
 #define LINE_N .262 // number of lines in NTSC frame
 #define LINE_T .2284 // Tpb clock in a line (63.5us)
 #else
 #define LINE_N. 312 // number of lines in PAL frame
 #define LINE_T. 2304 // Tpb clock in a line (64us)
 #endif

 // count the number of remaining black lines top+bottom
 #define VSYNC_N 3 // V sync lines
 #define VBLANK_N (LINE_N -VRES -VSYNC_N)
 #define PREEQ_N VBLANK_N/2 // preeq+bottom blank

 #define POSTEQ_N VBLANK_N -PREEQ_N // posteq + top blank

 If we choose Timer3 to generate our time base, set to match the horizontal synchronization
pulse period (LINE_T) as shown in Figure 13.5 , we can use the timer ’ s associated interrupt

UTube 341

service routine to execute the vertical state machine. Here is a skeleton of the interrupt service
routine on top of which we can start flashing the complete composite video logic:

 // next state table
 int VS[4] = { SV_SYNC, SV_POSTEQ, SV_LINE, SV_PREEQ};
 // next counter table
 int VC[4] = { VSYNC_N, POSTEQ_N, VRES, PREEQ_N};

 void __ISR(_TIMER_3_VECTOR, ipl7) T3Interrupt(void)
 {
 // advance the state machine
 if (--VCount == 0)
 {
 VCount=VC[VState & 3];
 VState=VS[VState & 3];

 }

 // vertical state machine
 switch (VState) {
 case SV_PREEQ:
 // horizontal sync pulse
 ...
 break;

 case SV_SYNC:
 // vertical sync pulse
 ...
 break;

 case SV_POSTEQ:
 // horizontal sync pulse
 ...
 break;

 default:
 case SV_LINE:
 ...
 break;

} //switch

 // clear the interrupt flag
 mT3ClearIntFlag();

 } // T3Interrupt

342 Day 13

 To generate the actual horizontal synch pulse output, there are several options we can
explore:

 1. Control an I/O pin directly and use various delay loops.

 2. Control an I/O and use a second timer (interrupt) to produced the required
timings.

 3. Use the Output Compare modules and the associated interrupt service routines.

 The first solution is probably the simplest to code but has the clear disadvantage of
keeping the processor constantly tied in endless loops, preventing it from performing any
useful work while the video signal is being generated.

 The second solution is clearly more efficient, and by now we have ample experience in
using timers and their interrupt service routines to execute small state machines.

 The third solution involves the use of a new peripheral we have not yet explored and
deserves a little more attention.

 The Output Compare Modules
 The PIC32MX family of microcontrollers offers a set of five Output Compare peripheral
modules that can be used for a variety of applications, including single pulse generation,
continuous pulse generation, and pulse width modulation (PWM). Each module can be
associated to one of two 16-bit timers (Timer2 or Timer3) or a 32-bit timer (obtained by
combining Timer2 and Timer3) and has one output pin that can be configured to toggle
and produce rising or falling edges as necessary (see Figure 13.9). Most importantly, each
module has an associated and independent interrupt vector.

 The basic configuration of the Output Compare modules is performed by the OCxCON
register where a small number of control bits, in a layout that we have grown familiar
with, allow us to choose the desired mode of operation (see Figure 13.10).

 When used in continuous pulse mode (OCM=101) in particular, the OCxR register is used
to determine the instant (relative to the value of the associated timer) when the output pin
will be set, while the OCxRS register determines when the output pin will be cleared (see
 Figure 13.11).

 Choosing the OC3 module, we can now connect the associated output pin RD2 directly as
our Synch output, shown in Figure 13.4 .

UTube 343

0

Comparator

16 16

OCTSEL

Period match signals
from time bases
(see Note 3).

TMR register inputs
from time bases
(see Note 3).

Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels
2: OCFA pin controls OC1-OC4 channels.
3: Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for
 the time bases associated with the module.

OCxR(1)

OCxRS(1)

1 0 1

Output
Logic

OCM2:OMC0
Mode Select

3 Output Enable

Set Flag bit
OCxlF(1)

OCx(1)

OCFA or OCFB(2)

S
R

Q

 Figure 13.9 : Output Compare module block diagram.

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

U-0

U-0 U-0

U-0

R/W-0 R/W-0 R/W-0

ON FRZ SIDL

R/W-0 R/W-0 R/W-0 R/W-0R/W-0 R-0

U-0 U-0 U-0 U-0 U-0

Bit 8

Bit 0Bit 7
OC32 OCFLT OCTSEL

Bit 15

U-0 U-0 U-0 U-0 U-0 U-0

Bit 24Bit 31

Bit 23 Bit 16

OCM�2:0�

 Figure 13.10 : Output Compare Control register OCxCON.

344 Day 13

 We can also start flashing the vertical state machine body to make sure that in each
state the OC3 produces pulses of the correct width. In fact, though during normal, pre-
equalization, and post-equalization lines, the horizontal synch pulse is short (approx.
5us), during the three lines devoted to the vertical synchronization the pulse must be
widened to cover most of the line period (see lines 4, 5 and 6 in Figure 13.6):

 ...
 // vertical state machine
 switch (VState) {
 case SV_SYNC: // 1
 // vertical sync pulse

 OC3R=LINE_T - HSYNC_T - BPORCH_T;
 break;

 case SV_POSTEQ: // 2
 // horizontal sync pulse
 OC3R=HSYNC_T;
 break;

 case SV_PREEQ: // 0
 // prepare for the new frame
 VPtr=VA;
 break;

 default:
 case SV_LINE: // 3
 VPtr += HRES/32;
 break;

} //switch

 ...

Timer3
Interrupt

OC3R (short pulse)

Timer3 period (PR3 � 1)

OC3R (long pulse, vertical sync)

 Figure 13.11 : Output Compare module continuous pulse mode.

UTube 345

 Image Buffers
 So far we have been working on the generation of the synchronization signals Synch
connected to our simple hardware interface (refer back to Figure 13.4). The actual
image represented on the screen will be produced by mixing in a second digital signal.
Toggling the Video pin, we can alternate segments of the line that will be painted in
white (1) or black (0). Since the NTSC standard specifies a maximum luminance signal
bandwidth of about 4.2 MHz (PAL has very similar constraints) and the space between
front and back porch is 52us wide, it follows that the maximum number of alternate
segments (cycles) of black and white we can display is 218, (52 � 4.2), or in other
words, our maximum theoretical horizontal resolution is 436 pixels per line (assuming
the screen is completely used from side to side). The maximum vertical resolution is
given by the total number of lines composing each frame minus the minimum number
of equalization (6) and vertical synchronization (3) lines. (This gives 253 lines for the
NTSC standard.)

 If we were to generate the largest possible image, it would be composed of an array of
253 � 436 pixels, or 110,308 pixels. If 1 bit is used to represent each pixel, a complete
frame image would require us to allocate an array of 13.5 K bytes, using up almost 50
percent of the total amount of RAM available on the PIC32MX360. In practice, though
it is nice to be able to generate a high-resolution output, we need to make sure that the
image will fit in the available RAM, possibly leaving enough space for an application
to run comfortably along and allowing for adequate room for stack and variables.
There are an almost infinite number of possible combinations of the horizontal and
vertical resolution values that will give an acceptable memory size, but there are two
considerations that we will use to pick the perfect numbers:

● A horizontal resolution value multiple of 32 will make the math involved
in determining the position of each pixel in the image buffer easier and will
maximize the use of the microcontroller ’ s 32-bit bus.

● A ratio between the horizontal and vertical resolution close to 4:3 will avoid
geometrical distortions of the image—circles drawn on the screen will look like
circles rather than ovals.

 Choosing a horizontal resolution of 256 pixels (HRES) and a vertical resolution of 200
lines (VRES) we obtain an image memory requirement of 6,400 bytes (256 � 200/8),
representing roughly 20 percent of the total amount of RAM available. Using the

346 Day 13

MPLAB C32 compiler, we can easily allocate a single array of integers (grouping 32
pixels at a time in each word) to contain the entire image memory map:

 int VMap[VRES * (HRES/32)];

 Serialization, DMA, and Synchronization
 If each image line is represented in memory in the VMap array by a row of (eight)
integers, we will need to serially output each bit (pixel) in a timely fashion in the
short amount of time (52us) between the back and the front porch part of the composite
video waveform. In other words, we will need to set or clear the chosen Video output
pin with a new pixel value every 200 ns or faster. This would translate into about
14 instruction cycles between pixels, way too fast for a simple shift loop, even if
we plan on coding it directly in assembly. Worse, even assuming we managed to
squeeze the loop so tight, we would end up using an enormous percentage of the
processing power for the video generation, leaving very few processor cycles for the
main application.

 Fortunately, we already know one peripheral of the PIC32 that can help us
efficiently serialize the image data: It ’ s the SPI synchronous serial communication
module. In a previous chapter we used the SPI2 module to communicate with a serial
EEPROM device. In that chapter we noted how the SPI module is in fact composed of a
simple shift register that can be clocked by an external clock signal (when in slave mode)
or by an internal clock (when in master mode). Today we can use the SPI1 module as
a master connecting the SDO (serial data output, RF8) pin directly to the Video pin of
the video hardware interface, leaving the SDI (data input) and SCK (clock output) pins
unused. Among the many new and advanced features of the PIC32 SPI module and the
PIC32 in general there are two that fit our video application particularly well:

● The ability to operate in 32-bit mode

● The connection to another powerful peripheral, the Direct Memory Access
(DMA) controller

 Operating in 32-bit mode, we can practically quadruple the transfer speed of data
between the image memory map and the SPI module. By leveraging the connection with
the DMA controller, we can completely offload the microcontroller core from any activity
involving the serialization of the video data.

UTube 347

 The bad news is that the DMA controller of the PIC32 is an extremely powerful and
complex module that requires as many as 20 separate control registers for its configuration.
But the good news is that all this power can be easily managed by an equally powerful and
well-documented library, dma.h, which is easily included as part of plib.h.

 The DMA module shares the 32-bit-wide system bus of the PIC32 and operates at the
full system clock frequency. It can perform data transfers of any size to and from any of
the peripherals of the PIC32 and any of the memory blocks. It can generate its own set of
specific interrupts and can multitask, so to speak, since each one of its four channels can
operate at the same time (interleaving access to the bus) or sequentially (channels activity
can be chained so that the completion of a transfer initiates another). See Figure 13.12 .

INT controller System IRQ

Peripheral bus Address decoder Channel 0 Control

Channel 1 Control

Channel n Control

Channel priority
arbitration

Bus
interface

I0

I1 Y

I2

In
SE
L

SEL

Device bus � Bus arbitration

Global control
(DMACON)

 Figure 13.12 : DMA controller block diagram.

 The arbitration for the use of the system bus is provided by the BMX module (which we
have encountered before) and happens seamlessly. In particular, when the microcontroller
cache system is enabled and the pre-fetch cache is active, the effect on the performance
of the microcontroller can hardly be noticed. In fact, when an application requires a fast
data transfer, nothing beats the performance and efficiency of the DMA controller.

348 Day 13

 The DMA module initialization requires just a couple of function calls:

● DmaCHOpen() , enables the module and prepares it for “ normal ” data transfers,
those to and from peripherals normally requiring up to a maximum of 256 bytes
of data at a time, or extended ones, those from memory to memory that extend for
up to 64 K bytes.

● DmaChnSetEventControl(), determines which peripheral event (interrupt)
will be used to trigger the transfer of each block of data.

● DmaChnSetTxfer() , informs the controller of where the data will be coming
from, where it will be transferred to, how many bytes at a time should be sent, and
how many bytes in total will need to be transferred.

● DmaChnSetControl() , allows us to chain multiple channels for sequential
execution.

 So, for example, we can initialize channel 0 of the DMA controller to respond to the SPI1
module requests (interrupt on transmit buffer empty), transferring 32 bits (4 bytes) at a
time for a total of 32 bytes per line, with the following three lines of code:

 DmaChnOpen(0, 0, DMA_OPEN_NORM);
 DmaChnSetEventControl(0, DMA_EV_START_IRQ_EN |

 DMA_EV_START_IRQ(_SPI1_TX_IRQ));
 DmaChnSetTxfer(0, (void*)VPtr, (void *) & SPI1BUF,

 HRES/8, 4, 4);

 All we need to do is have the PIC32 initiate the first SPI transfer, writing the first 32-bit
word of data to the SPI1 module data buffer (SPI1BUF), and the rest will be taken care of
automatically by the DMA module to complete the rest of the line.

 Unfortunately, this creates a new efficiency problem. Between the Timer3 interrupt
marking the beginning of a new line period, and the beginning of the SPI1 transfer, there
is a difference of about 10us. Not only this is an incredibly long time to “ wait out ” for a
microcontroller operating at 72 Mhz (up to 720 useful instructions could be executed in
that time), but the timing of this delay must be extremely accurate. Even a discrepancy
of a single clock cycle would be amplified by the video synchronization circuitry of the
TV and would result in a visible “ indentation ” of the line. Worse, if the discrepancy were
not absolutely deterministic, as it could/would be if the PIC32 cache were enabled (the
cache behavior is by its very definition unpredictable), this would result in a noticeable

UTube 349

oscillation of the left edge of the screen. Since we are not willing to sacrifice such a key
element of the PIC32 performance, we need to find another way to close the gap while
maintaining absolute synchronization between horizontal synch pulse and SPI data
serialization transfer start (see Figure 13.13).

LINE_T

�5 us5 us

Timer3
Interrupt

SPI1 transfer
start

Frame Line x

~1 V

Figure 13.13 : Synchronization of synch pulse and SPI transfer start.

 By looking more carefully at the SPI module and comparing it with previous PIC®

architectures, you will discover that there is one particular new feature that seems to have
been added exactly for this purpose. It is called the Framed Slave mode and it is enabled
by the FRMEN bit in the SPIxCON register. Not to be confused with the bus master and
slave mode of operation of the SPI port, there are in fact two new framed modes of
operation for the SPI. In framed mode, the SS pin, otherwise used to select a specific
peripheral on the SPI bus, changes roles. It becomes a synchronization signal of sorts:

● When a framed master mode is selected, it acts as an output, flagging the first bit
of a new transfer.

● When a framed slave mode is selected, it acts as an input, triggering the beginning
of an impending data transfer.

 Note that the SPI port can now be configured in a total of four modes:

● SPI bus master, framed master

● SPI bus master, framed slave

350 Day 13

● SPI bus slave, framed master

● SPI bus slave, framed slave

 In particular, we are interested in the second case, where the SPI port is a bus master and so
does not require an external clock signal to appear on the SCK pin, but it is a framed slave,
so it will wait for the SS pin to become active before starting a data transfer. As a final nice
touch, you will discover that it is possible to select the polarity of the SS frame signal.

Our synchronization problem is now completely solved (see Figure 13.14). We can
connect (directly or via a small value resistor) the OC3 output (RD2 pin) to the SPI1
module SS input (RB2 pin) with active polarity high.

VideoRF8 SDO1

RD2 OC3

RB2 SS1
1 K

680

120

120

GND

1
2

Sync

Slave
RCA Video Conn.

 Figure 13.14 : Composite video interface.

Note

 One of the many functions assigned to the RB2 pin is the channel 2 input to the ADC. As with
all such pins, it is by default configured as an analog input at power-up. When it ’ s in such a
configuration, its digital input value is always 1 (high). Before using it as an effective framed
slave input, we will need to remember to reconfigure it as a digital input pin.

 With this connection, the rising edge of the horizontal synchronization pulse produced
by the OC3 module will trigger the beginning of the transmission by the SPI1 module,
provided we preloaded its output buffer with data ready to be shifted out. But it is still too
early to start sending out the line data (the image pixels from the video map). We have to
respect the back-porch timing and then leave some additional time to center our image on
the screen. One quick way to do this is to begin every line preloading the SPI1 module
buffer with a data word containing all zeros. The SPI1 module will be shifting out data,
but since the first 32 bits are all zeros, we will buy some precious time and we will let the
DMA take care of the real data later.

UTube 351

 But how much time does one word of 32 bits take to be serialized by the SPI1 module?
If we are operating at 72 MHz with a peripheral clock divider by 2, and assuming an SPI
baud rate divider by 4 (SPI1BRG � 1), we are talking of just 3.5us. That ’ s definitely
below the minimum specs for the NTSC back porch. There are two practical methods to
extend the back-porch timing further:

● Add one more column to the image map, one more word that is always set to 0
and is never used to paint any actual image.

● Use another DMA channel always pointing to a string of words (as many as we
desire) set to zero and queue the two DMA channels execution automatically.

 Both methods add cost to our application, since both are using precious resources. Adding one
column implies using more RAM, 800 bytes more for the precision. Using a second channel
of DMA (out of the four total) seems also a high price to pay. My choice goes to the DMA,
though, because to me it seems there ’ s never enough RAM, and this way we get to experiment
with yet another cool feature of the PIC32 DMA controller: DMA channel chaining.

 It turns out that there is another friendly function call, DmaChnSetControl() , that can
quickly perform just what we need, triggering the execution of a specific channel DMA
transfer to the completion of a previous channel DMA transfer. Here is how we link the
execution of channel 0 (the one drawing a line of pixels) to the previous execution of
channel 1:

 // chain DMA0 to completion of DMA1 transfer

DmaChnSetControl(0, DMA_CTL_CHAIN_EN | DMA_CTL_CHAIN_DIR);

 Notice that only contiguous channels can be chained. Channel 0 can be chained only to
channel 1; channel 1 can be chained to channel 0 or channel 2 (you decide the “ direction ”
up or down), and so on.

 We can now configure the DMA channel 1 to feed the SPI1 module with some more
bytes of zero; four more will take our total back-porch time to 7us:

 // DMA 1 configuration back porch extension
 DmaChnOpen(1, 1, DMA_OPEN_NORM);
 DmaChnSetEventControl(1, DMA_EV_START_IRQ_EN |

 DMA_EV_START_IRQ(_SPI1_TX_IRQ));

 DmaChnSetTxfer(1, (void*)zero, (void *) & SPI1BUF,

8, 4, 4);

352 Day 13

 The symbol zero , used here could be a reference to a 32-bit integer variable that needs to
be initialized to zero or an array of such integers to allow us to extend the back porch and
further center the image on the screen.

 Now that we have identified all the pieces of the puzzle, we can write the complete
initialization routine for all the modules required by the video generator:

 void initVideo(void)
 {

 // 1. init the SPI1
 // select framed slave mode to synch SPI with OC3
 SpiChnOpen(1, SPICON_ON | SPICON_MSTEN | SPICON_MODE32

 | SPICON_FRMEN | SPICON_FRMSYNC | SPICON_FRMPOL
 , PIX_T);

 // 2. make SS1(RB2) a digital input
 AD1PCFGSET = 0 x 0004;

 // 3. init OC3 in single pulse, continuous mode
 OpenOC3(OC_ON | OC_TIMER3_SRC | OC_CONTINUE_PULSE,

 0, HSYNC_T);

 // 4. Timer3 on, prescaler 1:1, internal clock, period
 OpenTimer3(T3_ON | T3_PS_1_1 | T3_SOURCE_INT, LINE_T-1);

 // 5. init the vertical sync state machine
 VState = SV_LINE;
 VCount = 1;

 // 6. init the active and hidden screens pointers
 VA = VMap1;

 // 7. DMA 1 configuration back porch extension
 DmaChnOpen(1, 1, DMA_OPEN_NORM);
 DmaChnSetEventControl(1, DMA_EV_START_IRQ_EN |

 DMA_EV_START_IRQ(_SPI1_TX_IRQ));
 DmaChnSetTxfer(1, (void*)zero, (void *) & SPI1BUF,

 8, 4, 4);

UTube 353

 // 8. DMA 0 configuration image serialization
 DmaChnOpen(0, 0, DMA_OPEN_NORM);
 DmaChnSetEventControl(0, DMA_EV_START_IRQ_EN |

 DMA_EV_START_IRQ(_SPI1_TX_IRQ));
 DmaChnSetTxfer(0, (void*)VPtr, (void *) & SPI1BUF,

 HRES/8, 4, 4);
 // chain DMA0 to completion of DMA1 transfer
 DmaChnSetControl(0, DMA_CTL_CHAIN_EN | DMA_CTL_CHAIN_DIR);

 // 9. Enable Timer3 Interrupts
 // set the priority level 7 to use shadow register set
 mT3SetIntPriority(7);
 mT3IntEnable(1);

 } // initVideo

 Completing a Video Library
 We can now complete the coding of the entire video state machine, adding all the
definitions and pin assignments necessary:

 /*
 ** graphic.c
 ** Composite Video using:
 ** T3 time based
 ** OC3 Horizontal Synchronization pulse
 ** DMA0 image data
 ** DMA1 back porch extension
 ** SPI1 in Frame Slave Mode
 */
 #include < p32xxxx.h >
 #include < plib.h >
 #include < string.h >
 #include < graphic.h >

 // timing for composite video vertical state machine
 #ifdef NTSC
 #define LINE_N 262 // number of lines in NTSC frame
 #define LINE_T 2284 // Tpb clock in a line (63.5us)

354 Day 13

 #else
 #define LINE_N 312 // number of lines in PAL frame
 #define LINE_T 2304 // Tpb clock in a line (64us)
 #endif

 // count the number of remaining black lines top+bottom
 #define VSYNC_N 3 // V sync lines
 #define VBLANK_N (LINE_N -VRES -VSYNC_N)
 #define PREEQ_N VBLANK_N/2 // preeq + bottom blank
 #define POSTEQ_N VBLANK_N -PREEQ_N // posteq + top blank

 // definition of the vertical sync state machine
 #define SV_PREEQ 0
 #define SV_SYNC 1
 #define SV_POSTEQ 2
 #define SV_LINE 3

 // timing for composite video horizontal state machine
 #define PIX_T 4 // Tpb clock per pixel
 #define HSYNC_T 180 // Tpb clock width horizontal pulse
 #define BPORCH_T 340 // Tpb clock width back porch

 int VMap1[VRES*(HRES/32)]; // image buffer
 int *VA = VMap1; // pointer to the Active VMap

 volatile int *VPtr;
 volatile short VCount;
 volatile short VState;

 // next state table
 short VS[4] = { SV_SYNC, SV_POSTEQ, SV_LINE, SV_PREEQ};
 // next counter table
 short int VC[4]={ VSYNC_N, POSTEQ_N, VRES, PREEQ_N};

 int zero[2]= {0 x 0, 0 x 0};

 void __ISR(_TIMER_3_VECTOR, ipl7) T3Interrupt(void)
 {

UTube 355

 // advance the state machine
 if (--VCount == 0)
 {
 VCount = VC[VState & 3];
 VState = VS[VState & 3];

 }

 // vertical state machine
 switch (VState) {
case SV_SYNC: // 1
 // vertical sync pulse
 OC3R = LINE_T - HSYNC_T - BPORCH_T;
 break;

 case SV_POSTEQ: // 2
 // horizontal sync pulse
 OC3R = HSYNC_T;
 break;

 case SV_PREEQ: // 0
 // prepare for the new frame
 VPtr = VA;
 break;

 default:
 case SV_LINE: // 3
 // preload of the SPI waiting for SS (Synch high)
 SPI1BUF = 0;
 // update the DMA0 source address and enable it
 DCH0SSA = KVA_TO_PA((void*) VPtr);
 VPtr += HRES/32;
 DmaChnEnable(1);
 break;

 } //switch

 // clear the interrupt flag
 mT3ClearIntFlag();

 } // T3Interrupt

 Notice how at the beginning of each line containing actual image data (SV_LINE) we
update the DMA source pointer (DCH0SSA) to point to the next line of pixels, but in doing

356 Day 13

so, we take care to translate the address to a physical address using the KVA_TO_PA()
inline function, which involves a simple bit-masking exercise. As you can understand,
the DMA controller does not need to be concerned with the way we have remapped the
memory and the peripheral space; it demands a physical address. Normally it is the DMA
library that takes care of such a low-level detail, and we could have once more used the
DmaChnSetTxfer() function to get the job done, but I could not help it—I just needed
an excuse to show you how to directly manipulate the DMA controller registers and in
the process save a few instruction cycles.

 To make it a complete graphic library module, we need to add a couple of accessory
functions, such as:

 void clearScreen(void)
 { // fill with zeros the Video array
 memset(VA, 0, VRES*(HRES/8));

 } //clearScreen

 void haltVideo(void)
 {
 T3CONbits.TON = 0; // turn off the vertical state machine

 } //haltVideo

 In particular, clearScreen() will be useful to initialize the image memory map, the
VMap array. However, haltVideo() will be useful to suspend the video generation,
should an important task/application require 100 percent of the PIC32 processing power.

 Save all the preceding functions in a file called graphic.c and place it in our lib directory,
I can foresee an extensive use of its functions in this and the next few chapters. Also add
this file to a new project called Video .

 Then create a new file and add the following definitions:

 /*
 ** graphic.h
 **
 ** Composite video and graphic library
 **
 */
 #define NTSC // comment if PAL required

UTube 357

 #define VRES 200 // desired vertical resolution
 #define HRES 256 // desired horizontal resolution pixel

 void initVideo(void);

 void haltVideo(void);

 void clearScreen(void);

 Notice how the horizontal resolution and vertical resolution values are the only two
parameters exposed. Within reasonable limits (due to timing constraints and the many
considerations exposed in the previous sections), they can be changed to adapt to specific
application needs, and the state machine and all other mechanisms of the video generator
module will adapt their timing as a consequence.

 Save this file as graphic.h and add it to the common include directory.

 Testing the Composite Video
 To test the composite video module we have just completed, we need only the MPLAB
SIM simulator tool and possibly a few more lines of code for a new main module, to be
called GraphicTest.c :

 /*
 ** GraphicTest.c
 **
 ** A dark screen
 **
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include < p32xxxx.h >
 #include < plib.h >
 #include < explore.h >
 #include < graphic.h >

358 Day 13

 main()
 {
// initializations
 initEX16(); // init and enable vectored interrupts
 clearScreen(); // init the video map
 initVideo(); // start the video state machine

 // main loop
 while(1)
 {

 } // main loop

 } // main

 Remember to add the explore.c module from the lib directory, then save the project and
use the Build Project checklist to build and link all the modules.

 Open the Logic Analyzer window and use the Logic Analyzer checklist to add the OC3
signal (sync) and the SDO1 (video) to the analyzer channels.

 At this point you could run the simulator for a few seconds and, after pressing the halt
button, switch to the Logic Analyzer output window to observe the results (see Figure
13.15). The trace memory of the simulator is of limited capacity (unless you have
configured it to use the extended buffers) and can visualize only a small subset of an
entire video frame. In other words, it is very likely that you will be confronted with a
relatively uninteresting display containing a regular series of sync pulses. Unfortunately,
the MPLAB SIM simulator does not yet simulate the output of the SPI port, so for that,
we ’ ll have to wait until we run the application on real hardware.

 Regarding the sync line, there is one interesting time we would like to observe: that
is when we generate the vertical synchronization signal with a sequence of three
long horizontal synch pulses at the beginning of each frame. By setting a breakpoint
on the first line of the SV_POSTEQ state inside the Timer3 interrupt service routine,
you can make sure that the simulation will stop close to the beginning of a new
frame.

 You can now zoom in the central portion to verify the proper timing of the sync pulses in
the pre/post and vertical sync lines (see Figure 13.16).

UTube 359

 Figure 13.15 : Screen capture of the Logic Analyzer window, Vertical Sync pulses.

 Figure 13.16 : Zoomed view of a single pre-equalization line.

360 Day 13

 Keep in mind that the Logic Analyzer window approximates the reading to the nearest
screen pixel, so the accuracy of your reading will depend on the magnification (improving
as you zoom in) and the resolution of your PC screen. Naturally, if what you need is to
determine with absolute precision a time interval, the most direct method is to use the
Stopwatch function of the MPLAB SIM software simulator together with the appropriate
breakpoint settings.

 Measuring Performance
 It might be interesting to get an idea of the actual processor overhead caused by the
video module. Using the Logic Analyzer we can visualize and attempt to estimate the
percentage of time the processor spends inside the interrupt service routine.

 As we did before, we will use a pin of PORTA (RA2) as a flag that will be set to indicate
when we are inside the interrupt service routine and cleared when we are executing the
main loop.

 void __ISR() T3Interrupt(void)
 {
 _RA2=1;
 ...
 _RA2=0;

 } // T3Interrupt

 After recompiling and adding RA2 to the channels captured by the Logic Analyzer tool
(see Figure 13.17), we can zoom in a single horizontal line period. Using the cursors, we
can measure the approximate duration of an interrupt service routine. We obtain a value
of 35 cycles out of a line period of 2284 cycles, representing an overhead of less than
1.5 percent of the processor time—a remarkable result due in great part to the support of
the DMA controller!

 Seeing the Dark Screen
 Playing with the simulator and the Logic Analyzer tool can be entertaining for a little
while, but I am sure at this point you will feel an itch for the real thing! You ’ ll want to
test the video interface on a real TV screen or any other device capable of receiving an
composite video signal, connected with the simple (resistors only) interface to an actual
PIC32. If you have an Explorer 16 board, this is the time to take out the soldering iron

UTube 361

and connect the three resistors to a standard RCA video jack using the small prototyping
area in the top-right corner of the demo board. Alternatively, if you feel your electronic
hobbyist skills are up to the task, you could even develop a small PCB for a daughter
board (a PICTail™) that would fit in the expansion connectors of the Explorer 16.

 Check the companion Web site (www.pic32explorer.com) for the availability of
expansion boards that will allow you to follow all the advanced projects presented in the
third part of the book.

 Whatever your choice, the experience will be breathtaking.

 Or . . . not (see Figure 13.18)! In fact, if you wire all the connections just right, when you
power up the Explorer 16 board you are going to be staring at just a blank or, I should
say, “ black ” screen. Sure, this is an achievement; in fact, this already means that a lot of
things are working right, since both the horizontal and vertical synchronization signals
are being decoded correctly by the TV set and a nice and uniform black background is
being displayed.

 Figure 13.17 : Screen capture of the Logic Analyzer output, measuring performance.

362 Day 13

 Test Pattern
 To spice things up, let ’ s start filling that video array with something worth looking at,
possibly something simple that can give us immediate feedback on the proper functioning
of the video generator. Let ’ s create a new test program as follows:

 /*
 ** GraphicTest2.c
 **
 ** A test pattern
 **
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include < p32xxxx.h >
 #include < plib.h >
 #include < explore.h >
 #include < graphic.h >

 extern int * VA; // pointer to the image buffer

 main()
 {
 int x, y;

 Figure 13.18 : The dark screen.

UTube 363

// initializations
 initEX16(); // init and enable vectored interrupts
 clearScreen(); // init the video map
 initVideo(); // start the video state machine

 // fill the video memory map with a pattern
 for(y=0; y < VRES; y++)
 for (x=0; x < HRES/32; x++)
 VA[y*HRES/32+x]= y;

 // main loop
 while(1)
 {

 } // main loop

 } // main

 Instead of calling the clearScreen() function, this time we used two nested for loops
to initialize the VMap array. The external (y) loop counts the vertical lines, and the internal
(x) loop moves horizontally, filling the eight words (each containing 32 bits) with the same
value: the line count. In other words, on the first line, each 32-bit word will be assigned the
value 0; on the second line, each word will be assigned the value 1, and so on until the last
line (200th), where each word will be assigned the value 199 (0x000000C7 in hexadecimal).

 If you build the new project and test the video output you should be able to see the
pattern shown in Figure 13.19 .

 Figure 13.19 : A screen capture of the test pattern.

364 Day 13

 In its simplicity, there is a lot we can learn from observing the test pattern. First, we notice
that each word is visually represented on the screen in binary, with the most significant bit
presented on the left. This is a consequence of the order used by the SPI module to shift out
bits: that is, MSb first. Second, we can verify that the last row contains the expected pattern,
0x000000c7 , so we know that all rows of the memory map are being displayed. Finally,
we can appreciate the detail of the image. Different output devices (TV sets, projectors,
LCD panels, and so on) will be able to lock the image more or less effectively and/or will be
able to present a sharper image, depending on the actual display resolution and their input
stages bandwidth. In general, you should be able to appreciate how the PIC32 can generate
effectively straight vertical lines. This is not a trivial achievement.

 This does not mean that on the largest screens you will not be able to notice small
imperfections here and there as small echoes and possibly minor visual artifacts in the
output image. Realistically, the simple three-resistor interface can only take us so far.

 Ultimately the entire composite video signal interface could be blamed for a lower-
quality output. As you might know, S-Video, VGA, and most other video interfaces
keep luminance and synchronization signals separate to provide a more stable and clean
picture.

 Plotting
 Now that we are reassured about the proper functioning of the graphic display module,
we can start focusing on putting it to good use. The first natural step is to develop a
function that allows us to light up one pixel at a precise coordinate pair (x, y) on the
screen. The first thing to do is derive the line number from the y coordinate. If the x and
y coordinates are based on the traditional Cartesian plane representation, with the origin
located in the bottom-left corner of the screen, we need to invert the address before
accessing the memory map so that the first row in the memory map corresponds to the y
maximum coordinate VRES-1 or 199 while the last row in the memory map corresponds
to the y coordinate 0. Also, since our memory map is organized in rows of eight words,
we need to multiply the resulting line number by 32 to obtain the address of the first word
on the given line. This can be obtained with the following expression:

 VH[(VRES-1 - y) *8]

 where VH is a pointer to the image buffer.

 Pixels are grouped in 32-bit words, so to resolve the x coordinate we first need to identify
the word that will contain the desired pixel. A simple division by 32 will give us the word

UTube 365

offset on the line. Adding the offset to the line address as we calculated will provide us
with the complete word address inside the memory map:

 VH[(VRES-1 - y)*8 + (x/32)]

 To optimize the address calculation, we can use shift operations to perform the
multiplication and divisions as follows:

 VH[((VRES-1 - y) << 3)+(x>> 5)]

 To identify the bit position inside the word corresponding to the required pixel, we
can use the reminder of the division of x by 32, or more efficiently, we can mask out
the lower 5 bits of the x coordinate. Since we want to turn the pixel on, we will need
to perform a binary OR operation with an appropriate mask that has a single bit set in
the corresponding pixel position. Remembering that the display puts the MSb of each
word to the left (the SPI module shifts bits MSb first), we can build the mask with the
following expression:

 (0x 80000000 >> (x & 0 x 1f))

 Putting it all together, we obtain the core of the plot function:

 VH[((VRES-1-y) << 3)+(x>> 5)] |= (0 x 80000000 >> (x & 0 x 1f));

 As a final touch we can add “ clipping ” —that is, a simple safety check, just to make sure
that the coordinates we are given are in fact valid and within the current screen map
limits.

 Add the following few lines of code to the graphic.c module we saved in the lib
directory:

 void plot(unsigned x, unsigned y)
 {

 if ((x < HRES) & & (y <VRES))
 VH[((VRES-1-y) << 3)+(x >> 5)] |= (0 x 80000000 >> (x & 0 x 1f));

 } // plot

 By defining the x and y parameters as unsigned integers, we guarantee that, should
negative values be passed along, they will be discarded too because they will be
considered large integers outside the screen resolution.

366 Day 13

 Now let ’ s remember to add the function prototype to the graphic.h file in the include
directory:

 void plot(unsigned x, unsigned y);

 Watch Out

The plot() function as defined is efficient, but it is not scalable. In other words, if you
change the HRES or VRES parameters in the graphic.h file, you will have to rethink the way
you compute the address and bit position of a pixel for a given x, y pair of coordinates.

 A Starry Night
 To test the newly developed plot() function, let ’ s once more modify the Video project.
We will include the graphic.c and graphic.h files, but we will also use the pseudo-random
number-generator functions available in the standard C library stdlib.h. By using the
pseudo-random number generator to produce random x and y coordinates for 1,000
points, we will test both the plot() function and, in a way, the random generator itself
with the following simple code:

 /*
 ** GraphicTest3.c
 **
 ** A starry night
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF
 #include < p32xxxx.h >
 #include <plib.h >
 #include < explore.h >
 #include < graphic.h >

 main()
 {

 int i;

UTube 367

// initializations
 initEX16(); // init and enable vectored interrupts
 clearScreen(); // init the video map
 initVideo(); // start the video state machine

 for(i=0; i < 1000; i++)
 {
 plot(rand()%HRES, rand()%VRES);

 }
 // main loop
 while(1)
 {

 } // main loop

 } // main

 Save the file as GraphicTest3.c and add it to the Video project to replace the previous
demo. Once you build the project and program the Explorer 16 board with your in circuit
emulator of choice, the output on your video display should look like a nice starry night,
as in the screen shot captured in Figure 13.20 .

 Figure 13.20 : Screen capture: plotting a starry night.

 A starry night it is, but not a realistic one, you ’ ll notice, since there is no recognizable trace
of any increased density of stars around a belt—in other words, there is no Milky Way!

368 Day 13

 This is a good thing! This is a simple proof that our pseudo-random number generator is
in fact doing the job it is supposed to do.

 Line Drawing
 The next obvious step is drawing lines, or I should say line segments . Granted, horizontal
and vertical line segments are not a problem; a simple for loop can take care of them.
But drawing oblique lines is a completely different thing. We could start with the basic
formula for the line between two points that you will remember from school days:

 y=y0 + (y1-y0)/(x1-x0) * (x-x0)

 where (x0,y0) and (x1,y1) are, respectively, the coordinates of two generic points
that belong to the line.

 This formula gives us, for any given value of x , a corresponding y coordinate. So we
might be tempted to use it in a loop for each discreet value of x between the starting and
ending point of the line, as in the following example:

 /*
 ** LineTest1.c
 **
 ** testing the basic line drawing function
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF
 #include < p32xxxx.h >
 #include < plib.h >
 #include < explore.h >
 #include < graphic.h >

 main()
 {
 int x;
 float x0 = 10.0, y0 = 20.0;
 float x1 = 200.0, y1 = 150.0;
 float x2 = 20.0, y2 = 150.0;

UTube 369

// initializations
 initEX16(); // init and enable vectored interrupts
 clearScreen(); // clear the image buffer
 initVideo(); // start the video state machine

 // draw an oblique line (x0,y0) – (x1,y1)
 for(x = x0; x < x1; x++)
 plot(x, y0 + (y1-y0)/(x1-x0)* (x-x0));

 // draw a second (steeper) line (x0,y0) – (x2,y2)
 for(x = x0; x < x2; x++)
 plot(x, y0+(y2-y0)/(x2-x0)* (x-x0));

 // main loop
 while(1)
 {

 } // main loop

 } // main // main

 The output produced (Figure 13.21) is an acceptably continuous segment only for the
first (shallower) line, where the horizontal distance (x1-x0) is greater than the vertical
distance (y1-y0) . In the second, much steeper, line, the dots appear disconnected and
we are clearly unhappy with the result. Also, we had to perform floating-point arithmetic,

 Figure 13.21 : Screen capture: drawing oblique lines.

370 Day 13

a computationally expensive proposition compared to integer arithmetic, as we have seen
in previous chapters.

 Bresenham Algorithm
 Back in 1962, when working at IBM in the San José development lab, Jack E. Bresenham
developed a line-drawing algorithm that uses exclusively integer arithmetic and is today
considered the foundation of any computer graphic program. Its approach is based on
three optimization “ tricks ” :

 1. Reduction of the drawing direction to a single case (left to right)

 2. Reduction of the line steepness to the single case where the horizontal distance is
the greatest

 3. Multiply both sides of the equation by the horizontal distance (deltax) to obtain
only integer quantities

 The resulting line-drawing code is compact and extremely efficient; here is an adaptation
for our video module:

 #define abs(a) (((a) > 0) ? (a) : -(a))

 void line(short x0, short y0, short x1, short y1)
 {

 short steep, t ;
 short deltax, deltay, error;
 short x, y;
 short ystep;

 // simple clipping
 if ((x0 < 0) || (x0 > HRES))

 return;
 if ((x1 < 0) || (x1 > HRES))
 return;
 if ((y0 < 0) || (y0 > VRES))

 return;
 if ((y1 < 0) || (y1 > HRES))

 return;

UTube 371

 steep = (abs(y1 - y0) > abs(x1 - x0));

 if (steep)
 { // swap x and y
 t = x0; x0 = y0; y0 = t;
 t = x1; x1 = y1; y1 = t;

 }
 if (x0 > x1)
 { // swap ends
 t = x0; x0 = x1; x1 = t;
 t = y0; y0 = y1; y1 = t;

 }

 deltax = x1 - x0;
 deltay = abs(y1 - y0);
 error = 0;
 y = y0;

 if (y0 < y1) ystep = 1; else ystep = - 1;
 for (x = x0; x < x1; x++)

 {
 if (steep) plot(y,x); else plot(x,y);

 error += deltay;
 if ((error<<1) > = deltax)

 {
 y += ystep;

 error -= deltax;

 } // if
 } // for

 } // line

 We can add this function to the video module graphic.c and add its prototype to the
include file graphic.h :

 void line(short x0, short y0, short x1, short y1);

 To test the efficiency of the Bresenham algorithm, we can create a new small project and,
once more, use the pseudo-random number-generator function. The following example

372 Day 13

code will first draw a frame around the screen and then exercise the line-drawing routine,
producing 100 lines at randomly generated coordinates:

 /*
 ** Bresenham.c
 **
 ** Fast line drawing algorithm example
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include < p32xxxx.h >
 #include < plib.h >
 #include < explore.h >
 #include < graphic.h >

 main()
 {

 int i;

// initializations
 initEX16(); // init and enable vectore interrupts
 initVideo(); // start the state machines

 // main loop
 while(1)
 {
 clearScreen();
 line(0, 0, 0, VRES-1);
 line(0, VRES-1, HRES-1, VRES-1);
 line(HRES-1, VRES-1, HRES-1, 0);
 line(0, 0, HRES-1, 0);

 for(i=0; i < 100; i++)
 line(rand()%HRES, rand()%VRES,

 rand()%HRES, rand()%VRES);

UTube 373

 // wait for a button to be pressed
 getKEY();
 } // main loop

 } // main

 The main loop also uses the getKey() function, developed in the previous
chapters and added to the explore.h module, to wait until a button is pressed before
the screen is cleared and a new set of 100 random lines is drawn on the screen (see
Figure 13.22).

 Figure 13.22 : Screen capture: Bresenham line-drawing test.

 You will be impressed by the speed of the line-drawing algorithm. Even when
increasing the number of lines drawn to batches of 1,000, the PIC32 performance
will be apparent.

 Plotting Math Functions
 With the completed graphic module we can now start exploring some interesting
applications that can take full advantage of its visualization capabilities. One classical
application could be plotting a graph based on data logged from a sensor, or more simply
for our demonstration purposes, calculated on the fly from a given math function.

374 Day 13

 For example, let ’ s assume that the function is a sinusoid (with a twist), as in the
following:

 y(x) = x * sin(x)

 Let ’ s also assume that we want to plot its graph for values of x between 0 and 8*PI .

 With minor manipulations, we can scale the function to fit our screen, remapping the
input range from 0 to 200 and the output range to the +75/-75 value range.

 The following program example will plot the function after tracing the x and y axes:

 /*
 ** graph1d.c
 **
 ** Plotting a function graph
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF
 #include < p32xxxx.h>
 #include < plib.h >
 #include < explore.h >
 #include < graphic.h >
 #include < math.h >

 #define X0 10
 #define Y0 (VRES/2)

 main(void)
 {

 int x, y;
 float xf, yf;

// initializations
 initEX16(); // init and enable vectored interrupts
 clearScreen();
 initVideo(); // init video state machine

UTube 375

 // draw the x and y axes crossin in (X0,Y0)
 line(X0, 10, X0, VRES-10); // y axes
 line(X0-5, Y0, HRES-10, Y0); // x axes

 // plot the graph of the function for
 for(x=0; x< 200; x++)
 {
 xf = (2 * M_PI / 50) * (float) x;
 yf = 75.0 / (8 * M_PI) * xf * sin(xf);
 plot(x+X0, yf+Y0);

 }

 // main loop
 while(1);

 } // main

 Notice the inclusion of the math.h library to obtain the prototypes of the sin() function
and some useful definitions, among which is the value of pi, or I should say M_PI .

 Save the file as graph1d.c and replace it as the main module of the Video project. Build
the project and program the Explorer 16 board with your in-circuit debugger of choice.
Quick, the new function graph will appear on the screen (see Figure 13.23)!

 Figure 13.23 : Screen capture: a sinusoidal function graph.

376 Day 13

 Should the points on the graph become too sparse, we have the option now to use the
line-drawing algorithm to connect each point to the previous one.

 Two-Dimensional Function Visualization
 More interesting and perhaps entertaining could be plotting two-dimensional function
graphs. This adds the thrill of managing the perspective distortion and the challenge of
connecting the calculated points to form a visually pleasant grid.

 The simplest method to squeeze the third axis in a two-dimensional image is to utilize
what is commonly known as an isometric projection , a method that requires minimal
computational resources while providing a small visual distortion. The following
formulas applied to the x , y , and z coordinates of a point in a three-dimensional space
produce the px and py coordinates of the projection on a two-dimensional space (our
video screen; see Figure 13.24).

 px = x + y/2;

 py = z + y/2;

 Figure 13.24 : Isometric projection.

y

x

z

45

 To plot the three-dimensional graph of a given function: z = f(x,y) we proceed on a
grid of points equally spaced in the x and y plane using two nested for loops. For each
point we compute the function to obtain the z coordinate, and we apply the isometric

°

UTube 377

projection to obtain a (px,py) coordinate pair. Then we connect the newly calculated
point with a segment to the previous point on the same row (previous column). A second
segment needs to be drawn to connect the point to a previously computed point in the
same column and the previous row (see Figure 13.25).

7 y
Previous row

Newly calculated point
(px, py)

Previous point
(prev.x, prev.y)

x

 Figure 13.25 : Drawing a grid to enhance a two-dimensional graph visualization.

 Although it is a trivial task to keep track of the coordinates of the previously computed
point on the same row, recording the coordinates of the points on “ each ” previous row
might require significant memory space. If, for example, we are using a grid of 20 � 20
points, we would need to store the coordinates of up to 400 points. Requiring two integers
each, that would add up to 800 words, or 3,200 bytes of precious RAM. In reality, as
should be evident from the preceding picture, all we really need is the coordinates of
the points on the “ edge ” of the grid as painted so far. Therefore, with a little care, we
can reduce the memory requirement to just 20 coordinate pairs by maintaining a small
(rolling) buffer.

 The following example code visualizes the graph of the function:

 z(x,y) = 1/ sqrt(x2 + y2) * cos (sqrt(x2 + y2)

 for values of x and y in the range - 3*PI to +3*PI :

 /*
 ** graph2d.c
 **
 ** 07/02/06 v1.0 LDJ
 ** 11/21/07 v2.0 LDJ PIC32 porting
 */

378 Day 13

 // configuration bit settings
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FWDTEN=OFF, CP=OFF, BWP=OFF

 #include < p32xxxx.h >
 #include < explore.h >
 #include < graphic.h >
 #include < math.h >

 #define X0 10 // graph offset
 #define Y0 10
 #define NODES 20 // define grid
 #define SIDE 10
 #define STEP 1 // movement increment

 typedef struct {
 int x;
 int y;

} point;

 point edge[NODES], prev;

 main(void)
 {
 int i, j, x, y, z;
 float xf, yf, zf, sf;
 int px, py;
 int xoff, scale;

// initializations
 initEX16();
 clearScreen();
 initVideo();

 xoff = 100;

 scale = 75;

 while (1)
 {

 // clear hidden screen
 clearScreen();

UTube 379

 // draw the x, y and z axes crossing in (X0,Y0)
 line(X0, 10, X0, 10); // z axis
 line(X0-5, Y0, HRES-10, Y0); // x axis
 line(X0-2, Y0-2, X0+120, Y0+120); // y axis

 // init the array of previous egde points
 for(j=0; j < NODES; j++)
 {
 edge[j].x = X0+ j*SIDE/2;

 edge[j].y = Y0+ j*SIDE/2;
 }

 // plot the graph of the function for
 for(i=0; i < NODES; i++)
 {
 // transform the x range to 0..200 offset 100
 x = i * SIDE;
 xf = (6 * M_PI/200) * (float)(x-xoff);
 prev.y = Y0;
 prev.x = X0 + x;

 for (j=0; j < NODES; j++)
 {
 // transform the y range to 0..200 offset 100
 y = j * SIDE;
 yf = (6 * M_PI / 200) * (float)(y-100);

 // compute the function
 sf = sqrt(xf * xf + yf * yf);
 zf = 1/(1+ sf) * cos(sf);

 // scale the output
 z = zf * scale;

 // apply isometric perspective and offset
 px = X0 + x+ y/2;
 py = Y0 + z + y/2;

 // plot the point
 plot(px, py);

380 Day 13

 // draw connecting lines to visualize the grid
 line(px, py, prev.x, prev.y);

 line(px, py, edge[j].x, edge[j].y);

 // update the previous points
 prev.x = px;
 prev.y = py;
 edge[j].x = px;
 edge[j].y = py;

 } // for j
 } // for i

 // wait for a button
 getKEY();

 } // main loop

 } // main

 Save the file as graph2d.c and replace it in the Video project as the main source. After
building the project and programming the Explorer 16 demo board, you will notice how
quickly the PIC32 can produce the output graph, although significant floating-point math
is required because the function is applied sequentially to 400 points and as many as 800
line segments are drawn on the video (see Figure 13.26).

 Figure 13.26 : Screen capture: graph of a two-dimensional function.

UTube 381

 Fractals
Fractals is a term coined by Benoit Mandelbrot, a mathematician and fellow researcher
at the IBM Pacific Northwest Labs, back in 1975 to denote a large set of mathematical
objects that presented an interesting property: that of appearing self-similar at all scales
of magnification, as though constructed recursively with an infinite level of detail. There
are many examples of fractals in nature, although their self-similarity property is typically
extended over a finite scale. Examples include clouds, snowflakes, mountains, river
networks, and even the blood vessels in our bodies.

 Since it lends itself to impressive computer visualizations, the most popular example of
mathematical fractal object is perhaps the Mandelbrot set. It ’ s defined as a subset of the
complex plane where the quadratic function z2 + c is iterated. By exclusion, points
c of the complex plane for which the iteration does not “ diverge ” are considered to be
part of the set. Since it is easy to prove that once the modulus of z is greater than 2, the
iteration is bound to diverge; hence the given point is not part of the set, we can proceed
by elimination. The problem is that as long as the modulus of z remains smaller than 2,we
have no way of telling when to stop the iteration and declare the point part of the set. So,
typically, computer algorithms that depict the Mandelbrot set use an approximation by
setting an arbitrary maximum number of iterations past which a point is simply assumed
to be part of the set.

 Here is an example of how the inner iteration can be coded in C language:

// initialization
 x = x0;
 y = y0;
 k = 0;

 // core iteration
 do {
 x2 = x*x;
 y2 = y*y;
 y = 2*x*y+y0;
 x = x2-y2+x0;
 k++;

 } while ((x2 + y2 < 4) & & (k < MAXIT));

382 Day 13

 // check if the point belongs to the Mandelbrot set

 if (k == MAXIT) plot(j, i);

 where x0 and y0 are the coordinates in the complex space of the point c .

 We can repeat this iteration for each point of a squared subset of the complex plane
to obtain an image of the entire Mandelbrot set. The considerations we made on the
modulus of c imply that the entire set must be contained in the disc of radius 2 centered
on the origin, so, as we develop a first program, we will scan the complex plan in a grid
of HRES xVRES points (to use the fullscreen resolution of our video module), making sure
to include the entire disc:

 /*
 ** Mandelbrot.c
 **
 ** Mandelbrot Set graphic demo
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include < p32xxxx.h >
 #include < plib.h >
 #include < explore.h >
 #include < graphic.h >

 #define SIZE VRES
 #define MAXIT 64

 void mandelbrot(float xx0, float yy0, float w)
 {
 float x, y, d, x0, y0, x2, y2;
 int i, j, k;
 // calculate increments
 d = w/SIZE;

UTube 383

 // repeat on each screen pixel
 y0 = yy0;
 for (i=0; i < SIZE; i++)
 {
 x0 = xx0;
 for (j=0; j < SIZE; j++)
 {
// initialization
 x = x0;
 y = y0;
 k = 0;

 // core iteration
 do {
 x2 = x*x;
 y2 = y*y;
 y = 2*x*y + y0;
 x = x2-y2 + x0;
 k++;

 } while ((x2 + y2 < 4) & & (k < MAXIT));

 // check if the point belongs to the Mandelbrot set
 if (k == MAXIT) plot(j, i);

 // compute next point x0
 x0 += d;

 } // for j
 // compute next y0

 y0 += d;
 } // for i

 } // mandelbrot

 int main(void)
 {
 float x, y, w;
 int c;
// initializations
 initEX16(); // init and enable vectored interrupts
 initVideo(); // init the video state machine

384 Day 13

 // intial coordinates lower left corner of the grid
x = - 2.0;
 y = - 2.0;
 // initial grid size
 w = 4.0;

 clearScreen(); // clear the screen
 mandelbrot(x, y, w); // draw new image

 while(1);

 } // main

 Save this file as Mandelbrot.c and add it to a new project that we will call Mandelbrot .
Make sure that all the other required modules are added to the project too, including
graphic.c , graphic.h , and explore.c . Build the project, program the Explorer 16
board using your in-circuit debugger of choice, and if all is well, when you let the
program run you will see the so-called Mandelbrot “ cardiod ” appear on your screen
(see Figure 13.27).

 Figure 13.27 : Screen capture: Mandelbrot cardiod.

I will confess that since when, as a kid, I bought my first personal computer—actually,
home computer was the term used back then for the Sinclair ZX Spectrum—I have been

UTube 385

playing with fractal programs. So I have a vivid memory of the long hours I used to
spend staring at the computer screen, waiting for the old trusty ZX80 processor (running
at the whopping speed of 3.5 MHz) to paint this same images. A few years later, my
first IBM PC, an XT clone running on a 8088 processor at a not much higher clock
speed of 4 MHz, was not faring much better and, although the screen resolution of my
monochrome Hercules graphic card was higher, I would still launch programs in the
evening to watch the results the following morning after what amounted sometimes to up
to eight hours of processing.

WOW

 Clearly, the amount of computation required to paint a fractal image varies enormously with the
chosen area and the number of maximum iterations allowed (MAXIT), but, although I have seen
this program run by several other processors, including the PIC24 (at 32 MHz), the first time I
saw the PIC32 paint the cardiod in less than 5 seconds, I got really excited again!

 The real fun has just begun. The most interesting parts of the Mandelbrot set are at the
fringes, where we can increase the magnification and zoom in to discover an infinitely
complex world of details. By visualizing not just the points that belong to the set but also
the ones that diverge at its edges, and by assigning each point a “ color ” that depends on
how fast they do diverge, we can further improve “ aesthetically ” the resulting image.
Since we have only a monochrome display, we will simply use alternate bands of black
and white assigned to each point according to the number of iterations it took before it
either reached the maximum modulus or the maximum number of iterations. Simply
enough, this means we will have to modify just one line of code from our previous
example:

 // check if the point belongs to the Mandelbrot set

 if (k & 2) plot(j, i);

 Also, since the best way to play with Mandelbrot sets is to explore them by selecting new
areas and zooming in the details, we can modify the main program loop to let us select
a portion of the image by pressing one of the four buttons on the Explorer 16 board. We
can imagine splitting the image into four corresponding quadrants, numbered clockwise
starting from the top left, and doubling the resolution by halving the grid dimension (w)
(see Figure 13.28).

386 Day 13

 int main(void)
 {
 float x, y, w;
 int c;

// initializations
 initEX16();
 initVideo(); // start the state machines

 // intial coordinates lower left corner of the grid
x = - 2.0;
 y = - 2.0;
 // initial grid size
 w = 4.0;

 while(1)
 {

 clearScreen(); // clear the screen
 mandelbrot(x, y, w); // draw new image
 // wait for a button to be pressed
 c = getKEY();
 switch (c){
 case 8: // first quadrant
 w/= 2;
 y += w;
 break;

1 2

34

x
w

y

(x0, y0)

 Figure 13.28 : Splitting the screen into four quadrants.

UTube 387

 case 4: // second quadrant
 w/= 2;
 y += w;
 x += w;
 break;

 case 2: // third quadrant
 w/= 2;
 x += w;
 break;

 default:
 case 1: // fourth quadrant
 w/= 2;
 break;

 } // switch
 } // main loop

 } // main

 Figure 13.29 shows a selection of interesting areas you will be able to explore with a little
patience.

(b) (�0.37500 �j 0.57813)
 w� 0.01563

(a) (�0.25 �j 0.5)
 w� 0.25

Figure 13.29.

388 Day 13

(e) (�1.28125 �j 0.4688)
 w� 0.01563

(d) (�0.34375 �j 0.56250)
 w� 0.3125

(c) (�1.28125 �j 0.3125)
 w� 0.3125

Figure 13.29: (Contiuned).

UTube 389

0 0 0 1 1 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 1 1 1 1 1 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0

 Figure 13.30 : The letter A as represented in a simple 8 � 8 font.

 Text
 So far we have been focusing on simple graphical visualizations, but on more than one
occasion you might feel the desire to actually augment the information presented on the
screen with some text. Writing text on the video memory is no different than plotting
points or drawing lines; in fact, it can be achieved using a variety of methods, including
the plotting and line-drawing functions we have already developed. But for greater
performance and to require the smallest possible amount of code, the easiest way to text on
our graphic display is to develop a fixed spacing font. Each character can be drawn in an
8 � 8 pixel box; this way 1 byte will encode each row and 8 bytes will encode the entire
character. We can then assemble a basic set of alphabetical, numerical, and punctuation
characters, using the order in which they are appear in the ASCII character set, as a single
array of char integers that will constitute our simple font (see Figure 13.30).

 To save space, we don ’ t need to create the first 32 codes of the ASCII set that correspond
mostly to commands and special synchronization codes used by teletypewriters and
modems of the old days.

 /*
 ** 8 x 8 Simple Character Font
 **
 */

390 Day 13

 #define F_OFFS 0 x 20 // initial offset
 #define F_SIZE 96 // define only the first 96 characters

 const char Font8 x 8[]={
 // 20 - SPACE
 0 x00, // 0b 0000000,
 0 x00, // 0b 0000000,
 0 x00, // 0b 0000000,
 0 x00, // 0b 0000000,
 0 x00, // 0b 0000000,
 0 x00, // 0b 0000000,
 0 x00, // 0b 0000000,
 0 x00, // 0b 0000000,

 // 1 - !
 0 x18, // 0b 0011000,
 0 x18, // 0b 0011000,
 0 x18, // 0b 0011000,
 0 x18, // 0b 0011000,
 0 x18, // 0b 0011000,
 0 x00, // 0b 0000000,
 0 x18, // 0b 0011000,
 0 x00, // 0b 0000000,

 ...

 } // Font 8 x 8[]

 Notice that the Font8 x 8[] array is defined with the attribute const because its contents
are supposed to remain (mostly) unchanged during the execution of the program, and it is
best allocated in the Flash memory of the PIC32 to save precious RAM memory space.

 Of course, the definition of the shape of each character can be a matter of personal taste.
You are welcome to modify the Font8 x 8[] array contents to suit your preferences.

Note

 Defining a new font is a long and detailed work, but it is one that gives a lot of space to
creativity, and I know that some of you will find it pretty entertaining. A complete listing of the
font.h file would waste several pages of this book, so I decided to omit it here. You can find it
on the companion CD-ROM.

UTube 391

 Printing a character on the screen is now a matter of copying 8 bytes from the font
array to the desired position on the screen. In the simplest case, characters can be
aligned to the words that compose the image buffer of the graphics module. In this
way the character positions are limited to 32 characters per line (256/8, assuming
HRES � 256) and a maximum of 25 rows of text could be displayed (200/8, assuming
VRES � 200).

 A more advanced solution would call for absolute freedom in positioning each character
at any given pixel coordinate. This would require a type of manipulation, often referred
to as BitBLT (an acronym that stands for bit block transfer) that is common in computer
graphics, particularly in video game design. In the following we will stick to the simpler
approach. looking for the solution that requires the smallest amount of resources to get the
job done.

 Printing Text on Video
When printing text on video we need the assistance of a cursor, a virtual placeholder to
keep track of where on the screen we are going to place the next character. As we print,
it is easy to advance the cursor to mimic somewhat the behavior of a typewriter as it
zigzags across the sheet and as it scrolls the paper.

OOPS

 As I am writing this, it occurs to me that many of you might have never used a typewriter in
real life and that the beauty of this parallel is going to be totally lost on you. Maybe it feels like
I might be talking of reed pens and kalamoi or parchment . . .

 Our cursor will be made of two integers, holding the x and y of a new coordinate system
that is now upside down with respect to the traditional Cartesian orientation and much
more coarse as it counts rows and columns rather than individual pixels:

● cx , will indicate the current column, counting from left to right, from 0 to 31.

● cy , will indicate the row, counting from top to bottom, from 0 to 24.

392 Day 13

 To print one ASCII character on the screen at the current cursor position, we will create
the putcV() function that will perform the following simple steps:

 1. Check whether the character requested is within the range of characters for which
we have font definition (from ASCII code 0 x 20 all the way up to 0x 7F):

 void putcV(char a)
 {
 int i, j, *p;
 const char *pf;

 // 1. check if char in range
 if (a < F_OFFS)

 return;
 if (a > = F_OFFS+F_SIZE)

 return;

 2. Check whether the cursor position is within the screen boundaries, wrapping
around and scrolling as necessary:

 // 2. check page boundaries and wrap or scroll as
necessary

 if (cx > = HRES/8) // wrap around x
 {
 cx = 0;
 cy++;
 }
 if (cy > = VRES/8) // scroll up y
 {
 int *pd = VH;

 int *ps = pd+(HRES/32)*8;
 for(i=0; i < (HRES/32)*(VRES-8); i++)

 *pd++ = *ps++;
 for(i=0; i < (HRES/32)*8; i++)
 *pd++ = 0;
 // keep cursor within boundary
 cy=VRES/8-1;

 }

UTube 393

 3. Find the address inside the image buffer corresponding to the cursor location (p),
and find the character definition inside the Font8 x 8[] array (pf):

 // 3. set pointer to word in the video map
 p = & VH[cy * 8 * HRES/32 + cx/4];

 // set pointer to first row of the character in font
array

 pf = & Font8 x 8[(a-F_OFFS) << 3];

 4. Copy the character byte after byte, taking care to clear the background image
before overimposing each character row:

 // 4. copy one by one each line of the character on
screen
 for (i=0; i < 8; i++)
 {

 j = (3-(cx & 3)) << 3; // consider MSB first
 *p &= ~(0xff << j); // clear background
 *p |= ((*pf++) << j); // overimposed character

 // point to next row
 p += HRES/32;

 } // for

 5. Finally, advance the cursor position:

 // 5. advance cursor position
 cx++;

 } // putcV

 Add this function to the bottom of the graphic.c module and its prototype to the bottom
of the graphic.h include file:

 void putcV(char a);

 For our convenience we can now create a small function that will print an entire (zero-
terminated) ASCII string on the screen:

 void putsV(char *s)
 {
 while (*s)
 putcV(*s++);

394 Day 13

 // advance to next line
 cx=0; cy++;} // putsV

 } // putsV

 Add this function to the graphic.c library module and its prototype to the graphic.h :

 void putsV(char *s);

 Since we ’ re at it, let ’ s add a couple more useful macros to the graphic.h file:

 #define Home() { cx=0; cy=0;}
 #define Clrscr() { clearScreen(); Home();}

 #define AT(x, y) { cx = (x); cy =(y);}

● Home() will simply position the cursor on the upper-left corner of the screen.

● Clrscr() will clear the screen first and then reposition the cursor to the top.

● AT(x, y) will position the cursor at the desired column (x) and row (y).

 Text Test
 To quickly test the effectiveness of the new text functions, we can now create a short
program that, after printing a small banner on the first line of the screen, will print out
each character defined in the 8 � 8 font:

 //*
 ** TextTest.c
 **
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF
 #include < p32xxxx.h >
 #include < explore.h >
 #include < graphic.h >

 main(void)
 {
 int i;

UTube 395

// initializations
 initEX16(); // init and enable vectored interrupts
 initVideo(); // start the state machines

 Clrscr();

 AT(5, 2);
 putsV(" Exploring the PIC32! ");

 AT(0, 4);
 for(i=0; i < 128; i++)
 putcV(i);

 while (1);

 } // main

 Save this file as TextTest.c and add it to a new project that we will call TextTest . Make
sure that all the other required modules are added to the project too, including graphic.
c , graphic.h , and explore.c . Build the project, program the Explorer 16 board using your
in-circuit debugger of choice, and if all is well, when you run you will see the screen
come alive with a nice welcome message (see Figure 13.31).

 The Matrix Reloaded
 To further test the new text page video module, we will modify an example we saw
in a previous chapter: the Matrix. Back then, we were using the asynchronous serial

 Figure 13.31 : Screen capture: text test.

396 Day 13

communication module (UART1) to communicate with a VT100 computer terminal or,
more likely, a PC running the HyperTerminal program configured for emulation of the
historical DEC VT100 terminal ’ s protocol. Now we can replace the putcU() function
calls used to send a character to the serial port, with putcV() function calls directed to the
graphic interface.

 Let ’ s modify the TextTest project by replacing the TextTest.c main module with the new
Matrix2.c module, modified as follows:

 /*
 ** Matrix2.c
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF
 #include < p32xxxx.h >
 #include < graphic.h >

 #define COL HRES/8
 #define ROW VRES/8

 main()
 {
 int v[COL]; // vector containing length of each string
 int i,j,k;

 // 1. initializations
 initEX16();
 initVideo();
 Clrscr(); // clear the screen

 // 2. init each column length
 for(j =0; j < COL; j++)

 v[j] = rand()%ROW;

 // 3. main loop
 while(1)
 {

 // 3.1 refresh the screen with random columns

UTube 397

 for(i=0; i < ROW; i++)
 {
 AT(0, i);
 // refresh one row at a time
 for(j=0; j < COL; j++)
 {
 // fill random char down to each column length
 if (i < v[j])

 putcV(' ! ' +(rand()%15));
 else

 putcV(' ');
 } // for j

 } // for i

 // 3.2 randomly increase or reduce each column length
 for(j=0; j < COL; j++)
 {
 switch (rand()%3){
 case 0: // increase length
 v[j]++;
 if (v[j] > ROW)
 v[j]=ROW;
 break;

 case 1: // decrease length
 v[j]--;
 if (v[j] < 1)
 v[j]=1;
 break;

 default:// unchanged
 break;
 } // switch

 } // for j
 } // main loop

 } // main

 After saving and building the project, program the Explorer 16 board using your in-
circuit debugger of choice and run the program (see Figure 13.32). You will notice how
much faster the screen updates can be compared because the program now has direct

398 Day 13

access to the video memory and no serial connection limits the information transfers
(as fast as the 115,200 baud connection was in our previous demo project; that was our
bottleneck). The demo will run so fast that you will need to add a delay of a few extra
milliseconds to give your eyes time to focus.

 // 3.3 delay to slow down the screen update

 Delayms(5);

 Debriefing
 Today we have explored the possibility of producing a video output using a minimal
hardware interface composed in practice of only three resistors. We learned to use four
peripheral modules together to build the complex mechanism required to produce a
properly formatted NTSC composite video signal. Combining a 16-bit-timer, an output
compare module, one SPI port, and a couple of channel of the DMA module we have
obtained video capabilities at the cost of just 1.5% processor overhead. After developing
basic graphic functions to plot individual pixels first and efficiently draw lines, we
explored some of the possibilities offered by the availability of a graphic video output,
including unidimensional and two-dimensional function graphing. We completed our

 Figure 13.32 : Screen capture, the Matrix . . . Reloaded.

UTube 399

explanations with a brief foray in the world of fractals and learning to display text on top
of graphics.

 Notes for the PIC24 Experts
 The OC module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differences
that will affect your code while porting an application to the PIC32:

 1. The OCxCON control register layout has been updated to resemble more closely
the layout of most other peripherals so that the module ON , FRZ , and IDL bits are
now available to better control operation in the low-power modes.

 2. The OC32 control bit has been added to enable a 32-bit mode of operation when
the module is associated with a 32-bit timer pair.

 Tips & Tricks
 The final touch, to complete our brief excursion into the world of graphics, would be to add
some animation capabilities to our graphic libraries. To make the motion fluid and avoid an
annoying flicker of the image on the screen, a technique known as double buffering is often
used. This requires the allocation of two image buffers of identical size. One, the “ active ”
buffer, is shown on the screen; the other, the “ hidden ” buffer, is where the drawing takes
place. When the drawing on the hidden buffer is completed, the two are swapped. What
used to be the active buffer is not visible anymore. The (now) hidden buffer can be cleared
without fear of producing any flicker, and the drawing process can restart.

 With the current image resolution settings (256 � 200), the RAM usage grows to a total
of 12,800 bytes (256*200*2/8), which represents only approximately 40 percent of the
total RAM available on the PIC32MX360.

 To extend our graphic libraries and support double buffering, we can implement the
following simple modifications:

● At the top of the graphic.c module, add the declaration of a second image buffer;

 #ifdef DOUBLE_BUFFER
 int VMap2[VRES*(HRES/32)]; // second image buffer

 #endif

400 Day 13

● Inside the initVideo() function, where the VA and VH pointers were assigned
initial values, add a new conditional assignment. (Now you can understand why I
had chosen to use two separate pointers to the same image buffer.)

 // 6. init the active and hidden screens pointers
 VA = VMap1;
 #ifdef DOUBLE_BUFFER
 VH = VMap2;
 #else
 VH = VA;

 #endif

● Add the new function clearHScreen(), to clear the hidden buffer in double-
buffering mode:

 void clearHScreen(void)
 { // fill with zeros the Hidden Video array
 memset(VH, 0, VRES*(HRES/8));
 // reset text cursor position
 cx = cy = 0;

 } //clearHScreen

● Add the swapV() function to swap the two buffers (it ’ s just the pointers that get
swapped):

 void swapV(void)
 {

 int * V;

 if (VState == SV_LINE) // wait end of the frame
 while (VCount != 1);

 V = VA; VA = VH; VH = V; // swap the pointers
 VPtr = VA;

 } // swapV

 Notice that care must be taken not to perform the swap in the middle of a frame but
synchronized with the end of one frame and the beginning of the next.

UTube 401

 One last utility function can be added for all those cases when the animation needs to be
suspended and the display has to return to a simple buffering mode:

 void singleV(void)
 { // make all functions work on a single image buffer
 VA = VMap1;
 VH = VA;

 }

 Remember to add all the corresponding function prototypes to the graphic.h include file
and additionally, at the top, declare the new symbol DOUBLE_BUFFER :

 #define DOUBLE_BUFFER // comment if single buffering required
 void clearHScreen(void);
 void swapV(void);

 void singleV(void);

Note

 All the examples developed in this chapter and the previous one can now be recompiled
using the newly extended graphic modules with the condition that the DOUBLE_BUFFER
declaration is either commented out or the singleV() function is called immediately after
the initVideo() call!

 Exercises

 1. Modify the Mandelbrot.c demo to use a 32-bit timer to self-time the PIC32
performance and display the time and coordinates of the image on the screen.

 2. Create a combined demo project that uses the PS/2 keyboard input and the
graphic libraries to provide a terminal console.

 3. Modify the graph2D.c demo and allow the user to “ manipulate ” the function
using the four buttons on the Explorer 16 demo board to increase and decrease
the scaling factor and change the position of the “ peak ” while refreshing the
screen using the double-buffering animation technique.

 4. Experiment with 3D geometry, drawing objects in perspective and rotating them
in space.

402 Day 13

 Books
 Mandelbrot , Benoit , B. , The Fractal Geometry of Nature (W. H. Freeman , 1982) . This is

 “ the ” book on fractals, written by the man who contributed most to the rediscovery of
fractal theory.

 Hofstadter , Douglas , Godel, Escher, Bach: An Eternal Golden Braid , 20th Anniversary
Edition (Basic Books , 1999) . One of the most inspiring books in my library. At 777
pages, it ’ s not easy reading, but it will take you on a journey through graphics, math,
and music and the surprising connections among the three.

 Links

http://en.wikipedia.org/wiki/Fractals . A starting point for you to begin the online
exploration of the world of fractals.

http://en.wikipedia.org/wiki/Zx_spectrum . The Sinclair ZX Spectrum was one of the first
personal computers (home computers, as they used to be called) launched in the early
1980s. Its graphic capabilities were very similar to those of the graphic libraries we
developed in this project. Although it used several custom logic devices to produce a
video output, its processing power was less than a tenth that of the PIC32. Still, the
limited ability to produce color (only 16 colors with a resolution of a block of 8 �

 8 pixels) enticed many programmers to create thousands of challenging and creative
video games.

 Mass Storage

 The Plan
 In many embedded-control applications, you might find a need for a larger nonvolatile
data storage space well beyond the capabilities of the common Serial EEPROM devices
and the Flash program memory available inside the microcontroller itself. You might be
looking for orders of magnitude more—hundreds of megabytes and possibly gigabytes.
If you own a digital camera, an MP3 player, or even just a cell phone, you have probably
become familiar with the storage requirements of consumer multimedia applications and
with the available mass storage technologies. Hard disk drives have become smaller and
less power thirsty, but also a multitude of solid state solutions (based once more on Flash
technologies such as Compact Flash, Smart Media, Secure Digital, Memory Stick, and
others) have flooded the market, and because of the volumes absorbed by the consumer
applications, the price range has been reduced to a point where it is possible, if not
convenient, to integrate these devices into embedded-control applications.

 In this lesson we will learn how to interface one of the most common and inexpensive
mass storage device types to a PIC32 microcontroller using the smallest amount of
processor resources.

 Preparation
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer
16 demonstration board, an In-Circuit Debugger of your choice), and a soldering iron
and a few components you ’ ll need ready at hand to extend the board capabilities using
the prototyping area or a small expansion board. You can check on the book ’ s companion

D A Y 1 4

404 Day 14

Web site (www.exploringPIC32.com) for the availability of expansion boards that will
help you with the experiments.

 The Exploration
 Each one of the many competing mass storage technologies has its strengths and
weaknesses, since each was designed for a somewhat different target application. We
will choose the ideal mass storage media for our applications according to the following
criteria:

● Availability of the memory and required connectors

● Pin count required by the physical interface (possibly serial)

● Memory capacity

● Open specifications available

● Ease of implementation

● Cost of the memory and the required connectors

 The Secure Digital (SD) card standard compares favorably in all those aspects; today
it is one of the most commonly adopted mass storage media for digital cameras and
many other multimedia consumer applications. The SD card specifications represent an
evolution of a previous technology known as Multi Media Card, or MMC, with which
they are still partially (backward) compatible both electrically and mechanically. The
Secure Digital Card Association (SDCA) owns and controls the technical specification
standards for SD memory cards, and they require all companies that plan to actively
engage in the design, development, manufacture, or sale of products that utilize the SD
specifications to become members of the association. As of this writing, a general SDCA
membership will cost you $2,000 in annual fees. The Multi Media Card Association
(MMCA), on the other side, does not require implementers to become members and
makes copies of the MMC specifications available for sale starting at $500. So both
technologies are far from free or “ open ” by any means.

 Fortunately there is a “ subset ” of the SD specifications that has been released to the
public by the SDCA in the form of a “ simplified physical specification ” . This information
is truly all we need to develop a basic understanding of the SD/MMC memory
technology and get started designing a PIC32 mass storage interface.

Mass Storage 405

 The Physical Interface
SD cards require only nine electrical contacts and an SD/MMC compatible connector,
which can be purchased through most online catalogs for less than a couple of dollars.
The connector requires only a couple of pins more to account for insertion detection and
write protection switch sensing. Two main modes of communication are available: the
first one (known as the SD bus) is original to the SD/MMC standard and it requires a
nibble (4-bit) wide bus interface; the second mode is serial and is based on the popular
SPI bus standard. It is this second mode that makes the SD/MMC mass storage devices
particularly appealing for all embedded-control applications, since most microcontrollers
will either have a hardware SPI interface available or will be able to easily emulate one
(bit-banging) with a reduced number of I/Os. Finally, the physical specifications of
the SD/MMC cards indicate an operating voltage range of 2.0 V to 3.6 V that is ideally
suited for all application with modern microcontrollers implemented in advanced CMOS
geometries, as is the case of the PIC32MX family (see Figure 14.1).

SD

8. DAT1
7. DAT0/DO 7. DAT0/DO

6. Vss2 6. Vss2

5. CLK 5. CLK

4. Vcc 4. Vcc

3. Vss1 3. Vss1

2. CMD/DI 2. CMD/DI

1. DAT3/CS 1. DAT3/CS

9. DAT2

MMC

 Figure 14.1 : SD card and MMC card connectors pin-out.

 Note

 Logically and electrically, miniSD cards, microSD cards, and SD cards are identical. Only the
form factor, size, and number of pins are different from the original standard. Both the miniSD
cards and microSD cards were designed to meet special size requirements. With an adapter or
an appropriate connector, they can be used in the following application.

406 Day 14

 Interfacing to the Explorer 16 Board
 Unfortunately, although the number of electrical connections required for the SPI
interface is very small, all SD/MMC card connectors available on the market are
designed for surface-mount applications only, which makes it almost impossible to
breadboard a card interface or use the prototyping area of the Explorer 16 demonstration
board.

Since in the previous chapters we used the first SPI peripheral module (SPI1) to produce
a video output and the application does not allow for sharing the resource, we will share
instead the second SPI module (SPI2) between the SD card interface and the EEPROM
interface using separate Chip Select (cs) signals for the two. In addition to the usual
 SCK , SDI , and SDO pins, we will provide pull-ups for the unused pins (reserved for the
4-bit-wide SD bus interface) of the SD/MMC connector and for two more pins that will
be dedicated to the Card Detect and Write Protect signals (see Figure 14.2).

RF0 SDCS

R1
10 k 10 k 10 k 10 k 10 k

R2 R3 R4 R5

J7

o 1 CS GND GND

� C10 C11

.1u10 u

SDI

SCK

SDO

CD

WD

GND

SD card connector

o 2

o 3

o 4

o 5

o 6

o 7

o 8

o 9

o 10

o 11

o 12

�3.3 V

RG8 SDO2

RG6 SCK2

RG7 SDI2

RF1 SDCD

RG1 SDWD

 Figure 14.2 : SD/MMC card interface to Explorer 16 demo board.

Mass Storage 407

 Note

 Microchip has recently made available an expansion board known as the PICTail® Daughter
Board for SD and MMC Cards (AC164122) that can be effectively used to complete all the
projects presented in this chapter. An alternative set of pin assignments to support the new
PICTail board will be offered on the companion web site: www.ExploringPIC32.com.

 Starting a New Project
 After creating a new project that we will obviously call SDMMC , let ’ s start writing the
basic initialization routines for all the necessary I/Os and the configuration of the SPI2
module:

 /*
 ** SDMMC.c SD card interface
 */
 #include <p32xxxx.h>
 #include <sdmmc.h>

 // I/O definitions
 #define SDWP _RG1 // Write Protect input
 #define SDCD _RF1 // Card Detect input
 #define SDCS _RF0 // Card Select output

 void initSD(void)
 {
 SDCS = 1; // initially keep the SD card disabled
 _TRISF0 = 0; // make Card select an output pin

 // init the SPI2 module for a slow (safe) clock speed first
 SPI2CON = 0x8120; // ON, CKE=1; CKP=0, sample middle
 SPI2BRG = 71; // clock = Fpb/144 = 250kHz

 } // initSD

 In particular, in the SPI2CON register we need to configure the SPI module to operate
in master mode with the proper clock polarity, clock edge, input sampling point, and an
initial clock frequency. The clock output (SCK) must be enabled and set low when idle.

408 Day 14

The sampling point for the SDI input must be centered. The frequency is controlled by
means of the SPI baud rate generator (SPI2BRG) that divides the peripheral clock (Tpb).
After power-up and until the SD card is properly initialized, we will have to keep the SPI
clock speed to a safe setting, below 400 kHz; therefore we will use a setting of Tpb/144 to
obtain a 250 kHz clock signal. This is just a temporary arrangement, though; after sending
only the first few commands, we will be able to speed up the communication considerably.

 Notice how only the SDCS signal (RF0 pin) needs to be manually configured as an output
pin, whereas SCK2 and SDO 2 (corresponding to the RG6 and RG8 pins) are automatically
configured as outputs as soon as we enable the SPI 2 peripheral.

 Selecting the SPI Mode of Operation
 When an SD/MMC card is inserted in the connector and powered up, it starts in the
default mode of communication: the SD bus mode. To inform the card that we intend
to communicate using the alternative SPI mode, all we need to do is to select the card
(SDCS pin low) and start sending the first reset command. We can be assured that once
it ’ s entered the SPI mode, the card will not be able to change back to the SD bus mode
unless the power supply is cycled. However, this means that if the card is removed from
the slot without our knowledge and then reinserted, we will have to make sure that the
initialization routine or at least the reset command are repeated, to get back to the SPI
mode. We can detect the card presence at any time by checking the status of the SDCD
line (RF1 input pin).

 Sending Commands in SPI Mode
 In SPI mode, commands are sent to an SD/MMC card as packets of 6 bytes, and all
responses from the SD card are provided with multiple byte data blocks of variable
length. So all we need to communicate with the memory card is the usual basic SPI
routine to send and receive (the two operations are really the same, as we have seen in the
previous chapters) a byte at a time:

 // send one byte of data and receive one back at the same time
 unsigned char writeSPI(unsigned char b)
 {
 SPI2BUF=b; // write to buffer for TX
 while(!SPI2STATbits.SPIRBF); // wait transfer complete
 return SPI2BUF; // read the received value

 }// writeSPI

Mass Storage 409

 For improved code readability and convenience, we will also define two more macros
that will mask the same write SPI () function as a pure read SPI (), or just as a clock
output function clock SPI () . Both macros will send a dummy byte of data (0xFF):

#define readSPI() writeSPI(0xFF)

#define clockSPI() writeSPI(0xFF)

 To send a command, we will start selecting the card (SDCS low) and send through the SPI
port a packet composed of three parts:

● The first part is a single byte containing a command index. The following
definitions cover all the commands we will be using for this project:

 // SD card commands
 #define RESET 0 // a.k.a. GO_IDLE (CMD0)
 #define INIT 1 // a.k.a. SEND_OP_COND (CMD1)
 #define READ_SINGLE 17

 #define WRITE_SINGLE 24

● The command index is followed by a 32-bit memory address. It is an unsigned
integer (32-bit) value that must be sent MSB first.

● Finally, the command packet is completed by a single byte CRC.

 The Cyclic Redundancy Check (CRC) feature is always used in SD bus mode to make sure
that every command and every block of data transmitted on the bus is free from error. But,
as soon as we switch to the SPI mode after sending the reset command, the CRC protection
is automatically disabled and the CRC value is ignored. In fact, from that moment on, the
card assumes that a direct and reliable connection to the host, the PIC32 in our case, is
available. By taking advantage of this default behavior, we can simplify our code by using
a single precomputed value. This will be the CRC code of the RESET command. For all
the subsequent commands, the CRC field will be a “ don ’ t care. ” Here is the first part of the
sendSDCmd() function that we will use to send all commands to the SD card:

 int sendSDCmd(unsigned char c, unsigned a)
 // c command code
 // a byte address of data block
 {
 int i, r;

 // enable SD card
 enableSD();

410 Day 14

 // send a comand packet (6 bytes)
 writeSPI(c | 0x40); // send command
 writeSPI(a>>24); // msb of the address
 writeSPI(a>>16);
 writeSPI(a>>8);
 writeSPI(a); // lsb

 writeSPI(0x95); // send CMD0 CRC

 After sending all 6 bytes to the card, we are supposed to wait for a response byte. In fact,
it is important that we keep sending “ dummy ” data continuously clocking the SPI port.
The response will be 0xFF; basically, the SDI line will be kept high until the card is
ready to provide a proper response code. The specifications indicate that up to 64 clock
pulses, or 8 bytes, might be necessary before a proper response is received. Should we
exceed this limit, we would have to assume a major malfunctioning of the card and abort
communication:

 // now wait for a response, allow for up to 8 bytes delay
 for(i=0; i<8; i++)
 {
 r=readSPI();
 if (r != 0xFF)
 break;

 }
 return (r);

 // NOTE CSCD is still low!

 } // sendSDCmd

 If we receive a response code, each bit, if set, will provide us with an indication of a
possible problem (see Table 14.1).

 Notice that, on return, the sendSDCmd() function leaves the SD card still selected
(SDCS low) so that commands such as Block Write and Block Read, which require
additional data to be sent to or received from the card, will be able to proceed. In all
other commands that do not require additional data transfers, we will have to remember
to deselect the card (set SDCS high) immediately after the function call. Furthermore,
since we want to share the SPI2 port with other peripherals such as the Serial EEPROM
mounted on the Explorer 16 board, we need to make sure that the SD/MMC card receives
a few more clock cycles (eight will suffice) immediately after the rising edge of the chip
select line (SDCS). According to the SD/MMC specifications, this will allow the card to

Mass Storage 411

complete a few important housekeeping chores, including the proper release of the SDO
line, essential to allow other devices on the same bus to communicate properly.

 Here is another pair of macros that will help us perform this consistently:

 #define disableSD() SDCS = 1; clockSPI()

 #define enableSD() SDCS = 0

 Completing the SD Card Initialization
 Before the card can be effectively used for mass storage applications, a well-defined
sequence of commands needs to be completed. This sequence is defined in the
original MMC card specifications and has been modified only slightly by the SD card
specifications. Since we are not planning on using any of the advanced features specific
to the SD card standard, we will use the basic sequence as defined for MMC cards for
maximum compatibility. There are five steps in a sequence that starts as soon as the card
is inserted in the connector and powered up:

 1. The CS line is initially kept high (the card is not selected).

 2. More than 74 clock pulses must be provided before the card becomes capable of
receiving commands.

 Table 14.1 : SD card
Command Response codes.

Bit Description

 0 Idle state

 1 Erase Reset

 2 Illegal command

 3 Communication CRC error

 4 Erase sequence error

 5 Address error

 6 Parameter error

 7 0 (always)

412 Day 14

 3. The card must then be selected.

 4. The RESET (CMD0) command is sent; the card should respond by entering the Idle
state and (activating the SPI mode).

 5. An INIT (CMD1) command is provided and repeated until the card exits the Idle
state.

 The following segment of the function initMedia() will perform exactly those initial
five steps:

 int initMedia(void)
 // returns 0 if successful
 // E_COMMAND_ACK failed to acknowledge reset command
 // E_INIT_TIMEOUT failed to initialize
 {
 int i, r;

 // 1. with the card NOT selected
 disableSD();

 // 2. send 80 clock cycles start up
 for (i=0; i<10; i++)
 clockSPI();

 // 3. now select the card
 enableSD();

 // 4. send a single RESET command
 r = sendSDCmd(RESET, 0); disableSD();
 if (r != 1) // must return Idle
 return E_COMMAND_ACK; // comand rejected

 // 5. send repeatedly INIT until Idle terminates
 for (i=0; i<I_TIMEOUT; i++)
 {
 r = sendSDCmd(INIT, 0); disableSD();
 if (!r)
 break;

 }
 if (i == RI_TIMEOUT)

 return E_INIT_TIMEOUT; // init timed out

Mass Storage 413

 The initialization command can require quite some time, depending on the size and
type of memory card, normally measured in several tenths of a second. Since we are
operating at 250 kb/s, each byte sent will require 32 us. If we consider 6 bytes for every
command retry, using a count up to 10,000 will provide us with a generous timeout limit
(I_TIMEOUT) of approximately three tenths of a second as per SD card specifications.

 It is only upon successful completion of the preceding sequence that we will be allowed
to finally switch gear and dramatically increase the clock speed to the highest possible
value supported by our hardware. With minimal experimentation you will find that an
Explorer 16 board, with a properly designed daughter board providing the SD/MMC
connector, can easily sustain a clock rate as high as 18 MHz. This value can be obtained
by reconfiguring the SPI baud rate generator for a 1:2 ratio. We can now complete the
initMedia() function with the last segment:

 // 6. increase speed
 SPI2CON = 0; // disable the SPI2 module
 SPI2BRG = 0; // Fpb/(2*(0+1))= 36/2 = 18 MHz
 SPI2CON = 0 x 8120; // re-enable the SPI2 module
 return 0;

 } // init media

 Reading Data from an SD/MMC Card
 SD/MMC cards are solid-state devices typically containing large arrays of Flash
memory, so we would expect to be able read and write any amount of data (within the
card capacity limits) at any desired address. In reality, compatibility considerations with
many previous (legacy) mass storage technologies have imposed a number of constraints
on how we can access the memory. In fact, all operations are defined in blocks of a
fixed size that by default is 512 bytes. It is not a coincidence that 512 bytes is the exact
standard size of a data “ sector ” of a typical personal computer hard disk. Although this
can be changed with an appropriate command, we will maintain the default setting so
that later we will be able to take advantage of this compatibility. In the next chapter we
will develop a set of routines that will allow us to implement a complete file system
compatible with the most common PC operating systems. This way we will be able to
access files written on the SD card by a personal computer, and vice versa, a personal
computer will be able to access files written by our applications onto an SD card.

 The READ_SINGLE (CMD17) is all we need to initiate a transfer of a single sector from a
given address in memory. The command takes as an argument a 32-bit “ byte address, ” but

414 Day 14

when accessing sectors of data, we will be constantly referring to logical block addresses,
or LBAs, borrowing from a term used in other mass storage applications.

 typedef unsigned LBA; // logic block address, 32 bit wide

 To avoid confusion, in the following we will uniformly use only LBAs or block
addresses, and we will obtain an actual byte address by multiplying the LBA value by
512 just before passing the parameter to the READ_SINGLE command.

 Writing a sector of data to an SD card requires the following five steps:

 1. Send a READ_SINGLE command.

 2. Wait for the SD card to respond with a specific token: DATA_START . This will be
the card ’ s way to tell us it is ready to send the block of data.

 Since the card might need a little time to locate the block of data, just like
during the initialization phase, it is important to impose a timeout. Since only
the readSPI() function is called repeatedly, sending/receiving only 1 byte at
a time (@18 MHz) while waiting for the data token, a timeout counter of 25,000
(R_TIMEOUT) will provide an effective time limit of less than one millisecond.

 3. Once the DATA_START token is received, we can confidently read in a rapid
sequence all 512 bytes composing the requested block of data.

 4. They will be followed by a 16-bit CRC value that we should read, but otherwise
we can discard. It is only at this point that we will deselect the memory card and
terminate the entire read command sequence.

The following routine readSECTOR() performs the entire sequence in a few lines
of code:

 #define DATA_START 0xFE

 int readSECTOR(LBA a, char *p)
 // a LBA of sector requested
 // p pointer to sector buffer
 // returns TRUE if successful
 {
 int r, i;

 // 1. send READ command
 r = sendSDCmd(READ_SINGLE, (a << 9));
 if (r == 0) // check if command was accepted
 {

Mass Storage 415

 // 2. wait for a response
 for(i=0; i<R_TIMEOUT; i++)
 {
 r = readSPI();
 if (r == DATA_START)

 break;
 }

 // 3. if it did not timeout, read 512 byte of data
 if (i != R_TIMEOUT)
 {
 i = 512;
 do{
 *p++ = readSPI();

 } while (--i>0);

 // 4. ignore CRC
 readSPI();
 readSPI();

 } // data arrived
 } // command accepted

 // 5. remember to disable the card
 disableSD();

 return (r == DATA_START); // return TRUE if successful

 } // readSECTOR

 Note

 To provide a visual indication of activity on the memory card similarly to hard drives and
diskette drives, we could assign one of the LEDs available on the Explorer 16 board as the
 “ read ” LED, hoping this will help prevent a user from removing the card while in use. The LED
can be turned on before each read command and turned off at the end.

 Other strategies are possible, though. For example, similarly to common practice on USB Flash
drives, an LED could be turned on as soon as the card is initialized, regardless of whether an
actual command is performed on it at any given point in time. Only calling a deinitialization
routine would turn the LED off and indicate to the user that the card can be removed.

416 Day 14

 Writing Data to an SD/MMC Card
 Based on the same considerations we made for the readSECTOR() function, we will
develop a writeSECTOR() function that will be similarly constrained to operate on 512-
byte-wide blocks of data. The write sequence we will use, as you would expect, is the
WRITE_SINGLE command and will be composed of five steps. However, this time the
data transfer will be in the opposite direction:

 1. Send a WRITE_SINGLE command and check the SD card response to make sure
that the command is accepted.

 2. Send the DATA_START token and immediately after it, in a short loop, all 512
bytes of data.

 3. Send 2 bytes for the 16-bit CRC (any dummy value will do) since the CRC check
is not enabled in SPI mode.

 4. Check the SD card response. The token DATA_ACCEPT will confirm that the
entire block of data has been received and the write operation has started.

 5. Wait for the completion of the write command. While the card is busy writing,
it will keep the SDO line low. So we will wait for the SDO line to return high.
Once more a timeout must be imposed to limit the amount of time allowed to
the card to complete the operation. Since all SD/MMC memories are based on
Flash memory technology, we can expect the time typically required for a write
operation to be considerably longer than that required for a read operation.
A timeout value of 250,000 (W_TIMEOUT) will provide us with a 100 ms limit
that is more than sufficient to accommodate even the slowest memory card on
the market.

It is only at this point that we will deselect the memory card and terminate the entire
write command sequence:

 #define DATA_ACCEPT 0x05

 int writeSECTOR(LBA a, char *p)
 // a LBA of sector requested
 // p pointer to sector buffer
 // returns TRUE if successful
 {

Mass Storage 417

 unsigned r, i;

 // 1. send WRITE command
 r = sendSDCmd(WRITE_SINGLE, (a << 9));
 if (r == 0) // check if command was accepted
 {

 // 2. send data
 writeSPI(DATA_START);

 // send 512 bytes of data
 for(i=0; i<512; i++)
 writeSPI(*p++);

 // 3. send dummy CRC
 clockSPI();
 clockSPI();

 // 4. check if data accepted
 r = readSPI();
 if ((r & 0xf) == DATA_ACCEPT)
 {

 // 5. wait for write completion
 for(i=0; i<W_TIMEOUT; i++)
 {

 r = readSPI();
 if (r != 0)
 break;

 }
 } // accepted
 else
 r = FAIL;

 } // command accepted

 // 6. remember to disable the card
 disableSD();

 return (r); // return TRUE if successful

 } // writeSECTOR

418 Day 14

 Save the source we developed so far in a file called SDMMC.c to be placed inside the lib
directory. We will have ample use for it in the next few chapters.

 As a final nice touch, we should add the following two functions to manage the SD/MMC
connector switches:

 // SD card connector presence detection switch
 int getCD(void)
 // returns TRUE card present
 // FALSE card not present
 {
 return !SDCD;

 }

 When a card is inserted in the connector, the Card Detect switch is closed and the SDCD
input pin is pulled low. The getCD() function will allow us to detect the card ’ s presence
by returning TRUE when the card is inserted and ready for use.

 Similarly, when the Write Protection tab on the card is not in the “ lock ” position and the
card is inserted, the Write Protect switch will close and the corresponding SDWP input pin
will be pulled low.

 // card Write Protect tab detection switch
 int getWP(void)
 // returns TRUE write protect tab on LOCK
 // FALSE write protection tab OPEN
 {
 return SDWP;

 }

 The getWP() function, called when the card is properly inserted, will return TRUE if the
card is locked.

 Notice that the Write Protect tab on the SD/MMC card is similar to cassette and VHS
tape protection tabs. It is merely suggesting that the device should not be written to.

 Note

 Similarly to the readSECTOR() function, a second LED can be assigned to indicate when a
write operation is being performed and alert the user. Should the card be removed during the
write sequence, data will most likely be lost or corrupted.

Mass Storage 419

So it is our responsibility to respect the user ’ s desire and implement a check for the WP
switch at the beginning of our writeSECTOR() function and abort immediately if the
lock is set.

 // 0. check Write Protect
 if (getWP())

 return FAIL;

 Finally, let ’ s create a new include file called SDMMC.h that we will save in a common
include directory to provide the prototypes and basic definitions used in the SD/MMC
interface module:

 /*
 ** SDMMC.h SD card interface
 */
 #define FAIL FALSE
 // Init ERROR code definitions
 #define E_COMMAND_ACK 0x80
 #define E_INIT_TIMEOUT 0x81

 typedef unsigned LBA; // logic block address, 32 bit wide

 void initSD(void); // initializes I/O pins and SPI
 int initMedia(void); // initializes the SD/MMC memory device
 int getCD(); // chech card presence
 int getWP(); // check write protection tab
 int readSECTOR (LBA, char *); // reads a block of data

 int writeSECTOR(LBA, char *); // writes a block of data

 Testing the SD/MMC Interface
 Whether you believe it or not, the four minuscule routines we just developed are all
we need to gain access to the seemingly unlimited amount of “ storage space ” offered
by the SD/MMC memory cards. For example, a 1GB SD card would provide us with
approximately 2,000,000 (yes, that is 2 million) individually addressable memory blocks
(sectors), each 512 bytes large. Note that as of this writing, SD/MMC cards of this
capacity are normally offered for retail in the United States for less than $20!

 Let ’ s develop a small test program to demonstrate the use of the SD/MMC module. The
idea is to simulate a somewhat typical application that is required to save some large

420 Day 14

amount of data on the SD/MMC memory card. A fixed number of blocks of data will be
written in a predetermined range of addresses and then read back to verify the successful
completion of the process. We will use the LCD to report diagnostic information and
track the progress.

 Let ’ s create a new source file that we will call RWTest.c , and let ’ s start by adding the
usual header and processor specific include files, followed by the new sdmmc.h library:

 /*
 ** RWTest.c
 **
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include <p32xxxx.h>
 #include <explore.h>
 #include <LCD.h>

 #include <SDMMC.h>

 Then let ’ s define two byte arrays, each the size of a default SD/MMC memory block that
is 512 bytes:

 #define B_SIZE 512 // data block size
 char data[B_SIZE];

 char buffer[B_SIZE];

 The test program will fill the first array with a specific and easy to recognize pattern and
will repeatedly write its contents onto the memory card. The chosen address range will be
defined by two constants:

 #define START_ADDRESS 10000 // start block address

 #define N_BLOCKS 10 // number of blocks

 The LED2 connected on the PORTA RA2 pin on the Explorer 16 demonstration board
will provide us with visual feedback about the SD card usage status. Notice that this I/O
is available even if you are using the PIC32 Starter Kit and therefore the JTAG port is
enabled:

 #define LED _RA2

Mass Storage 421

 The first few lines of the main program can now be written to initialize the I/Os required
by the SD/MMC module on the LCD:

 main(void)
 {
 LBA addr;
 int i, j, r;

 // 1. initializations
 initEX16();
 initLCD(); // init LCD module
 initSD(); // init SD/MMC module

 // 2. fill the buffer with pattern
 for(i=0; i<B_SIZE; i++)

 data[i]= i;

 The next code segment will prompt the user to insert the card in the slot and will check
for the presence of the SD card in a loop. After a short debouncing delay, the initialization
routine is performed to prepare the card to receive SPI commands:

 // 3. wait for the card to be inserted
 putsLCD(" Insert card.. ");
 while(!getCD()); // check CD switch
 Delayms(100); // wait contacts de-bounce
 if (initMedia()) // init card
 { // if error code returned

 clrLCD();
 putsLCD(" Failed Init ");
 goto End;

 }

 When ready, we proceed with the actual data writing phase. The LED is turned on to
indicate that the SD card is in use, and a status message is printed on the first line of the
LCD display. Two nested loops repeatedly call the writeSECTOR() function to write
16 groups of 10 sectors starting at the absolute LBA=10,000 . Every 10 sectors (approx.
5 KBytes) a brick character (black box) is added on the second line of the LCD display
to form a progress bar. Should any write command fail, the procedure is immediately
aborted and an error message is reported on the LCD:

 // 4. fill 16 groups of N_BLOCK sectors with data
 LED = 1; // SD card in use

422 Day 14

 clrLCD();
 putsLCD(" Writing\n ");
 addr = START_ADDRESS;
 for(j=0; j<16; j++)
 {
 for(i=0; i<N_BLOCKS; i++)
 {

 if (!writeSECTOR(addr+i*j, data))
 { // writing failed

 putsLCD(" Failed to Write ");
 goto End;

 }
 } // i
 putLCD(0xff);

} // j

 Then it is time to read back each sector of data and verify its content. After the LCD is
updated to reflect the new phase, the same two nested loops perform the reading and
verification in groups of 10 sectors. After each group of sectors is read and verified, a new
brick (black bar) is added to the display to indicate the progress. Should any of these steps
fail, the procedure is immediately aborted and an error message is displayed on the LCD:

 // 5. verify the contents of each sector written
 clrLCD();
 putsLCD(" Verifying\n ");
 addr = START_ADDRESS;
 for(j=0; j<16; j++)
 {
 for(i=0; i<N_BLOCKS; i++)
 { // read back one block at a time
 if (!readSECTOR(addr+i*j, buffer))
 { // reading failed
 putsLCD(" Failed to Read ");
 goto End;

 }

 // verify each block content
 if (memcmp(data, buffer, B_SIZE))
 { // mismatch
 putsLCD(" Failed to Match ");

Mass Storage 423

 goto End;
 }

 } // i
 putLCD(0xff);

 } // j

 Notice how the memcmp() function, part of the standard C string.h library, is used to
efficiently perform the data comparison. It returns a zero value when the two buffers ’
content is identical, a nonzero value otherwise.

 If all went well, a success message is printed on the LCD and the LED is turned off, since
the SD card is no more in use and can now be removed:

 // 7. indicate successful execution
 clrLCD();
 putsLCD(" Success! ");

 End:
 LED = 0; // SD card not in use
 // main loop
 while(1);

 } // main

Make sure to add all the required source files— SDMMC.h , SDMMC.c , LCDlib.c ,
explore.c , and RWTest.c —to the project, then build all and program the Explorer 16
board with your in-circuit debugger of choice. You will need a daughter board with the
SD/MMC connections as described at the beginning of the lesson and an empty SD card
to perform the test.

 Warning

 This is the real thing! When you run the RWTest program, the contents of the SD card will be
modified, overwriting any data on the card and potentially corrupting any files. Make sure you have
saved all the family photos and your favorite MP3 files somewhere else! Only in the next chapter
we will develop a library compatible with common PC “ file systems. ” It will allow us to share the
SD card without risk of damaging existing files, reading and writing data using a common format.

 As you run the code, the efforts of building the SD/MMC interface (or the expense of
purchasing one) will be more than compensated by the joy of seeing the PIC32 perform
the test flawlessly in a few seconds.

424 Day 14

 Also, admire how small the overall amount of code and resources we used was (see
 Figure 14.3)!

 All together, the test program and the SD/MMC access library module have used only
1.930 words of the processor Flash program memory—that is, less than 2 percent of the
total available memory. Not to mention that, as in all previous lessons, this result was
obtained with all compiler optimization options turned off.

 Debriefing
 In my personal opinion, it does not get cheaper or easier than this with any other mass
storage technology. After all, we can use only a handful of pull-up resistors, a cheap
connector, and just a few I/O pins to enormously expand the storage capabilities of our
applications. In terms of PIC32 resources required, only the SPI peripheral module has
been used, and even that could be shared with other applications.

 The simplicity of the approach has his obvious limitations, though. Data can be written
only in blocks of fixed size, and its position inside the memory array will be completely
application specific. In other words, there will be no way to share data with a personal
computer or other device capable of accessing SD/MMC memory cards unless a
 “ custom ” application is developed. Worse, if an attempt is made to use a card already
used by a PC, PC data would likely be corrupted and the entire card might require
complete reformatting. In the next lesson, we will address these issues by developing a
complete file system library.

 Figure 14.3 : MPLAB memory usage gauges.

Mass Storage 425

 Tips & Tricks
 The choice of operating on the default block size of 512 bytes was dictated mostly by
historical reasons. By making the low-level access routines in this lesson conform with
the standard size adopted by most other mass storage media devices (including hard
drives), we made developing the next layer (the file system) easier. But if we were
looking for maximum performance, this could have been the wrong choice. In fact, if
we were looking for faster write performance, typically the bottleneck of every Flash
memory media, we would be better off looking at much larger data blocks.

 Flash memory typically offers very fast access to data (reading) but is relatively slow when it
comes to writing. Writing requires two steps: First, a large block of data (often referred to as a
page) must be erased; then the actual writing can be performed on smaller blocks. The larger
the memory array, the larger, proportionally, the erase page size will be. For example, on a
512 Mbyte memory card, the erase page can easily exceed 2 k bytes. Although these details
are typically hidden from the user as the main controller inside the card takes care of the erase/
write sequencing and buffering, they can have an impact on the overall performance of the
application. In fact, if we assume a specific SD card has a 2 k byte page, writing any amount
of data (� 2 k) would require the internal card controller to perform the following steps:

● Read the contents of an entire 2 k byte block in an internal buffer.

● Erase it, and wait for the erase time.

● Replace a portion of the buffer content with the new data.

● Write back the entire 2 k byte block, and wait for the write time.

 By performing write operations only on blocks of 512 bytes each, to write 2 k bytes of data
our library would have to ask the SD card controller to perform the entire sequence four
times, whereas it could be done in just one sequence by changing the data block length
or using a multiple-block write command. Although this approach could theoretically
increase the writing speed by 400 percent in our example, consider the option carefully
because the price to pay could be quite high. In fact, consider the following drawbacks:

● The actual memory page size might not be known or guaranteed by the
manufacturer, although betting on increasing densities of Flash media (and
therefore increasing page size) is pretty safe.

● The size of the RAM buffer to be allocated inside the PIC32 application is
increased, and this is a precious resource in any embedded application.

426 Day 14

● The higher software layers (which we will explore in the next lesson) might be
more difficult to integrate if the data block size varies.

● The larger the buffer, the larger the data loss if the card is removed before the
buffer is flushed.

 Exercises
 1. Experiment with various data block sizes to identify where your SD card provides

the best write performance. This will give you an indirect indication of the actual
page size of the Flash memory device used by the card manufacturer.

 2. Experiment with multiple-block write commands or by changing the block length
to verify how the internal buffering is performed by the SD card controller and if
the two methods are equivalent.

 Books
 Schmidt , F. , The SCSI Bus and IDE Interface: Protocols, Applications, and Programming ,

 second edition (Addison-Wesley Professional , New york , 1999) . If the SD card
interface has intrigued you for its simplicity, you might now be curious about the
interfaces used on most of the older (nonsolid-state) mass storage devices used in the
world of personal computers. You will see they were not that much more complex.

 Axelson , J. , USB Mass Storage: Designing and Programming Devices and Embedded
Hosts (Lakeview Research , WI , 2006) . This book continues the excellent series on
USB by Jan Axelson. Low-level interfacing directly to an SD/MMC card was easy, as
you have seen in this chapter, but creating a proper USB interface to a mass storage
device is a project of a much higher order of complexity.

 Links
www.mmca.org/home . The official Web site of the MultiMedia Card Association

(MMCA).

www.sdcard.org . The official Web site of the Secure Digital Card Association (SDCA).

www.sdcard.org/Sdio/Simplified%20SDIO%20Card%20Specification.pdf . The simplified
SDIO card specifications. With SDIO, the SD interface is no longer used only for
mass storage but is also a viable interface for a number of advanced peripherals and
gizmos, such as GPS receivers, digital cameras, and more.

 File I/O

 The Plan
 Just yesterday, we developed a basic interface module (both software and hardware) to
gain access to an SD/MMC card and support applications that require large amounts of
data storage. A similar interface could be built for several other types of mass storage
media, but in this lesson we will instead focus on the algorithms and data structures
required to properly share information on the mass storage device with the most common
PC operating systems (DOS, Windows, and some Linux distributions). In other words,
we will develop a module for access to a standard file system known commonly as
FAT16.

 The first FAT file system was created by Bill Gates and Marc McDonald in 1977 for
managing disks in Microsoft Disk BASIC. It used techniques that had been available in
file systems many years before that, and it has continued to evolve in numerous versions
over the last few decades to accommodate ever larger-capacity mass storage devices and
new features. Among the many versions still in use today, the FAT12, FAT16, and FAT32
are the most common ones. FAT16 and FAT32, in particular, are recognized by practically
every PC operating system currently in use; the choice between the two is mostly dictated
by efficiency considerations and the capacity of the media. Ultimately, for most Flash
mass storage devices of common use in consumer multimedia applications, FAT16 is the
file system of choice.

 Preparation
 Today ’ s exploration continues using the hardware platform used in the previous chapter.
You will need an Explorer 16 or equivalent demo board with an additional expansion

D A Y 1 5

428 Day 15

board or prototyped circuit to connect an SD card connector and a few pull-up resistors.
Check the companion Web site at www.exploringPIC32.com for a list of expansion
options available to facilitate the experiments presented in this chapter.

 The Exploration
 The term FAT is an acronym for File Allocation Table , which is also the name of one of
the most important data structures used in this file system. After all, a file system is just
a method for storing and organizing computer files and the data they contain to make it
easy to find and access them. Unfortunately, as often is the case in the history of personal
computing, standards and technologies are the fruit of constant evolutionary progress
rather than original creation. For this reason many of the details of the FAT file system we
will reveal in the following discussion can only be explained in the context of a struggle
to continue and maintain compatibility with an enormous mass of legacy technologies
and software over many years.

 Sectors and Clusters
 Still, the basic ideas at the root of a FAT file system are quite simple. As we saw in
the previous lesson, most mass storage devices follow a “ tradition ” derived from the
hard disk technology of managing memory space in blocks of a fixed size, 512 bytes,
commonly referred to as sectors . In a FAT file system, a small number of these sectors
are reserved and used as a sort of general index: the File Allocation Table. The remaining
sectors (the majority) are available for proper data storage, but instead of being handled
individually, small groups of contiguous sectors are handled jointly to form new, larger
entities known as clusters . Clusters can be as small as one single sector or can be formed
by as many as 64 sectors. It is the use of each cluster and its position that is tracked
inside the File Allocation Table. Therefore, clusters are the true smallest unit of memory
allocation in a FAT file system (see Figure 15.1).

 The simplified diagram illustrates a hypothetical example of a FAT file system formatted
for 1,022 clusters, each composed of 16 sectors. (Notice that the data area always starts
with cluster number 2.) In this example, each cluster would contain 8 KB of data and the
total storage capacity would be about 8 MB.

 Note that the larger clusters are, the fewer will be required to manage the entire memory
space and the smaller the allocation table required, hence the higher efficiency of the file
system. On the contrary, if many small files are to be written, the larger the cluster size,

File I/O 429

the more space will be wasted. It is typically the responsibility of the operating system,
when formatting a storage device for use with a FAT file system, to decide the ideal
cluster size to be used for an optimal balance.

 The File Allocation Table
 In a FAT16 file system, the File Allocation Table is essentially an array of 16-bit integers.
Each element of the table represents one cluster. If a cluster is considered empty and
available, the corresponding entry in the table will contain the value 0 x 0000 . If a cluster
is in use and it contains an entire file of data, its corresponding entry in the table will
contain the value 0xFFFF . If a file is larger than the size of a single cluster, a chain of
clusters is formed. In the FAT each element will contain the index of the next cluster in
the chain. The last cluster in the chain will have the corresponding entry set to 0xFFFF .

 Additionally, certain unique values are used to mark reserved clusters (0 x 0001) and bad
clusters (0xFFF7). Since 0 x 0000 and 0 x 0001 have been assigned special meanings (free
and reserved, respectively), this explains why the convention wants the cluster counting
to start in the data area with cluster number 2. Inside the FAT, the corresponding first two
entries are similarly reserved.

 In Figure 15.2 , you can see an example of a FAT for the system presented in our previous
example in Figure 15.1 . Clusters 0 and 1 are reserved. Cluster 2 appears to contain some
data, meaning that some or all of the (16) sectors forming the cluster have been filled
with data from a file whose size must have been less than 8 KB.

Cluster2

Cluster 4: Sector0

Cluster 4: Sector1

Cluster 4: Sector15

Sector 0

Reserved

Reserved

Data
space

(clusters)

FAT

Cluster3

Cluster4

Cluster 1022

Cluster 1023

 Figure 15.1 : Simplified example of a FAT file system layout.

430 Day 15

Cluster 0�0000Cluster 0�0000

Cluster 0�0001Cluster 0�0001

Cluster 0�0002

Cluster 0�0003

0�FFFF

0�0004

0�0005

0�FFFF

0�0000

0�0000

Cluster 0�0004

Cluster 0�0005

Cluster 0�0006

Cluster 0�1023

Reserved

In use, single cluster

In use, pointing to next cluster
in chain
In use, pointing to next cluster
in chain

In use, last cluster in chain

 Figure 15.2 : Cluster chains in a File Allocation Table.

 Cluster 3 appears to be the first cluster in a chain of three that also includes Clusters 4
and 5. All of Cluster 3 and 4 sectors and some or all of Cluster 5 sectors must have been
filled with data from a file whose size (we can only assume so far) was more than 16 KB
but less than 24 KB. All following clusters appear to be empty and available.

 Notice that the size of a FAT itself is dictated by the total number of clusters multiplied
by 2 (2 bytes per cluster) and that it can spread over multiple sectors. In our previous
example, a FAT of 1,024 clusters would have required 2,048 bytes, or four sectors of
512 bytes each. Also, since the file allocation table is perhaps the most critical structure
in the entire FAT file system, multiple copies (typically two) are maintained and allocated
one after the other before the beginning of the data space.

 The Root Directory
 The role of the FAT is to keep track of how and where data is allocated. It does not
contain any information about the nature of the file to which the data belonged. For that
purpose there is another structure, called the root directory, whose sole purpose is that
of storing filenames, sizes, dates, times, and a number of other attributes. In a FAT16 file
system, the root directory, or simply the root from now on, is allocated in a fixed amount
of space and a fixed position right between the FAT (second copy) and the first data
cluster (cluster #2), as shown in Figure 15.3 .

File I/O 431

Cluster 1022

Cluster 4

Cluster 3

Cluster 2

Root Directory

Cluster 4: Sector 0

Cluster 4: Sector 1

Cluster 4: Sector 15

Sector 0

Reserved

FAT1
and

FAT2

Data
space

(clusters)

Cluster 1023

 Figure 15.3 : Example of a FAT file system layout.

File Name
8 ASCII characters

3 ASCII characters

1 byte

1 word (16 bit)

1 word (16 bit)

1 word (16 bit)

1 long word (132 bit)

Extension

Attributes

Reserved

Time

Date

First Cluster

File Size

offset: 0

offset: 8

offset: 11

offset: 22

offset: 24

offset: 26

offset: 28

 Figure 15.4 : Basic Root Directory Entry structure.

 Since both position and size (number of sectors) are fixed, the maximum number of files
(or directory entries) in the root directory is limited and determined when formatting the
media. Each sector allocated to the root will allow for 16 file entries to be documented
where each entry will require a block of 32 bytes, as represented in Figure 15.4 .

432 Day 15

 The Name and Extension fields are the most obvious if you are familiar with the older
Microsoft operating systems using the 8:3 conventions. The two fields need only to be
padded with spaces and the dot can be discarded.

 The Attributes field is composed of a group of flags with the meanings shown in
 Table 15.1 .

 Table 15.1 : File attributes in a directory entry.

Bit Mask Description

 0 0 � 01 Read only

 1 0 � 02 Hidden

 2 0 � 04 System

 3 0 � 08 Volume label

 4 0 � 10 Subdirectory

 5 0 � 20 Archive

 The Time and Date fields refer to the last time the file was modified and must be
encoded in a special format to compress all the information in just two 16-bit words
(see Tables 15.2 and 15.3).

 Table 15.2 : Time encoding in a directory entry field .

Bits Description

 15–11 Hours (0–23)

 10–5 Minutes (0–59)

 4–0 Seconds/2 (0–29)

 Table 15.3 : Date encoding in a directory entry field.

Bits Description

 15–9 Year (0 � 1980, 127 � 2107)

 8–5 Month (1 � January, 12 � December)

 4–0 Day (1–31)

File I/O 433

 Notice how the Date field encoding does not allow for the code 0 x 0000 to be
interpreted as a valid date. This can provide clues to the file system when the field
is not used or could be corrupted.

 The First Cluster field provides the fundamental link with the FAT table. This 16-bit
word contains the number of the first, and possibly only, cluster containing the
file data.

 Finally, the Size field, a 32-bit integer, contains the size (in bytes) of the file data.

 Looking at the first character of the filename in a directory entry, we can also tell if and
how the entry is currently in use:

● If it contains an ASCII printable character, the entry is valid and in use.

● If it is zero, the entry is empty. When browsing through a directory, we can
also deduce that the list of files is terminated here as the file system proceeds
sequentially using all entries in the directory table in strict sequential order.

 There is a third possibility when a file is removed from the directory. In this case the first
character of the filename is simply replaced by a special code (0xE5). This indicates that
the contents of the entry are no longer valid and the entry can be reused for a new file at
the next opportunity. However, when browsing through the list searching for a file, we
should continue because more active entries might follow it.

 There would be much more to say to fully document the structure of a FAT16 file
system, but if you have followed the introduction so far, you should have a reasonable
understanding of its core mechanisms and you will be ready to dive in for more detail
since we will start soon writing some code.

 The Treasure Hunt
 So far we have maintained a certain level of simplification by ignoring some fundamental
questions, such as:

● Where do we learn about the storage device capacity?

● How can we tell where the FAT is located?

● How can we tell how many sectors (1–64) compose each cluster?

● How can we tell where the data space starts?

434 Day 15

 The answers to all those questions will be found soon, but the process will resemble a
treasure hunt more than a logical sequence of steps. In fact, you will find the first set of
clues in Figure 15.5 . By interpreting these clues we will gradually build a new function
that will allow us to mount the file system and unlock its contents—the treasure.

 Figure 15.5 : The first set of clues.

 Using the SDMMC.c module functions developed in our previous explorations, we will
start by initializing the I/Os with the initSD() function and checking for the presence of
the card in the slot.

 // 0. init the I/Os
 initSD();

 // 1. check if the card is in the slot
 if (!detectSD())
 {
 FError = FE_NOT_PRESENT;
 return NULL;

 }

 We will proceed by initializing the SD card for operation in SPI mode with the
initMedia() function.

File I/O 435

 // 2. initialize the card
 if (initMedia())
 {
 FError = FE_CANNOT_INIT;
 return NULL;

 }

 We will also use the standard C libraries malloc() function to dynamically allocate two
data structures:

 // 3. allocate space for a MEDIA structure
 D = (MEDIA *) malloc(sizeof(MEDIA));
 if (D == NULL) // report an error
{
 FError = FE_MALLOC_FAILED;
 return NULL;

 }

 // 4. allocate space for a temp sector buffer
 buffer = (unsigned char *) malloc(512);
 if (buffer == NULL) // report an error
 {
 FError = FE_MALLOC_FAILED;
 free(D);
 return NULL;

 }

 The first one is called MEDIA . It will be fully revealed to you later on but, for now, it will
suffice to say that it will act as the repository for the many “ answers ” we are seeking.
Perhaps a more appropriate name would ’ ve been CHEST ?

 The second structure, called buffer, is simply a 512-byte large array that will be used to
retrieve sectors of data during the hunt.

Notice that to allow the malloc() function to successfully allocate memory, you must
remember to inform the MPLAB® C32 linker to reserve some RAM space for the heap.

 Hint

 Follow the Project Build checklist to learn how to reach and modify the linker settings of your
project.

436 Day 15

 Mostly historical reasons dictate that the first sector (LBA 0) of a mass storage device
will contain what is commonly known as a master boot record (MBR).

 Here is how we invoke the readSECTOR() function for the first time to access
the MBR.

 // 5. get the Master Boot Record
 if (!readSECTOR(0, buffer))
 {
 FError = FE_CANNOT_READ_MBR;
 free(D); free(buffer);
 return NULL;

 }

 A signature, consisting of a specific word value (0x55AA) present in the last word of the
MBR sector, will confirm that we have indeed read the correct data.

 #define FO_SIGN 0 x 1FE // MBR signature location (55,AA)

 // 6. check if the MBR sector is valid
 // verify the signature word
 if ((buffer[FO_SIGN] != 0 x 55) ||

 (buffer[FO_SIGN +1] != 0 x AA))
 {
 FError = FE_INVALID_MBR;
 free(D); free(buffer);
 return NULL;

 }

 Once upon a time, this record used to contain actual code to be executed by a PC upon
power-up. No personal computer does this anymore, though, and certainly there is no use
for that 8086 code in our PIC32 applications. Most of the time you will find the MBR
(see Figure 15.6) to be completely filled with zeros except for a few locations where
critical information used to be stored. For example, starting at offset 0 x 01BE, you will
find what is called a partition table . This table is composed of only four entries of 16
bytes each. The role of a partition table is that of allowing for a single media device to
host multiple operating systems and/or split the storage space in safe areas, where each
one acts as a completely separate device.

File I/O 437

 For our purposes it is safe to assume (demand) that the entire SD/MMC card is formatted
with a single partition. Therefore, we need to focus only on the first entry (16-byte block)
in the partition table. Of those 16 bytes, we need to access only a few to obtain:

● The partition size (should include the entire card)

● The starting sector

● Most importantly, the type of file system contained

 Figure 15.6 : Hex dump of an MBR.

438 Day 15

 A couple of macros will help us read the data from the partition table and assemble it into
16-bit and 32-bit words:

 #define ReadW(a, f) *(unsigned short*)(a+f)
 #define ReadL(a, f) *(unsigned short*)(a+f)+\

 ((*(unsigned short*)(a+f+2)) < < 16)

 Also, the following definitions will point us to the right offset in the MBR.

 //---
 // Master Boot Record key fields offsets
 #define FO_MBR 0L // master boot record sector LBA
 #define FO_FIRST_P 0 x 1BE // offset of first partition table
 #define FO_FIRST_TYPE 0 x 1C2 // offset of first partition type
 #define FO_FIRST_SECT 0 x 1C6 // first sector of first partition
 #define FO_FIRST_SIZE 0 x 1CA // number of sectors in partition
 #define FO_SIGN 0 x 1FE // MBR signature location (55,AA)

 // 7. read the number of sectors in partition
 psize = ReadL(buffer, FO_FIRST_SIZE);

 // 8. check if the partition type is acceptable
 i = buffer[FO_FIRST_TYPE];
 switch (i)
 {
 case 0 x 04:
 case 0 x 06:
 case 0 x 0E:
 // valid FAT16 options
 break;

 default:
 FError = FE_PARTITION_TYPE;
 free(D); free(buffer);
 return NULL;

 } // switch

 For historical reasons, several codes correspond to different types of partitions. We will
be able to correctly decode at least three types of FAT16 partitions, including 0 x 04 ,
0 x 06 , and 0 x 0E .

 Getting access to the MBR and finding the partition table is a bit like getting a map with a
new set of symbols and clues that need to be interpreted (see Figure 15.7).

File I/O 439

 Extracting a 32-bit word found at offset FO_FIRST_SECT (0 x 1C6) as part of the first
(and the only, in our assumptions) partition table entry, we obtain the address (LBA) of
the very first sector of the partition.

 // 9. get the first partition first sector - > Boot Record
 firsts = ReadL(buffer, FO_FIRST_SECT);

 // 10. get the sector loaded (boot record)
 if (!readSECTOR(firsts, buffer))
 {
 free(D); free(buffer);

 return NULL;

 }

 It has a signature, similarly to the MBR, located in the last word of the sector, and we
need to verify it before proceeding.

 Figure 15.7 : The map.

440 Day 15

 // 11. check if the boot record is valid
 // verify the signature word
 if ((buffer[FO_SIGN] != 0 x 55) ||

 (buffer[FO_SIGN +1] != 0 x AA))
 {

 FError = FE_INVALID_BR;
 free(D); free(buffer);
 return NULL;

 }

 It is called the (first partition) boot record , and once more it is supposed to contain actual
executable code that is of no value to us (see Figure 15.8).

 Figure 15.8 : Hex dump of a boot record.

File I/O 441

 Fortunately, in the same record at fixed and known positions there are more of the
answers we were looking for and new clues that will help us complete the map of the
entire FAT16 file system. These are the key offsets in the boot record buffer:

 // Partition Boot Record key fields offsets
 #define BR_SXC 0 x d // (byte) sectors per cluster
 #define BR_RES 0 x e // (word) reserved sectors
 #define BR_FAT_SIZE 0 x 16 // (word) FAT size in sectors
 #define BR_FAT_CPY 0 x 10 // (byte) number of FAT copies

 #define BR_MAX_ROOT 0 x 11 // (odd word) max entries in root

 With the following code we can calculate the size of a cluster:

 // 12. determine the size of a cluster
D-> sxc = buffer[BR_SXC];

 // this will also act as flag that the media is mounted

 Determine the position of the FAT, its size, and the number of copies:

 // 13. determine fat, root and data LBAs
 // FAT = first sector in partition (boot record)
 // +reserved records
D-> fat = firsts + ReadW(buffer, BR_RES);
D-> fatsize = ReadW(buffer, BR_FAT_SIZE);

D-> fatcopy = buffer[BR_FAT_CPY];

 Find the position of the root directory, too:

 // 14. ROOT = FAT + (sectors per FAT * copies of FAT)

D-> root = D- > fat + (D- > fatsize * D- > fatcopy);

 But be careful now! As we get ready to make the last few steps, watch out for a trap!

 // 15. MAX ROOT is the maximum number of entries
 // in the root directory

D-> maxroot = ReadW(buffer, BR_MAX_ROOT) ;

 Can you see it? No? Okay, here ’ s a hint: Look at the value of the BR_MAX_ROOT offset
as defined a few lines before. You will notice that this is an odd address (0 x 11). This is
all it takes for the ReadW() macro, which attempts to use it as a word address, to throw a
processor exception (misaligned word access) and trap the PIC32 in the general exception
handler!

442 Day 15

 We need a special macro (perhaps less efficient) that can assemble a word 1 byte at a time
without falling into the trap!

 // this is the safe versions of ReadW to be used on odd
address fields
 #define ReadOddW(a, f) (*(a+f) + (*(a+f+1) < < 8))

 // 15. MAX ROOT is the maximum number of entries
 // in the root directory

D-> maxroot = ReadOddW(buffer, BR_MAX_ROOT) ;

 The last two pieces of information are easy to grab now. With them we learn where the
data area (divided into clusters) begins and how many clusters are available:

 // 16. DATA = ROOT + (MAXIMUM ROOT *32/512)
D-> data = D- > root + (D- > maxroot > > 4);
 // assuming maxroot % 16 == 0!!!

 // 17. max clusters in this partition
 // = (tot sectors - sys sectors)/sxc

D-> maxcls = (psize - (D- > data-firsts))/D- > sxc;

 It took us as many as 17 careful steps to get to the treasure, but now we have all
the information we need to fully figure out the layout of the FAT16 file system
present on the SD/MMC memory card or, practically, any other mass storage media
formatted according to the FAT16 standard. The treasure, after all, is nothing more than
another map—a map we will use from now on to find files on a mass storage device (see
 Figure 15.9).

 It ’ s time to organize the information we spent so much effort to retrieve. We will use the
MEDIA structure, allocated on the heap at the very beginning.

 typedef struct {
 LBA fat; // lba of FAT
 LBA root; // lba of root directory
 LBA data; // lba of the data area
 unsigned maxroot; // max entries in root
 unsigned maxcls; // max clusters in partition
 unsigned fatsize; // number of sectors
 unsigned char fatcopy; // number of FAT copies
 unsigned char sxc; // number of sectors per cluster

} MEDIA;

File I/O 443

 All the code we have developed can now be assembled in the mount() function. This is
a name that will sound familiar to those of you who have experience in programming for
the Linux family of operating systems.

 For a mass storage device to be used in Linux, it must be first “ mounted ” on the file
system or, in other words, attached as a new branch of the main (system) file system.
Windows users might not be familiar with the concept because they don ’ t have the option
to choose if, when, or where a new device file system is mounted. All new mass storage
devices are automatically and unconditionally “ mounted ” by Windows at power-up, or
after insertion of any removable media, at the very root of the Windows file system by
assigning them a unique, single-letter identifier (C:, D:, E:, and so on).

 MEDIA * mount(void)
 {
 LBA psize; // number of sectors in partition
 LBA firsts; // first sector inside the first partition
 int i;
 unsigned char *buffer;

 ... insert here all 17 steps of our treasure hunt

 // 18. free up the temporary buffer
 free(buffer);
 return D;

 } // mount

Sector 0 � MBR

Boot Record

Fat
Fat size

Fat copy

Root

Data
Roor Directory

Cluster 2

Cluster 3

Cluster 4 Cluster 4: Sector sxc

Cluster 4: Sector 1

SXC

Cluster 4: Sector 0

Cluster maxclsMaxcls

 Figure 15.9 : The FAT16 complete layout.

444 Day 15

 Let ’ s also define a global pointer D to a MEDIA structure. It will serve as the root for
the entire file system in the assumption, for now, that only one storage device will be
available at any given point in time (one connector/slot, one card).

 // global definitions

 MEDIA *D;

 We will also define an unmount() function that will have the sole duty of releasing the
space allocated for the MEDIA structure.

 void unmount(void)
 {
 free(D);

 } // unmount

 Opening a File
 Now that we have unlocked the secret of the FAT16 file system, we can return to our
original objective: accessing individual files and sharing them with a PC. In this section
we will develop a set of high-level functions similar to those used for file manipulation
in most operating systems. We will need a function to find a file location on the storage
device, one for reading the data sequentially from the file, and possibly one more to write
data and create new files.

 In a logical order we will start developing what we will call the fopenM() function.
Its role will be that of finding all possible information regarding a file (if present) and
gathering it in a new structure that we will call MFILE .

 Note

 The name of this structure was chosen so to avoid conflicts with similar structures and functions
defined inside the standard C library stdio.h.

 typedef struct {
 MEDIA * mda; // media structure pointer
 unsigned char * buffer; // sector buffer
 unsigned short cluster; // first cluster
 unsigned short ccls; // current cluster in file
 unsigned short sec; // sector in current cluster

File I/O 445

 unsigned short pos; // position in current sector
 unsigned short top; // bytes in the buffer
int seek; // position in the file
int size; // file size
 unsigned short time; // last update time
 unsigned short date; // last update date
 char name[11]; // file name
 char mode; // mode ' r ' , 'w'
 unsigned short fpage; // FAT page currently loaded
 unsigned short entry; // entry position in cur dir

} MFILE;

 I know, at first sight it looks like a lot—it is more than 40 bytes large—but as you will see
in the discussion, we will end up needing all of them. You will have to trust me for now.

 Mimicking standard C library implementations (common to many operating systems),
the fopenM() function will receive two (ASCII) string parameters: the filename and
a “ mode ” string, containing r or w , that will indicate whether the file is supposed to be
opened for reading or writing.

 MFILE *fopenM(const char *filename, const char *mode)
 {
 char c;
 int i, r, e;
 unsigned char *b;

 MFILE *fp;

 To optimize memory usage, an MFILE structure is allocated only when necessary, and it
is in fact one of the first tasks of the fopenM() function. A pointer to the data structure is
its return value. Should fopenM() fail, a NULL pointer will be returned.

 Of course a prerequisite for opening a file is to have the storage device file system
mapped out, and that is the responsibility of the mount() function. A pointer to a MEDIA
structure must have already been deposited in the global D pointer.

 // 1. check if a storage device is mounted
 if (D == NULL) // unmounted
 {
 FError = FE_MEDIA_NOT_MNTD;
 return NULL;

 }

446 Day 15

 Since all activity with the storage device must be performed in blocks of 512 bytes, we
will need that much space to be allocated for us to act as a read/write buffer.

 // 2. allocate a buffer for the file
 b = (unsigned char*)malloc(512);
 if (b == NULL)
 {
 FError = FE_MALLOC_FAILED;
 return NULL;

 }

 Only if that amount of memory is available can we proceed and allocate some more
memory for the MFILE structure proper.

 // 3. allocate a MFILE structure on the heap
 fp = (MFILE *) malloc(sizeof(MFILE));
 if (fp == NULL) // report an error
 {
 FError = FE_MALLOC_FAILED;
 free(b);
 return NULL;

 }

 The buffer pointer and the MEDIA pointers can now be recorded inside the MFILE data
structure.

 // 4. set pointers to the MEDIA structure and buffer
 fp- > mda = D;

 fp- > buffer = b;

 The filename parameter must be extracted and each character must be translated to
uppercase (using the standard C library functions defined in ctype.h) and padded, if
necessary, with spaces to an eight-character length.

 // 5. format the filename into name
 for(i=0; i < 8; i++)
 {
 // read a char and convert to upper case
 c = toupper(*filename++);
 // extension or short name noextension
 if ((c == ' . ') || (c == ' \0 '))
 break;

File I/O 447

 else
 fp- > name[i] = c;

 } // for
 // if short fill the rest up to 8 with spaces

 while (i < 8) fp- >name[i++] = ' ';

 Similarly, after discarding the dot, an extension of up to three characters must be
formatted and padded.

 // 6. if there is an extension
 if (c != ' \0 ')
 {
 for(i=8; i < 11; i++)
 {
 // read char, convert to upper case
 c = toupper(*filename++);
 if (c == ' . ')
 c = toupper(*filename++);

 if (c == ' \0 ') // short extension
 break;

 else
 fp- > name[i] = c;

 } // for
 // if short fill the rest up to 3 with spaces
 while (i < 11) fp- >name[i++] = ' ' ;

 } // if

 Though most C libraries provide extensive support for multiple “ modes ” of access to
files, such as distinguishing between text and binary files and offering an “ append ”
option, we will accept, at least initially, a subset consisting of just the two basic options:
r and w .

 // 7. copy the file mode character (r, w)
 if ((*mode == ' r ')||(*mode == ' w '))
 fp- > mode=*mode;

 else
 {
 FError = FE_INVALID_MODE;
 goto ExitOpen;

 }

448 Day 15

 With the filename properly formatted, we can now start searching the root directory of the
storage device for an entry of the same name.

 // 8. Search for the file in current directory
 if ((r=findDIR(fp)) == FAIL)
 {
 FError=FE_FIND_ERROR;
 goto ExitOpen;

 }

 Let ’ s leave the details of the search out for now and trust the findDIR() function to
return to us one of three possible values: FAIL, NOT_FOUND, and eventually FOUND.

A possible failure must always be taken into account. After all, before we consider the
possibility of major fatal failures of the storage device, there is always the possibility
that the user simply removed the card from its slot without our knowledge. If that is the
case, as in all prior error cases, we have no business continuing in the process. We ’ d
better immediately release the memory allocated thus far and return with a NULL pointer
after leaving an error code in the dedicated “ mail box ” FError, just as we did during the
mount process.

 However, if the search for the file is completed without error (whether it was found or
not), we can continue initializing the MFILE structure.

 // 9. init all counters to the beginning of the file
 fp- > seek = 0; // first byte in file
 fp- > sec = 0; // first sector in the cluster

 fp- > pos = 0; // first byte in sector/cluster

 The counter seek will be used to keep track of our position inside the file as we
sequentially access its contents. Its value will be a 32-bit integer (unsigned) between
0 and the size of the entire file expressed in bytes.

 The sec field will keep track of which sector inside the current cluster we are currently
operating on. Its value will be an integer between 0 and sxc-1, the number of
sectors composing each data cluster. Finally, pos will keep track of which byte inside the
current buffer we are going to access next. Its value will be an integer between
0 and 511.

 // 10. depending on the mode (read or write)
 if (fp- > mode == ' r ')

 {

File I/O 449

 At this point, different things need to be done depending on whether an existing file needs
to be opened for reading or a new file needs to be created for writing. Initially we will
complete all the necessary steps for the fopenM() function when invoked in the read (r)
mode, in which case the file had better be found.

 // 10.1 ' r ' open for reading
 if (r == NOT_FOUND)
 {
 FError = FE_FILE_NOT_FOUND;
 goto ExitOpen;

 }

 If it was indeed found, we trust the findDIR() function will have filled a couple more
fields of the MFILE structure for us, including:

● Entry, indicating the position in the root directory where the file was found

● Cluster, indicating the number of the first data cluster used to store the file data
as retrieved from the directory entry

● Size, indicating the number of bytes composing the entire file

● Time and date of creation

● The file attributes

 The first cluster number will become our current cluster: ccls.

 else
 { // found

 // 10.2 set current cluster pointer on first cluster

 fp- > ccls=fp- > cluster;

 Now we have all the information required to identify the first sector of data into the
buffer. The function readDATA() , which we will describe in detail shortly, will perform
the simple calculation required to convert the ccls and sec values into an absolute
sector number inside the data area and will use the low-level readSECTOR() function to
retrieve the data from the storage device.

 // 10.3 read a sector of data from the file
 if (!readDATA(fp))
 {

 goto ExitOpen;

 }

450 Day 15

 Notice that the file length is not constrained to be a multiple of a sector size, so it is
perfectly possible that only a part of the data retrieved in the buffer belongs to the actual
file. The MFILE structure field top will help us keep track of where the actual file data
ends and padding possibly begins.

 // 10.4 determine how much data is really inside buffer
 if (fp- > size-fp- > seek < 512)

 fp- > top=fp- > size-fp- > seek;
 else

 fp- > top=512;
 } // found

 } // ' r '

 This is all we really need to complete the fopenM() function, so when opening a file for
reading, we can return with the precious pointer to the MFILE structure.

 // 12. Exit with success

 return fp;

 In case any of the previous steps failed, we will exit the function returning a NULL
 pointer after having released both the memory allocated for the sector buffer and the
MFILE structure.

 // 12. Exit with error
 ExitOpen:
 free(fp- > buffer);
 free(fp);
 return NULL;

 } // fopenM

 In a top-down fashion, we can now complete the two accessory functions used during the
development of fopenM() , starting with readDATA() :

 unsigned readDATA(MFILE *fp)
 {
 LBA l;

 // calculate lba of cluster/sector
 l = fp- > mda- > data+(LBA)(fp- > ccls-2) * fp- > mda- > sxc+fp- > sec;
 fp- > fpage = -1; // invalidate FAT cache

 return(readSECTOR(l, fp- > buffer));

 } // readDATA

File I/O 451

 Ignoring for a moment the fpage field, notice how we use data and sxc from the
MEDIA structure to compute the correct absolute address (LBA) of the desired data sector.
Very simple!

 Similarly, we create a function to read from the root directory a sector of data containing
a given entry.

 unsigned readDIR(MFILE *fp, unsigned e)
 // loads current entry sector in file buffer
 // returns FAIL/TRUE
 {
 LBA l;

 // load the root sector containing the DIR entry " e "
 l = fp- > mda- > root + (e > > 4);
 fp- > fpage = - 1; // invalidate FAT cache

 return (readSECTOR(l, fp- > buffer));

 } // readDIR

 We know that each directory entry is 32 bytes large; therefore each sector will contain
16 entries.

 The findDIR() function can now be quickly coded as a short sequence of steps enclosed
in a search loop through all the available entries in the root directory.

 unsigned findDIR(MFILE *fp)
 // fp file structure
 // return found/not_found/fail
 {
 unsigned eCount; // current entry counter
 unsigned e; // current entry offset
 int i, a;
 MEDIA *mda = fp- > mda;

 // 1. start from the first entry
 eCount = 0;

 // load the first sector of root
 if (!readDIR(fp, eCount))

 return FAIL;

 We start by loading the first root sector, containing the first 16 entries, in the buffer. For
each entry we compute its offset inside the buffer.

452 Day 15

 // 2. loop until you reach the end or find the file
 while (1)
 {
 // 2.0 determine the offset in current buffer

 e = (eCount & 0xf) * DIR_ESIZE;

 And we inspect the first character of the entry filename.

 // 2.1 read the first char of the file name

 a = fp- > buffer[e + DIR_NAME];

 If its value is 0, indicating an empty entry and the end of the list, we can immediately
exit, reporting that the filename was not found.

 // 2.2 terminate if it is empty (end of the list)
 if (a == DIR_EMPTY)
 {
 return NOT_FOUND;

 } // empty entry

 The other possibility is that the entry was marked as deleted, in which case we will skip it
but we will continue searching.

 // 2.3 skip erased entries if looking for a match
 if (a != DIR_DEL)

 {

 Otherwise, it ’ s a valid and healthy entry, and we should check the attributes to determine
if it corresponds to a proper file or any other type of object. The possibilities include:

● Subdirectories

● Volume labels

● Long filenames

 None of them is of our concern, since we will choose to keep things simple and we will
steer clear of the most advanced and sometimes patented features of the more recent
versions of the FAT file system standard.

 // 2.3.1 if not VOLume or DIR compare the names
 a = fp- > buffer[e + DIR_ATTRIB];
 if (!(a & (ATT_DIR | ATT_HIDE)))

 {

File I/O 453

 We will then compare the filenames character by character, looking for a complete
match.

 // compare file name and extension
 for (i=DIR_NAME; i < DIR_ATTRIB; i++)
 {
 if (fp- > buffer[e+i] != fp- > name[i])
 break; // difference found

 }

 Only if every character matches will we extract the essential pieces of information from
the entry and copy them into the MFILE structure, returning a FOUND code.

 if (i == DIR_ATTRIB)
 {
 // entry found, fill the file structure
 fp- > entry = eCount; // store index
 fp- > time = ReadW(fp- >buffer, e+DIR_TIME);
 fp- > date = ReadW(fp- >buffer, e+DIR_DATE);
 fp- > size = ReadL(fp- >buffer, e+DIR_SIZE);
 fp- > cluster = ReadL(fp- >buffer, e+DIR_CLST);
 return FOUND;

 }
 } // not a dir nor a vol

 } // not deleted

 Should the filename and extension differ, we will simply continue our search with the
next entry, remembering to load the next sector from the root directory after each group
of 16 entries.

 // 2.4 get the next entry
 eCount++;
 if ((eCount & 0xf) == 0)
 { // load a new sector from the Dir

 if (!readDIR(fp, eCount))
 return FAIL;

 }

 We know the maximum number of entries in the root directory (maxroot) and we need
to terminate our search if we reach the end of the directory without a match indicating
NOT_FOUND .

454 Day 15

 // 2.5. exit the loop if reached the end or error
 if (eCount > = mda- > maxroot)
 return NOT_FOUND; // last entry reached

 }// while

 } // findDIR

 Reading Data from a File
 Finally, this is the moment we have been waiting for so long. The file system is mounted,
a file is found and opened for reading. It is time to develop the freadM() function to
freely read blocks of data from it.

 unsigned freadM(void * dest, unsigned size, MFILE *fp)
 // fp pointer to MFILE structure
 // dest pointer to destination buffer
 // count number of bytes to transfer
 // returns number of bytes actually transferred
 {
 MEDIA * mda = fp- > mda;
 unsigned count=size; // counts bytes to be transfer

 unsigned len;

 The name, number, and sequence of parameters passed to this function are again
supposed to mimic closely that of similarly named functions available in the standard C
libraries. A destination buffer is supplied where the data read from the file will be copied,
and a number of bytes is requested while passing the usual pointer to an open MFILE

structure.

 The freadM() function will do its best to read as many of the bytes requested as
possible from the file and will return an unsigned integer value to report how many it
effectively managed to get. In our simple implementation, if the number returned will
not be identical to that requested by the calling application, we will have to assume that
something major has happened. Most probably the end of file has been reached, but we
will not make a distinction if, instead, another type of failure has occurred—for example,
the card has been removed during the process.

 As usual, we will not trust the pointer passed in the argument, and we will check instead
to see whether it is pointing to a valid, initialized, MFILE structure.

File I/O 455

 // 1. check if fp points to a valid open file structure
 if ((fp- > mode != ' r '))
 { // invalid file or not open in read mode
 FError = FE_INVALID_FILE;
 return 0;

 }

 Only then we will enter a loop to start transferring the data from the sector data buffer.

 // 2. loop to transfer the data
 while (count > 0)

 {

 Inside the loop, the first condition to check will be our current position with regard to the
total file size.

 // 2.1 check if EOF reached
 if (fp- > seek > = fp- > size)
 {
FError=FE_EOF; // reached the end
 break;

 }

 Notice that this error will be generated only if the application calling the freadM()
function will ignore the previous symptom: the last freadM() call returned with a
number of data bytes inferior to what was requested or if the calling application has
requested the exact number of bytes available in the file with the previous calls.

 Otherwise we will verify whether the current buffer of data has already been used up
completely.

 // 2.2 load a new sector if necessary
 if (fp- > pos == fp- > top)

 {

 If necessary we will reset our buffer pointers and attempt to load the next sector from
the file.

 fp- > pos = 0;

 fp- > sec++;

 If we already used up all the sectors in the current cluster, this might force us to step into
the next cluster by peeking inside the FAT and following the chain of clusters.

456 Day 15

 // 2.2.1 get a new cluster if necessary
 if (fp- > sec == mda- > sxc)
 {
 fp- > sec = 0;
 if (!nextFAT(fp, 1))
 {
 break;

 }

 }

 In either case we load the new sector of data in the buffer, paying attention to verify the
possibility that it might be the last one of the file and it might be only partially filled.

 // 2.2.2 load a sector of data
 if (!readDATA(fp))
 {
 break;

 }
 // 2.2.3 determine how much data is inside buffer
 if (fp- > size-fp- > seek < 512)
 fp- > top = fp- >size - fp- > seek;

 else
 fp- > top = 512;

 } // load new sector

 Now that we know we have data in the buffer, ready to be transferred, we can determine
how much of it we can transfer in a single chunk.

 // 2.3 copy as many bytes as possible in a single chunk
 // take as much as fits in the current sector
 if (fp- > pos+count < fp- > top)
 // fits all in current sector
 len = count;

 else
 // take a first chunk, there is more
 len = fp- > top - fp- > pos;

 memcpy(dest, fp- > buffer + fp- >pos, len);

 Using the memcpy() function from the standard C libraries (string.h) to move a block of
data from the file buffer to the destination buffer, we get the best performance as these

File I/O 457

routines are optimized for speed of execution. The pointers and counters can be updated
and the loop can be repeated until all the data requested has been transferred.

 // 2.4 update all counters and pointers
 count - = len; // compute what is left
 dest += len; // advance destination pointer
 fp- > pos += len; // advance pointer in sector
 fp- > seek += len; // advance the seek pointer

 } // while count

 Finally, we can exit the function and return the number of actual bytes transferred in
the loop.

 // 3. return number of bytes actually transferred
 return size-count;

 } // freadM

 The nextFAT() function helped us follow the cluster chain, hopping from the current
cluster to the next one.

 unsigned nextFAT(MFILE * fp, unsigned n)
 // fp file structure
 // n number of links in FAT cluster chain to jump through
 // n==1, next cluster in the chain
 {
 unsigned c;
 MEDIA * mda=fp- > mda;

 // loop n times
 do {
 // get the next cluster link from FAT
 c = readFAT(fp, fp- > ccls);
 // compare against max value of a cluster in FATxx
 // return if eof
 if (c > = FAT_MCLST) // check against eof
 {
 FError=FE_FAT_EOF;
 return FAIL; // seeking beyond EOF

 }

458 Day 15

 // check if cluster value is valid
 if (c > = mda- > maxcls)
 {
 FError = FE_INVALID_CLUSTER;
 return FAIL;

 }

 } while (--n > 0);// loop end

 // update the MFILE structure
 fp- > ccls=c;

 return TRUE;

 } // get next cluster

 As you noticed, the nextFAT() function uses, in its turn, the services of the
readFAT() function to perform the hard work of actually loading an entire segment
(sector) of the FAT.

 unsigned readFAT(MFILE *fp, unsigned ccls)
 // mda disk structure
 // ccls current cluster
 // return next cluster value,
 // 0xffff if failed or last
 {
 unsigned p, c;
 LBA l;

 // get page of current cluster in fat
 p = ccls > > 8; // 256 clusters per sector

 // check if already cached
 if (fp- > fpage != p)
 {
 // load the fat sector containing the cluster
 l = fp- > mda- > fat + p;

 if (!readSECTOR(l, fp- > buffer))
 return FAT_EOF; // failed

File I/O 459

 // note the sector contains a valid FAT page cache
 fp- > fpage = ccls > > 8;

 }

 // get the next cluster value
 // cluster = 0xabcd
 // packed as: 0 | 1 | 2 | 3 |
 // word p 0 1 | 2 3 | 4 5 | 6 7 |..
 // cd ab| cd ab| cd ab| cd ab|
 c = ReadOddW(fp- > buffer, ((ccls & 0xFF) < < 1));

 return c;

 } // readFAT

 Since each sector of the FAT (we will call it a page from now on) contains 256 entries,
it is very likely that when we follow a chain of clusters or, as soon will be the case
when we look for an empty cluster, we will need to access the same page over and over.
Instead of wasting time continuously reloading the same sector, the readFAT() function
tries to keep track of the contents (cache) of the file buffer using the fpage element of
the MFILE structure to maintain the index of the last FAT page loaded. This requires
some cooperation from the readDATA() and readDIR() functions so that when they
overwrite the buffer contents with their contents (file data and directory table entries,
respectively), they update the fpage index, invalidating it, using the index value � 1 to
alert readFAT() .

 Closing a File
 Since we can only open a file for reading with the fopenM() function as defined so far,
there is not much work to perform upon closing the file.

 unsigned fcloseM(MFILE *fp)
 {
 unsigned e, r;
 r = TRUE;
 // free up the buffer and the MFILE struct
 free(fp- > buffer);
 free(fp);
 return(r);

 } // fcloseM

460 Day 15

 The Fileio Module
 We can save all the functions created so far in a file called fileio.c , the beginning of our
file input/output library. We will need to add the usual header and a few include files:

 /*
 ** fileio.c
 **
 ** FAT16 support
 */

 // standard C libraries used
 #include < stdlib.h > // NULL, malloc, free ...
 #include < ctype.h > // toupper...
 #include < string.h > // memcpy...

 #include < sdmmc.h > // sd/mmc card interface

 #include " fileio.h " // file I/O routines

 And of course, we will need to create a fileio.h include file as well, with all the
definitions and prototypes that we want to publish for future applications to use.

 /*
 ** fileio.h
 **
 ** FAT16 support
 */

 extern char FError; // mailbox for error reporting

 // FILEIO ERROR CODES
 #define FE_IDE_ERROR 1 // IDE command execution error
 #define FE_NOT_PRESENT 2 // CARD not present
 #define FE_PARTITION_TYPE 3 // WRONG partition type
 #define FE_INVALID_MBR 4 // MBR sector invalid signtr
 #define FE_INVALID_BR 5 // Boot Record invalid signtr
 #define FE_MEDIA_NOT_MNTD 6 // Media not mounted
 #define FE_FILE_NOT_FOUND 7 // File not found,open for read
 #define FE_INVALID_FILE 8 // File not open
 #define FE_FAT_EOF 9 // attempt to read beyond EOF
 #define FE_EOF 10 // Reached the end of file
 #define FE_INVALID_CLUSTER 11 // Invalid cluster > maxcls
 #define FE_DIR_FULL 12 // All root dir entry are taken

File I/O 461

 #define FE_MEDIA_FULL 13 // All clusters taken
 #define FE_FILE_OVERWRITE 14 // A file with same name exist
 #define FE_CANNOT_INIT 15 // Cannot init the CARD
 #define FE_CANNOT_READ_MBR 16 // Cannot read the MBR
 #define FE_MALLOC_FAILED 17 // Could not allocate memory
 #define FE_INVALID_MODE 18 // Mode was not r.w.
 #define FE_FIND_ERROR 19 // Failure during FILE search

 typedef struct {
LBA fat; // lba of FAT
LBA root; // lba of root directory
LBA data; // lba of the data area
 unsigned short maxroot; // max entries in root dir
 unsigned short maxcls; // max clusters in partition
 unsigned short fatsize; // number of sectors
 unsigned char fatcopy; // number of copies
 unsigned char sxc; // number sectors per cluster
} MEDIA;

 typedef struct {
 MEDIA * mda; // media structure pointer
 unsigned char * buffer; // sector buffer
 unsigned short cluster; // first cluster
 unsigned short ccls; // current cluster in file
 unsigned short sec; // sector in current cluster
 unsigned short pos; // position in current sector
 unsigned short top; // bytes in the buffer
int seek; // position in the file
int size; // file size
 unsigned short time; // last update time
 unsigned short date; // last update date
char name[11]; // file name
char mode; // mode ' r ' , 'w'
 unsigned short fpage; // FAT page currently loaded
 unsigned short entry; // entry position in cur dir
} MFILE;

 // file attributes
 #define ATT_RO 1 // attribute read only
 #define ATT_HIDE 2 // attribute hidden

462 Day 15

 #define ATT_SYS 4 // " system file
 #define ATT_VOL 8 // " volume label
 #define ATT_DIR 0 x 10 // " sub-directory
 #define ATT_ARC 0 x 20 // " (to) archive
 #define ATT_LFN 0 x 0f // mask for Long File Name

 #define FOUND 2 // directory entry match
 #define NOT_FOUND 1 // directory entry not found

 // macros to extract words and longs from a byte array
 // watch out, a processor trap will be generated if the address
 // is not word aligned
 #define ReadW(a, f) *(unsigned short*)(a+f)
 #define ReadL(a, f) *(unsigned short*)(a+f)+\

 ((*(unsigned short*)(a+f+2)) < < 16)

 // this is a " safe " versions of ReadW
 // to be used on odd address fields
 #define ReadOddW(a, f) (*(a+f)+(*(a+f+1) < < 8))

 // prototypes
 unsigned nextFAT(MFILE * fp, unsigned n);
 unsigned newFAT(MFILE * fp);

 unsigned readDIR(MFILE *fp, unsigned entry);
 unsigned findDIR(MFILE *fp);
 unsigned newDIR (MFILE *fp);

 MEDIA * mount(void);
 void unmount(void);

 MFILE * fopenM (const char *name, const char *mode);
 unsigned freadM (void * dest, unsigned count, MFILE *);
 unsigned fwriteM (void * src, unsigned count, MFILE *);
 unsigned fcloseM (MFILE *fp);

 unsigned listTYPE(char *list, int max, const char *ext);

 Don ’ t worry for now if we have not fleshed out all the functions yet; we will continue
working on them as we proceed through the rest of this chapter.

File I/O 463

 Testing fopenM() and freadM()
 It might seem like a long time since we built the last project. To verify the code that we
have developed so far, we had to reach a critical mass, a minimal core of routines without
which no application could have worked. Now that we have this core functionality, we
can develop for the first time a small test program to read from an SD/MMC card a file
created in the FAT16 file system. We will call it ReadTest .

 The idea is to copy a text file (any text file would work) on the SD/MMC card from your
PC and then have the PIC32 read the file, count the number of lines, and display it on
the LCD.

 Here is the main module that you will save as ReadTest.c :

 /*
 ** ReadTest.c
 **
 ** 07/18/07 v2.0 LDJ
 ** 11/23/07 v3.0 LDJ using the LCD display
 */

 #include < p32xxxx.h >
 #include < plib.h >
 #include < explore.h >
 #include < SDMMC.h >
 #include < LCD.h >
 #include " fileio.h "

 #define B_SIZE 10
 char data[B_SIZE];

 int main(void)
 {
 MFILE *fs;
 unsigned r;
 int i, c;
 char s[16];

 //initializations
 initEX16();
 initLCD(); // init LCD display

464 Day 15

 // main loop
 while(1)
 {
 putsLCD(" Insert card... ");
 while(!getCD()); // wait for card to be inserted
 Delayms(100); // de-bounce
 clrLCD();

 if (mount())
 {
 putsLCD(" mount\n ");
 if ((fs = fopenM(" Text.txt " , "r")))
 {
 c = 0;
 putsLCD(" Reading... ");
 do{
 r = freadM(data, B_SIZE, fs);
 for(i = 0; i < r; i++)
 {
 if (data[i]== ' \n ')
 {
 c++;
 sprintf(s, " \n%d lines ", c);
 putsLCD(s);

 }
 } // for i

} while(r==B_SIZE);
 fcloseM(fs);
 homeLCD();
 putsLCD(" File closed ");

 }
 else
 putsLCD(" File not found! ");

 unmount();
 } // mounted
 else

 putsLCD(" Mount Failed! ");

 getKEY();
 } // loop

 } // main

File I/O 465

 The sequence of operation is similar to the one we adopted when testing the basic
SD/MMC access module, only this time instead of calling the initMedia() function and
then starting to directly read and write sectors to and from the SD/MMC card, we called
the mount() function to access the FAT16 file system on the card. We opened the data file
using its “ proper ” name, and we read data from it in blocks of arbitrary length (B_SIZE),
scanning them for new line characters to mark the end of each text line. Once we ’ d
exhausted the content of the entire file, we closed it, deallocating all the memory used.

 To build the project, you will need to remember to include all the following modules:

● SDMMC.c

● fileio.c

● LCDlib.c

● explore.c

● ReadTest.c

 Remember to follow the checklist for your in-circuit debugger of choice, but also in
the Project Build Options dialog box (Project | Build Options | Project) , remember
to reserve some space for the heap so that the fileio functions will be able to allocate
memory dynamically for the file system structures and buffers. Even if 580 bytes should
suffice, give the heap ample room to maneuver; I recommend you allocate at least
2 K bytes.

 After building the project and programming the Explorer 16 board, we are ready to run
the test. If all goes well you will be prompted to insert the SD card in the slot and you
will quickly see a counter updating on the second line of the LCD, probably too fast for
you to read anything but the last value.

 Notice that you can recompile the project and run the test with different sizes for the data
buffer from 1 byte to as large as the memory of the PIC32 will allow. The freadM()
function will take care of reading as many sectors of data required to fulfill your request
as long as there is data in the file.

 Writing Data to a File
 We are far from finished, though. The fileio.c module is not complete until we include
the ability to create new files. This will require us to create an fwriteM() function but

466 Day 15

also to complete a piece of the fopenM() function and a considerable extension of the
fcloseM() function. So far we had fopenM() return with an error code when a file
could not be found in the root directory or the mode was not r . But this is exactly what
we want when we open a new file for writing. When we check for the mode parameter
value, we need to add a new option. This time, it is when the file is NOT_FOUND during
the first scan of the directory that we want to proceed.

 else // 11. open for ' write '
 {
 if (r == NOT_FOUND)

 {

 A new file needs a new cluster to be allocated to contain its data. The function newFAT()
will be used to search in the FAT for an available spot, a cluster that is still marked (with
0 x 0000) as available. This search could fail and the function could return an error that,
among other things, could indicate that the storage device is full and all data clusters
are taken. Should the search be successful, though, we will take note of the new cluster
position and update the MFILE structure, making it the first cluster of our new file.

 // 11.1 allocate a first cluster to it
 fp- > ccls = 0; // indicate brand new file
 if (newFAT(fp) != TRUE)
{ // must be media full
 FError=FE_MEDIA_FULL;
 goto ExitOpen;

 }

 fp- > cluster = fp- > ccls;

 Next, we need to find an available entry space in the directory for the new file. This will
require a second pass through the root directory, this time looking for either the first entry
that is marked as deleted (code 0xE5) or for the end of the list where an empty entry is
found (marked with the code 0 x 00).

 // 11.2 create a new entry
 // search again, for an empty entry this time
 if ((r = newDIR(fp)) == FAIL)
{ // report any error

FError = FE_IDE_ERROR;
 goto ExitOpen;

 }

File I/O 467

 The function newDIR() will take care of finding an available entry and, similarly to the
findDIR() function used before, will return one of three possible codes:

● FAIL , indicating a major problem occurred (or the card was removed)

● NOT_FOUND , the root directory must be full

● FOUND , an available entry has been identified

 // 11.3 new entry not found
 if (r == NOT_FOUND)
 {
 FError=FE_DIR_FULL;
 goto ExitOpen;

 }

 In both the first two cases we have to report an error and we cannot continue. But if an
entry is found, we have plenty of work to do to initialize it.

 After calculating the offset of the entry in the current buffer, we will start filling some of
its fields with data from the MFILE structure. The file size will be first.

 else // 11.4 new entry identified fp- > entry filled
 {

// 11.4.1
 fp- > size = 0;

 // 11.4.2 determine offset in DIR sector
 e = (fp- > entry & 0xf) * DIR_ESIZE;

 // 11.4.3 init all fields to 0
 for (i=0; i < 32; i++)

 fp- > buffer[e +i] = 0;

 The time and date fields could be derived from the RTCC module registers or any other
timekeeping mechanism available to the application, but a default value will be supplied
here only for demonstration purposes.

 // 11.4.4 set date and time
 fp- > date = 0 x 378A; // Dec 10th, 2007
 fp- > buffer[e + DIR_CDATE] = fp- > date;

468 Day 15

 fp- > buffer[e + DIR_CDATE+1] = fp- > date > > 8;
 fp- > buffer[e + DIR_DATE] = fp- > date;
 fp- > buffer[e + DIR_DATE+1] = fp- > date > > 8;

 fp- > time = 0 x 6000; // 12:00:00 PM
 fp- > buffer[e + DIR_CTIME] = fp- > time;
 fp- > buffer[e + DIR_CTIME+1] = fp- > time > > 8;
 fp- > buffer[e + DIR_TIME] = fp- > time+1;

 fp- > buffer[e + DIR_TIME+1] = fp- > time > > 8;

 The file ’ s first cluster number, the filename, and the attributes (defaults) will complete the
directory entry.

 // 11.4.5 set first cluster
 fp- > buffer[e + DIR_CLST] = fp- > cluster;
 fp- > buffer[e + DIR_CLST+1] = (fp- > cluster > > 8);

 // 11.4.6 set name
 for (i = 0; i < DIR_ATTRIB; i++)

 fp- > buffer[e + i] = fp- > name[i];

 // 11.4.7 set attrib
 fp- > buffer[e + DIR_ATTRIB] = ATT_ARC;

 // 11.4.8 update the directory sector;
 if (!writeDIR(fp, fp- > entry))
 {

 FError=FE_IDE_ERROR;
 goto ExitOpen;

 }
 } // new entry

 } // not found

 Back to the results of our first search through the root directory. In case a file with the
same name was indeed found, we will need to report an error.

 else // file exist already, report error
 {

 FError = FE_FILE_OVERWRITE;
 goto ExitOpen;

 }

File I/O 469

 Alternatively, we would have had to delete the current entry first, release all the clusters
used, and then start from the beginning. After all, reporting the problem as an error is an
easier way out for now.

 So much for the changes required to the fopenM() function. We can now start writing
the proper new fwriteM() function, once more modeled after a similarly named
standard C library function.

 unsigned fwriteM(void *src, unsigned count, MFILE * fp)
 // src points to source data (buffer)
// count number of bytes to write
// returns number of bytes actually written
 {

 MEDIA *mda = fp- > mda;
 unsigned len, size = count;

 // 1. check if file is open
 if (fp- > mode != ' w ')
 { // file not valid or not open for writing

 FError = FE_INVALID_FILE;
 return FAIL;

 }

 The parameters passed to the function are identical to those used in the freadM()
function. The first test we will perform on the integrity of the MFILE structure, passed as
a parameter, is the same as well. It will help us determine if we can trust the contents of
the MFILE structure having been successfully prepared for us by a call to fopenM() .

 The core of the function will be a loop as well:

 // 2. loop writing count bytes
 while (count > 0)

 {

 Our intention is that of transferring as many bytes of data as possible at a time, using the
fast memcpy() function from the string.h libraries.

 // 2.1 copy as many bytes at a time as possible
 if (fp- > pos+count < 512)
 len = count;

 else
 len = 512- fp- > pos ;

 memcpy(fp- > buffer+ fp- >pos, src, len);

470 Day 15

 We need to update a number of pointers and counters to keep track of our position as we
add data to the buffer and increase the size of the file.

 // 2.2 update all pointers and counters
 fp- > pos+=len; // advance buffer position
 fp- > seek+=len; // count the added bytes
 count-=len; // update the counter
 src+=len; // advance the source pointer

 // 2.3 update the file size too
 if (fp- > seek > fp- > size)

 fp- > size = fp- > seek;

 Once the buffer is full, we need to transfer the data to the media in a sector of the
currently allocated cluster:

 // 2.4 if buffer full, write current buffer to current
 sector

 if (fp- > pos == 512)
 {

 // 2.4.1 write buffer full of data
 if (!writeDATA(fp))

 return FAIL;

 Notice that an error at this point would be rather fatal. We will return the code FAIL ,
the value of which is 0, therefore indicating that not a single byte has been transferred.
In fact, all the data written to the storage device thus far is now lost.

 If all proceeds correctly, though, we can now increment the sector pointers, and if we
have exhausted all the sectors in the current cluster, we must consider the need to allocate
a new one, calling newFAT() once more.

 // 2.4.2 advance to next sector in cluster
 fp- > pos = 0;
 fp- > sec++;

 // 2.4.3 get a new cluster if necessary
 if (fp- > sec == mda- > sxc)
 {
 fp- > sec = 0;
 if (newFAT(fp)== FAIL)

File I/O 471

 return FAIL;
 }

 } // store sector

 } // while count

 Shortly, when developing newFAT() , we will have to make sure that the function
accurately maintains the chaining of the clusters in the FAT as they get added to a file.

 // 3. number of bytes actually written

 return size-count;

 } // fwriteM

 The function is now complete and we can report the number of bytes written upon exit
from the loop.

 Closing a File, Take Two
 Closing a file opened for reading was a mere formality and a matter of releasing some
memory from the heap, but when we close a file that has been opened for writing,
there is an additional amount of housekeeping work that needs to be performed.

 A new and improved fcloseM() function is needed, and it will start with a check of the
mode field.

 unsigned fcloseM(MFILE *fp)
 {
 unsigned e, r;
 r = FAIL;

 // 1. check if it was open for write
 if (fp- > mode == ' w ')

 {

 In fact, when we close a file, there might still be some data in the buffer that needs to be
written to the storage device, although it does not fill an entire sector.

 // 1.1 if the current buffer contains data, flush it
 if (fp- > pos >0)
 {
 if (!writeDATA(fp))

 goto ExitClose;

 }

472 Day 15

 Once more, any error at this point is a rather fatal event and will mean that all the file data
is lost, since the fcloseM() function will not properly complete.

 The proper root directory sector must be retrieved and an offset for the directory entry
must be calculated inside the buffer.

 // 1.2 finally update the dir entry,
 // 1.2.1 retrive the dir sector
 if (!readDIR(fp, fp- > entry))

 goto ExitClose;

 // 1.2.2 determine position in DIR sector

 e = (fp- > entry & 0xf) * DIR_ESIZE;

 Next we need to update the file entry in the root directory with the actual file size (it was
initially set to zero).

 // 1.2.3 update file size
 fp- > buffer[e + DIR_SIZE] = fp- > size;
 fp- > buffer[e + DIR_SIZE+1]= fp- > size > > 8;
 fp- > buffer[e + DIR_SIZE+2]= fp- > size > > 16;

 fp- > buffer[e + DIR_SIZE+3]= fp- > size > > 24;

 Finally, the entire root directory sector containing the entry is written back to the media.

 // 1.2.4 update the directory sector;
 if (!writeDIR(fp, fp- > entry))
 goto ExitClose;

 } // write

 If all went well, we will complete the fcloseM() function, deallocating the memory
used.

 // 2. exit with success
 r = TRUE;

 ExitClose:
 // 3. free up the buffer and the MFILE struct
 free(fp- > buffer);
 free(fp);

 return(r);

 } // fcloseM

File I/O 473

 Accessory Functions
 In completing fopenM(), fcloseM() and creating the new fwriteM() function,
we have used a number of lower-level functions to perform important repetitive
tasks.

 We will start with newDIR() , used to find an available spot in the root directory to create
a new file. The similarity with findDIR() is obvious, yet the task performed is very
different.

 unsigned newDIR(MFILE *fp)
 // fp file structure
 // return found/fail, fp- >entry filled
 {
 unsigned eCount; // current entry counter
 unsigned e; // current entry offset
 int a;
 MEDIA *mda = fp- > mda;

 // 1. start from the first entry
 eCount = 0;
 // load the first sector of root
 if (!readDIR(fp, eCount))
 return FAIL;

 // 2. loop until you reach the end or find the file
 while (1)
 {
 // 2.0 determine the offset in current buffer
 e = (eCount & 0xf) * DIR_ESIZE;

 // 2.1 read the first char of the file name
 a = fp- > buffer[e + DIR_NAME];

 // 2.2 terminate if it is empty (end of the list)or deleted
 if ((a == DIR_EMPTY) ||(a == DIR_DEL))
 {
 fp- > entry = eCount;
 return FOUND;

 } // empty or deleted entry found

474 Day 15

 // 2.3 get the next entry
 eCount++;
 if ((eCount & 0xf) == 0)
 { // load a new sector from the root
 if (!readDIR(fp, eCount))

 return FAIL;
 }

 // 2.4 exit the loop if reached the end or error
 if (eCount > mda- > maxroot)

 return NOT_FOUND; // last entry reached
 }// while

 return FAIL;

 } // newDIR

 The function newFAT() was used to find an available cluster to allocate for a new block
of data/new file:

 unsigned newFAT(MFILE * fp)
 // fp file structure
 // fp- > ccls ==0 if first cluster to be allocated
 // !=0 if additional cluster
 // return TRUE/FAIL
 // fp- >ccls new cluster number
 {
 unsigned i, c = fp- > ccls;

 // sequentially scan through FAT
 do {
 c++; // check next cluster in FAT
 // check if reached last cluster in FAT,
 // re-start from top
 if (c > = fp- > mda- > maxcls)
 c = 0;

 // check if full circle done, media full
 if (c == fp- > ccls)
 {
 FError = FE_MEDIA_FULL;
 return FAIL;

 }

File I/O 475

 // look at its value
 i = readFAT(fp, c);

 } while (i!=0); // scanning for an empty cluster

 // mark the cluster as taken, and last in chain
 writeFAT(fp, c, FAT_EOF);

 // if not first cluster, link current cluster to new one
 if (fp- > ccls >0)
 writeFAT(fp, fp- > ccls, c);

 // update the MFILE structure
 fp- > ccls = c;

 // invalidate the FAT cache
 // (since it will soon be overwritten with data)
 fp- > fpage = -1;

 return TRUE;

 } // newFAT

 When allocating a new cluster beyond the first one, newFAT() keeps linking the clusters
in a chain, and it marks every cluster as properly used. In its turn, the function uses one
more accessory function. The writeFAT() function updates the contents of the FAT and
keeps all its copies current.

 unsigned writeFAT(MFILE *fp, unsigned cls, unsigned v)
 // fp MFILE structure
 // cls current cluster
 // v next value
 // return TRUE if successful, or FAIL
 {
 unsigned p;
 LBA l;

 // get address of current cluster in fat
 p = cls * 2; // always even
 // cluster = 0xabcd
 // packed as: 0 | 1 | 2 | 3 |
 // word p 1 2 | 3 4 | 4 5 | 6 7 |..
 // cd ab| cd ab| cd ab| cd ab|

476 Day 15

 // load the fat sector containing the cluster
 l = fp- > mda- > fat + (p > > 9);
p &= 0 x 1fe;
 if (!readSECTOR(l, fp- > buffer))
 return FAIL;

 // get the next cluster value
 fp- > buffer[p] = v; // lsb
 fp- > buffer[p+1] = (v > > 8); // msb

 // update all FAT copies
 for (i=0; i < fp- > mda- > fatcopy; i++, l += fp- > mda- > fatsize)
 if (!writeSECTOR(l, fp- > buffer))

 return FAIL;

 return TRUE;

 } // writeFAT

 Finally, writeDATA() was used by both fwriteM() and fcloseM() to write actual
sectors of data to the storage device, computing the sector address based on the current
cluster number.

 unsigned writeDATA(MFILE *fp)
 {
 LBA l;

 // calculate lba of cluster/sector
 l=fp- > mda- > data+(LBA)(fp- > ccls-2) * fp- > mda- > sxc+fp- > sec;

 return (writeSECTOR(l, fp- > buffer));

 } // writeDATA

 Testing the Complete Fileio Module
 It is time to test the functionality of the entire fileio.c module we just completed. This
time, after mounting the file system, we will open a source file (which could be any file)
and copy its contents into a new “ destination ” file that we will create on the spot. Here is
the code we will use for the WriteTest.c main file.

 /*
 ** WriteTest.c
 **
 */

File I/O 477

 #include < p32xxxx.h >
 #include < explore.h >
 #include < LCD.h >
 #include < SDMMC.h >
 #include " fileio.h "

 #define B_SIZE 100

 char data[B_SIZE];

 int main(void)
 {
 MFILE *fs, *fd;
 unsigned c, i, p, r;
 char s[32];

 //initializations
 initEX16();
 initLCD(); //init LCD display

 putsLCD(" Insert card ... \n ");
 while(!getCD()); // wait for card to be inserted
 Delayms(100); // wait for card to power up

 if (mount())
 {
 clrLCD();
 if ((fs = fopenM(" source.txt " , "r")))
{
 if ((fd = fopenM(" dest.txt " , "w")))
 {
 c = 0; // init byte counter
 p = 0; // init progress index
 i = fs- > size/16; // progress bar increment

 putsLCD(" Copying\n ");
 do{
 // copy data
 r = freadM(data, B_SIZE, fs);
 r = fwriteM(data, r, fd);

 // update progress bar
 c += r;
 while (p < c/i)

478 Day 15

 {
 p++;
 putLCD(0xff); // add one bar

 }
 } while(r == B_SIZE);

 r = fcloseM(fd);
 if (r == TRUE)
 {
 clrLCD();
 sprintf(s, " Copied \n%d bytes ", c);
 putsLCD(s);

 } // close dest
 else
 putsLCD(" ER:closing dest ");

 } // open dest
 else
 putsLCD(" ER:creating file ");

 fcloseM(fs);
 } // open source
 else
 putsLCD(" ER:open source ");

 unmount();
 } // mount
 else
 putsLCD(" ER:mount failed ");

 // main loop
 while(1);

 } // main

 Make sure you replace the source filename (SOURCE.TXT) with the actual name of the
file you copied on the card for the experiment.

 After creating a new project (let ’ s call it WriteTest this time), we will need to add all the
necessary modules to the project window, including:

● SDMMC.c

● fileio.c

File I/O 479

● explore.c

● LCDlib.c

● WriteTest.c

Once more, remember to follow the checklists for a new project and for the in-circuit
debugger setup, but this time remember to add even more space for the heap so that we
will be able to dynamically allocate two buffers for two MFILE structures.

 Note

 Once enough space is left for the global variables and the stack, there is no reason to withhold
any memory from the heap. Allocate as large a heap as possible to allow malloc() and
free() to make optimal use of all the memory available.

 After building the project and programming the executable on the Explorer 16 board, we
are ready to run the test. Insert the SD card in the slot when prompted, and if all goes well
for a fraction of a second, dependent on the size of the source file chosen, you will be
able to see a progress bar gradually filling the second line of the LCD. When the copy is
completed, a message similar to the following will appear on the LCD:

 Copied

 1806 bytes

 Once more the actual number of bytes should reflect the size of the source file used. At
this point if you transfer the SD/MMC card back to your PC, you should be able to verify
that a new file has been created (see Figure 15.10).

 Its size and contents are identical to the source file, whereas the date and time reflect the
values we set in the fopenM() function.

 Notice that if you try to run the test program a second time, it is bound to fail now.

 ER:creating file

 This is because, as discussed during the development of the fopenM() function, we
chose to report an error when trying to create a new file (open a file for writing) and we
find a file with the same name already present.

480 Day 15

 Figure 15.10 : Windows Explorer Screen capture.

 Notice that you can recompile the project and run the test with different sizes for the
data buffer, from 1 byte to as large as the memory of the PIC32 will allow. Both the
freadM() and fwriteM() functions will take care of reading and writing as many
sectors of data as are required to fulfill your request. The time required to complete the
operation will change slightly, though.

 Code Size
 The size of the code produced by the WriteTest project is considerably larger than the
simple SDMMC.c module we tested in the previous chapter (see Figure 15.11).

 Still, with all optimization options turned off, the code will add up to just
8,743 words. This represents only 6 percent of the total program memory space
available on the PIC32MX360. I consider this a very small price to pay for a lot of
functionality!

File I/O 481

 Figure 15.11 : The memory usage gauge.

 Debriefing
 In this lesson we learned the basics of the FAT16 file system and developed a small
interface module that allows a PIC32 microcontroller to read and write data files to and
from a generic mass storage device. By using the SDMMC.c module, developed in the
previous lesson for the low-level interface, we have created a basic file I/O interface for
SD/MMC memory cards.

 Now you can share data between a PIC32 application and almost any other
computer system that is capable of accessing SD/MMC cards, from PDAs to laptops
and desktop PCs; from DOS, Windows, and Linux machines to Apple computers
running OS-X.

 Tips & Tricks
 A frequent question I am asked by embedded-control engineers is: “ How can I interface
to a ‘ thumb drive ’ (sometimes referred to as a USB stick), a USB mass storage device, to
share/transport data between my application and a PC? ”

 The short answer is simple: “ Don ’ t, if you can help it! ” The longer answer is: “ Use an
SD card instead! ” and here is why. As you have seen in this lesson and the previous one,
reading and writing to an SD card (miniSD and microSD included) is really simple and
requires very little code and only one SPI port.

482 Day 15

 The USB interface, on the other side, has all the appeal and appearance of simplicity from
the user perspective, but reading and writing to a USB thumb drive can be deceptively
complex and expensive for a modest embedded-control application. First, the simplicity
of the SPI interface must be replaced by the relatively greater complexity of the USB bus
interface. What is required, then, is not just the standard USB interface but a host USB
interface and corresponding software stack.

 As of this writing, it has already been announced that future versions of the PIC32 will
offer an integrated host USB interface, but there will be a considerable price to pay in
terms of Flash and RAM required to support the complete software stack. This can be
estimated at several orders of magnitude larger and more complex than the basic SD/
MMC card solution we examined today.

 Exercises
 1. Review the FAT16 support libraries offered with the PIC32 tool suite. Now you

have the tools to understand all that code and use the most advanced features with
confidence.

 2. Use the RTCC to provide the current time and date information when writing
to a new file.

 3. Evaluate the opportunity to use a separate buffer for more advanced FAT page
caching, to further improve read/write performance.

 4. Evaluate the modifications required to perform buffering of entire clusters and
perform multiblock read/write operations to optimize the SD card low-level
performance.

 Books
 Pate , Steve D. , Unix Filesystems: Evolution, Design, and Implementation (John Wiley ,

 2003) . Windows is our primary concern when we think of sharing files with a
personal computer, but you have to look at Unix (and Linux) to find serious file
systems for mission-critical data storage.

File I/O 483

 Links
www.tldp.org/LDP/tlk/tlk-title.html . The Linux Kernel , by David A Rusling, is an online

book that describes the inner workings of Linux and its file system.

http://en.wikipedia.org/wiki/File_Allocation_Table . Once more, this is an excellent
page of Wikipedia that describes the history and many ramifications of the FAT
technology.

http://en.wikipedia.org/wiki/List_of_file_systems . An attempt to list and classify all major
computer file systems in use.

http://en.wikipedia.org/wiki/ISO-9660 . Want to know how files are written on a
CD-ROM? The ISO-9660 file system is the answer.

This page intentionally left blank

 Musica, Maestro!

 The Plan
 Gone is the time when music was an analog thing and the home stereo took up an
entire rack of expensive electronics. Starting with music CDs almost 20 years ago and
continuing today with iPods and MP3 players, music is now stored and consumed
in digital form. For consumer and embedded applications, audio is an available and
inexpensive option to delight but also to communicate with the user.

 In this lesson we will explore the possibility to produce audio signals using the Output
Compare modules of the PIC32. In Pulse Width Modulation (PWM) mode, and in
combination with a more or less sophisticated low-pass filters, the Output Compare
modules can be used effectively as DACs to produce an analog output signal. By
modulating the analog signal with frequencies that fall into the range recognized by the
human ear, between approximately 20 Hz and 20 kHz, we get sound!

 Preparation
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer
16 demonstration board, an In-Circuit Debugger of your choice, and a soldering iron and
a few components you ’ ll need ready at hand to expand the board capabilities using the
prototyping area or a small expansion board. You can check on the companion Web site
(www.exploringPIC32.com) for the availability of expansion boards that will help you
with the experiments that follow.

D A Y 1 6

486 Day 16

 The Exploration
 The way a PWM signal works is pretty simple. A pulse is produced at regular intervals
(T), typically provided by a timer and its period register. The pulse width (Ton), though,
is not fixed, but it is programmable and it could vary between 0 and 100 percent of the
timer period. The ratio between the pulse width (Ton) and the signal period (T) is called
the duty cycle (see Figure 16.1).

50% duty cycle
Ton/T � 1/2

10% duty cycle
Ton/T � 1/10 Ton

Ton

T

T

 Figure 16.1 : Examples of PWM signals of different duty cycles.

 Two extreme cases are possible for the duty cycle: 0 percent and 100 percent. The first
one would correspond to a signal that is always off. The second one would be the case
when the output signal is always on. The number of possible cases in between, typically
a relatively small finite number expressed as a logarithm in base 2, is commonly referred
to as the resolution of the PWM. If, for example, there are 256 possible pulse widths, we
say that we have a PWM signal with an 8-bit resolution.

 If you could feed an ideal PWM signal with a fixed duty cycle to a spectrum
analyzer to study its composition, you would discover that it contains three parts
(see Figure 16.2):

● A DC component, with an amplitude directly proportional to the duty cycle

● A sinusoid at the fundamental frequency (f = 1/T)

● Followed by an infinite number of harmonics whose frequency is a multiple of the
fundamental (2f, 3f, 4f, 5f, 6f . . .)

Musica, Maestro 487

 Therefore, if we could attach an “ ideal ” low-pass filter to the output of a PWM signal
generator to remove all frequencies from the fundamental and up, we could obtain just a
clean DC analog signal whose amplitude would be directly proportional to the duty cycle.

 Of course, such an ideal filter does not exist, but we can use more or less sophisticated
approximations of it to remove as much of the unwanted frequency components as needed
(see Figure 16.2). This filter could be as simple as a single passive R/C circuit (first-order
low-pass filter) or could require several (N) active stages (2xN -order low-pass filter).

50% duty cycle
Ton/T � 1/2
Analog out � 0.5

10% duty cycle
Ton/T � 1/10
Analog out � 0.1

Ton

Ton

T

T

 Figure 16.3 : Analog output of PWM and ideal low-pass filter circuit.

Amplitude

DC component

Fundamental
Harmonics

Low pass filter
Frequencyf � 1/T 2f 3f

 Figure 16.2 : Frequency spectrum of a PWM signal.

 If we aim to produce an audio signal and we choose the PWM frequency wisely, we can
take advantage of the natural limitation of the human ear that will act as an additional
filter, ignoring any signal whose frequency is outside the 20 Hz–20 kHz range. In
addition, most of the audio amplifiers we might want to feed the output signal into will
include a similar type of filter in their input stages. In other words, if we make sure

488 Day 16

that the PWM signal operates on a frequency at or above 20 kHz, both phenomena will
contribute to help our cause and will allow us to use a simpler and more inexpensive filter
circuit.

 Intuitively enough, since we can change the duty cycle only once every PWM period
(T), the higher the frequency of the PWM, the faster we will be able to change the output
analog signal, and therefore the higher will be the frequency of the audio signal we will
be able to generate.

 In practical terms, this means that the highest audio signal a PWM can produce is only half
of the PWM frequency. So, for example, a 20 kHz PWM circuit will be able to reproduce
only audio signals up to 10 kHz, whereas to cover the entire audible frequency spectrum
we need a base period of at least 40 kHz. Now you understand why it is not a coincidence
that music CDs are digitally encoded at the rate of 44,100 samples per second.

 OC PWM Mode
 In a previous chapter we used the PIC32 Output Compare modules to produce precise
timing intervals (to obtain the horizontal synchronization signal required to generate
a composite video output). This time we will use the OC modules in PWM mode to
generate a continuous stream of pulses with the desired duty cycle.

 All we need to do to initialize the OC module to generate a PWM signal is set the
three OCM bits in the OCxCON control register (see Figure 16.4) for the basic PWM

U-0
— — — — — — — —

— —

— —

— — — — — —

U-0 U-0 U-0 U-0 U-0 U-0 U-0

U-0

R/W-0 R/W-0 R/W-0

U-0 U-0 R/W-0
OC32 OCFLT OCTSEL OCM�2:0�

Bit 24

Bit 16

Bit 8

Bit 0Bit 7

R-0 R/W-0 R/W-0 R/W-0 R/W-0

U-0 U-0 U-0 U-0 U-0
SIDL

Bit 15
ON FRZ

U-0 U-0 U-0 U-0 U-0 U-0 U-0

Bit 31

Bit 23

 Figure 16.4 : The Output Compare module main control register OCxCON .

Musica, Maestro 489

configuration 0 x 110 . A second PWM mode is available (0 x 111), but we have no use for
the fault input pins, commonly required by a different set of applications as a protection
mechanism (motor control/power conversion). Next we need to select the timer on which
to base the PWM period. The choice is limited to Timer2 or Timer3, but since we already
used the latter for the video projects, this time we will give Timer2 our preference
(see Figure 16.5).

Set Flag bit
OCxF(1)

Output
logic

S
R

Q

Ouput enable

OCTSEL 00

16 16

Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare
 channels 1 through 5.
 2: The OCFA pin controls OC1-OC3 channels. The OCFB pin controls OC4-OC5 channels.
 3: Each output compare channel can use one of two selectable 16-bit time or a single 32-bit timer base.

Period match signals
from time bases
(see Note 3).

TMR register inputs
from time bases
(see Note 3).

Comparator

OCxR(1)

OCxRS(1)

11

3

OCM�2:0�
Mode select

OCFA or OCFB
(see Note 2)

OCx(1)

 Figure 16.5 : Output Compare module block diagram.

 Keeping in mind that we want to be able to produce at least a 44.1 kHz PWM period,
and assuming a peripheral clock of 36 MHz, our standard configuration when using the
Explorer 16 board, we can calculate the optimal configuration of the Timer2 (T2CON)
and its period register (PR2). With a prescaler set to a 1:1 ratio, we obtain 816 clock ticks
per period when generating an exact 44.1 kHz PWM period. This value dictates also the
maximum resolution of the duty cycle for the Output Compare module.

 Since we will have 816 possible values of the duty cycle, we could claim a resolution
between 9 and 10 bits because we have more than 512 (2 8) but fewer than 1024 (2 9) steps.

490 Day 16

Reducing the frequency to 20 kHz would give us 1 bit (literally) of additional resolution
(taking us between 10 and 11), but that would also mean that we would be limiting
the output frequency range to a maximum of 10 kHz, probably a small but noticeable
difference to the human ear.

 Once the chosen timer is configured and just before writing to the OCxCON register, we
will need to set, for the first time, the value of the duty cycle writing to the register OCxR ,
and the register OCxRS . In PWM mode, the two registers will work in a master/slave
configuration. Once the PWM module is started (writing the mode bits in the OCxCON
register), we will be able to change the duty cycle by writing only to the OCxRS (slave)
register. The OCxR register (master) will update, copying a new value from the slave
OCxRS only and precisely at the beginning of each new period, to avoid glitches and to
leave us with an entire period (T) of time to prepare the next duty cycle value.

 Here is an example of a simple initialization routine for the OC1 module:

 void initDA(int samplerate)
 {
 // init OC1 module
OpenOC1(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0);

 // init Timer2 mode and period (PR2)
 OpenTimer2(T2_ON | T2_PS_1_1 | T2_SOURCE_INT,

 FPB/samplerate);
 PR2 = FPB/samplerate-1;
 mT2SetIntPriority(4);
 mT2ClearIntFlag();
 mT2IntEnable(1);

 } // initDA

 Notice that we have also taken the opportunity to enable the timer interrupts so that
we will be alerted each time a new period starts and we can decide how and whether
to update the next duty cycle value writing to OC1RS (or using the SetDCOC1PWM()
function).

 Testing the PWM as a D/A Converter
 To start experimenting on the Explorer 16, we will need to add just a couple of discrete
components to the prototyping area. A resistor of 1 kOhm value and a capacitor of 100 nF
value will produce the simplest low-pass filter (first order with a 1.5 kHz cutoff

Musica, Maestro 491

frequency). We can connect the two in series and wire them to the output pin of the OC1
module found on pin 0 of PORTD , as represented in the schematic in Figure 16.6 .

R1

C1

100 nF

RD0 OC1

GND

Test

1 k

 Figure 16.6 : Using a PWM signal to produce an analog output.

 A couple of more lines of code will complete our short test project:

 void __ISR(_TIMER_2_VECTOR, ipl4) T2Interrupt(void)
 {
 // clear interrupt flag and exit
 mT2ClearIntFlag();

 } // T2 Interrupt

 main(void)
 {
 initEX16(); // init and enable vectored interrupts
 initDA(44100); // init the PWM for 44.1kHz
 SetDCOC1PWM(PR2/2);

 // main loop
 while(1);

 }// main

 Add the usual header and include files, and save the code in a new file called TestDA.c .
You can then create a quick test project that will contain this single file (I called it
Audio), build it, and using the in-circuit debugger of your choice, program the Explorer
16 board. Connect a meter or an oscilloscope probe, if available, to the test point in
 Figure 16.6 and run the program to verify the output average DC level.

492 Day 16

 The needle of the meter (or the trace of the scope) will swing to indicate an average
value of 1.5V—that is, 50 percent of the regular voltage output of a digital I/O
pin on the Explorer 16 board. This is consistent with the value of the duty cycle set
by the initialization routine to half of the PWM period (PR2/2). If you have an
oscilloscope, you can also point the probe directly at the other end of the R1 resistor
(directly to the output pin of the OC1 module) and verify that a square wave of
the exact frequency of 44.1 kHz is present with a duty cycle of 50 percent
(see Figure 16.7).

 Figure 16.7 : Snapshot of OC1 output (bottom) and filter (top).

 You can now change the initialization routine to experiment with other values of the duty
cycle between 0 and PR2 to verify the response of the circuit and the proportionality of
the average output signal between 0 and 3V.

 Producing Analog Waveforms
 With help from the OC1 module, we have just crossed the boundary between the digital
world, made of ones and zeros, and the analog world, where we have been capable of
generating a multitude of values between 0 V and 3 V.

Musica, Maestro 493

 We can now start playing with the duty cycle, changing it from period to period to
produce waveforms of any sort and shape. Let ’ s start by modifying the project a little bit,
adding some code to the interrupt routine that so far was left empty:

 void __ISR(_TIMER_2_VECTOR, ipl4) T2Interrupt(void)
 {
 OC1RS = (count < 22) ? PR2 : 0;
 count++;
 if (count > = 44)
 count = 0;

 // clear interrupt flag and exit
 mT2ClearIntFlag();

 } // T2 Interrupt

 You will need to declare count as a global integer and remember to initialize it to 0.

 Save the new code as TestDA2.c , and after replacing it as the main file in the project,
rebuild the project and test it on the Explorer 16 board.

 Every 20 PWM periods the filter output will alternate between the value 3 V (100 percent)
and the value 0 V (0 percent), producing a square wave visible on the oscilloscope at a
frequency of approximately 1 Khz (44.1 kHz/44), as shown in Figure 16.8 .

 Figure 16.8 : TestDA2 output, 1 kHz square wave.

494 Day 16

 A more interesting waveform could be generated by the following algorithm:

 void __ISR(_TIMER_2_VECTOR, ipl4) T2Interrupt(void)
 {
 OC1RS = count*PR2/44;
 count++;
 if (count > = 44)
 count = 0;

 // clear interrupt flag and exit
 mT2ClearIntFlag();

 } // T2 Interrupt

 This will produce a triangular waveform (saw tooth) of approximately 3 V peak
amplitude, with a gradual ramp of the duty cycle from 0 to 100 percent in 40 steps
(2.5 percent each), followed by an abrupt fall back to 0, where it will repeat. This signal
will repeat with a frequency of approximately 1 kHz as well (see Figure 16.9).

 Figure 16.9 : TestDA3 output, 1 kHz triangular wave.

Save the new code as “ TestDA3.c ” , replace it as the main file of the project and rebuild.

 None of the two examples will qualify as a Ï nice ” sound if you try and feed them to an
audio amplifier, although they will both have a recognizable (fundamental) high-pitched

Musica, Maestro 495

tone at about 1 kHz. Lots of harmonics will be present and audible in the audio spectrum
and will give the sound an unpleasant buzz.

 To generate a single clean tone, what we need is a pure sinusoid. The interrupt service
routine that follows would serve the purpose, generating a perfect sinusoid at the
frequency of 441 Hz; in musical terms that would be very close to an A4 (a La for those
of “ us ” who have not studied music using the modern Boethian notation but rather the
older Do-Re-Mi-Fa-Sol-La-Si).

 void __ISR(_TIMER_2_VECTOR, ipl4) T2Interrupt(void)
 {
 // compute the new sample for the next cycle
 OC1RS = PR2/2 + PR2/2 * sin(count* 2*M_PI/100);
 count++;

 // clear interrupt flag and exit
 mT2ClearIntFlag();

 } // T2 Interrupt

 Unfortunately, as fast as the PIC32 and the math libraries of the MPLAB C32 compiler
are, there are no chances for us to be able to use the (floating point) sin() function and
perform the multiplications and additions required to calculate a new duty cycle value
in time at the required rate of 440 Hz.The Timer2 interrupt hits every 22 us, too short a
time for such a complex floating-point calculation. So, the interrupt service routine would
end up “ skipping ” interrupts and producing a sinusoidal output that is only half (or less)
than the required frequency (one octave lower). For real-time performance, we need to
pretabulate the sinusoid values to perform the smallest number of calculations possible,
preferably working on integers only. Here is an example that uses a constant table
containing precomputed values stored in the Flash program memory of the PIC32:

 const short Table[100]={
 // insert comma separated values here ...

 };

 To obtain the table values, let ’ s use a spreadsheet program to compute the following formula:

 = offset + INT(amplitude * SIN(ROW * 6.28/ PERIOD))

 Substituting a period of 100 samples (441 Hz), an offset of 410, and an amplitude of 400,
we obtain:

 =410 + INT(400*SIN(6.28*A1/100))

496 Day 16

 Let ’ s fill the first column (A) of the spreadsheet with a counter and copy the formula over
the first 100 rows of the second column (B), formatting the output for zero decimal digits
(see Figure 16.10).

 Figure 16.10 : Spreadsheet to compute a 100-point sinusoid.

 Select the first 100 cells of the B column and paste them directly into the MPLAB Editor.
Add commas at the end of each line and close the curly brackets at the end of the table:

 const short Table[100]={
 // insert comma separated values here ...
 410,
 435,
 460,
 484,
 509,
 533,
 ...

 383};

Musica, Maestro 497

 The new interrupt routine will simply cycle through each element of the table:

 void __ISR(_TIMER_2_VECTOR, ipl4) T2Interrupt(void)
 {
 OC1RS = Table[count++];
 if (count > = 100)
 count = 0;

 // clear interrupt flag and exit
 mT2ClearIntFlag();

 } // T2 Interrupt

 This time we will be able to easily produce the desired tone, and there will be plenty
more time between the Timer2 interrupt calls to perform other tasks as well.

 Save the new file as TestDA4.c and replace it as the main file of the project. Build
and program the Explorer 16 demonstration board to check the resulting output (see
 Figure 16.11).

 Figure 16.11 : TestDA4 output, 440 Hz sinusoid.

 Reproducing Voice Messages
 Once we learn how to produce sound, there ’ s no stopping us. There are infinite
applications in embedded control in which we can put these capabilities to use. Any

498 Day 16

 “ human ” interface can be greatly enhanced by using sound to provide feedback, to capture
the attention of the user with alerts and error messages, or, if done properly, to simply
enhance the user experience. But we don ’ t have to limit ourselves to simple tones or basic
melodies. We can reproduce any kind of sound, as long as we have a description of the
required waveforms. Just like the table used for the sinusoid in the previous example,
we could use a larger table to contain the unmistakable sound produced by a particular
instrument or even a complete vocal message. The only limit is the room available in the
Flash program memory of the PIC32 to store the data tables next to the application code.

 If, in particular, we look at the possibility of storing voice messages, knowing that the
energy of the human voice is mostly concentrated in the frequency range between 400 Hz
and 4 kHz, we can considerably reduce our output frequency requirements and limit the
PWM playback at the rate of only 8,000 samples per second. Notice that we should still
maintain a high PWM frequency to keep the PWM signal harmonics outside the audio
frequency range and the low-pass filter simple and inexpensive. It is only the rate at
which we change the PWM duty cycle and we read new data from the table that will
have to be reduced. For example, modifying the duty cycle only once every four
interrupts would give us an 11,025 Hz sample rate. At this rate we would theoretically
be able to play back as much as 40 seconds of voice messages (8-bit mono) stored
inside the PIC32MX360 Flash memory. That is already a lot of talking for a single chip
solution.

 To further increase the capacity, potentially doubling it, we could start looking at simple
compression techniques used for voice applications, such as ADPCM, for example.
ADPCM stands for Adaptive Differential Pulse-Coded Modulation , and it is based on
the assumption that the difference between two consecutive samples is smaller than the
absolute value of each sample and can therefore be encoded using a smaller number of
bits. The actual number of bits used is then optimized, and it changes dynamically to
minimize signal distortion while providing a desired compression ratio. Hence the use of
the term adaptive .

 A Media Player
 In the rest of this chapter, we will explore a much more ambitious project. Putting to use
all the libraries and capabilities we have acquired in the last several chapters, we will
attempt to create a basic multimedia application capable of playing stereo music files off
an SD/MMC memory card.

Musica, Maestro 499

 The idea is to use two of the five OC modules available on the PIC32MX360, and since
we care about the quality of the output, we will need a slightly more sophisticated filter
than the single resistor and capacitor circuit (first-order low-pass filter) used so far in the
TestDA project.

 Using a low-cost dual operational amplifier like the MCP602, we can design a very
simple Sallen Key (second-order) low-pass filter for the audio band that ’ s perfectly
capable of driving a small headset or to feed a more powerful stereo amplifier
(see Figure 16.12).

C1 18 nF

�3.3 V

3

2

8
1

4

U1A

C5 10 uF

R2

R4

R1

C2 18 nF

18 nF

GND

6

5 U1B

7 C6
R5 R6
10 k 10 k

10 uF
�

�

18 nF

R3
RD1 OC2

C4

GND

GND GND

GND

Stereo Output

J1

C3

RD0 OC1
1 k

1 k

1 k

1 k

MCP602

MCP602

�

�

�

�

 Figure 16.12 : A simple audio PWM filter circuit.

 As per the media format of choice, it will be the uncompressed WAVE format that
is compatible with almost any audio application and is often the default “ lossless ”
destination format for extracting files from a music CD.

 We will start by creating a brand-new project that we will call Wave . We will
immediately add to the project source files list the SD/MMC low-level interface
(SDMMC.c) and the file I/O library (fileio.c) for access to a FAT16 file system.

500 Day 16

 The WAVE File Format
 After opening a file for reading, we will need to understand the specific format used to
encode the data. Files with the .wav extension, encoded in the WAVE format, are among
the simplest and best documented. The WAVE format is a variant of the RIFF file format ,
a standard across multiple operating systems that uses a particular technique to store
multiple pieces of information/data, dividing them into chunks . A chunk (see Table 16.1)
is nothing more than a block of data prefixed by a header containing two 32-bit elements:
the chunk ID and the chunk size .

 Table 16.1 : Format of a generic “ chunk. ”

Offset Size Description Value

 0x00 4 Chunk ID ASCII

 0x04 4 Chunk size (size of the content) Size

 0x08 Size Data content

 0x08 � size 0–1 Optional padding 0x00

 Note also that the chunk total size must be a multiple of two so that all the data in a RIFF
file ends up being nicely word aligned. If the data block size is not a multiple of two, an
extra byte of padding is added to the chunk.

 A chunk with the RIFF ID is always found at the beginning of a WAVE file, and its data
block begins with a 4-byte type field. This type field must contain the string WAVE .
Chunks can be nested like Russian dolls, but there can also be multiple subchunks inside
a given type of chunk.

 Table 16.2 illustrates a WAVE file RIFF chunk structure.

 Table 16.2 : RIFF chunk of type WAVE.

Offset Size Description Value

 0x00 4 This is the RIFF chunk ID RIFF

 0x04 4 Size of the data block � 4 Size

 0x08 4 Type ID WAVE

 0x10 Size-4 Data block (subchunks)

Musica, Maestro 501

 The data block in his turn contains a fmt chunk followed by a data chunk. As often is the
case, one image is worth a million words (see Figure 16.13).

Chunk ID ‘‘RIFF’’
Chunk Size

Chunk ID ‘‘fmt’’
Chunk Size

Sample Info

Other chunks

Audio Samples

Chunk ID ‘‘data’’
Chunk Size

Chunk type ‘‘WAVE’’

 Figure 16.13 : Basic WAVE file layout.

 The fmt chunk contains a defined sequence of parameters that fully describes the stream
of samples that follows in the data chunk, as represented in Table 16.3 .

 In between the fmt and data chunks, there could be other chunks containing additional
information about the file, so we might have to scan the chunk IDs and skip through the
list until we find the (data) chunk we are looking for.

 The play() Function
 Let ’ s create a new playWAV() function that will take care of opening a WAVE file and,
after capturing and decoding the information in the fmt chunk, will configure two PWM
modules and will feed them with audio samples to reproduce a complete song in stereo.
We will add the function to the TestDA4.c module, promptly renamed AudioPWM.c .

502 Day 16

 /*
 ** AudioPWM.c
 **
 */
 #include < p32xxxx.h >
 #include < plib.h >
 #include < stdlib.h >
 #include < explore.h >
 #include < sdmmc.h >
 #include < fileio.h >
 #include " AudioPWM.h "

 #define B_SIZE 512 // audio buffer size

 // audio configuration
 typedef struct {
 char stereo; // 0 - mono 1- stereo
 char fix; // sign fix 0 x 00 8-bit, 0 x80 16-bit
 char skip; // advance pointer to next sample
 char size; // sample size (8 or 16-bit)

 } AudioCfg;

 Table 16.3 : The fmt chunk content.

Offset Size Description Value

 0x00 4 Chunk ID Fmt

 0x04 4 Chunk size 16 � extra format bytes

 0x08 2 Compression code Unsigned int

 0x0a 2 Number of channels Unsigned int

 0x0c 4 Sample rate Unsigned long

 0x10 4 Average bytes per second Unsigned long

 0x14 2 Block align Unsigned int

 0x16 2 Significant bits per sample Unsigned int (� 1)

 0x18 2 Extra format bytes Unsigned int

Musica, Maestro 503

 // chunk IDs
 #define RIFF_DWORD 0 x 46464952UL
 #define WAVE_DWORD 0 x 45564157UL
 #define DATA_DWORD 0 x 61746164UL
 #define FMT_DWORD 0 x 20746d66UL
 #define WAV_DWORD 0 x 00564157UL

 typedef struct {
 // data chunk
 unsigned int dlength; // actual data size
 chardata[4]; // " data "

// format chunk
unsigned short bitpsample; // bit per sample
unsigned short bpsample; // bytes per sample

 // (4=16bit stereo)

unsigned int bps; // bytes per second
unsigned int srate; // sample rate in Hz
unsigned short channels; // # of channels

 // (1= mono,2= stereo)

unsigned short subtype; // always 01
unsigned int flength; // size of this block (16)
char fmt_[4]; // " fmt_ "

 char type [4]; // file type name " WAVE "
unsigned int tlength; // size of encapsulated block
char riff[4]; // envelope " RIFF "

 } WAVE;

 The WAVE and AudioCfg structures will be useful to collect all the fmt parameters and
organize the useful information in one place while the chunk ID macros will help us
recognize the different unique IDs, treating them as 32-bit integers and allowing us a
quick and efficient comparison.

 Let ’ s start coding the playWAV() function. It needs just one parameter: the filename.

504 Day 16

 int playWAV(char *name)
 {
WAVE wav;
MFILE *f;
 unsigned int lc, r;
 int wi, pos, rate, period, last;
 char s[16];

 // 1. open the file
 if ((f = fopenM(name, " r ")) == NULL)
 { // failed to open
 return FALSE;

 }

 After trying to open the file and reporting an error if unable, we will immediately
start looking inside the data buffer for the RIFF chunk ID and the WAVE type ID as a
signature. This will confirm that we have the right kind of file:

 // 2. verify it is a RIFF formatted file
 if (ReadL(f- > buffer, 0) != RIFF_DWORD)
 {
 fcloseM(f);
 return FALSE;

 }

 // 3. look for the WAVE chunk signature
 if ((ReadL(f- > buffer, 8)) != WAVE_DWORD)
 {
 fcloseM(f);
 return FALSE;

 }

 If successful, we should verify that the fmt chunk is the first in line inside the data block.
Then we will harvest all the information needed to process the data block for the playback.

 // 4. look for the chunk containing the wave format data
 if (ReadL(f- > buffer, 12) != FMT_DWORD)
 {
 fcloseM(f);
 return FALSE;

 }

Musica, Maestro 505

wav.channels = ReadW(f- >buffer, 22);
 wav.bitpsample = ReadW(f- > buffer, 34);
 wav.srate = ReadL(f- > buffer, 24);
 wav.bps = ReadL(f- > buffer, 28);

wav.bpsample = ReadW(f- >buffer, 32);

 Next, we start looking for the data chunk, inspecting the chunk ID fields of the next
block of data after the end of the fmt chunk and skipping the entire block if there ’ s no
matching.

 // 5. search for the data chunk
 wi = 20 + ReadW(f- > buffer, 16);
 while (wi < 512)
 {
 if (ReadL(f- > buffer, wi) == DATA_DWORD)
 break;

 wi += 8 + ReadW(f- > buffer, wi+4);
 }
 if (wi > = 512) // could not find in current sector
 {
 fcloseM(f);
 return FALSE;

 }

If, in the process, we exhaust the content of the currently loaded buffer of data, we know
we have a problem.

 Note

 Typical .wav files produced by extracting data from a music CD will have just the data chunk
immediately following the fmt chunk. Other applications (MIDI interfaces, for example) can
generate WAVE files with more complex structures, including multiple data chunks, playlists,
cues, labels, and the like, but we aim at playing back only the plain-vanilla type of WAVE files.

 Once it ’ s found, the size of the data chunk will tell us the real number of samples
contained in the file.

 // 6. find the data size (actual wave content)

 wav.dlength = ReadL(f- > buffer, wi+4);

506 Day 16

 The playback sample rate must now be taken into consideration to determine whether
we can play that “ fast. ” It could happen that the requested sample rate exceeds our
capabilities, and we might have to skip every other sample to reduce the data rate. We
will consider 48 k samples/sec our limit, although strictly speaking, at up to 96 k
samples/s, the PIC32 would still be able to produce a PWM output with 8 bits of
resolution. Higher rates will be treated by gradually dividing the rate by a factor of two
and doubling the skip factor.

 // 7. if sample rate too high, skip
 rate = wav.bps / wav.bpsample; // rate = samples per second
 ACfg.skip = wav.bpsample; // skip to reduce bandwith
 while (rate > 48000)
 {

 rate > > = 1; // divide sample rate by two
 ACfg.skip < < = 1; // multiply skip by two

 }

 We can then compute the required PWM period value (to be used to set the PR2 register).
A problem could occur if the required period exceeds the available bits in the register (16),
resulting in a period value greater than 65,536.

 // 8. check if sample rate too low
 period = (FPB/rate)-1;
 if (period > (65536L)) // max timer period 16 bit
 { // period too long
 fcloseM(f);
 return FALSE;

 }

 Next, the global structure ACfg is initialized with a few parameters that will help our
interrupt service routine manage the audio playback:

 // 9. init the Audio state machine
 CurBuf = 0;
 pos = wi+8; // data begin
 ACfg.stereo = (wav.channels == 2);
 ACfg.size = 1; // #bytes per channel
 ACfg.fix = 0; // sign fix / 16 bit file
 if (wav.bitpsample == 16)

Musica, Maestro 507

 { // if 16-bit
 pos++; // add 1 to get the MSB
 ACfg.size = 2; // two bytes per sample
 ACfg.fix = 0 x 80; // fix the sign

 }

 During the playback we will keep track of the number of samples extracted from the file,
to determine when we have reached the end. The 32-bit integer variable lc will help us
keep track of the number of samples left to play.

 // 10 # of bytes composing the wav data chunk

 lc = wav.dlength;

 Notice that so far we have not used the freadM() function; we have been (cheating)
peeking inside the file buffer, knowing fopenM() already had it loaded.

 To make the playback smooth, we will use a double buffering scheme so that as the audio
interrupt routines are fetching data from one buffer, we will take our time to refill the
other buffer with new data from the file. The array ABuffer[] is defined as two blocks
of B_SIZE bytes each (see Figure 16.14).

‘‘fmt’’
chunk

‘‘data’’
chunk

MFILE *f

playWAV()

ABuffer [1]

ABuffer [0]

AEmptyFlag

Set

T2Interrupt()

CurBuf

Timer 2

R

L

Clear

OC2

OC1

 Figure 16.14 : WAVE player dataflow.

508 Day 16

 For maximum performance, B_SIZE should be chosen as the size of a sector or an integer
multiple of it so that the calls to the freadM() function will be able to transfer entire
sectors of data at a time. We will have to verify that the time required for freadM() to
fill one buffer will be shorter than the time required to play back (consume) all the data in
the second buffer. When starting the double-buffering scheme, we can fill both buffers to
get a head start:

 // 11. pre-load both buffer
 r = freadM(ABuffer[0], B_SIZE*2, f);
 lc -= r;

 AEmptyFlag = FALSE;

 At this point we are ready to initialize the audio playback “ machine, ” which will be
simply our T2Interrupt() function modified to accommodate two channels for stereo
playback using the OC1 and OC2 modules. We will initialize the OC modules first
calling the initAudio() function and then we will start the Timer2 module and its
interrupt to activate the playback.

 // 12. configure Player state machine and start
 initAudio();

 startAudio(rate, pos, r-pos);

 As the timer interrupt is activated, the service routine immediately starts consuming
data from the first buffer, and as soon as its whole content is exhausted, it will set the
AEmptyFlag flag to let us know that new data needs to be retrieved from the WAVE
file and the second buffer will be selected as the active one. Therefore, to maintain
the playback flowing smoothly, we will sit in a tight loop, constantly checking for the
AEmptyFlag , ready to perform the refill, counting the bytes we read from the file until
we use them all up.

 // 13. keep feeding the buffers in the playing loop
 // as long as entire buffers can be filled
 while (lc > 0)
 { // 13.1 check user input to stop playback
 if (readKEY()) // if any button pressed
 {
 lc = 0; // playback completed
 break;

 }

Musica, Maestro 509

 // 13.2 check if a buffer needs a refill
 if (AEmptyFlag)
 {
 r = freadM(ABuffer[1-CurBuf], B_SIZE, f);
 lc-= r; // decrement byte count
 AEmptyFlag = FALSE; // refilled

 // 13.3 < < put here additional tasks > >
 putsLCD(" \n "); // on the second line
 sprintf(s, " %dKB " , (wav.dlength-lc)/1024);
 putsLCD(s); // byte count
 }

 } // while wav data available

 In the “ feeding ” loop we need to check for user input, reading the Explorer 16 buttons
status, so that pressing a button we can stop the playback at any time. Immediately after
loading a new buffer full of data, we will have a little time to spare, so this is the perfect
place to put additional (short) tasks, such as updating a byte count on the LCD display,
for example.

 When the data left in the file is no longer sufficient to fill an entire buffer load, we can
pad the buffer to size, repeating the last sample.

 // 14. pad the rest of the buffer
 last = ABuffer[1-CurBuf][r-1];
 while(r < B_SIZE)
ABuffer[1-CurBuf][r++] = last;

AEmptyFlag = FALSE; // refilled

 We wait then for the completion of the playback of the very last buffer, and we
immediately terminate the audio playback.

 // 15.finish the last buffer
 AEmptyFlag = FALSE;
 while (!AEmptyFlag);

// 16. stop playback

haltAudio();

510 Day 16

 Closing the file, we will release the allocated memory and we will return to the calling
application.

 // 17. close the file
 fcloseM(f);

 // 18. return with success
 return TRUE;

 } // play

 The Audio Routines
The playWAV() function we have just completed relied heavily on the lower-level
audio functions to perform the actual Timer and OC peripheral initialization as well as
the actual periodic update of the PWM duty cycle. The OC1 and OC2 modules are used
simultaneously to produce the left and right channels. The timer interrupt routine will
remain the real core of the playback functionality, just as in the previous TestDA project.
A global pointer BPtr will keep track of our position inside each buffer as we will be
using up the data to feed the PWM modules with new samples at every period.

 void __ISR(_TIMER_2_VECTOR, ipl4) T2Interrupt(void)
 {
 // 0. allow interrupt nesting
 asm(" ei ");

 // 1. load the new samples for the next cycle
 OC1RS = 30+(*BPtr ^ ACfg.fix);
 if (ACfg.stereo)
 OC2RS = 30 + (*(BPtr + ACfg.size) ^ ACfg.fix);

else // mono

 OC2RS = OC1RS;

Note

 Although we can assign a medium priority to the Timer2 interrupt, we want to immediately
reenable the interrupts so that a higher-priority interrupt can be immediately nested and
serviced. After all, we have the luxury of an entire sampling period (22 us @ 44.1 kH) available
to update the duty cycles of the two OC modules, whereas other higher-priority interrupts (for
example, the composite video module, if we ’ re to use it simultaneously . . . hint) might be less
willing to wait for this interrupt to complete.

Musica, Maestro 511

 The pointer is advanced by a number of bytes that depends on both the size of the
samples (16 or 8 bits each) as well as the need to skip samples to reduce the sample rate
when the playWAV() function determines it is necessary.

 // 2. skip samples to reduce the bitrate

 BPtr += ACfg.skip;

 As soon as a buffer-load of data is used up, we need to swap the active buffer.

 // 3. check if buffer emptied
 if (--BCount == 0)
{
 // 3.1 swap buffers
 CurBuf = 1- CurBuf;

 // 3.2. place pointer on first sample
 BPtr = & ABuffer[CurBuf][ACfg.size-1];

 // 3.3 restart counter
 BCount = B_SIZE/ACfg.skip;

 // 3.4 flag a new buffer needs to be filled
 AEmptyFlag = 1;

 }

 We also reload the samples pointer, reset the samples counter, and set a flag to alert the
playWAV() routine that we need a new buffer to be prepared before we run out of data
again. Only then can we exit after clearing the interrupt flag.

 // 4. clear interrupt flag and exit
 mT2ClearIntFlag();

 } // T2Interrupt

 The initialization routine is also minimally changed from the original of the TestDA
project.

 void initAudio(void)
 { // configures peripherals for Audio playback

 // 1. activate the PWM modules
 // CH1 and CH2 in PWM mode, TMR2 based
 OpenOC1(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE,

 0, 0);
 OpenOC2(OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE,

 0, 0);

512 Day 16

 // 2. init the timebase
 // enable TMR2, prescale 1:1, internal clock, period
 OpenTimer2(T2_ON | T2_PS_1_1 | T2_SOURCE_INT, 0);
 mT2SetIntPriority(4); // set TMR2 interrupt priority

 } // initAudio

 But the actual audio playback is only started when we enable the Timer 2 interrupts, and
that happens only after the playback state machine is properly initialized:

 void startAudio(int bitrate, int position, int count)
 { // begins the audio playback

 // 1. init pointers and flags
 CurBuf = 0; // buffer 0 active first
 BPtr = ABuffer[CurBuf] + position;
 AEmptyFlag = FALSE;

 // 2. number of actual samples to be played
 BCount = count/ACfg.skip;

 // 3. set the period for the given bitrate
 PR2 = FPB / bitrate-1;

 // 4. enable the interrupt state machine
 mT2ClearIntFlag(); // clear interrupt flag
 mT2IntEnable(1); // enable TMR2 interrupt

 } // startAudio

 Correspondingly, the haltAudio() function is just a matter of disabling the timer
interrupts and therefore freezing the Output Compare module update, and with it the
entire state machine.

 void haltAudio(void)
 { // stops playback state machine
 mT2IntEnable(0);

 } // halt audio

 To complete the audio module, we need just a simple header to publish the details of the
playWAV() function and make it available to the project main module.

Musica, Maestro 513

 /*
 ** AudioPWM.h
 */

 int playWAV(char *name);

 A Simple WAVE File Player
 Let ’ s create a new main module that we will call WavePlayer.c . We will use the LCD
display to prompt the user and to provide a little visual feedback in case of error as
well as during the playback (see the notes 13.3 inside the core playWAV() function
loop).

 /*
 ** WavePlayer.c
 */
 // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
 #pragma config POSCMOD=XT, FNOSC=PRIPLL
 #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
 #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

 #include < p32xxxx.h >
 #include < plib.h >
 #include < explore.h >
 #include < SDMMC.h >
 #include < fileio.h >
 #include < LCD.h >
 #include " AudioPWM.h "

 main(void)
 {
 initEX16();
 initLCD();
 putsLCD(" Insert card...\n ");
 while (!getCD());
 Delayms(100);

 if (!mount())
 putsLCD(" Mount Failed ");

514 Day 16

 else
 {
 clrLCD();
 putsLCD(" Playing ... ");
 if (!playWAV(" VOLARE.WAV "))
 {
 clrLCD();
 putsLCD(" File not found ");

 }
 }

 while(1)
 {
 } // main loop

 } //main

 Build the project and program the code on the Explorer 16 board using your in-circuit
debugger of choice, but don ’ t forget to reserve room for the heap because the
fileio module will use it to allocate buffers and data structures (remember to be
generous . . .).

 To proceed gradually, I recommend that you test the program with WAVE files of
increasingly high sample rates and sizes. For example, you should run the first test
with a WAVE file using 8-bit samples, mono, at 8k samples/second. Then proceed by
gradually increasing the complexity of the format and the speed of playback, possibly
aiming to reach with a last test the full capabilities of our application with a 16-bit per
sample, stereo, 44,100 samples/second file. The reason for this gradual increase is that
we need to verify whether the performance of the fileio.c module is up to the task. As the
sample rate, number of channels, and size of the samples increase, so does the bandwidth
required from the file system. We can quickly calculate the performance levels required
by a few combinations of the above parameters.

 Table 16.4 shows the byte rate required by each file format—that is, the number
of bytes that get consumed by the playback function for every second (sample size �
channels � sample rate). In particular, the last column shows how often a new buffer
full of data will be required to be replenished (512 / byte rate), which gives us
the time available for the playWAV() routine to read the next sector of data from the
WAV file.

Musica, Maestro 515

 Now if you start experimenting gradually, as I suggested, moving down the table, you
should be able to verify that you can obtain a smooth playback with any type of WAVE
file all the way down to the latest row, where a sustained bit rate of more than 1.4 Mbit
per second (8*Byterate) is required to keep the playback going uninterrupted.

 Table 16.4 : WAVE file playback bandwidth requirements.

File Sample Size Channels Sample Rate Byte Rate Reload
Period (ms)

 Voice mono 1 1 8,000 8,000 64.0

 Voice stereo 1 2 8,000 16,000 32.0

 Audio 8-bit mono 1 1 22,050 22,050 23.2

 Audio 8-bit stereo 1 2 22,050 44,100 11.6

 Audio 8-bit high
bit-rate mono

 1 1 44,100 44,100 11.6

 Audio 8-bit high
bit-rate stereo

 1 2 44,100 88,200 5.8

 Audio 16-bit mono 2 1 44,100 88,200 5.8

 Audio 16-bit stereo 2 2 44,100 176,400 2.9

 Note

 Since we decided for simplicity to use uniformly 8 bits of resolution for the PWM outputs, you
shouldn ’ t expect any increase in the quality of the audio output once you attempt to play back
a WAVE file in one of the last two formats. All you will obtain at that point is a waste of the
space on the SD/MMC memory card. If you want to maximize the use of the available storage
space, make sure that when you copy a file onto the card, you reduce the sample size to 8 bits.
That way you will be able to pack a double number of music files on the card.

 Debriefing
 This final lesson was perhaps the ideal conclusion for our long journey as we mixed
the most advanced software and hardware capabilities in a project that covered both
the digital and the analog domain. We started using the Output Compare peripherals to
produce analog signals in the audio spectrum of frequencies. We used this new capability

516 Day 16

together with the fileio.c module, developed in the previous lesson, to play back
uncompressed music files (WAVE file format) from a mass storage device (SD/MMC
card). The basic media player application we obtained represents only a new starting
point. There is no limit to the possible expansions of this project, and if I have managed
to excite your curiosity and imagination, there is no limit to what you can do with the
PIC32 and the MPLAB C32 compiler.

 Tips & Tricks
 The beginning and the end of the playback are two critical moments for the PWM
modules. At rest the output filter capacitor is discharged and the output voltage is 0 V. But
as soon as the playback begins, a 50-percent duty cycle will force it to ramp very quickly
to approximately a 1.5 V level, producing a loud and unpleasant click. The opposite might
happen at the end should we turn off the PWM modules instead of simply disabling
the interrupts as we did in the demo project. The phenomenon is not dissimilar to what
happens to analog amplifier circuits at power-on and -off. A simple workaround consists of
adding just a couple of lines of code. Before the timer interrupt is enabled and the playback
machine starts, add a small (timed) loop to gradually increase the output duty cycle from
zero all the way up to the value of the first sample taken from the playback buffer.

 Exercises
 1. Investigate ADPCM decoding for use with voice messages (see application note

AN643).

 2. Search for all the .wav files on the card and build a playlist.

 3. Implement a shuffle mode using the pseudo-random number generator and the
playlist.

 4. Perform a real-time signal spectrum analysis (FFT) and display the results with a
video animation (graphic equalizer visualization).

 Books
 Mandrioli , D. and Ghezzi , C. , Theoretical Foundations of Computer Science (John

Wiley & Sons , NY , 1987) . Not easy reading, but if you are curious about the deep
mathematical theoretical foundations of computer science . . .

Musica, Maestro 517

 Links
http://en.wikipedia.org/wiki/RIFF . The RIFF file format explained.

http://en.wikipedia.org/wiki/WAV . The WAVE file format explained.

http://ccrma.stanford.edu/courses/422/projects/WaveFormat/ . Another excellent
description of the WAVE file format.

 Disclaimer
 Don ’ t try this at home!

 Final Note for the Experts
 “ Nel Blu Dipinto di Blu ”
 Italy, 1958; Domenico Modugno
 Written by Franco Migliacci and Domenico Modugno

Penso che un sogno cosí non ritorni mai piú:
Mi dipingevo le mani e la faccia di blu
Poi d ’ improvviso venivo dal vento rapito
E incominciavo a volare nel cielo infinito
Volare, oh . . . cantare, oh . . .

 The lyrics are in Italian. The title translates to “ In the Blue (Sky), Painted in Blue ”
(volare � to fly). Modugno sings about dreaming of painting his face and hands blue and,
after being lifted by a sudden wind gust, flying away in the blue sky.

 Dare to make your dreams came true!

This page intentionally left blank

www.newnespress.com

 A
ABuffer [] , 507
 Adaptive differential pulse-coded

modulation (ADPCM) ,
 498

ADC1BUF0 register , 255
AD1CHS register , 255 , 267
 ADC library , 257–258
AD1CON1 register , 252 , 253
AD1CON2 register , 252
AD1CON3 register , 252 , 254
AD1CSSL register , 252
addrLCD () , 229
ADON , 252
AD1PCFG register , 252
 ADPCM ; see Adaptive

differential pulse-coded
modulation (ADPCM)

 AEmptyFlag fl ag , 508
AINPUTS , 252
 Alphanumeric modules , 220
 amask , 253
 Analog-to-digital conversion ,

 253–254
 demo for , 255–257

 Analog-to-digital converter
(ADC) , 249

 basic conversion routine , 254
 block diagram of ten-bit

high-speed , 250–251
 control registers , 251–253
 creating mini library ,

 257–258
 and game program , 258–261
initADC() , 252–253
 and potentiometer , 251–252
 sampling timing in , 254–255
 and temperature sensing ,

 261–266
 voltage input in , 253

 Analog waveforms , 492–497
 algorithm for , 494
 and Boethian notation , 495
 spreadsheet program for ,

 495–496
 Animate mode , 31–35

 delay loop for , 33–34
 Timer1 for , 31–33

 ANSI C standard, integers in , 62
 Arithmetic expressions; see Logic

expression
 Arithmetic libraries

 fl oating point , 69–70
 integers; see Integers
 measuring performance of; see

 StopWatch tool
 Arrays , 49–50

 initialization for message ,
 50–51

 ASCII characters , 220
 arrays , 116
 visual displaying of , 387–390
 visual printing of , 392–394

 ASCII Setup dialog box , 206
 Assignment statement , 8
 Asynchronous serial application,

classes of , 198
 Asynchronous serial

communication
interface; see Universal
asynchronous serial
communication interface
(UART)

AT (x, y) , 394
AudioCfg fi le format , 503
 AudioVideo32 board , 406

 B
 Baud rate , 200 , 201 , 202 , 215

 in asynchronous serial

interfaces , 176
 in SPI synchronous serial

interfaces , 179 , 180 , 196
 Baud Rate Generator (UxBREG) ,

 200
 Binary operators , 38
 BitBLT (bit block transfer) , 391
 Bit reversal array , 155 , 156
 Blocking function , 279
 Block read command , 410
 Block write command , 410
 BMX; see Bus matrix (BMX)
 Boolean logic values , 28
 Boot record , 440
 Break code , 325
 Bresenham, Jack E. , 370
 Bresenham algorithm , 370–373
 Buffer , 435
 Build Project checklist , 358
 Bus matrix (BMX) , 131 , 347

 in memory splitting , 132
busyLCD () , 229
 Button inputs , 272–275

 debouncing , 277–280
 packing , 275–277

 Byte command , 182

 C
 Cache , 347 , 348
 Cache memory module , 163–164

 pre-fetched cached data in ,
 164–165

 Cartesian coordinate system , 364 ,
 391

 CGRAM; see Character
generator RAM buffer
(CGRAM)

 Change notifi cation (CN) module ,
 302–308

 cost evaluation , 308–309

 Index

520 Index

www.newnespress.com

 Character generator RAM buffer
(CGRAM) , 220

\n character (new line) , 233
\t character (tab) , 233
 char integer , 46
 Checklist

 project build , 179 , 184 , 188 ,
 190

 project setup , 200 , 204 , 211
 Chip On Glass (COG) technology ,

 220 , 333
chunks , 500
 C language

 inner iteration , 381–382
 pseudo-random number-

generator functions of ,
 366

clearHScreen () , 400
clearScreen () , 356
 C library stdio.h , 444
 Clipping , 365
 Clock output (SCK) , 408
 Clock-polling state machine ,

 310–314
 Clock system

 confi guration , 148–149
 confi guration bits; see

 Confi guration bits
 oscillators , 142–143
 peripheral bus clock , 147–148
 primary oscillato clock chain ,

 146–147
Clrscr () , 394
 clusters , 428–429
CNCON register , 303 , 329
CNEN register , 303 , 329
CNPUE register , 303 , 329
 COG technology; see Chip On

Glass (COG) technology
 Communication device class

(CDC) , 215
 Communication protocol, PS/2 ,

 289–290
 Compiling , 9
 Composite video interface , 350 ,

 364
 Composite video signal

 defi ned , 334 , 335
 generating , 337–342
 hardware interface , 337
 interface , 350 , 364
 NTSC , 335
 testing , 357–360

 Confi guration bits , 148
 in codes , 150–152

 Console library
 building , 206–209
 testing; see VT100 terminal

testing
 Contact bouncing , 273
 Cyclic redundancy check (CRC) ,

 409

 D
 D/A converter

 testing of PWM as , 490–492
data chunk , 501 , 505
 DDRAM; see Display Data RAM

buffer (DDRAM)
 Debouncing , 277–280

 contact , 273
 Debugging , 12–13
 Deinterlacing , 336
 Delay loops , 33–34
 Digital signal processing

 coding , 152–153
 FFT; see Fast Fourier

Transform
 DIN connector , 288 , 289
 Direct memory access (DMA)

controller , 346
 channel chaining , 351
 functions , 348
 library; see Dma.h
 source pointer , 355

 Display data RAM buffer
(DDRAM) , 220

 Division, of integers , 67–68
 DMA; see Direct memory Access

(DMA)
 DMA channel chaining , 351
DmaChnSetControl () ,

 348 , 351
DmaChnSetEventControl

() , 348
DmaChnSetTxfer () , 348 ,

 356
DmaCHOpen () , 348
 dma.h , 347
 Do loops , 44–45
 DONE control bit , 253 , 255

 Double buffering , 399–401 ; see
also Image buffers

 Drawing, lines , 368–370
drawProgressBar() , 244

duty cycle , 486 ; see also Pulse
width modulation (PWM)
mode

 E
 EEPROM, serial , 179 , 180 , 181

 32-bit, library , 187–191
 testing , 191–193

 sending commands to , 183
 status register , 185–186
 writing data to , 186–187

 8-bit registers , 221
 8088 processor; see

 Microprocessors
 Embedded-control applications ,

 173
 communciation in; see

 Synchronous serial
communication interfaces;
Universal asynchronous
receiver and transmitters
(UART)

 Embedded-control memory map ,
 134–135

 kernel mode virtual map , 135
 equal-to operator , 28
 “ escape sequences ” , 209 , 210
 Exceptions , 82–83

 vectors table , 83
_exit () function , 27
 Explorer 16 buttons

 inputs , 272–280
 layout , 272 , 275

 Explorer 16 demonstration board
 interfacing , 406–407
 message testing with , 54–55

Index 521

www.newnespress.com

 for R6 potentiometer , 251
 to SD/MMC memory

technology , 406
 for TC1047A temperature

sensor , 262
 External clock source (EC) mode ,

 143
 External low-frequency and low-

power oscillator , 142
 External primary oscillator

(POSC) , 142

 F
 False logic value , 28 , 29
 Fast Fourier Transform (FFT) ,

 153
 algorithm , 154–158
 arrays initialization in , 155–156
 confi guration bit settings ,

 157–158
 initializations , 158
 symbols used in , 156–157

 FAT , 16
 accessory functions , 459 ,

 473–476
 books , 482
 closing a fi le , 459 , 471–472
 code size , 480–481
 debriefi ng , 481
 exploration , 428
 fi le allocation table , 429–430
 fi leio module , 460–462
 fundamental questions related

to , 433–444
 links , 483
 opening a fi le , 444–454
 preparation , 427–428
 reading data from a fi le ,

 454–459
 root directory , 430–433
 sectors and clusters , 428–429
 testing fopenM() and

freadM() , 463–465
 testing the complete fi leio

module , 476–480
 tips & tricks , 481–482
 writing data to a fi le , 465–471

 FAT fi le system , 427
fcloseM() , 471
 FFT; see Fast Fourier Transform

(FFT)
 File Allocation Table (FAT) , 428 ,

 429–430
 fi leio.c , 460 , 465
 Files, in project build

 header fi les , 10
 library fi les , 9
 object fi les , 9
 other fi les , 10
 source fi les , 9

fi ndDIR() , 448 , 449 , 451 , 467
 First-in/fi rst-out (FIFO) buffer ,

 319–322
 Fixed mapping translation (FMT) ,

 130–131
 Flash memory

 bus offering access to , 118 , 121
 mapping , 132–133 , 134 , 135
 memory space allocation , 118 ,

 121
 wait states confi guration ,

 160–163
 Flash memory, of PIC32 , 390
 Floating point , 69–70

 measuring performance of; see
 StopWatch tool

fmt chunk , 501 , 504
Font8x8 [] array , 390
fopenM() , 445 , 450 , 459
 For loops , 47–48

 examples of , 48–49
 Fractals, defi nition of , 380
 Frame; see Video frame signals
 Framed Slave mode , 349
freadM() , 454 , 455
fwriteM() , 465–466

 G
 Gates, Bill , 427
 “getC () ” function , 327–328
 “getK () ” button encoding ,

 277–280 , 321
getKey () , 373
getLCD () , 229

 Graphic card , 385
 greater-or-equal to operator , 29
 greater-than operator , 29
 Group priority level , 85–86

 H
haltAudio () , 512
haltVideo () , 356
 Hardware interface

 for generation of composite
video signal , 337

 HD44780 Controller
 command bits , 223
 compatibility of with LCD

display modules ,
 221–223

 instruction set , 222
 Header fi les , 10
 Heap , 128–129
 Hex dump format , 126
Home () , 394
 Home computers; see ZX

Spectrum
 Horizontal line signal , 336
 Horizontal synchronization pulse ,

 336 , 338
 generating , 342

 HRES (horizontal resolution); see
 Resolution

 HyperTerminal Properties dialog
box , 205

 I
 IBM PC XT , 385
 ICSP/ICD interface , 16
 I 2 C synchronous serial interfaces ,

 174 , 175
 block diagram , 174
vs. SPI synchronous serial

interfaces , 176–177
vs. UART , 176–177

 ICW rotary encoder , 283
ICxC32 control bit , 329
ICxCON register , 329
ICxFEDGE control bit , 329
 Image buffers , 345–346

 VH pointer , 364

522 Index

www.newnespress.com

 Image memory map , 356
#include , 234
 include directory, creating ,

 237–240
 include search path , 238 , 240
 Incremental encoders , 280
initADC() , 252
initAudio() , 508
 “initEX16 () ” function , 287
 initialization , 30
initLCD() , 231
initMedia() function , 412
initVideo () , 400
 Inner iteration, in C language ,

 381–382
 Input capture modules , 290–296

 cost evaluation , 308–309
 Input/output (I/O) pins , 200 , 202

 direction of , 14–15
 PortA in; see PortA
 PortB in , 17–19

 Input/output (I/O) polling ,
 309–314

 cost and effi ciency evaluation ,
 317–319

 testing , 314–317
 Integer data type; see Integers
 Integers

 in ANSI C standard , 62
 code generated by compiler , 63
 divisions , 67–68
 int integer , 62 , 63
 long long integers , 62 , 65–66
 measuring performance of; see

 StopWatch too
 multiplication , 63
 optimizations , 64

 testing , 64–65
 Interlacing , 336
 Internal low-frequency and low-

power oscillator (LPRC) ,
 142

 Internal oscillator (FRC) , 142
 Interrupt

 application of , 103–108
 handler , 82

 declaration , 88–89

 latency , 82
 library management , 90
 managing multiple interrupt ,

 95–98
 multivectored management; see

 Multivectored interrupt
management

 priorities , 85–88
 single vector management; see

 Single vector interrupt
management

 sources of , 84–85
 Interrupt-driven rotary encoder

input , 283–287
 Interrupt Enable bit , 85
 Interrupt Flag bit , 85
 interrupt service routine (ISR) ,

 82 ; see also Interrupt
handler

 int integers , 62 , 63
 Isometric projection , 376

 J
 JTAG port , 16–17

 and PortA , 16 , 17
vs. ICSP/ICD , 16

 K
 Kata Kana characters , 220
 Kernel mode virtual map , 135
 Keyboards , 288

 interfacing to PS/2 , 290–324
 Keyboard-to-host communication

waveform , 289
 Key code decoding , 324–328

 L
 latency, interrupt , 82
 LCD busy fl ag , 228 , 229
 LCD display modules
busyLCD() function for ,

 229–231
 and COG technology , 220
 Explorer 16 for , 219–221
 HD44780 compatibility with ,

 221–223

 initialization sequence ,
 226–228

 small library of functions to
access , 225–231

 for WAVE fi le player , 513–514
 25LC256 device datasheet ,

 179 , 180 , 182 ; see also
 EEPROM, serial

 LCDlib.c module , 276
 LCD library , 231–235
 LCD module control

 advanced , 341–342
 PMP confi guration for ,

 224–225
 LCD module controller RAM

buffer , 220 ; see also LCD
module control

 LCD module Read Busy Flag ,
 228

 LCD status register , 228 , 229
 LED , 415 , 418 , 420 , 421

 connected to PortA , 50
 less-or-equal to operator , 29
 less-than operator , 29
 lib directory, creating , 237–240
 Library fi les , 9
LINE_T , 340
 Linker script , 9 , 10–11 ,

 125–126
 Linking , 9
 Logical block addresses (LBA) ,

 414
 Logic analyzer , 35–37 , 358–359

 measuring performance
of video interface by ,
 360–361

 message testing with , 53–54
 view , 318 , 319

 Logic expression , 28
 Logic operators , 28–29
 long integer , 45
 long long integer , 46 , 62 , 65–66
 Loops

 delay loop , 33–34
 do loops , 44–45
 for loops; see For loops
 main loop , 30 , 33–34

Index 523

www.newnespress.com

 for sending message; see
 Message, loops for

 while loops , 28–30 , 43 , 45
 Low-frequency oscillator ,

 108–109
 Low-pass fi lter circuit , 487

 analog output of , 487
 Luminance pulse , 337

 M
main () function , 7

 infi nite loop for , 44
 Main loops , 30

 delay loops in , 33–34
 Make code , 325
malloc () , 435
 Mandelbrot, Benoit , 380
 Mandelbrot set

 algorithm , 381–382
 cardiod , 384
 defi ned , 380
 program , 382–384

 Map fi les , 123–126
 list of archives in , 124
 memory confi guration table ,

 124–125
 memory sections , 125–126
 Mass storage technologies ,

 403 ; see also Multi media
card (MMC) ; Secure
digital (SD)card

 criteria , 404
 master boot record (MBR) , 436
 Math functions , 373–376
 McDonald, Marc , 427
 Mechanical switch , 272

 button inputs , 272–280
 electrical response of , 272–273
 rotary encoders , 280–287

 MEDIA , 435 , 442 , 444 , 445
 Media player , 498–499
memcpy () , 456 , 469
 Memory allocation techniques ,

 118–123
 Memory management unit

(MMU) , 130

 Memory mapping
 embedded-control applications

in , 134–135
 PIC32MX , 130–134

 Memory Usage Gauge , 21
 Message, loops for

 initializing arrays for , 50–51
 main program with variable

declarations , 51–52
 testing

 with Explorer 16
demonstration board ,
 54–55

 with Logic analyzer ,
 53–54

 with PIC32 Starter Kit ,
 55–57

 timing constants , 50
 Messages, voice , 497–498
 MFILE , 444 , 445 , 446 , 448 , 449 ,

 450 , 453 , 454 , 459 , 466 ,
 467

 Microchip TC1047A device ,
 261–266

 Microprocessors , 385
 MicroSD cards , 405
 MiniSD cards , 405
 MIPS core , 39

 assembly programming
interface , 64

mount() , 443 , 445
 MPLAB C32 compiler , 346
 MPLAB C32 linker , 435–436
 MPLAB memory usage gauges ,

 424
 MPLAB SIM, for debugging ,

 12–13
 MPLAB SIM simulator , 357 , 360
 MPLAB SIM software simulator ,

 296 , 301–302
mPMPMasterReadByte() , 231
mPMPOpen() , 231
MPSetAddress() , 231
 MSb fi rst , 364
 Multi media card association

(MMCA) , 404

 Multi media card (MMC) , 404
 connectors pin-out , 405

 Multiple interrupt, managing ,
 95–98

 coding , 95–96
 steps for new code , 97

 Multivectored interrupt
management , 98–103

 coding for , 101–102
 Timer2 for , 103
 vector table for , 99–100

 MUXA , 252

 N
newDIR() , 467 , 473
newFAT() , 466 , 470 , 474 , 475
nextFAT() , 457
 NOT-equal to operator , 28
 NTSC video standard , 335 , 364

 O
 Object fi les , 9
OC32 control bit , 396
OCM bits , 488
OCxCON control register , 342 ,

 343 , 392
OCxCON register , 488 , 490
OCxR register; see OCxCON

register
OCxRS register , 490
 OLED; see Organic LED displays

(OLED)
OpenTimerXX () function , 159
 Optimizations, integers on , 64

 testing , 64–65
 Organic LED displays (OLED) ,

 219
 OR operation, binary , 365
 Other fi les , 10
 Output compare modules ,

 342–344 , 488–490
 initialization routine for , 490
 media player and , 498–499
 producing analog waveforms

with , 492–497
 Output window , 301

524 Index

www.newnespress.com

 P
 Pac-Man game program , 258–261
 Painted image , 334
 PAL video standard , 335 , 336
 Parallel interfaces; see Parallel

master port (PMP)
 Parallel Master Port (PMP) , 177 ,

 223–224
 confi guration for LCD module

control , 224–225
 partition table , 436
 Performance , 144 , 145
 peripheral bus clock , 147–148
 Peripheral libraries , 40–41
 Phase locked loops (PLL) , 146

 multiplication factor of , 147
 PIC24 , 399 ; see also

 Microprocessors
 PIC32 , 329

 interfacing to PS/2 , 290
 PIC32 microcontroller

 amount of RAM to store video
image in , 340 , 345

 cache , 347 , 348
 fl ash memory of , 390

 PIC32MX bus , 129–130
 PIC32MX memory mapping ,

 130–134
 PIC32 Starter Kit

 message testing with , 55–57
 PICTail , 296
 PICTail daughter board , 407
 PICTail™ , 361
 Pixels, coordinate position of ,

 364–365
play() ; see PlayWAV()
playWAV() , 501–510

 and audio routines , 510–512
 coding of , 503–505
 and playback sample rate ,

 506–510
plot () , 366
 Plotting, of graphical objects ,

 364–366
PMCON register , 224 , 245
PMMODE register , 228 , 246

 PMP busy fl ag , 228 , 229
 PMP data buffer (PMPDIN) , 228
 PMPDIN; see PMP data buffer

(PMPDIN)
 PMP library , 231–235
PMPMasterWrite() , 231
 PMP mode; see Parallel Master

Port (PMP) mode
 PMP-to-LCD connection block

diagram , 228
 Pointers , 127–128
 PortA , 7 , 8

 direction of pins in , 15
 and JTAG port pins , 16 , 17
 LEDs connected to , 50

 PortB , 17–19
 PORTD pins , 223
 PORTE pins , 223
POSTEQ_N , 340
 Potentiometer

 and ADC , 251–252
 Power consumption , 144–145
 PR4 , 309 , 310
PREEQ_N , 340
 Preprocessor , 6
 Primary oscillator clock chain ,

 146–147
 Printing text, on video screen ,

 391
 Progress bar project , 241–245

 code for , 242–243
 Progressive scanning , 336
 Project build

 compiling , 9
 debugging , 12–13
 fi les in , 9–10
 linking , 9

 Project Wizard , 4
PR1 registers , 31
 PS/2

 communication protocol ,
 289–290

 keyboard, interfacing methods
 buffering mechanism ,

 319–324
 change notifi cation (CN)

module , 302–308
 cost and effi ciency

evaluation of modules ,
 308–309 , 317–319

 input capture modules ,
 290–296

 I/O polling , 309–319
 testing using stimulus

scripts , 296–301
 physical interface , 288–289
 PIC32 interfacing to , 290

 Pseudo-random number
generators , 258 , 260

 to test effi ciency of Bresenham
algorithm , 371

 to test video library project ,
 366

 Pulse width modulation (PWM)
mode , 485

 audio routines , 510–512
 and low-pass fi lter , 487
 OC modules; see OC modules
playWAV() , 501–510
 and reproduction of voice

messages , 497–498
 resolution of , 486
 signals , 486–488
 testing as D/A converter ,

 488–490
putcU () , 396
putcV () , 392 , 396
putLCD() , 240
putsLCD() , 230 , 232
 PWM; see Pulse width

modulation (PWM)
 PWM fi lter circuit, audio , 499

 Q
 Quadrature encoders , 281

 R
\r character (line end) , 233
 RAM, amount of

 on PIC32 , 340 , 345
 RAM memory

Index 525

www.newnespress.com

 bus offering access to , 129
 map fi les , 126
 mapping , 132–134
 memory space allocation , 118 ,

 121
 placing heap in , 128–129

rand() , 258
 RCA jack , 361
readDATA() , 449 , 450
readFAT() , 458 , 459
 “ readK () ” button encoding ,

 275–277
readSECTOR() , 414 , 416 , 436 ,

 449
READ_SINGLE (CMD17)

command , 413–414
 Read status register command,

testing , 182–186
ReadW() macro , 441
 Real-Time Clock and Calendar

(RTCC) , 109–111
 confi guration of , 110–111

 Resolution, horizontal and
vertical , 340 , 345 , 357

 RIFF chunk , 500
 RIFF fi le format , 500 ; see also

 WAVE fi le format
 root directory , 430–433
 Rotary encoders , 280–283

 interrupt-driven inputs ,
 283–287

 state machine , 284
 rotations array , 155
 RS232 transceiver device , 198
 RWTest program , 423
 RX , 176

 S
 SAMP control bit , 253 , 255 ,

 267
 Sampling timing, automating

 in ADC , 254–255
 Scan codes , 324–325
 Scanning

 progressive , 336
 video image , 334

 SCK clock line , 195
 SCK pin , 178 , 180
 SCL , 174 , 175
 SCL Generator timing example

for basic , 298
 SDA , 174 , 175
 SDI , 174 , 175 , 178 , 193
 SD/MMC cards , 404 ; see also

 SPI interface
 to explorer 16 demo board , 406
 project , 407–408
 reading data from , 413–415
 testing , 419–424
 writing data to , 416–419

 SDMMC.c module functions , 434
 SDO , 174 , 178 , 193
 SECAM video standard , 335 ,

 336
 Secondary oscillator; see Low-

frequency oscillator
 Sectors , 428
 Secure Digital Card Association

(SDCA) , 404
 Secure digital (SD) card , 404

 command response code , 411
 connectors pin-out , 405
 initialization , 411–413
 modes of communication , 405
 specifi cations , 404 , 411
 writing data to , 414

 SEE; see EEPROM, serial
 Serial communication interfaces;

see I 2 C synchronous serial
communication interfaces;
SPI synchronous serial
communication interfaces;
Universal asynchronous
receiver and transmitters
(UART)

 Serial interface engine (SIE),
USB , 215

 Serialization , 346–353
 Shadow registers , 101
 short integer , 46
 Simulator profi ler , 301–302
sin () , 375 , 495

singleV () , 401
 Single vector interrupt

management , 90–95
 coding , 91 , 92
 testing , 93
 Timer2 for , 90–91 , 92 , 94

 Sinusoidal function graph , 375
 Slave select (SS) , 175
 Software simulator , 10–11
 Source fi les , 9
 SPI baud rate generator

(SPI2BRG) , 408
SPI2CON register , 407
 SPI interface , 405

 selecting , 408
 sending commands in , 408–411

 SPI module , 346
 testing , 357–360

 SPI peripheral module (SPI1) ,
 406

 SPI synchronous serial interfaces ,
 174 ; see also SPIxCON
control register

 advantage of , 175
 baud rate in , 179 , 180 , 196
 block diagram , 175
 clock frequency of , 180
 communication using , 179–182
 module block diagram , 178
 PIC32 , 175
vs. I 2 C , 176–177
vs. UART , 176–177

SPIxCON control register , 179 ,
 180 , 194

 Spreadsheet
 to compute 100-point sinusoid ,

 496
 Startup code , 7
 Stimulus scripts , 296–301
 StopWatch tool , 70–73

 coding , 70–71
 StepOver command execution ,

 71–72
 String declaration , 116–117
 Subpriority level , 86
 S-Video , 364

526 Index

www.newnespress.com

SV_LINE , 355
SV_POSTEQ , 358
swapV () , 400
 Synchronization , 346–353
 Synchronization pulses

 horizontal , 336 , 338
 vertical , 336 , 339

 Synchronous serial
communication interfaces

 I 2 C; see I 2 C synchronous serial
communication interfaces

 SPI; see SPI synchronous
serial communication
interfaces

versus UART , 174

 T
T1CON , 32–33
 Temperature sensing

 in ADC , 261–266
 Temperature sensors; see

 Microchip TC1047A
device

 Text; see ASCII character set
 Text Test project , 395
 Timer1 , 31–33 , 226

 application of , 103–108
 low-frequency oscillator for ,

 108–109
 Timer2

 for multivectored interrupt
management , 103

 for single vector interrupt
management , 90–91 , 92 ,
 94

 Timers
 combining , 159–160
OpenTimerXX () for , 159
 Timer1; see Timer1
 Timer2; see Timer2
WriteTimerXX () for , 159

T2Interrupt() , 508
 TM162JCAWG1, Tianma , 220
 TMR1 , 31
 Tracing function , 35–36
 Triangular waveform , 494

 TRISA register , 15
 True logic value , 28 , 29
 TV broadcasting , 336
 Two-dimensional function, graph

of
 visualization , 376–380

 TX , 176

 U
 UART; see Universal

asynchronous receiver and
transmitters (UART)

 U2MODE , 201 ; see also
 UxMODE control
registers

 initialization value for , 201
 Universal asynchronous receiver

and transmitters (UART) ;
see also Console library

 basic functionality of , 199
 baud rate , 200 , 201 , 202 , 215
 baud rate in , 176
 block diagram , 176
 confi guration , 200–202
 control registers; see UxMODE

control registers
 as debugging tool , 211
 demo project, matrix , 211–214
 modules block diagram , 199
 receiving data from , 203
 sending data to , 202–203
 testing , 204–206
vs. I 2 C , 176–177
vs. SPI synchronous serial

communication interfaces ,
 176–177

vs. synchronous serial
communication interfaces ,
 174

 USB bus , 198 , 288 , 290
 serial interface engine (SIE) ,

 215
 User-defi ned symbols , 240
 U2STA , 201

 initialization value for , 202
 UxMODE control registers , 201

 V
 Variable declarations , 45–46
 Vectored interrupts , 98–103
 Vertical synchronization pulses ,

 336 , 339
 VGA , 364
 VH pointer , 364
 Video frame signals , 336
 Video image

 buffering , 345–346
 drawing lines , 368–370
 memory map , 346
 scanning , 334

 Video interfaces , 364
 Video library , 353–355
 Video memory

 direct memory access
controller , 346

 image map , 346
 writing text on , 387–390

 Video pins , 337 , 345 , 346
 Video project , 356–357
 Video standards, international ,

 335
VirtToPhys () , 356
 Voice messages

 PWM and reproduction of ,
 497–498

 Voltage
 input in ADC , 253
 output in ADC , 261

 VRES (vertical resolution); see
 Resolution

 VT100 terminal , 206 , 396
 testing , 209–211

 W
 Wait states confi guration, for fl ash

memory , 160–163
 WAVE fi le format , 500–501

 uncompressed , 499
 WAVE fi le player , 513–515

 bandwidth require for , 515
 datafl ow , 507

 Waveforms, analog , 492–497
 algorithm for , 494

Index 527

www.newnespress.com

 and Boethian notation , 495
 spreadsheet program for ,

 495–496
 While loop , 28–30 , 43 , 45

 logic expression , 28–29
 window array , 155
writeFAT() , 475

writeLCD() , 240
writeSECTOR() function , 416
WriteSPI2() , 181 , 182
WriteTimerXX () function ,

 159
 Writing text, on video memory ,

 387–390

 X
xxCON registers , 224

 Z
 ZX80 processor; see

 Microprocessors
 ZX Spectrum , 384–385

	Front Cover
	Programming 32-bit Microcontrollers in C: Exploring the PIC32
	Copyright Page
	Contents
	Introduction
	Part 1: Exploring
	Day 1: The Adventure Begins
	The Plan
	Preparation
	The Adventure Begins
	Compiling and Linking
	The Linker Script
	Building the First Project
	Using the Simulator
	Finding a Direction
	The JTAG Port
	Testing PORTB
	Mission Debriefing
	Notes for the Assembly Experts
	Notes for the PIC MCU Experts
	Notes for the C Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Day 2: Walking in Circles
	The Plan
	Preparation
	The Exploration
	While Loops
	An Animated Simulation
	Using the Logic Analyzer
	Debriefing
	Notes for the Assembly Experts
	Notes for the 8-Bit PIC Microcontroller Experts
	Notes for the 16-Bit PIC Microcontroller Experts
	Notes for the C Experts
	Notes for the MIPS Experts
	Tips & Tricks
	Notes on Using the Peripheral Libraries
	Exercises
	Books
	Links

	Day 3: Message in a Bottle
	The Plan
	Preparation
	The Exploration
	Do Loops
	Variable Declarations
	for Loops
	More Loop Examples
	Arrays
	Sending a Message
	Testing with the Logic Analyzer
	Testing with the Explorer 16 Demonstration Board
	Testing with the PIC32 Starter Kit
	Debriefing
	Notes for the Assembly Experts
	Notes for the PIC Microcontroller Experts
	Notes for the C Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Day 4: NUMB3RS
	The Plan
	Preparation
	The Exploration
	On Optimizations (or Lack Thereof)
	Testing
	Going long long
	Integer Divisions
	Floating Point
	Measuring Performance
	Debriefing
	Notes for the Assembly Experts
	Notes for the 8-Bit PIC® Microcontroller Experts
	Notes for the 16-Bit PIC and dsPIC® Microcontroller Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Day 5: Interrupts
	The Plan
	Preparation
	The Exploration
	Interrupts and Exceptions
	Sources of Interrupt
	Interrupt Priorities
	Interrupt Handlers Declaration
	The Interrupt Management Library
	Single Vector Interrupt Management
	Managing Multiple Interrupts
	Multivectored Interrupt Management
	A Simple Application
	The Secondary Oscillator
	The Real-Time Clock Calendar (RTCC)
	Debriefing
	Notes for the PIC Microcontroller Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Day 6: Memory
	The Plan
	Preparation
	The Exploration
	Memory Space Allocation
	Looking at the MAP
	Pointers
	The Heap
	The PIC32MX Bus
	PIC32MX Memory Mapping
	The Embedded-Control Memory Map
	Debriefing
	Notes for the C Experts
	Notes for the Assembly Experts
	Notes for the PIC Microcontroller Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Part 2: Experimenting
	Day 7: Running
	The Plan
	Preparation
	The Exploration
	Performance vs. Power Consumption
	The Primary Oscillator Clock Chain
	The Peripheral Bus Clock
	Initial Device Configuration
	Setting Configuration Bits in Code
	Heavy Stuff
	Ready, Set, Go!
	Fine-Tuning the PIC32: Configuring Flash Wait States
	Fine-Tuning the PIC32: Enabling the Instruction and Data Cache
	Fine-Tuning the PIC32: Enabling the Instruction Pre-Fetch
	Fine-Tuning the PIC32: Final Notes
	Debriefing
	Notes for the Assembly Experts
	Notes for the PIC® Microcontroller Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Day 8: Communication
	The Plan
	Preparation
	The Exploration
	Synchronous Serial Interfaces
	Asynchronous Serial Interfaces
	Parallel Interfaces
	Synchronous Communication Using the SPI Modules
	Testing the Read Status Register Command
	Writing Data to the EEPROM
	Reading the Memory Contents
	A 32-bit Serial EEPROM Library
	Testing the New SEE Library
	Debriefing
	Notes for the C Experts
	Notes for the Explorer 16 Experts
	Notes for the PIC24 Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Day 9: Asynchronous Communication
	The Plan
	Preparation
	The Exploration
	UART Configuration
	Sending and Receiving Data
	Testing the Serial Communication Routines
	Building a Simple Console Library
	Testing a VT100 Terminal
	The Serial Port as a Debugging Tool
	The Matrix Project
	Debriefing
	Notes for the C Experts
	Notes for the PIC® Microcontroller Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Day 10: Glass = Bliss
	The Plan
	Preparation
	The Exploration
	HD44780 Controller Compatibility
	The Parallel Master Port
	Configuring the PMP for LCD Module Control
	A Small Library of Functions to Access an LCD Display
	Building an LCD Library and Using the PMP Library
	Creating the include and lib Directories
	Advanced LCD Control
	Progress Bar Project
	Debriefing
	Notes for the PIC24 Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Day 11: It's an Analog World
	The Plan
	Preparation
	The Exploration
	The First Conversion
	Automating Sampling Timing
	Developing a Demo
	Creating Our Own Mini ADC Library
	Fun and Games
	Sensing Temperature
	Debriefing
	Notes for the PIC24 Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Part 3: Expansion
	Day 12: Capturing User Inputs
	The Plan
	Preparation
	Buttons and Mechanical Switches
	Button Input Packing
	Button Inputs Debouncing
	Rotary Encoders
	Interrupt-Driven Rotary Encoder Input
	Keyboards
	PS/2 Physical Interface
	The PS/2 Communication Protocol
	Interfacing the PIC32 to the PS/2
	Input Capture
	Testing Using a Stimulus Scripts
	The Simulator Profiler
	Change Notification
	Evaluating Cost
	I/O Polling
	Testing the I/O Polling Method
	Cost and Efficiency Considerations
	Keyboard Buffering
	Key Code Decoding
	Debriefing
	Notes for the PIC24 Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Day 13: UTube
	The Plan
	Preparation
	The Exploration
	Generating the Composite Video Signal
	The Output Compare Modules
	Image Buffers
	Serialization, DMA, and Synchronization
	Completing a Video Library
	Testing the Composite Video
	Measuring Performance
	Seeing the Dark Screen
	Test Pattern
	Plotting
	A Starry Night
	Line Drawing
	Bresenham Algorithm
	Plotting Math Functions
	Two-Dimensional Function Visualization
	Fractals
	Text
	Printing Text on Video
	Text Test
	The Matrix Reloaded
	Debriefing
	Notes for the PIC24 Experts
	Tips & Tricks
	Exercises
	Books
	Links

	Day 14: Mass Storage
	The Plan
	Preparation
	The Exploration
	The Physical Interface
	Interfacing to the Explorer 16 Board
	Starting a New Project
	Selecting the SPI Mode of Operation
	Sending Commands in SPI Mode
	Completing the SD Card Initialization
	Reading Data from an SD/MMC Card
	Writing Data to an SD/MMC Card
	Testing the SD/MMC Interface
	Debriefing
	Tips & Tricks
	Exercises
	Books
	Links

	Day 15: File I/O
	The Plan
	Preparation
	The Exploration
	Sectors and Clusters
	The File Allocation Table
	The Root Directory
	The Treasure Hunt
	Opening a File
	Reading Data from a File
	Closing a File
	The Fileio Module
	Testing fopenM () and freadM ()
	Writing Data to a File
	Closing a File, Take Two
	Accessory Functions
	Testing the Complete Fileio Module
	Code Size
	Debriefing
	Tips & Tricks
	Exercises
	Books
	Links

	Day 16: Musica, Maestro!
	The Plan
	Preparation
	The Exploration
	OC PWM Mode
	Testing the PWM as a D/A Converter
	Producing Analog Waveforms
	Reproducing Voice Messages
	A Media Player
	The WAVE File Format
	The Play () Function
	The Audio Routines
	A Simple WAVE File Player
	Debriefing
	Tips & Tricks
	Exercises
	Books
	Links
	Disclaimer
	Final Note for the Experts

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

