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   Introduction

 The first step in almost every rehabilitation program is A- Acknowledge  . . .  your 
limitations. So this is how I need to start this book, I will admit it: I am an 
8-bitter ! 

 I have been programming 8-bit microcontrollers since I was in high school and for most 
of my professional career. And there is worse, while I am relatively fluent in several high 
level programming languages, I truly love assembly programming! 

 There, I said it! I love that kick that I get when I know I used every single machine cycle 
in every microsecond my embedded applications run. I am also obsessed with control: 
I like to know of every configuration bit in every peripheral I use. As a consequence, 
in general, I don ’ t trust compilers or other people ’ s libraries unless I really cannot live 
without them or I have them completely disassembled. 

 So why would I write a book about 32-bit programming in C? 

 In fact I started what I should call my  “ rehabilitation program ”  a couple of years ago 
by approaching the programming of 16-bit microcontrollers first. The introduction of 
the PIC24 family of microcontrollers gave me the motivation to try and migrate to C 
programming with a new and exciting architecture. As a result of my experience, I wrote 
the first book:  “ Programming 16-bit microcontrollers in C. Learning to fly the PIC24 ” . 
But by the time the book was published, rumors circulated in Microchip that a new 32-bit 
chip had just come out of the  “ ovens ”  and I had to have one! 

 I ’ ll spare you the details of how I got my hands around one of the very first test chips, 
but what you need to know is that in a matter of days I had most of the code, originally 
developed for the PIC24 book, ported and running on the PIC32 plugged in my old 
Explorer16 board. 
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 Microchip marketing folks will tell you that the PIC32 architecture was specifically 
designed so to make the  “ migration ”  from 8-bit and 16-bit PIC architectures smooth and 
seamless, but I had to see it with my eyes to believe it. 

 So who better than an assembly-loving, control-obsessed, 8-bitter can tell you about the 
exploration of the PIC32? 

  Who Should Read this Book? 
 The PIC32 turns out to be a remarkably easy to use device, but nonetheless, it is a truly 
powerful machine based on a well established 32-bit core (MIPS) and supported by a 
large number of tools, libraries and documentation. This book can only offer you a small 
glimpse into such a vast world and in fact I call it a first  “ exploration ” . It is my strong 
belief that learning should be fun, and I hope you will have a good time with some 
of the  “ playful ”  exercises and projects I present throughout each chapter in the book. 
However you will need quite some preparation and hard work in order to be able to digest 
the material I am presenting at a pace that will accelerate rapidly through the first few 
chapters.

 This book is meant for programmers of a basic to intermediate level of experience, but 
not for  “ absolute ”  beginners; so don ’ t expect me to start with the basics of the binary 
numbers, the hexadecimal notation or the fundamentals of programming. Although, 
we will briefly review the basics of C programming as it relates to the applications for 
the latest generation of general-purpose 32-bit microcontrollers, before moving on to 
more challenging projects. My assumption is that you, the reader, belong to one of the 
following four categories: 

●      Embedded Control programmer: experienced in assembly-language micro-
controllers programming, but with only a basic understanding of the C language.  

●      PIC® microcontroller expert: with a basic understanding of the C language.  

●      Student or professional: with some knowledge of C (or C��) programming 
for PCs.  

●      Other SLF (superior life forms): I know programmers don ’ t like to be classified 
that easily so I created this special category just for you!    

 Depending on your level and type of experience, you should be able to find something 
of interest in every chapter. I worked hard to make sure that every one of them contained 
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both C programming techniques and new hardware peripherals details. Should you already 
be familiar with both, feel free to skip to the experts section at the end of the chapter, or 
consider the additional exercises, book references and links for further research/reading. 

 A special note is reserved for those of you who have already read my previous book on 
programming 16-bit microcontrollers in C. First of all let me thank you, then let me explain 
why you will get a certain sensation of deja vu. No, I did not try to cheat my way through 
the old 16-bit material to produce a new book, but I have re-produced most of the projects 
to demonstrate practically the main claims of the PIC32 architecture and toolset: its 
seamless migration from 8 and 16-bit PIC applications, the vastly increased performance 
and nonetheless the great ease of use. For you, at the end of every chapter, I have included 
a special section where I detail the differences encountered, the enhancements and other 
information that will help you port your applications faster and with greater confidence. 

 These are some of the things you will learn: 

●      The structure of an embedded-control C program: loops, loops and more loops  

●      Basic timing and I/O operations 

●      Basic embedded control multitasking in C, using the PIC32 interrupts  

●      New PIC32 peripherals, in no specific order: 

  1.     Input Capture 

  2.     Output Compare 

  3.     Change Notification 

  4.     Parallel Master Port 

  5.     Asynchronous Serial Communication 

  6.     Synchronous Serial Communication 

  7.     Analog-to-Digital conversion     

●      How to control LCD displays 

●      How to generate video signals 

●      How to generate audio signals 

●      How to access mass-storage media 

●      How to share files on a mass-storage device with a PC 
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  Structure of the Book 
 Each chapter of the book is offered as a day of exploration in the 32-bit embedded 
programming world. There are three parts. The first part contains six small chapters 
of increasing levels of complexity. In each chapter, we will review one basic hardware 
peripheral of the PIC32MX family of microcontrollers and one aspect of the C language, 
using the MPLAB C32 compiler (Student Version included in the CD-ROM). In each 
chapter, we will develop at least one demonstration project. Initially, such projects will 
require exclusive use of the MPLAB SIM software simulator (a part of the MPLAB 
toolsuite included in the CD-ROM), and no actual hardware will be necessary; although, 
an Explorer 16 demonstration board or a PIC32 Starter kit might be used. 

 In the second part of the book, titled  “ Experimenting ”  and containing five more chapters, 
an Explorer 16 demonstration board (or third-party equivalent) will become more critical, 
as some of the peripherals used will require real hardware to be properly tested. 

 In the third part of the book, titled  “ Expansion ” , there are five larger chapters. Each one 
of them builds on the lessons learned in multiple previous chapters while adding new 
peripherals to develop projects of greater complexity. The projects in the third part of the 
book require the use of the Explorer 16 demonstration board and basic prototyping skills 
too (yes, you might need to use a soldering iron). If you don ’ t want to or you don ’ t have 
access to basic PCB prototyping tools, an ad hoc expansion board (AV32) containing all 
the circuitry and components necessary to complete all the demonstration projects will be 
made available on the companion web site:  http://www.exploringpic32.com

 All the source code developed in each chapter is also available for immediate use on the 
companion CD-ROM.  

  What this Book is Not 
 This book is not a replacement for the PIC32 datasheet, reference manual and 
programmer ’ s manual published by Microchip Technology. It is also not a replacement 
for the MPLAB C32 compiler user ’ s guide, and all the libraries and related software tools 
offered by Microchip. Copies are available on the companion CD-ROM, but I expect you 
to download the most recent versions of all those documents and tools from Microchip ’ s 
Web site ( http://www.microchip.com ). Familiarize yourself with them and keep them 
handy. I will often refer to them throughout the book, and I might present small block 
diagrams and other excerpts here and there as necessary. But, my narration cannot replace 
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the information presented in the official manuals. Should you notice a conflict between 
my narration and the official documentation, ALWAYS refer to the latter. However 
please send me an email if a conflict arises, I will appreciate your help and I will publish 
any correction and useful hint I will receive on the companion web site:  http://www.
exploringpic32.com

 This book is also not a primer on the C language. Although a review of the language is 
performed throughout the first few chapters, the reader will find in the references several 
suggestions on more complete introductory courses and books on the subject.  

  Checklists 
 Although this book is not directly making references to aviation and flight training 
as my previous book was, I decided to maintain some important elements introduced 
there.

 The use of checklists to perform every single procedure before and during each project 
is one of them. Pilots don ’ t use checklists because the procedures are too long to be 
memorized or because they suffer from short memory problems. They use checklists 
because it is proven that the human memory can fail, and tends to do so more often 
when stress is involved. Pilots can perhaps afford less mistakes than other categories, 
and they value safety above their pride. There is nothing really dangerous that you, as a 
programmer can do or forget to do, while developing code for the PIC32. Nonetheless, 
I have prepared a number of simple checklists to help you perform the most common 
programming and debugging tasks. Hopefully, they will help you in the early stages, 
when learning to use the new PIC32 toolset or later if you are, like most of us, alternating 
between several projects and development environments from different vendors.



 New Project Setup 
 Project � Project Wizard  Start 
 Step 1: Device  PIC32MX360F512L 
 Step 2: ToolSuite  MPLAB C32 C Compiler 
 Step 3: NewProject dialog box  Select BROWSE 
 Folder  Select or create new 
 Project name  Type new name here 
 Step 4: Copy files  Only if necessary 
 Step 5: Complete wizard  Click on Finish 

 Manual Device Configuration (if not using pragmas) 
 Configure � Configuration Bits  Open window 
 Configuration bits set in ocde  Unchecked 
 ICE/ICD Comm channel select  ICE EMUC2/EMUD2 share with PGCD2 
 Boot Flash Write Protect  Boot Flash is writable 
 Code Protect  Protection Disabled 
 Oscillator Selection bits  Primary OSC with PLL (XT, HS, EC) 
 Secondary Oscillator Enable  Enabled 
 Internal External Switchover  Disabled 
 Primary Oscillator Configuration  XT osc mode 
 CLKO output signal active on OSCO  Disabled 
 Peripheral Clock Divisor  PB clock is Sys clock/2 
 Clock Switching and Monitor  Disabled and clock monitor disabled 
 Watchdog Timer Postscaler  Any 
 Watchdog Timer Enable  Disabled 
 PLL Input Divider  2 �  Divider 
 PLL Multiplier  18 �  Multiplier 
 System PLL output clock divider  PLL Divide by 1 

 Create New File and Add to Project 
 Project � AddNewProjectFile  Assign name (.c or .h) 
 File � Open  Select “\c32\include\Template.c” 
 if main source file  &  using pragmas  Select “\c32\include\Template wPragmas.c” 
 Header/comments  Copy 
 Add code  As needed 
 File � Save  Select 
 Project � SaveProject  Select 

 MPLAB SIM Debugger Setup 
 Debugger � Select Tool  Select MPLAB SIM 
 Debugger � Settings  Select 
 1.  Osc/Trace Tab  Select 
 1.1 Processor Frequency  72 MHz 
 1.2 Trace Options  Trace All 
 2.  Animation/Real Time Updates  Select Tab
 2.1 Animate Step  Slow 500 ms/Fast 10 ms 
 3.  Apply/OK  Select 

 PIC32MX Family Characteristics 
 Vdd range  2.0 V to 3.6 V 
 Digital input pins  5 V tolerant 
 Analog input pins  0 V to 3.6 V max 

 MPLAB ICD2 In Circuit Debugger Setup 
 Target Board  Power Up 
 ICD2 to Target  Connect 
 ICD2 to PC  Connect (wait for triple ding-dong) 
 Debugger � SelectTool  Select MPLAB ICD2 
 Debugger � Settings  Select 
 1.  Status Tab  Select 
 1.1 Automatically Connect  Verify NOT Checked 
 2. Power Tab  Select 
 2.1 Power target from ICD2  Verify NOT Checked 
 3. Program Tab  Select 
 3.1 Allow ICD2 to select ranges  Verify Checked 
 3.2 Program after successful build  Select if desired (not recommended) 
 3.3 Run after successful program  Select if desired (not recommended) 
 OK button  Click 
 Debugger � Connect  Select 

Emergency: USB Drivers Re-start (Debugger fails to connect) 
 Debugger � SelecTool  Select None 
 Project � Close  Save Project and close 
 File � Exit  Terminate MPLAB 
 USB cable  Disconnect 
 Target  Cycle Power 
 MPLAB  Launch 
 USB cable  Connect (wait for enumeration) 
 Debugger � SelecTool  Select Debugger model 
 Debugger � Connect  Select (not required for REAL ICE) 

 Emergency: Breakpoint Cannot Be Set (debugging) 
 1. Verify the C source code line is not commented 
 2. Verify you have not used more than six breakpoints (see breakpoints list F2) 
 3. Verify the C source line does not contain only a variable declaration
 4. Verify the C source file is part of the Project Files list 
 5. Verify the project has been Built before placing a breakpoint

 Explorer16 Demonstration Board 
 Power Supply  9 V to 15 V (reversed polarity protected) 
 Main oscillator  8 MHz crystal (use 4 �  PLL to obtain 32MHz ) 
 Secondary oscillator  32,768 Hz (connected to TMR1 oscillator) 

The Pilot Checklist – MPLAB® IDE Quick Start Guide



 Project Build 
 1 . Project � Build Configuration  Select “Debug” 
 2. Project � BuildOptions � P

roject
 Open Dialog box 

 2.1  Directories Tab  Select 
 2.2 Show Directories for:  Select “Include Search path” 
 2.3 “New” Button  Press 
 2.4 “ . . . ” Button  Press and select “\C32\include” directory 
 3.  MPLAB PIC32 C Compiler 

Tab
 Select 

 3.1 Categories  Select “General” 
 3.2 Generate debugging 

information
 Checked 

 3.3 Categories  Select Optimization 
 3.4 Optimization Level  Select 0 during debugging 
 3.5 All other optimization options  Unchecked during debugging 
 4.  MPLAB PIC32 Linker Tab  Select 
 4.1 Categories  Select “General” 
 4.2 Heap Size  Assign generously if malloc() used 
 5 . OK button  Click 
 Add all (.c) (.h) and (.o) required  Use “Add Files to a Project” checklists (A, B or C) 
 Project � BuildAll 
 or Project � Make 

 Select (CTRL�F10)
 Select (F10) if only a few modules modified 

 Adding Files to a Project  Method A 
 View � Project  Checked 
 Project � AddFilesToProject  Select 
 1. Select directory  If required 
 2. Select files of type  (.c), (.h) or (.o) 
 3. Select File name   
 Project � SaveProject  Select 

 Adding Files to a Project  Method B (text files only) 
 File � Open  Open existing file 
 With cursor inside Editor  Right Click 
 Editor pop up menu  Select AddToProject 
 Project � SaveProject  Select 

 Adding Files to a Project  Method C (from Project window)
 View � Project  Checked 
 With cursor on File folder  Right Click 
 Project pop up menu  Select Add Files . . .  
 Project � SaveProject  Select 

 Simulator Logic Analyzer Setup 
 View � SimulatorLogicAnalyzer  Select 
 Debugger � Settings � Osc/Trace  Select 
 TraceOptions � TraceAll  Verify Checked 
 Channels button  Click 
 Available Signals  Select all required 
 Signals Order  Move Up/Down 
 OK button  Click 

 PIC32MX360F512L Characteristics 
 Maximum operating speed  72 MHz 
 General Purpose RAM available  32,768 bytes 
 FLASH Program memory  512k bytes 

 MPLAB REAL ICE In Circuit Debugger Setup 
 Target Board  Power Up 
 ICD2 to Target  Connect 
 ICD2 to PC  Connect (wait for enumeration) 
 Debugger � SelectTool  Select MPLAB REAL ICE 

 PIC32 Starter Kit In Circuit Debugger Setup 
 PIC32 Starter Kit to Target  Connect 

 Target Board  Power Up 
 PIC32 Starter Kit to PC  Connect (Wait for enumeration) 
 Debugger � SelectTool  Select PIC32MX Starter Kit 

Emergency: Lost Cursor while Single Stepping/Animate 
 Program Counter value   Check in MPLAB status bar (bottom) 
 1.  Place cursor on first line of main() Execute Run To Cursor   
 2.  Continue single stepping until the cursor reappears in the main program   
 3.  Search for the PC in the Memory 

Window
 Else  Most likely you Stepped IN a library 

 function 
 1.  Place the cursor on the next Cstatement execute Run To Cursor   
 2.  If you have one or more breakpoints already set, execute Run 
 IF all else seems to fail   
  Send RESET command and start 
again

 Emergency: After Pressing Halt, MPLAB Freeze (ICD2 debugging) 
 Wait! 
 1. MPLAB could be uploading the content of a large variable/array in the Watch window 
 2. MPLAB could be refreshing the Special Function Registers window (if open) 
 3. MPLAB could be updating the Disassembly window (if open) 
 4. MPLAB could be updating the Local Variables window (if open and contains a large 
object)
 After regaining control, close any data window or remove any large object before 
continuing

The Pilot Checklists – MPLAB® IDE Quick Start Guide (Debugginh and Emergencies)
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                   The Adventure Begins   

  The Plan 
 This will be our first experience with the PIC32 32-bit microcontroller and, for some of 
you, the first project with the MPLAB® IDE Integrated Development Environment and 
the MPLAB C32 language suite. Even if you have never heard of the C language, you 
might have heard of the famous  “ Hello World! ”  programming example. If not, let me 
tell you about it. 

 Since the very first book on the C language, written by Kernighan and Ritchie several 
decades ago, every decent C language book has featured an example program containing 
a single statement to display the words  “ Hello World ”  on the computer screen. Hundreds, 
if not thousands, of books have respected this tradition, and I don ’ t want my books to be 
the exception. However, our example will be just a little different. Let ’ s be realistic—we 
are talking about programming microcontrollers because we want to design  embedded -
control applications. Though the availability of a monitor screen is a perfectly safe 
assumption for any personal computer or workstation, this is definitely not the case in the 
embedded-control world. For our first embedded application we ’ d better stick to a more 
basic type of output: a digital I/O pin. In a later and more advanced chapter, we will be 
able to interface to an LCD display and/or a terminal connected to a serial port. But by 
then we will have better things to do than writing  “ Hello World! ”   

  Preparation 
 Whether you are planning a small outdoor trip or a major expedition to the Arctic, you ’ d 
better make sure you have the right equipment with you. Our exploration of the PIC32 
architecture is definitely not going to be a matter of life or death, but you will appreciate 
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the convenience of following the few simple steps outlined here before getting your foot 
out the door  . . .  ahem, I mean before starting to type the first few lines of code. 

 So, let ’ s start by verifying that we have all the necessary pieces of equipment ready and 
installed (from the attached CD-ROM and/or the latest version available for download from 
Microchip ’ s PIC32 Web site at  www.microchip.com/PIC32 ). You will need the following: 

●      MPLAB IDE, free Integrated Development Environment (v8.xx or later)  

●      MPLAB SIM, free software simulator (included in MPLAB)  

●      MPLAB C32, C compiler (free Student Edition) 

Now let ’ s use the New Project Setup checklist to create a new project with the MPLAB 
IDE. From the Project  menu, select the  Project Wizard . This will bring up a short but 
useful sequence of little dialog boxes that will guide us through the few steps required to 
create a new project in an orderly and clean way: 

  1.     The first dialog box will ask you to choose a specific device model. Select the 
PIC32MX360F512L  device and click  Next . Although we will use only the 
simulator, and for the purpose of this project we could use pretty much any PIC32 
model, we will stick to this particular part number throughout our exploration.  

  2.     In the second dialog box, select the  PIC32 C-Compiler Tool Suite  and click 
Next . Many other tool suites are available for all the other PIC© architectures, and 
at least one other tool suite is already available for development on the PIC32 in 
assembly; don ’ t mix them up!  

  3.     In the third dialog box, you are asked to assign a name to the new project file. 
Instead click the Browse  button and create a new folder. Name the new folder 
Hello , and inside it create the project file  Hello World , then click  Next .

  4.     In the fourth dialog box, simply click  Next  to proceed to the following dialog 
box since there is no need to copy any source files from any previous projects or 
directories.

  5.     Click  Finish  to complete the project setup.

 Since this is our first time, let ’ s continue with the following additional steps:  

  6.     Open a new editor window by selecting  File  |  New , typing the  Ctrl � N  keyboard

 shortcut or by clicking the corresponding   ( New File ) button in the MPLAB 

standard toolbar. 
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  7.     Type the following three comment lines: 

     /*
     **       Hello Embedded World!
     */

  8.     Select  File | Save As  to save the file as Hello.c.  

  9.     Now right-click with your mouse on the editor window to bring up the editor ’ s 
context menu and select the  Add To Project  item. This will tell MPLAB that 
the newly created file is an integral part of the project.  

  10.     Select  Project | Save Project  to save the project. 

 Figure 1.1 :    The  “ Hello World ”  Project window.    

      Note     

 You will notice that, after saving the file, the color of the three lines of text in the editor window 
changes to green. This is because the MPLAB Editor has been able to recognize your file as a 
C language source file (the .c extension tipped it off) and is now applying the default context-
sensitive color rules. According to theses rules, green is the color assigned to comments, blue is 
the color assigned to language keywords, and black is used for all the remaining code. 

 Once you are finished, your project window should look like the one in  Figure 1.1   . If you 
cannot see the project window, select  View | Project . A small check mark should appear 
next to the item in the View menu. Also make sure that the Files tab is selected. We will 
review the use of the other tab (Symbols) in a later chapter. 
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 Depending on your personal preferences, you might now want to  “ dock ”  this window to 
assign it a specific place on your workspace rather than keeping it floating. You can do 
so by right-clicking with your mouse on the title bar of the small window to access the 
context menu and selecting the  Dockable  option. You can then drag it to the desired edge 
of the screen, where it will stick and split the available space with the editor.  

 The Adventure Begins 
 It is time to start writing some code. I can sense your trepidation, especially if you have 
never written any C code for an embedded-control application before. Our first line of 
code is:       

  #include  < p32xxxx.h >      

 This is not yet a proper C statement but an instruction for the preprocessor (which feeds 
the compiler) with the request to include the content of a device-specific file before 
proceeding any further. The pic32xxxx.h file, in its turn, contains more  #include
instructions designed so that the file relative to the device currently selected in the project 
is included. That file in our case is p32mx360f512       l.h. We could have used its name 
directly, but we chose not to in order to make the code more independent and hopefully 
easier to port, in the future, to new projects using different models. 

 If you decide to further inspect the contents of the p32m x 360f512       l.h file (it is a simple 
text file that you can open with the MPLAB editor), you will see that it contains an 
incredibly long list of definitions for all the names of the internal special-function 
registers (often referred to in the documentation as the  SFRs ) of the chosen PIC32 model. 
If the include file is accurate, those names reflect exactly those being used in the device 
datasheet and the PIC32 reference manual. 

 Here is a segment of the p32m x 360f512       l.h file in which the special-function register that 
controls the watchdog module ( WDTCON ) and each of its individual bits are assigned their 
conventional names: 

   ...   
  extern volatile unsigned int     WDTCON__attribute__
((section( " sfrs " )));  
  typedef union { 
 struct { 
 unsigned WDTCLR:1;  
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 unsigned WDTWEN:1;  
 unsigned SWDTPS0:1;  
 unsigned SWDTPS1:1;  
 unsigned SWDTPS2:1;  
 unsigned SWDTPS3:1;  
 unsigned SWDTPS4:1;  
 unsigned :7;  
 unsigned FRZ:1;  
 unsigned ON:1;     

};    

   ...      

 Back to our Hello.c source file; let ’ s add a couple more lines that will introduce you to 
the main()  function:       

  main()  
  {  

  }     

 What we have now is already a complete, although still empty and pretty useless, C 
language program. In between those two curly brackets is where we will soon put the first 
few instructions of our embedded-control application. 

 Independently of this function position in the file, whether in the first lines on top or 
the last few lines in a million-lines file, the  main()  function is the place where the 
microcontroller will go first at power-up or after each subsequent reset. This is actually an 
oversimplification. After a reset or at power-up, but before entering the  main()  function, 
the microcontroller will execute a short initialization code segment automatically 
inserted by the MPLAB C32 linker. This is known as the  Startup  code or  crt0  code (or 
simply c0  in the traditional C language literature). The Startup code will perform basic 
housekeeping chores, including the all important initialization of the stack, among many 
other things. 

 Our mission is to activate for the first time one or more of the output pins of the PIC32. 
For historical reasons, and to maintain the greatest compatibility possible with the many 
previous generations of PIC microcontrollers, the input/output (I/O) pins of the PIC32 are 
grouped in modules or ports, each comprising up to 16 pins, named in alphabetical order 
from A to H. We will start logically from the first group known as PortA. Each port has 
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several special-function registers assigned to control its operations; the main one, and the 
easiest to use, carries traditionally the same name as the module ( PORTA ). 

 Notice how, to distinguish the control register name from the module name in the 
following, we will use a different notation for the two:  PORTA  (all uppercase) will be used 
to indicate one of the control registers; PortA will refer to the entire peripheral module. 

 According to the PIC32 datasheet, assigning a value of 1 to a bit in the  PORTA  register 
turns the corresponding output pin to a logic high level (3.3       V). Vice versa, assigning a 
value of 0 to the same bit will produce a logic level low on the output pin (0       V). 

 Assignments are easy in C language—we can insert a first  assignment statement  in our 
project as in the following example:       

  #include  < p32xxxx.h >   

  main()  
  { 
 PORTA = 0xff;     

  }     

 First, notice how statements in C must be terminated with a semicolon. Then notice how 
they resemble mathematical equations—they are not! 

An assignment statement has a right side, which is computed first. A resulting value is 
obtained (in this case it was simply a constant expressed in hexadecimal notation) and it 
is then transferred to the left side, which acts as a receiving container. In this case it was 
the special-function PORTA  register of the microcontroller.

Note

In C language, by prefixing the literal value with 0x (zero x), we indicate the use of the 
hexadecimal radix. For historical reasons a single 0 (zero) prefix is used for the octal notation 
(does anybody use octal anymore?). Otherwise the compiler assumes the default decimal radix.

  Compiling and Linking 
 Now that we have completed the  main()  and only function of our first C program, how 
do we transform the source into a binary executable? 
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 Using the MPLAB Integrated Development Environment (IDE), it ’ s very easy! It ’ s 
a matter of a single click of your mouse in an operation called a Project Build . The 
sequence of events is actually pretty long and complex, but it is mainly composed of 
two steps: 

  1.      Compiling . The MPLAB C32 compiler is invoked and an object code file (.o) 
is generated. This file is not yet a complete executable. Though most of the 
code generation is complete, all the addresses of functions and variables are 
still undefined. In fact this is also called a  relocatable code object . If there 
are multiple source files, this step is repeated for each one of them.  

  2.      Linking . The linker is invoked and a proper position in the memory space is 
found for each function and each variable. Also, any number of precompiler 
object code files and standard library functions may be added at this time, as 
required. Among the several output files produced by the linker is the actual 
binary executable file (.hex).    

 All this is performed in a very rapid sequence as soon as you ask MPLAB to  build
your project. Each group of files, as presented in the project window (refer back to  
Figure 1.1 ), will be used during the project build to assist in the compiling or linking 
phase:

●      Every source code (.c) file in the  Source Files  list will be compiled to produce 
relocatable object files.  

●      Each additional object file in the  Object Files  list will then be linked together with 
the previous object files.  

●      The  Library Files  list will also be used during the linking process to search for 
and extract library modules that contain functions, if any have been used in the 
project.

●      Finally, the  Linker Script  section might contain an additional file that can be used 
to provide additional instructions to the linker to change the order and priority of 
each data and code section as they are assembled in the final binary executable 
file. The MPLAB C32 tool suite offers a  default linker script  mechanism that 
is sufficient for most general applications and certainly for all the applications 
we will review in this book. As a consequence, for the rest of this book we will 
safely leave this section of the project window empty, accepting the default setting 
provided.    
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 The last two sections of the project window are treated differently: 

●      The  Header Files  section is designed to contain the names of the include files (.h) 
used. However, they don ’ t get processed directly by the compiler. They are listed 
here only to document the project dependencies and for your convenience; if you 
double-click them they will open immediately in the editor window.  

●      The  Other Files  section is designed to contain the names of any additional file, not 
included in any of the previous categories but used in the project. Once more this 
section serves a documentation purpose more than anything else.     

 The Linker Script 
 Just like the p32xxxx.h include file tells the compiler about the names (and sizes) of 
device-specific SFRs, the (default) linker script informs the linker about the SFRs ’
predefined position in memory (according to the selected device datasheet). It also 
provides other essential services such as: 

●      Listing the total amount of FLASH memory available  

●      Listing the total amount of RAM memory available  

●      Listing their respective address ranges 

●      Listing the position of critical entry points such as the reset and exception vectors  

●      Listing the position of the interrupt vectors and the vectors table  

●      Listing the position of the device configuration words  

●      Including additional processor-specific object files 

●      Determining the position and size of the software stack and the heap (via 
parameters passed from MPLAB project files, as we will see in the next chapters) 

 Now, if you are curious like me, you might want to take a look inside. The linker script 
file, it turns out, is a simple text file, although with the .ld extension. It can be opened 
and inspected using the MPLAB editor. Assuming you accepted the default values when 
you installed MPLAB on your hard drive, you will find the default linker script for 
the PIC32MX360F512L microcontroller by opening the procdefs.ld file found in the 
following directory: 

  C:\Program Files\Microchip\PIC32-Tools\pic32-libs\proc\

32MX360F512L     
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Wow, I know, my head is spinning, too! It took me half an hour to find my way through 
the labyrinth of subdirectories created during the MPLAB installation. But the reality is 
that the linker will find it and use it automatically, and you will hardly ever have to see or 
worry about it again. Here is a segment of the script where the address of the reset vector, 
the general exception vector, and a few other critical entry points are defined: 

   ... 
/**********************************************************  
   * Memory Address Equates  
   **********************************************************  
   _RESET_ADDR        = 0xBFC00000; 
   _BEV_EXCPT_ADDR        = 0xBFC00380; 
   _DBG_EXCPT_ADDR        = 0xBFC00480; 
   _DBG_CODE_ADDR        = 0xBFC02000; 
   _GEN_EXCPT_ADDR        = _ebase_address + 0 x 180;  
 ... 

 Figure 1.2 :     The content of the Output Window Build tab after a successful build.    

      Note     

 Don ’ t try to open the procdefs.ld from Windows Explorer or using the default Windows 
Notepad application; it won ’ t look pretty. This file was generated in a Unix environment and 
does not contain the standard end-of-line sequence used by Windows programs. Instead use the 
MPLAB Editor as I suggested. 

     Building the First Project 
 Select the option  Build All  from the  Project  menu or click the corresponding (Build
All) button in the project toolbar. MPLAB will open a new window; the content of yours 
should be very similar to what I obtained, shown in  Figure 1.2   . 
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 Should you prefer a command-line interface, you will be pleased to learn that there are 
alternative methods to invoke the compiler and the linker and achieve the same results 
without using the MPAB IDE, although you will have to refer to the MPLAB C32 
compiler user guide for instructions. In this book, we will stick with the MPLAB IDE 
interface and will use the appropriate checklists to make it even easier.  

  Using the Simulator 
 Select  Debugger | Select Tool | MPLAB SIM  to choose and activate the software simulator 
as the main debugging tool for this project. I recommend that you get in the habit of using 
the MPLAB SIM debugger setup  checklist to configure a number of parameters that will 
improve your simulation experiences, although we won ’ t need it during this first simulation. 
Let ’ s perform instead another and all-important general configuration step of MPLAB itself. 

 Select the  Configure | Settings  item from the MPLAB menu and, inside the large and 
complex dialog box that will pop up, select the  Debugger  tab. 

 As illustrated in  Figure 1.3   , I recommend that you check three of the options available to 
instruct MPLAB to automatically perform a few useful tasks: 

●      Save all the files you changed in the Editor window before running the code.  

 Figure 1.3 :     MPLAB Settings dialog box Debugger tab.    
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●      Remove existing breakpoints before importing a new executable.  

●      After any device reset, position the debugger cursor at the beginning of the main 
function.

 The last task, in particular, might seem redundant, but it is not. If you remember, as was 
briefly mentioned at the beginning of this chapter, there is a small segment of code ( crt0
or Startup code) that the linker places automatically for us between the actual reset vector 
and our code. If we do not instruct MPLAB otherwise, the simulator will attempt to step 
through it, and since there is no C source code to show for it, it would have to happen in 
the disassembly  window. Not that there would be anything wrong with that; actually, I 
invite you to try that sometime to inspect this mysterious (but so useful) segment of code. 
The fact is that we are just not ready for it yet and, after all, our focus in this exploration 
is 100 percent on the C language programming of the PIC32 rather than the underlying 
MIPS assembly. 

 If all is well, before trying to execute the code let ’ s also open a Watch window and add 
the PORTA  special-function register to it: 

  1.     Select  View | Watch  from the main menu to access the Watch window (see 
 Figure 1.4   ).  

  2.     Type or select  PORTA  in the SFR selection list (top left).  

  3.     Click the  Add SFR  button.  

  4.     Press the simulator reset button   (Reset) in the Debug toolbar or select 
Debugger | Reset.

 Figure 1.4 :     MPLAB IDE Watch window.    
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  5.     Observe the contents of the  PORTA  register; it should be cleared (all zeroes) at reset.  

  6.     Also notice that a large green arrow has appeared right next to the first opening 
curly bracket of the main function. It points at the part of our code that is going 
to be executed next.  

  7.     Now, since we need to learn to walk before we  “ run, ”  let ’ s use the   (Step 

 Over) or the     (Step In) buttons in the Debugger toolbox, or the  Debugger |
Step In  and  Debugger | Step Over  commands from the main menu, to execute 
the one and only statement in our first program.  

  8.     Observe how the content of  PORTA  changes in the watch window. Or, I should 
say, notice how nothing happens. Surprise! 

  Finding a Direction 
 It is time to hit the books, specifically the PIC32MX datasheet (Chapter 13 focuses on 
the I/O ports detail). PortA is a pretty complex, 12-pin-wide port. Each one of the pins is 
controlled by a small block of logic, represented in Figure 1.5   . 

 Figure 1.5 :     Block diagram of a typical PIC32 I/O port structure.    
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 Although completely understanding the diagram in  Figure 1.5  is beyond the scope of our 
explorations today, we can start by making a few simple observations. There are only 
three signals that eventually reach the I/O cell. They are the data output, the data input, 
and the tristate control signals. The latter is essential to decide whether the pin is to be 
used as an input or an output, which is often referred to as the direction  of the pin. 

 From the datasheet, again, we can determine the default direction for each pin—that is, in 
fact, configured as an input after each reset or power up event. This is a safety feature and 
a standard for all PIC microcontrollers. The PIC32 makes no exception. 

 The  TRISA  special-function register allows us to change the direction of each individual 
pin on PortA. The rule is simple to remember: 

●      Clear a bit to  0  for an  O utput pin.  

●      Set a bit to  1  for an  I nput pin.    

 So, we need to add at least one more assignment to our program if we want to change the 
direction of all the pins of PortA to output and see their status change. Here is how our 
simple project looks after the addition: 

  #include  < p32xxxx.h >   

  main()  
  { 
 // configure all PORTA pins as output  
 TRISA = 0;  
 PORTA = 0xff;     

  }     

 We can now retest the code by repeating the following few steps: 

  1.     Rebuild the project (select  Project | Build All , use  Ctrl � F10,  or click the  Build
All  button in the project toolbox).  

  2.     Execute a couple of single-steps and  . . .  you have it (see  Figure 1.6   )!    

 If all went well, you should see the content of  PORTA  change to  0xFF , highlighted in the 
Watch window in red. Hello Embedded World!  
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  The JTAG Port 
 Our first choice of PortA was dictated partially by the alphabetical order and partially by 
the fact that on the Explorer16 demonstration boards, PortA pins,  RA0  through  RA7 , are 
conveniently connected to 8 LEDs. So, if you try and execute this example code on the 
actual demo board using an in-circuit debugger, you will have the satisfaction of seeing 
all the LEDs turn on, nice and bright  . . .  or perhaps not? 

There is one more important detail affecting the operation of a few PortA pins that you 
need to be aware of. Where previous generations of PIC microcontrollers used a two-wire 
protocol to connect to an in-circuit programmer and/or debugger, known as the  ICSP/
ICD interface , the PIC32 offers an additional interface, widely adopted among 32-bit 
architectures, known as the  JTAG interface . 

Note

The PIC24 experts will not fail to point out that several 16-bit large pin-count devices were 
already offering JTAG to support boundary scan features. With the PIC32 architecture, the 
JTAG functionality is extended to include all programming and debugging features.

 Figure 1.6 :     The Watch window after PortA content has changed!    

 In fact, for all debugging and programming purposes, the JTAG and the ICSP/ICD 
interface are now equivalent and the choice between the two will be dictated more by 
personal preference, the availability and cost of (Microchip own and third-party) tools, 
and/or the number of pins required. In this last respect, the ICSP/ICD interface has a 
small advantage over the JTAG interface since it requires only half the microcontroller 
I/Os. On the other side, if the boundary scan functionality is required, the JTAG interface 
is the one and only option. 

 As a consequence of the decision to offer both interfaces, the designers of the PIC32 
had to make sure that both debugging options were available by default upon reset or 
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power-up of the device. The JTAG port pins are multiplexed with PortA pins  RA0 ,  RA1 , 
RA4 , and  RA5 , over which they take priority. 

 The PIC32 Starter Kit is an example of a programming and debugging tool that uses the 
JTAG port. The MPLAB REAL ICE and the MPLAB ICD2 instead use the traditional 
ICSP/ICD port. 

 If you intend to test the code developed so far on the Explorer 16 board using the 
MPLAB REAL ICE or the MPLAB ICD2 in circuit debuggers, you will have to 
remember to disable the JTAG port to gain access to all the pins of PortA and therefore 
all the LEDs. Here is all it takes: 

  // disable the JTAG port 

 DDPCONbits.JTAGEN = 0;        

 After all, only one more assignment statement needs to be added at the top of the main 
function. Instead of assigning a new value to the entire  DDPCON  register (in charge of 
the configuration of the Debug Data Ports), we used the special C language notation to 
access individual bits (or groups of bits) within a word. We will expand on these subjects 
in the next few chapters. 

 If you intend to test the code on the Explorer 16 board using the PIC32 Starter Kit and 
a 100-pin PIM adapter, you must  not  disable the JTAG port. You will still have control 
on the remaining pins of PortA: RA2 ,  RA3 ,  RA6 , and  RA7 . Don ’ t be envious; you have 
three more LEDs that you can control on the Starter Kit board itself, connected to PortD 
instead: RD0 ,  RD1 , and  RD2 . In fact, even if you don ’ t have an Explorer 16 board but just 
a PIC32 Starter Kit, you could change the code in the previous examples, replacing all 
references to PortA registers with the PortD equivalents:  TRISD  and  PORTD . Perhaps it 
will be less spectacular but equally instructive!  

  Testing PORTB 
 To complete our day of exploration, we will now investigate the use of one more I/O 
port, PortB. It is simple to edit the program and replace the two PortA control registers 
assignments with TRISB  and  PORTB . 

 Rebuild the project and follow the same steps we did in the previous exercise and 
you ’ ll get a new surprise: The same code that worked for PortA does  not  work for 
PortB!
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 Don ’ t panic—I did it on purpose. I wanted you to experience a little PIC32 migration 
pain. It will help you learn and grow stronger. 

 It is time to go back to the datasheet and study in more detail the PIC32 pin-out 
diagrams. There are two fundamental differences between the 8-bit PIC microcontroller 
architectures and the new 16- and 32-bit architectures: 

●      Most PortB pins are multiplexed with the analog inputs of the Analog-to-Digital 
Converter (ADC) peripheral. The 8-bit architecture reserved PortA pins primarily 
for this purpose; the roles of the two ports have been swapped!  

●      If a peripheral module input/output signal is multiplexed on an I/O pin, as soon 
as the module is enabled, it takes complete control of the I/O pin—independently 
of the direction ( TRISx ) control register content. In the 8-bit architectures it was 
up to the user to assign the correct direction to each pin, even when a peripheral 
module required its use. 

 By default, pins multiplexed with  “ analog ”  inputs are disconnected from their  “ digital ”
input ports. This explains what was happening during our last attempt. All PortB pins 
of the PIC32 are, by default at power-up, assigned an analog input function; therefore, 
reading the PORTB  register returns all 0      s. Notice, though, that the output latch of PortB 
has been correctly set, although we cannot see it through the PORTB  register. To verify it, 
check the contents of the LATB  register instead. 

 To reconnect the PortB input pins to the digital inputs, we have to act on the ADC module 
configuration. From the datasheet, we learn that the SFR  AD1PCFG  controls the analog/
digital assignment of each pin (see Figure 1.7   ). 

 Assigning a  1  to each bit in the  AD1PCGF  SFR will accomplish the task and convert the 
pin into a digital input. Our new and complete program example is now: 

  #include  < p32xxxx.h >   

  main()  
  { 

 // configure all PORTB pins as output  
 TRISB=0,                     // all PORTB as output  
 AD1PCFG=0xffff;               // all PORTB as digital  
 PORTB=0xff;     

  }     
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 This time, compiling and single-stepping through it will give us the desired results (see 
 Figure 1.8   ).  

  Mission Debriefing 
 After each expedition, there should be a brief review. Sitting on a comfortable chair in 
front of a cool glass of  . . .  water, it ’ s time to reflect on what we have learned from this 
first experience. 

 Writing a C program for a PIC32 microcontroller can be very simple, or at least no more 
complicated than an assembly or 8-bit equivalent project. Two or three instructions, 
depending on which port we plan to use, can give us direct control over the most basic tool 
available to the microcontroller for communication with the rest of the world: the I/O pins. 

r-0

bit 31 bit 24

— — — — — — — —
r-0 r-0 r-0 r-0 r-0 r-0 r-0

r-0

bit 23 bit 16

— — — — — — — —
r-0 r-0 r-0 r-0 r-0 r-0 r-0

R/W-0

bit 15 bit 8

PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

R/W-0

Legend:
R � Readable bit
U � Unimplemented bit

W � Writable bit P � Programmable bit r � Reserved bit
-n � Bit Value at POR: (‘0’, ‘1’, x � Unknown)

bit 7

bit 31-16 Reserved: Reserved for future use, maintain as ‘0’

Note: The AD1PCFG register functionality will vary depending on the number of ADC inputs available on the
 seleced device. Please refer to the specific device data sheet for additional details on this register.

PCFG<15:0>: Anlog Input Pin Configuration Control bits

1 � Anlog input pin in Digital mode, port read input enabled, ADC input multiplexer input for this
 analog input connected to AVss
0 � Anlog input pin in Analog mode, digital port read will return as a ‘1’ without regard to the voltage
 on the pin, ADC samples pin voltage

bit 15-0

bit 0

PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

 Figure 1.7 :     AD1PCFG: ADC port configuration register.    
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 Also, there is nothing the MPLAB C32 compiler can do to read our minds. Just as in 
assembly, we are responsible for setting the correct direction of the I/O pins. We are still 
required to study the datasheet and learn about the small differences between the 8-bit 
and 16-bit PIC microcontrollers we might be familiar with and the new 32-bit breed. 

 As high level as the C programming language is thought to be, writing code for 
embedded-control devices still requires us to be intimately familiar with the finest details 
of the hardware we use.  

  Notes for the Assembly Experts 
 If you have difficulties blindly accepting the validity of the code generated by the 
MPLAB C32 compiler, you might find comfort in knowing that, at any given point in 
time, you can decide to switch to the Disassembly Listing  view (see  Figure 1.9   ). You can 
quickly inspect the code generated by the compiler, since each C source line is shown in a 
comment that precedes the segment of code it generated. 

 Figure 1.8 :     Hello Embedded World using PortB.    
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 Figure 1.9 :     Disassembly Listing window.    

 You can even single-step through the code and do all the debugging from this view, 
although I strongly encourage you not  to do so or limit the exercise to a few exploratory 
sessions as we progress through the first chapters of this book. Satisfy your curiosity, but 
gradually learn to trust the compiler. Eventually, use of the C language will give a boost 
to your productivity and increase the readability and maintainability of your code. 

 As a final exercise, I would encourage you to open the  Memory Usage Gauge  window by 
selecting View | Memory Usage Gauge  (see  Figure 1.10   ). 

 Figure 1.10 :     MPLAB IDE Memory Usage Gauge window.    
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 Don ’ t be alarmed, even though we wrote only three lines of code in our first example and 
the amount of program memory used appears to be already up to 490 or more words. This 
is not an indication of any inherent inefficiency of the C language. There is a minimum 
block of code that is always generated (for our convenience) by the MPLAB C32 
compiler. This is the Startup code ( crt0 ) that we mentioned briefly before. We will return 
to it, in more detail, in the following chapters as we will discuss variable initialization, 
memory allocation, and interrupts.  

  Notes for the PIC MCU Experts 
 Those of you who are familiar with the PIC16, PIC18, and even the PIC24 architecture 
will find it interesting that  all  PIC32 SFRs are now 32-bit wide. But in particular, if you 
are familiar with the PIC24 and dsPIC architecture, it might come to you as a surprise that 
the ports did not  scale up! Even if  PORTA  and  TRISA  are now 32-bit wide registers, the 
PortA module still groups fewer than 16 pins, just like in the PIC24. You will realize in the 
following chapters how this has several positive implications for easy code migration up 
from the 16-bit architectures while granting optimal performance to the 32-bit core. 

 Whether you are coming from the 8-bit or the 16-bit PIC/dsPIC world, with the PIC32 
peripheral set you will feel at home in no time!  

  Notes for the C Experts 
 Certainly we could have used the  printf()  function from the standard C libraries. 
In fact they are readily available with the MPLAB C32 compiler. But we are targeting 
embedded-control applications and we are not writing code for multigigabyte 
workstations. Get used to manipulating low-level hardware peripherals inside the PIC32 
microcontrollers. A single call to a library function, like  printf() , could have added 
several kilobytes of code to your executable. Don ’ t assume a serial port and a terminal 
or a text display will always be available to you. Instead develop a sensibility for the 
 “ weight ”  of each function and library you use in light of the limited resources available in 
the embedded design world.  

 Tips  &  Tricks 
The PIC32MX family of microcontrollers is based on a 3       V CMOS process with a 2.0       V 
to 3.6       V operating range. As a consequence, a 3.3       V power supply (Vdd) is used on most 
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applications and demonstration boards; this limits the output voltage of each I/O pin 
when producing a logic high output. Interfacing to 5       V legacy devices and applications, 
though, is really simple: 

●      To drive a 5       V output, use the  ODCx  control registers ( ODCA  for PortA,  ODCB  for 
PortB, and so on) to set individual output pins in open-drain mode and connect 
external pull-up resistors to a 5       V power supply.  

●      Digital input pins instead are already capable of tolerating up to 5       V. They can be 
connected directly to 5       V input signals. 

Watch out

Be careful with I/O pins that are multiplexed with analog inputs (most PortB pins, for example); 
they cannot tolerate voltages above 3.6 V!

  Exercises 
 If you have the Explorer 16 board and an in-circuit debugger: 

●      Use the MPLAB REAL ICE Debugging or the MPLAB ICD2 Debugging 
checklists to help you prepare the project for debugging.  

●      Insert the instructions required to disable the JTAG port.  

●      Test the PortA example, connecting the Explorer 16 board and checking the visual 
output on LED0-7.    

 If you have the PIC32 Starter Kit: 

●      Use the PIC32 Starter Kit Debugging checklist to help you prepare the project for 
debugging.  

●      Modify the code to operate on PortD, but do  not  disable the JTAG port.  

●      Test the code by checking the visual output on LED0-2 on the PIC32 Starter Kit 
itself.

 In both cases you can: 

●      Test the PortB example by connecting a voltmeter (or DMM) to pin  RB0 , if you 
can identify it on your board, and watching the needle move between 0 and 3.3       V 
as you single-step through the code. 
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   Books
Kernighan, B., and Ritchie, D.,  The C Programming Language  (Prentice-Hall, 

Englewood Cliffs, NJ). When you read or hear programmers talk about the “K&R,” 
also known as “the white book,” they mean  this book. The C language has evolved 
quite a bit since the first edition was published in 1978. The second edition (1988) 
includes the more recent ANSI C standard definitions of the language, which are 
closer to the standard the MPLAB C32 compiler adheres to (ISO/IEC 9899:1990 also 
known as C90).

 Links
 http://en.wikibooks.org/wiki/C_Programming . This is a Wiki-book on C programming 

and as such it is a bit of a work in progress. It’s convenient if you don’t mind doing 
all your reading online. Hint: Look for the chapter called “A Taste of C” to find 
the omnipresent “Hello World!” example.



              Walking in Circles   

  The Plan 
 It is funny how many stories of expeditions gone wrong culminate with a revealing 
moment where the explorers realize they got desperately lost and have been walking in 
circles for a while. In embedded-control programming it ’ s the opposite: Our programs 
need a framework, a structure so that the flow of code can be managed, and this usually is 
built around one  main loop . 

 Today we will review the basics of the loops syntax in C, and we ’ ll also take the 
opportunity to introduce a first peripheral module: the 16-bit Timer1. Two new MPLAB©

SIM features will be used for the first time: the  Animate  mode and the  Logic Analyzer  view.  

  Preparation 
 For this second lesson, we will need the same basic software components we installed 
(from the attached CD-ROM and/or the latest versions available for download from 
Microchip ’ s Web site) and used before, including: 

●      MPLAB IDE (Integrated Development Environment)  

●      MPLAB SIM (software simulator) 

●      MPLAB C32 compiler (free Student Edition) 

 We will also reuse the New Project Setup checklist to create a new project with the 
MPLAB IDE. 

D A Y  2 
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 Select the  Project Wizard  from the  Project  menu and proceed through the few steps that 
follow: 

   1.     The first dialog box will ask you to choose a specific device model. Select the 
PIC32MX360F512L  device and click  Next .

   2.     In the second dialog box, select the  PIC32 C-Compiler Tool Suite  and click 
Next . Make sure to select the C compiler suite, not the assembly suite!  

   3.     In the third dialog box, you are asked to assign a name to the new project file. 
Instead, click the Browse  button and create a new folder. Name the new folder 
Loops , and inside it create the project file  Loops,  then click  Next .

   4.     In the fourth dialog box, simply click  Next  to proceed to the following dialog 
box, since there is no need to copy any source files from any previous projects 
or directories.  

   5.     Click  Finish  to complete the project wizard.  

   6.     Open a new editor window by selecting  File  |  New , typing the  Ctrl  +  N  keyboard 

 shortcut, or clicking the corresponding     ( New File ) button in MPLAB 
standard toolbar.  

   7.     Type the following three comment lines: 

  /*  
  ** Loops   
  */     

   8.     Select  File | Save As  to save the file as Loops.c.  

   9.     Now right-click with your mouse on the editor window to bring up the editor ’ s 
context menu and select the  Add To Project  item. This will tell MPLAB that 
the newly created file is an integral part of the project.  

  10.     Select  Project | Save Project  to save the project. 

 Soon, after you repeat these same steps a few more times, they will become automatic 
to you, but you will always have the option to refer to the  Create New File  and  Add to 
Project  checklists conveniently included in this book.  
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  The Exploration 
 One of the key questions that might have come to mind after you worked through the 
previous lesson is,  “ What happens when all the code in the  main()  function has been 
executed? ”  Well, nothing really happens, literally! 

 When the  main()  function terminates and returns back to the startup code ( crt0 ), a 
new function  _exit()  is called and the PIC32 remains stuck there in a tight loop from 
which it can escape only if a processor reset is performed. Notice that this is something 
that depends on the MPLAB C32 tool suite and that is not a C language proper feature. 
C compilers normally are designed to return control to an operating system when the 
main()  function returns, but as you understand, there is no operating system to return to 
in our case.

      Note     

 The  _exit()  function, just like the startup code, is not visible in the editor window (not our 
code) and is not visible even from the disassembly window (not a library). The only way you 
can find out about it is if you open the  Memory  window and you select the  Code View  pane.      

  The good news is that we can easily define a replacement for the  _exit()  function 
if we have a better idea of what to do with it. We could, for example, mimic what the 
MPLAB C30 tool suite used to do for PIC24 and dsPIC applications—that is, insert 
a reset instruction in there and have the entire application repeat over and over again. 
But what we truly want in embedded control is an application that runs continuously, 
from the moment the power switch has been flipped on until the moment it is turned off. 
So, letting the program run through entirely, reset, and execute again might seem like a 
convenient way to arrange the application so that it keeps repeating as long as there is 
 “ juice. ”  

 The reset option might work in a few limited cases, but what you will soon discover is 
that running in this  “ loop, ”  you develop a  “ limp. ”  Upon reaching the end of the program, 
executing the reset instruction takes the microcontroller back to the reset vector to 
again execute the startup code. As short as the startup can be, it will make the loop very 
unbalanced. Going through all the SFR and global variable initializations each time is 
probably not necessary and it will certainly slow down the application. A better option, 
instead, is to code a proper application main loop  ourselves. To begin, let ’ s review the 
most basic control flow mechanisms available in C language.  
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  While Loops 
 In C there are at least three ways to code a loop. Here is the first: the  while  loop:       

  while ( x)  
  { 
 // your code here ...      

  }     

 Anything you put in between those two curly brackets  {}  will be repeated for as long as the 
logic expression  in parenthesis  (x)  returns a true value. But what is a logic expression in C? 

 First of all, in C there is no distinction between logic expressions and  arithmetic
expressions . In C, the Boolean logic  true  and  false  values are represented just as integer 
numbers with a simple rule: 

●       false  is represented by the integer  0

●       true  is represented by  any  integer except  0

 So  1  is  “ true, ”  but so are  13  and  -278 ! 

 To evaluate logic expressions, a number of logic operators are defined, such as: 

||  the  “ logic OR ”  operator  
 &  &   the  “ logic AND ”  operator  
!  the  “ logic NOT ”  operator    

 These operators consider their operands as logical (Boolean) values using the rule 
mentioned previously, and they return a logical value. Here are some trivial examples 
(assume that a = 17  and  b = 1 , or in other words they are both true): 

( a || b)  is true  
( a  &  &  b)  is true  
( !a)  is false 

 There are, then, a number of operators that compare numbers (integers of any kind, and 
floating-point values too) and return logic values. They are: 

==  the  “ equal-to ”  operator, notice it is composed of two equal signs to distinguish it 
from the  “ assignment ”  operator we used before.  

!=  the  “ NOT-equal to ”  operator  
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>   the  “ greater-than ”  operator  
>=  the  “ greater-or-equal to ”  operator  
<  the  “ less-than ”  operator  
< =  the  “ less-or-equal to ”  operator  

  Here are some examples (assuming  a = 10 ):

( a > 1)  is true  
(-a >= 0)  is false 
( a == 17)  is false 
( a != 3)  is true    

 Back to the  while  loop: We said that as long as the expression in parentheses produces 
a true logic value (that is, any integer value but  0 ), the program execution will continue 
around the loop. When the expression produces a false logic value, the loop will terminate 
and the execution will continue from the first instruction after the closing curly bracket. 

 Notice that the evaluation of the expression is done first, before the curly bracket content 
is executed (if it ever is), and is then reevaluated each time. 

 Here are a few curious loop examples to consider: 

  while ( 0)  
  { 
 // your code here ...      

  }     

 A constant false condition means that the loop will never be executed. This is not very 
useful. In fact I believe we have a good candidate for the  “ world ’ s most useless code ”  
contest!

 Here is another example:       

  while ( 1)  
  { 
 // your code here ...      

  }     

 A constant true condition means that the loop will execute forever. This is useful and 
is in fact what we will use for our main program loops from now on. For the sake of 
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readability, a few purists among you will consider using a more elegant approach, 
defining a couple of constants:       

  #define FALSE      0  
  #define TRUE      !FALSE  

  And using them consistently in their code, as in:  

  While       ( TRUE) 
  { 
 // your code here ...      

  }     

 It is time to add a few new lines of code to the loops.c source file and put the  while  loop 
to good use:       

  #include <  p32xxxx.h>  
  main()  
  { 
// initialization 
 DDPCONbits.JTAGEN = 0;         // disable the JTAG port  
 TRISA =       0xff00;                         // PORTA pin 0..7 as output  

 // application main loop  
 while( 1)  
 { 
 PORTA = 0xff;                   // turn pin 0–7 on 
 PORTA = 0;                         // turn all pin off     

 }     

  }     

 The structure of this example program is essentially the structure of every embedded 
control program written in C. There will always be two main parts: 

●      The  initialization , which includes both the device peripherals initialization and 
variables initialization, executed only once at the beginning  

●      The  main loop , which contains all the control functions that define the application 
behavior and is executed continuously     



Walking in Circles   31

  An Animated Simulation 
 Use the Project Build checklist to compile and link the loops.c program. Also use the 
MPLAB SIM Simulator Setup checklist to prepare the software simulator. 

 To test the code in this example with the simulator, I recommend you use the  Animate
mode ( Debugger | Animate ). In this mode, the simulator executes one C program line at 
a time, pausing shortly after each one to give us time to observe the immediate results. If 
you add the PORTA  special-function register to the Watch window, you should be able to 
see its value alternating rhythmically between  0xff  and  0x00 . 

 The speed of execution in Animate mode can be controlled with the  Debug | Settings
dialog box, selecting the Animation/Real Time Updates  tab, and modifying the 
Animation Step Time  parameter, which by default is set to 500       ms. As you can imagine, 
the Animate mode can be a valuable and entertaining debugging tool, but it gives you 
quite a distorted idea of what the actual program execution timing will be. In practice, 
if our example code was to be executed on a real hardware target, say an Explorer16 
demonstration board (where the PIC32 is running at, say, 72       MHz), the LEDs, connected 
to the PortA output pins, would blink too fast for our eyes to notice. In fact, each LED 
would be turned on and off several million times each second. 

 To slow things down to a point where the LEDs would blink nicely just a couple of times 
per second, I propose we use a timer so that in the process we learn to use one of the 
key peripherals integrated in all PIC® microcontrollers. For this example we will choose 
Timer1, the first of five modules available inside the PIC32MX360FJ512L models (see 
 Figure 2.1   ). This is one of the most flexible and simple peripheral modules. All we need 
is to take a quick look at the PIC32 datasheet, check the block diagram and the details of 
the Timer1 control registers, and find the ideal initialization values. 

 We quickly learn that there are three SFRs that control most Timer1 functions. They are: 

●       TMR1 , which contains the 16-bit counter value  

●       T1CON , which controls the activation and the operating mode of the timer  

●       PR1 , which can be used to produce a periodic reset of the timer (not required here)    

 We can clear the  TMR1  register to start counting from zero: 

      TMR1 = 0;     
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 Then we can initialize  T1CON  so that the timer will operate in a simple configuration, 
where:

●      Timer1 is activated:  TON = 1

●      The main MCU clock serves as the source (Fpb):  TCS = 0

●      The prescaler is set to the maximum value (1:256):  TCKPS = 11

●      The input gating and synchronization functions are not required, since we use the 
MCU internal clock directly as the timer clock: TGATE = 0 ,  TSYNC = 0

●      We do not worry about the behavior in IDLE mode:  SIDL = 0  (default) 

Virtual
Address

Name

T1CONBF80_0600 31:24

23:16

15:8

7:0 TGATE

ON

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
28/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

SIDL TMWDIS TMWIP

TSYNC TCSTCKPS�1:0�

FRZ

— — — — — — — —
— —

—

— — —

—

—
—

—
—

—
—
—

 Figure 2.2 :      T1CON : Timer1 control register.    
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 Figure 2.1 :     16-bit Timer1 module block diagram.    
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 Once we assemble all the bits in a single 32-bit value, to assign to  T1CON , we get: 

    T1CON = 1000 0000 0011 0000     

 or, in a more compact hexadecimal notation: 

    T1CON = 0x8030;     

 Once we are done initializing the timer, we enter a loop where we just wait for  TMR1  to 
reach the desired value set by the constant  DELAY .       

  while( TMR1 < DELAY)  
  { 
// wait     

  }     

 Assuming a 36 MHz peripheral bus clock frequency will be used, we need to assign 
quite a large value to  DELAY  to obtain a delay of about a quarter of a second. In fact, the 
following formula dictates the total delay time produced by the loop: 

Tdelay  (Fpb) *  * DELAY� 256

 With  Tdelay � 256       ms and resolving for  DELAY , we obtain the value  36000 :       

  #define DELAY 36000     

 By putting two such delay loops in front of each  PORTA  assignment inside the main loop, 
we get our latest and best code example:       

  /*
  ** Loops 
  */
  #include <p32xxxx.h>  

  #define DELAY 36000                   // 256       ms

  main()  
  { 
 // 0. initialization  
 DDPCONbits.JTAGEN = 0;      // disable JTAGport, free up PORTA  
 TRISA = 0xff00;               // all PORTA as output  
 T1CON = 0x8030;               // TMR1 on, prescale 1:256 PB=36       MHz  
 PR1 = 0xFFFF;              // set period register to max  
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 // 1. main loop  
 while( 1)  
 { 
 //1.1 turn all LED ON  
 PORTA = 0xff;  
 TMR1 = 0;  
 while ( TMR1 < DELAY)  
 { 
 // just wait here     

 }  

 // 1.2 turn all LED OFF  
 PORTA = 0;  
 TMR1 = 0;  
 while ( TMR1 < DELAY)  
 { 
 // just wait here     

 }     
 } // main loop     

  } // main     

      Note     

 Programming in C, the number of opening and closing curly brackets tends to increase rapidly 
as your code grows. After a very short while, even if you stick religiously to the best indentation 
rules, it can become difficult to remember which closing curly brackets belong to which 
opening curly brackets. By putting little reminders (comments) on the closing brackets, I try to 
make the code easier to follow and more readable. Also, by using the Ctrl � M shortcut in the 
editor window, you can quickly jump and alternate between matching brackets in your code. 

  It is time now to build the project and verify that it is working. If you have an Explorer 16 
demonstration board available, you could try to run the code right away. The LEDs should 
flash at a comfortably slow pace, with a frequency of about two flashes per second. 

 Trying to run the same code with the MPLAB SIM simulator, though, you will discover 
that things are now way too slow. I don ’ t know how fast your PC is, but on mine, MPLAB 
SIM cannot get anywhere close to the execution speed of a true PIC32 microcontroller. 
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 If you use the Animate mode, things get even worse. As we saw before, the animation 
adds a further delay of about half a second between the execution of each individual line 
of code. So, for pure debugging purposes, on the simulator feel free to change the  DELAY
constant to a much smaller value—36, for example!  

  Using the Logic Analyzer 
 To complete this lesson and make things more entertaining, after building the project I 
suggest we play with a new simulation tool: the MPLAB SIM Logic Analyzer. 

 The Logic Analyzer gives you a graphical and extremely effective view of the recorded 
values for any number of the device output pins, but it requires a little care in the initial 
setup.

 Before anything else, you should make sure that the  Tracing  function of the simulator is 
turned on: 

  1.     Select the  Debug  |  Settings  dialog box and then choose the  Osc / Trace  tab.  

  2.     In the Tracing options section, check the  Trace All  box.  

  3.     Now you can open the  Analyzer  window from the  View  |  Simulator Logic 
Analyzer  menu.      

 Figure 2.3 :     MPLAB SIM Logic Analyzer window.    
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  4.     Now click the  Channels  button, to bring up the channel selection dialog box. 

 Figure 2.4 :     Logic Analyzer Channels Configuration dialog box.    

  5.     From here, you can select the device output pins you would like to visualize. In 
our case, select RA0  and click  Add  =>.  

  6.     Click  OK  to close the channel selection dialog box. 

 For future reference, all the preceding steps are listed in the Logic Analyzer Setup 
checklist.

  7.     Run the simulation by pressing the     ( Run ) button on the Debugger toolbar, 
selecting the Debugger  |  Run  menu, or pressing the  F9  shortcut key.  

  8.     After a short while, press the     ( Halt ) button on the Debugger toolbar, select 
the Debugger  |  Halt  menu, or press the  F5  shortcut key.    

 The Logic Analyzer window should display a neat square wave plot, as shown in 
 Figure 2.5   .  
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  Debriefing 
 In this brief excursion, we learned about the way the MPLAB C32 compiler deals with 
program termination. For the first time, we gave our little project a bit of structure—
separating the main()  function in an initialization section and an infinite main loop. To 
do so, we learned about the while  loop statements, and we took the opportunity to touch 
briefly on the subject of logical expressions evaluation. We closed the day with a final 
example, where we used a timer module for the first time and we played with the Logic 
Analyzer window to plot the  RA0  pin output. 

 We will return to all these elements, so don ’ t worry if you have more doubts now than 
when we started; this is all part of the learning experience.  

 Figure 2.5 :     The Logic Analyzer window after running the Loops project.    
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  Notes for the Assembly Experts 
 Logic expressions in C can be tricky for the assembly programmer who is used to dealing 
with binary operators  of identical names (AND, OR, NOT  . . . ). In C there is a set of 
binary operators, too, but I purposely avoided showing them in this lesson to avoid mixing 
things up. Binary logic operators take pairs of bits from each operand and compute the 
result according to the defined table of truth. Logic operators, on the other hand, look at 
each operand (independently of the number of bits used) as a single Boolean value. 

 See the following examples on byte sized operands: 

 11110101                            11110101       (TRUE) 
  binary OR               00001000                            logical OR 00001000        (TRUE) 

                    --------                            --------

  gives                    11111101                          gives               00000001 (TRUE)     

  Notes for the 8-Bit PIC Microcontroller Experts 
 I am sure you noticed: Timer0 has disappeared! The good news is, you are not going 
to miss it. In fact, the remaining five timers of a PIC32 are so loaded with features that 
there is no functionality in Timer0 that you are going to feel nostalgic about. All the 
SFRs that control the timers have similar names to the ones used on PIC16 and PIC18 
microcontrollers and are pretty much identical in structure. Still, keep an eye on the 
datasheet; the designers managed to cram in several new features, including: 

●      All timers are now 16 bits wide.  

●      Each timer has a 16-bit period registers.  

●      A new 32-bit mode timer-pairing mechanism is available for Timer2/3 and 
Timer4/5.  

●      A new external clock gating feature has been added on Timer1. 

  Notes for the 16-Bit PIC Microcontroller Experts 
 For the PIC24 and dsPIC experts among you there will be no surprises with the PIC32. 
The timer modules are designed to be highly compatible with the previous 16-bit 
generation architecture. In fact, the same is true for all the peripheral modules of the 
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PIC32MX family, with the PIC24       H series being the closest. Still, occasionally here 
and there the step up to a 32-bit bus has offered opportunities for improvements that the 
designers of the PIC32 could not resist. 

 The most dramatic difference, though, is represented by the decoupling between the 
core bus clock and the peripherals bus clock. This is a radical departure, for the first 
time in the PIC architectures history, from all previous generations ’  bus designs. It 
was a necessary step that allows the MIPS core of the PIC32 to be free from the speed 
limitations of the Flash memory array and of the peripheral modules, to achieve much 
higher performance levels without sacrificing compatibility while operating within a very 
low power budget. In the next chapters we will learn more about the two internal buses, 
the oscillator module, and their proper configuration.  

  Notes for the C Experts 
 If you are used to programming in C on a personal computer or workstation, you expect 
that, upon termination of the main()  function, control will be returned to the operating 
system. Though several  real-time operating systems  (RTOSs) are available for the PIC32, 
a large number of applications won ’ t need and won ’ t use one. This is certainly true for 
all the simple examples in this book. By default, the MPLAB C32 compiler assumes that 
there is no operating system to return control to.  

  Notes for the MIPS Experts 
 The MIPS experts among you might have been looking for a mention of the  core  32-bit 
timer (yes, there are truly six timers inside the PIC32) and the hardware control registers 
typically offered for access through the  coprocessor 0  ( CP0 ) instructions. It was tempting 
to mention them, but I intentionally avoided it and decided not to use any of them for 
as long as possible. My purpose is to force you, the reader, to familiarize yourself with 
the PIC environment in which the MIPS core has been implanted. My intention is to 
demonstrate the use of the PIC32 and its peripherals as a true PIC microcontroller, the 
fastest ever designed so far, but still a true PIC machine.  

  Tips  &  Tricks 
 Some embedded applications are designed to run their main loops for months or years 
in a row without ever being turned off or receiving a reset command. But the control 
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registers of a microcontroller are simple RAM memory cells. The probability that a 
power supply fluctuation (un-detected by the brown-out reset circuit), an electromagnetic 
pulse emitted by some noisy equipment in the proximity, or even a cosmic ray could alter 
their contents is a small but finite number. Given enough time (years) and depending 
on the application, you might see it happen. When you design applications that have 
to operate reliably on huge time scales, you should start seriously considering the need 
to provide a periodic  “ refresh ”  of the most important control registers of the essential 
peripherals used by the application. 

 Group the sequence of initialization instructions in one or more functions. Call the 
functions once at power-up, before entering the main loop, but also make sure that inside 
the main loop the initialization functions are called when idling and no other critical task 
is pending, so that every control register is reinitialized periodically.  

  Notes on Using the Peripheral Libraries 
 The MPLAB C32 tool suite comes with a complete set of standard C libraries and an 
additional set of peripherals libraries  designed to simplify and standardize the use of all the 
internal resources of the PIC32. The peripheral libraries are specifically designed to provide 
an even higher level of compatibility with previous Microchip 16-bit architectures and in 
particular with the PIC24 series of microcontrollers. The following example uses the timers ’
library timer.h to exemplify the advantages and disadvantages of relying on libraries. 

 Should we need to initialize the Timer1 module using the peripheral libraries, as in the 
 “ loops ”  projects we developed today, in place of the direct access to the Timer1 module 
registers:       

  TMR1 = 0;  
  T1CON = 0x8030;        // or TMR1bits.ON = 1; TMR1bits.TCKPS=3;  

  PR1 = 0xFFFF;     

 we could use the following code:       

  WriteTimer1( 0);  

  OpenTimer1( T1_ON | T1_PS_1_256, 0xFFFF);     

 The clear advantage is that you don ’ t need to add many comments to the two lines of code; 
they read pretty well already. This code is self-documenting. Additionally, if you misspell 
one of the parameter names, the compiler will promptly complain and point it out. 
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 But it is not all roses, either. Although the function parameters are checked for spelling 
errors, in most cases there is no way for the compiler to tell whether you used the right 
parameter for the right function. For example, when configuring Timer2, the following 
error would go undetected: 

  OpenTimer2( T2_ON | T1_PS_1_256, 0xFFFF);     

 It seems a pretty innocent mistake, but it would probably cause you to spend a few 
hours scratching your head to understand why the Timer2 prescaler is configured wrong, 
whereas it is all fine by the compiler. 

 The best advantage of using the libraries, the abstraction they offer, is also another 
source of potential frustration. Since they hide the implementation details from us, we 
are not given to know if, for example, the  TMR1  register is already being cleared by the 
OpenTimer1()  function or if we need to do it ourselves before invoking it. It turns out it 
is not, but you can verify that only if you visually get access to the library source files or 
you inspect them in the disassembly listing. 

 Further, although the PIC32MX device datasheet defines the official names for all the 
control registers ( T1CON ) and for each bit inside them ( TCKPS ), the parameters defined 
in the peripheral libraries have different names and spelling ( T1_PS_1_256 ), although 
they try to mimic them closely. The new names can be found only in a separate set of 
documentation. You need to either study the Peripheral Library User Guide or inspect the 
timer.h include file and verify where each parameter is defined. 

 So, my personal recommendation regarding the use of the peripheral libraries is one of 
cautious and deliberate choice on a case-by-case basis. For some simple peripherals such 
as the I/O ports and the timers, I cannot see much of an advantage in using the library. 
After all, to select the correct parameters, you will still need to learn about each and every 
bit in each control register and be familiar with their meaning and correlation. Besides, is 
WriteTimer1( 0);  really that much more readable than  TMR1=0; ? 

 When the complexity of the peripheral module is greater and the work the library 
functions are performing for us bring more value, such as is the case, for example, of the 
DMA library we will use later in the book, I recommend we take advantage of it. 

 In any case, throughout the rest of the book you will have several examples of both types 
of approaches and, as is often the case, it will be your personal programming style that 
will dictate when and where you will feel comfortable using the peripheral libraries, 
direct register access, or a mix of the two.  
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  Exercises 
  1.     Output a counter on the PortA pins instead of the alternating on and off patterns. 

Use PortD if you have a PIC32 Starter Kit.  

  2.     Use a rotating pattern instead of alternating on and off.  

  3.     Rewrite the loops project using exclusively peripheral library functions to control 
PortA pins; set, configure, and read the timer; and disable the JTAG port if necessary.      

   Books
        Ullman ,    L.  , and   Liyanage ,    M.         ,      C Programming        (    Peachpit Press      ,  Berkeley, CA      ,  2005   )        . 

    This is a fast-reading and modern book, with a simple step-by-step introduction to the 
C programming language. 

 Links 
http://en.wikipedia.org/wiki/Control_flow#Loops  . A wide perspective on programming 

languages and the problems related to coding and taming loops. 

http://en.wikipedia.org/wiki/Spaghetti_code  . Your code gets out of control when your 
loops start knotting  . . . 



          Message in a Bottle   

  The Plan 
 Yesterday we learned that there is a loop at the core of every embedded-control application, 
and we learned to code it in C using the while  statement. Today we will continue 
exploring a variety of other techniques available to the C programmer to perform loops. 
Along the way, we will take the opportunity to briefly review integer variable declarations 
and increment and decrement operators, quickly touching on array declarations and usage. 
By the end of the day you will be ready for a hopefully entertaining project that will make 
use of all the knowledge you acquired during the day by creating a survival tool you ’ ll find 
essential should you ever be stranded on a deserted island. 

  Preparation 
 In this lesson we will continue to use the MPLAB© SIM software simulator, but once 
more an Explorer 16 demonstration board could add to the entertainment. In preparation 
for the new demonstration project, you can use the New Project Setup checklist to create 
a new project called Message and a new source file called Message.c.  

  The Exploration 
 In a  while  loop, a block of code enclosed by two curly brackets is executed if, and for as 
long as, a logic expression returns a Boolean true value (not zero). The logic expression is 
evaluated before the loop, which means that if the expression returns false right from the 
beginning, the code inside the loop might never be executed.  

D A Y  3 
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Do  Loops 
 If you need a type of loop that gets executed at least once but only subsequent repetitions 
are dependent on a logic expression, you have to look at a different type of loop. 

 Let me introduce you to  do  loop syntax:       

  do { 
 // your code here ...      

  } while ( x);     

 Don ’ t be confused by the fact that the  do  loop syntax is using the  while  keyword again 
to close the loop; the behavior of the two is very different. 

 In a  do  loop, the code found between the curly brackets is always executed first; 
only then is the logic expression evaluated. Of course, if all we want to get is an infinite 
loop for our main()  function, it makes no difference if we choose the  do  or the 
while:

  main()  
  { 
 // initialization code  
 ...  

 // main application loop  
 do {  
 ...  

 } while ( 1)     

  } // main     

 Looking for curious cases, we might analyze the behavior of the following loop:       

  do{ 
 // your code segment here ...      

  } while ( 0);     

 You will realize that the code segment inside the loop is going to be executed once and, 
no matter what, only once. In other words, the loop syntax around the code is, in this 
case, a total waste of your typing efforts and another good candidate for the  “ most useless 
piece of code in the world ”  contest. 
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 Let ’ s now look at a more useful example, where we use a  while  loop to repeatedly 
execute a piece of code for a predefined and exact number of times. First, we need a 
variable to perform the count. In other words, we need to allocate one or more RAM 
memory locations to store a counter value.

      Note     

 In the previous two lessons we have been able to skip, almost entirely, the subject of variable 
declarations because we relied exclusively on the use of what are in fact predefined variables: 
the special-function registers of the PIC32. 

  Variable Declarations 
 We can declare an integer variable with the following syntax: 

int i;

 Since we used the keyword  int  to declare  i  as a 32-bit (signed) integer, the MPLAB 
C32 compiler will make arrangements for 4 bytes of memory to be used. Later, the 
linker will determine where those 4 bytes will be allocated in the physical RAM 
memory of the selected PIC32 model. As defined, the variable  i  will allow us to count 
from a negative minimum value �2,147,483,648 to a maximum positive value of 
�2,147,483,647. This is quite a large range of values—so large that most 8- and 16-bit 
compilers would have been so generous only for the next type up in the hierarchy of 
integer types, known as  long , as in: 

long l;

 But this is one of the advantages of using a 32-bit microcontroller. The arithmetic and 
logic unit (ALU) of the PIC32 is actually performing all arithmetic operations with equal 
ease (same number of clock cycles) for 32-bit integers just as it would for a 16-bit or an 
8-bit integer. The MPLAB C32 compiler therefore defaults immediately to 32-bit for the 
basic integer type ( int ) and makes  long  just a synonym for it. 

 This is all nice and dandy from a performance point of view, but it comes with a price in 
terms of memory space. The RAM memory space allocated to hold each integer variable 
in your program is now double what it used to be on an 8 or 16-bit PIC© microcontroller. 
Though it is true that we have more of it on the PIC32 models, RAM often remains one 
of the most precious resources in an embedded-control application. 
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 So if you don ’ t have a use for the huge range of values that the PIC32 ’ s  int  and  long
types can offer and you are looking for a smaller counter, and you can accept a range of 
values from, say, �128 to �127, you can use the char  integer type instead: 

char c;

 The MPLAB C32 compiler will use only 8 bits (a single byte) to hold  c . 

 If a range of values from �32768 and �32767 is more what you were looking for, the 
short  integer type is the right type for you: 

short s;

 The MPLAB C32 compiler will use only 16 bits (two bytes) to hold  s . All four types can 
further be modified by the unsigned attribute, as in:       

  unsigned char c;        // ranges from 0..255  
  unsigned short s;        // ranges from 0..65,535  
  unsigned int i;        // ranges from 0..4,294,967,295  

  unsigned long l;        // ranges from 0..4,294,967,295     

 Now, if you really need a large range of values, nothing beats the  long long  type and 
its unsigned variant: 

  long long l;        // ranges from -263 to +263-1  

  unsigned long long l;        // ranges from 0 to +264     

      Note     

 The MPLAB C32 compiler will allocate 64 bits (8 bytes or RAM) for each  long   long
variable, which can seem like a lot, but the workload you can expect from the PIC32 to crunch 
these numbers is not going to be much different than what it used to be for a PIC16 to work on 
a simple 16-bit integer. 

  There are then variable types defined for use in floating-point arithmetic:       

  float     f;        // defines a 32 bit floating point  

  long double d;        // defines a 64 bit floating point     

 But for our looping purposes, let ’ s stick with integers for now.  
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for Loops 
 Returning to our counter example, all we need is a simple integer variable to be used as 
index/counter, capable of covering the range from 0 to 5. Therefore, a  char  integer type 
will do:       

  char i; //       declare i as an 8-bit integer with sign  

  i = 0;        // init the index/counter  
  while ( i<5)  
  { 
 // insert your code here  ...   
 // it will be executed for i= 0, 1, 2, 3, 4  

 i = i+1; // increment     

  }     

 Whether counting up or down, this is something you are going to do a lot in your 
everyday programming life. In C language, there is a third type of loop that has been 
designed specifically to make coding this common case easy. It is called the  for  loop, 
and this is how you would have used it in the previous example:       

  for ( i=0; i<5; i=i+1)  
  { 
 // insert your code here  ...   
 // it will be executed for i=0, 1, 2, 3, 4     

  }     

 You will agree that the  for  loop syntax is compact, and it is certainly easier to write. It 
is also easier to read and debug later. The three expressions separated by semicolons and 
enclosed in the brackets following the  for  keyword are exactly the same three expressions 
we used in the prior example: 

●      Initialize the index  

●      Check for termination using a logic expression  

●      Advance the index/counter, in this case incrementing it 
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 You can think of the  for  loop as an abbreviated syntax of the  while  loop. In fact, the 
logic expression is evaluated first and, if it ’ s false from the beginning, the code inside the 
loop ’ s curly brackets may never be executed. 

 Perhaps this is also a good time to review another convenient shortcut available in C. There 
is a special notation reserved for the increment and decrement operations that uses the 
operators: 

    ++    increment , as in:         i++;         is equivalent to:         i = i+1;

--    decrement , as in:         i--;         is equivalent to:         i = i-1;

 There will be much more to say on the subject in later chapters, but this will suffice for now. 

  More Loop Examples 
 Let ’ s see some more examples of the use of the  for  loop and the increment/decrement 
operators. First, a count from 0 to 4: 

  for ( i=0; i<5; i++)  
  { 
 // insert your code here  ...   
 // it will be executed for i= 0, 1, 2, 3, 4     

  }     

 Then a count down from 4 to 0:       

  for ( i=4; i>=0; i--)  
  { 
 // insert your code here  ...   
 // it will be executed for i= 4, 3, 2, 1, 0     

  }     

 Can we use the for loop to code an (infinite) main program loop? Sure we can! Here is an 
example:       

  main()  
  { 
 // 0. initialization code  
 // insert your initialization code here ...   
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 // 1. the main application loop  
 for ( ; 1; )  
 { 
 // insert your main loop here ...      

 }     

  } // main     

 If you like it, feel free to use this form. As for me, from now on I will stick to the  while
syntax (it is just an old habit).  

  Arrays 
 Before starting to code our next project, we need to review one last C language feature: 
array variable types . An array is just a contiguous block of memory containing a given 
number of identical elements of the same type. Once the array is defined, each element 
can be accessed via the array name and an index. Declaring an array is as simple as 
declaring a single variable—just add the desired number of elements in square brackets 
after the variable name: 

  char c[10];        // declares c as an array of 10 x 8-bit integers  
  short s[10];        // declares s as an array of 10 x 16-bit integers  

  int i[10];        //  declares i as an array of 10 x 32-bit integers     

 The same squared-brackets notation is used to refer to the content or assign a value to 
each element of an array, as in: 

  a = c[0];        // copy the value of the 1st element of c 
into a  

  c[1] = 123;        //  assign the value 123 to the second element 
of c  

  i[2] = 12345;        //  assign the value 12,345 to the third element 
of i  

  i[3] = 123* i[4];        //  compute 123 x the value of the fifth element 

of i     
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  It is when we manipulate arrays that the  for  type of loop comes in very handy. Let ’ s 
see an example where we declare an array of 10 integers and we initialize each element 
of the array to a constant value of 1: 

  int a[10];        // declare array of 10 integers: a[0], a[1],
a[2] ... a[9]  

  int i;  // to be used as the loop index  
  for ( i=0; i<10; i++)  
  { 
 a[ i] = 1;     

  }     

  Sending a Message 
 It ’ s time to take all the new elements of the C language we have reviewed so far and 
put them to use in our next project. We will try once more to communicate with the 
outside world, this time using an entire row of LEDs connected to PortA, as they 
happen to be connected on the Explorer 16 demo board, flashing in a rapid sequence 
so that when we move the board left and right rhythmically they will display a short 
text message. 

 How about  “ Hello World! ”  or perhaps more modestly  “ HELLO ” ? Here is the code: 

  #include <p32xxxx.h>  

  // 1. define timing constants  
  #define SHORT_DELAY        400 
  #define LONG_DELAY        3200 

      Note     

 In C language, the first element of an array has index 0, whereas the last element has index  N -1, 
where N  is the declared array size. 
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  // 2. declare and initialize an array with the message bitmap  
  char bitmap[30] = { 
 0xff,        // H 
 0x08,  
 0x08,  
 0xff,  
0,
0,
 0xff,        // E 
 0x89,  
 0x89,  
 0x81,  
0,
0,
 0xff,        // L 
 0x80,  
 0x80,  
 0x80,  
0,
0,
 0xff,        // L 
 0x80,  
 0x80,  
 0x80,  
0,
0,
 0x7e,        // O 
 0x81,  
 0x81,  
 0x7e,  
0,
 0  
};    

  // 3. the main program  
  main()  
  { 
 // disable JTAG port  
 DDPCONbits.JTAGEN = 0;  

 // 3.1 variable declarations  
 int i;        // i will serve as the index  
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 // 3.2 initialization  
 TRISA = 0xff00;        //  PORTA pins connected to LEDs are outputs  
 T1CON = 0x8030;        // TMR1 on, prescale 1:256 Tpb=36       MHz  
 PR1 = 0xFFFF;        // max period (not used)  

 // 3.3 the main loop  
 while( 1)  
 { 
 // 3.3.1 display loop, hand moving to the right     
 for( i=0; i<30; i++)  
 { // update the LEDs 
 PORTA = bitmap[i];  
 // short pause  
 TMR1 = 0;  
 while ( TMR1 < SHORT_DELAY)  
 {  
 }     

 } // for i  

 // 3.3.2 long pause, hand moving back to the left  
 PORTA = 0;        // turn LEDs off  
 // long pause  
 TMR1 =  0;  
 while ( TMR1 < LONG_DELAY)  
 {  
 }     

 } // main loop  

  } // main     

 In section 1, we define a couple of timing constants so that we can control the flashing 
sequence speed for execution and debugging. 

 In section 2, we declare and initialize an 8-bit integer array of 30 elements, each 
containing an LED configuration in the sequence.

      Hint     

 Convert the hex values in the array initialization to binary on a piece of paper and, using a 
highlighter or a red pen, mark each 1 on the page to see the message emerge.      
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  Section 3 contains the main program, with the variable declarations (3.1) at the top, 
followed by the microcontroller initialization (3.2) and eventually the main loop (3.3). 

 The main ( while ) loop, in turn, is further divided in two sections: Section 3.3.1 contains 
the actual LED Flash sequence, composed of 30 steps, to be played when the board is 
swept from left to right. A for  loop is used for accessing each element of the array, in 
order. A  while  loop is used to wait on Timer1 for the proper sequence timing. Section 
3.3.2 contains a pause for the sweep back, implemented using a while  loop with a longer 
delay on Timer1.  

  Testing with the Logic Analyzer 
 To test the program, we will initially use the MPLAB SIM software simulator and the 
Logic Analyzer window: 

  1.     Build the project using the  Project Build  check list.  

  2.     Open the  Logic Analyzer  window.  

  3.     Click the  Channel  button to add, in order, all the I/O pins from  RA0  to  RA7
connected to the row of LEDs. 

 The MPLAB SIM Setup and Logic Analyzer Setup checklists will help you make sure 
that you don ’ t forget any detail. 

  4.     Then I suggest you go back to the editor window and set the cursor on the first 
instruction of the 3.3.2 section.  

  5.     Right-click to select the  context  menu and choose the  Run to Cursor  command. 
This will let the program execute the entire portion containing the message output 
(3.3.1) and will stop just before the long delay.  

  6.     As soon as the simulation halts on the cursor line, you can switch to the  Logic
Analyzer  window and verify the output waveforms. They should look like 
 Figure 3.1   .    

 To help you visualize the output, I added a few red dots to represent the LEDs being 
turned on during the first few steps of the sequence. If you squeeze your eyes a bit and 
imagine you see an LED on wherever the corresponding pin is at the logic high level, you 
will be able to read the message.  
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  Testing with the Explorer 16 Demonstration Board 
 If you have an actual Explorer 16 demonstration board and an MPLAB REAL ICE 
programmer and debugger available, the fun can be doubled: 

  1.     Use the  Setup  checklist for your in circuit debugger of choice.  

  2.     Use the  Device Configuration  checklist to verify that the device configuration 
bits are properly set for use with the Explorer 16 demonstration board.  

  3.     Use the  Programming  checklist to program the PIC32 in circuit.    

 After dimming the light a bit in the room, you should be able to see the message flashing 
as you  “ shake ”  the board. The experience is going to be far from perfect, though. With 
the Simulator and the Logic Analyzer window, we can choose which part of the sequence 
we want to visualize with precision and  “ freeze ”  it on the screen. On the demonstration 
board, you might find it quite challenging to synchronize the board ’ s movement with the 
LED sequence. 

 Figure 3.1 :     Snapshot of the Logic Analyzer window after the first sweep.    
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 Consider adjusting the timing constants to your optimal speed. After some experimentation, 
I found that the values 400 and 3200, respectively, for the short and long delays were ideal, 
but your preferences might differ. 

  Testing with the PIC32 Starter Kit 
 If you have a PIC32 Starter Kit, it will be harder but not impossible to adapt our example 
to use only the three available LEDs connected to the PortD pins  RD0 ,  RD1 , and  RD2 . 
Unfortunately, even if you get hold of a PIM adapter board to attach the Starter Kit to an 
Explorer 16 board, you won ’ t be able to see the demo in its full glory, because the Starter 
Kit uses the JTAG port, and that means that four out of the eight LEDs on PortA are not 
available. 

 This is not fair. In fact, I believe we need to change our strategy and find another way to 
send our message out to the world with the PIC32 Starter Kit. The idea is to use the old 
and trusty Morse code! Here is the sequence of light flashes required:     

  H        E        L       L       O  

. . . . . . - . . . - . . - - -       

 The rules are simple: Once chosen a basic pulse length for the  dot  (a couple tenths of a 
second), every other interval is required to generate a proper Morse code message based 
on integer multiples of it. A dash will be three times longer. The pause between dash and 
dots is going to be one single dot long, the pause between letters will be three dots long, 
and finally the pause between words will be five dots long. Once more, we can encode 
the entire message using an array of alternating 1s and 0s. Here is the modified code 
example:       

  #include <p32xxxx.h>  

  // 1. define timing constant  
  #define DOT_DELAY 18000  

  // 2. declare and initialize an array with the message bitmap  
  char bitmap[] = { 
 // H ....  
 1,0,1,0,1,0,1,0,0,0,  
 // E .  
 1,0,0,0,  
 // L .-..  
 1,0,1,1,1,0,1,0,1,0,0,0,  
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 // L .-..  
 1,0,1,1,1,0,1,0,1,0,0,0,  
// --- 
 1,1,1,0,1,1,1,0,1,1,1,  
 // end of word  
 0,0,0,0,0   
};    

  // 3. the main program  
  main()  
  { 
 // 3.1 variable declarations  
 int i;        // i will serve as the index  

 // 3.2 initialization  
 TRISD = 0;        // all PORTD as output  
 T1CON = 0x8030;        // TMR1 on, prescale 1:256 PB=36       MHz  
 PR1 = 0xFFFF;        // max period (not used)  

 // 3.3 the main loop  
 while( 1)  
 { 

 // 3.3.1 display loop, spell a letter at a time  
 for( i=0; i<sizeof(bitmap); i++)  
 { 

 PORTD = bitmap[i];  

 // short pause  
 TMR1 = 0;  
 while ( TMR1 < DOT_DELAY)  
 {  
 }  

   } // for i     

 } // main loop        

  } // main     

 Notice that, to avoid having to count the dots and dashes manually to allocate the right 
amount of space for the bitmap array, I used a little trick. By leaving the square brackets 
( [] ) empty in the declaration of the array, I essentially told the compiler to figure out by 
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itself the right size based on the number of integers used in the follow list (between curly 
brackets  {} ). Of course, this would have not worked if there had been no initialization list 
immediately following the array declaration. A problem would have occurred later in the 
for  loop if I had no other way to know how many elements had eventually been added 
to the array. Luckily, the  sizeof()  function came to my rescue, giving me a byte count 
(the size of the array in bytes), and since each array element is a char  type integer, that 
coincides with the exact number of elements I was looking for.  

  Debriefing 
 In this lesson we reviewed the declaration of a few basic variable types, including integers 
and floating points of different sizes. Array declarations and their initialization were also 
used to create an original  “ shaking ”  LED display first and Morse code later, using  for
loops to send messages to the world.  

  Notes for the Assembly Experts 
 The  ++  and -- operators are actually much smarter than you might think. If the variable 
they are applied to is an integer, as in our trivial examples, there is little they can do to 
help, apart from saving you a few keystrokes. But if they are applied to a pointer (which 
is a variable type that contains a memory address), they actually increase the address by 
the exact number of bytes required to represent the quantity pointed to. For example, a 
pointer to 16-bit integers will increment its address by two, while a pointer to a 32-bit 
integer will increment its address by four, and so on. 

 The increment and decrement operators can also be applied inside a generic expression to 
operate before  or  after  a variable content is fetched. Here are a few examples (assuming 
the initial conditions a=0  and  b=1 ): 

a = b++;        // a = 1, b = 2

 In this first case,  a  is assigned the value of  b  first, and  b  is incremented later. 

a = ++b;  // a = 2, b = 2

 In this second case,  b  is incremented first and then its (new) value is passed to  a . 

 Use these interesting options with moderation, though. The actual convenience (as in 
reduction of keystrokes) is counterbalanced by an increased obfuscation of the code. 
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As per a potential increase in the efficiency, it is most probably negligible. In fact, 
whether you use the increment/decrement operators or not, the MPLAB C32 compiler 
optimizer, even at the lowest settings, can probably do a better job of optimizing the use 
of the PIC32 registers in a generic expression without you having to fiddle with these 
details.

 Let me add one last word on loops. It can be confusing to see so many options: Should 
you test the condition at the beginning or the end? Should you use the  for  type or not? 
The fact is, in some situations the algorithm you are coding will dictate which one to use, 
but in many situations you will have a degree of freedom, and more than one type might 
do. Choose the one that makes your code more readable, and if it really doesn ’ t matter, as 
in the main loop, just choose the one you like and be consistent.  

  Notes for the PIC Microcontroller Experts 
 Depending on the target microcontroller architecture and ultimately the arithmetic and 
logic unit (ALU), operating on bytes versus operating on word quantities can make a big 
difference in terms of code compactness and efficiency. In the PIC16 and PIC18 8-bit 
architectures there is a strong incentive to use byte-sized integers wherever possible; in 
the PIC32, 32-bit word-sized integers can be manipulated with the same efficiency. The 
only limiting factor, preventing us from always using 32-bit integers with the MPLAB 
C32 compiler, is the consideration of the relative preciousness of the internal resources of 
the microcontroller, and in this case the RAM memory.  

  Notes for the C Experts 
 Even if PIC32 microcontrollers have a relatively large RAM memory, larger than the 
Flash memory of most 8-bit microcontrollers, embedded-control applications will always 
have to contend with the reality of cost and size limitations. If you learned to program 
in C on a PC or a workstation, you probably never thought twice about using an  int
whenever you needed an integer. Well, this is the time to think again. Shaving one byte at 
a time off the requirements of your application might, in some cases, mean you ’ re able to 
fit in a smaller PIC32 microcontroller, saving fractions of a dollar that when multiplied 
by the thousands or millions of units (depending on your production run rates) can mean 
real money added to the bottom line of your company. In other words, if you learn to 
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keep the size of your variables to the strict minimum necessary, you will become a better 
embedded-control designer. Ultimately, this is what engineering is all about.  

  Tips  &  Tricks 
 Since the first day I have introduced you to the mysteries of the startup ( crt0 ) code, that 
little piece of code that the linker places automatically in between the main function and the 
reset vector. Today you might have not realized how the  crt0  code helped us once more. In 
this last project we declared an array called bitmap[]  and we asked for it to be initialized 
with a specific series of values, but the array, being a data structure, resides in RAM during 
execution. It is one of the  crt0  code responsibilities to copy the contents of the array from 
a table in Flash memory to RAM, immediately before the main program execution. 

 Another useful service performed by the  crt0  code is to initialize every globally 
declared variable to  0 . In most cases this will have the effect of making your code safer 
and more predictable (you always initialize your variables before use, don ’ t you?), but it 
will come at a cost. If you have large arrays allocated in RAM, and even if you chose not 
to initialize them explicitly, it will take a small but finite amount of time to the  crt0  code 
to fill them with zeros before your main program will be able to execute. In embedded-
control applications, there can be cases when this delay is not acceptable. In some 
applications, a few microseconds can make the difference between blowing an expensive 
power MOSFET, for example, or having your application recovering fast and safe from 
a critical reset condition. In these special cases you can define the special function 
_on_reset() , as in the following example:       

  void _on_reset( void)  
  { 
 // something urgent that needs to be done immediately  
// after a reset or at power up  

  your code here  ...         

  }     

 This function will replace an empty place holder that the  crt0  code is normally calling 
before getting to the initialization part. Be careful, though, to make it short and not to make 
too many assumptions at this point. First, remember that this function will be called  every  
time the PIC32 goes through a reset sequence. Second, apart from the stack, you cannot 
count on your program functions and global variables to be available and initialized yet! 
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  Exercises   
  1.     Improve the display/hand synchronization, waiting for a button to be pressed 

before the hand sweep is started.  

  2.     Add a switch to sense the sweep movement reversal and play the LED sequence 
backward on the back sweep.      

   Books
        Rony ,    P.  ,   Larsen ,    D.  , and   Titus ,    J.         ,      The 8080A Bugbook, Microcomputer Interfacing And 

Programming        (    Howard W. Sams  &  Co., Inc      ,  Indianapolis, IN      ,  1976   )        .     This is the book 
that introduced me to the world of microprocessors and changed my life forever. No 
high-level language programming here, just the basics of assembly programming and 
hardware interfacing. (Too bad this book is already considered museum material; see 
link below.)       

 Links 
        www.bugbookcomputermuseum.com/BugBook-Titles.html . A link to the “ Bugbooks 

museum ” ; 30 years since the introduction of the Intel 8080 microprocessor and it is 
like centuries have already passed. 

        http://en.wikipedia.org/wiki/Morse_code . Learn about the Morse code, its history, and its 
applications.



             NUMB3RS

  The Plan 
 Just yesterday we learned about different types of C variables, and we stressed the 
importance of using the right type of variable for each application to preserve a precious 
resource: RAM. I don ’ t know about you, but I am now very curious about putting those 
variables to work and seeing how the MPLAB© C32 compiler performs basic arithmetic 
on them. Knowing that the PIC32 has a set of 32  “ working ”  registers and a 32-bit ALU, 
I am expecting to see some very efficient code, but I also want to compare the relative 
performance of the same operation performed on different data types and, in particular, 
floating-point types. Hopefully after today we will have a better understanding of how 
to balance performance and memory resources, real-time constraints, and complexity to 
better fit the needs of our embedded-control applications.  

  Preparation 
 This entire lesson will be performed exclusively with software tools that include the 
MPLAB IDE, MPLAB C32 compiler, and the MPLAB SIM simulator. 

 Use the New Project Setup checklist to create a new project called  NUMB3RS  and a new 
source file called  NUMB3RS.c .

  The Exploration 
 To review all the available data types, I recommend you take a look at the MPLAB C32 
User Guide. You can start in Chapter 1.5, where you can find a first list of the supported 
integer types (see  Table 4.1   ). 

D A Y  4 
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 As you can see, there are 10 different integer types specified in the ANSI C standard, 
including char, int, short, long, and long long , both in the signed (default) 
and unsigned variant. The table shows the number of bits allocated specifically by the 
MPLAB C32 compiler for each type and, for your convenience, spells out the minimum 
and maximum values that can be represented. 

 It is expected that when the type is signed, one bit must be dedicated to the sign itself. 
The resulting absolute value is halved, while the numerical range is centered around zero. 
We have also noted before (in our previous explorations) how the MPLAB C32 compiler 
treats int  and  long  as synonyms by allocating 32 bits (4 bytes) for both of them. In fact, 
8-, 16-, and 32-bit quantities can be processed with equal efficiency by the PIC32 ALU. 
Most of the arithmetic and logic operations on these integer types can be coded by the 
compiler using single assembly instructions that can be executed very quickly—in most 
cases, in a single clock cycle. 

 The  long long  integer type (added to the ANSI C extensions in 1999) offers 64-bit 
support and requires 8 bytes of memory. Since the PIC32 core is based on the MIPS 
32-bit architecture, operations on long long  integers must be encoded by the compiler 
using short sequences of instructions inserted inline. Knowing this, we are already 
expecting a small performance penalty for using  long long  integers; what we don ’ t 
know is how large it will be. 

 Table 4.1 :     MPLAB C32 integer types comparison table . 

Type  Bits Min Max

 char, signed char   8 �128 127

 unsigned char  8    0 255

 short, signed short 16 �32768 32767

 unsigned short 16    0 65535

 int, signed int, long, signed long  32 � 2 31 231  � 1 

 unsigned int, unsigned long 32    0 232  � 1 

 long long, signed long long 64 � 2 63 263  � 1 

 unsigned long long 64   0 264  � 1 
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 Let ’ s look at a first integer example; we ’ ll start by typing the following code:       

  main ()  
  {  
  int i,j,k; 
 i = 1234;          // assign an initial value to i  
 j = 5678;          // assign an initial value to j  
 k = i * j;         // multiply and store the result in k     

  }     

 After building the project ( Project | Build All  or  Ctrl�F10 ), we can open the 
Disassembly window ( View | Disassembly Listing ) and take a look at the code 
generated by the compiler: 

  12:                            i = 1234; 
  9D00000C       240204D2       addiu       v0,zero,1234 
  9D000010       AFC20000       sw       v0,0(s8) 
  13:                            j = 5678; 
  9D000014       2402162E       addiu       v0,zero,5678 

  9D000018       AFC20004       sw       v0,4(s8)     

 Even without knowing the PIC32 (MIPS) assembly language, we can easily identify 
the two assignments. They are performed by loading the literal values to register  v0
first and from there to the memory locations reserved for the variable  i  (pointed to 
by the S8  register), and later for variable  j  (pointed to by the  S8  register with an 
offset of 4). 

 In the following line, the multiplication is performed by transferring the values from 
the locations reserved for the two integer variables  i  and  j  back to registers  v0  and  v1
and then performing a single 32-bit multiplication mul  instruction. The result, available 
in v0 , is stored back into the locations reserved for  k  (pointed to by  S8  with an offset 
of 8)—pretty straightforward! 

  14:                            k = i*j; 
  9D00001C       8FC30000       lw       v1,0(s8) 
  9D000020       8FC20004       lw       v0,4(s8) 
  9D000024       70621002       mul       v0,v1,v0 

  9D000028       AFC20008       sw       v0,8(s8)     
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  On Optimizations (or Lack Thereof) 
 You will notice how the overall program, as compiled, is somewhat redundant. The value 
of j, for example, is still available in register  v0  when it is reloaded again—just before the 
multiplication. Can ’ t the compiler see that this operation is unnecessary? 

 In fact, the compiler does not see things this clearly; its role is to create  “ safe ”  code, 
avoiding (at least initially) any assumption and using standard sequences of instructions. 
Later on, if the proper optimization options are enabled, a second pass (or more) is 
performed to remove the redundant code. During the development and debugging phases 
of a project, though, it is always good practice to disable all optimizations because 
they might modify the structure of the code being analyzed and render single-stepping 
and breakpoint placement problematic. In the rest of this book we will consistently 
avoid using any compiler optimization option; we will verify that the required levels of 
performance are obtained regardless.  

  Testing 
 To test the code, we can choose to work with the simulator from the Disassembly 
Listing window itself, single-stepping on each assembly instruction. Or we can choose to 

      Note     

 It is beyond the scope of this book to analyze in detail the MIPS assembly programming 
interface, but I am sure you will find it interesting to note that the  mul  instruction, like all 
other arithmetic instructions of the MIPS core, has three operands—although in this case the 
compiler is using the same register ( v0 ) as both one of the sources and the destination. Note 
how the MIPS core belongs to the so-called  load and store  class of machines, as all arithmetic 
operands have first to be fetched from RAM into registers (load) before arithmetic operations 
can be performed, and later the result has to be transferred back to RAM (store). Finally, if you 
are even minimally interested in the MIPS assembly, note how the compiler chose to use the 
addiu  instruction to load more efficiently a literal word into a register. In reality this performs 
an addition of an immediate value with a second operand that was chosen to be the aptly named 
register  zero .
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work from the C source in the editor window, single-stepping through each C language 
statement (recommended). In both cases, we can: 

  1.     Open the Local Variables window ( View | Locals ) to see immediately listed, in a 
small and convenient window, all the variables defined inside the current function 
(main() ).

  2.     Open the Watch window ( View | Watch ) and  add  the  v0  and  v1  registers using 
the Add SFR  combo box.  

  3.     Single-step ( Debugger | Step Over  or  F8 ) through the next few program lines, 
observing the effects on the variables in the Watch window. As we noted before, 
when the value of a variable in the Watch window or the Locals window changes, 
it is highlighted in red. 

 If you need to repeat the test, perform a Reset ( Debugger | Reset | Processor Reset ), but 
don ’ t be surprised if the second time you run the code the contents of the local variables 
appear magically in place before you initialize them. Local variables (defined inside 
a function) are not cleared by the Startup code; therefore, if the RAM memory is not 
cleared between reruns, the RAM locations used to hold the variables  i ,  j , and  k  will 
have preserved their contents.  

  Going  long long
 At this point, modifying only the first line of code, we can change the entire program to 
perform operations on 64-bit integer variables: 

  main ()  
  { 
 long long i,j,k;  

 i = 1234;        // assign an initial value to i  
 j = 5678;        // assign an initial value to j  
 k = i * j;        // multiply and store the result in k     

  }     

 Rebuilding the project, and switching again to the Disassembly Listing window 
(if you had the editor window maximized and you did not close the Disassembly 
Listing window, you could use the Ctrl � Tab command to quickly alternate between the 
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editor and the Disassembly Listing), we can see how the newly generated code is a bit 
longer than the previous version. Though the initializations are still straightforward, the 
multiplication is now performed using several more instructions:       

  15:                     k = i*j; 
  9D00002C        8FC30000        lw        v1,0(s8) 
  9D000030        8FC20008        lw        v0,8(s8) 
  9D000034        00620019        multu        v1,v0 
  9D000038        00002012        mflo        a0 
  9D00003C        00002810        mfhi        a1 
  9D000040        8FC30000        lw        v1,0(s8) 
  9D000044        8FC2000C        lw        v0,12(s8) 
  9D000048        70621802        mul        v1,v1,v0 
  9D00004C        00A01021        addu        v0,a1,zero 
  9D000050        00431021        addu        v0,v0,v1 
  9D000054        8FC60008        lw        a2,8(s8) 
  9D000058        8FC30004        lw        v1,4(s8) 
  9D00005C        70C31802        mul        v1,a2,v1 
  9D000060        00431021        addu        v0,v0,v1 
  9D000064        00402821        addu        a1,v0,zero 
  9D000068        AFC40010        sw        a0,16(s8) 

  9D00006C        AFC50014        sw        a1,20(s8)     

 The PIC32 ALU can process only 32 bits at a time, so the 64-bit multiplication is actually 
performed as a sequence of 32-bit multiplications and additions. The sequence used by 
the compiler is generated with pretty much the same technique that we learned to use 
in elementary school, only performed on a 32-bit word at a time rather than one digit 
at a time. In practice, to perform a 64-bit multiplication using 32-bit instructions, there 
should be four multiplications and three additions, but you will note that the compiler has 
actually inserted only three multiplication instructions. What is going on here? 

 The fact is that multiplying two  long long  integers (64-bit each) will produce a 128-bit 
wide result. But in the previous example, we have specified that the result will be stored 
in yet another long long  variable, therefore limiting the result to a maximum of 
64 bits. Doing so, we have clearly left the door open for the possibility (not so remote) 
of an overflow, but we have also given the compiler the permission to safely ignore the 
most significant bits of the result. Knowing those bits are not going to be missed, the 
compiler has eliminated completely the fourth multiplication step, so in a way, this is 
already optimized code.  
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  Integer Divisions 
 If we perform a similar analysis of the division operation on integer variables as in the 
previous examples, we will rapidly confirm how  char ,  short , and  int  types are all 
treated the same as well: 

  main ()  
  {  
 int i, j, k; 

 i = 1234;  
 j = 5678;  
 k = i/j;     

  } // main     

 The code produced by the compiler is extremely compact and uses a single  div  assembly 
instruction.

  15:                    k = i/j; 
  9D00001C        8FC30000        lw        v1,0(s8) 
  9D000020        8FC20004        lw        v0,4(s8) 
  9D000024        0062001A        div        v1,v0 
  9D000028        004001F4        teq        v0,zero 
  9D00002C        00001012        mflo        v0 

  9D000030        AFC20008        sw        v0,8(s8)     

      Note     

 Basic math tells us that the multiplication of two  n -bit-wide integer values produces a 
2n -bit-wide integer result. The C compiler knows this, but if we fail to provide a recipient 
with enough room to contain the result of the operation, or if there is simply no larger integer 
type available, as is the case of the multiplication of two  long long  integers, it has no 
choice but to discard (quietly) the most significant bits of the result. It is our responsibility not 
to let this happen by choosing the right integer types for the range of values used in our 
application. If necessary, you can predetermine the number of bits in the result of any product 
by finding the indexes of the first non-zero-bit (msb) for each operand and adding them 
together. If the sum is larger than the number of bits of the recipient type, you know there will 
be an overflow!  
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 It is only when we analyze the case of a 64-bit division that we find that the compiler is 
using a different technique: 

  main ()  
  { 
 long long i, j, k;  

 i = 1234;  
 j = 5678;  
 k = i/j;     

  } // main     

 In fact, recompiling and inspecting the new code in the Disassembly Listing window 
we reveal a misleadingly short sequence of instructions leading to a subroutine 
call ( jal ).       

  15:                    k = i/j; 
  9D000030        8FC40010        lw        a0,16(s8) 
  9D000034        8FC50014        lw        a1,20(s8) 
  9D000038        8FC60018         lw        a2,24(s8) 
  9D00003C        8FC7001C        lw        a3,28(s8) 
  9D000040        0F40001A        jal           0x9d000068 
  9D000044        00000000        nop 
  9D000048        AFC20020        sw        v0,32(s8) 

  9D00004C         AFC30024         sw        v1,36(s8)     

 The subroutine itself will appear in the disassembly listing, after all the main function 
code. This subroutine is clearly separated and identified by a comment line that indicates 
it is part of a library, a module called libgcc2.c. The source for this routine is actually 
available as part of the complete documentation of the MPLAB C32 compiler and can be 
found in a subdirectory under the same directory tree where the MPLAB C32 compiler 
has been installed on your hard disk. 

 By selecting a subroutine in this case, the compiler has clearly made a compromise. 
Calling the subroutine means adding a few extra instructions and using extra space on 
the stack. On the other hand, fewer instructions will be added each time a new division 
(among long long  integers) is required in the program; therefore, overall code space 
will be preserved.  
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  Floating Point 
 Beyond integer data types, the MPLAB C32 compiler offers support for a few more data 
types that can capture fractional values—the floating-point data types. There are three 
types to choose from (see  Table 4.2   ) corresponding to two levels of resolution:  float , 
double , and  long double . 

 Table 4.2 :     MPLAB C32 floating-point 
types comparison table.  

Type  Bits

 Float  32 

 Double  64 

 Long double  64 

 Notice how the MPLAB C32 compiler, by default, allocates for both the  double  and the 
long double  types the same number of bits, using the double precision floating-point 
format defined in the IEEE754 standard. 

 Since the PIC32 doesn ’ t have a hardware floating-point unit (FPU), all operations on 
floating-point types must be coded by the compiler using floating-point arithmetic 
libraries whose size and complexity are considerably larger/higher than any of the integer 
libraries. You should expect a major performance penalty if you choose to use these data 
types, but, again, if the problem calls for fractional quantities to be taken into account, the 
MPLAB C32 compiler certainly makes dealing with them easy. 

 Let ’ s modify our previous example to use floating-point variables: 

  main ()  
  { 
 float i,j,k;  

 i = 12.34;           // assign an initial value to i  
 j = 56.78;           // assign an initial value to j  
 k = i * j;      // store the result in k     

  }     

 After recompiling and inspecting the Disassembly Listing window, you will immediately 
notice that the compiler has chosen to use a subroutine instead of inline code. 
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 Changing the program again to use a double-precision floating-point type, long double, 
produces very similar results. Only the initial assignments seem to be affected, and all we 
can see is, once more, a subroutine call. 

 The C compiler makes using any data type so easy that we might be tempted to 
always use the largest integer or floating-point type available, just to stay on the safe 
side and avoid the risk of overflows and underflows. On the contrary, though, choosing 
the right data type for each application can be critical in embedded control to balance 
performance and optimize the use of resources. To make an informed decision, we need 
to know more about the level of performance we can expect when choosing the various 
precision data types.  

  Measuring Performance 
 Let ’ s use what we have learned so far about simulation tools to measure the actual 
relative performance of the arithmetic libraries (integer and floating-point) used by the 
MPLAB C32 compiler. We can start by using the software simulator ’ s (MPLAB SIM) 
built-in StopWatch tool, with the following code:       

  #include <p32xxxx.h>  

  main ()  
  { 
 char        c1, c2, c3;  
 short        s1, s2, s3;  
 int        i1, i2, i3;  
 long long        ll1, ll2, ll3;  
 float        f1,f2, f3;
 long double        d1, d2, d3;  

 c1 = 12;        // testing char integers (8-bit)  
 c2 = 34;  
 c3 = c1 * c2;  

 s1 = 1234;        // testing short integers (16-bit)  
 s2 = 5678;  
 s3= s1 * s2;  

 i1 = 1234567;        // testing (long) integers (32-bit)  
 i2 = 3456789;  
 i3= i1 * i2;  
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 ll1 = 1234;        // testing long long integers (64-bit)  
 ll2 = 5678;  
 ll3= ll1 * ll2;  

 f1 = 12.34;        // testing single precision floating point  
 f2 = 56.78;  
 f3= f1 * f2;  

 d1 = 12.34;        // testing double precision floating point  
 d2 = 56.78;  
 d3= d1 * d2;     

  } // main     

 After compiling and linking the project, open the StopWatch window ( Debugger | 
StopWatch ) and position the window according to your preferences (see  Figure 4.1   ). 
(Personally I like it docked to the bottom of the screen so that it does not overlap with the 
editor window and it is always visible and accessible.) 

 Figure 4.1 :     The MPLAB SIM StopWatch window.    

Zero  the StopWatch timer and execute a Step-Over command ( Debug | StepOver  or 
press F8 ). As the simulator completes updating the StopWatch window, you can manually 
record the execution time required to perform the integer operation. The time is provided 
by the simulator in the form of a cycle count and an indication in microseconds derived 
by the cycle count multiplied by the simulated clock frequency, a parameter specified in 
the Debugger Settings (the  Debugger | Settings | Osc/Trace  tab). 

 Proceed by setting the cursor over the next multiplication, and execute a  Run To Cursor
command or simply continue StepOver  until you reach it. Again,  Zero  the StopWatch, 
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execute a  Step-Over , and record the second time. Continue until all five types have been 
tested (see Table 4.3   ). 

 Table 4.3 :     Relative performance test results using MPLAB C32 rev. 0.20 
(all optimizations disabled)  .

 Multiplication Test  Width 
 (Bits) 

 Cycle Count  Performance Relative to: 

Int Float

 Char integer ( char )   8    6   1  — 

 Short integer ( short )  16    6   1  — 

 Integer ( int, long )  32    6   1  — 

 Long integer (long long)  64   21   3.5  — 

 Single precision FP ( float )  32   71  11.8  1 

 Double precision FP ( long double )  64  159  26.5  2.23 

  Table 4.3  records the results (cycle counts) in the first column, with two more columns 
showing the relative performance ratios obtained by dividing the cycle count of each 
row by the cycle count recorded for two reference types. Don ’ t be alarmed if you happen 
to record different values; several factors can affect the measure. Future versions of the 
compiler could possibly use more efficient libraries, and/or optimization features could 
be introduced or enabled at the time of testing. 

 Keep in mind that this type of test lacks any of the rigorousness required by a true 
performance benchmark. What we are looking for here is just a basic understanding of 
the impact on performance that we can expect from choosing to perform our calculations 
using one data type versus another. We are looking for the big picture—relative orders 
of magnitude. For that purpose, the table we just obtained can already give us some 
interesting indications. 

 As expected, 32-bit operations appear to be the fastest, whereas  long long  integer 
(64-bit) multiplications are about four times slower. Single precision floating-point 
operations require more effort than integer operations. Multiplying 32-bit floating-point 
numbers requires one order of magnitude more effort than multiplying 32-bit integers. 
From here, going to double precision floating-point (64-bit) about doubles the number 
of cycles required. 
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 So, when should we use floating-point, and when should we use integer arithmetic? 

 Beyond the obvious, from the little we have learned so far we can perhaps extract the 
following rules: 

  1.     Use integers every time you can, i.e. when fractions are not required or when the 
algorithm can be rewritten for integer arithmetic.  

  2.     Use the smallest integer type that will not produce an overflow or underflow 
if you want to save on RAM memory space, but once you are not using 64-bit 
integers, you will not see any further performance improvement from going to 
any integer type smaller than 32-bit.  

  3.     If you have to use a floating-point type (fractions are required), expect an order-
of-magnitude reduction in the performance of the compiled program.  

  4.     Double precision floating-point (long double) seems to only reduce the 
performance further, by a factor of two.    

 Keep in mind also that floating-point types offer the largest value ranges but also are 
always introducing approximations. As a consequence, floating-point types are not 
recommended for financial calculations. Use  long long  integers, if necessary, and 
perform all operations in cents (instead of dollars and fractions).  

  Debriefing 
 In this lesson, we have learned not only what data types are available and how much 
memory is allocated to them but also how they affect the resulting compiled program in 
terms of code size and execution speed. We used the MPLAB SIM simulator StopWatch 
tool to measure the number of instruction cycles required for the execution of a series of 
basic arithmetic operations. Some of the information we gathered will be useful to guide 
our actions in the future when we ’ re balancing our needs for precision and performance 
in embedded-control applications.  

  Notes for the Assembly Experts 
 The brave few assembly experts that have attempted to deal with floating-point 
numbers in their applications tend to be extremely pleased and forever thankful for the 
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great simplification achieved by the use of the C compiler. Single or double precision 
arithmetic becomes just as easy to code as integer arithmetic has always been. 

 When using integer numbers, though, there is sometimes a sense of loss of control, 
because the compiler hides the details of the implementation and some operations might 
become obscure or much less intuitive/readable. Here are some examples of conversion 
and byte manipulation operations that can induce some anxiety: 

●      Converting an integer type into a smaller or larger one  

●      Extracting or setting the most or least significant byte of a 16-bit or 32-bit data 
type

●      Extracting or setting one bit out of an integer variable 

 The C language offers convenient mechanisms for covering all such cases via implicit 
type conversions, as in: 

  short        s;        // 16-bit 
  int        i; // 32-bit 

  i = s;     

 The value of  s  is transferred into the two LSBs of  i,  and the two MSBs of  i  are 
cleared.

 Explicit conversions (called  type casting ) might be required in some cases where the 
compiler would otherwise assume an error, as in:       

  short        s;        // 16-bit 
  int        i;        // 32-bit 

  s = (short)        i;    

(short)  is a type cast that results in the two MSBs of  i  to be discarded as  i  is forced 
into a 16-bit value. 

 Bit fields are used to cover the conversion to and from integer types that are smaller than 
1 byte. The PIC32 library files contain numerous examples of definitions of bit fields for 
the manipulation of all the control bits in the peripheral ’ s SFRs. 
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 Here is an example extracted from the include file used in our project, where the Timer1 
module control register  T1CON  is defined and each individual control bit is exposed in a 
structure defined as  T1CONbits:

  extern unsigned int T1CON;  
  extern union { 
 struct { 
 unsigned :1;  
 unsigned TCS:1;  
 unsigned TSYNC:1;  
 unsigned :1;  
 unsigned TCKPS0:1;  
 unsigned TCKPS1:1;  
 unsigned TGATE:1;  
 unsigned :6;  
 unsigned TSIDL:1;  
 unsigned :1;  
 unsigned TON:1;     

};
 struct { 
 unsigned :4;  
 unsigned TCKPS:2;     

};    

  } T1CONbits;     

 You can access each bit field using the  “ dot ”  notation, as in the following example:       
  T1CONbits.ON = 1;     

  Notes for the 8-Bit PIC® Microcontroller Experts 
 The PIC microcontroller user who is familiar with the 8-bit PIC microcontrollers 
and their respective compilers will notice a considerable improvement in performance, 
both with integer arithmetic and with floating-point arithmetic. The 32-bit ALU 
available in the PIC32 architecture is clearly providing a great advantage by 
manipulating up to four times the number of bits per cycle, but the performance 
improvement is further accentuated by the availability of up to 32 working registers, 
which make the coding of critical arithmetic routines and numerical algorithms more 
efficient.  
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  Notes for the 16-Bit PIC and dsPIC® Microcontroller 
Experts 
 Users of the MPLAB C30 compiler will have probably noticed by now how the new 
MPLAB C32 compiler assigns different widths to common integer types. For example, 
the int  and short types used to be synonyms of 16-bit integers for the MPLAB C30 
compiler. Although  short  is still a 16-bit integer, for the MPLAB C32 compiler  int  is 
now really a synonym of the  long  integer type. In other words,  int  has doubled its size. 
You might be wondering what happens to the portability of code when such a dramatic 
change is factored in. 

 The answer depends on which way you are looking at the problem. If you are porting the 
code  “ up, ”  or, in other words, you are taking code written for a 16-bit PIC architecture to 
a 32-bit PIC architecture, most probably you are going to be fine. Global variables will 
use a bit more RAM space and the stack might grow as well, but it is also likely that the 
PIC32 microcontroller model you are going to use has much more RAM to offer. Since 
the new integer type is larger than that used in the original code, if the code was properly 
written, you don ’ t have to worry about overflows and underflows. 

 On the contrary, if you are planning on porting some code  “ down, ”  even if this is just 
being contemplated as a future option, you might want to be careful. If you are writing 
code for a PIC32 and rely on the int  type to be 32-bit large, you might have a surprise 
later when the same code will be compiled into a 16-bit wide integer type by the MPLAB 
C30 compiler. The best way to avoid any ambiguity on the width of your integers is to 
use exact-width  types. 

 A special set of exact-width integer types is offered by the inttypes.h library. They include 
the following types: 

    int8_t  Always an 8-bit signed type.  

    uint8_t  Always an 8-bit unsigned type.  

    int16_t  Always a 16-bit signed type.  

    uint16_t  Always a 16-bit unsigned type.  

    int32_t  Always a 32-bit signed type.  

    uint32_t  Always a 32-bit unsigned type.  

    int64_t  Always a 64-bit signed type.  

    uint64_t  Always a 64-bit unsigned type. 
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 If you use them when necessary, you can make your code more portable but also more 
readable because they will help highlight the portions of your code that are dependent on 
integer size.   

      Note     

 Another useful and sometimes misunderstood integer type is  size_t , defined in the stddef.h 
library. It is meant to be used every time you need a variable to contain the size of an object in 
memory expressed in bytes. It is guaranteed by each ANSI compiler to have the right range so 
that it ’ s always able to contain the size of the largest object possible for a given architecture. As 
expected, the function  sizeof() , but also most of the functions in the string.h library, makes 
ample use of it.  

  Tips  &  Tricks 
  Math Libraries 

 The MPLAB C32 compiler supports several standard ANSI C libraries, including these: 

●      limits.h contains many useful macros defining implementation-dependent limits, 
such as, for example, the number of bits composing a  char  type (CHAR_BIT) or 
the largest integer value (INT_MAX).  

●      float.h contains similar implementation-dependent limits for floating-point data 
types, such as, for example, the largest exponent for a single precision 
floating-point variable (FLT_MAX_EXP).  

●      math.h contains trigonometric functions, rounding functions, logarithms, and 
exponentials but also many useful constants like pi  (M_PI) .     

  Complex Data Types 

 The MPLAB C32 compiler supports complex data types as an extension of both integer 
and floating-point types. Here is an example declaration for a single precision 
floating-point type: 

  __complex__        float z;     

      Note     

 Notice the use of a double underscore before and after the keyword complex.  
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 The variable  z  so defined has now a  real  and an  imaginary  part that can be individually 
addressed using, respectively, the syntax: 

  __real__        z     

 and

  __imag__        z     

 Similarly, the next declaration produces a complex variable of 32-bit integer type:       

  __complex__        int x;     

 Complex constants are easily created adding the suffix  i  or  j , as in the following 
examples:       

  x = 2 + 3j;  

  z = 2.0f + 3.0fj;     

 All standard arithmetic operations ( +,-,*,/ ) are performed correctly on complex data 
types. Additionally, the  ~  operator produces the complex conjugate. 

 Complex types could be pretty handy in some types of applications, making the code 
more readable and helping avoid trivial errors. Unfortunately, as of this writing, the 
MPLAB IDE support of complex variables during debugging is only partial, giving 
access only to the  “ real ”  part through the Watch window and the mouse-over function.   

  Exercises 
  1.     Write a program that uses Timer2 as a stopwatch for real-time performance 

measurements.

  2.     If the width of Timer2 is not sufficient, use Timer2 and Timer3 joined in the new 
32-bit timer mode.  

  3.     Test the relative performance of the division for the various data types.  

  4.     Test the performance of the trigonometric functions relative to standard arithmetic 
operations.

  5.     Test the relative performance of the multiplication for complex data types      
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   Books
        Britton ,    Robert.         ,      MIPS Assembly Language Programming        (    Prentice Hall         ,  2003   )        .     It might 

seem strange to you that I am suggesting a book about assembly programming. Sure, 
we set off with the intention to learn programming in C, but if you ’ re like me, you 
won ’ t resist the curiosity and you will want to learn the assembly of the PIC32 MIPS 
core as well. 

 Links 
http://en.wikipedia.org/wiki/Taylor_series  . If you are curious, this site shows how the 

C compiler can approximate some of the functions in the math library.             
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               Interrupts

  The Plan 
 For reasons of efficiency, size, and ultimately cost, in the embedded-control world the 
smallest applications, which happen to be implemented in the highest volumes, most 
often cannot afford the  “ luxury ”  of a multitasking operating system and use the interrupt 
mechanisms instead to  “ divide their attention ”  among the many tasks at hand. Interrupts 
provide a very strong mechanism for  real-time  control, allowing our applications to deal 
with asynchronous external events. Unfortunately, the C programming language does 
not incorporate the concept of interrupts in its model, leaving the embedded-control 
programmer with the only choice of defining interrupts as a special kind of function. 

 Today we will see how the MPLAB© C32 compiler allows us to easily manage the 
interrupt mechanisms offered by the PIC32 microcontroller architecture.  

  Preparation 
 This entire lesson will be performed exclusively with software tools, including the 
MPLAB IDE, the MPLAB C32 compiler, and the MPLAB SIM simulator. 

 Use the New Project Setup checklist to create a new project called Interrupts and a new 
source file, similarly called interrupts.c.  

  The Exploration 
 An  interrupt  is an internal or external event that requires quick attention from the CPU. 
The PIC32 architecture provides a rich interrupt system that can manage as many as 
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64 distinct sources of interrupts. If necessary, each interrupt source can have a unique 
piece of code, called the interrupt service routine (ISR)  or  interrupt handler,  directly 
associated with it, to provide the required response action. Interrupts can be completely 
asynchronous with the execution flow of the main program. They can be triggered at any 
point in time and in an unpredictable order. 

 Responding quickly to interrupts is essential to allow prompt reaction to the trigger event 
and a fast return to the main program execution flow. Therefore, the goal is to minimize 
the interrupt latency , defined as the time between the triggering event and the execution 
of the first instruction of the ISR. In the PIC32 architecture, the latency is extremely 
short. Although it is fixed for each given interrupt source—only three or four instruction 
cycles—other mechanisms common among all 32-bit architectures, such as the cache 
and the bus arbitration module that we will review in detail in future expeditions, may 
affect the overall response time, adding a small amount of nondeterminism. A deep 
understanding of the interrupt mechanism will help us minimize and possibly cancel its 
effect on our applications. 

 The MPLAB C32 compiler will help us manage the complexity of the interrupt system 
by providing a few language extensions and a rich set of functions included in the plib.h 
library.  

  Interrupts and Exceptions 
 To the MIPS core running inside the PIC32, all interrupts fall generally under the 
category of  exceptions . This is a very broad category of events that gathers pretty much 
anything that can disrupt the normal flow of a program. A reset command produces an 
exception, an error in a division can produce an exception, but also access to a memory 
address that is not implemented (or restricted) will produce an exception, and the list 
goes on and on. Interrupts, after all, are the most benign kind of exception that can occur. 
The MIPS core relies on a few  vectors  (pointers to functions) located conveniently in 
separate RAM, program memory, or both regions to cover all possible types of exceptions 
(see  Table 5.1   ). It is once more the role of the Startup code to place such vectors and 
offer default handlers for all the essential exceptions an embedded control application 
might need. 

 Don ’ t worry if not all the entries in  Table 5.1  make sense to you. Some of them refer 
to advanced features that we will encounter and discuss in a later chapter. Some are 
related to features, part of the MIPS architecture, that have no practical application in the 
PIC32MX implementation. 
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 The basic MIPS interrupt mechanism provides for a single vector inside the exception 
table, and therefore a single interrupt service routine, to be dedicated to all possible 
interrupts events. Once the interrupt (exception) occurs, the content of a special register 
(known as  cause ) gives the service routine all the information necessary to identify the 
trigger event and the most appropriate action to take in response. To be able to resume 
execution after the interrupt has been dealt with, it is fundamental for an interrupt service 
routine to be able to save the processor context ( prologue ) before taking any action and 
to be able to restore it ( epilogue ) later exactly as it was before the interruption. The exact 
prologue and epilogue sequences can be somewhat convoluted and their analysis is 
beyond the scope of our exploration. For now, it will suffice to know that the MPLAB C32 
compiler makes all this automatic and safe by allowing us to define  “ special ”  C functions 
for use as interrupt handlers, as long as a few limitations are kept in consideration, such as: 

●      Interrupt service functions are not supposed to return any value (use type  void ).

●      No parameter can be passed to the function (use parameter  void ).

●      They cannot be called directly by other functions.  

●      Ideally, they should not call any other function.    

 The first three limitations should be pretty obvious given the nature of the interrupt 
mechanism—since it is triggered by an asynchronous event, there cannot be parameters 
or a return value because there is no proper function call in the first place. The last is 
more of a recommendation to keep in mind for efficiency considerations.  

 Table 5.1 :     Exception vectors table of the PIC32 architecture. 

 Exception Source  Memory Region  Description 

 Reset and NMI  Program  Normal reset and nonmaskable interrupt entry point. 

 On-chip debug  Program  Used by the ICD and EJTAG interfaces to enable in 
circuit debugging features. 

 Cache error  RAM or Program  Error condition specific to the cache mechanism. 

 TLB refill  RAM or Program  Not used on PIC32 because a fixed address translation 
scheme (FMT) is used in place of a full MMU. 

 General exception  RAM or Program  All other types of exceptions. 

 Interrupt  RAM or Program  The proper interrupt vector. 



84   Day 5

  Sources of Interrupt 
 The following events can be used to trigger an interrupt. Among the external sources 
available for the PIC32FJ512MX360L, there are: 

●      5  �  external pins with level trigger detection  

●      22  �  external pins connected to the Change Notification module  

●      5  �  Input Capture modules  

●      5  �  Output Compare modules  

●      2  �  serial port interfaces (UARTs)  

●      4  �  synchronous serial interfaces (SPI and I 2 C)

●      1  �  Parallel Master Port 

 Among the internal sources, we count: 

●      1  �  32 internal (core) timer  

●      5  �  16-bit timers  

●      1  �  analog-to-digital converter  

●      1  �  Analog Comparators module  

●      1  �  real-time clock and calendar  

●      1  �  Flash controller  

●      1  �  fail-safe clock monitor  

●      2  �  software interrupts  

●      4  �  DMA channels 

 Other models of PIC32 may have a different mix of internal and external interrupt 
sources. Many of these sources in their turn can generate several different interrupts. For 
example, a serial port interface peripheral (UART) can generate three types of interrupt: 

●      When new data has been received and is available in the receive buffer for 
processing
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●      When data in the transmit buffer has been sent and the buffer is empty, ready and 
available to transmit more  

●      When an error condition has been generated and action might be required to 
reestablish communication 

 By design, up to a total of 96 independent events could be managed by the PIC32 
interrupt control module. That ’ s a lot of interrupts! 

 Of course, when multiple sources of interrupts are enabled and used by an application, 
there is a need for the ISR to identify the specific one at hand and to be able to branch to 
an appropriate segment of code to deal with it. As we will see shortly, several flags and 
additional control mechanisms assist the programmer with this task.  

  Interrupt Priorities 
 Each interrupt source has seven associated control bits, grouped logically in various 
special-function registers: 

●      The  Interrupt Enable  bit (typically represented with the name of the interrupt 
source peripheral followed by the suffix – IE  in the device datasheet), a single bit 
of data: 

  1.      When cleared, the specific trigger event is prevented from generating 
interrupts.

  2.     When set, it allows the interrupt to be processed. 

 At power-on, all interrupt sources are disabled by default. 

●      The  Interrupt Flag  (typically represented with a suffix  -IF ), a single bit of data, 
is set each time the specific trigger event is activated, independently of the status 
of the enable bit. Notice that, once set, it must be cleared (manually) by the user. 
In other words it must be cleared before exiting the ISR, or the same interrupt 
service routine will be immediately called again. 

●      The  Group Priority Level  (typically represented with a suffix  -IP ). Interrupts can 
have up to seven levels of priority (from  ipl1  to  ipl7 ). Should two interrupt 
events occur at the same time, the highest priority event will be served first. 
Three bits encode the priority level of each interrupt source. At any given point, 
the PIC32 execution priority-level value is kept in the MIPS core status register. 
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Interrupts with a priority level lower than the current value will be ignored. At 
power-on, all interrupt sources are assigned a default level of  ipl0 , once more 
assuring that all interrupts are disabled.  

●      The  Subpriority Level . Two more bits are allocated to define four more possible 
levels of priority within a priority group. If two events of the same priority level 
occur simultaneously, the one with the highest subpriority will be selected first. 
Once an interrupt of a given priority group is selected, though, any following 
interrupts of the same level (even if of higher subpriority) will be ignored until the 
current interrupt (flag) has been cleared. 

 Within an assigned priority level, a relative (default) priority among the various sources in 
a fixed order of appearance is defined for any given PIC32 model. When everything else 
fails (both group and subgroup priorities are identical), it is the natural order to decide 
between two simultaneous events (see  Table 5.2   ).  

( continued )

 Table 5.2 :     Interrupt sources of the PIC32FJ512MX360L.  

 Natural 
Order

 Macro 
Abbreviation

 IRQ Symbol 
  

 Description 
  

  0 (highest)  CT  _CORE_TIMER_IRQ  Core Timer Interrupt 

  1  CS0  _CORE_SOFTWARE_0_IRQ  Core Software Interrupt 0 

  2  CS1  _CORE_SOFTWARE_1_IRQ  Core Software Interrupt 1 

  3  INT0  _EXTERNAL_0_IRQ  External Interrupt 0 

  4  T1  _TIMER_1_IRQ  Timer 1 Interrupt 

  5  IC1  _INPUT_CAPTURE_1_IRQ  Input Capture 1 Interrupt 

  6  OC1  _OUTPUT_COMPARE_1_IRQ  Output Compare 1 Interrupt 

  7  INT1  _EXTERNAL_1_IRQ  External Interrupt 1 

  8  T2  _TIMER_2_IRQ  Timer 2 Interrupt 

  9  IC2  _INPUT_CAPTURE_2_IRQ  Input Capture 2 Interrupt 

 10  OC2  _OUTPUT_COMPARE_2_IRQ  Output Compare 2 Interrupt 

 11  INT2  _EXTERNAL_2_IRQ  External Interrupt 2 
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 Table 5.2 :     (Continued)  

 Natural 
Order

 Macro 
Abbreviation

 IRQ Symbol 
  

  Description 

 12  T3  _TIMER_3_IRQ  Timer 3 Interrupt 

 13  IC3  _INPUT_CAPTURE_3_IRQ  Input Capture 3 Interrupt 

 14  OC3  _OUTPUT_COMPARE_3_IRQ  Output Compare 3 Interrupt 

 15  INT3  _EXTERNAL_3_IRQ  External Interrupt 3 

 16  T4  _TIMER_4_IRQ  Timer 4 Interrupt 

 17  IC4  _INPUT_CAPTURE_4_IRQ  Input Capture 4 Interrupt 

 18  OC4  _OUTPUT_COMPARE_4_IRQ  Output Compare 4 Interrupt 

 19  INT4  _EXTERNAL_4_IRQ  External Interrupt 4 

 20  T5  _TIMER_5_IRQ  Timer 5 Interrupt 

 21  IC5  _INPUT_CAPTURE_5_IRQ  Input Capture 5 Interrupt 

 22  OC5  _OUTPUT_COMPARE_5_IRQ  Output Compare 5 Interrupt 

 23  SPI1E  _SPI1_ERR_IRQ  SPI 1 Fault 

 24  SPI1TX  _SPI1_TX_IRQ  SPI 1 Transfer Done 

 25  SPI1RX  _SPI1_RX_IRQ  SPI 1 Receiver Done 

 26  U1E  _UART1_ERR_IRQ  UART 1 Error 

 27  U1RX  _UART1_RX_IRQ  UART 1 Receiver 

 28  U1TX  _UART1_TX_IRQ  UART 1 Transmitter 

 29  I2C1B  _I2C1_BUS_IRQ  I2C 1 Bus Collision Event 

 30  I2C1S  _I2C1_SLAVE_IRQ  I2C 1 Slave Event 

 31  I2C1M  _I2C1_MASTER_IRQ  I2C 1 Master Event 

 32  CN  _CHANGE_NOTICE_IRQ  Input Change Interrupt 

 33  AD1  _ADC_IRQ  ADC Convert Done 

 34  PMP  _PMP_IRQ  Parallel Master Port Interrupt 

 35  CMP1  _COMPARATOR_1_IRQ  Comparator 1 Interrupt 

( continued )
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  Interrupt Handlers Declaration 
 The MPLAB C32 compiler gives us two options to declare a function as  “ the ”  default 
interrupt handler ( vector 0 ) at a given interrupt priority ( ipl1 , for example), using 
either the attribute syntax  as follows:       

  void __attribute__ (( interrupt(ipl1),vector(0)))  
  InterruptHandler( void)  

 Table 5.2 :     (Continued)  

 Natural 
Order

 Macro 
Abbreviation

 IRQ Symbol 
  

  Description  

 36  CMP2  _COMPARATOR_2_IRQ  Comparator 2 Interrupt 

 37  SPI2E  _SPI2_ERR_IRQ  SPI 2 Fault 

 38  SPI2TX  _SPI2_TX_IRQ  SPI 2 Transfer Done 

 39  SPI2RX  _SPI2_RX_IRQ  SPI 2 Receiver Done 

 40  U2E  _UART2_ERR_IRQ  UART 2 Error 

 41  U2RX  _UART2_RX_IRQ  UART 2 Receiver 

 42  U2TX  _UART2_TX_IRQ  UART 2 Transmitter 

 43  I2C2B  _I2C2_BUS_IRQ  I2C 2 Bus Collision Event 

 44  I2C2S  _I2C2_SLAVE_IRQ  I2C 2 Slave Event 

 45  I2C2M  _I2C2_MASTER_IRQ  I2C 2 Master Event 

 46  FSCM  _FAIL_SAFE_MONITOR_IRQ  Fail-safe Clock Monitor Interrupt 

 47  RTCC  _RTCC_IRQ  Real Time Clock Interrupt 

 48  DMA0  _DMA0_IRQ  DMA Channel 0 Interrupt 

 49  DMA1  _DMA1_IRQ  DMA Channel 1 Interrupt 

 50  DMA2  _DMA2_IRQ  DMA Channel 2 Interrupt 

 51  DMA3  _DMA3_IRQ  DMA Channel 3 Interrupt 

  . . .    

 56 (lowest)  FCE  _FLASH_CONTROL_IRQ  Flash Control Event 
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  { 
 // your interrupt service routine code here. . .     

  } // interrupt handler     

 or the  pragma syntax,  as follows:       

  #pragma interrupt InterruptHandler ipl1 vector 0  
  void InterruptHandler( void)  
  { 
 // interrupt service routine code here. . .     

  } // interrupt handler     

 In both cases the result is that the compiler treats the function  InterruptHandler()
with the respect due to a proper ISR, including prologue and epilogue code sequences 
that provide safe context save and restore. 

 The MPLAB C32 compiler uses the  __attribute__ (( ))  mechanism in this and 
many other circumstances as a way to specify special attributes that modify the behavior 
of the compiler without violating the C language syntax. Personally, I find this syntax too 
cryptic; the double underscore, before and after, and the double parentheses in particular 
are hard on my eyes. My preferred way around the problem is to use a macro (defined in 
sys/attribs.h) that has the additional advantage of resembling the one found in previous 
PIC24 and dsPIC libraries: 

__ISR( v, ipl)

 In the following example, the  __ISR  macro is used to the same effect of the previous 
code snippet: 

  void __ISR( 0, ipl1) InterruptHandler (void)  
  { 
 // interrupt service routine code here. . .     

  } // interrupt handler     

 The choice between the two syntax styles is yours and might well depend on your very 
personal preferences and previous experiences. Further, should you ever need to port 
code from a different compiler, chances are that one of the two methods will match your 
original source code more closely. So keep both in mind; you never know when they 
might come in handy.  



90   Day 5

  The Interrupt Management Library 
 With up to 96 possible sources of interrupts, to manage the sophisticated priority 
mechanisms made available by the PIC32 interrupt controller module, we can definitely 
use a little help in the shape of a small library int.h provided as part of the standard 
PIC32 toolset. 

 We can invoke it directly, as in: 

#include < int.h >

 or indirectly as part of the entire peripherals support library: 

#include < plib.h >

 In both cases we gain access to a good number of precious little functions and macros 
(recognizable by the lower case  m-  prefix), including these: 

●       INTEnableSystemSingleVectoredInt();  is a function that follows a 
precise sequence of initialization of the interrupt control module (as prescribed 
in the device datasheet) to enable the basic interrupt management mode of the 
PIC32. The unusually long function name is worth typing because it relieves us 
from a considerable burden, making our code easy and safe.  

●       mXXSetIntPriority( x);  is actually just a placeholder for a long list 
of similar macros (replace the XX with the interrupt source abbreviations 
from  Table 5.2  to obtain each macro name). It assigns a given priority level 
(from 0  to  7 ) to the chosen interrupt source. The amount of work performed is 
not much in this case, but there is a considerable convenience factor because 
we are spared the painful search on the device datasheet for the correct  IPCxx
register where the  –IP  bits corresponding to the chosen interrupt source can be 
selected.

●       mXXClearIntFlag();  is a macro that is, once more, representative of an entire 
class of macros that allow us to clear the interrupt flag ( –IF  bit) of the chosen 
interrupt source. 

  Single Vector Interrupt Management 
 Without any further hesitation, let ’ s start laying out a first example that will use an ISR to 
service a timer. We will enable the Timer2 module, setting its period to a count of 15 and 
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requesting that an interrupt be generated. The global variable  count  will be incremented 
at each period by the interrupt service routine: 

  /*
  ** Single Interrupt Vector test  
  */
  #include  � p32xxxx.h �   
  #include  � plib.h �   

  int count;  

  #pragma interrupt InterruptHandler ipl1 vector 0  
  void InterruptHandler( void)  
  { 
 count++;  
 mT2ClearIntFlag();     

  } // Interrupt Handler  

  main()  
  { 
 // 1. init timers  
 PR2 = 15;  
 T2CON = 0x8030;  

 // 2. init interrupts  
 mT2SetIntPriority( 1);  
 INTEnableSystemSingleVectoredInt();  
 mT2IntEnable( 1);  

 // 3. main loop  
 while( 1);     

  } // main     

 There is one fundamental action that each interrupt handler (no matter how simple) is 
responsible for, and that is clearing the interrupt flag before returning. This is pretty much 
all our ISR is required to do beside incrementing count . 

 Notice also that in the  main()  function, after the the initialization ( //1. ) of the timer 
control register and period register, the interrupt configuration ( //2. ) is completed 
before enabling the interrupt source. Also, the Timer2 interrupt priority ( 1 ) must match 
the priority level declared by the  #pragma  syntax ( ipl1 ). 
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 The same code can obviously be written the  “ hard way, ”  without using the int.h library 
but making direct access to the special function registers responsible for the configuration 
of the interrupt controller: 

  /*
  ** Single Interrupt vector test  
  */
  #include <p32xxxx.h>  

  #define _T2IE IEC0bits.T2IE  
  #define _T2IF IFS0bits.T2IF  
  #define _T2IP IPC2bits.T2IP  

  int count;  

  void __ISR( 0, ipl1) InterruptHandler( void)  
  { 
 count++;  
 _T2IF = 0;     

  } // interrupt handler  

  main()  
  { 
 // 1. init timers  
 PR2 = 15;  
 T2CON = 0x8030;  

 // 2. init interrupts  
 _T2IP = 1;  
 INTEnableSystemSingleVectoredInt();  
 _T2IE = 1;  

 // 3. main loop  
 while( 1);     

  } // main     

      Note     

 The compiler needs to know the priority level of the interrupt routine in order to use the correct 
prologue and epilogue. In fact, as we will learn shortly, interrupts of ipl7 should be given a 
special treatment, shorter prologue/epilogue, since they benefit from the availability of the 
alternate register set for a fast context switch.  
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 It is once more a matter of personal choice. Feel free to choose the style you like or that 
you find more intuitive and readable for your application. 

 Now it is time to get a new project ready for some hands-on interrupt testing: 

  1.     Save the source file (of your choice) as  single.c  and, using the  New Project
checklist, create a new project  single.mcp  and add the source file to it.  

  2.     Prepare the MPLAB SIM simulator for use as the debugging tool using the 
MPLAB SIM Setup  checklist.  

  3.     Now build the project using the  Project | Build  command (or the  Ctrl � F10
shortcut).

  4.     Open the Watch window ( View | Watch)  and add the global symbol  count , 
selecting it in the combo box and clicking the Add Symbol  button.  

  5.     Select the  TMR2  register in the SFR combo box and click the  Add SFR  button to 
add it to the Watch window.  

  6.     Place a breakpoint, inside the interrupt handler routine, on the line where count is 
incremented and choose Animate  (or  Run)  to execute the code. 

 If all went well, you should see that the program execution has stopped after a short 
while, reaching the breakpoint inside the interrupt handler. Although the code had been 
 “ stuck ”  for a while inside the (empty) main loop, upon reaching its period (set in the 
PR2  register), the Timer2 generated an interrupt request and the interrupt handler was 
transferred control. 

 Continuing with the animation (or running again) you will see that  count  keeps being 
incremented each time the execution of the main loop is briefly  “ interrupted. ”  

 Notice that each time you reach the breakpoint, in the Watch window the value of 
count  is constantly updated and shown in red (since it keeps changing), but the value 

      Note for the PIC24 AND dsPIC Experts     

 Unfortunately, the  “ shortcut ”  symbols  _T2IF ,  _T2IE , and  _T2IP  that used to be so 
conveniently defined in the standard include files for the PIC24 and dsPIC architectures are no 
more part of the standard include files of the MPLAB C32 compiler. If you are porting some 
16-bit code and need the compatibility, you will have to follow my example and redefine the 
shortcuts you need by hand on a case-by-case basis.  
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of TMR2  is always the same and, perhaps surprisingly, not zero. In fact, when the Timer2 
module reaches the value set in the period register ( PR2 ), it does reset while it generates 
a new interrupt, but it also proceeds counting while the PIC32 starts the execution of 
the interrupt handler. By the time the interrupt handler prologue is completed and the 
program counter reaches the breakpoint, Timer2 is already showing a value of 2. What we 
have just done, perhaps involuntarily, is to obtain a rough measure of the interrupt handler 
overhead. Since we chose to use a prescaler of 1:8 for the Timer2 clock input, a count of 
2 indicates that the prologue to the interrupt service routines occupies (at least) 16 clock 
cycles, equivalent to the execution of 16 instructions. You can verify it, if you are curious, 
by inspecting the code produced by the compiler in the Disassembly window. 

 But what would have happened if we had not selected a large prescale value (1:8) or 
if we had selected a shorter period? Of course you can test it by yourself with minor 
modifications to the example code. You will see how the interrupt routine gets called 

 Figure 5.1 :     Screenshot of the single.c project.    
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over and over and there is no more time spent inside the main loop. Not a big loss in our 
simple example, I agree, but in a practical application this would be a disaster. When the 
interrupts are too many, too frequent, or simply poorly managed, the main program can be 
stalled completely. It is our responsibility to make sure that the interrupt handler routine, 
including its prologue and epilogue, is not using up all the available processor cycles. 

  Managing Multiple Interrupts 
 If multiple sources of interrupts are used by an application, assigning different priority 
levels to each source solves only one part of the problem. The priority decides who gets 
served first if two or more interrupt events happen simultaneously. But when one of the 
(many) interrupts is being served, the others will have to wait for their turn to be served. 
However, in some cases the application requires not only multiple interrupts but the 
ability to nest  the interrupt calls. When a lower-priority interrupt is being served and the 
ISR is being executed, a higher-priority interrupt might require immediate attention, in its 
turn interrupting the handler. 

 To enable nesting of interrupt calls, you will have to  “ manually ”  reenable interrupts 
immediately upon entry in the interrupt handler (using a MIPS assembly instruction) 
instead of waiting for the epilogue code to do it automatically upon exit. 

 Here is a simple example that extends our first project in an imaginary application where 
Timer3 is used to produce a second periodic interrupt of high(er) priority (level 3):       

  /*
  ** Single Vector Interrupt Nesting  
  */
  #include  � p32xxxx.h �   
  #include  � plib.h �   

  int count;  

  void __ISR( 0, ipl1) InterruptHandler( void)  
  { 
 // 1. re-enable interrupts immediately (nesting)  
 asm( " ei " );  

 // 2. check and serve the highest priority first  
 if ( mT3GetIntFlag())  
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 { 
 count++;  
 // clear the flag and exit  
 mT3ClearIntFlag();     

 } // _T3  

 // 3. check and serve the lower priority  
 else if ( mT2GetIntFlag())  
 { 
 // spend a LOT of time here!  
 while( 1);  

 // before clearing the flag and exiting  
 mT2ClearIntFlag();     

 } // _T2     
  } // Interrupt Handler  

  main()  
  { 
 // 4. init timers  
 PR3 = 20;  
 PR2 = 15;  
 T3CON = 0x8030;  
 T2CON = 0x8030;  

 // 5. init interrupts  
 mT2SetIntPriority( 1);  
 mT3SetIntPriority( 3);  
 INTEnableSystemSingleVectoredInt();  
 mT2IntEnable( 1);  
 mT3IntEnable( 1);  

 // main loop  
 while( 1);     

  } // main     

 Notice how in // 1. the  ei  MIPS assembly instruction is used to reenable interruptions 
immediately upon entry in the handler. Omit this line of code and your interrupts will be 
queued automatically and served sequentially. 

 Also, in // 2. we use for the first time the new macro  mT3GetIntFlag()  from the int.h 
library that, intuitively enough, allows us to test the Timer3 interrupt flag. Since multiple 
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interrupts are enabled, we need such a test to verify which one caused the interruption at 
hand. We test the highest-priority interrupt source first, and we proceed down the priority 
list in // 3. until all the sources enabled by the application are considered. 

 To build and test the new code, follow these simple steps: 

  1.     Save this code as  nesting.c  and add it to the project using one of the many options 
(checklists) available.  

  2.     Remove  single.c  from the project.  

  3.      Build  the project.  

  4.     Place a  breakpoint  on the line where  count  is incremented.  

  5.     Add  TMR3  to the Watch window to keep an eye on the new timer value.  

  6.     Click  Animate  and observe what happens. 

 If all goes as planned, you will observe the following sequence of events unfold under 
your eyes: 

  1.     The main initialization code in //4. and // 5. is executed straight through.  

  2.     The application main loop is entered, and there we stay while the timers keep 
counting.

  3.     Timer2 reaches its period first, resets, and generates the first interrupt (level 1).  

  4.     The interrupt handler is called and the selection process begins.  

  5.     After the test in //3. succeeds, the culprit is found, and the handler portion relative 
to the Timer2 interrupt is executed.  

  6.     This is a  “ long ”  loop, and the processor is stuck here for a while.  

  7.     Timer3 reaches its period, resets, and generates a new interrupt of higher priority 
(level 3).  

  8.     The first interrupt handler is  . . .  interrupted, and a new interrupt handler begins.  

  9.     The selection process takes us immediately inside the handler portion that takes 
care of Timer3, where  count  is incremented and the breakpoint puts an end to 
the simulation.    
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 So we did observe an interrupt  . . .  interrupting an interrupt handler. If you proceed with 
the animation from here, now you will see the whole process unroll back. 

  10.     The Timer3 interrupt flag is cleared. 

  11.     The (nested) handler terminates. 

  12.     Control returns to the first handler.  

  13.     From here, in a normal application, we would see the Timer2 handler terminate 
and return to the main loop where it all started. 

 But don ’ t hold your breath; this is not going to happen this time, as you might have 
noticed. To make things more  “ interesting, ”  I have designed the portion of the interrupt 
handler that takes care of the Timer2 interrupt (marked as // 3.) to be an infinite loop. 
This is clearly an exaggeration meant to give us ample opportunity to observe the higher-
priority interrupt kicking in. 

 The nesting scheme can be repeated at multiple levels for as long as the stack has 
room and your mind can follow the nesting Russian dolls ’  game. In practice, I strongly 
discourage you to ever indulge in more than a two-level nesting scheme. It is just too easy 
to get into some pretty convoluted situations where it is going to be very hard for you 
to debug your way out. If you find yourself considering such a case, stop immediately, 
take a deep breath, and think again. This is probably a sign that you don ’ t have your 
priority scheme well thought out, your handlers are too long, or both things at once. Most 
probably, there is a better and cleaner way to arrange things.  

  Multivectored Interrupt Management 
 The basic PIC32 interrupt service mechanism, we have seen so far, is not too dissimilar 
from the early 8-bit PIC® architectures, where all interrupt sources were funneled by a 
single interrupt vector into a single interrupt service routine. This arrangement allows 
for a great simplicity, but even considering the exceptional speed of the PIC32 (and its 
ability to execute one instruction per clock cycle), the need to save the processor context 
followed by the need to proceed through a sequential review of all enabled sources of 
interrupts can produce considerable overhead. As a consequence, a noticeable delay 
might be added in responding to a critical event. 

 To provide the smallest possible overhead and give lightning response to high-priority 
interrupts, the PIC32 offers an alternative mechanism that uses  vectored interrupts  and 
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multiple register sets . In particular, the PIC32MX family offers a 64-vector table and two 
complete sets of 32 working registers that can be swapped automatically. 

 Notice that, although there can be as many as 96 interrupt sources in the PIC32 
architecture, the maximum number of vectors is limited to 64 by the underlying MIPS 
core. As a consequence, the PIC32 designers have arranged for some interrupts that 
belong to the same peripheral to be grouped into the same vector (see  Table 5.3   ). 

 Table 5.3 :     Vector table for the PIC32MX360F512L  .

 Vector Number  Vector Symbol  Notes 

  0  _CORE_TIMER_VECTOR 

  1  _CORE_SOFTWARE_0_VECTOR   

  2  _CORE_SOFTWARE_1_VECTOR   

  3  _EXTERNAL_0_VECTOR 

  4  _TIMER_1_VECTOR 

  5  _INPUT_CAPTURE_1_VECTOR 

  6  _OUTPUT_COMPARE_1_VECTOR   

  7  _EXTERNAL_1_VECTOR 

  8  _TIMER_2_VECTOR 

  9  _INPUT_CAPTURE_2_VECTOR 

 10  _OUTPUT_COMPARE_2_VECTOR   

 11  _EXTERNAL_2_VECTOR 

 12  _TIMER_3_VECTOR 

 13  _INPUT_CAPTURE_3_VECTOR 

 14  _OUTPUT_COMPARE_3_VECTOR   

 15  _EXTERNAL_3_VECTOR 

 16  _TIMER_4_VECTOR 

 17  _INPUT_CAPTURE_4_VECTOR 

 18  _OUTPUT_COMPARE_4_VECTOR   

( continued )
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 Table 5.3 :     (Continued)  

 Vector Number  Vector Symbol  Notes 

 19  _EXTERNAL_4_VECTOR 

 20  _TIMER_5_VECTOR 

 21  _INPUT_CAPTURE_5_VECTOR 

 22  _OUTPUT_COMPARE_5_VECTOR   

 23  _SPI1_VECTOR  Groups all three SPI1 interrupts. 

 24  _UART1_VECTOR  Groups all three UART1 interrupts. 

 25  _I2C1_VECTOR  Groups all I2C1 interrupts. 

 26  _CHANGE_NOTICE_VECTOR 

 27  _ADC_VECTOR 

 28  _PMP_VECTOR 

 29  _COMPARATOR_1_VECTOR 

 30  _COMPARATOR_2_VECTOR 

 31  _SPI2_VECTOR  Groups all three SPI2 interrupts. 

 32  _UART2_VECTOR  Groups all three UART2 interrupts. 

 33  _I2C2_VECTOR  Groups all I2C2 interrupts. 

 34  _FAIL_SAFE_MONITOR_VECTOR   

 35  _RTCC_VECTOR 

 36  _DMA0_VECTOR 

 37  _DMA1_VECTOR 

 38  _DMA2_VECTOR 

 39  _DMA3_VECTOR 

  . . .  

 44  _FCE_VECTOR 
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 Assigning a separate vector (pointing to a separate handler function) to each group of 
interrupt sources eliminates the need to test sequentially all possible sources of interrupt 
to find the one that needs to be served. But for a greater boost to the response time, the 
alternate register set can be a real bonus. Upon entry into the interrupt handler, the PIC32 
can now simply swap the entire working registers set with a  “ fresh ”  new one instead of 
having to save the entire context on the stack with the long (standard) prologue sequence. 

 Further, nesting vectored interrupts is still a valid option to increase the responsiveness of 
the system when one or more lower-priority interrupts need to give way to higher-priority 
ones. But, since there is only one alternate set of registers, often referred to as the  shadow
registers , it would be dangerous to perform the swap twice. To prevent this kind of 
situation, the register set  “ swap ”  is performed automatically but only for interrupt sources 
of the highest level (ipl7). 

 With little effort, we should be able to transform the previous example to take advantage 
of the multivectored interrupt mode: 

  1.     Split the single interrupt handler into two separate functions.  

  2.     In the __ISR macro, replace the single default  vector 0  with the appropriate 
vector number (found in  Table 5.3 ) for each interrupt source/handler.  

  3.     Remove the interrupt flag test; it is now implicit, and each handler is called only 
when the related interrupt source has raised the flag.  

  4.     Set the Timer3 interrupt priority to level 7 to use the alternate register set feature. 
Remember to match the assigned level with the  __ISR()  declaration.  

  5.     Replace the initialization function call with the new multivectored version: 
INTEnableSystemMultiVectoredInt(); .

  6.     Send me an email if you managed to type the preceding function call 
without any typo on your first try. Courtesy of the PIC32 libraries ’  team, you 
could be the winner of a yet-to-be-determined grand prize for the  “ longest-
functioncallspelledwithouterrorsatfirsttry ”  contest!    

 Here is the new code that you will save as multiple.c and replace as the main file in our 
project:

  /*
  ** Multiple Vector Interrupt  
  */
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  #include <p32xxxx.h>  
  #include <plib.h>  

  int count;  

  void __ISR( _TIMER_3_VECTOR, ipl7) T3InterruptHandler( void)  
  { 
 // 1. T3 handler is responsible for incrementing count  
 count++;  

 // 2. clear the flag and exit  
 mT3ClearIntFlag();     

  } // T3 Interrupt Handler  

  void __ISR( _TIMER_2_VECTOR, ipl1) T2InterruptHandler(void)  
  { 
 // 3. re-enable interrupts immediately (nesting)  
 asm( " ei " );  

 // 4. T2 handler code here  
 while( 1);  

 // 5. clear the flag and exit  
 mT2ClearIntFlag();     

  } // T2 Interrupt Handler  

  main()  
  { 
 // 5. init timers  
 PR3 = 20;  
 PR2 = 15;  
 T3CON = 0x8030;  
 T2CON = 0x8030;  

 // 6. init interrupts  
 mT2SetIntPriority( 1);  
 mT3SetIntPriority( 7);  
 INTEnableSystemMultiVectoredInt();  
 mT2IntEnable( 1);  
 mT3IntEnable( 1);  

 // 7. main loop  
 while( 1);     

  } // main     
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 If you build and animate the project, just as we did in the previous exercise, you should 
be able to verify that things are now working very much the same. 

 The Timer2 interrupt kicks in first and keeps the processor busy for  . . .  well, a very long 
time. But a Timer3 interrupt manages to interrupt the handler once more and update the 
count  variable. In both cases, you will have noticed how the execution was transferred 
immediately and very efficiently to the right routine (if we have used the right vector 
numbers). What is not immediately obvious is how the response to the Timer3 interrupt 
has been faster than that to Timer2 (and any previous example) because of a much shorter 
handler prologue. If you want proof, you can switch to the Disassembly window and 
directly compare the two interrupt handler prologues. You will verify that the Timer3 
interrupt handler requires half the instructions (and therefore time) than the low priority 
Timer2 handler prologue. The difference will only increase, in a practical application, as 
the main program grows in complexity and more registers need to be saved in the prologue. 

      Note     

 Even when we use the alternate register set feature, there is a need for a short prologue. In fact, 
when we enter a high-priority handler (ipl7) with a fresh register set, we have to initialize at 
least the stack pointer (one of the registers itself), copying it from the previous set. We also 
need to modify the interrupt priority mask ( IM ) of the PIC32, in the  Status  register, to disable 
lower-priority interrupts. The resulting (shortest possible) prologue still requires about seven 
assembly instructions.  

  A Simple Application 
 Adding a few more lines of code, we can transform our previous examples into a more 
practical application where Timer1 is used to maintain a real-time clock keeping track of 
tenths of a second, seconds, and minutes. As a simple visual feedback, we will use the lower 
8 bits of PortA as a binary display showing the running seconds. Here is how to proceed: 

●      Declare a few new integer variables that will act as the seconds and minutes 
counters:

    int dSec = 0;
    int Sec = 0;
    int Min = 0;

●      Have the interrupt service routine increment the tenths of a second counter: 

    dSec++;
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 Note: For simplicity in this chapter we will assume the PIC32 is configured for operation 
with a single 16MHz system and pheripheral clock. In Chapter 7 we will review in more 
details the oscillator module and we will learn how to operate at much higher clock 
frequencies squeezing the maximum performance out of the device. 

 A few additional lines of code will be added to take care of the carryover into seconds 
and minutes. 

●      Set the Timer1 prescaler to 1:64 to help achieve the desired period: 

    T1CON=0x8020;

●      Set the period register for Timer1 to a value that (assuming a 16       MHz peripheral 
clock with a 62.5ns period) will give us a 1/10th of a second period between 
interrupts:

    PR1=25000-1; // 25,000 * 64 * 62.5ns=0.1 s

●      Set PortA (LSB) as output and disable the JTAG port to gain full control of 
all LEDs: 

    DDPCONbits.JTAGEN = 0;

    TRISA = 0xff00;

●      Add code inside the main loop to continuously refresh the content of PortA (LSB) 
with the current value of the seconds counter: 

    PORTA = Sec;

 Save the new code as clock.c and replace it as the new project source file. Here is what it 
should look like:       
  /*
  ** A real time clock  
  **  
  ** example 5  
  */

  #include <p32xxxx.h>  
  #include <plib.h>  

  int dSec = 0;  
  int Sec = 0;  
  int Min = 0;  

  // 1. Timer1 interrupt service routine  
  void __ISR( 0, ipl1) T1Interrupt( void)  
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  {   
 // 1.1 increment the tens of a second counter  

 dSec++;  

 if ( dSec > 9)        // 10 tens in a second  
 {  

 dSec = 0;  
 Sec++;          // increment the seconds counter  

 if ( Sec > 59)        // 60 seconds make a minute  
 { 
 Sec = 0;  
 Min++;         // increment the minute counter  

 if ( Min > 59) // 59 minutes in an hour 
     Min = 0;        

 } // minutes     
 } // seconds  

 // 1.2 clear the interrupt flag     
 mT1ClearIntFlag();  

  } //T1Interrupt 

  main()  
  { 
 // 2.1 init I/Os  
 DDPCONbits.JTAGEN = 0;        // disable JTAG port  
 TRISA=0xff00;          // set PORTA LSB as output  

 // 2.2 configure Timer1 module  
 PR1 = 25000-1;        // set the period register  
 T1CON = 0x8020 ; // enabled, prescaler 1:64, internal clock  

 // 2.3 init interrupts  
 mT1SetIntPriority( 1);  
 mT1ClearIntFlag();  
INTEnableSystemSingleVectoredInt();  
 mT1IntEnable( 1);  

 // 2.4. main loop  
 while( 1)  
 { 
 // your main code here  
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 PORTA=Sec;     
 } // main loop     

  } // main     

 To test the new project using the MPLAB SIM simulator, follow these simple steps: 

  1.     Open the Watch window (dock it to your favorite spot).  

  2.     Add the following variables: 

●       dSec , select from the Symbol pull-down box, then click  Add Symbol .

●       TMR1 , select from the SFR pull-down box, then click  Add SFR .

●       Status , select from the SFR pull-down box, then click  Add SFR .     

  3.     Open the Simulator StopWatch window ( Debugger | StopWatch ).

  4.     Set a breakpoint on the first instruction of the interrupt response routine after 1.1. 
Set the cursor on the line and from the right-click menu, select Set Breakpoint , 
or simply double-click. By setting the breakpoint here, we will be able to observe 
whether the interrupt is actually being triggered.  

  5.     Execute a Run ( Debugger | Run  or press  F9 ). The simulation should stop 
relatively quickly, with the program counter cursor (the green arrow) pointing 
right at the breakpoint inside the ISR. 

 So we did stop inside the interrupt service routine! This means that the trigger event 
was activated; that is, the Timer1 reached a count of 24,999 (remember, though, that 
the Timer1 count starts with 0; therefore, 25,000 counts have been performed), which, 
multiplied by the prescaler value, means that 25,000  �  64, or exactly 1.6 million, cycles 
have elapsed. 

 The StopWatch window will confirm that the total number of cycles executed so far is, 
in fact, slightly higher than 1.6 million. The StopWatch count includes the time required 
by the initialization part of our program, too. At the PIC32 ’ s execution rate (16 million 
instructions per second), this all happened in a tenth of a second! 

 From the Watch window, we can now observe the current value of the processor interrupt 
priority mask ( IM ), a bit field inside the  Status  register. Since we are inside an ISR that 
was configured to operate at level  ipl1 , we should be able to verify that bits 10 thru 15 
of the status register ( Status ) contain the value  1 . 
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 In  Figure 5.2   , I have circled the portion of the  Status  register containing the interrupt 
mask ( IM ) bit field, as shown in the Watch window. Also, the StopWatch shows the 
time lapsed (in milliseconds) from start to the first breakpoint. Single-stepping from the 
current position (using either the StepOver  or the  StepIn  commands), we can monitor 
the execution of the next few instructions inside the ISR. Upon its completion, we can 
observe how the interrupt mask returns back to zero: 

  1.     After executing another  Run  command, we should find ourselves again with the 
program counter (represented graphically by the green arrow) pointing inside the 
ISR. This time, you will notice that exactly 1.6 million cycles have been added to 
the previous count.  

  2.     Add the  Sec  and  Min  variables to the Watch window.  

  3.     Execute the  Run  command a few more times to verify that, after 10 iterations, the 
seconds counter Sec  is incremented. 

 Figure 5.2 :     Screenshot Clock.c simulation.    
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 To test the minutes increment, you might want to remove the current breakpoint and 
place a new one a few lines below; otherwise you will have to execute the  Run  command 
exactly 600 times! 

  1.     Place the new breakpoint on the  Min++ statement in 1.2.  

  2.     Execute  Run  once and observe that the seconds counter has already been cleared.  

  3.     Execute the  Step Over  command once and the minute counter will be 
incremented.

 The interrupt routine has been executed 600 times, in total, at precise intervals of one 
tenth of a second. Meanwhile, the code present in the main loop has been executed 
continuously to use the vast majority of the grand total of 960 billion cycles. In all 
honesty, our demo program did not make much use of all those cycles, wasting them 
all in a continuous update of the PortA content. In a real application, we could have 
performed a lot of work, all the while maintaining a precise real-time clock count.  

  The Secondary Oscillator 
 There is another feature of the PIC32 Timer1 module (common to all previous 
generations of 8-bit and 16-bit PIC microcontrollers) that we could have used to obtain 
a real-time clock. In fact, there is a low-frequency oscillator (known as the  secondary
oscillator ) that can be used to feed the Timer1 module instead of the high-frequency 
clock. Since it is designed for low-frequency operation (typically it is used in conjunction 
with an inexpensive 32,768       Hz crystal), it requires very little power to operate. And since 
it is independent from the main clock circuit, it can be maintained in operation when 
the main clock is disabled and the processor enters one of the many possible low-power 
modes. In fact, the secondary oscillator is an essential part for many of those low-power 
modes. In some cases it is used to replace the main clock, in others it remains active only 
to feed the Timer1 or a selected group of peripherals. 

 To convert our previous example for use with the secondary oscillator, we will need to 
perform only a few minor modifications, such as: 

●      Change the interrupt routine to count only seconds and minutes; the much slower 
clock rate does not require the extra step for the tenth of a second:          

 // 1. Timer1 interrupt service routine  
 void __ISR( 0, ipl1) T1Interrupt( void)  
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  { 
// 1.1 
 Sec++;        // increment the seconds counter  

 if ( Sec > 59)        // 60 seconds make a minute  
 { 
 Sec = 0;  
 Min++;        // increment the minute counter  
 if ( Min > 59) // 59 minutes in an hour 

 Min = 0;        
 } // minutes  

 // 1.2 clear the interrupt flag     
 mT1ClearIntFlag();  

  } //T1Interrupt     

●      Change the period register to generate one interrupt every 32,768 cycles:    

    PR1 = 32768-1;        // set the period register

●      Change the Timer1 configuration word (the prescaler is not required anymore):    

    T1CON = 0x8002;        // enabled, prescaler 1:1, use secondary 

oscillator

 Unfortunately, you will not be able to immediately test this new configuration with the 
simulator, since the secondary oscillator input is not fully supported by MPLAB SIM. 

 In a later lesson we will learn how a new set of tools will help us generate a  stimulus file
that could also be used to provide a convenient emulation of a 32       kHz crystal connected 
to the T1CK  and  SOSCI  pins of the PIC32.  

  The Real-Time Clock Calendar (RTCC) 
 Building on the previous two examples, we could evolve the real-time clock 
implementations to include the complete functionality of a calendar, adding the count of 
days, days of the week, months, and years. 

 These few new lines of code would be executed only once a day, once a month, or once 
a year and therefore would produce no decrease whatsoever in the performance of the 
overall application. Although it would be somewhat entertaining to develop such code 
once, considering leap years and working out all the details, the PIC32MX family already 
has a complete Real-Time Clock and Calendar (RTCC) module built in and ready for use. 
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How convenient! Not only does it work from the same low-power secondary oscillator, 
but it comes with all the bells and whistles, including a built in Alarm function that can 
generate interrupts. In other words, once the module is initialized, it is possible to activate 
the RTCC module and wait for an interrupt to be generated. For example, the interrupt 
can be set for the exact month, day, hour, minute, and second you desire once a year (or, 
if set on February 29, even once every four years!). 

 This is what the interrupt service routine would look like:       

  // 1. RTCC interrupt service routine  
  void __ISR( 0, ipl1) RTCCInterrupt( void)  
  { 
 // 1.1 your code here, will be executed only once a year  
 // or once every 365 x 24 x 60 x 60 x 16,000,000 MCU cycles  
 // that is once every 504,576,000,000,000 MCU cycles  

 // 1.2 clear the interrupt flag  
 mRTCCClearIntFlag();     

  } // RTCCInterrupt     

 To initialize the RTCC module, though, we will need to substantially modify the main 
program. The proper configuration of the RTCC module requires a number of registers to 
be accessed in the right order and filled with the correct data. Fortunately, as part of the 
standard PIC32 peripheral libraries including plib.h, we gain access to a powerful set of 
functions that make the entire process quite painless. Here is all the code required: 

  main()  
  { 
 // 2.1 init I/Os  
 DDPCONbits.JTAGEN = 0;        // disable JTAG port  
 TRISA = 0xff00;          // set PORTA LSB as output  

 // 2.2 configure RTCC module  
 RtccInit();          // inits the RTCC 
 // set present time  
 rtccTime tm; tm.sec=0x15;       tm.min=0x30;       tm.hour=01;  
 // set present date  
 rtccDate dt;  
 dt.wday=0; dt.mday=0x15; dt.mon=0x10; dt.year=0x07;  
 RtccSetTimeDate(tm.l, dt.l);  
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 // set desired alarm to Feb 29th  
 dt.wday=0; dt.mday=0x29; dt.mon=0x2;  
 RtccSetAlarmTimeDate(tm.l, dt.l);  

 // 2.2 init interrupts,  
 mRTCCSetIntPriority( 1);  
 mRTCCClearIntFlag();  
 INTEnableSystemSingleVectoredInt();  
 mRTCCIntEnable( 1);  

 // 2.3. main loop  
 while( 1)  
 { 
 // your main code here  
 // . . .     

 } // main loop     

  } // main     

  Debriefing 
 In this lesson, we have seen how an interrupt service routine can be simple to code, 
thanks to the language extensions built into the MPLAB C32 compiler and the powerful 
interrupt control mechanisms offered by the PIC32 architecture. Interrupts can be an 
extremely efficient tool in the hands of the embedded-control programmer to help manage 
multiple tasks while maintaining precious timing and resources constraints. At the same 
time, they can be an extremely powerful source of trouble. In the PIC32 reference manual 
and the MPLAB C32 User Guide, you will find much more useful information than we 
could possibly cram into one single day of exploration. Today we took the opportunity to 
learn more about the uses of Timer1 and the secondary low-power oscillator, and we got a 
glimpse of the features of the powerful Real-Time Clock and Calendar (RTCC) module.  

  Notes for the PIC Microcontroller Experts 
 Notice that on the PIC32 architecture, a pair of convenient instructions allow enabling 
and disabling of all interrupts at once. If there are portions of code that require all interrupts 
to be temporarily disabled, you can use the following inline assembly commands: 

  asm( " di " );  
   . . .              // protected code here 

  asm( " ei " );     
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 But if the portion of code you want to protect from interrupts could be used at times 
when you don ’ t know whether interrupts are already enabled/disabled, you might 
want to use a bit more caution and call one of the following two functions from the 
plib.h library: 

●       INTDisableInterrupts();  not only disables interrupts but also returns a 
value corresponding to the original interrupts status.  

●      When you ’ re finished, use  INTRestoreInterrupts( status);  to restore the 
original system status. 

  Tips  &  Tricks 
 According to the PIC32 datasheet, to activate the secondary low-power oscillator, you 
need to set the SOSCEN  bit in the  OSCCON  register. But before you rush to type the code 
in the last example and try to execute it on a real target board, notice that the  OSCCON
register, containing vital controls for the MCU affecting the choice of the main active 
oscillator and its speed, is protected by a locking mechanism. As a safety measure, you 
will have to perform a special unlock sequence first or your command will be ignored. 
The PIC32MX peripheral libraries come to our rescue in this case with a number of 
useful functions that manipulate the oscillator module configuration and perform all the 
necessary lock and unlock sequences, including: 

●       mOSCEnableSOSC() , lets us enable or disable ( mOSCDisableSOSC() ) the 
external secondary oscillator (SOSC) at run time.  

●       OSCConfig(),  can change dynamically (during program execution) the desired 
clock source, the PLL multiplier, PLL postscaler, and/or the FRC divisor.   

●       mOSCSetPBDIV() , lets us change the Peripheral Bus clock divider dynamically. 
Use this function with great caution because it will simultaneously affect the 
operation of all your peripherals. 

      Note     

 Changing the clock source will succeed only if the Clock Switching configuration bit is 
enabled. Check your settings in the Configure | Configuration bits  menu or your configuration 
bit #pragmas.  
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 Two additional functions take care of reconfiguring the PIC32MX for IDLE and SLEEP 
mode operation: 

●       mPowerSaveSleep() , stops both the system clock and the peripheral bus clock 
of the PIC32 and the device goes into an ultra low-power mode. Any reset and 
active asynchronous (remember the peripheral clock is stopped) peripheral ’ s 
event will wake up the device, even if the corresponding interrupt is not enabled. 
Examples of valid wakeup sources are Change Notification module inputs, 
External Interrupt pins, Reset, and Brown Out signals.  

●       mPowerSaveIdle() , stops the system clock but leaves the peripheral clock 
running. Any active peripheral interrupt source can wake up the device. Examples 
of valid wakeup sources are UART, SPI, Timers, Input Capture, Output Compare, 
and most other peripherals. 

  Exercises 
 Write interrupt-based routines for the following peripherals: 

  1.     Edge selectable interrupts 

  2.     Change notification interrupts 

  3.     Output compare 

   Books
        Curtis ,    Keith E.         ,      Embedded Multitasking        (    Newnes      ,  Burlington, MA      ,  2006   )        .     Keith 

knows multitasking and what it takes to create small and efficient embedded-control 
applications.

  Links 
http://en.wikipedia.org/wiki/Interrupts . This is a great starting point to learn about 

interrupts.

http://en.wikipedia.org/wiki/Computer_multitasking . To continue with multitasking, 
especially keeping an eye on real-time multitasking and asynchronous events 
handling.
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  The Plan 
 The beauty of using a completely integrated, single-chip microcontroller device lies 
in its reduced size, its increased robustness, and the convenience of having a complete 
set of peripherals harmoniously preassembled for us, ready for use. Unfortunately, as 
most embedded-control designers quickly realize, it is the amount of available memory 
(Flash and RAM) that most often seems to dictate the cost and availability of a product. 
Learning how to make the most use of both is imperative. 

 Today we will review the basics of string declaration and manipulation in C language as 
an excuse to investigate the memory allocation techniques used by the MPLAB® C32 
compiler. The PIC32 core offers some pretty advanced features never before seen on 8- or 
16-bit PIC® architectures. These include the ability to remap memory spaces, to cache 
memory contents, and to share the memory bus with a direct memory access (DMA) 
mechanism. We will use several tools, including the Disassembly Listing window, the 
Memory window, and the Map file, to investigate how the MPLAB C32 compiler and 
linker operate in combination to generate the most compact and efficient code.  

  Preparation 
 This lesson will be performed exclusively with software tools, including the MPLAB 
IDE, the MPLAB C32 compiler, and the MPLAB SIM simulator. 

 Use the New Project Setup checklist to create a new project called  Strings  and a new 
source file, similarly called  strings.c .

D A Y  6 
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  The Exploration 
 Strings are treated in C language as simple ASCII character arrays. Every character 
composing a string is assumed to be stored sequentially in memory in consecutive 8-bit 
integer elements of the array. After the last character of the string, an additional byte 
containing a value of 0 (represented in a character notation with   ' \0' ) is added as a 
termination flag. 

      Note     

 This is just a convention that applies to the standard C string manipulation library string.h. It 
would be entirely possible, for example, to define a different library that, for example, stores 
strings in arrays where the first element is used to record the length of the string. In fact, Pascal 
programmers will be very familiar with this method. 

 Let ’ s get started by reviewing the declaration of a variable containing a single character: 

  char c;     

  As we have seen from the previous lessons, this is how we declare an 8-bit integer 
(character) that is treated as a signed value ( � 128 ..�127) by default.  

  We can declare and initialize it with a numerical value:  

  char c = 0x41;  

  Or we can declare and initialize it with an ASCII value:  

  char c =  ' a ' ;     

 Note the use of the single quotes for ASCII character constants. The result is the same, 
and to the C compiler there is absolutely no distinction between the two declarations; 
characters are  numbers. 

 We can now declare and initialize a string as an array of 8-bit integers (characters):       

  char s[5] = {  ' H ' , 'E', ' L  '  , 'L', ' O ' };     

 In this example, we initialized the array using the standard notation for numerical arrays. 
But we could have also used a far more convenient notation (a shortcut) specifically 
created for string initializations: 

  char s[5] =  " HELLO " ;     
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 To further simplify things and save you from having to count the number of characters 
composing the string (thus preventing human errors), you can use the following notation:       

  char s[] =  " HELLO " ;     

 The MPLAB C32 compiler will automatically determine the number of characters 
required to store the string while automatically adding a termination character (zero) 
that will be useful to the string manipulation routines later to correctly identify the 
string length. So, the preceding example is, in truth, equivalent to the following 
declaration:

  char s[6] = {  ' H ' , 'E', ' L ' , 'L', ' O ' , '\0' };     

 Assigning a value to a char (8-bit integer) variable and performing arithmetic on it is no 
different than performing the same operation on any integer type:       

  char c;                // declare c as an 8-bit signed integer  
  c =  ' a ' ;               // assign the value  ' a '  from the ASCII table  
  c ++;                  // increment it . . .   

                      // it will represent the ASCII character  ' b '      

 The same operations can be performed on any element of an array of characters (string), 
but there is no simple shortcut, similar to the one used above, for the initialization that 
can assign a new value to an entire string: 

  char s[15];            // declare s as a string of 15 characters  

  s =  " Hello! " ;          // Error! This does not work!     

 Including the string.h file at the top of your source file, you ’ ll gain access to numerous 
useful functions that will allow you to: 

●      Copy the content of a string onto another: 

  strcpy( s,  " HELLO " );            // s :  " HELLO "      

●      Append (or concatenate) two strings: 

  strcat( s,  " WORLD " );           // s :  " HELLO WORLD "      

●      Determine the length of a string: 

  i = strlen( s);                 // i : 11     

 and many more.  
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  Memory Space Allocation 
 Though a compiler ’ s job is that of generating the code that manipulates variables, it is 
the linker that is responsible for deciding  where  variables are to be placed in memory, 
finding a physical address for every object in the memory space(s) available. Just as with 
numerical initializations, every time a string variable is declared and initialized, as in: 

  char s[] =  " Exploring the PIC32 " ;     

 three things happen: 

●      The MPLAB C32 linker reserves a contiguous set of memory locations (in RAM 
space) to contain the variable—20 bytes in the preceding example. This space is 
part of the so-called data  section.  

●      The MPLAB C32 linker stores the initialization value in a 20-byte-long table 
(in Flash program space). This space is part of the rodata  code section or read-
only section.  

●      The MPLAB C32 compiler creates a small routine that will be called before the 
main()  function (part of the Startup code we mentioned in previous chapters) to 
copy the values into RAM, therefore initializing the variable. 

 In other words, the string  “ Exploring the PIC32 ”  ends up using twice the space you 
would expect, because a copy of it is stored in Flash program memory and space is 
reserved for it in RAM memory, too. Additionally, you must consider the initialization 
code and the time spent in the actual copying process. If the string is not supposed to be 
manipulated during the program execution but is only used  “ as is, ”  transmitted to a serial 
port or sent to a display, there is no need to waste precious resources. Declaring the string 
as a constant  will save RAM space and initialization code and time:       

  const char s[] =  " Exploring the PIC32 " ;     

 Now the MPLAB C32 linker will only allocate space in program memory, in the  rodata
code section, where the string will be directly accessible. The string will be treated by the 
compiler as a direct pointer into program memory and, as a consequence, there will be no 
need to waste RAM space. 

 In the previous examples of this lesson, we saw other strings implicitly defined as 
constants—for example, when we wrote: 

  strcpy( s,  " HELLO " );     
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 The string  “ HELLO ”  was  implicitly  defined as of  const char  type and similarly 
assigned to the rodata  section in program memory. 

      Note     

 If the same constant string is used multiple times throughout the program, the MPLAB C32 
compiler will automatically store only one copy in the  rodata  section to optimize memory 
use, even if all optimization features of the compiler have been turned off.      

 We will start investigating these issues with the MPLAB SIM simulator and the 
following short snippet of code: 

  /*
  ** Strings 
  */
  #include  < p32xxxx.h >   
  #include  < string.h >   

  // 1. variable declarations  
  const char a[] =  " Exploring the PIC32 " ;  
  char b[100] =  " Initialized " ;  

  // 2. main program  
  main()  
  {  
 strcpy( b,  " MPLAB C32 " );          // assign new content to b  

  } // main     

  1.     Build the project using the  Project Build  checklist.  

  2.     Add the Watch window (and dock it to the preferred position).  

  3.     Select the two variables  a  and  b  from the symbol selection box and 
click the Add Symbol  button to add them to the Watch window 
(see Figure 6.1   ).    

 A little � symbol enclosed in a box will identify these variables as arrays and will 
allow you to expand the view to identify each individual element (see  Figure 6.2   ). 
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 By default, MPLAB shows each element of the array as hex values, but you can change 
the display to ASCII characters or to reflect your personal preferences: 

  1.     Select one element of the array with the  left button  of your mouse.  

  2.      Right-click  to show the Watch window menu.  

  3.     Select  Properties  (the last item in the menu). 

 You will be presented with the Watch window Properties dialog box (see  Figure 6.3   ). 

 From this dialog box you can change the format used to display the content of the 
selected array element, but you can also observe the Memory field (grayed) that tells you 
where the selected variable is allocated: data or code space. 

 Figure 6.2 :     String Expanded view.    

 Figure 6.1 :     Watch window containing two strings.    
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 If you select the Properties dialog box for the constant string  a , you will notice that the 
memory space is indicated as Program, confirming that the constant string is using only 
the minimum amount of space required in the Flash program memory of the PIC32 and 
no RAM needs to be assigned to it. 

 On the contrary, the Properties dialog box will reveal how the string  b  is allocated in a 
File Register, or in other words RAM memory. 

 Each variable value can be simultaneously presented in multiple formats by adding new 
columns to the table inside the Watch window: 

  1.     Select the  top row  of the table inside the Watch window (in the column to the 
right of the default Value column).  

  2.     Select any of the additional formats (check  Char , for example).  

  3.     Repeat for as many formats as you want, or have space for, inside the window.    

 Figure 6.3 :     The Watch window Properties dialog box.    
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 Continuing our investigation, notice how the string  a  appears to be already initialized; the 
Watch window shows it ’ s ready to use, right after the project build. 

 The string  b , on the other hand, appears to be still empty, uninitialized. Only when we 
enable the MPLAB SIM simulator and we click the reset button for the first time to reach 
the beginning of the main function is the string  b  initialized with the proper value (see 
 Figure 6.4   ). 

 Figure 6.4 :     The string b after the Startup code execution.    

 As we have seen,  b  is allocated in RAM space, and the Startup code must be executed 
first for the variable to be initialized and  “ ready for use. ”

 Once more we can use the Disassembly Listing window to observe the code produced by 
the compiler: 

  14:         // 2. main program  
  15:       main()  
  16:       {  
  9D000018      27BDFFE8      addiu      sp,sp, - 24  
  9D00001C      AFBF0014      sw      ra,20(sp)  
  9D000020      AFBE0010      sw      s8,16(sp)  
  9D000024      03A0F021      addu      s8,sp,zero  
  17:             strcpy( b,  " MPLAB C32 " );          // assign new content to b  
  9D000028      3C02A000      lui      v0,0xa000  
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  9D00002C      24440000      addiu      a0,v0,0  
  9D000030      3C029D00      lui      v0,0x9d00  
  9D000034      2445074C      addiu      a1,v0,1868  
  q9D000038      0F400016      jal        0x9d000058 
  9D00003C        00000000        nop 
  18:                } // main  
  9D000040        03C0E821        addu        sp,s8,zero 
  9D000044        8FBF0014        lw        ra,20(sp) 
  9D000048        8FBE0010        lw        s8,16(sp) 
  9D00004C        27BD0018        addiu        sp,sp,24 
  9D000050        03E00008        jr        ra 

  9D000054        00000000       nop     

 We can see that the  main()  function is short and followed by the  strcpy()
library function full disassembly appended at the bottom of the listing. Don ’ t let the 
length and apparent complexity of the function distract you; it is a pretty optimized 
piece of code that is designed to take maximum advantage of the 32-bit bus and 
cache system used by the PIC32. Its analysis is beyond the scope of our 
explorations today. 

 You should instead appreciate that this is the only routine attached. Although the 
string.h library contains dozens of functions, and the include file string.h contains the 
declarations for all of them, the linker is wisely appending only the functions that are 
actually being used.  

  Looking at the Map 
 Another tool we have at our disposal to help us understand how strings (and in 
general any array variable) are initialized and allocated in memory is the . map file . 
This text file, produced by the MPLAB C32 linker, can be easily inspected with the 
MPLAB editor and is designed specifically to help you understand and resolve 
memory allocation issues. 

 To find this file, look for it in the main project directory where all the project source 
files are. Select  File | Open  and then browse until you reach the project directory. 
By default the MPLAB editor will list all the .c files, but you can change the File Type 
field to .map (see  Figure 6.5   ). 
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 Map files tend to be pretty long and verbose, but by learning to inspect only a few critical 
sections, you will be able to find a lot of useful data. Essentially this file is composed of 
three parts: 

●       The List of Included Archive Members . This is a list of filenames of all the library 
modules and object files the linker considered to build the project, followed by the 
file that caused it to be included and the specific symbol that was required. Most 
of these files are included automatically by the linker script, but you will promptly 
recognize a line containing our main object file strings.o, where we called the 
function strcpy()  that in turn caused strcpy.o to be linked in. Here is the line 
that documents it: 

 C:/Program Files/Microchip/../pic32mx/lib\libc.a(strcpy.o)  

 Strings.o (strcpy)     

●       The Memory Configuration Table.  This contains the position and size of each 
memory area, both data and program, used by the project. This is supposed to fit 
the configuration of the specific PIC32 device chosen. Here is the table: 

 Memory Configuration  

 Name        Origin       Length  
 Attributes  
 kseg0_program_mem        0x9d000000        0x00080000 xr 
 kseg0_boot_mem        0x9fc00490        0x00000970 
 exception_mem       0 x9fc01000        0x00001000 
 kseg1_boot_mem        0xbfc00000        0x00000490 
 debug_exec_mem        0xbfc02000        0x00000ff0 
 config3  0xbfc02ff0        0x00000004 

 Figure 6.5 :     Selecting the .map file type.    
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 config2  0xbfc02ff4        0x00000004 
 config1  0xbfc02ff8        0x00000004 
 config0  0xbfc02ffc        0x00000004 
 kseg1_data_mem        0xa0000000        0x00008000        w !x 
 sfrs  0xbf800000        0x00100000 

*default*        0x00000000        0xffffffff     

  You will find some of the area names to be intuitively understandable, whereas 
others (that follow a long MIPS tradition) will look rather arcane. 

●       The Linker Script and Memory Map.  This is the longest part containing a 
seemingly interminable list of memory section  names. Each one of the memory 
sections is eventually placed by the linker in one of the memory areas listed 
previously, according to strict rules defined in the linker script. The sections we 
are most interested in are the following:    

  1.      .reset  section, containing the code that will be placed by the linker at the reset 
vector. This is normally filled with a default handler ( _reset() ): 
    .reset            0xbfc00000            0x10 C:/ . . . /pic32mx/lib/crt0.o   
                  0xbfc00000                   _reset      

  2.      .vector_x  sections—there are 64 of them, each associated to the corresponding 
interrupt handler. They will be empty unless your program is using the specific 
interrupt handler. 
    .vector_0            0x9fc01200            0x0      

  3.      .startup  section, where the  C0  initialization code is placed. 
    .startup             0x9fc00490            0x1e0 C:/ . . . /lib/crt0.o      

  4.      .text  sections—you will find many of them, where all the code generated by the 
MPLAB C32 compiler from your source files is placed. Here is the specific part 
produced by our main()  function: 
    .text                0x9d000018            0x40 Strings.o   
              0 x 9d000018                     main      

      Note     

 The name of this section (.text), although somewhat misleading, follows a long tradition among 
C compilers. It has been used since the original implementation of the very first C compiler.      
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  5.      .rodata  section, where read-only (constant) data is placed in program memory 
space. Here we can find space for our constant string  a , for example: 
    .rodata              0x9d000738            0x20       Strings.o   
              0x9d000738                      a      

  6.      .data  section, where RAM memory is allocated for global variables. 
    .data                0xa0000000            0x64 Strings.o   
              0xa0000000                      b      

  7.     And finally a pointer to the  .data1  section, where the initialization value, ready 
for the C0 code to load into the b  variable, is placed, once more, in program 
memory space: 
    *(.data1)   
              0x9d00076c            _data_image_begin=LOADADDR(data)        

 To verify what can be really found at such addresses, we will need to use the Memory 
window (select  View | Memory).  Here select the  Data View  tab to visualize the memory 
contents in classic hex dump  format. Then  right-click  with the mouse pointer inside 
the Memory window and choose  Go To  from the context menu (or press  Ctrl � G ) to 
activate the Go To dialog box ( Figure 6.6   ). 

 Figure 6.6 :     The Memory window Go To dialog box.    

 In the Hex Address field, type the address found above ( 0x9d0076c ) and press the 
Go To  button. The Memory window will center around the selected address where you 
will be able to recognize the initialization value we have been looking for. 

  Address             00              04              08              0C                 ASCII  

  1D00_0760        9D0003AC        9D0004F4        9D000578        74696E49 ........ x... Init  

  1D00_0770        696C6169        0064657A        00000000        00000000         ialized. ........     
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  Pointers 
Pointers  are variables used to refer indirectly (point to) other variables or part of their 
contents. Pointers and strings go hand in hand in C programming; in general they are a 
powerful mechanism to work on any array data type. They ’ re so powerful, in fact, that 
they are also one of the most dangerous tools in a programmer ’ s hands and a source of a 
disproportionately large share of programming bugs. Some programming languages, such 
as Java, have gone to the extreme of completely banning the use of pointers in an effort 
to make the language more robust and verifiable. 

 The MPLAB C32 compiler takes advantage of the PIC32 architecture to manage with 
ease large amounts of data memory and program memory (up to 4GB). The MPLAB 
C32 compiler makes no distinction between pointers to data memory objects and  const
objects allocated in program memory space. This allows a single set of standard functions 
to manipulate variables and/or generic memory blocks as needed from both spaces. 

 The following classic program example compares the use of pointers versus indexing to 
perform sequential access to an array of integers:       

  int   *pi;             // define a pointer to an integer  
  int     i;             // index/counter  
  int a[10];             // the array of integers  

  // 1. sequential access using array indexing  
  for( i=0; i < 10; i++) 
     a[ i] = i;  

  // 2. sequential access using a pointer  
  pi=a;  
  for( i=0; i < 10; i++) 
  {  
     *pi = i; 
     pi++;  

  }     

 In 1. we performed a simple  for  loop, and at each round in the loop we used  i  as an 
index in the array. To perform the assignment, the compiler will have to multiply the 
value of  i  by the size of the array element in bytes (4) and add the resulting offset to the 
initial address of the array a . 
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 In 2. we initialized a pointer to point to the initial address of the array  a . At each round in 
the loop we simply used the pointer indirection operator (*) to perform the assignment; 
then we simply incremented the pointer. 

 Comparing the two cases, we see how, by using the pointer, we can save at least one 
multiplication step for each round in the loop. If inside the loop the array element is used 
more times, the performance improvement will be proportionally greater. 

 Pointer syntax can become very  “ concise ”  in C, allowing for some pretty effective code 
to be written but also opening the door to more bugs. 

 At a minimum, you should become familiar with the most common contractions. The 
previous snippet of code is more often reduced to the following:       

  // 2. sequential access to array using pointers  
  for( i=0, p=a; i < 10; i++) 

 *pi++ = i;     

 Also note that an empty pointer—that is, a pointer without a target—is assigned a special 
value  NULL , which is implementation specific and defined in stddef.h.  

  The Heap 
 One of the advantages offered by the use of pointers is the ability to manipulate objects 
that are defined dynamically (at run time) in memory. The  heap  is the area of data memory 
reserved for such use, and a set of functions, part of the standard C library stdlib.h, 
provides the tools to allocate and free the memory blocks. They include at a minimum the 
two fundamental functions: malloc( ) and free( ). 

  void *malloc(size_t size);     

 The first function takes a block of memory of requested size from the heap and returns a 
pointer to it.       

  void free(void *ptr);     

 The second function returns the block of memory pointed to by  ptr  to the heap. 

 The MPLAB C32 linker places the heap in the RAM memory space left unused above all 
project global variables and the reserved stack space. Although the amount of memory 
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left unused is known to the linker, you will have to explicitly instruct the linker to reserve 
an exact amount for use by the heap, the default size being zero. 

 Use the  Project | BuildOptions | Project  menu command to open the Build Options 
dialog box, select the MPLAB PIC32 Linker  tab, and define the heap size in bytes. 

 As a general rule, allocate the largest amount of memory possible. This will allow the 
malloc()  function to make the most efficient use of available memory. After all, if it is 
not assigned to the heap, it will remain unused.  

  The PIC32MX Bus 
 If the previous section,  exploring techniques employed by the MPLAB C32 compiler and 
linker for the allocation of variables, had your head spinning and you feel a little dizzy, 
you might want to take a break now! 

 If on the contrary it only served to increase your curiosity, follow me for a little longer as 
we continue the exploration to investigate the reasons for the architectural foundations of 
the PIC32 memory bus. 

 The PIC32 architecture is different from all previous PIC microcontroller architectures 
(both 8- and 16-bit) with which you might be familiar. The PIC32 follows the more 
traditional Von Neumann model instead of the classic (PIC) Harvard model. The big 
difference is that two completely separate and independent buses are no longer available. 
A single large (32-bit) bus gives access to both the Program Memory (Flash) and Data 
Memory (RAM) now. 

 The Von Neumann approach allows for a more economical implementation (two separate 
32-bit buses would have been very expensive) and at the same time provides a simpler 
unified programming model, eliminating the need for the many  “ tricks ”  used by 8- and 
16-bit Harvard architectures to allow access to data tables in program memory and finally 
removing important barriers, allowing for the first time a PIC processor to execute code 
from RAM memory! 

 It would seem that all these advantages would be immediately offset by a reduction in 
performance, but this is not the case. In fact a  five-stage pipeline  mechanism and a  pre-
fetch cache  mechanism are used to allow efficient access to the bus while maintaining an 
unprecedented sustained execution rate of  one instruction per clock cycle . 
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 Given the same clock frequency—say, 20       MHz—a PIC32 can execute up to  four  times 
more instructions per second than a PIC16 or PIC18. That is 20 million instructions per 
second where a PIC16 or PIC18 would only execute 5 million instructions per second. It 
also means that it can execute  twice  the number of instructions per second that a PIC24, 
dsPIC30 or dsPIC33 would, given the same clock. If you consider that each one of the 
PIC32 instructions can now directly manipulate an integer quantity that is 32 bits wide 
(rather than 8 bits or 16 bits), you can start to get a sense of the effective increase in 
computational power provided by the PIC32. 

 In the next chapter we will look further into the operation of the PIC32 oscillator and 
clock management circuits. We will also review in more detail the operation of the 
instruction pre-fetch and data cache to help us understand where the new performance 
limits of the PIC32 architecture are and how we can configure the device for optimal 
performance and power consumption levels.  

  PIC32MX Memory Mapping 
 The MIPS core at the heart of the PIC32 has a number of advanced features designed to 
allow the separation of the memory space dedicated to an application or applications from 
that of an operating system via the use of a memory management unit  (MMU) and two 
distinct modes of operation: user  and  kernel . Since the PIC32MX family of devices is 
clearly targeting embedded-control applications that most likely would not require much 
of that complexity, the PIC32 designers replaced the MMU with a simpler  fixed mapping 
translation  (FMT) unit and a  bus matrix  (BMX) control mechanism. 

 The FMT allows the PIC32 to conform to the programming model used by all other 
MIPS-based designs so that standardized address spaces are used. This fixed but 

      Note     

 Later, in the next chapter, we will have the opportunity to look in detail at the operation of the 
memory cache module and analyze its impact on device performance. Without anticipating too 
much here, I would like to point out an important detail. The PIC32 core and the cache module 
are actually connected by two separate 32-bit buses called  I  and  D . They allow the processor to 
simultaneously request instructions and data from the cache. So the PIC32 is really a Harvard 
or a Von Neumann machine? I ’ ll leave you to decide. What matters to me is that it is just so fast 
and efficient!      
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compatible scheme simplifies the design of tools and application and the porting of code 
to the PIC32 while considerably reducing the size and therefore cost of the device. 

 The BMX allows a level of flexibility in partitioning the main memory areas. It also 
helps control the arbitration of access to memory between the CPU data and instruction 
fetch requests, the DMA peripheral requests, and the In-Circuit Debugger (ICD) logic. 

  Table 6.1    illustrates the relatively complex translation table and the resulting memory 
map of the PIC32MX family of devices. It could be intimidating at first look, but if you 
follow me through the next few paragraphs you will find it  . . .  well, understandable. 

 Table 6.1 :     PIC32MX translation table and memory map  .

  

 Memory 
Type 

 Virtual Addresses  Physical Addresses  Size in Bytes 

 Begin Address  End Address  Begin Address  End Address  Calculation 

 K
er

na
l A

dd
re

ss
 S

pa
ce

           

 Boot 
Flash

 0xBFC00000  0xBFC02FFF  0x1FC00000  0x1FC02FFF  12 KB 

 Program 
Flash1  

 0xBD000000  0xBD000000 �
BMXPUPBA �  1 

 0x1D000000  0x1D00000 �
BMXPUPBA �  1 

 BMXPUPBA 

 Program 
Flash2  

 0x9D000000  0x9D000000 �
BMXPUPBA �  1 

 0x1D000000  0x1D000000 �
BMXPUPBA �  1 

 BMXPUPBA 

 RAM 
(Data) 

 0x80000000  0x80000000 �
BMXDKPBA �  1 

 0x00000000  BMXDKPBA  �  1  BMXDKPBA 

 RAM 
(Prog)

 0x80000000 �
BMXDKPBA

 0x80000000 �
BMXDUDBA �  1 

 BMXDKPBA  BMXDUDBA  �  1  BMXDUDBA�
BMXDKPBA

 Peripheral  0xBF800000  0xBF8FFFFF  0x1F800000  0x1F8FFFFF  1 MB 

 U
se

r 
A

dd
re

ss
 S

pa
ce

     

 Program 
Flash

 0x7D000000 �
BMXPUPBA

 0x7D000000 �
PFM Size �  1 

 0xBD000000�
BMXPUBPA 

 0xBD000000 �
PFM Size �  1 

 PFM Size �
BMXPUBPA 

 RAM 
(Data) 

 0x7F000000 �
BMXDUDBA

 0x7F000000 �
BMXDUPBA �  1 

 0xBF000000�
BMXDUDBA

 0xBF000000 �
BMXDUPBA �   1 

 BMXDUPBA �
BMXDUDBA

 RAM 
(Prog)

 0x7F000000 �
BMXDUPBA

 0x7F000000 �
RAM Size 3 �  1 

 0xBF000000 �
BMXDUPBA

 0xBF000000 �
RAM Size 3 �  1 

 DRM Size  �
BMXDUPBA

  Notes:  
1   Program Flash virtual addresses in the non-cacheable range (KSEG1).  
2   Program Flash virtual addresses in the cacheable and prefetchable range (KSEG0).  
3   The RAM size varies between PIC32MX device variants.  
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 First, let ’ s find out where the main memory blocks (RAM and Flash memory) of the 
PIC32 are physically located inside the 32-bit addressing space (see Figure 6.7   ). Check 
the physical address column and you will find that RAM begins at address 0x00000000, 
and Flash memory begins at 0x1D000000. Finally, all peripherals (SFRs) are found in the 
block that begins at address 0x1F800000, and a 12       K portion of Flash memory is found at 
address 0x1FC00000 for use by a bootloader. 

0x00000000 0x1D000000 0x1F800000 0x1FC00000 0xFFFFFFFF

RAM FLASH
S
F
R

B
O
O
T

 Figure 6.7 :     PIC32 physical addressing space.    

 Access to those memory areas can be required for different purposes. The PIC32 
designers wanted to make sure that we would be able to impose special  “ rules ”  to protect 
the applications from common (programming) errors isolating regions of memory. For 
example, when running an operating system (OS), we might desire to prevent application 
code to touch data (RAM) areas that are part of the OS. In other words,  user code  must 
not be allowed to access the  kernel data . The BMX control unit is the one that performs 
the first layer of manipulation (see  Figure 6.8   ). Through some of its control registers, we 
can split the main physical memory areas in slices of variable size. For example, using 
the BMXPUPBA  register, we can split a portion of the Flash memory to be remapped for 
use only in user mode at physical address 0xBD000000 and higher. Similarly, RAM 
data memory can be split into four slices using the registers  BMXDKPBA  and  BMXDUDBA , 
separating kernel data from user data memory and then splitting further each piece of 
memory for programs that want to execute from RAM to achieve higher performance; 
RAM maximum access speed is typically much higher than Flash memory, even when a 
cache mechanism is taken into account. 

 This is where the FMT (or more generically, an MMU) adds a new layer of complexity to 
the entire system, translating all physical addresses  into  virtual addresses  and shuffling 
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things around a bit. This is meant to create two widely separate address spaces where 
your programs can run: one for user applications in the lower half of the 32-bit addressing 
space (below 0x80000000) and one for kernel (above 0x80000000) in accordance with 
the standard practice of all MIPS-based processors. These correspond to the two halves 
of  Table 6.1 , where the first two columns show you the new virtual addresses assigned to 
each memory area in the corresponding mode. 

0x00000000 BMXDUDBA 0xBF000000+
BMXDUDBA

0xFFFFFFFFBMXDKDBA 0xBF000000+
BMXDUPBA

Kernel
RAM

(Data)

User
RAM

(Data)

User
RAM

(Prog)

Kernel
RAM

(Prog)

 Figure 6.8 :     Bus matrix RAM partitioning.    

      Note     

 The only addresses the MPLAB C32 compiler and linker are concerned with, as seen in the 
early part of this chapter, are virtual addresses! 

 For clarity,  Figure 6.9    illustrates the resulting virtual memory map as seen by an 
application program running in user mode. 

 Notice how the Boot Flash memory is  not  mapped at all in user mode. There is no virtual 
address that will allow a user program to touch the protected area. No matter how bad, 
the code is running in user mode; it cannot harm the underlying operating system (or 
bootloader).

 Similarly, notice how the peripherals (SFRs) don ’ t have a corresponding mapping in the 
user virtual address space. Again, no matter how bad the user code is, it cannot reach the 
hardware and modify or cripple the device configuration.  
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  The Embedded-Control Memory Map 
 All this is nice and dandy if you are planning to run a heavyweight OS with all the 
bells and whistles, but in most embedded-control applications you will  not  use all these 
features. All your code will most likely always be running in kernel mode only, at the 
same level as an OS would. And even when you ’ re using an OS, you will find that most 
real-time operating systems  (RTOSs) don ’ t use these features either, favoring speed of 
execution and efficiency over  “ protection. ”  This is a reasonable choice for embedded 
control. The application code is  “ well known ” ; it is supposed to be robust and well tested 
and should therefore be trusted! 

 This is great news because it means that from now on, we can completely ignore the 
bottom half of  Table 6.1  and concentrate all our attention on only the kernel mode virtual 
map (see Figure 6.10   )! 

 A final note is required to clarify the reason for two virtual address spaces being 
dedicated to the kernel program Flash memory. They are traditionally referred to as 
kseg0  and  kseg1  in the MIPS literature. If you look at the Physical Addresses columns in 
 Table 6.1 , you will notice that eventually both point to the same physical memory space. 
The difference is only in the way the memory cache mechanism will manage the two 
virtual addresses. If a program is executing from the first virtual address space ( kseg1 ), 
the memory cache is automatically disabled. Vice versa, portions of code that are placed 

0x7F000000+
BMXDUDBA

0x7F000000+
BMXDUPBA

0x80000000

User Space Kernel Space 

Generate an immediate
exception if access is

attempted!

0xFFFFFFFF

0x00000000

0x7D000000

User
RAM
(Data)

User
RAM
(Prog)

User
FLASH

 Figure 6.9 :     User mode virtual memory map.    
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in the kseg0  segment will be accessible by the cache mechanism. We will learn more in 
the next few chapters about the reason for this choice and the consequences for your code 
performance.

  Debriefing 
 Today we have quickly reviewed the basics of string declaration and manipulation. We 
have also touched briefly on the use of pointers and dynamic memory allocation. We have 
seen how the .map file can help us identify where and how the memory of the PIC32 will 
be used by our applications. But today we have also explored the bus matrix module of 
the PIC32 and learned how it provides us with a very flexible mechanism to control the 
segmentation and access to blocks of Flash and RAM memory. Although many embedded-
control applications will only use the most basic (default) configuration, the PIC32MX 
architecture offers a standard address space layout that makes it compatible with a wide 
range of tools and operating systems already available for the MIPS architecture. 

  Notes for the C Experts 
 In the C language, strings are defined as simple arrays of characters. The C language 
model has no concept of different memory regions (RAM vs. Flash). The  const  attribute 

0x80000000+
BMXDKPBA

User Space Kernel Space 

0xFFFFFFFF0x00000000 0x9D000000 0xBD0000000x80000000
0xBF800000

0xBFC00000

RAM
(Data)

 RAM 
(Prog)

FLASH
Un-

Cached
(Kseg1)

S
F
R

B
O
O
T

FLASH

(Kseg0)
Cached

 Figure 6.10 :     PIC32 Embedded-control (kernel mode) virtual memory map.    
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is normally used in C language, together with most other variable types, only to assist 
the compiler in catching common parameter usage errors. When a parameter is passed to 
a function as a const  or a variable is declared as a  const , the compiler can in fact help 
flag any following attempt to modify it. The MPLAB C32 compiler extends this semantic 
in a very natural way, allowing us to provide hints to the compiler and linker to make 
more efficient use of the memory resources.  

  Notes for the Assembly Experts 
 The string.h library contains many block manipulation functions that can be useful, via the 
use of pointers, to perform operations on any  type of data arrays, not just strings. They are: 

●       memcpy() , to copy the content of any block of memory to a new address  

●       memmove() , to move the contents of a block of memory to a new location  

●       memcmp() , to compare the contents of two blocks of memory  

●       memset() , to initialize the contents of a block of memory 

 The ctype.h library instead contains functions that help discriminate individual characters 
according to their positions in the ASCII table, to discriminate lowercase from uppercase, 
and/or to convert between the two.  

  Notes for the PIC Microcontroller Experts 
 Since the PIC32MX program memory is implemented using (single-voltage) Flash 
technology, programmable at run time during code execution, it is possible to design 
bootloader -based applications—that is, applications that automatically  “ update ”  part or 
all of their own code. 

 It is also possible to utilize a section of the Flash program memory as a nonvolatile 
memory (NVM) storage area. Some pretty basic limitations apply, though. For example, 
Flash memory can only be deleted in large blocks, called  pages , composed of 1,024 
words before data can be written one word at a time or in smaller blocks called  rows
composed of 128 words. 

 The PIC32 peripheral library comes to our assistance, offering a small set of functions 
(NVM.H) dedicated to the manipulation of on-chip Flash memory. Perhaps the most 
powerful function of the lot is  NVMProgram() , capable of writing a block of arbitrary 
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length to a given virtual address, automatically performing the necessary partitioning 
when page boundaries are crossed.  

  Tips  &  Tricks 
 String manipulation can be fun in C once you realize how to make the zero termination 
character work for you efficiently. Take, for example, the  mycpy()  function:     

  void mycpy( char *dest, char * src)  
  {  
 while( *dest++ = *src++);  

  }     

 This is quite a dangerous piece of code, since there is no limit to how many characters 
could be copied, there is no check as to whether the dest  pointer is pointing to a buffer 
that is large enough, and you can imagine what would happen should the  src  string be 
missing the termination character. It would be very easy for this code to continue beyond 
the allocated variable spaces and to corrupt the entire contents of the data memory. Ah, 
the power of pointers! 

 Soon we will explore the DMA module and we ’ ll discover its ability to share the PIC32 
memory bus to perform fast data transfers between memory and peripherals. We ’ ll also 
explore using the DMA module to move large blocks of data between different memory 
buffers very efficiently. In fact, a few of the DMA functions in the PIC32 peripheral library 
are dedicated to the use of DMA channels to perform string and block manipulations, 
including DmaChnMemcpy(), DmaChnStrcpy() , and  DmaChnStrncpy() . In the same 
set of functions can be found DmaChnMemCrc() , which does not transfer any data but 
feeds the CRC module with the contents of a given (no matter how large) block of data. 
Alternatively, a CRC calculation can automatically be performed during any block transfer 
performed by the DMA module by calling the CrcAttachChannel()  function. 

  Exercises 
 You can develop new string manipulation functions to perform the following operations: 

  1.     Search sequentially for a string in an array of strings.  

  2.     Implement a binary string search. 

  3.     Develop a simple hash table management library. 
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   Books
        Wirth ,    N.         ,      Algorithms � Data Structures � Programs        (    Prentice-Hall      ,  Englewood Cliffs, 

NJ      ,  1976   )        .     With unparalleled simplicity, Wirth, the father of the Pascal programming 
language, takes you from the basics of programming all the way up to writing your 
own compiler. They tell me this book is no longer easy to find; however hard it might 
be to locate a copy, I promise you it will be worth the effort!       

 Links 
        http://en.wikipedia.org/wiki/Pointers#Support_in_various_programming_languages .

Learn more about pointers and see how they are managed in various programming 
languages.



 Experimenting

 Congratulations! You have endured the first six days of exploration and gained the 
necessary confidence to complete simple projects using the MPLAB PIC32 software tool 
suite. As a consequence, in the next group of lessons, more is going to be expected of 
you!

 In the second part of this book, we continue exploring one by one the fundamental 
peripherals that allow a PIC32 to interface with the outside world. Since the complexity 
of the examples will grow a little bit, having a PIC32 chip at hand is highly recommended 
so that you will be able to test the many practical example projects. A PIC32 Starter 
Kit with a PIM adapter and/or an actual PIC32MX processor module (PIM) and any 
of the compatible in-circuit debuggers will do. I will also refer often to the Explorer 16 
demonstration board, but any compatible third-party tool that offers similar features or 
allows for a small prototyping area can be used just as effectively.     

   P A R T  2 
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                         Running

  The Plan 
 In the six previous days of exploration, we have gradually begun reviewing the most 
basic concepts of C programming as they apply to embedded control and in particular as 
they apply to the PIC32MX architecture. We have also started to familiarize ourselves 
with the basic features of the PIC32 that affect its performance, such as the 32-bit 
multiplier, the interrupt system, the register set(s), and the memory management module. 
But so far, we have only been counting the number of assembly instructions looking 
inside the disassembly window, or counting the instruction cycles, using the MPLAB®

SIM simulator StopWatch. In all cases we avoided any direct reference to time when 
considering the execution of code, using peripherals (timers) when necessary to provide 
delays of any length. Even when discussing interrupts or comparing the efficiency of 
various numeric types, we have not yet established any hard relationship with the actual 
speed of execution  of our code. This was done on purpose, to isolate different subjects 
and keep the level of complexity growing gradually. Before we can understand how fast 
we can make a PIC32 truly  “ run, ”  we need to study two new critical systems: the clock 
system and the memory cache system. Both are new to the PIC® architecture and are 
essential if you want to fine-tune the PIC32 engine for maximum performance.  

  Preparation 
 Today, in addition to the usual software tools, including the MPLAB IDE and 
the MPLAB C32 compiler, you will need real hardware to be able to perform our 
experiments. It does not matter if you have a PIC32 Starter Kit or any of the other 
in-circuit debuggers connected to an Explorer 16 demonstration board. You will need the 
real thing—a PIC32MX chip  “ running ”  on the hardware platform of your choice. 

D A Y  7 
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 Use the New Project Setup checklist to create a new project called  Running  and a new 
source file, similarly called  running.c .

  The Exploration 
 Let ’ s start by taking a look at the main clock circuit of the PIC32MX family. As you can 
see from the block diagram in  Figure 7.1   , this is a complex piece of hardware with which 
it will require some time to become familiar. 

 For those of you already knowledgeable about the previous generations of 8-bit PIC 
microcontrollers, most of this diagram will look somewhat familiar. For those of you 
familiar with the dsPIC33 and PIC24       H families in particular, it will look exceptionally 
similar! This is of course no coincidence. All PIC microcontrollers, since the very first 
PIC16C54, have sported a flexible oscillator circuit, and this flexibility has been extended 
generation after generation, evolving gradually into the present form as offered on the 
PIC32MX. Let ’ s see what can be done, and most importantly, why! 

 Looking at the left side of the block diagram, you will notice that there are five oscillators 
or clock sources. Two of them use internal oscillators and three of them require external 
crystals or oscillator circuits: 

●      Internal oscillator (FRC) is designed for high-speed operation with low power 
consumption. It requires no external components and provides a relatively 
accurate nominal 8       MHz clock ( � 2%) after calibration.  

●      Internal low-frequency and low-power oscillator (LPRC) is designed for 
low-speed operation with low power consumption. Requires no external 
components and provides a basic (low accuracy) 32       kHz clock.  

●      External primary oscillator (POSC) is designed for high-speed operation with 
accurate (quartz-based) operation. Up to 20       MHz crystals can be connected 
directly (to the OSCI, OSCO pins) while two gain settings are available: 
XT for typical quartzes below 10       MHz and HS for quartzes at or above 
the 10       MHz frequency.  

●      External low-frequency and low-power oscillator (also known as the secondary 
oscillator, SOSC) is designed for low-speed and low-power operation with 
external crystals of 32,768       Hz. It can be used as the main oscillator for the entire 
chip or just as the source for the Timer1 and RTCC modules. Its high accuracy 
makes it the ideal clock source for applications that need exact timekeeping.  
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●      External clock source (EC) mode allows an external circuit to completely replace 
the oscillator and provide the microcontroller a square wave input of any desired 
frequency.    

 These five sources offer a basic range of choices to generate an input clock signal of 
desired frequency, power consumption, and accuracy, but much more can be done with 
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 Figure 7.1 :     PIC32MX clock block diagram.    
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the following stages, illustrated on the right side of the block diagram. In fact, the clock 
produced by each source can be further multiplied and/or divided to offer an even wider 
selection of frequencies.  

  Performance vs. Power Consumption 
 It is beyond the scope of this book to illustrate all possible options for each clock source, 
but it is important that you understand the reason why the designers of the PIC32 went 
through all this effort to offer you so many different ways to produce what is, after all, 
a simple square wave. 

 In embedded control, but also in consumer applications, whether your application is 
portable—battery powered—or has a dedicated power supply of sorts, two important 
constraints apply: 

●      Power consumption will dictate the size and cost of the power supply circuit you 
will have to design. If battery operated, this parameter will dictate the size and 
cost of the battery, or vice versa, the life (hours of operation) of your application.  

●      Performance, however measured, will dictate how much work your application 
will be able to perform in a given amount of time. For some real-time 
applications, this parameter can be a total deal breaker.    

 As is often the case, in embedded-control application design, the two constraints are 
in direct conflict. To obtain a greater amount of work from a given circuit, we want to 
maximize the clock speed. But because of the laws of physics that govern the operation 
of any CMOS integrated circuit, the higher the clock speed provided, the higher is the 
power consumption of the device. The two entities are in fact linked inexorably in a 
linear relationship: Double the clock and you will double the amount of work produced, 
but you will also see a corresponding increase in the power consumption of the device. 

      Note     

 The power consumption will not double as you double the frequency. There is a  static
component and a dynamic  component to the power consumption of each CMOS device. The 
first one remains constant independent from the clock frequency; it is only the dynamic part 
that will grow.      
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 Much can and has been done inside the PIC32 to make sure that the greatest amount of 
work is produced for any given ounce of power. For example, the PIC32MX datasheet 
(only the advanced datasheet is available at the time of this writing) reports on the 
electrical characteristics of the device that, when operating at the frequency of 4       MHz, 
a typical current consumption of 11       mA will be observed (at 3.3       V and 25	C). But at 
72       MHz and in the same conditions, the same device will consume just 64       mA. 

 As good as these numbers are, it is still our responsibility to find the correct balance 
between performance and power consumption for each application so to minimize cost, 
reduce size, or simply maximize the battery life (and, let me add,  “ fight global warming 
as well ” !). 

 Not only does it make no sense to run an applications at 72       MHz when the same job can 
be done at 4       MHz, but also consider the fact that most applications operate in different 
modes at different times. Although it might seem overkill, I will make a parallel with a 
cell phone application. Most of the time, the cell phone is in standby just waiting for a 
button to be pressed to awake it. At other times it could be performing simple functions 
such as searching through a contact book and updating information on the internal 
memory. Then only a small fraction of the time will be spent performing some hard 
number crunching, digital signal processing, and running an algorithm to compress and 
decompress the audio input and output streams. 

 Similar conditions can be found in many embedded-control (and consumer) applications, 
and the higher the flexibility of the clock circuit, the better you will be able to manage the 
power consumption of the application. To help you obtain the most complete set of power 
management options, the PIC32 clock module offers the following features: 

●      Run-time switching between internal and external oscillator sources  

●      Run-time control over the clock dividers  

●      Run-time control over the PLL circuit (clock multiplier)  

●      IDLE modes, where the CPU is halted and individual peripherals continue to operate 

●      SLEEP mode, where the CPU and peripherals are halted and awaiting a specific 
event (set of) to awaken  

●      Separate control (divider) over the peripheral clock (PBCLK), so that when the 
CPU is required to operate with a high-frequency clock, the power consumption 
of the peripheral modules can be optimized 
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  The Primary Oscillator Clock Chain 
 We will begin our exploration at the primary oscillator clock signal chain, since it is 
the most common and, in many of the following chapters, we will need to develop 
demonstration projects that will require either a high level of performance or high clock 
accuracy. As you can verify visually, on the Explorer 16 demonstration board and PIC32 
Starter Kit, an 8       MHz crystal is connected across the OSCI and OSCO pins. At this 
frequency (below 10       MHz) it is recommended we set the primary oscillator for 
operation in XT mode. 

 Depending on the application, we are immediately confronted with two possibilities. We 
could use the 8       MHz input signal as is or feed it to a multiplier (PLL) circuit. The appeal 
of the second option is obvious, but with it comes the need to learn more about PLL 
circuits.

 Phase locked loops (PLLs) are complex little circuits, but the designers have managed 
to hide all the complexity of the PIC32 PLL from us with the condition that we respect 
a few simple rules. First, we need to feed it with a specific input frequency range 
(� 4       MHz). Second, we need to allow it time to stabilize or  “ lock ”  before we attempt to 
execute code and synchronize with it. A simple control mechanism is provided (via the 
OSCCON  register illustrated in  Figure 7.2   ) to select the frequency multiplication factor 
(PLLMULT ) and to verify the proper locking ( SLOCK ). 
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 Figure 7.2 :     The  OSCCON  register.    
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 So when using the Explorer 16 board or the PIC32 Starter Kit, to respect the first rule 
we will need to reduce the input frequency from 8       MHz to 4       MHz. Looking at the block 
diagram in  Figure 7.1  or the simplified diagram in  Figure 7.3   , you will notice how the 
input divider is conveniently available to us to perform the first frequency reduction. 

4 MHz 72 MHz8 MHz 

System
Clock

72 MHz

Input
Divider PLL

Output
Divider

1 : 2 1 � 18 1 : 1

 Figure 7.3 :     Primary oscillator clock chain.    

 The multiplication factor of the PLL can be selected among a number of values ranging 
from 15� all the way up to 24� and it is controlled by the PLLMULT  bits. Since the 
maximum operating frequency of the PIC32MX is (at the time of this writing) restricted 
to 75       MHz, selecting a factor of 18� will give 72       MHz, the closest match compatible 
with the device operating specifications. The output divider block provides us with a 
final opportunity to manage the clock frequency. When we will need the maximum 
performance, we will leave the output divider set to a 1:1 ratio. Should our application 
require it, we will be able to reduce the power consumption by dividing the output 
frequency all the way down to 1:256 th  or approximately 280       kHz. Below this frequency 
we would be much better served by using the secondary oscillator (SOSC), its operating 
range is in fact between 32       kHz and 100       kHz, or by the low power internal oscillator 
(LPRC) operating at approximately 32       kHz. For our reference, from the advanced 
datasheet we learn that the typical power consumption of the PIC32 when operating off 
the LPRC would be just 200       
A!

  The Peripheral Bus Clock 
 As another way to optimize performance and power consumption in an application, the 
PIC32 feeds a separate clock signal to all the peripherals. This is obtained by sending the 
System clock through yet another divide circuit (extending further the chain of modules 
illustrated in  Figure 7.3 ), producing the PB clock signal. Very often a high processor 
speed means that a large prescaler is required in front of a timer to obtain the required 
timing, or a large baud rate divider is required for a serial port (more on this later). 
Thanks to the peripheral bus divider, the share of power consumed by the peripheral bus 
can be reduced while the processor is free to operate at maximum speed. 
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 This feature is controlled by the  PBDIV  bits found, once more, inside the  OSCCON
register. A reasonable value that we have been using so far and we will continue to use 
consistently for the peripheral bus across all future example projects will be 36       MHz 
corresponding to 1:2 ratio between the system clock and the PB clock.  

  Initial Device Configuration 
 The ability to control the clock at run time gives us a great tool to manage power, but 
what happens when the device is first activated, at power-up? 

 As you might know, there is a group of bits known as the  configuration bits  stored in the 
nonvolatile (Flash) memory of the PIC32. These bits provide the initial configuration 
of the device. The oscillator module uses a few of those bits to get the initial setting 
for the OSCCON  register. These are the configuration bits you can set using the MPLAB 
Configure | Configuration Bits . . .   menu. 

 It is about time that we review the settings I have been recommending that you use since 
the beginning using the Device Configuration checklist. 

 My recommended configuration for all the exercises in this book is represented in 
 Figure 7.4   . It includes the following options, in order of importance for the oscillator 
configuration: 

  1.     Use the primary oscillator with PLL circuit. 

  2.     Select the XT mode for the primary oscillator.  

 Figure 7.4 :     Device Configuration dialog box.    
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   3.     Set the PLL input divider to 1:2 ratio (to produce a 4       MHz input as we have 
seen).

   4.     Set the PLL multiplier to 18�.

   5.     Set the PLL output divider to 1:1 ratio (to produce a 72       MHz system clock output). 

   6.     Set the peripheral clock divider to 1:2 ratio (to produce a 36       MHz PB clock 
output).

 The following additional options complete the configuration: 

   7.     Enable the clock output. This can be disabled when using any of the internal 
oscillators to gain control of an additional I/O pin. 

   8.     Disable the secondary oscillator. (You will be able to enable it later, at run time.)  

   9.     Disable the internal/external oscillator switchover. (We will use only the 
external crystal in all exercises, but you might experiment with other settings.) 

 Finally, the following options are commonly used during debugging and development: 

  10.     Share DBG2 and PGM2 if you are using the ICD/ICSP interface. (This depends 
on your in circuit debugger of choice.)  

  11.     Allow the Boot Flash to be modified (Bootloader write protection off).  

  12.     Disable code protection (at least during development).  

  13.     Disable the Watchdog timer.  

  14.     Disable clock switching and FailSafe Clock Monitor.    

 Once set, these configuration bits are stored in the workspace file (.mcw) and will be 
programmed into the device configuration bits by your programming tool of choice each 
time new code is programmed into the device. 

 By comparing  Figures 7.2 and 7.4 , you will notice that the value of the PLL input divider 
is present only as a configuration bit option, but it cannot be modified via the  OSCCON
register. If you reflect on this, you will find it is logical. Since the external crystal value 
cannot change (unless the part is unsoldered from the PCB and a new one of different 
frequency is put in its place), there is no possible reason to modify the input divider value 
at run time. If the value set by the configuration bits was incorrect in the first place, the 
PLL multiplier would not be working and the PIC32 could not execute any code anyway.  
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  Setting Configuration Bits in Code 
 As a way to make the project code self-documenting and to avoid any possible future 
mishap (should the project file be lost and the source code of an application used with the 
wrong settings), the MPLAB C32 compiler offers one additional mechanism to assign 
values to the device configuration bits. It is based on the use of the  #pragma config
directive. 

 Since the number of configuration bits and their values can change from device to device, 
MPLAB offers a list of the available options for each PIC32 device model as part of the 
Help system. Select Help | Topic  to open the help system selection dialog box, and click 
PIC32MX Config Settings  (see  Figure 7.5   ). 

 Figure 7.5 :     MPLAB Help Topics dialog box.    

 Select the device model that you are using,  PIC32MX360F512L , and then identify the 
correct syntax to be used for each configuration bit.  Table 7.1    shows the PLL output 
divider example. 
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 Multiple configuration bits can be set inside a  #pragma config  statement by separating 
them with a comma, as in the following example, where I have reproduced the standard 
oscillator settings as described previously:       

  #pragma config POSCMOD=XT, FNOSC=PRIPLL  

  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1     

 Notice that if a parameter is not specified in the  #pragma , it will assume the default value 
as specified in the device datasheet. 

 Let ’ s complete the configuration with one more  #pragma  statement to set the peripheral 
bus clock divider, disable the watchdog and the code protection, and to enable 
programming of the boot memory as required for all our future projects (at least during 
the development phase): 

  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF     

 My recommendation is that you place this code at the top of the source file containing the 
main function in each new project. 

 To avoid conflicts with the configuration bits set by MPLAB in the Configuration Bits 
dialog box (refer back to  Figure 7.4 ), make sure to check the  Configuration Bits Set 
in Code  check box.  

 Table 7.1 :     PLL output divider values  

 FPLLODIV = DIV_1  Divide by 1 

 FPLLODIV = DIV_2  Divide by 2 

 FPLLODIV = DIV_4  Divide by 4 

 FPLLODIV = DIV_8  Divide by 8 

 FPLLODIV = DIV_16  Divide by 16 

 FPLLODIV = DIV_32  Divide by 32 

 FPLLODIV = DIV_64  Divide by 64 

 FPLLODIV = DIV_256  Divide by 256 
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  Heavy Stuff 
 It is time to write some tough code, program it on a PIC32 Starter Kit or an Explorer 16 
demonstration board, and start measuring the actual performance of the PIC32MX. 

 See what I found in my code archives! Buried in a remote subdirectory of my hard drive, 
back from the old days at university when I studied the basics of digital signal processing, 
I wrote this code: 

  // input vector  
  unsigned char inB[N_FFT];  

  // input complex vector  
  float xr[N_FFT]; 
  float xi[N_FFT]; 

  // Fast Fourier Transformation  
  void FFT(void)  
  { 
 int m, k, i, j;  
 float a, b, c, d, wwr, wwi, pr, pi; 

 // FFT loop  
 m = N_FFT/2;  
 j = 0;  
 while(m > 0)  
 { /* log(N) cycle */ 
 k = 0;  
 while(k < N_FFT)  
 { // batterflies loop 

      Note     

 When the Configuration Bits Set in Code check box is checked, the entire contents of the dialog 
box are grayed out. This is the default for every new project. Be careful, though—if you forget 
to set the #pragma config  statement in your code, you ’ ll end up with the default device 
configuration, as described in the device datasheet. This default configuration is designed for 
 “ safe ”  operation and most of its settings are conflicting or incorrect for use during development. 
I chose not to set the configuration bit in code in the first few chapters of the book to avoid the 
 “ distraction ”  in your code and to avoid having to anticipate too much too soon. From now on, 
the choice is yours! 
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 for(i = 0; i < m; i++)  
 { // batterfly 
 a = xr[i+k];      b = xi[i+k];  
 c = xr[i+k+m];      d = xi[i+k+m];  
 wwr=wr[i<<j];      wwi = wi[i<<j];  
pr=a-c;       pi = b-d;  

 xr[i+k]        = a + c;  
 xi[i+k]        = b + d;  
 xr[i+k+m]        = pr * wwr - pi * wwi;  
 xi[i+k+m]        = pr * wwi + pi * wwr;     

 } // for i  
 k += m<<1;     
 } // while k  
 m >>= 1;  
 j++;     

 } // while m        

  } // FFT     

 This is the Fast Fourier Transform (FFT) function, one of the most common digital signal 
processing tools, albeit in a simplified form designed to operate on a set of samples 
whose size is purposely chosen as a power of two. The FFT is an efficient algorithm 
to compute the discrete Fourier transform (DFT) and its inverse, that is, what takes us 
from a signal time domain  representation to the same signal in the  frequency domain
representation and back. In other words, if you supply as input to an FFT function an 
array of values ( inB[] ) that represent samples of an input signal, the function will 
return a new array containing values corresponding to the amplitudes of each harmonic 
(sinusoidal component) of the input signal—i.e., the signal frequency spectrum.  FFTs are 
of great importance to a wide variety of applications beyond digital signal processing, 
including solving partial differential equations and algorithms for quick multiplication of 
very large integers. Many studies have been done on how to optimize FFTs and determine 
the minimum possible number of arithmetic operations required to perform them on a 
given data set. But we are not interested in optimizing the algorithm here; on the contrary, 
we will use the  “ scholastic ”  implementation as an example of an algorithm requiring 
heavy floating-point arithmetic for our performance-testing purposes. 

 Actually, the algorithm illustrated previously represents only a part of the work that a 
complete discrete Fourier transform implementation requires. To obtain the necessary 
accuracy, the input data set must first be  windowed  before use. Think of it as though a 
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segment of the input signal was cut abruptly and its sharp edges at the extremities need to 
be filed to smooth out the algorithm response: 

  // apply Hann window to input vector  
  void windowFFT(unsigned char *s)  
  { 

 int i;  
 float *xrp, *xip, *wwp;  

 // apply window to input signal  

 xrp = xr; xip = xi; wwp = ww;  
 for(i=0; i < N_FFT; i++) 
 { 
 *xrp++ = (*s++ - 128) * (*wwp++);  
 *xip++ = 0;     

 } // for i     

  } // windowFFT     

 After the FFT, the modulus of the (complex) output must be taken and scaled back in 
place, in this case overwriting the input array: 

  void powerScale(unsigned char *r)  
  { 

 int i, j;  
 float t, max;  
 float xrp, xip;  

 // compute signal power (in place) and find maximum  
 max = 0;  
 for(i=0; i < N_FFT/2; i++) 
 { 
 j = rev[i];  
 xrp = xr[j];  
 xip = xi[j];  
 t = xrp*xrp + xip*xip;  
 xr[j] = t;  
 if (t > max) 
 max = t;        

 }  

 // bit reversal, scaling of output vector as unsigned char  
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 max = 255.0/max;  
 for(i=0; i < N_FFT/2; i++) 
 { 
 t = xr[rev[i]] * max;  
 *r++ = t;     

 }     

  } // powerScale     

 To streamline operation and avoid obvious inefficiencies, a minimum of housekeeping is 
typically performed ahead of time by initializing a few arrays containing frequently used 
values such as the so-called  rotations array , the  window array  itself, and the  bit reversal
array. Here is how we define them and the initialization function we can use: 

  // input vector  
  unsigned char inB[N_FFT];  
  volatile int inCount;  

  // rotation vectors  
  float        wr[N_FFT/2]; 
  float      wi[N_FFT/2];  

  // bit reversal vector  
  short      rev[N_FFT/2];  

  // window 
  float       ww[N_FFT];  
  void initFFT(void)  
  { 
 int i, m, t, k;  
 float *wwp;  

 for(i=0; i < N_FFT/2; i++) 
 { 
// rotations 
 wr[i] = cos(PI2N * i);  
 wi[i] = sin(PI2N * i);  

 // bit reversal  
 t = i;  
 m = 0;  
 k = N_FFT-1;  
 while (k > 0)  
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 { 
 m = (m  <  <  1)+(t  &  1); 
 t = t  >  >  1; 
 k = k  >  >  1;           

 }  
 rev[i]=m;  

 } // for i  

 // initialize Hanning window vector  
 for(wwp=ww, i=0; i < N_FFT; i++) 

 *wwp++ = 0.5 - 0.5 * cos(PI2N * i);  

  } // initFFT     

 Scared? Confused? Don ’ t be! Take this code as is; it ’ s heavy stuff. The larger N_FFT, the 
number of samples in your input array, the harder it gets for our PIC32 to work on it. 

 All we need to do, for now, is to package it nicely in a source file, save it as fft.c, and 
then add it to the source files of a new project that we will call Running. 

 To keep things clean and tidy, let ’ s also prepare a small include file fft.h where we will 
define all the symbols required to use the fft.c module.       

  /*
  ** FFT.h 
  **  
  ** power of two optimized algorithm  
  */

  #include  < math.h >   

  #define N_FFT 256        // samples must be power of 2  
  #define PI2N  2 * M_PI/N_FFT  

  extern unsigned char inB[];  
  extern volatile int inCount;  

  // preparation of the rotation vectors  
  void initFFT(void);  

  // input window  
  void windowFFT(unsigned char *source);  

  // fast fourier transform  
  void FFT(void);  
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  // compute power and scale output  

  void powerScale(unsigned char *dest);     

 Add fft.h to the include files of the Running project as well. 

 Next let ’ s create our project main source file. How about run.c for a name (see 
 Figure 7.6   )? 

 Figure 7.6 :     The Running project ’ s Project window.    

 Let ’ s add the configuration bit settings at the very top of the source code for 
maximum visibility, and let ’ s include the fft.h file as well since we will soon use all its 
functions:

  /*
  ** Run.c 
  **  
  */
  // configuration bit settings  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FWDTEN=OFF, CP=OFF, BWP=OFF  
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  #include  < p32xxxx.h >   
  #include  < plib.h >   

  #include  " fft.h "      

 Now let ’ s create a main function that, in order, will perform the following: 

  1.     Initializations: 

   1.1.     The  initFFT()  function needs to be called first: 

   1.1.      Filling the input buffer ( inB[] ) with a test signal, a sinusoid for simplicity: 

 main()  
 { 

 int i, t;  
 double f;  

 // 1. initializations 
 initFFT();     

 // test sinusoid 
 for (i=0; i < N_FFT; i++) 
 { 

 f = sin(2 * PI2N * i);  
 inB[i] = 128+(unsigned char) (120.0 * f);        

 } // for        

  2.     The actual FFT algorithm, composed of the sequence of three function calls: 

 // 2. perform FFT algorithm 
 windowFFT(inB);  
 FFT();  

 powerScale(inB);        

  3.     A main (infinite) loop where it can rest after the exhausting performance: 

 // 3. infinite loop  
 while( 1);  

 } // main     

  Ready, Set, Go! 
 At this point we could already build the project, program a device, and, using a couple of 
breakpoints and a manual stopwatch, we could try to capture the actual time required. But 
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the effort would be extremely tedious and imprecise. I have a better idea: Why don ’ t we 
make the PIC32 time itself? 

 We can use, once more, one of the five 16-bit timers available or, for the occasion, we 
could experiment using for the first time a  “ pair ”  of timer modules combined to form a 
32-bit timer. This option is available for the pairs formed by Timer2 and Timer3 together 
as well as Timer4 and Timer5. The latter pair is used in the following example, to bracket 
the FFT sequence: 

  // init 32-bit timer4/5  
 OpenTimer45(T4_ON | T4_SOURCE_INT, 0);  

 // clear the 32-bit timer count  
 WriteTimer45(0);  

  // insert FFT function calls here  

 // read the timer count  

 t = ReadTimer45();    

 Notice how I used the functions from the timer.h library, and including plib.h at the top of 
the program, we automatically included all the peripheral libraries at once. 

 The  OpenTimerXX()  function allows us to configure the timer, selecting the clock 
source and the prescaler value. It is equivalent to writing directly to the  TxCON  register as 
we did in the previous explorations, if only slightly more readable. The main drawback, 
as often is the case for these peripheral libraries, is that you won ’ t find the list of valid 
parameters to use (such as T4_SOURCE_INT ) inside the device datasheet where the timer 
module is described; you will have to rely instead on a separate document (the library 
manual) and often resort to inspecting personally the include file—timer.h in this case. It 
is in fact by inspecting this file (you can open it with the MPLAB Editor) that you will 
learn how, when used as a pair, the correct parameters to pass to the initialization function 
are taken from those of the first module of the pair (T4 in our case). 

 The function  WriteTimerXX() , as you would expect, allows us to set the initial counter 
value and effectively start our stopwatch, while the function  ReadTimerXX()  will read 
a 32-bit count value. It won ’ t stop our stopwatch, but it will take a reading at that precise 
moment; that is what we need. 

 Let ’ s open the Watch window by selecting the  View | Watch  menu and  Add  the symbol 
t  to it. Unless you have already configured the Watch window to use decimal as the 



160   Day 7

default format, click with the  right mouse button  on top of the symbol  t  to activate 
the Watch window context menu, and choose  Properties . Select  Decimal  as the default 
representation for this variable. 

 Now you are ready to build our project and program it onto the device with your 
development tool of choice. Set a  breakpoint  on the line containing the infinite loop, 
press Run , and sit back and relax while the PIC32 works hard to solve the problem 
for you. After a short while, MPLAB will come back alive as the PIC32 reaches the 
breakpoint, and we will be able to read the timed value from the 32-bit integer variable  t . 
In my case it turned out to be 6,140,495! 

 Well, at least now you understand why I suggested we use a 32-bit timer. As fast as a fast 
Fourier transform can be, it is hard work, and a 16-bit timer would not suffice to keep 
track of such a large number of cycles. 

 Converting the timer count in actual seconds, milliseconds, and microseconds is not hard 
if we remember how we configured the oscillator and the primary clock path. The PIC32 
system bus clock frequency was set to 72       MHz, while all the peripherals were provided a 
36       MHz peripheral bus clock. Dividing the timer value by the peripheral bus frequency, 
we obtain: 

T t Fpb s� � �/ , , / , , .6 142 543 36 000 000 0 17062

 We can automate the conversion by asking the PIC32 to do it for us from now on—just 
add the following line of code after the stopwatch capture: 

f t E ;� /36 6

 This will reuse the variable  f  to perform the division using floating-point arithmetic. 
Add f  to the Watch window so that, from now on, we will get to see the result of our 
experiments expressed correctly in seconds and fractions (see  Figure 7.7   ).  

  Fine-Tuning the PIC32: Configuring Flash Wait States 
 Whether you think that 170       ms is a good time in which to perform a 256-point FFT or 
not, of one thing I am sure: The PIC32 can do better. In fact, beyond selecting the fastest 
clock speed and properly configuring the oscillator module, a number of advanced 
mechanisms on the PIC32 still require our attention to achieve the fine tuning that will 
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provide us with the highest possible level of performance. The number-one limitation 
to the performance of an embedded control processor is the speed of its Flash memory. 
Unfortunately, once more, there is a conflict of interest; the fastest available Flash 
memory banks are also the ones requiring the highest power consumption. 

 The designers of the PIC32 found that a perfect balance could be obtained by using a 
low-power Flash memory and decoupling the PIC32 core system bus from the memory 
bus by providing the ability to add a number of wait states (corresponding to up to seven 
clock cycles), during which the processor is stalled waiting for data to be fetched from 
the Flash memory. Depending on the difference in speed between memory and core, 
an increasing number of wait states might be required. By default, at power-up this 
mechanism is set for the safest possible condition that is reached by setting the maximum 
number of wait states. Hence there is an opportunity for us to reduce the number to the 
minimal possible value, given the actual operating specifications of the device. The 
number of wait states is controlled by the  CHECON  special function register 
(see  Figure 7.8   ) and in particular by the  PFMWS  bits. 

 We could directly assign values, between 0 and 7, to the  CHECON  register ’ s bits, as in the 
following example:       

  CHECONbits.PFMWS = 7;         // set max number of waitstates     

 But we would have to assume the responsibility for identifying the minimum safe number 
of wait states for the worst-case operating conditions of our application (relying on the 
electrical characteristics from the device datasheet). In fact, should we use the wrong 
number of wait states, the execution of code from Flash memory could become erratic, 

 Figure 7.7 :     Testing the PIC32 performance using a 32-bit timer.    
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and to make things worse, this would become detectable only under specific extreme 
conditions of power supply voltage and temperature. 

 As a better alternative, we can use an ad hoc library function provided with the PIC32MX 
peripheral libraries: SYSTEMConfigWaitStatesAndPB(freq).  The function requires 
the system clock frequency to be passed as an integer parameter and was designed by the 
PIC32 application support team to set the  “ recommended ”  minimum wait states for the 
given system clock frequency, taking all the guesswork away.
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 Figure 7.8 :     The CHECON control register.    

      Note     

 The   . . .   AndPB  part of the function name is supposed to remind us that the same function will 
also automatically modify the peripheral clock frequency setting of the PB divider as required 
to keep the peripheral bus always below 50       MHz. As it happens, this is exactly what we had the 
system configured for (at power-up) anyway.      

 So it is time to give a second try at our project, with the added  “ tuning ”  of the wait states 
performed by the following line of code (placed inside the initialization section of our 
main()  function):       

  SYSTEMConfigWaitStatesAndPB(72000000L);     

 Rebuild the Running project and reprogram your development board. Let the application 
run once more until it reaches the breakpoint (see Figure 7.9   ). 
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 Now, this is an improvement! We just reduced the FFT execution time from 170       ms to 
42       ms. This is better than a 4� speed improvement.  

  Fine-Tuning the PIC32: Enabling the Instruction 
and Data Cache 
 But there is so much more we can do. As we understand more of the PIC32 architecture, 
we notice that between the MIPS core bus and the memory bus there is actually an 
entirely new module:  the cache . Think of it as a small but very fast block of RAM 
memory sitting between the processor and the Flash memory. Every time the processor 
fetches an instruction or a word of data from the Flash memory, the cache module will 
keep a copy but will also remember the address. When and if the processor needs the 
same data again (from the same address) in the (near) future, the cache will quickly be 
able to retrieve it, avoiding any new access to the Flash memory block (and avoiding all 
wait states eventually associated). 

 The larger a cache memory module, the higher the probability that a copy of a specific 
piece of data or instruction will be found in it. The reverse is also true: The shorter the 
inner loop of a given algorithm, the higher the impact that the availability of the cache 
module will have on its performance. This is because once all the cache is filled and a 
new instruction is fetched, the content of the cache must be  “ rotated, ”  and the oldest or 
least recently used instruction/data needs to be overwritten by the new information. 

 Unfortunately, cache memory is, by its very nature, very expensive, and the PIC32MX 
designers had to balance costs and benefits by setting the maximum capacity of 16 lines 
of 16 bytes each, for a total of 64 complete 32-bit instructions, equivalent to 256 bytes. 

 Figure 7.9 :     The PIC32 performance after wait states tuning.    
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 There is much more flexibility (and therefore complexity) involved in the inner workings 
of the PIC32 cache module, but we don ’ t need to know much more for now to decide that 
we like the cache module and we want to activate it. In fact, by default at power-on, it is 
disabled, and as in the previous case, there is a convenient library function (defined in the 
pcache.h module) awaiting our call: 

  CheKseg0CacheOn();     

 Figure 7.10 :     The PIC32 performance after enabling the cache.    

      Note     

 The  Kseg0  is the virtual memory space where MPLAB C32 allocates all the code segments 
produced by compiling our project codes by default. You will remember that code placed in this 
address space  “ can ”  be cached, whereas code place in  Kseg1  will  not  be cached, regardless of 
the cache module settings and status. 

 Rebuild the Running project and reprogram your development board. Let the application 
run once more until it reaches the breakpoint (see Figure 7.10   ). 

 Now, this is another important improvement! We just reduced the FFT execution time 
from 42       ms to 20       ms. This is a further 2� speed improvement.  

  Fine-Tuning the PIC32: Enabling the Instruction Pre-Fetch 
 But we are far from finished. The cache module of the PIC32 has another important 
feature to offer that promises similarly large rewards once enabled. It is the ability 
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to perform instructions pre-fetching. That is, the cache module not only records the 
instructions being fetched by the PIC32 core; it also  “ runs ahead ”  and reads a whole 
block of four instructions (four words of 32 bits) at a time. If the code is executed 
sequentially, the next three memory fetches will be performed with the equivalent of zero 
wait states. Every time a branch is executed, breaking the sequential flow of the program, 
the pre-fetched cached data is discarded and the correct next instruction is loaded but 
without any additional penalty beyond the required wait states. 

 The cache pre-fetch is disabled by default at power-up, and the  PREFEN  bits in the 
CHECON  register control the behavior of the module. They can be set by directly accessing 
the SFR or by using the macro mCheConfigure()  defined in the pcache.h library:       

  mCheConfigure(CHECON | 0 x 30);     

 After appending this line of code to the list of initialization calls inside the  main()
function, let ’ s rebuild the Running project and reprogram the development board. Let the 
application run once more until it reaches the breakpoint (see Figure 7.11   ). 

 Figure 7.11 :     The PIC32 performance after enabling the cache.    

 We once more reduced the FFT execution time from 20       ms to 16.4       ms. This is a further 
20-percent performance improvement.  

  Fine-Tuning the PIC32: Final Notes 
 As anticipated, the complexity of the cache module is considerable, and the number 
of additional possible  “ tricks ”  is practically unlimited if you dare dig deeper. I will 
mention only one last option related to accessing the RAM memory. As it happens, even 
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regular RAM memory access is by default slowed by the presence of a single wait state. 
Its presence is already greatly mitigated by the cache, and the impact on the overall 
processor performance can be further reduced by the efficiency of the compiler and 
its use of the processor registers. Nonetheless, it is worth trying to disable it using the 
mBMXDisableDRMWaitState() function. 

 In my experiments, this produced an almost unnoticeable performance improvement, but 
the mileage can vary greatly with the nature of the application (see  Figure 7.12   ). 

 Figure 7.12 :     The PIC32 performance after removing the RAM wait states.    

 After rebuilding the project with the added last fine-tuning step, we obtained an 
additional 1-percent performance improvement. 

 In summary, in only four lines of code we have been able to produce an almost 
unimaginable performance improvement compared to our initial measurements using the 
default configuration at start-up. We went from 170.62       ms down to 16.45       ms, equivalent 
to a 10� speed performance boost to our FFT algorithm!

  // configure PB frequency and the number of wait states  
  SYSTEMConfigWaitStatesAndPB(72000000L);  

  // enable the cache for max performance  
  CheKseg0CacheOn();  

  // enable instruction prefetch  
  mCheConfigure(CHECON | 0 x 30);  

  // disable RAM wait states  

  mBMXDisableDRMWaitState();     
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 Fortunately, the PIC32 support team has been preparing a shortcut for us, a single simple 
library function that, from now on, will allow us to perform  all  of the above optimizations 
in a single function call: 

  SYSTEMConfigPerformance(72000000L);     

 A precious little function that fine-tunes the Flash memory and RAM access while 
unleashing the power of the cache and pre-fetch module of the PIC32. How about 
renaming it SportTuning()  or  RacingMode() ?

  Debriefing 
 Step by step, today we learned to tune up the engine of the PIC32, first in coarse steps, 
then gradually in finer steps, until we have been able to squeeze the most performance 
out of the machine. Keep in mind that the tuning process is very much dependent on 
the task at hand. Different applications will respond differently to each turn of the 
various  “ control knobs ”  we have touched today. Also, the result obtained is by no means 
representative of the fastest FFT implementation possible on a PIC32. In fact, we have 
deliberately chosen not to modify the original algorithm in any way, to highlight instead 
the relative performance gains obtained by our use of various hardware features available 
on the PIC32MX architecture. In the process we have also learned something new about 
the peripherals set and, in particular, the PIC32 timer modules that allow us to combine 
them in pairs to produce 32-bit timers.  

  Notes for the Assembly Experts 
 Once more we have resisted the temptation to use any hand optimization, avoiding 
any use of the assembly language. In reality, those of you who want to learn more 
about the PIC32 assembly will soon discover that there are powerful instructions in the 
PIC32 instruction set that we could have used to further boost the performance of the 
microcontroller in many signal processing applications. In particular, I am referring 
to the multiply and accumulate instructions, or multiply and add (MADD), as they are 
known in MIPS lingo.  

  Notes for the PIC® Microcontroller Experts 
 Thanks to the cache and the pre-fetch mechanism, the PIC32 can execute  “ almost ”  one 
instruction per clock cycle, even when operating at the maximum clock frequency while 
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using a low-power Flash memory. The operative word here is  “ almost, ”  since we cannot 
be sure that this happens all the time. The cache is inevitably going to generate  misses
here and there; for example, the MCU will have to wait from time to time while a group 
of words is loaded by the pre-fetch mechanism or a new word of data is loaded into the 
cache. The more your code revolves around a short loop that fits entirely in the PIC32 
cache memory (256 bytes), the smaller the percentage of misses you will experience. By 
the way, although we don ’ t have the time and space to cover the subject in the necessary 
depth in this book, most of the control registers inside the cache module are actually there 
to allow us some insight into the workings of the cache and to help us  “ profile ”  a specific 
piece of code. 

 So, can we claim that the PIC32 is a 72 MIPS machine, meaning that is it really executing 
72 million instructions per second? I think the wise answer is “ mostly ”  yes, but  . . .  it 
depends on your code and how well you can get the cache to work for you.  

  Tips  &  Tricks 
 One powerful tool, available as part of the MPLAB IDE, is the Data Monitor and Control 
Interface, or DCMI for friends and fans. You can activate it by selecting  Tools | DCMI
on the MPLAB IDE main menu. When used in combination with any of the in circuit 
debuggers and even the MPLAB SIM simulator, it can provide us with a window into 
the device data space by producing graphics but also letting us  “ interactively ”  modify 
the data with a sort of configurable graphical user interface (GUI). In particular, when 
playing with the FFT you might be interested in checking the shape of the input signal 
we synthesized (sinusoid) and in visualizing the output of the FFT routine. Once in the 
DCMI window, follow the next few steps in exact order: 

  1.     Click the  Dynamic Data View  tab. 

  2.     Check the  Graph1  check box.  

  3.     Right-click with your mouse on the  first graph  to expose the context menu.  

  4.     Select  Configure Data Source  (see  Figure 7.13   ).  

  5.     Select the  inB  buffer among the list of Global Symbols.  

  6.     Click the  OK  button.    

 Now set a breakpoint on the line containing the  OpenTimer45()  call, just following the 
inB[]  buffer initialization, and run the program. 
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 As the program halts you should see the content of the  inB[]  buffer nicely visualized 
inside the Dynamic Data View window (see  Figure 7.14   ). 

 It ’ s a 2       Hz sinusoid, or I should say a sinusoid whose period is half the input sample count. 

 Now we can set a second breakpoint on the line where the  ReadTimer45()  function is 
called, after the FFT is performed and the scaling is performed to visualize the output. 
Remember that the output of an FFT contains only half the size of the input number of 
samples, so you can change the Sample Count  field of the visualization to  128  instead of 
the default value (256) automatically offered by the DCMI. Also maximize the window to 
obtain a better detail (see Figure 7.15   ). 

 Figure 7.13 :     DCMI Dynamic Data View Properties dialog box.    
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 Figure 7.15 :     Dynamic Data View of the FFT output: The signal spectrum.    

 Figure 7.14 :     Dynamic Data View of the input signal.    



Running   171

 As you can see, the one and only peak in the signal power spectrum is easily found on the 
X-axis (considering the sample count starts from 1) at the position that would correspond 
to a frequency of 2       Hz (or two periods within the input sample count). Verify that this is 
exactly what we have designed the input test signal to be!  

  Exercises 

  1.     Verify the shape and size of the output of the FFT (real and imaginary 
components) before the power scaling.  

  2.     Remove the windowing and observe if and how the spectrum of the signal 
appears to change.  

  3.     Use multiple input sinusoids to create a composite signal and observe the FFT 
output.

  4.     Experiment with allocating (more) cache space (lines) to the data space and 
observe the resulting performance changes. 

   Books
  Sweetman, Dominic,  See MIPS Run , second edition (2006). This is a must-read if 

you want to truly understand the most advanced features of the PIC32 MIPS 
core. The second edition is recommended because it focuses on the more modern 
implementations of the MIPS cores and adds notes on Linux kernel implementation 
details. (Don ‘ t try this at home on the PIC32MX  . . .  not just yet.)    

  Links 
http://en.wikipedia.org/wiki/FFT . Helpful in learning more about uses of and methods to 

perform a Fast Fourier Transform.

http://en.wikipedia.org/wiki/Spectral_music . FFt can be fun! Think graphics, but also 
think music composition.

 http://en.wikipedia.org/wiki/Window_function . No, we ’ re not talking about  those
windows; these windows can dramatically change your views!
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http://wn.wikipedia.org/wiki/CPU_cache . The PIC32MX is the first PIC microcontroller 
to use a cache mechanism. It is worth looking deeper in the subject to understand 
which decisions and compromises the designers of the PIC32 had to make to 
maximize performance while delivering an inexpensive product.                                



     Communication

  The Plan 
 Except for the most basic embedded-control applications, it is very likely that you will 
soon find that your application needs to communicate with other more or less intelligent 
devices. They could be personal computers, sensors, displays, or other microcontrollers 
on the same board or remote. To reduce cost, you will be looking for a solution that uses 
a small number of pins and wires and that will steer your search in the direction of a 
serial communication interface. 

 In embedded control, communication is equally a matter of understanding the protocols 
as well as the characteristics of the physical media available. Learning to choose the right 
communication interface for the application can be as important as knowing how to use it. 

 Today we will compare the basic communication peripherals available in all the general-
purpose devices of the new PIC32MX family. In particular we will explore asynchronous 
serial communication interfaces (UART) and synchronous serial communication 
interfaces (SPI and I 2 C), comparing their relative strengths and limitations for use in 
embedded control applications.  

  Preparation 
 In addition to the usual software tools, including the MPLAB® IDE, MPLAB C32 
compiler student version, and the MPLAB SIM simulator, this lesson will require the use 
of the Explorer 16 demonstration board and one of the In-Circuit Debugging tools such 
as the MPLAB ICD2, MPLAB ICD3, MPLAB REAL ICE, or PIC32 Starter Kit. If you 
intend to use the latter, though, you will need the special PIC32 Starter Kit adapter (PIM).  

D A Y  8 



174   Day 8

  The Exploration 
 The PIC32MX family offers seven communication peripherals that are designed to 
assist in all common embedded-control applications. As many as six of them are  serial
communication peripherals; they transmit and receive a single bit of information at a 
time. They are: 

●      2  �  the Universal Asynchronous Receiver and Transmitters (UARTs)  

●      2  �  the SPI synchronous serial interfaces  

●      2  �  the I 2 C synchronous serial interfaces 

 The main difference between a  synchronous  interface (like the SPI or I 2 C) and an 
asynchronous  one (like the UART) is in the way the timing information is passed from 
transmitter to receiver. Synchronous communication peripherals need a physical line 
(a wire) to be dedicated to the clock  signal, providing synchronization between the two 
devices. The device(s) that originates the clock signal is typically referred to as the 
master , as opposed to the device(s) that synchronizes with it, called the  slave(s) .

  Synchronous Serial Interfaces 
 The I 2 C interface (see  Figure 8.1   ), for example, uses two wires and therefore two pins of 
the microcontroller: one for the clock (SCL) and one bidirectional for the data (SDA). 

PIC32
I2C interface 

I2C Peripheral
Clock (SCL) 

Data (SDA) (Master) (Slave)

 Figure 8.1 :     I 2 C interface block diagram.    

 The SPI interface (see  Figure 8.2   ) instead separates the data line in two, one for the input 
(SDI) and one for the output (SDO), requiring one extra wire but allowing simultaneous 
(faster) data transfer in both directions. 

 To connect multiple devices to the same serial communication interfaces (a bus 
configuration), the I 2 C interface requires a 10-bit address to be sent over the data line 
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before any actual data is transferred. This slows the communication but allows the same 
two wires (SCL and SDA) to be used for as many as (theoretically) 1,000 devices. Also, 
the I 2 C interface allows multiple devices to act as masters and share the bus using a 
simple arbitration protocol. 

 The SPI interface (see  Figure 8.3   ), on the other side, requires an additional physical line, 
the slave select (SS), to be connected to each device. In practice this means that in using 
an SPI bus, as the number of connected devices grows, the number of I/O pins required 
on the PIC32 grows proportionally with them. 

Clock

Data
SDO

SDO

SDI

SDI

SCKSCK

PIC32
SPI interface 

SPI Peripheral

 Figure 8.2 :     SPI interface block diagram.    

PIC32
SPI interface 

SPI
Peripheral

(Slave #1) 

SPI
Peripheral

(Slave #2) 

SDO
SDI

SCK

 SS SS
SDO
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SDI
SDO

SCK

CS1

CS2

CSN

. . .

 Figure 8.3 :     SPI bus block diagram.    

 Sharing an SPI bus among multiple masters is theoretically possible but practically very 
rare. The main advantages of the SPI interface are truly its simplicity and the speed that 
can be one order of magnitude higher than that of the fastest I 2 C bus (even without taking 
into consideration the details of the protocol-specific overhead).  
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  Asynchronous Serial Interfaces 
 In asynchronous communication interfaces (see  Figure 8.4   ), there is no clock line, 
whereas typically two data lines—TX and RX, respectively—are used for input and 
output, and optionally two more lines can be used to provide a hardware handshake. 
The synchronization between transmitter and receiver is obtained by extracting timing 
information from the data stream itself. Start  and  stop bits  are added to the data, and 
precise formatting (with a fixed baud rate) must be set to allow reliable data transfers. 

PIC32
UART interface 

Asynchronous
Peripheral

Optional Handshake 
RTS

RTS

CTS

CTS

Data
TX

TX

RX

RX

 Figure 8.4 :     Asynchronous serial interface block diagram.    

 Several asynchronous serial interface standards dictate the use of special transceivers to 
improve the noise immunity, extending the physical connection distance up to several 
thousand feet. 

 Each serial communication interface has its advantages and disadvantages.  Table 8.1    
summarizes the most important ones as well as the most common applications.  

(continued)

 Table 8.1 :     Serial interfaces comparison table.  

Synchronous Asynchronous

Peripheral  SPI I2C UART 

 Max bit rate  20       Mbit/s  1       Mbit/s  500       kbit/s 

 Max bus size  Limited by number of 
pins

 128 devices  Point to point 
(RS232), 256 devices 
(RS485)

 Number of pins  3 � n �  CS  2  2(�2)
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  Parallel Interfaces 
 The Parallel Master Port (PMP) completes the list of basic communication interfaces of 
the PIC32. The PMP has the ability to transfer up to 16       bits of information at a time while 
providing several address lines to interface directly to most commercially available LCD 
display modules (alphanumeric and graphic modules with integrated controller) as well 
as Compact Flash memory cards (or CF-I/O cards), printer ports, and an almost infinite 
number of other basic 8- and 16-bit parallel devices available on the market and featuring 
the standard control signals: -CS, -RD, and -WR. 

 Today we begin focusing specifically on the use of a synchronous serial interface, the 
SPI. In the next few days we will also cover the asynchronous serial interface and 
the PMP.  

Table 8.1 :  (Continued)

Synchronous Asynchronous

Peripheral SPI I2C UART

 Pros  Simple, low cost, high 
speed

 Small pin count, 
allows multiple 
masters 

 Longer distance 
(use transceivers 
for improved noise 
immunity)

 Cons  Single master, short 
distance 

 Slowest, short distance  Requires accurate 
clock frequency 

 Typical application  Direct connection 
to many common 
peripherals on same 
PCB

 Bus connection with 
peripherals on same 
PCB

 Interface with 
terminals, personal 
computers, and other 
data acquisition 
systems 

 Examples  Serial EEPROMs 
(25CXXX series), 
MCP320X A/D 
converter, ENC28J60 
Ethernet controller, 
MCP251X CAN 
controller  . . .  

 Serial EEPROMs 
(24CXXX series), 
MCP98XX temperature 
sensors, MCP322x A/D 
converters  . . .  

 RS232, RS422, RS485, 
LIN bus, MCP2550 
IrDA interface  . . .  
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  Synchronous Communication Using the SPI Modules 
 The SPI interface is perhaps the simplest of all the available interfaces, although the 
PIC32 implementation is particularly rich in options and interesting features. 

 The SPI interface (see  Figure 8.5   ) is essentially composed of a shift register. Bits are 
simultaneously shifted in, most significant bit (MSb) first, from the SDI line and shifted 
out from the SDO line in synch with the clock on the SCK pin. The size of the shift 
register can vary from 8, 16, or 32       bits. 

Internal
Data Bus

SPIxBUF

SPIxTXB

Transmit

Receive

SPIxSR

bit 0SDIx

SDOx

SSx

Clock
Control

Shift
Control

Edge
Select

Baud Rate
Generator

PBCLK

Enable Master ClockNote: Acces SPIxTXB and SPIxRXB registers via
 SPIxBUF register.

SCKx

SPIxRXB

Registers share address SPIxBUF

Slave Select
and Frame

Sync Control

 Figure 8.5 :     The SPI module block diagram.    

 If the device is configured as a bus master, the clock is generated internally, derived 
from the peripheral bus clock (Fpb) by a baud rate generator, and output on the SCK pin. 
Otherwise, the device is a bus slave and the clock is received from the SCK pin. 
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 As for all other peripherals we will encounter, the essential configuration options are 
controlled by the SFR SPIxCON  and the baud rate generator control register  SPIxBRG
(see  Figure 8.6   ). 

R/W-0
FRMSYNCFRMEN

bit 31 bit 24

FRMPOL — — — — —
R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0

R/W-0
FRZON

bit 15 bit 8

SIDL DISSDO MODE32 MODE16 SMP CKE
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

R/W-0
CKPSSEN

bit 7 bit 0

MSTEN — — — — —
R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0

U-0

bit 23 bit 16

———— — — SPIFE —
U-0 U-0 U-0 U-0 U-0 R/W-0 U-0

 Figure 8.6 :     The SPIxCON control register.    

 Notice in  Figure 8.6  that the lower (least significant) 16       bits of the  SPIxCON  register 
contain all the essential configuration bits, whereas the top 16       bits contain control bits that 
refer only to advanced features of the SPI port (framed modes). This makes the  SPIxCON
control register compatible with the previous generations of 16-bit PIC® microcontrollers, 
since the top bits default to zero. 

 To demonstrate the basic functionality of the SPI peripheral we will use the Explorer 16 
demo board, on which the PIC32 SPI2 module is connected to a 25LC256 EEPROM 
device, often referred to as a Serial EEPROM (or SEE, or sometimes just E 2 , pronounced 
e-squared ). This is a small and inexpensive device that contains 256       Kbits, or 32 Kbytes, 
of nonvolatile high-endurance memory. 

 Use the New Project Setup checklist to create a new project called  SPI  and a new source 
file, similarly called  spi2.c . 

 The most direct way to configure the SPI2 module for communication with the serial 
memory device is by manually assigning the correct value to each bit of the  SPI2CON
register. According to the 25LC256 device datasheet (DS21822), downloadable from 
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the Microchip Web site, the SEE responds to a short list of 8-bit commands that must 
be supplied via the SPI interface with the following setting (notice in parentheses the 
corresponding values of the control bits in the  SPI2CON  register): 

●      8-bit mode ( MODE16 = 0, MODE32 = 0 )

●      Clock IDLE level is low, clock ACTIVE is high ( CKP = 0 )

●      Serial output changes on transition from ACTIVE to IDLE ( CKE = 1 )    

 We will also need to configure the PIC32 to act as the SPI bus master ( MSTEN = 1 ), 
since the memory is a slave-only device—in other words, it expects to receive a clock 
signal on the SCK pin. 

 The resulting configuration value can be defined as a constant that will be later assigned 
to the SPI2CON  register:       

  // peripheral configurations  

  #define SPI_CONF        0 x 8120        // SPI on, 8-bit master, CKE=1,CKP=0     

 To determine the baud rate, we will use Equation 8.1 (from the PIC32 datasheet): 

 Equation 8.1: Formula to determine SPI clock frequency. 

F
F

SPIxBRGSCK
PB�

�2 1* ( )

 We can either use the  SPI2BRG  default value (0 at power-up, giving a baud rate divider of 
1:2) or assign an appropriate value to slow the communication and correspondingly help 
reduce the EEPROM power consumption—for example:       

  #define SPI_BAUD        15        // clock divider Fpb/(2 * (15+1))     

 With such settings, the baud rate divider is set to 1:32 of Fpb, corresponding to about 
280       kHz when the PIC32 is configured for a 9       MHz peripheral bus as set and documented 
by the following few lines that we will place at the top of our source code:       

  // configuration bit settings, Fcy=72       MHz, Fpb=9       MHz  
  #pragma config POSCMOD=XT,        FNOSC=PRIPLL 
  #pragma config FPLLIDIV=DIV_2,        FPLLMUL=MUL_18,       FPLLODIV=DIV_1  

  #pragma config FPBDIV=DIV_8,        FWDTEN=OFF,       CP=OFF,       BWP=OFF     
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 From the Explorer 16 User Guide (DS51589 Appendix A board schematic), we learn that 
pin 12 of PortD (RD12) is connected to the memory chip-select (CS) pin. Notice that this 
is an active low input. A couple of definitions will help make our code more readable: 

  // I/O definitions  
  #define CSEE            _RD12            // select line for EEPROM 

  #define TCSEE            _TRISD12          // tris control for CSEE pin     

 We can now write the peripheral initialization part of our demonstration program:     

  // 1.       init the SPI peripheral  
  TCSEE = 0;                // make SSEE pin output 
  CSEE = 1;                 // de-select the EEPROM  
  SPI2CON = SPI_CONF;           // select mode and enable  

  SPI2SPI2BRG = SPI_BAUD;          // select clock speed     

 We can now write a small function that will be used to transfer data to and from the serial 
EEPROM device:       

  // send one byte of data and receive one back at the same time  
  int writeSPI2( int i)  
  { 
 SPI2BUF = i;       // write to buffer for TX  
 while( !SPI2STATbits.SPIRBF);        // wait for transfer complete  
 return SPI2BUF;       // read the received value     

  }//writeSPI2     

 The  writeSPI2()  is a truly bidirectional transfer function. It immediately 
writes a character to the transmit buffer and then enters a loop to wait for the  receive
flag to be set to indicate that the transmission was completed as well as data was 
received back from the device. The data received is then returned as the value of the 
function.

 When we ’ re communicating with the memory device, though, there are situations 
when a command is sent to the memory, but there is no immediate response. There are 
also cases when data is read from the memory device, but no further commands need 
to be sent by the PIC32. In the first case (for example, the write command), the return 
value of the function can simply be ignored. In the second case (for example, the read 
command), a dummy value can be sent to the memory while shifting in data from the 
device. 
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 The 25LC256 datasheet contains accurate depictions of all seven possible command 
sequences that can be used to read or write data to and from the memory device. 
A small table of constants can help encode and document all such commands in 
our code:       

  // 25LC256 Serial EEPROM commands  
  #define SEE_WRSR 1         // write status register  
  #define SEE_WRITE 2         // write command  
  #define SEE_READ 3         // read command 
  #define SEE_WDI 4         // write disable 
  #define SEE_STAT 5         // read status register  

  #define SEE_WEN 6         // write enable     

 Before we attempt any more complex task, let ’ s test the little code we have assembled 
so far to verify that communication with the device can be properly established. For 
example, we can use the Read Status Register ( SEE_STAT ) command to interrogate the 
EEPROM and obtain the value of its internal status register.  

  Testing the Read Status Register Command 
 After sending the appropriate command byte ( SEE_STAT ) with a first call to the 
writeSPI2()  function, we will need to send a second (dummy) byte to capture the 
response from the memory device (see  Figure 8.7   ). 

CS

SCK

SI

Instruction

High-impedance
SO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 1

7 6 5 4 3 2 1 0

0 1

Data from STATUS register

 Figure 8.7 :     The complete Read Status Register command timing sequence.    
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 Sending any command to the SEE requires, at a minimum, the following four-step 
sequence:

  1.     Activate the memory, taking the  CS pin  low.  

  2.     Shift out the  8-bit  command.  

  3.     Depending on the specific command, send or receive multiple bytes 
of data.  

  4.     Deactivate the memory (taking high the  CS pin ) to complete the command. 
After this step the memory will go back to a low-power consumption standby 
mode.

 In practice, the following code is required to perform the complete Read Status Register 
operation:

  // Check the Serial EEPROM status  
  CSEE = 0;         // select the Serial EEPROM  
  writeSPI2( SEE_STAT);        // send a READ STATUS COMMAND  
  i = writeSPI2( 0);           // send dummy, read data  

  CSEE = 1;      // deselect to complete command     

 The complete project listing should look like:       

  /*
  ** SPI2 
  **  
  */
  #include  < p32xxxx.h >   

  // configuration bit settings, Fcy=72       MHz, Fpb=9       MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_8, FWDTEN=OFF, CP=OFF, BWP=OFF  

  // I/O definitions  
  #define CSEE  _RD12         // select line for Serial EEPROM  
  #define TCSEE _TRISD12         // tris control for CSEE pin  

  // peripheral configurations  
  #define SPI_CONF  0 x 8120         // SPI on, 8-bit master,CKE=1,CKP=0  
  #define SPI_BAUD  15         // clock divider Fpb/(2 * (15+1))  
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  // 25LC256 Serial EEPROM commands  
  #define SEE_WRSR 1         // write status register  
  #define SEE_WRITE 2         // write command 
  #define SEE_READ 3         // read command 
  #define SEE_WDI 4         // write disable 
  #define SEE_STAT 5         // read status register  
  #define SEE_WEN 6         // write enable 

  // send one byte of data and receive one back at the same time  
  int writeSPI2( int i)  
  { 

 SPI2BUF = i;        // write to buffer for TX  
while( !SPI2STATbits.SPIRBF);        // wait for transfer complete 
 return SPI2BUF;        // read the received value     

  }//writeSPI2  

  main ()  
  { 
 int i;  
 // 1. init the SPI peripheral  
 TCSEE = 0;        // make SSEE pin output  
 CSEE = 1;        // de-select the Serial EEPROM  
 SPI2CON = SPI_CONF;        // select mode and enable SPI2  
 SPI2BRG = SPI_BAUD;        // select clock speed  
 // main loop  
 while( 1)  
 {  

// 2. Check the Serial EEPROM status  
 CSEE = 0;        // select the Serial EEPROM  
 writeSPI2( SEE_STAT);        // send a READ STATUS COMMAND  
 i=writeSPI2( 0);        // send/receive
 CSEE=1;        // deselect terminate command  

 } // main loop     

  } // main     

 Follow the Debugger Setup checklist appropriate for your tool of choice to enable the 
In-Circuit Debugger and prepare the project configuration. Then follow the Project Build 
checklist to compile and link the demo code. Then: 

  1.     After connecting the Explorer 16 demo board, program the PIC32 selecting 
the Debugger | Program  option. By default MPLAB will choose the smallest 
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range of memory required to transfer the project code into the device so that 
programming time will be minimized. After a few seconds, the PIC32 should be 
programmed, verified, and ready to execute.  

  2.     Add the  Watch  window to the project.  

  3.     Select  i  in the symbol selection box, then click the  Add Symbol  button.  

  4.     Set the cursor on the last line of code in the main loop (containing the CSEE 
deselect) and set a breakpoint  (double-click).  

  5.     Start the execution by selecting the  Debugger | Run  command.  

  6.     When the execution terminates, the contents of the 25LC256 memory Status 
Register should have been transferred to the variable i, visible in the Watch 
window.    

 Unfortunately, you will be disappointed to learn that the default status of the 25LC256 
memory (at power-on) is represented by the value 0  �  00 (see  Table 8.2   ). 

 Table 8.2 :     The 25LC256 Serial EEPROM status register.  

7 6 5 4 3 2 1 0

 W/R  –  –  –  W/R  W/R  R  R 

 WPEN  x  x  x  BP1  BP0  WEL  WIP 

 W/R  �  writable/readable; R  �  read-only. 

 In fact, from  Table 8.2 , which illustrates the contents of the EEPROM status register, 
and from the device datasheet we learn that, at power-on, the Block Protection bits 
(BP1  and  BP0 ) are supposed to be cleared unless a block code protection had been set, 
the Write Enable Latch ( WEL ) is disabled, and no Write In Progress ( WIP ) flag should be 
active. 

 Not a very telling result for our little test program. So, to spice up things a little we could 
start by setting the Write Enable Latch before interrogating the Status Register; it would 
be great to see bit 1 set. 
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 Let ’ s insert the following code before Section 2 that we will promptly renumber to 2.2:       

  // 2.1 send a Write Enable command  
  CSEE = 0;                  // select the Serial EEPROM 
  writeSPI2( SEE_WEN);           // send command, ignore data 

  CSEE=1;     

  1.     Rebuild the project. 

  2.     Reprogram the device.  

  3.     Run (or Run to Cursor). 

 If everything went well, you will see now the variable i in the Watch window turn red 
and show a value of 2. Now, these are the great satisfactions that you can get only by 
developing code for a powerful 32-bit embedded controller! 

 More seriously, now that the Write Enable latch has been set, we can add a write 
command and start  “ modifying ”  the contents of the EEPROM device. We can write a 
single byte at a time, or we can write a long string, up to a maximum of 64 bytes, all in a 
single sequence/command called Page Write. Read more on the datasheet about address 
restrictions that apply to this mode of operation, though.  

  Writing Data to the EEPROM 
 After sending the write command, 2 bytes of address must be supplied before 
the actual data is shifted out. The following code exemplifies the correct write 
sequence:

  // send a Write command  
  CSEE = 0;         // select the Serial EEPROM  
  writeSPI2( SEE_WRITE);         // send command, ignore data  
  writeSPI2( ADDR_MSB);         // send MSB of memory address  
  writeSPI2( ADDR_LSB);         // send LSB of memory address  
  writeSPI2( data);         // send the actual data  
  // send more data here to perform a page write  

  CSEE = 1;      // start actual EEPROM write cycle     

 Notice how the actual EEPROM write cycle initiates only after the CS line is 
brought high again. Also, it will be necessary to wait for a time (Twc) specified 
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in the memory device datasheet for the cycle to complete before a new command 
can be issued. 

 There are two methods to make sure that the memory is allowed the right amount of time 
to complete the write command. The simplest one consists of inserting a fixed delay after 
the write sequence. The length of such a delay should be longer than the maximum cycle 
time specified in the memory device datasheet (Twc max = 5       ms). 

 A better method consists of checking the Status Register contents before issuing any 
further read/write command, then waiting for the Write In Progress ( WIP ) flag to be 
cleared; this will also coincide with the Write Enable bit ( WEN ) being reset. By doing 
so, we will be waiting only the exact minimum amount of time required by the memory 
device in the current operating conditions.  

  Reading the Memory Contents 
 Reading back the memory contents is even simpler. Here is a snippet of code that will 
perform the necessary sequence: 

  // send a Write command  
  CSEE = 0;         // select the Serial EEPROM  
  writeSPI2( SEE_READ);         // send command, ignore data  
  writeSPI2( ADDR_MSB);         // send MSB of memory address  
  writeSPI2( ADDR_LSB);         // send LSB of memory address  
  data=writeSPI2( 0);         // send dummy, read data  
  // read more data here sequentially incrementing the address  
  CSEE = 1;         // terminate the read sequence 

        // and return to low power        

 The read sequence can be indefinitely extended by sequentially reading the entire 
memory contents if necessary and, upon reaching the last memory address (0x7FFF), 
rolling over and starting from 0x0000 again.  

  A 32-Bit Serial EEPROM Library 
 We can now assemble a small library of functions dedicated to accessing the 25LC256 
serial EEPROM. The library will hide all the details of the implementation, such as the 
SPI port used, specific sequences, and timing details. It will expose instead only two 
basic commands to read and write integer data types (32-bit) to a generic (black box) 
nonvolatile storage device. 
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 Let ’ s create a new project using the Project Wizard and the usual checklist. An 
appropriate name could be SEE . After creating a new source file  see.c , we can copy most 
of the definitions we prepared in the SPI project: 

  /*
  ** SEE Access Library  
  */

  #include  " p32xxxx.h "   
  #include  " see.h "   

  // I/O definitions  
  #define CSEE  _RD12        // select line for Serial EEPROM  
  #define TCSEE _TRISD12      // tris control for CSEE pin  

  // peripheral configurations  
  #define SPI_CONF         0 x8120        // SPI on, 8-bit master,CKE=1,CKP=0  
  #define SPI_BAUD 15        // clock divider Fpb/(2 * (15+1))  

  // 25LC256 Serial EEPROM commands  
  #define SEE_WRSR 1        // write status register  
  #define SEE_WRITE 2        // write command  
  #define SEE_READ 3        // read command  
  #define SEE_WDI 4        // write disable  
  #define SEE_STAT 5        // read status register  

  #define SEE_WEN 6        // write enable     

 Let ’ s also copy the initialization code, the write function, and the status register read 
commands. Each one will become a separate function: 

  // send one byte of data and receive one back at the same time  
  int writeSPI2( int i)  
  { 
SPI2BUF = i;           // write to buffer for TX 
while( !SPI2STATbits.SPIRBF); // wait for transfer complete 
return SPI2BUF;         // read the received value     

  }// writeSPI2  

  void initSEE( void)  
  { 
 // init the SPI2 peripheral  
 CSEE = 1;        // de-select the Serial EEPROM  
 TCSEE = 0;        // make SSEE pin output  
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 SPI2CON = SPI_CONF;        // enable the peripheral  
 SPI2BRG = SPI_BAUD;        // select clock speed     

  }// initSEE  

  int readStatus( void)  
  { 
 // Check the Serial EEPROM status register  
 int i;  
 CSEE = 0;      // select the Serial EEPROM  
 writeSPI2( SEE_STAT);        // send a READ STATUS COMMAND  
 i = writeSPI2( 0);        // send/receive
 CSEE = 1;        // deselect terminate command  
 return i;     

  } // readStatus     

 To create a function that reads an integer value from nonvolatile memory, first 
we verify that any previous command (write) has been correctly terminated by 
reading the status register. A sequential read of 2 bytes is used to assemble an integer 
value:       

  int readSEE( int address)  
  { // read a 32-bit value starting at an even address 

 int i;  

 // wait until any work in progress is completed  
 while ( readStatus()  &  0 x 1); // check WIP  

 // perform a 16-bit read sequence (two byte sequential read)  
 CSEE = 0;        // select the Serial EEPROM  
 writeSPI2( SEE_READ);        // read command  
 writeSPI2( address  >>   8);        // address MSB first  
writeSPI2( address  &  0xfc);        // address LSB (word aligned) 
 i = writeSPI2( 0);        // send dummy, read msb  
 i = (i << 8)+ writeSPI2( 0);        // send dummy, read lsb  
 i = (i <<   8)+ writeSPI2( 0);      // send dummy, read lsb  
 i = (i< <   8)+ writeSPI2( 0);        // send dummy, read lsb  
 CSEE = 1;  
 return ( i);     

  }// readSEE     
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 Finally, the write enable function can be created by extracting the short segment of code 
used to access the Write Enable latch from our previous project and adding a page write 
sequence:

  void writeEnable( void) 
 {  
 // send a Write Enable command  
 CSEE = 0;        // select the Serial EEPROM  
 writeSPI2( SEE_WEN);        // write enable command  
 CSEE = 1;        // deselect to complete the command     

  }// writeEnable  

  void writeSEE( int address, int data)  
  { // write a 32-bit value starting at an even address 

 // wait until any work in progress is completed  

 while ( readStatus()  &  0 x 1) // check the WIP flag  

 // Set the Write Enable Latch  
 writeEnable ();  

 // perform a 32-bit write sequence (4 byte page write)  
 CSEE = 0;        // select the Serial EEPROM  
 writeSPI2( SEE_WRITE);        // write command  
 writeSPI2( address >  > 8);        // address MSB first  
 writeSPI2( address  &  0xfc);        // address LSB (word aligned)  
 writeSPI2( data  >  > 24);        // send msb  
 writeSPI2( data  >  > 16);        // send msb  
 writeSPI2( data  >  > 8);        // send msb  
writeSPI2( data);        // send lsb  
 CSEE = 1;     

  }// writeSEE     

 More functions could be added at this point to access  short  (16-bit) or  long long
(64-bit) data types, for example, but for our proof of concept this will suffice. 

 Note that the page write operation (see the 25LC256 memory datasheet for details) requires 
the address to be aligned on a power of two boundaries (in our case, just an address divisible 
by 4 will do). The requirement must be extended to the read function for consistency. 

 Save the code in the  see.c  file and add it to the project using one of the three methods 
shown in the checklists. You can either use the editor right-click menu and select 
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Add to Project  or by right-clicking on the project window on the Source Files branch 
and choosing Add Files , then selecting the  see.c  file from the current project directory. 

 To make a few selected functions from this module accessible to other applications, 
create a new file, see.h, and insert the following declarations: 

  /*
  ** SEE Access library  
  **  
  ** encapsulates 25LC256 Serial EEPROM  
  ** as a NVM storage device for PIC32 + Explorer16 applications  
  */

  // initialize access to memory device  
  void initSEE(void);  

  // 32-bit integer read and write functions  
  // NOTE: address must be an even value between 0 x 0000 and 0 x 3ffc  
  // (see page write restrictions on the device datasheet)  
  int readSEE ( int address); 

  void writeSEE( int address, int data);     

 This will expose only the initialization function and the integer read/write functions, 
hiding all other details of the implementation. 

 Add the see.h file to the project by right-clicking in the project windows on the Header 
Files icon and selecting it from the current project directory.  

  Testing the New SEE Library 
 To test the functionality of the library, we can create a test application containing a few 
lines of code that repeatedly read the contents of a memory location (at address 16), 
increment its value, and write it back to the memory.       

  /*
  ** SEE Library test  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=9       MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_8, FWDTEN=OFF, CP=OFF, BWP=OFF  
  #include  < p32xxxx.h >   
  #include  " see.h "   
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  main ()  
  { 
 int data;  

 // initialize the SPI2 port and CS to access the 25LC256  
 initSEE();  
 // main loop  
 while ( 1)  
 { 
 // read current content of memory location  
 data = readSEE( 16);  
 // increment current value  
 data++;          //  < -set brkpt here  

 // write back the new value  
 writeSEE( 16, data);  
 //address++;     

 } // main loop     

  } //main     

  1.     Save this file as  SEEtest.c  and add it to the current project, too. 

  Invoking the  Build All  command, you will observe the MPLAB C32 compiler to work 
sequentially on the two source files (.c) and later the linker to combine the object codes to 
produce an output executable (.hex).     

  2.     Add  data  to the Watch window.  

  3.     Set a breakpoint on the line immediately following the read command to allow us 
to test the proper operation of the SEE library.  

  4.     Click the  Run  command and watch the program stop after the first read.  

  5.     Note the value of data and then  Run  again. It should increment continuously, and 
even when resetting the program or completely disconnecting the board from the 
power supply to reconnect it later, we will observe that the contents of location 16 
will be preserved and successively incremented. 

 Careful—if the main program loop is left running indefinitely without any breakpoint, 
the library test program will quickly turn into a test of the Serial EEPROM endurance. 
In fact, the loop will continue to reprogram location 16 at a rate that will be mostly 
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dependent on the actual Twc of the device. In a best-case scenario (maximum 
Twc  �  5       ms), this will mean 200 updates every second. Or, in other terms, the theoretical 
endurance limit of the EEPROM (1,000,000 cycles) will be reached in 5,000 seconds, or 
slightly less than one hour and a half of continuous operation.  

  Debriefing 
 Today we have just started our exploration of the serial interfaces, comparing the basic 
differences among them and reviewing some of their most common uses in embedded 
control. In particular, we have experimented briefly with the SPI module in its simplest 
configuration to gain access to a 25LC256 Serial EEPROM memory, one of the most 
common types of nonvolatile memory peripherals used in embedded-control applications. 
The small library module we developed will hopefully be useful to you in future 
applications, to provide additional nonvolatile storage (32       K bytes) to your applications 
on the Explorer 16.  

  Notes for the C Experts 
 The C programmer used to developing code for large workstations and personal 
computers will be tempted to further develop the library to include the most flexible and 
comprehensive set of functions. My word of advice is to resist, hold your breath, and 
count to 10, especially before you start adding any new parameter to the library functions. 
In the embedded-control world, passing more parameters means using up more stack 
space, spending more time copying data to and from the stack, and in general producing a 
larger output code. Keep the libraries simple and therefore easy to test and maintain. This 
does not mean that proper object-oriented programming practices should not be followed. 
On the contrary, our example can be considered an example of  object encapsulation , 
since most of the details of the SPI interface and Serial EEPROM internal workings have 
been hidden from the user, who is provided instead with a simple interface to a generic 
storage device organized in 32-bit words. 

  Notes for the Explorer 16 Experts 
 One of the least-known features of the Explorer 16 board is related to the use of two 
digital multiplexer devices (74HCT4053) present on the board and marked U6 and 
U7. The first one in particular was added to the board to allow the swap of the SDI 
and SDO lines of the SPI1 port reaching the PICTail™ connectors so that two 
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Explorer 16 boards could be cross-connected and the two microcontrollers could 
exchange data. The swap is controlled by the  RB12  pin when configured as a digital 
output and pulling low (otherwise a pull-up resistor takes care of things). Proper 
connection requires, of course, that one of the two microcontrollers be configured as 
master, therefore producing the SCK signal, and the other as slave. Also keep in mind 
that only one of the two boards can be connected to the power supply; the other will be 
powered via the PIC Tail connector. Similarly,  RB13  and  RB14 , in conjunction with the 
U7 multiplexer, are designed to allow cross-connection via the UART1 serial interface.  

  Notes for the PIC24 Experts 
 The SPI module of the PIC32 is mostly identical to the PIC24 peripheral, yet some 
important enhancements have been included in its design. Here are the major differences 
that will affect your code while you ’ re porting an application to the PIC32: 

  1.     The  SPIxCON  register control bits layout has been updated to resemble more 
closely the layout of most other peripherals so that the module ON ,  FRZ , and  IDL
bits are now located in the standard position (bit 15, bit 14, bit 13). They used to 
be found in the SPIxSTAT  register.  

  2.     The upper half of the  SPIxCON  register (being now expanded to 32 bits) provides 
room for the framing control bits ( FRMEN, SPIFSD ...  ) previously located in a 
second control register  SPIxCON2 .

  3.     The new  MODE32  bit now selects the 32-bit mode operation.  

  4.     The clock prescaler/divider of the SPI module (which used to be a two-tier 3  �  2 
bit prescaler) is expanded to a full 9-bit baud rate generator module cleanly 
controlled by a separate register  SPIxBRG .     

  Tips  &  Tricks 
 If you store important data in an external nonvolatile memory (SEE), you might want 
to put some additional safety measures in place (both hardware and software). From a 
hardware perspective, make sure that: 

●      Adequate power supply decoupling (capacitor) is provided close to the device.  

●      A pull-up resistor (10        k Ohm) is provided on the Chip Select line, to avoid 
floating during the microcontroller power-up and reset.  



Communication   195

●      An additional pull-down resistor (10       k Ohm) can be provided on the SCK clock 
line to avoid clocking of the peripheral during power-up, when the PIC32 I/Os 
might be floating (tri-state).  

●      Verify clean and fast power-up and down slopes are provided to the 
microcontroller to guarantee reliable Power-On Reset (POR) operation. 
If necessary, add an external voltage supervisor (see MCP809 devices for 
example).    

 A number of software methods can then be employed to prevent even the most remote 
possibility that a program bug or the proverbial cosmic ray might trigger the write 
routine. Here are some suggestions: 

●      Avoid reading and especially updating the SEE content right after power-up. 
Allow a few milliseconds for the power supply to stabilize (this will be heavily 
application dependent).  

●      Add a software write-enable flag, and demand that the calling application set the 
flag before calling the write routine, possibly after verifying some application-
specific entry condition.  

●      Add a stack-level counter; each function in the stack of calls implemented by the 
library should increment the counter upon entry and decrement it on exit. The 
write routine should refuse to perform if the counter is not at the expected level.  

●      Some users refuse to use the SEE memory locations corresponding to the 
first address (0x0000) and/or the last address (0xffff), believing they could be 
statistically more likely to be subject to corruption.  

●      More seriously, store two copies of each essential piece of data, performing two 
separate calls to the write routine. If each copy contains a checksum or, simply by 
comparison, when reading it back, it will be easy to identify a memory corruption 
problem and possibly recover.     

  Exercises 
 Although the PIC32 SPI peripheral module operates off the peripheral clock system that 
could be ticking as fast as 50       MHz, few peripherals can operate at such speeds at 3       V. 
Specifically, the 25LC256 series Serial EEPROMs, operate with a maximum clock rate of 
5       MHz when the power supply is in the 2.5       V to 4.5       V range. This means that the fastest 
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SPI port configuration compatible with the memory device can be obtained with a baud 
rate generator configured for 1:8 operation (36       MHz/8  �  4.5       MHz). A sequential read 
command could therefore provide a maximum throughput close to 4 Mbit per second 
or 512 Kbytes per second. Even at such a rate, the PIC32 would be able to execute 
140 instructions before each new byte of data is received. This means that in our simple 
SEE application example, a lot of processing power is wasted sitting in loops and waiting 
for each byte to be transferred. 

  1.     Develop a more advanced library based on an interrupt-driven state machine and/
or using the DMA to make a more efficient use of the PIC32 processing power. 
We explore the use of the DMA in conjunction with the SPI port in Chapter 13, 
although it won ’ t be to interface to a serial EEPROM but for more mundane and 
fun applications.  

  2.     Try enabling the new 32-bit mode of the SPI module to accelerate basic read and 
write word operation. But watch out: The SEE commands are byte wide, so you 
will probably need to switch back and forth between 8- and 32-bit modes. Are 
you really going to save any time/code? 

   Books
        Eady ,    F.         ,      Networking and Internetworking with Microcontrollers        (    Newnes      ,  Burlington, 

MA      ,  2004   )        .     An entertaining introduction to serial communication in embedded 
control. The author explores the basic synchronous and asynchronous communication 
interfaces to help 8-bit microcontrollers communicate. 

 Links 
www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE & nodeId=1406 & dDoc

Name=en010003  . Use this link or search the Microchip Website for a free software 
tool called Total Endurance Software. It will help you estimate the endurance you can 
expect from a given NVM device in your actual application conditions. It will give 
you an indication of the total number of e/w cycles or the number of expected years 
of your application life before a certain target failure rate is reached.         



              Asynchronous Communication   

  The Plan 
 Once you remove the clock line from the serial interface between two devices, what you 
obtain is an asynchronous communication interface. Whether you want full bidirectional 
(duplex) communication or just half-duplex (one direction at a time), multipoint, or 
point-to-point communication, there are many asynchronous protocols that can make 
communication possible and allow for efficient use of the media. In this lesson we will 
review the PIC32 asynchronous serial communication interface modules, UART1 and 
UART2, to implement a basic RS232 interface. We will develop a console library that 
will be handy in future projects for interface and debugging purposes.  

  Preparation 
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32 
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer 
16 demonstration board, your In-Circuit Debugger of choice, and a PC with an RS232 
serial port (or a serial to USB adapter). You will also need a terminal emulation program. 
If you are using the Microsoft Windows operating system, the HyperTerminal application 
will suffice ( Start|Programs | Accessories | Communication | HyperTerminal ).

  The Exploration 
 The UART interface is perhaps the oldest interface used in the embedded-control 
world. Some of its features were dictated by the need for compatibility with the 
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first mechanical teletypewriters. This means that at least some of its technology has 
centuries ’ -old roots. 

 On the other hand, nowadays finding an asynchronous serial port on a new computer 
(and especially on a laptop) is becoming a challenge. The serial port has been declared 
a  “ legacy interface, ”  and for several years now, strong pressure has been placed on 
computer manufacturers to replace it with the USB interface. Despite the decline in 
their popularity and the clearly superior performance and characteristics of the USB 
interface, asynchronous serial interfaces are strenuously resisting in the world of 
embedded applications because of their great simplicity and extremely low cost of 
implementation.

 Four main classes of asynchronous serial application are still being used: 

  1.      RS232 point-to-point connection.  Often simply referred to as  “ the serial port ” ; 
used by terminals, modems, and personal computers using +12V/�12V
transceivers.  

  2.      RS485 (EIA-485) multi-point serial connection.  Used in industrial applications; 
uses a 9-bit word and special half-duplex transceivers.  

  3.      LIN bus.  A low-cost, low-voltage bus designed for noncritical automotive 
applications. It requires a UART capable of baud rate autodetection.  

  4.      Infrared wireless communication.  Requires a 38–40       kHz signal modulation and 
optical transceivers.    

 The PIC32 ’ s UART modules can support all four major application classes and packs a 
few more interesting features, too. 

 To demonstrate the basic functionality of a UART peripheral, we will use the 
Explorer16 demo board where the UART2 module is connected to an RS232 transceiver 
device and to a standard 9 poles D female connector. This can be connected to 
any PC serial port or, in absence of the  “ legacy interface ”  as mentioned above, to an 
RS232 to USB converter device. In both cases the Windows HyperTerminal program 
will be able to exchange data with the Explorer16 board with a basic configuration 
setting.
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 The first step is the definition of the transmission parameters. The options include: 

●      Baud rate 

●      Number of data bits 

●      Parity bit, if present 

●      Number of stop bits 

●      Handshake protocol 

 For our demo we will choose the fast and convenient configuration:115200, 8, N, 1, CTS/
RTS—that is: 

●      115,200 baud  

●      8 data bits  

●      No parity  

●      1 stop bit  

●      Hardware handshake using the CTS and RTS lines 

Baud Rate Generator

IrDA®

Hardware Flow Control

BCLKx

UxRX

UxTX

UARTx Receiver

UARTx Transmitter

UxRTS

UxCTS

 Figure 9.1 :     Simplified UART modules block diagram.    
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  UART Configuration 
 Use the New Project Setup checklist to create a new project called  Serial  and a new 
source file, similarly called  serial.c . We will start by adding a few useful I/O definitions 
to help us control the hardware handshake lines:       

  /*
  ** Asynchronous Serial Communication  
  ** UART2 RS232 asynchronous communication demonstration code  
  */

  #include  < p32xxxx.h >   

  // I/O definitions for the Explorer16  
  #define CTS             _RF12               // Clear To Send, input  
  #define RTS             _RF13               // Request To Send, output  

  #define TRTS               TRISFbits.TRISF13               // Tris control for RTS pin     

 The hardware handshake is especially necessary in communicating with a Windows 
terminal application, since Windows is a multitasking operating system and its 
applications can sometimes experience long delays that would otherwise cause significant 
loss of data. We will use one I/O pin as an input ( RF12  on the Explorer 16 board) to sense 
when the terminal is ready to receive a new character (Clear To Send), and one I/O pin as 
an output ( RF13  on the Explorer 16 board) to advise the terminal when our application is 
ready to receive a character (Request To Send). 

 To set the baud rate, we get to play with the Baud Rate Generator ( U2BREG ), a 16-bit 
counter that feeds on the peripheral bus clock. From the device datasheet we learn that 
in the normal mode of operation ( BREGH=0 ) it operates off a 1:16 divider versus a high-
speed mode ( BREGH=1 ) where its clock operates off a 1:4 divider. A simple formula, 
published on the datasheet, allows us to calculate the ideal setting for our configuration 
(see Equation 9.1). 

 Equation 9.1. UART Baud Rate with UxBREG = 1. 
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 In our case, Equation 9.1 translates to the following expression: 
U2BREG � (36,000,000/4/115,200) �  1 � 77.125 

 To decide how to best round out the result, we need a 16-bit integer after all. We will use 
the reverse formula to calculate the actual baud rate and determine the percentage error: 
Error � ((Fpb/4/(U2BREG+1)) �  baud rate)/baud rate % 

 Rounding up to a value of 77, we obtain an actual baud rate of 115,384 baud with an 
error of just 0.2 percent—well within acceptable tolerance. However, with a value of 78 
we obtain 113,924 baud, a larger 1.1 percent error but still within the acceptable tolerance 
range for a standard RS232 port ( � 2 percent). 

 We can therefore define the constant BRATE as: 

  #define BRATE             77               //              115,200 Bd (BREGH=1)     

 Two more constants will help us define the initialization values for the UART2 main 
control registers called U2MODE and U2STA (see  Figure 9.2   ). 

U-0

— — — — — — — —

— — — — — — — —

U-0 U-0 U-0 U-0 U-0 U-0 U-0

U-0

R/W-0 R/W-0 R/W-0

R/W-0 R/W-0 R/W-0
ABAUD RXINV BRGH PDSEL�1:0� STSEL

bit 24

bit 16

bit 8

bit 0bit 7

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
WAKE LPBACK

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

RTSMD UEN�1:0�IRENSIDL
bit 15

ON FRZ

U-0 U-0 U-0 U-0 U-0 U-0 U-0

bit 31

bit 23

 Figure 9.2 :     The UxMODE control registers.    

 The initialization value for U2MODE will include the BREGH bit, the number of stop 
bits, and the parity bit settings. 

  #define U_ENABLE 0 x 8008 // enable,BREGH=1, 1 stop, no parity     
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 The initialization for U2STA will enable the transmitter and clear the error flags 
(see  Figure 9.3   ):       

  #define U_TX               0 x0400              // enable tx, clear all flags     

U-0
— — — — — — —

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0

R/W-0

R/W-0 R/W-0 R/W-0

R/W-0 R/W-0 R/W-0
ADDEN RIDLE PERR FERR OERR RXDA

bit 24

bit 16

bit 8

bit 0bit 7

R-1 R-0 R-0 R/C-0 R-0
URXISEL�1:0�

R/W-0 R/W-0 R/W-0 R-0 R-1

TRMTTXBFTXENTXBRKRXENTXINV
bit 15

UTXISEL�1:0�

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ADDR�7:0�

R/W-0 R/W-0

ADM_EN

bit 31

bit 23

 Figure 9.3 :     The UxSTA control registers.    

 Using the constants defined above, let ’ s initialize the UART2module, the baud rate 
generator, and the I/O pins used for the handshake: 

  void initU2( void)  
  { 

 U2BRG = BRATE; // initialize the baud rate generator  
 U2MODE = U_ENABLE; // initialize the UART module  
 U2STA = U_TX; // enable the Transmitter  
 TRTS = 0; // make RTS an output pin  
 RTS = 1; // set RTS default status (not ready)     

  } // initU2     

  Sending and Receiving Data 
 Sending a character to the serial port is a three-step procedure: 

  1.     Make sure that the terminal (PC running Windows HyperTerminal) is ready. 
Check the Clear to Send (CTS) line. CTS is an active low signal; that is, while it 
is high, we better wait patiently.  
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  2.     Make sure that the UART is not still busy sending some previous data. PIC32 
UARTs have a four-level-deep FIFO buffer, so all we need to do is wait until 
at least the top level frees up; in other words, we need to check for the transmit 
buffer full flag UTXBF to be clear.  

  3.     Finally, transfer the new character to the UART transmit buffer (FIFO). 

 All of the above can be nicely packaged in one short function that we will call  putU2() , 
respecting a rule that wants all C language I/O libraries ( stdio.h ) to use the  put-  prefix 
to offer a series of character output functions such as  putchar() ,  putc() ,  fputc()  and 
so on: 

  int putU2( int c)  
  { 
 while ( CTS);               // wait for !CTS, clear to send  
 while ( U2STAbits.UTXBF);               // wait while Tx buffer full  
 U2TXREG = c;  
 return c;     

  } // putU2     

 To receive a character from the serial port, we will follow a very similar sequence: 

  1.     Alert the terminal that we are ready to receive by asserting the RTS signal (active 
low).  

  2.     Patiently wait for something to arrive in the receive buffer, checking the URXDA 
flag inside the UART2 status register  U2STA .

  3.     Fetch the character from the receive buffer (FIFO). 

 Again, all of the above steps can be nicely packaged in one last function:       

  char getU2( void)  
  { 
 RTS=0;               // assert Request To Send !RTS  
 while ( !U2STAbits.URXDA); // wait for a new char to arrive  
 RTS=1;  
 return U2RXREG;               // read char from receive buffer     

  } // getU2     
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 Testing the Serial Communication Routines 
 To test our serial port control routines, we can now write a small program that will 
initialize the serial port, send a prompt, and let us type on the terminal keyboard while 
echoing each character back to the terminal screen: 

  main()  
  { 

 char c;  

 // 1. init the UART2 serial port  
 initU2();  

 // 2. prompt  
 putU2(  '  >  ' );  

 // 3. main loop  
 while ( 1)  
 { 

 // 3.1 wait for a character  
 c = getU2();  

 // 3.2 echo the character  
 putU2( c);     

 } // main loop     

  } // main     

  1.     Build the project first, then follow the standard checklist to activate the Debugger 
and to program the Explorer 16.  

  2.     Connect the serial cable to the PC (directly or via a Serial-to-USB converter) and 
configure HyperTerminal for the same communication parameters: 115200, n, 8, 
1, RTS/CTS on the available COM port.  

  3.     Click the HyperTerminal  Connect  button to start the terminal emulation.  

  4.     Select  Run  from the Debugger menu to execute the demonstration 
program.
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  If HyperTerminal is already set to provide an echo for each character sent, you will 
see double—literally! To disable this functionality, first hit the  Disconnect  button on 
HyperTerminal. Then select  File | Properties  to open the Properties dialog box, and 
select the Settings Pane  tab (see  Figure 9.4   ). This will be a good opportunity to set a 
couple more options that will come in handy in the rest of the exploration.

 Figure 9.4 :     The HyperTerminal Properties dialog box Settings pane.    

      Note     

 I recommend, for now, that you do not attempt to single-step or use breakpoints or the 
RunToCursor function when using the UART! See the  “ Tips  &  Tricks ”  section at the end of the 
chapter for a detailed explanation.      
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  5.     Select the  VT100 terminal  emulation mode so that a number of commands 
(activated by special  “ escape ”  strings) will become available and will give us 
more control over the cursor position on the terminal screen.  

  6.     Select  ASCII Setup  to complete the configuration. In particular, make sure that 
the Echo typed characters locally  function is  not  checked (this will immediately 
improve your  . . .  vision). See  Figure 9.5   .  

  7.     Also check the  Append line feeds to incoming line ends  option. This will 
make sure that every time an ASCII carriage return ( \r ) character is received, an 
additional line feed ( \n ) character is inserted automatically.  

 Figure 9.5 :     ASCII Setup dialog box.    

  Building a Simple Console Library 
 To transform our demo project in a proper terminal console library that could become 
handy in future projects, we need only a couple more functions that will complete the 
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puzzle: a function to print an entire (zero-terminated) string and a function to input a full 
text line. Printing a string is, as you can imagine, the simple part:       

  int puts( char *s)  
  { 

 while( *s)               // loop until *s ==  ' \0 ' , end of string 
 putU2( *s++);               // send char and point to the next one     

 putU2(  ' \r ' );               // terminate with a cr / line feed     

  } // puts     

 It is just a loop that keeps calling the  putU2()  function to send, one after the other, each 
character in the string to the serial port. 

 Reading a text string from the terminal (console) into a string buffer can be equally 
simple, but we have to make sure that the size of the buffer is not exceeded (should the 
user type a really long string), and we have to convert the carriage return character at the 
end of the line in a proper \0  character for the string termination:       

  char *getsn( char *s, int len)  
  { 

 char *p = s;               // copy the buffer pointer  
 do{ 
 *s = getU2();               // wait for a new character  
 if ( *s== ' \r ' )               // end of line, end loop 
 break;     

 s++;               // increment buffer pointer  
 len -  - ;     

 } while ( len > 1 );             // until buffer full  

 *s= ' \0 ' ;               // null terminate the string  

 return p;               // return buffer pointer     

  } // getsn     

 In practice, the function as presented would prove very hard to use. There is no echo of 
what is being typed, and the user has no room for error. Make only the smallest typo and 
the entire line must be retyped. If you ’ re like me, you make a lot of typos all the time, 
and the most battered key on your keyboard is the Backspace key. A better version of the 
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getsn()  function must include character echo and at least provisions for the Backspace 
key to perform basic editing. It really takes only a couple more lines of code. The echo 
is quickly added after each character is received. The Backspace character (identified 
by the ASCII code 0x8) is decoded to move the buffer pointer one character backward 
(as long as we are not at the beginning of the line already). We must also output a speci-
fic sequence of characters to visually remove the previous character from the terminal 
screen:

  char *getsn( char *s, int len)  
  { 

 char *p = s;               // copy the buffer pointer  
 int cc = 0;               // character count  
 do{ 

 *s = getU2();               // wait for a new character  
 putU2( *s);               // echo character  

 if (( *s == BACKSPACE) &  & ( s > p))  
 { 

 putU2(  '   ' );              // overwrite the last character  
 putU2( BACKSPACE);  
 len++;  
 s - - ;              // back the pointer  
 continue;     

 }  
 if ( *s== ' \n ' )               // line feed, ignore it 
 continue;     

 if ( *s== ' \r ' )               // end of line, end loop 
 break;     

 s++;               // increment buffer pointer  
 len -  - ;     

 } while ( len > 1 );             // until buffer full  

 *s =  ' \0 ' ;               // null terminate the string  

 return p;               // return buffer pointer     

  } // getsn     
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 Put all the functions in a separate file that we will call conU2.c. Then create a small 
header file conU2.h, to decide which functions (prototypes) and which constants to 
publish and make visible to the outside world:       

  /*
  ** CONU2.h 
  ** console I/O library for Explorer16 board  
  */

  // I/O definitions for the Explorer16  
  #define CTS                _RF12               // Cleart To Send, in, HW handshake  
  #define RTS                _RF13               // Request To Send, out, HW handshake  
  #define BACKSPACE 0 x 8               // ASCII backspace character code  

  // init the serial port UART2, 115200, 8, N, 1, CTS/RTS  
  void initU2( void);  

  // send a character to the serial port  
  int putU2( int c);  

  // wait for a new character to arrive to the serial port  
  char getU2( void);  

  // send a null terminated string to the serial port  
  int puts( char *s);  

  // receive a null terminated string in a buffer of len char  

  char * getsn( char *s, int n);     

  Testing a VT100 Terminal 
 Since we have enabled the VT100 terminal emulation mode (see the previous 
HyperTerminal settings), we now have a few commands available to better control 
the terminal screen and cursor position, such as: 

●       clrscr() , to clear the terminal screen  

●       home() , to move the cursor to the home position in the upper-left corner of the 
screen

 These commands are performed by sending so-called  “ escape sequences, ”  defined in 
the ECMA-48 standard (also ISO/IEC 6429 and ANSI X3.64), also referred to as ANSI 
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escape codes. They all start with the characters  ESC  (ASCII 0 x 1b) and the character 
[  (left square bracket). 

  // useful macros for VT100 terminal emulation  
  #define clrscr() putsU2(  " \x1b[2J " )  

  #define home()   putsU2(  " \x1b[1,1H " )     

 To test the console library we can now write a small program that will: 

  1.     Initialize the serial port 

  2.     Clear the terminal screen 

  3.     Send a welcome message/banner 

  4.     Send a prompt character 

  5.     Read a full line of text  

  6.     Print the text on a new line    

 Save the following code in a new file that we will call CONU2test.c:       

  /*
  ** CONU2 Test  
  ** UART2 RS232 asynchronous communication demonstration code  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include  < p32xxxx.h >   
  #include  " CONU2.h "   

  #define BUF_SIZE 128  

  main()  
  { 

 char s[BUF_SIZE];  

 // 1. init the console serial port  
 initU2();  
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 // 2. text prompt  
 clrscr();  
 home();  
 puts(  " Exploring the PIC32! " );  

 // 3. main loop  
 while ( 1)  
 { 

 // 3.1 read a full line of text  
 getsn( s, sizeof(s));  
 // 3.2 send a string to the serial port  
 puts( s);     

 } // main loop     

  }// main     

  1.     Create a new project using the New Project checklist, and add all three files 
conU2.h, conU2.c, and conU2test.c to the project and build all.  

  2.     Use the appropriate debugger checklist to connect and program the Explorer 16 
board.

  3.     Test the editing capabilities of the new console library you just completed. 

  The Serial Port as a Debugging Tool 
 Once you have a small library of functions to send and receive data to a console through 
the serial port, you have a new powerful debugging tool available. You can strategically 
position calls to print functions to present the content of critical variables and other 
diagnostic information on the terminal. You can easily format the output to the most 
convenient format for you to read. You can add input functions to set parameters that can 
help better test your code, or you can use the input function to simply pause the execution 
and give you time to read the diagnostic output when required. This is one of the oldest 
debugging tools, effectively used since the first computer was invented and connected to 
a teletypewriter.  

 The Matrix Project 
 To finish today ’ s exploration on a more entertaining note, let ’ s develop a new demo 
project that we will call the matrix . The intent is that of testing the speed of the serial 
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port and the PC terminal emulation by sending large quantities of text to the terminal and 
clocking its performance. The only problem is that we don ’ t (yet) have access to a large 
storage device from which to extract some meaningful content to send to the terminal. So 
the next best option is that of  “ generating ”  some content using a pseudo-random number 
generator. The stdlib.h library offers a convenient  rand()  function that returns a positive 
integer between  0  and  RAND_MAX  (which, in the MPLAB C32 implementation, can be 
verified to be equal to the largest signed 32-bit integer available). 

 Using the  “ reminder of ”  operator (denoted by the  %  symbol in C language), we can 
reduce its output to any smaller integer range and, in our example, produce a subset of 
values that corresponds to ASCII printable characters only. The following statement, for 
example, will produce only characters in the range from  33  to  127 :       

  putU2( 33+(rand()%94));     

 To generate a more appealing and entertaining output, especially if you happened to 
watch the movie  The Matrix , we will present the (random) content by columns instead 
of rows. We will use the pseudo-random number generator to change the content and the 
 “ length ”  of each column as we periodically redraw the entire screen: 

  /*
  ** The UART Matrix  
  **  
  */
  #include  < p32xxxx.h >   
  #include  < stdlib.h >   

  #include  " CONU2.h "   

  #define COL               40 
  #define ROW               23 
  #define DELAY               3000 

  main()  
  { 

 int v[40];             // length of each column  
 int i, j, k;  

 // 1. initializations  
 T1CON = 0 x 8030;               // TMR1 on, prescale 256, int clock (Tpb)  
 initU2();               // initialize UART (115200, 8N1, CTS/RTS)  
 clrscr();               // clear the terminal (VT100 emulation)  
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 // 2. randomize the sequence  
 getU2();               // wait for a character input  
 srand( TMR1);               // use the current timer value as seed  

 // 3. init each column length  
 for( j = 0; j < COL; j++) 

 v[j]=rand()%ROW;     

 // 4. main loop  
 while( 1)  
 { 

 home();           

 // 4.1 refresh the entire screen, one row at a time  
 for( i=0; i < ROW; i++) 
 { 

 // 4.1.1 refresh one column at a time  
 for( j=0; j < COL; j++) 
 { 

    // update each column  
    if ( i  <  v[j]) 
    putU2( 33 + (rand()%94));     
    else 
    putU2(  '   ' );    

    // additional column spacing  
    putU2(  '   ' );    

 } // for j  

 // 4.1.2 empty string, advance to next line  
 puts( "  " );     

 } // for i  

 // 4.2 randomly increase or reduce each column length  
 for( j=0; j < COL; j++) 
 { 
 switch ( rand()%3)  

 {
    case 0: // increase length 
    v[j]++;  
    if (v[j] > ROW) 
    v[j]=ROW;     
    break;     
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  case 1: // decrease length
    v[j] -  - ;  
    if (v[j] < 1) 
    v[j]=1;     
    break;  

 default:// unchanged
    break;  

 } // switch     
 } // for j  
 } // main loop  

  } // main     

 Forget the performance—watching this code run is fun. It is too fast anyway; in fact, you 
will have to add a small delay loop (inside the  for  loop in 4.1) to make it more pleasing 
to the eye:       

 // 4.1.0 delay to slow down the screen update  
 TMR1 = 0;  

 while( TMR1 � DELAY);     

      Note     

 Remember to take the blue pill next time! 

  Debriefing 
 In this lesson we developed a small console I/O library while reviewing the basic 
functionality of the UART module for operation as an RS232 serial port. We connected 
the Explorer 16 board to a VT100 terminal (emulated by Windows HyperTerminal). 
We will take advantage of this library in the next few lessons to provide us with a new 
debugging tool and possibly as a user interface for more advanced projects.  

 Notes for the C Experts 
 I am sure that, at this point, you are wondering about the possibility of using the more 
advanced library functions defined in the stdio.h library, such as  printf() , to direct the 
stdout  output stream to the UART2 peripheral. Not only is this possible, but you can 
consider it done! 
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 In addition, the stdio.h library defines two helper functions,  _mon_putc()  and  _mon_
getc() , that can be used to customize the behavior of the standard library. They are 
declared with the attribute  weak , which means that the MPLAB C32 linker won ’ t 
complain about you trying to redefine them. In fact, you are supposed to redefine them in 
order to implement new functionalities, such as using the SPI port as your input/output 
stream or redirecting the output to an LCD display and so on. 

      Note     

 Remember that whether you customize the stdio.h functions or not, you are always responsible 
for the proper interface initialization. So before the first call to  printf() , make sure 
the UART2 or your communication peripheral of choice is enabled and the baud rate is set 
correctly. 

  Notes for the PIC® Microcontroller Experts 
 Sooner or later, every embedded control designer will have to come to terms with the 
USB bus. If, for now, a small  “ dongle ”  (converting the serial port to a USB port) can be a 
reasonable solution, eventually you will find opportunities and designs that will actually 
benefit from the superior performance and compatibility of the USB bus. Several 8- and 
16-bit PIC microcontroller models already incorporate a USB Serial Interface Engine 
(SIE) as a standard communication interface. Microchip offers a free USB software stack 
with drivers and ready-to-use solutions for the most common classes of application. 

 One of them, known as the Communication Device Class (CDC), makes the USB 
connection look completely transparent to the PC application so that even HyperTerminal 
cannot tell the difference. Most important, you will not need to write and/or install any 
special Windows drivers. When writing the application in C, you won ’ t even notice the 
difference, if not for the absence of a need to specify any communication parameter. 
In USB there is no baud rate to set, no parity to calculate, no port number to select 
(incorrectly), and the communication speed is so much higher  . . .   

  Tips  &  Tricks 
 As we mentioned during one of the early exercises presented in this lesson, single-
stepping through a routine that enables and uses the UART to transmit and receive 
data from the HyperTerminal program is a bad idea. You will be frustrated seeing the 
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HyperTerminal program misbehave and/or simply lock up and ignore any data sent to it 
without any apparent reason. 

 To understand the problems, you need to know more about how the MPLAB ICD2 
in circuit debugger operates. After executing each instruction when in single-step 
mode or upon encountering a breakpoint, the ICD2 debugger not only stops the CPU 
execution but also  “ freezes ”  all the peripherals. It freezes them, as in dead-cold-ice all 
of a sudden; not a single clock pulse is transmitted through their digital veins. When this 
happens to a UART peripheral that is busy in the middle of a transmission, the output 
serial line (TX) is also frozen in the current state. If a bit was being shifted out in that 
precise instant, and specifically if it was a 1, the TX line will be held in the  “ break ”
state (low) indeterminately. The HyperTerminal program, on the other side, would sense 
this permanent  “ break ”  condition and interpret it as a line error. It will assume that 
the connection is lost and it will disconnect. Since HyperTerminal is a pretty  “ basic ”  
program, it will not bother letting you know what is going on; it will not send a beep, not 
an error message, nothing—it will just lock up! 

 If you are aware of the potential problem, this is not a big deal. When you restart your 
program with the ICD2, you will only have to remember to click the HyperTerminal 
Disconnect button first and then the Connect button again. All operations will resume 
normally.  

  Exercises 
  1.     Write a console library with buffered I/O (using interrupts) to minimize the 

impact on program execution (and debugging).  

  2.     Develop a simple command-line interpreter that recognizes a small defined set of 
keywords to assist in debugging by inspecting and modifying the value of RAM 
memory locations and/or providing hexadecimal memory dumps of the Flash 
memory.      

   Books
        Axelson ,    J.         ,      Serial Port Complete       ,  second edition    (    Lakeview Research      ,  Madison, 

WI      ,  2007   )        .     This new edition was published just in time for me to include it here. 
The author is most famous for her  USB Complete  ”  book (see below), considered 
the  reference book for all embedded-control programmers. Over time she has 
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developed and maintained a whole series completely dedicated to serial and parallel 
communication interfaces. 

        Axelson ,    J.         ,      USB Complete       ,  third edition    (    Lakeview Research      ,  Madison, WI      ,  2005   )        .     By 
the time you read this book, most probably new models of the PIC32MX family will 
have been announced offering USB communication capabilities. So, I thought you 
might appreciate this recommendation. Jan Axelson ’ s book has reached the third 
edition already. She has continued to add material at every step and still managed to 
keep things very simple. 

        Eady ,    F.         ,      Implementing 802.11 with Microcontrollers: Wireless Networking for Embedded 
Systems Designers        (    Newnes      ,  Burlington, MA      ,  2005   )        .     Fred brings his humor 
and experience in embedded programming to make even wireless networking seem 
easy.       

 Links 
         http://en.wikipedia.org/wiki/ANSI_escape_code  . This is a link to the complete table of 

ANSI escape codes as implemented by the VT100 HyperTerminal emulation. 

www.cs.utk.edu/~shuford/terminal/dec.html  . This is a real dive into a piece of the history 
of computers. I used these terminals; does this make me look old?            
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     Glass = Bliss   

  The Plan 
 I would be surprised if you told me that on your desk next to your PC there was still a 
large and bulky CRT computer monitor. In a matter of a few years the entire personal 
computer industry has shifted to the new technology: flat LCD panels of ever larger size 
and higher resolution. In the embedded-control world, something similar has happened. 
LED seven-segment displays are so 1990s! Small LCD displays have become ubiquitous 
and, besides consuming a fraction of the power of their LED counterparts, they provide 
alphanumeric output (i.e., they support text) and, ever more often, graphics as well. But 
wait, maybe there is already another generation of organic LED displays (OLEDs) just 
around the corner and ready to demand revenge. 

 In this lesson, we will learn how to interface with a small and inexpensive LCD alphanumeric 
display module. This project will be a good excuse for us to learn and use the Parallel Master 
Port (PMP), a flexible parallel interface available on all PIC32MX microcontrollers. 

  Preparation 
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32 
compiler, and the MPLAB SIM simulator, this lesson will require only the use of the 
Explorer 16 demonstration board and your In-Circuit Debugger of choice (PIC32 Starter 
kit, ICD2, REAL ICE, or the like).  

  The Exploration 
 The Explorer 16 board can accommodate three different types of dot-matrix, 
alphanumeric LCD display modules and one type of graphic LCD display module. By 

D A Y  1 0 
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default, it comes with a simple  “ 2-rows by 16-character ”  display and a 3V alphanumeric 
LCD module (most often a Tianma TM162JCAWG1) compatible with the industry-
standard HD44780 controllers. These LCD modules are complete display systems 
composed of the LCD glass, column, and row multiplexing drivers; power supply 
circuitry; and an intelligent controller, all assembled together in so-called Chip On 
Glass (COG) technology. Thanks to this high level of integration, the circuitry required 
to control the dot-matrix display is greatly simplified. Instead of the hundreds of pins 
required by the column-and-row drivers to directly control each pixel, we can interface to 
the module with a simple 8-bit parallel bus using just 11 I/Os. 

 On alphanumeric modules (see  Figure 10.1   ) in particular, we can directly place ASCII 
character codes into the LCD module controller RAM buffer (known as the Display 
Data RAM buffer, or DDRAM). The output image is produced by an integrated character 
generator (a table) using a 5 �  7 grid of pixels to represent each character. The table 
(see  Figure 10.2   ) typically contains an extended ASCII character set in the sense that 
it has been somewhat merged with a small subset of Japanese Kata Kana characters 
as well some symbols of common use. While the character generator table is mostly 
implemented in the display controller ROM, various display models offer the possibility 
to extend the character set by modifying/creating new characters (from 2 to 8) accessing 
a second small internal RAM buffer (the Character Generator RAM buffer, or 
CGRAM).
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 Figure 10.1 :     Default alphanumeric LCD module connections.    
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  HD44780 Controller Compatibility 
 As mentioned, the 2  �  16 LCD module used in the Explorer 16 board is one among a 
vast selection of LCD display modules available on the market in configurations ranging 
from 1 to 4 lines of 8, 16, 20, 32, and up to 40 characters each and that are compatible 
with the original HD44780 chipset, today considered an industry standard. 

 The HD44780 compatibility means that the integrated controller contains just two 
separately addressable 8-bit registers: one for ASCII data and one for commands/status. 
The standard sets of commands shown in  Tables 10.1 and 10.2      can be used to set up and 
control the display. 

 Thanks to this commonality, any code we will develop to drive the LCD on the Explorer 
16 board will be immediately available for use with any of the other HD44780-
compatible alphanumeric LCD display modules.  

Char.code

����0000

����0001

����0010

����0011

����0100

����0101

����0110

����0111

����1000

����1001

����1010

����1011

����1100

����1101

����1110

����1111

0 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1

 Figure 10.2 :     Character generator table used by HD44780-compatible 
LCD display controllers.    
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 Table 10.1 :     The HD44780 instruction set.  

 Instruction  Code Description  Execution
Time   RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

 Clear 
display

 0  0  0  0  0  0  0  0  0  1  Clears display and returns 
cursor to the home position 
(address 0). 

 1.64 mS 

 Cursor 
home

 0  0  0  0  0  0  0  0  1  *  Returns cursor to home 
position (address 0). Also 
returns display being shifted 
to the original position. 
DDRAM contents remain 
unchanged.

 1.64 mS 

 Entry 
mode set 

 0  0  0  0  0  0  0  1  I/D  S  Sets cursor move direction 
(I/D), specifies to shift the 
display (S). These operations 
are performed during data 
read/write. 

 40 uS 

 Display 
on/off 
control 

 0  0  0  0  0  0  1  D  C  B  Sets on/off of all display 
(D), cursor on/off (C), and 
blink of cursor position 
character (B). 

 Cursor/
display
shift 

 0  0  0  0  0  1  S/C  R/L  *  *  Sets cursor move or 
display shift (S/C), 
shift direction (R/L). 
DDRAM contents remain 
unchanged.

 40 uS 

 Function 
set

 0  0  0  0  1  DL  N  F  *  *  Sets interface data length 
(DL), number of display 
lines (N), and character 
font (F). 

 Set 
CGRAM
address 

 0  0  0  1  CGRAM address  Sets the CGRAM address. 
CGRAM data is sent and 
received after this setting. 

 40 uS 

 Set 
DDRAM
address 

 0  0  1  DDRAM address  Sets the DDRAM address. 
DDRAM data is sent and 
received after this setting 

 40 uS 

 Read busy 
flag and 
address 
counter 

 0  1  BF  CGRAM/DDRAM address  Reads busy flag (BF), 
indicating internal operation 
is being performed, and 
reads CGRAM or DDRAM 
address counter contents 
(depending on previous 
instruction).

  0 uS 

 Write to 
CGRAM or 
DDRAM

 1  0  write data  Writes data to CGRAM or 
DDRAM.

 40 uS 

 Read from 
CGRAM or 
DDRAM

 1  1  read data  Reads data from CGRAM or 
DDRAM.

 40 uS 
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  The Parallel Master Port 
 The simplicity of the 8-bit bus shared by all these display modules is remarkable. Beside 
the eight bidirectional data lines (which, by enabling a special “ nibble ”  mode, could be 
reduced to just four for further I/O saving), there is: 

●      An Enable strobe line (E) 

●      A Read/Write selection line (R/W) 

●      An address line (RS) for the register selection 

 It would be simple enough to control the 11 I/Os by accessing manually (bit banging) the 
individual PORTE and PORTD pins to implement each bus sequence, but we will take 
this opportunity instead to explore the capabilities of a new peripheral introduced with 
the PIC24 architecture and enhanced in the PIC32 architecture: the Parallel Master Port 
(PMP). This addressable parallel port was designed to ease access to a large number of 
external parallel devices of common use, ranging from analog-to-digital converters, RAM 
buffers, ISA bus compatible interfaces, LCD display modules, and even hard disk drives 
and Compact Flash cards. 

 Table 10.2 :     HD44780 command bits.  

 Bit Name  Setting/Status 

 I/D  0 � Decrement cursor position  1 � Increment cursor position 

 S  0 � No display shift  1 � Display shift 

 D  0 � Display off  1 � Display on 

 C  0 � Cursor off  1 � Cursor on 

 B  0 � Cursor blink off  1 � Cursor blink on 

 S/C  0 � Move cursor  1 � Shift display 

 R/L  0 � Shift left  1 � Shift right 

 DL  0 � 4-bit interface  1 � 8-bit interface 

 N  0 � 1/8 or 1/11 Duty (1 line)  1 � 1/16 Duty (2 lines) 

 F  0 � 5 �  7 dots  1 � 5 �  10 dots 

 BF  0 � Can accept instruction  1 � Internal operation in progress 
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 You can think of the PMP as a sort of flexible I/O bus added to the PIC32 architecture 
that relieves the microcontroller of the mundane task of managing slow external 
peripherals. The PMP offers: 

●      Eight- or 16-bit bidirectional data path 

●      Up to 64 k of addressing space (16 address lines)  

●      Six additional strobe/control lines, including: 

  1.     Enable  

  2.     Address latch 

  3.     Read and write (separate or combined) 

  4.     Chip Select (2x) 

 The PMP can also be configured to operate in slave mode to attach, as an addressable 
peripheral, to a larger microprocessor/microcontroller system. 

 Both bus read and bus write sequences are fully programmable so that not only can the 
polarity and choice of control signals be configured to match the target bus, the timing can 
also be finely tuned to adapt to the speed of the peripherals to which we want to interface. 

  Configuring the PMP for LCD Module Control 
 As in all other PIC32 peripherals, there is a set of control registers dedicated to the PMP 
configuration. The first and most important one is PMCON. You will recognize the familiar 
sequence of control bits common to all the modules xxCON  registers (see  Figure 10.3   ). 

 The list of control registers that we will need to initialize is a bit longer this time and 
also includes PMMODE,PMADDR,PMSTAT,and PMAEN.  They are packed with powerful 
options and they all require your careful consideration. Instead of proceeding through a 
lengthy review of each and every one of them, I will list only the key choices required 
specifically by the LCD module interface: 

●      PMP enabled 

●      Fully demultiplexed interface (separate data and address lines will be used)  

●      Enable strobe signal (on pin  RD4 )

●      Read signal (on pin  RD5 )
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●      Enable strobe active high  

●      Read active high, write active low  

●      Master mode with read and write signals on the same pin ( RD5 )

●      Eight-bit bus interface (using PORTE pins) 

●      Only one address bit is required, so we will choose the minimum configuration, 
including PMA0  (on pin  RB15 ) and  PMA1  (unused)    

 Also, considering that the typical LCD module is an extremely slow device, we will 
better select the most generous timing, adding the maximum number of wait states 
allowed at each phase of a read or write sequence: 

●      4  �  Tpb wait for data set up before read/write  

●      15  �  Tpb wait between R/W and enable  

●      4  �  Tpb wait data set up after enable 

  A Small Library of Functions to Access an LCD Display 
 Create a new project called  Liquid  using the New Project checklist and a new source file 
liquid.c  to start creating a small LCD interface library. 

U-0

bit 31

bit 23

bit 15

bit 7

R/W-0
ON

CSF1 CSF0 ALP CS2P CS1P WRSP RDSP

FRN SIDL ADRMUX1 ADRMUX0 PTWREN PTRDEN
R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0

bit 16

bit 8

bit 0

bit 24

U-0 U-0 U-0 U-0 U-0 U-0 U-0

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

— — — — — — — —

—

—

 Figure 10.3 :     PMCON control register.    
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 We will start writing the LCD initialization routine first. It is natural to start with the 
initialization of the PMP port key control registers:       

  void LCDinit(void)  
  { 

 // PMP initialization  
 PMCON = 0x83BF;         // Enable the PMP, long waits  
 PMMODE = 0x3FF;         // Master Mode 1  

 PMPEN = 0x0001;         // PMA0 enabled        

 After these steps, we are able to communicate with the LCD module for the first time, 
and we can follow a standard LCD initialization sequence as recommended by the 
manufacturer. The initialization sequence must be timed precisely (see the HD44780 
instruction set for details) and cannot be initiated before at least 30 ms have been 
granted to the LCD module to proceed with its own internal initialization (power on 
reset) sequence. For simplicity and safety, we will hardcode a delay in the LCD module 
initialization function, and we will use the Timer1 module to obtain simple but precise 
timing loops for all subsequent steps: 

  // init TMR1 
 T1CON = 0x8030;         // Enabled,1:256 Fpb, 1 tick  ~  6 us  

 // wait for >30 ms  

 TMR1 = 0; while(TMR1<6000); // 6000 x 6 us = 36 ms        

 For our convenience, we will also define a couple of constants that will hopefully help us 
make the following code more readable: 

  #define LCDDATA 1       // RS = 1 ; access data register  
  #define LCDCMD 0        // RS = 0 ; access command register  

  #define PMDATA PMDIN1   // PMP data buffer     

 To send each command to the LCD module, we will select the command register (setting 
the address PMA0 = RS = 0 ) first. (see  Figure 10.4   ). 

 Then we will start a PMP write sequence by depositing the desired command byte in the 
PMP data output buffer:       

  PMADDR = LCDCMD;          // command register (ADDR = 0)  

  PMDATA = 0x38;            // set: 8-bit interface, 2 lines, 5x7     
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 The PMP will perform the complete bus write sequence as follows: 

  1.     The address will be published on the PMP address bus ( PMA0 ).

  2.     The content of  PMDATA  will be published on the PMP data bus ( PMD0-PMD7 ).

  3.     The R/W signal will be asserted low ( RD5 ).

  4.     After 4  �  Tpb ( Tb ) the strobe signal E will be asserted high.  

  5.     After 15  �  Tpb ( Tm ) the Enable strobe will be de-asserted.  

  6.     After 4  �  Tpb ( Te ) the data will be removed from the bus. 

 Notice how this sequence is quite long as it extends for 20  �  Tpb or more than 0.5 us 
after the PIC32 has initiated it. In other words, the PMP will still be busy executing 
part of this sequence while the PIC32 will have already executed at least another 40 
instructions or more. Since we are going to wait for a considerably longer amount of 
time anyway ( � 40 us) to allow the LCD module to execute the command, we will not 
worry about the time the PMP requires to complete the command; we ’ ll just have to wait 
patiently.       

  TMR1 = 0; while( TMR1<8);   // 8 x 6 us = 48 us     

RS (PMA0) 

R/W (RD5) 

E (RD4) 

PMD0-7 (RE0-7) 

Tm

Tb

Te

 Figure 10.4 :     PMP-to-LCD display 8-bit interface write command sequence.    
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 We will then proceed similarly with the remaining steps of the LCD module initialization 
sequence:

  PMDATA = 0x0c; // ON, no cursor, no blink  
  TMR1 = 0; while( TMR1<8); // 8 x 6 us = 48 us  
  PMDATA = 0x01; // clear display
  TMR1 = 0; while( TMR1<300); // 300 x 6 us = 1.8 ms  

  PMDATA = 0x06; // increment cursor, no shift  

  TMR1 = 0; while( TMR1<300);  // 300 x 6 us = 1.8 ms     

 After the LCD module initialization, things will get a little easier and the timing loops 
will no longer be necessary, because we will be able to use the LCD module Read Busy 
Flag command. This will tell us whether the integrated LCD module controller has 
completed the last command and is ready to receive and process a new one. To read the 
LCD status register containing the LCD busy flag, we will need to instruct the PMP 
to execute a bus read sequence. This is a two-step process: First, we initiate the read 
sequence by reading (and discarding) the contents of the PMP data buffer ( PMPDIN ) a 
first time. When the PMP sequence is completed, the data buffer will contain the actual 
value read from the bus, and we will read its contents from the PMP data buffer again. 
But how can we tell when the PMP read sequence is complete? 

 Simple: We can check the PMP busy flag ( PMMODEbits.BUSY ) in the PMMODE control 
register (see  Figure 10.5   ). 
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LCD DisplayPMP

LCDBUSY
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R/W Data

Command

E

RE0

RE7

RB15

RD4

PMADDR

PMMODE

PMPBUSY

...

 Figure 10.5 :     PMP-to-LCD connection block diagram.    
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 In summary, to check the LCD module busy flag, we will need to check the PMP busy 
flag first to make sure that any previous command is completed, issue a read command, 
wait for the PMP busy flag again, and only at this point will we gain access to the actual 
LCD module status register contents, including the LCD busy flag. 

 By passing the register address as a parameter to the read function, we will obtain a more 
generic function that will be able to read the LCD status register or the data register, as in 
the following code:  

  char readLCD( int addr)  
  { 

 int dummy;  
 while( PMMODEbits.BUSY); // wait for PMP to be available  
 PMADDR = addr; // select the command address  
 dummy = PMDATA; // init read cycle, dummy read  
 while( PMMODEbits.BUSY); // wait for PMP to be available  
 return( PMDATA); // read the status register     

  } // readLCD     

 The LCD module status register contains two pieces of information: the LCD busy flag 
and the LCD RAM pointer current value. We can use two simple macros,  busyLCD()
and addrLCD() , to split the two pieces and a third one,  getLCD() , to access the data 
register:       

  #define busyLCD() readLCD( LCDCMD)  &  0x80  
  #define addrLCD() readLCD( LCDCMD)  &  0x7F  

  #define getLCD() readLCD( LCDDATA)     

 Using the  busyLCD()  function we can create a function to write data or commands to the 
LCD module: 

  void writeLCD( int addr, char c)  
  { 
 while( busyLCD());  
 while( PMMODEbits.BUSY);   // wait for PMP to be available  
 PMADDR = addr;  
 PMDATA = c;     

  } // writeLCD     



230   Day 10

 A few additional macros will help complete the library: 

●       putLCD()  will send ASCII data to the LCD module: 
  #define putLCD( d)  LCDwrite( LCDDATA, (d))     

●       cmdLCD()  will send generic commands to the LCD module: 
  #define cmdLCD( c)  writeLCD( LCDCMD, (c))     

●       homeLCD()  will reposition the cursor on the first character of the first row:          
  #define homeLCD()   writeLCD( LCDCMD, 2)     

●       clrLCD()  will clear the entire contents of the display: 
  #define clrLCD()    writeLCD( LCDCMD, 1)     

 And finally, for our convenience, we might want to add  putsLCD() , a function that will 
send an entire null terminated string to the display module: 

  void putsLCD( char *s)  
  {  
 while( *s)  
 putLCD( *s++);  

  }//putsLCD     

 Let ’ s put all of our work together, adding a short main function: 

  main( void)  
  { 

// initializations 
 initLCD();  

 // put a title on the first line  
 putsLCD( "Exploring        " );  

 // put the cursor on the second line (addr 0x40)  
 cmdLCD( 0x80 | 0x40);  
 putsLCD(  “        the PIC32");  

 // main loop, empty for now  
 while ( 1)  
 {  
 }     

  } // main     
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 If all went well, after building the project and programming the Explorer 16 board with 
the debugger of choice, you will now have the great satisfaction of seeing the title string 
showing, split between the two rows of the LCD display.  

  Building an LCD Library and Using the PMP Library 
 The exact same functionality can be obtained using the specific PMP peripheral library 
by including the pmp.h library or simply including plib.h. Four functions in particular 
provide us with all the tools we need to control the PMP and dialog with the LCD 
display:

●       mPMPOpen() , which helps us configure the parallel master port  

●       PMPSetAddress() , which allows us to set the address register  

●       PMPMasterWrite() , which initiates a basic write sequence  

●       mPMPMasterReadByte() , which initiates a basic read sequence and returns a 
byte value    

 Since we are at it, we will not only rewrite the code to use the more descriptive macros 
and definitions offered by the library, we will also rearrange the code a little so to 
transform it into a practical little library of its own to be used in the near future in other 
projects with the Explorer 16 demonstration board. 

 Let ’ s start by creating a new project that we will call  LCD library . Then let ’ s create 
a new source file called  LCDlib.c . Here is the new  initLCD()  function as expressed 
using the PMP library functions and macros: 

  void initLCD( void)  
  { 

 // PMP initialization  
 mPMPOpen( PMP_ON | PMP_READ_WRITE_EN | 3, 

             PMP_DATA_BUS_8 | PMP_MODE_MASTER1 |  
             PMP_WAIT_BEG_4 | PMP_WAIT_MID_15 |  
             PMP_WAIT_END_4,  
             0x0001,           // only PMA0 enabled  
             PMP_INT_OFF);     // no interrupts used     

 // wait for >30 ms  
 Delayms( 30);  
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 //initiate the HD44780 display 8-bit init sequence  
 PMPSetAddress( LCDCMD);       // select command register  
 PMPMasterWrite( 0x38);        // 8-bit int, 2 lines, 5x7  
 Delayms( 1);                  //>48 us  

 PMPMasterWrite( 0x0c);        // ON, no cursor, no blink  
 Delayms( 1);                  //>48 us  

 PMPMasterWrite( 0x01);        // clear display  
 Delayms( 2);                  //>1.6 ms  

 PMPMasterWrite( 0x06);        // increment cursor, no shift  
 Delayms( 2);                  //>1.6 ms     

  } // initLCD     

 Notice how I exaggerated the timing delays in the initialization sequence in order to 
use a single delay function that operates in basic increments of 1 millisecond called 
Delayms(). We will see shortly how and where to define it. 

 Here are the other core functions that will populate our simple LCD library:       

  char readLCD( int addr)  
  { 

 PMPSetAddress( addr);         // select register  
 mPMPMasterReadByte();         // initiate read sequence  
 return mPMPMasterReadByte();  // read actual data     

  } // readLCD  

  void writeLCD( int addr, char c)  
  { 

 while( busyLCD());  
 PMPSetAddress( addr);         // select register  
 PMPMasterWrite( c);           // initiate write sequence     

  } // writeLCD     

 If you found in the previous project (Liquid) that setting the cursor on the second 
line of the display was a bit awkward, you will agree that adding a little smarts to the 
putsLCD()  function could be helpful. In particular, it would be nice to allow the routine 
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to interpret a few special characters, like the  line end ,  tab,  and the  new line , similarly to 
the way a serial port and/or a console are expected to.       

  void putsLCD( char *s)  
  { 

 char c;     
  while( *s)  
  { 

 switch (*s)  
 {  
 case '\n':              // point to second line 
 setLCDC( 0x40);  
 break;     

 case '\r':              // home, point to first line 
 setLCDC( 0);  
 break;     

 case '\t':              // advance next tab (8) positions 
 c = addrLCD();  
 while( c  &  7)  
 { 

     putLCD( ' ');  
     c++;     

 }  
 if ( c > 15)           // if necessary move to second line 

     setLCDC( 0x40);     
 break;     

 default:                // print character 
 putLCD( *s);  
 break;     

 } //switch 
 s++;     

} //while     

  } //putsLCD     

 This way, printing a string containing (or terminating) with the character  \n  (new line) 
will set the cursor to the beginning of the second line of the LCD display. A  \r  character 
(line end) will place the cursor back to the beginning of the first line, and  \t  character 
(tab) will produce the expected result. 
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 A standard header and a few  #include  statements will complete the module:       

  /*
  ** LCDlib.c 
  */
  #include <p32xxxx.h>  
  #include <plib.h>  
  #include <explore.h>  
  #include <LCD.h>  

  #define PMDATA PMDIN     

 Save the LCDlib.c code file we just completed and then start a new source file in the 
MPLAB editor window. This will be the include file  LCD.h , which will complete the 
library by publishing all the macros and function prototypes required:       

  /*
  **  
  ** LCD.h 
  **  
  */
  #define HLCD    16      // LCD width=16 characters  
  #define VLCD    2       // LCD height=2 rows  

  #define LCDDATA 1       // address of data register  
  #define LCDCMD 0        // address of command register  

  void initLCD( void);  
  void writeLCD( int addr, char c);  
  char readLCD( int addr);  

  #define putLCD( d)  writeLCD( LCDDATA, (d))  
  #define cmdLCD( c)  writeLCD( LCDCMD, (c))  

  #define clrLCD()    writeLCD( LCDCMD, 1)  
  #define homeLCD()   writeLCD( LCDCMD, 2)  

  #define setLCDG( a) writeLCD( LCDCMD, (a  &  0x3F) | 0x40)  
  #define setLCDC( a) writeLCD( LCDCMD, (a  &  0x7F) | 0x80)  

  #define busyLCD()   ( readLCD( LCDCMD)  &  0x80)  
  #define addrLCD()   ( readLCD( LCDCMD)  &  0x7F)  
  #define getLCD()    readLCD( LCDDATA)  

  void putsLCD( char *s);     
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 Finally, to test the newly created LCD library, let ’ s write a small new test program that 
we will call LCDlib test.c :       

  /*
  ** LCDlib test  
  **  
  */
  // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include <p32xxxx.h>  

  #include <LCD.h>  

  main()  
  { 

 initLCD();  

 clrLCD();  
 putsLCD( "Exploring \nthe \tPIC32");  

 while( 1);     

  }     

THE EXPLORER.C LIBRARY
To help us initialize the PIC32 for maximum performance (see Day 7), vectored 
interrupts (see Day 5) and use the features offered by the Explorer16 board (such as the 
LED bar, see Day 1–3), at this point, we should start aggregating in a new small library a 
couple of handy functions. We will keep adding gradually new functions to it in the next 
few chapters but here is its first incarnation:

/*
** Explore.c
**
*/

#include <p32xxxx.h>
#include <plib.h>
#include <explore.h>
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void initEX16( void)
{
 // 1. disable the JTAG port to make the LED bar 
 // available if not using the Starter Kit
#ifndef PIC32_STARTER_KIT
 mJTAGPortEnable( 0);
#endif

 // 2. Sysytem config performance
 SYSTEMConfigPerformance( FCY);

 // 7. allow vectored interrupts
 INTEnableSystemMultiVectoredInt();   // Interrupt vectoring

 // 8. PORTA output LEDs0..6, make RA7 an input button
 LATA = 0;
 TRISA = 0xFF80;

} // initEX16

//
void _general_exception_handler( unsigned c, unsigned s)
{
 while (1);
} // exception handler
//

/*
** Simple Delay functions
**
** uses:    Timer1
** Notes:   Blocking function
*/

void Delayms( unsigned t)
{
 T1CON = 0x8000;     // enable TMR1, Tpb, 1:1
 while (t--)
 {  // t x 1ms loop
        TMR1 = 0;
        while (TMR1 < FPB/1000);
    }
} // Delayms
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The corresponding include file: explore.h will gather as well some useful definitions and 
the first two functions’ prototypes:

/*
** Explore.h
**
*/
#defi ne FALSE   0
#defi ne TRUE    !FALSE
#defi ne FCY     72000000L
#defi ne FPB     36000000L

// uncomment the following line if using the PIC32 Starter Kit
//#defi ne PIC32_STARTER_KIT

// function prototypes
void initEX16( void);
void Delayms( unsigned);

 Creating the  include  and  lib  Directories 
 To keep our files in order and our projects clean and tidy, we should apply a little discipline 
here and start grouping all the simple libraries we created so far two subdirectories: 

●       include , where we will put all the .h files created for the simple libraries we 
worked on so far, including: 
  1.     explore.h  

  2.     LCD.h  

  3.     conU2.h     

  4.     SEE.h  

●       lib , where we will put all the corresponding .c modules, including: 
  1.     explore.c  

  2 .    LCDlib.c 

  3 .    conU2.c       

  4.     SEE.c  
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 From now on we will refer automatically to these modules by adding the  include
directory to the include search path  of each new project. The sequence of steps required 
will be the following: 

  1.     Open the  Build Options  dialog box (see  Figure 10.6   ) by choosing  Project | 
BuildOptions . . .  | Project .

  2.     In the  “ Show Directories for ”  box, select  Include Search Path .

 Figure 10.6 :     Build options for project dialog box.    

  3.     Click the  New  button to create a new empty entry.  
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 Figure 10.7 :     Browse for folder dialog box.    

  4.     Select the  . . .  button on the rightmost edge to open the Browse dialog box (see 
 Figure 10.7   ).  

  5.     Select our new  include  directory. 

  6.     Click  OK  to close the dialog box.  

  7.     Click  OK  to accept the new setting.  

  8.     Save the project by selecting  Project | SaveProject ,    

With these settings, we will be able to refer to the LCD.h file with the  default include
statement, as in: 

  #include <LCD.h>     

    without needing to add details of the path required to reach the directory where the file is 
actually stored.
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  Advanced LCD Control 
 If you felt that the preceding discussion was not too complex or perhaps not rewarding 
enough, here we have some more interesting stuff and a new challenge for you to 
consider. 

 When we introduced the HD44780 compatible alphanumeric LCD modules, we 
mentioned how the display content was generated by the LCD module controller using 
a table, the character generator, located in ROM. But we also mentioned the possibility 
to extend the character set with  user-defined  symbols using an additional RAM buffer 
(known as the CGRAM). Writing to the CGRAM, it is possible to create from two to 
eight new character patterns, depending on the LCD display model. Of course, if we had 
32 user-defined characters, we could almost turn the entire alphanumeric display into 
a complete graphical display. Unfortunately, the most popular and inexpensive LCD 
modules, in particular the ones used on the Explorer 16 board, have only space for two 
user-defined characters. Still, there are a number of interesting things we can do with 
those. In the following, for example, we use just one of the two user-defined characters to 
illustrate how to develop a simple progress bar effect. 

 We will need a function to set the LCD module RAM buffer pointer to the beginning of 
the CGRAM area using the Set CGRAM Address command, or better a macro that uses 
the writeLCD()  function:       

        #define setLCDG( a) writeLCD( LCDCMD, (a  &  0x3F) | 0x40)     

 Once the buffer pointer is set on the CGRAM and specifically at the beginning of the 
buffer ( setLCDG( 0) ), we can use the  putLCD()  function to place 8 bytes of data in 

      Note     

 Notice the use of the angled brackets ( �� ) as opposed to the double quotes ( “   ” ) syntax. The 
difference between the two notations lies in where the compiler will look for the file to be 
included. The double quotes method we used in all previous projects tells the compiler to look 
for a file inside the current project directory. The angled brackets, on the other hand, tell the 
compiler to look for the file inside a series of directories known as the  include search path  that 
typically contains all the compiler-specific (MPLAB C32) library directories defined during the 
installation of the program on our computer but also all the additional directories we listed in 

the Include Search Path dialog box.  
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the buffer. Each byte of data will contribute 5 bits (LSb) to the construction of the eight 
rows composing the new character pattern. After repositioning the buffer pointer into the 
DDRAM area (using the macro setLCDC( 0) ), we can use the newly defined character 
with the ASCII code 0x00 . 

 Notice that by convention, although the first line of the display corresponds to addresses 
from 0  to  15  of the DDRAM buffer, the second line is always found at addresses from 
0x40  to  0x4f  independently of the display width—the number of characters that 
compose each line of the actual display.  

  Progress Bar Project 
 It is time to start our last project for the day. We ’ ll call it  Progress . Let ’ s proceed with the 
usual New Project checklist, and remember at the end to add the  include  directory in the 
include search path . 

 A new source file,  ProgressBar.c , can be immediately created by inserting the standard 
template and include  statements list: 

  /*
  **  
  ** Progress Bar  
  **  
  */
  // configuration bit settings, Fcy = 72MHz, Fpb = 36 MHz  
  #pragma config POSCMOD = XT, FNOSC = PRIPLL  
  #pragma config FPLLIDIV = DIV_2, FPLLMUL = MUL_18, FPLLODIV = DIV_1  
  #pragma config FPBDIV = DIV_2, FWDTEN = OFF, CP = OFF, BWP = OFF  
  #include <p32xxxx.h>  
  #include <explore.h>  

  #include <LCD.h>     

 We could draw a blocky progress bar using just a string of (up to) 16  “ brick ”  characters 
that can be obtained from the LCD font table by selecting the code 0xff, giving a solid 
5 �  8 black pixels pattern. But to obtain a finer resolution and smoother motion, we can 
exploit instead the user-defined character feature we just learned to use. The trick is to 
build most of the progress bar with (5  �  8) bricks and then define a single new character 
of the required thickness for the tip (see Figure 10.8   ). 
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 Here is the code required to define a progress bar tip of given thickness: 

  void newBarTip( int i, int width)  
  { 

 char bar;  
 int pos;  

 // save cursor position  
 while( busyLCD());  
 pos = addrLCD();  

 // generate a new character at position i  
 // set the data pointer to the LCD CGRAM buffer  
 setLCDG( i*8);  

 // as a horizontal bar (0-4)x thick moving left to right  
 // 7 pixel tall  
 if ( width > 4)
 width = 0;     

72%

0xff

brick brick tip

0xff 0x00

 Figure 10.8 :     Drawing a progress bar.    
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 else 
 width = 4 - width;     

 for( bar=0xff; width > 0; width--) 
 bar<<=1;            // bar >>= 1; if right to left     

 // fill each row (8) with the same pattern  
 putLCD( bar);  
 putLCD( bar);  
 putLCD( bar);  
 putLCD( bar);  
 putLCD( bar);  
 putLCD( bar);  
 putLCD( bar);  
 putLCD( bar); 
 // restore cursor position  
 setLCDC( pos);        

  } // newBarTip     

 Given this essential building block, drawing an actual progress bar requires only a few 
more lines of code: 

  void drawProgressBar( int index, int imax, int size)  
  { // index is the current progress value 

 // imax is the maximum value  
 // size is the number of character positions available  
 int i;  

 // scale the input values in the available space  
 int width=index * (size*5)/imax;  

 // generate a character to represent the tip  
 newBarTip( TIP, width % 5); // user defined character 0  

 // draw a bar of solid blocks  
 for ( i=width/5; i>0; i--) 

      putLCD( BRICK); // filled block character     

 // draw the tip of the bar  
 putLCD( TIP); // use character 0     

  } // drawProgressBar     
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 As you can see, to make the  drawProgressBar()  function really friendly, I included a 
little scaling of the input values so that the bar itself can be made to fit the desired number 
of spaces on the LCD display and the progress level is made relative to a given maximum 
value passed as a parameter. To put it to the test, we ’ ll define a loop where a counter 
value ( index ) is cycling slowly through a range of values from 0 to 99. Each value is 
shown in the first three characters of the first line of the display. The rest of the line is 
filled with the progress bar.       

  main( void)  
  { 

 int index;  
 char s[8];  

 // LCD initialization  
 initLCD();  

 index = 0;  

 // main loop  
 while( 1)  
 { 

 clrLCD();  

 sprintf( s, "%2d", index);  
 putsLCD( s); putLCD( '%');  

 // draw bar  
 drawProgressBar( index, 100, HLCD-3);  

 // advance and keep index in boundary  
 index++;  
 if ( index > 99)
 index=0;     

 // slow down the action  
 Delayms( 100);     

 } // main loop     

  } // main     

 Notice that it is important to slow the execution of the main loop by inserting a small 
delay; otherwise the refresh of the display is so rapid that all we get to see is a sort of 
ghostly faint image. Remember, LCD displays are slow little things; be patient with them! 
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 Finally, before you start building the project, remember to add all the required library 
modules we used. You will need to select the project window and right-click the source 
files to  Add file.  Browse to the  lib  directory we created today and select both the 
explore.c  module (that will give us the  Delayms()  function) and the  LCDlib.c  module. 

 Now build the project, program the Explorer 16 board with the debugger of your choice, 
and observe the code running and drawing a progress bar that moves smoothly from left 
to right to fill the entire top line of the LCD display. This is true (glass) bliss!  

  Debriefing 
 Today we learned how to use the Parallel Master Port to interface to an alphanumeric 
LCD display module, just one of many common devices that require an 8-bit parallel 
interface. Since the LCD display modules are relatively slow peripherals, it might 
seem that there has been little or no significant advantage in using the PMP instead of a 
traditional bit-banged I/O solution. In reality, even when accessing such simple and slow 
peripherals, the use of the PMP can provide two important benefits: 

●    The timing, sequence, and multiplexing of the control signals are always 
guaranteed to match the configuration parameters, eliminating the risk of 
dangerous bus collisions and/or unreliable operation as a consequence of coding 
errors or unexpected execution and timing conditions (interrupts, bugs, and so on).  

●      The MCU is completely free from tending at the external (peripheral) bus, 
allowing simultaneous execution of any number of higher-priority tasks without 
disruption of the interface timing.     

  Notes for the PIC24 Experts 
 The PMP module of the PIC32 is mostly identical to the PIC24 peripheral, yet some 
important enhancements have been included in its design. Here are the major differences 
that will affect your code while porting an application to the PIC32: 

  1.     The  PMCON  register control bits layout has been updated to resemble more closely 
the layout of most other peripherals so that the module ON ,  FRZ , and  IDL  bits are 
now located in the standard position (bit 15, bit 14, bit 13).  

  2.     The  PMBE  output signal has been removed.  

  3.     The  PMPTTL  control bit is now found in the  PMCON  register to select Schmitt trigger 
or TTL input levels. It used to be part of the  PADCFG1  register on the PIC24. 
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  4.     In the  PMMODE  register, the  IRQM=11  and  IRQM=10  selections have been 
modified. 

  5.     The  PMPEN  register is now renamed  PMAEN . This has been similarly updated on 
the latest revision of the PIC24 datasheets as well.  

  6.     A single  PMDIN  and a single  PMDOUT  registers (now 32 bits wide) give 
simultaneous access to all data buffers.     

  Tips  &  Tricks 
 Though basic alphanumeric displays are pretty much standardized around the HD44780 
controller interface and command set, things are very different when it comes to 
graphic displays. A variety of controllers are being currently offered with very different 
capabilities. The most common controllers for small LCD displays are probably the New 
Japan Radio (NJU6679) used in many monochrome displays (up to 128  �  128) and using 
a parallel interfaces very similar to the HD44780. But the new trend is represented by 
the serially interfaced EPSON ( S1D15G10 ) controllers used in many inexpensive color 
LCD displays, often referred to as  “ Nokia knock-offs ”  because their low price is mostly 
driven by the large volumes of production supposedly achieved on the latest generations 
of multimedia phones. OLED displays are also going the way of the serial interfaces 
(SPIs). Finally, when the resolution of the display grows beyond the QVGA (320*240), 
you can no longer rely on finding a complete controller chip on glass, and you have to 
start producing a complex synchronized waveform while continuously refreshing the 
screen. A QVGA or more advanced display peripheral module becomes a necessity.  

  Exercises 
  1.     As suggested in the previous explorations using asynchronous serial interfaces, 

it is possible to redirect the output of the stdio.h library routines, such as 
printf() , to the LCD display. Redefine the  _mon_putc()  Function (see the 
MPLAB C32 C Library Guide for details) to send characters to the LCD via the 
parallel master port interface.  

  2.     LCD displays are typically very slow devices. A lot of processing power is 
wasted while the PIC32 is waiting for the LCD display to perform a command. 
Using a buffering mechanism and timer interrupts implement a background LCD 
display interface. (A basic example of such a mechanism is provided in the LCD.
c code provided with the Explorer 16 demonstration board for the PIC24 and 
dsPIC platforms). 
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   Books
 Bentham, Jeremy,  TCP/IP Lean: Web Servers for Embedded Systems  (CMP Books, 

Lawrence, KS).This book will take you one level of complexity higher, showing you 
how the TCP/IP protocols, the foundation of the Internet, can be easily implemented 
in a  “ few ”  lines of C code. The author knows how to keep things  “ lean ”  as necessary 
in every embedded-control application. 

 Links 
www.microchip.com/graphics . Microchip is offering graphic libraries capable of 

supporting the most popular LCD display controllers for the 16-bit and 32-bit 
architectures. Check the availability of free and third-party supported libraries on the 
Web Graphic Design Center. www.microchip.com/stellent/idcplg?IdcService � SS_
GET_PAGE & nodeId � 1824 & appnote � en011993. This is a link to Microchip 
Application Note 833, a free TCP/IP stack for all PICmicros. www.microchip.
com/stellent/idcplg?IdcService�SS_GET_PAGE&nodeId�1824&appnote�en01
2108.  Application Note 870 describes a Simple Network Management Protocol for 
Microchip TCP/IP stack-based applications. 
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             It ’ s an Analog World   

  The Plan 
 We live in an analog world. Temperature, humidity, and pressure but also voltages and 
currents are analog. If we want our embedded-control applications to interact with the 
outside world, we need to learn to interpret analog information and convert it to digital 
so that a microcontroller can elaborate it and possibly produce an analog output again. 
The analog-to-digital converter module is one of the key interfaces to the  “ real ”  world. 
The PIC32MX family was designed with embedded-control applications in mind and 
therefore is ideally prepared to deal with the analog nature of this world. A fast analog-
to-digital converter (ADC), capable of 500,000 conversions per second, is available on all 
models with an input multiplexer that allows you to monitor a number of analog inputs 
quickly and with high resolution. In this lesson we will learn how to use the 10-bit ADC 
module available on the PIC32MX family to perform two simple measurements on the 
Explorer 16 board: reading a voltage input from a potentiometer first and a voltage input 
from a temperature sensor later.  

  Preparation 
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32 
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer 
16 demonstration board and the In-Circuit Debugger of your choice.  

 The Exploration 
 The first step in using the ADC, like any other peripheral module inside the PIC32, is 
to familiarize yourself with the module building blocks and the key control registers. 

D A Y  1 1 
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Yes, this means reading the datasheet once more, and even the Explorer 16 User Guide, to 
find out the schematics. 

 We can start by looking at the ADC module block diagram (see  Figure 11.1   ). 

 This is a pretty sophisticated structure that offers many interesting capabilities: 

●      Up to 16 input pins can be used to receive the analog inputs.  

●      Two input multiplexers can be used to select different input analog channels and 
different reference sources each.  
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 Figure 11.1 :     Ten-bit high-speed ADC block diagram.    
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●      The output of the 10-bit converter can be formatted for integer or fixed-point 
arithmetic, signed or unsigned, 16-bit and 32-bit output.  

●      The control logic allows for many possible automated conversion sequences to 
synchronize the process to the activity of other related modules and inputs.  

●      The conversion output is stored in a 32-bit-wide, 16-words-deep buffer that can be 
configured for sequential scanning or simple FIFO buffering.    

 All these capabilities require a number of control registers to be properly configured, 
and I understand how, especially at the beginning, the number of options available and 
decisions to take could make you a bit dizzy. So we will start by taking the shortest and 
simplest approach with the simplest example application: reading the position of the R6 
potentiometer on the Explorer 16 board. 

�3.3V

R6

10 K

C12

R12 470 RB5/AN5

NL

2

1
3

 Figure 11.2 :     Detail of the Explorer 16 demonstration board R6 potentiometer.    

 The 10       k Ohm potentiometer is directly connected to the power supply rails so that its 
output can span the entire range of values from 3.3       V to the ground reference. It is 
connected to the RB5  pin that corresponds to the analog input  AN5  of the ADC input 
multiplexer. 

 After creating a new project using the appropriate checklist, we can create a new source 
file  pot.c , including the usual header file and adding the definition of a couple useful 
constants. The first one,  POT , defines the input channel assigned to the potentiometer; the 
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second one, AINPUTS , is a mask that will help us define which inputs should be treated as 
analog and which ones as digital: 

  /*
  ** It ’ s an analog world  
  ** Converting the analog signal from a potentiometer  
  */
  // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  
  #include <p32xxxx.h>  

  #define POT 5 // 10 k potentiometer on AN5 input  

  #define AINPUTS 0xffef // Analog inputs POT, TSENS     

 The actual initialization of all the ADC control registers can be best performed by a short 
function, initADC() , that will produce the desired initial configuration: 

●       AD1PCFG  will be passed the mask selecting the analog input channels: 0       s will 
mark the analog inputs, 1       s will configure the respective pins as digital inputs.  

●       AD1CON1  will set the conversion to start automatically, triggered by the 
completion of the auto-timed sampling phase. Also, the output will be formatted 
for a simple unsigned, right-aligned (integer) value.  

●       AD1CSSL  will be cleared because no scanning function will be used (only one 
input).

●       AD1CON2  will select the use of MUXA and will connect the ADC reference inputs 
to the analog input rails AVdd and AVss pins.  

●       AD1CON3  will select the conversion clock source and divider.  

●      Finally we set  ADON,  and the entire ADC peripheral will be activated and ready 
for use.          

  void initADC( int amask)  
  { 
 AD1PCFG = amask; // select analog input pins  
 AD1CON1 = 0; // manual conversion sequence control  
 AD1CSSL = 0;        // no scanning required  
 AD1CON2 = 0;        // use MUXA, AVss/AVdd used as Vref+/-  
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 AD1CON3=0x1F02;         // Tad=2+1) x 2 x Tpb=6x27 ns>75 ns  
AD1CON1bits.ADON=1; // turn on the ADC     

  } //initADC     

By keeping  amask  as a parameter to the initialization routine, we make it flexible so it ’ s 
able to accept different (multiple) input channels in future applications.

Note

As for all other peripheral modules found inside the PIC32, a corresponding peripheral library 
(adc.h) offers a set of functions and macros that are supposed to simplify or at least make the 
code that accesses the ADC module more readable. Because of the great flexibility of the ADC 
module, it is my very personal opinion that it is best if you familiarize yourself first with the 
low-level details of its operation by directly accessing the few control registers rather than 
seeking early refuge in the peripheral library.

  The First Conversion 
 The actual analog-to-digital conversion is a two-step process. First we need to take a 
sample of the input voltage signal; then we can disconnect the input and perform the actual 
conversion of the sampled voltage to a digital value. The two distinct phases are controlled 
by two separate control bits in the  AD1CON1  register:  SAMP  and  DONE . The timing of the 
two phases is important to provide the necessary accuracy of the measurement: 

●      During the sampling phase, the external signal is connected to an internal 
capacitor that needs to be charged up to the input voltage. Enough time must 
be provided for the capacitor to track the input voltage, and this time is mainly 
proportional to the impedance of the input signal source (in our case, known to 
be 10       k Ohm) as well as the internal capacitor value. In general, the longer the 
sampling time, the better the result, compatible with the input signal frequency 
(not an issue in our case).  

●      The conversion phase timing depends on the selected ADC clock source. This 
is derived by the peripheral bus clock signal via a divider or, alternatively, by a 
dedicated RC oscillator. The RC option, although appealing for its simplicity, is 
a good choice when a conversion needs to be performed when the PIC32 is in 
a low-power mode, when the peripheral clock can be turned off. The oscillator 
clock divider on the other end is a better option in more general cases since it 
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provides synchronous operation with the peripheral bus and therefore a better 
rejection of the internal noise. The conversion clock should be the fastest possible, 
compatibly with the specifications of the ADC module.    

 Here is a basic conversion routine: 

  int readADC( int ch)  
  { 
 AD1CHSbits.CH0SA = ch;        // 1. select analog input  
 AD1CON1bits.SAMP = 1;        // 2. start sampling  
 T1CON = 0xs8000; TMR1 = 0;        // 3. wait for sampling time  
 while (TMR1 < 100);        // 
 AD1CON1bits.SAMP = 0;        // 4. start the conversion  
 while (!AD1CON1bits.DONE); // 5. wait conversion complete  
 return ADC1BUF0;        // 6. read result     

  } // readADC     

  Automating Sampling Timing 
 As you can see, using this basic method, we have been responsible for providing the 
exact timing of the sampling phase, dedicating a timer to this task and performing two 
waiting loops. But on the PIC32 ADC module, the sampling phase can be self-timed up 
to a maximum of 32 � Tad periods. Whether we can use this feature or not will depend 
ultimately on the product of the source impedance and the ADC input capacitance. By 
setting the SSRC  bits in the  AD1CON1  register to the  0x 7  configuration, we can enable an 
automatic start of conversion upon termination of the self-timed sampling period. The 
sampling period itself is selected by the AD1CON3  register  SAM  bits. Here is a new and 
improved example that uses the self-timed sampling and conversion trigger:       

  void initADC( int amask)  
  { 
 AD1PCFG = amask;        // select analog input pins  
 AD1CON1 = 0x00E0;        // automatic conversion after sampling  
 AD1CSSL = 0;        // no scanning required  
 AD1CON2 = 0;        // use MUXA, use AVdd  &  AVss as Vref+/-  
 AD1CON3 = 0x1F3F;  // Tsamp = 32 x Tad;  
 AD1CON1bits.ADON = 1; // turn on the ADC     

  } //initADC     
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 Notice how making the conversion-start, triggered automatically by the completion of the 
self-timed sampling phase, gives us two advantages: 

●      Proper timing of the sampling phase is guaranteed without requiring us to use any 
timed delay loop and/or other resource.  

●      One command (start of the sample phase) suffices to complete the entire sampling 
and conversion sequence. 

 With the ADC so configured, starting a conversion and reading the output is a trivial 
matter:

●       AD1CHS  selects the input channel for MUXA.  

●      Setting the  SAMP  bit in  AD1CON1  starts the timed-sampling phase, immediately 
followed by the conversion.  

●      The  DONE  bit will be set in the  AD1CON1  register as soon as the entire sequence is 
completed and a result is ready.  

●      Reading the  ADC1BUF0  register will immediately return the desired conversion 
result.

  int readADC( int ch)  
  { 
 AD1CHSbits.CH0SA = ch;        // 1. select input channel  
 AD1CON1bits.SAMP = 1;        // 2. start sampling  
 while (!AD1CON1bits.DONE);  // 3. wait conversion complete  
 return ADC1BUF0;        // 4. read conversion result     

  } // readADC     

  Developing a Demo 
 All that remains to do at this point is to figure out an entertaining way to put the 
converted value to use on the Explorer 16 demo board. The LEDs connected to PORTA 
are an intriguing choice, but those of you using a PIC32 Starter Kit would not be able to 
enjoy the experience, since most of the PORTA pins would be tied up by the JTAG port. 
Instead we will use the LCD library developed in the previous chapter to display a 
blocky bar graph. Yes, we could use the nice and smooth progress bar developed in the 
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previous chapter (Day 10) but I don ’ t want you to get distracted by the details. Here is 
the main routine we will use to test our analog-to-digital conversion functions:       

  main ()  
  { 

 int i, a;  

// initializations 
 initADC( AINPUTS); // initialize the ADC  
 initLCD();       // initialize the LCD display  

 // main loop  
 while( 1)  
 { 

 a = readADC( POT); // select the POT input and convert  

 // reduce the 10-bit result to a 4 bit value (0..15)  
 // (divide by 64 or shift right 6 times  
 a >> = 6;  

 // draw a bar on the display  
 clrLCD();  
 for ( i=0; i<=a; i++) 
 putLCD( 0xFF);     

 // slow down to avoid flickering  
 Delayms( 200);     

 } // main loop     

  } // main     

 After the call to the ADC initialization routine, we can initialize the LCD display module. 
Then in the main loop we perform the conversion on  AN5  and we reformat the output to 
fit our special display requirements. As configured, the 10-bit conversion output will be 
returned as a right-aligned integer in a range of values between  0  and  1023 . By dividing 
that value by 64 (or, in other words, shifting it right six times) we can reduce the range to a 
0  to  15  value. Printing the resulting number of  “ bricks ”  gives a blocky bar whose length 
is proportional to the position of the potentiometer. 

 Remember to add an  #include <  >  statement for the LCD.h library and add to the 
project source files list both the  explore.c  and  LCDlib.c  modules we placed in the  lib
directory. 
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 Build the project and, following the usual In Circuit Debugging checklist, program the 
Explorer 16 board. If all goes well, you will be able to play with the potentiometer, 
moving it from side to side while observing a bar of 16 blocks moving from left to right 
correspondingly.  

  Creating Our Own Mini ADC Library 
 We will use over and over the two simple routines that initialize the ADC module 
and perform a single self-timed conversion. Let ’ s separate them into a standalone 
small library called ADClib.c  that we will add to our new collection inside the  lib
directory.       

  /*
  ** ADClib.c 
  **  
  */
  #include <p32xxxx.h>  
  #include <ADC.h>  

  // initialize the ADC for single conversion, select input pins  
  void initADC( int amask)  
  { 
 AD1PCFG = amask;        // select analog input pins  
 AD1CON1 = 0x00E0;        // auto convert after end of sampling  
 AD1CSSL = 0;        // no scanning required  
 AD1CON2 = 0;        // use MUXA, AVss/AVdd used as Vref+/-  
 AD1CON3 = 0x1F3F;        // max sample time = 31Tad  
 AD1CON1SET = 0x8000; // turn on the ADC     

  } //initADC 

  int readADC( int ch)  
  { 
 AD1CHSbits.CH0SA = ch;        // select analog input channel  
 AD1CON1bits.SAMP = 1;        // start sampling  
 while (!AD1CON1bits.DONE);  // wait to complete conversion  
 return ADC1BUF0;        // read the conversion result     

  } // readADC     

 Similarly we can isolate the include file LCD.h that offers the basic set of definitions and 
prototypes required to access the library functions. We will save it in the  include  directory. 



258   Day 11

  /*
  ** ADC.h 
  **  
  */
  #define POT 5        //       10      k potentiometer on AN5 input  
  #define TSENS 4        // TC1047 Temperature sensor on AN4  
  #define AINPUTS 0xffcf  // Analog inputs for POT and TSENS  

  // initialize the ADC for single conversion, select input pins  
  void initADC( int amask) ;  

  int readADC( int ch);     

 Simple enough. We are ready to proceed with more fun and games!  

  Fun and Games 
 Okay, I ’ ll admit it, the previous project was not too exciting. After all, we have been 
using a 32-bit machine operating at 72       MHz, capable of performing a 10-bit analog-to-
digital conversion several hundred thousands of times per second, only to discard all but 
4 bits of the conversion result and watch a blocky bar moving on an LCD display. How 
about making it a bit more challenging and playful instead? How about developing a 
monodimensional Pac-Man game, or should we call it the  “ Pot-Man ”  game? 

 If you remember the old Pac-Man game—please don ’ t tell me you never heard of it, but 
if you really have to, check the link to a Wikipedia entry at the end of this chapter—there 
is a hungry little  “ thing, ”  the Pac, that roams a two-dimensional labyrinth in a desperate 
search for food. Now, with a little fantasy, we can imagine a monodimensional reduction 
of the game, where the Pac is represented by a single  �  or  �  character, depending on the 
direction of movement. It is limited to a left/right movement on a line of the LCD display as 
it is controlled by the potentiometer position. Bits of food are represented by a * character 
and are placed randomly, one at a time, on the same line. As soon as the Pac reaches a piece 
of food, it gulps it and moves on, and a new piece is placed in a different location. 

 Once more, the pseudo-random number generator function  rand()  (defined in stdlib.h) 
will be very helpful here. All games need a certain degree of unpredictability, and 
pseudo-random number generators are the way computer games provide it in a world of 
logic and otherwise infinite repetition. 

 We can start by modifying the previous project code or typing away from scratch a 
brand-new  Pot-Man.c  file. A new project needs to be created, and I suggest we call 
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it simply POT . Just a few more lines of code are truly needed to perform the simple 
animation:

  /*
  ** Pot-Man.c 
  **  
  */
  // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include <p32xxxx.h>  
  #include <explore.h>  
  #include <LCD.h>  
  #include <ADC.h>  

  main ()  
  { 
 int a, r, p, n;  
 // 1. initializations  
 initLCD();  
 initADC( AINPUTS);  

 // 2. use the first reading to randomize  
 srand( readADC( POT));  

 // 3. init the hungry Pac  
 p =  ' < ' ;  

 // 4. generate the first random food bit position  
 r = rand() % 16;  

 // main loop  
 while( 1)  
 { 

 // 5. select the POT input and convert  
 a = readADC( POT);  

 // 6. reduce the 10-bit result to a 4 bit value (0..15)  
 // (divide by 64 or shift right 6 times  
 a>> = 6;  
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 // 7. turn the Pac in the direction of movement  
 if ( a < n)       // moving to the left  
 p =  ' > ' ;  

 if ( a > n)       // moving to the right  
 p =  ' < ' ;  

 // 8. when the Pac eats the food, generate more food  
 while (a == r )  

 r=rand() % 16;  

 // 9. update display  
 clrLCD();  
 setLCDC( a); putLCD( p);  
 setLCDC( r); putLCD(  ' * ' );  

 // 10. provide timing and relative position  
 Delayms( 200);       // limit game speed  
 n=a;         // memorize previous position     

 } // main loop     

  } // main     

●      In 1, we perform the usual initialization of the ADC module and the LCD display.  

●      In 2, we read the potentiometer value for the first time and we use its position as 
the seed  value for the pseudo-random number generator. This makes the game 
experience truly unique each time, provided the potentiometer is not always found 
in the leftmost or rightmost position. That would provide a seed value of 0 or 
1023, respectively, every time and therefore would make the game quite repetitive 
because the pseudo-random sequence would proceed through exactly the same 
steps at any game restart.  

●      In 3, we assign a first arbitrary direction to the Pac.  

●      In 4, we determine a first random position for the first bit of food.  

●      In 5, we are already inside the main loop checking for the latest position of the 
potentiometer cursor.  

●      In 6, we reduce the integer 10-bit value to the four most significant bits to obtain 
a value between 0 and 15.  

●      In 7, we compare the new position with the previous loop position to determine 
which way the mouth of the Pac should be facing. If the ADC reading has 
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reduced, it means we moved the potentiometer counter-clockwise. Hence we 
will make the Pac turn to the left. Vice versa, if the ADC reading has increased 
compared to the previous loop value, the potentiometer must have been turned 
clockwise, and we ’ d better turn the Pac to the right.  

●      In 8, we compare the new position of the Pac—the ADC reading—with the food 
position and, if the two coincide (the Pac got his lunch), a new random food 
position is immediately calculated. The operation needs to be repeated in a while 
loop because each time a new random value ( r ) is calculated, there is a chance 
(exactly 1/16 if our pseudo-random generator is a good one) that the new value 
could be just the same. In other words, we could be creating a new  “ food nibblet ”  
right in the Pac ’ s mouth. Now we don ’ t want that—it would not be very sporting, 
don ’ t you agree? 

●      Finally, in 9, we get to clean the display content and then place the two symbols 
for the Pac and the food piece in their respective positions.  

●      In 10, we close the loop with a short delay and save the Pac ’ s position for the next 
loop to compare. 

 Don ’ t forget to include in the project the LCDlib.c, ADClib.c, and Explore.c files found 
in the lib  directory. Build the project and program it onto the Explorer 16 board. You will 
have to admit it: Analog-to-digital conversions are so much more entertaining now!  

  Sensing Temperature 
 Moving on to more serious things, there is a temperature sensor mounted on the Explorer 16 
board, and it happens to be a Microchip TC1047A integrated temperature-sensing device with 
a nice linear voltage output. This device is very small, it is offered in a SOT-23 (three-pin, 
surface-mount) package. The power consumption is limited to 35uA (typ.) while the power 
supply can cover the entire range from 2.5       V to 5.5       V. The output voltage is independent from 
the power supply and is an extremely linear function of the temperature (typically within 
0.5 degree C) with a slope of exactly 10       mV/C. The offset is adjusted to provide an absolute 
temperature indication according to the formula shown in  Figure 11.3   . 

 We can apply our newly acquired abilities to convert the voltage output to digital 
information using, once more, the ADC of the PIC32. The temperature sensor is directly 
connected to the AN4 analog input channel as per the Explorer 16 board schematic (see 
 Figure 11.4   ). 
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 We can reuse the ADC library developed for the previous exercise and put it in a new 
project called TEMP , saving the previous source file as  Temp.c . 

 Let ’ s start modifying the code to include a new constant definition:  TSENS  for the ADC 
input channel assigned to the temperature sensor.       

  /*
  ** Temp.c 
  ** Converting the analog signal from a TC1047 Temp Sensor  
  */
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 Figure 11.4 :     Detail of the Explorer 16 demonstration board TC1047A 
temperature sensor.    
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  // configuration bit settings, Fcy=72 MHz, Fpb=36 MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include <p32xxxx.h>  
  #include <explore.h>  
  #include <LCD.h>  

  #include <ADC.h>     

 As you can see, nothing else needed to change with regard to the ADC configuration or 
activation of the conversion sequence. Presenting the result on the LCD display might 
be a little tricky, though. Temperature sensors provide a certain level of noise, and to 
give a more stable reading it is common to perform a little filtering. Taking groups of 
10 samples over a period of a second, for example, and performing an average will give 
us a cleaner value to work with. 

  a=0; 
 for ( j=0; j < 10; j++) 
 a+=readADC( TSENS);   // add up 10 readings     

 i=a/10;          // divide by 10 to average        

 Referring to the formula in  Figure 11.3 , we can now calculate the absolute temperature 
value as measured by the TC1047 on the Explorer 16 board. In fact, resolving for the 
temperature in degrees C, we obtain: 

T
Vout mV

mV/C
�

� 500

10

 where: 

Vout ADC reading * ADC resolution (mV/bit) �

 Since we have configured the PIC32 ADC module to use as an internal voltage reference 
the AVdd line connected to Vdd (3.3       V), and knowing it operates as a 10-bit, we derive 
that the ADC resolution is 3.3 mV/bit. Hence the temperature can be expressed as: 

T
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 We could easily print the resulting absolute temperature on the LCD display, but it would 
not be fun, would it? How about providing instead a relative temperature indication 
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using a single character (cursor) position as an index, or even better, how about using the 
temperature as a way to control the monodimensional Pac-Man game we developed in the 
previous project? We could heat the sensor by breathing hot air onto the sensor to move it 
to the right or blowing cold air on it to move it to left. 

 From a practical point of view, it seems easy to implement. We can sample the initial 
temperature value just before the main loop and then use it as a reference to determine an 
offset for the Pac position relative to the center of the display. In the main loop we will 
update the cursor position, moving it to the right as the sensed temperature increases or to 
the left as the sensed temperature decreases. Here is the complete code for the new Temp-
Man game, or should we call it the Breathalyzer game instead?       

  main ()  
  { 

 int a, i, j, n, r, p;  

 // 1. initializations  
 initADC( AINPUTS); // initialize the ADC  
 initLCD();  

 // 2. use the first reading to randomize  
 srand( readADC( TSENS));  
 // generate the first random position  
 r = rand() % 16;  
 p =  ' < ' ;  

 // 3. compute the average value for the initial reference  
 a = 0;  
 for ( j=0; j<10; j++)  
 { 

 a+=readADC( TSENS); // read the temperature  
 Delayms( 100);     

 }  
 i=a/10; // average  

 // main loop  
 while( 1)  
 { 

 // 4. take the average value over 1 second  
 a = 0;  
 for ( j=0; j<10; j++)  
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 { 
 a += readADC( TSENS); // read the temperature  
 Delayms( 100);     

 }  
 a /= 10;  // average result  

 // 5. compare initial reading, move the Pac  
 a=7+(a-i);  

 // 6. keep the result in the value range 0..15  
 if ( a > 15) 
 a = 15;     

 if ( a < 0) 
 a = 0;     

 // 7. turn the Pac in the direction of movement  
 if ( a < n)       // moving to the left 
 p =  ' > ' ;     

 if ( a > n)       // moving to the right 
 p =  ' < ' ;     

 // 8. as soon as the Pac eats the food, generate new  
 while (a == r ) 
 r = rand() % 16;     

 // 9. update display  
 clrLCD();  
 setLCDC( r); putLCD(  ' * ' );  
 setLCDC( a); putLCD( p);  

 // 10. remember previous postion  
 n = a;     

 } // main loop     

  } // main     

 You will notice how most of the code has remained absolutely identical to our previous 
project/game. The only notable differences are found in the following sections: 

●      In 3 and in 4, we use a simple average of 10 values taken over a period of a 
second instead of a single instantaneous reading.  

●      In 5, we compute the temperature difference and use it as an offset with respect to 
the center position (7).  
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●      In 6, we check for boundaries. Once the difference becomes negative and more 
than 4 bits wide, the display must simply indicate the leftmost position. When 
the difference is positive and more than 4 bits wide, the rightmost position must 
be used.  

●      In 10, we don ’ t need further delays because the temperature reading and averaging 
already provide already a natural pace to the game. 

 Build the project with the usual checklists, remembering to  include  all the libraries 
required. Program it to the Explorer 16 board using the In-Circuit debugger of choice and 
give it a try. 

 The first problem you will encounter will be to identify the minuscule temperature sensor 
on the board. (Hint: It is close to the lower-left corner of the processor module and it 
looks just like any surface-mount transistor). The second immediate problem will be 
to find the right way to breathe on the board to produce warm or cold air as required to 
move the Pac. It is more complex than it might appear. In fact, personally, I found the 
cooling part to be the hardest; some friends are suggesting that this might be a problem 
related to my current position. If you work in marketing, they say, it ’ s just hot air!  

  Debriefing 
 In this lesson we have just started scratching the surface and exploring the possibilities 
provided by the ADC module of the PIC32. We have used one simple configuration of 
the many possible and only a few of the advanced features available. We have tested our 
newly acquired capabilities with two types of analog input available on the Explorer 16 
board, and hopefully we had some fun in the process.  

  Notes for the PIC24 Experts 
 The ADC module of the PIC32 is mostly identical to the PIC24 peripheral, yet some 
important enhancements have been included in its design. Here are the major differences 
that will affect your code while porting an application to the PIC32: 

  1.     In the  AD1CON1  register, the conversion format options are now extended to a 
32-bit fractional word.  

  2.     The  CLRASAM  control bit has been added to the  AD1CON1  register to allow the 
conversion sequence to be stopped after the first interrupt.  
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  3.     In the  AD1CON2  register a new autocalibration mode has been added to reduce 
the ADC offset. The  OFFCAL  control bit has been added to enter the calibration 
mode.

  4.     The  AD1CHS  register control bits are now in the upper half of the register 32-bit 
word. There is also a single  CH0NB0  control bit for the selection of the negative 
input of the second input multiplexer.     

  Tips  &  Tricks 
 If the sampling time required is longer than the maximum available option (32 � Tad), 
you can try to extend Tad first or, a better option, swap things around and enable the 
automatic sampling start (at the end of the conversion). This way the sampling circuit 
is always open, charging, whenever the conversion is not occurring. Manually clearing 
the SAMP  bit will trigger the actual conversion start. Further, having Timer3 periodically 
clearing the SAMP  control bit for you (one of the options for the  SSRC  bits in  AD1CON1 ) 
and enabling the ADC end of conversion interrupt will provide the widest choice of 
sampling periods possible for the least amount of MCU overhead possible. No waiting 
loops, only a periodic interrupt when the results are available and ready to be fetched. 

 Further, not all applications require a complete conversion of analog input values. The 
PIC32MX family offers also analog comparator modules (two), with dedicated input 
multiplexers. They can assist in those applications in which we need a fast response to an 
analog input as it crosses a threshold. No need to set up the ADC, select a channel, and 
perform a conversion; the comparison is done continuously. An interrupt (or an output 
signal) is produced immediately as the reference voltage is reached. 

 Speaking of reference voltages, yet another module, called the Comparator Reference, 
effectively representing a small digital-to-analog converter of sorts, can generate up to 
32 reference voltages to be used with the comparator modules or independently.  

  Exercises 
  1.     Use the ADC FIFO buffer to collect conversion results and set up Timer3 for 

automatic conversion and the interrupt mechanism so that a call is performed only 
once the buffer is full and temperature values are ready to be averaged.  

  2.     Experiment with interfacing other types of analog sensors (using the prototyping 
area of the Explorer 16 board) such as pressure sensors, humidity sensors, and 
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even accelerometers. Two- and/or three-axis solid-state accelerometers are getting 
very inexpensive and readily available. All it takes to interface to them is a few 
analog input pins and a fast 10-bit ADC module. 

   Books
Baker, Bonnie, A Baker’s Dozen: Real Analog Solutions for Digital Designers (Newnes, 

Burlington, MA). For proper care and feeding of an analog-to-digital converter, look 
no further than this cookbook.

 Links
www.microchip.com/filterlab. Download the free FilterLab software from the Microchip 

Web site; it will help you quickly and efficiently design antialiasing filters for your 
analog inputs.

www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2102&param=
en021419&pageId=79&pageId=79. Temperature sensors are available in many 
flavors and a choice of interface options, including direct I2C or SPI digital output.



     Expansion

 Congratulations, you have endured five more days of hard fieldwork. You have learned 
to use some of the key hardware peripheral modules of the PIC32MX, and you have put 
them to use on the Explorer 16 demo board. 

 In the third part of this book we will start developing new projects that will require you 
to master several peripheral modules at once. Since the complexity of the examples will 
grow a bit more, not only is it recommended you have an actual demonstration board (the 
Explorer 16) at hand, but you ’ ll also need the ability to perform small modifications and 
utilizing the prototyping area to add new functionality to the demonstration board. Simple 
schematics and component part numbers will be offered in the following chapters as 
required. On the companion Web site,  www.ExploringPIC32.com , you will find additional 
expansion boards and prototyping options to help you enjoy even the most advanced 
projects.

   P A R T  3 
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                                    Capturing User Inputs   

  The Plan 
 If analog inputs are the essence of the interface between an embedded-control application 
and the outside world, digital inputs are, sadly, the true foundation of the user interface. 
As wrong as this might seem, for a long time now we humans have been trained to reduce 
our interaction with them, the machines, to buttons and switches. Probably this is because 
the alternative, using speech, gestures, and vision, requires such a leap in the complexity 
of the interface that we have rather learned to accept the limitation and reduced ourselves 
to communicate essentially through ones and zeros. Perhaps this explains the attention 
and enthusiasm that some recent innovations are producing as pioneered by video games 
and mobile phone manufacturers; think of the Wii accelerometer-filled wand and the 
iPhone multitouch sensing screen, for example. 

 Today we will explore various methods to capture  “ traditional ”  user inputs by detecting 
the activation of buttons and simple mechanical switches, reading the inputs from 
rotary encoders, and eventually interfacing to computer keyboards. This will give 
us the motivation to investigate a few alternative methods and evaluate their trade-offs. 
We ’ ll implement software state machines, practice using interrupts, and possibly learn 
to use a few new peripherals. It ’ s going to be a long day, so be rested and ready to start 
at dawn!  

  Preparation 
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32 
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer 
16 demonstration board and an In-Circuit Debugger of your choice. You will also need 
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a soldering iron and a few components ready at hand to expand the board capabilities 
using the prototyping area or a small expansion board. You can check on the companion 
Web site ( www.exploringPIC32.com ) for the availability of expansion boards that will 
help you with the experiments.  

  Buttons and Mechanical Switches 
 Reading the input from a button, a mechanical switch, is one of the most common 
activities for an embedded-control application. After all, a single bit of information needs 
to be retrieved from a port pin configured as a digital input. But the great speed of a 
microcontroller and the mechanical (elastic) properties of the switch require that we pay 
some attention to the problem. 

 In  Figure 12.1    you can see the connection of one of the four buttons present on the 
Explorer 16 demonstration board. At idle, the switch offers an open circuit and the input 
pin is kept at a logic high level by a pull-up resistor. When the button is pressed, the 
contact is closed and the input pin is brought to a logic low level. If we could consider the 
switch as an ideal component, the transition between the two states would be immediate 
and unambiguous, but the reality is a little different. As represented in  Figure 12.2   , 
when the button is pressed and the mechanical contact is established, we obtain all but 
a clean transition. The elasticity of the materials, the surface oxidation of the contacts, 
and a number of other factors make it so that there can be a whole series of transitions, 
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 Figure 12.1 :     Explorer 16 button schematic detail.    



Capturing User Inputs   273

increasing in number and spaced with the aging and general wear of the device. This 
phenomenon, generally referred to as contact bouncing , can continue in the worst cases 
for several hundred microseconds if not for milliseconds. 

 When the button is released, a similar bouncing effect can be detected as the pressure 
between the two contact surfaces is removed and the circuit is opened. 

 For a PIC32 operating at a high clock frequency, the timescale of the event is enormous. 
A tight loop polling the status of the input line could detect each and every bounce and 
count them as numerous distinct activations and releases of the button. In fact, as a first 
experiment, we could devise a short piece of code to do just that so we can access the 
 “ quality ”  of the buttons available on the Explorer 16 board. 

 Let ’ s create a new project called  Buttons,  and let ’ s add a first new source file to it that 
we ’ ll call  bounce.c :       

  /*
  ** bounce.c 
  **  
  */
  // configuration bit settings, Fcy=72MHz, Fpb=36MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  
  #include <p32xxxx.h>  
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 Figure 12.2 :     Electrical response of a mechanical switch.    
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  main( void)  
  { 
 int count;        // the bounces counter  

 count = 0;  
 // main loop  
 while( 1)  
 { 
 // wait for the button to be pressed  
 while (_RD6);  

 // count one more button pres s   
 count++;  

 // wait for the button to be released  
 while ( ! _RD6);     

 } // main loop     

  } // main     

 After initializing an integer counter, we directly enter the main loop, where we wait for 
the leftmost button on the board (marked S3 and connected to the RD6 input pin) to 
be pressed (transition to logic level low). As soon as we detect the button pressure, we 
increment the counter and proceed to the next loop, where we wait for the button to be 
released, only to continue in the main loop and start from the top. 

 Build the project immediately and program the code on the Explorer 16 board using 
your in circuit debugger of choice. To perform our first experiment, you can now run 
the code and slowly press the  S3  button for a predetermined number of times: let ’ s say 
20! Stop the execution and inspect the current value of the variable  count . You can 
simply move your mouse over the variable in the editor window to see a small popup 
message appear (if the MPLAB option is enabled), or you can open the Watch  window 
and add the variable  count  to it. (I suggest you set its visualization properties to 
Decimal .) 

 In my personal experimentation, after 20 button pushes I obtained a value of  count
varying generally between 21 and 25. As car manufacturers say:  “ Your mileage might 
vary ” ! This is actually a very good result, indicating that most of the time there have been 
no bounces at all. It ’ s a testament to good-quality contacts, but it also reflects the fact that 
the board button has been used very little so far. If we are to design applications that use 
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buttons and mechanical switches, we have to plan for the worst and consider a substantial 
degradation of performance over the life of the product.  

  Button Input Packing 
 Planning for a general solution to apply to all four buttons available on the Explorer 16 
and extensible to an entire array of similar buttons if necessary, we will start developing a 
simple function that will collect all the inputs and present them conveniently encoded in a 
single integer code. Save the previous source file ( Save As ) with the new name  Buttons.c
and add it to the project (replacing bounce.c): 

  int readK( void)  
  { // returns 0..F if keys pressed, 0 = none 
 int c = 0;  

 if ( !_RD6) // leftmost button 
 c |=8;     

 if ( !_RD7) 
 c |=4;     

 if ( !_RA7) 
 c |=2;     

 if ( !_RD13) // rightmost button 
 c |=1;     

 return c;     

  } // readK     

 In fact, the designers of the of the Explorer 16 board have  “ fragmented ”  the input 
pins, corresponding to the four buttons, between two ports in noncontiguous positions, 
probably in an attempt to ease the board layout rather than to please us, the software 
developers. 

 The function  readK()  as proposed collects the four inputs and packs them contiguously 
in a single integer returned as the function value.  Figure 12.3    illustrates the resulting 
encoding.

 The position of the buttons is now reflected in the relative position of each bit in the 
function return value, with the MSb (bit 3) corresponding to the leftmost button status. 
Also, the logic of each input is inverted so that a pressed button is represented by a  1 . As 
a result, when called in the idle condition, no button pressed, the function returns  0 , and 
when all the buttons are pressed, the function returns a value  0x0f.
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 Notice that we have performed no  debouncing  yet. All  readK()  does is grab a picture 
of the status of the inputs and present them in a different convenient format. Should we 
have a matrix of buttons arranged in a 3  �  4, 4  �  4, or larger keypad, it would be easy to 
modify the function while maintaining the output format and leaving untouched the rest 
of the code we will develop from here. 

 We can quickly modify the  main()  function to visualize the output on the LCD display 
using the LCD.h library we developed in the previous chapters: 

  main( void)  
  { 
 char s[16];  
 int b;  

 initLCD();        // init LCD display  

 // main loop  
 while( 1)  
 { 
 clrLCD();  
 putsLCD( "Press any button\n");  
 b = readK();  
 sprintf( s, "Code = %X", b);  
 putsLCD( s);  
 Delayms( 100);     

 } // main loop     

  } // main     

 Build the project after adding the  LCDlib.c  module to the list of the project sources and 
program the Explorer 16 board with your In-Circuit Debugger of choice. 

Bit 31 S3

RD6 RD7 RA7 RD13

S6 S5 S4

Bit 4 through 31 � 0

Leftmost
button

Rightmost
button

8 4 2 1

 Figure 12.3 :      readK()  button encoding.    
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 As you run the simple demo, you will see that as soon as a button is pressed, a new code 
is immediately displayed. Multiple buttons can be pressed simultaneously, producing all 
possible codes from 0x01  to  0x0f . 

 For our convenience, we will add the  readK()  function to our  explore.c  library module. 
In fact, if you are working with the code provided with the CD-ROM that accompanies 
this book, you will notice that the function is already there but under another name, 
readKEY() , so as not to create any conflict with the previous and following examples.  

  Button Inputs Debouncing 
 It is time now to start working on the actual debouncing. The basic technique used to 
filter out the spurious commutations of the mechanical switch consists of adding a small 
delay after the first input commutation is detected and subsequently verifying that the 
output has reached a stable condition. When the button is released, a new short delay is 
inserted before verifying once more that the output has reached the idle condition. 

 Here is the code for the new function  getK()  that performs the four steps listed 
previously and some more:       

  int getK( void)  
  { // wait for a key pressed and debounce 
 int i=0, r=0, j=0;  
 int c;     

 // 1. wait for a key pressed for at least .1sec  
 do{ 
 Delayms( 10);  
 if ( (c = readKEY()))  
 { 
 if ( c>r)        // if more than one button pressed 
 r = c;        // take the new code     

 i++;     
 }  
 else 
 i=0;        

  } while ( i<10);     

 In 1, we have a  do..while  loop that, at regular intervals 10ms apart, uses the function 
readKEY()  to check on the inputs status. The loop is designed to terminate only after 
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10 iterations (for a total of 100 ms) during which there has been no bouncing. During that 
time, though, the user might have pressed more buttons. The function accommodates for 
one or more buttons to be  “ added ”  over time rather than assuming they will all be pressed 
together with absolute synchronicity. The variable  r  will contain the  “ most complete ”  
button code.          

 // 2. wait for key released for at least .1 sec     
i =0; 
 do { 
 Delayms( 10);  
 if ( (c = readKEY()))  
 { 
 if (c>r)        // if more then one button pressed 
 r = c;        // take the new code     

 i=0;  
 j++;        // keep counting     

 }  
 else 
 i++;        

  } while ( i<10);     

 In 2, the situation is reversed as buttons are released. The  do.. while  is designed to 
wait for all buttons to be released until the inputs stabilize in the idle condition for at 
least 100 ms.       

 // 3. check if a button was pushed longer than 500ms  
 if ( j>50) 

 r+=0x80;        // add a flag in bit 7 of the code        

 In 3, we are actually making use of an additional counter represented by the variable  j
that had been added to the second loop. Its role is that of detecting when the button-
pressed condition is prolonged beyond a certain threshold. In this case it ’ s set to 500ms. 
When this happens, an additional flag (bit 7) is added to the return code. This can be 
handy to provide additional functionalities to an interface without adding more hardware 
(buttons) to the Explorer 16 board. So, for example, pressing the leftmost button for a 
short amount of time produces the code 0x08.  Pressing the same button for more than 
half a second will return the code 0x88  instead.        

 // 4. return code  
 return r;     

  } // getK     
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 It is only in 4 that the button code encoded in the variable  r  is returned to the calling 
program.

 To test the new functionality and verify that we have eliminated all button bouncing, we 
can now replace the  main()  function with the following code and save the resulting file 
as Buttons2.c :       

  main( void)  
  { 
 char s[16];  
 int b;  

 initLCD();        // init LCD display  
 putsLCD( "Press any button\n");  

 // main loop  
 while( 1)  
 { 
 b = getK();  
 sprintf( s, "Code = %X", b);  
 clrLCD();  
 putsLCD( s);     

 } // main loop     

  } // main     

 Remember to include the  LCDlib.c  and  explore.c  modules found in the  lib  directory to 
the project. 

 Replace  Buttons2.c  in the project source list in place of buttons.c and build the project. 
After programming the Explorer 16 board with your in-circuit debugger of choice, run 
the code and observe the results on the LCD display. 

 First you will notice that contrary to what happened in the previous demo, new codes 
are displayed only after buttons are released. The function  getK()  is in fact a  blocking 
function . It waits for the user inputs and returns only when a new return code is ready. 

 Play with various combinations of buttons, pressing two or three of them more or less 
simultaneously, and observe how the order of press and release does not affect the 
outcome, simplifying the user input. Try long and short button combinations. You 
can modify the threshold or even introduce secondary thresholds for very long button 
presses.
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 Once more, because of its usefulness, I suggest we add the  getK()  function to our 
explore.c library module. If you are using the code from the CD-ROM attached to 
this book, you will find it already there with the name changed in  getKEY()  to avoid 
conflicts with the examples in this chapter.  

  Rotary Encoders 
 Another type of input device based on mechanical switches (sometimes replaced 
by optical sensors) and very common in many embedded-control applications is the 
rotary encoder . In the past we have seen the use of a potentiometer attached to the 
PIC32 ADC module to provide user input (and control the position of the Pac-Man), 
but rotary encoders are pure digital devices offering a higher degree of freedom. Their 
main advantage is that they offer no limitation to the movement in any of the rotation 
directions. Some encoders provide information on their  absolute  position; others of 
simpler design and lower cost, known as  incremental encoders , provide only a relative 
indication of movement. 

 In embedded applications, absolute rotary encoders can be used to identify the position 
(angle) of a motor/actuator shaft. Incremental encoders are used to detect direction of 
motion and speed of motors but also for user interfaces as a rapid input tool to select an 
entry in a menu system on a display panel: think of the omnipresent input knob on car 
navigators and digital radios. Another good example of a user interface application of an 
incremental encoder is a (ball) mouse, assuming you can still find one nowadays. They 
used to contain two (optical) rotary encoders to detect relative motion in two dimensions. 
In fact, if you think of it, your computer has no idea  “ where ”  the mouse is at any given 
point in time, but it knows exactly how far you moved it and in which direction. Don ’ t 
look at modern  “ optical ”  mice, though; the technology they are based on is completely 
different. 

 To experiment with a simple and inexpensive rotary encoder (I used an ICW model from 
Bourns), I suggest you test your prototyping skills by soldering only a couple of resistors 
(10 K Ohm) onto the Explorer 16 board prototyping area and connecting just three wires 
between the encoder and the PIC32 I/O pins, as illustrated in  Figure 12.4   . 

 When so connected, the encoder provides two output waveforms (shown in  Figure 12.5   ) 
that can be easily interpreted by the PIC32. Notice that the motion of the encoder is in 
steps between detent positions. At each step the encoder produces two commutations, 
one on each mechanical switch corresponding to an input pin. The order of the two 
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commutations tells us about the direction of rotation. Since the two waveforms are 
identical but appear to be out of phase by a 90-degree angle, these simple encoders are 
often referred to as quadrature encoders . 

 At rest, both switches are open and the corresponding input pins are pulled up at a logic 
level high. When rotating clockwise, the CHA switch is closed first, bringing the  RA9
input pin to a logic low, then the CHB switch is closed, bringing the  RA10  pin to a logic 
low level. When rotating counter-clockwise, the sequence is inverted. As the encoder 
reaches the next detent position, both switches are opened again. 

�3.3 V

R2
10 k

CHA

CHB

GND

Rotary encoder

R1
10 k

RA9

RA10

 Figure 12.4 :     Rotary encoder interface detail.    
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 Figure 12.5 :     Rotary encoder output waveforms detail.    
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 Here is a simple program that can be used to demonstrate how to interface to a rotary 
encoder to track the position of a rotating knob and display a relative counter on the LCD 
display:

  /*
  ** Rotary.c 
  **  
  */
  // configuration bit settings, Fcy=72MHz, Fpb=36MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include <p32xxxx.h>  
  #include <explore.h>  
  #include <LCD.h>  

  #define ENCHA _RA9        // channel A  
  #define ENCHB _RA10        // channel B  

  main( void)  
  { 
 int i = 0;  
 char s[16];  

 initLCD();  

 // main loop  
 while( 1)  
 { 
 while( ENCHA);        // detect CHA falling edge  
 Delayms( 5);        // debounce
 i += ENCHB ? 1 : -1;  
 while( !ENCHA);        // wait for CHA rising edge  
 Delayms( 5);        // debounce

 // display relative counter value  
 clrLCD();  
 sprintf( s, "%d", i);  
 putsLCD( s);     

 } // main loop     

  } // main     



Capturing User Inputs   283

 The idea behind the code in the main loop is based on a simple observation: by focusing 
only on one input commutations—say,  ENCHA —we can detect motion. By observing the 
status of the second input ENCHB  immediately after the activation of the first channel, 
we can determine the direction of movement. This can be seen in  Figure 12.5  as you 
move your eyes from left to right (corresponding to a clockwise rotation); when the CHA 
switch is closed (represented as a rising edge), the CHB switch is still open (low). But if 
you read the same figure from right to left (corresponding to a counter-clockwise rotation 
of the encoder), when CHA is closed (rising edge), CHB is already closed (high). 

 Since we have not forgotten the lesson about switch bouncing, we have also added a 
pair of calls to a delay routine, to make sure that we don ’ t read multiple commutations 
when there is really just one. The length of the delays was decided based on information 
provided by the encoder manufacturer on the device datasheet. The ICW encoders ’
contacts are in fact rated for a maximum of 5ms bounces when operated at a rotation 
speed of 15 RPM. 

 Create a new project called  Rotary . Save the preceding code as  rotary.c  and remember 
to add our default  include  directory, as well as the  LCDlib.c  and  explore.c  source files 
found in the lib  directory, to the list of project source files. 

 Build and program the Explorer 16, modified for the application, to run the short demo. 

 If all went well, you will see a counter displayed in decimal format being continuously 
updated on the LCD display as you turn the encoder knob. The counter is a signed 
(32-bit) integer and as such it can swing between positive and negative values, depending 
on how much and how long you turn clockwise and counter-clockwise.  

  Interrupt-Driven Rotary Encoder Input 
 The main problem with the simple demonstration code we have just developed is in its 
assumption that the entire attention of the microcontroller can be devoted to the task at 
hand: detecting the commutations on the CHA and CHB input pins. This is perhaps an 
acceptable use of resources when the application is waiting for user input and there are no 
other tasks that need to be handled by the microcontroller. But if there are and, as often 
is the case, they happen to be of higher priority and importance than our application, we 
cannot afford the luxury to use a  blocking  input algorithm. We need to make the encoder 
input a background task. 

 As we saw in Day 5, the simplest way to obtain a sort of multitasking capability in 
embedded-control applications is to use the PIC32 interrupt mechanisms. A background 
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task becomes a small state machine that follows a simple set of rules. In our case, 
transforming the algorithm developed in the previous demonstration into a state machine 
and drawing its diagram (see  Figure 12.6   ), we learn that only two states are required: 

●      An idle state ( R_IDLE ), when the CHA encoder input is not active  

●      An active state ( R_DETECT ), when the CHA encoder input is active    

ENCHA � high

ENCHA � high

ENCHA � low

ENCHA � low

DetectIdle

Figure 12.6 :     Rotary encoder state machine diagram.    

 The transitions between the two states are simply expressed in  Table 12.1   . 

 Table 12.1 :     Rotary encoder state machine transition.  

State  Conditions Effect 

 R_IDLE  ENCHA active (low)    If ENCHB is active, the direction of rotation is 
 counterclockwise (d  � � 1) 
 Transition to R_DETECT state 

 ENCHA inactive (high)    Set default direction clockwise (d  �  1) 
 Remain in current state (wait) 

 R_DETECT    ENCHA inactive (high)    Update counter 
 Transition to R_IDLE state 

   ENCHA active (low)  Remain in current state (wait) 

 By binding the execution of the state machine to a periodic interrupt produced by one of the 
timers (Timer2, for example) we can ensure that the task will be performed continuously 
and, with the proper choice of timing, obtain a natural debouncing in the process. 
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 We can create a new source file that we will call  Rotary2.c , starting with the usual 
template and the following few declarations:       

  /*
  ** Rotary2.c 
  **  
  */
  // configuration bit settings, Fcy=72MHz, Fpb=36MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include <p32xxxx.h>  
  #include <plib.h>  
  #include <explore.h>  
  #include <LCD.h>  

  #define ENCHA _RA9        // encoder channel A  
  #define ENCHB _RA10        // encoder channel B  
  #define TPMS (FPB/1000)        // PB clock ticks per ms  

  // state machine definitions  
  #define R_IDLE        0 
  #define R_DETECT        1 

  volatile int RCount;  

  char RState;     

 Notice that  RCount,  the variable used to maintain the relative movement counter, is 
declared as a volatile  to inform the compiler that its value could change unpredictably 
at the hands of the interrupt service routine (state machine). This will ensure that the 
compiler won ’ t try to optimize access to it in the  main()  function by making wrong 
assumptions, since the variable is never written to in the main loop. 

 Choosing to use the vectored interrupt mechanism of the PIC32 for efficiency, we can 
code the interrupt service routine as follows:       

  void __ISR( _TIMER_2_VECTOR, ipl1) T2Interrupt( void)  
  { 
 static char d;  
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 switch ( RState) { 
 default:  
 case R_IDLE: // waiting for CHA rise 
 if ( ! ENCHA)  
 { 
 RState = R_DETECT;  
 if ( ! ENCHB) 
 d = -1;        

 }  
 else 
 d = 1;     

 break;     

 case R_DETECT:        // waitin for CHA fall 
 if ( ENCHA)  
 { 
 RState = R_IDLE;  
 RCount += d;     

 }  
 break;        

 } // switch  

 mT2ClearIntFlag();     

  } // T2 Interrupt     

 Finally, a small initialization routine is necessary to set up the initial conditions required 
for the Timer2 peripheral (with a 5 ms period) and the state machine to operate correctly: 

  void initR( void)  
  { 
 // init state machine  
 RCount = 0;        // init counter  
 RState = 0;        // init state machine  

 // init Timer2  
 T2CON = 0x8020;        // enable Timer2, Fpb/4  
 PR2 = 5*TPMS/4;        // 5ms period  
 mT2SetIntPriority( 1); 
 mT2ClearIntFlag();     
 mT2IntEnable( 1);     

  } // init R     
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 The Timer2 interrupt can be set to a level 1 priority, the lowest, since the absolute timing 
is not relevant here. Even when rotating the encoder very fast (120 RPM max, according 
to the device datasheet), the commutations are going to happen on a timescale that is an 
order of magnitude larger (20 ms). Any other task present in your application can, in fact, 
be assumed to have a higher priority. 

 Finally, here is a new  main()  function designed to put our rotary encoder routines to the 
test by periodically (10 times a second) checking the value of  RCount  and displaying its 
current value on the LCD display: 

  main( void)  
  { 
 int i = 0;  
 char s[16];  

 initEX16();        // init and enable interrupts  
 initLCD();        // init LCD module  
 initR();        // init Rotary Encoder  

 // main loop  
 while( 1)  
 { 
 Delayms( 100);        // place holder for a complex app.  

 clrLCD();  
 sprintf( s, "RCount = %d", RCount);  
 putsLCD( s);     

 } // main loop     

  } // main     

 Notice the call to the  initEX16()  function that, if you remember from Day 10, 
besides performing the fine tuning of the PIC32 for performance, enables the vectored 
interrupt mode. 

 Notice also that where the  Delayms( 100)  call is made, in the  main()  function, you 
could actually replace the core of a complex application that will now be able to operate 
continuously without being  “ blocked ”  by the encoder detection routines.  
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 Keyboards 
 If a few buttons, a keypad, or a rotary encoder offer the possibility to inexpensively accept 
user input to an embedded-control application, they pale compared to the convenience of 
a real computer keyboard. 

With the advent of the USB bus, computers have finally been freed of a number of 
 “ legacy ”  interfaces that had been in use for decades, since the introduction of the first 
IBM PC. The PS/2 mouse and keyboard interface is one of them. The result of this 
transition is that a large number of the  “ old ”  keyboards are now flooding the surplus 
market, and even new PS/2 keyboards are selling for very low prices. This creates the 
opportunity to give our future PIC32 projects a powerful input capability in return for 
very little complexity and cost.

  PS/2 Physical Interface 
 The PS/2 interface uses a five-pin DIN (see  Figure 12.7   ) or a six-pin mini-DIN connector. 
The first was common on the original IBM PC-XT and AT series but has not been in use 
for a while. The smaller six-pin version has been more common in recent years. Once the 
different pin-outs are taken into consideration, you will notice that the two are electrically 
identical.

 The host must provide a 5 V power supply. The current consumption will vary with 
the keyboard model and year, but you can expect values between 50 and 100 mA. (The 
original specifications used to call for up to 275 mA max.) 

 The data and clock lines are both open-collector with pull-up resistors (1–10 k ohm) to 
allow for two-way communication. In the normal mode of operation, it is the keyboard 
that drives both lines to send data to the personal computer. When it is necessary, though, 
the computer can take control to configure the keyboard and to change the status LEDs 
(Caps Lock and Num Lock).  

      Note     

 Interfacing to a USB keyboard is a completely different deal. You will need a USB host 
interface, with all the hardware and software complexity that it implies. New PIC32 models 
with USB host peripherals will address these needs, but a discussion of their use and the 
command of the USB protocol required are well beyond the scope of this book. 
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 The PS/2 Communication Protocol 
 At idle, both the data and clock lines are held high by the pull-ups (located inside the key-
board). In this condition the keyboard is enabled and can start sending data as soon as a 
key has been pressed. If the host holds the clock line low for more than 100 us, any further 
keyboard transmissions are suspended. If the host holds the data line low and then releases 
the clock line, this is interpreted as a request to send a command (see  Figure 12.8   ). 
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Figure 12.7 :     (a) Electrical interface (5-pin DIN) and (b) Physical interface (6-pin DIN).    
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 Figure 12.8 :     Keyboard-to-host communication waveform.    

The protocol is a curious mix of synchronous and asynchronous communication protocols 
we have seen in previous chapters. It is synchronous since a clock line is provided, but it 
is similar to an asynchronous protocol because a start, a stop, and a parity bit are used to 
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bracket the actual 8-bit data packet. Unfortunately, the baud rate used is not a standard value 
and can change from unit to unit over time, with temperature and the phase of the moon. 
In fact, typical values range from 10 to 16 kbits per second. Data changes during the clock 
high state. Data is valid when the clock line is low. Whether data is flowing from the host to 
the keyboard or vice versa, it is the keyboard that always generates the clock signal.

      Note     

 The USB bus reverses the roles as it makes each peripheral a synchronous slave of the host. This 
simplifies things enormously for a non real-time, nonpreemptive multitasking operating system like 
Windows. The serial port and the parallel port were similarly asynchronous interfaces and, probably 
for the same reason, both became legacy with the introduction of the USB bus specification. 

  Interfacing the PIC32 to the PS/2 
 The unique peculiarities of the protocol make interfacing to a PS/2 keyboard an interesting 
challenge, since neither the PIC32 SPI interface nor the UART interface can be used. In fact, 
the SPI interface does not accept 11-bit words (8-bit or 16-bit words are the closest options), 
whereas the PIC32 UART requires the periodic transmission of special break characters to 
make use of the powerful auto baud-rate detection capabilities. Also notice that the PS/2 
protocol is based on 5 V level signals. This requires care in choosing which pins can be 
directly connected to the PIC32. In fact, only the 5 V-tolerant digital input pins can be used, 
which excludes the I/O pins that are multiplexed with the ADC input multiplexer. 

  Input Capture 
 The first idea that comes to mind is to implement in software a PS/2 serial interface 
peripheral using the input capture peripheral (see Figure 12.9   ). 

 Five input capture modules are available on the PIC32MX360F512L, connected to the 
IC1-IC5 pins multiplexed on PORTD pins 8, 9, 10, 11, and 12, respectively. 

 Each input capture module is controlled by a single corresponding control register 
ICxCON  and works in combination with one of two timers, either Timer2 or Timer3. 

 One of several possible events can trigger the input capture: 

●      Rising edge 

●      Falling edge  
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●      Rising and falling edge 

●      Fourth rising edge 

●      Sixteenth rising edge 

 The current value of the selected timer is recorded and stored in a FIFO buffer to be 
retrieved by reading the corresponding ICxBUF register. In addition to the capture event, 
an interrupt can be generated after a programmable number of events (each time, every 
second, every third or every fourth). 

 To put the input capture peripheral to use and receive the data stream from a PS/2 
keyboard, we can connect the IC1 input ( RD8 ) to the clock line and configure the 
peripheral to generate an interrupt on each and every falling edge of the clock (see 
 Figure 12.10   ). 

 After creating a new project that we will call  IC  and following our usual template, we can 
start adding the following initialization code to a new source file we ’ ll call  PS2IC.c :       

  #define PS2DAT _RG12        // PS2 Data input pin  
  #define PS2CLK _RD8        // PS2 Clock input pin (IC1)  
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 Figure 12.9 :     Input capture module block diagram.    
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  void initKBD( void)  
  { 
 // init I/Os  
 _TRISD8 = 1;        // make RD8, IC1 an input pin, PS2 clock  
 _TRISG12 = 1;        // make RG12 an input pin, PS2 data  

 // clear the kbd flag  
 KBDReady = 0;  

 // init input capture  
 IC1CON = 0x8082;        // TMR2, int every cap, fall’n edge  
 mIC1ClearIntFlag();        // clear the interrupt flag  
 mIC1SetIntPriority( 1);  
 mIC1IntEnable( 1);        // enable the IC1 interrupt  

 // init Timer2  
 mT2ClearIntFlag();        // clear the timer interrupt flag  
 mT2SetIntPriority( 1);  
 mT2IntEnable( 1);        // enable (TMR2 is not active yet)     

  } // init KBD     

 We will also need to create an interrupt service routine for the IC1 interrupt vector. This 
routine will have to operate as a state machine and perform in a sequence the following 
steps:

  1.     Verify the presence of a start bit (data line low).  

  2.     Shift in 8 bits of data and compute a parity.  

Falling edge
input capture event

Clock line

Data line Valid data

 Figure 12.10 :     PS/2 interface bit timing and the input capture trigger event.    
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  3.     Verify a valid parity bit. 

  4.     Verify the presence of a stop bit (data line high). 

 If any of the above checks fails, the state machine must reset and return to the start 
condition. When a valid byte of data is received, we will store it in a buffer—think of it as 
a mailbox—and a flag will be raised so that the main program or any other  “ consumer ”  
routine will know a valid key code has been received and is ready to be retrieved. To 
fetch the code, it will suffice to copy it from the mailbox first and then clear the flag (see 
 Figure 12.11   ). 

Stop

Start Bit

Bitcount � 8

Data � low

Parity � odd

Parity � even

Parity

Data � high Bitcount � 8

 Figure 12.11 :     The PS/2 receive state machine diagram.    

 The state machine requires only four states and a counter. All the transitions can be 
summarized in Table 12.2   . 

 Theoretically I suppose we should consider this an 11-state machine, counting each time 
the bit state is entered with a different bitcount value as a distinct state. But the four-
state model works best for an efficient C language implementation. Let ’ s define a few 
constants and variables that we will use to maintain the state machine:     

  // definition of the keyboard PS/2 state machine  
  #define PS2START        0 
  #define PS2BIT        1 
  #define PS2PARITY        2 
  #define PS2STOP        3 
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  #define TPS        (FPB/1000000)        // timer ticks per uS  
  #define TMAX        500*TPS        // 500uS time out limit  

  // PS2 KBD state machine and buffer  
  int PS2State;  
  unsigned char KBDBuf;  
  int KCount, KParity;  

  // mailbox 
  volatile int KBDReady;  

  volatile unsigned char KBDCode;     

 The interrupt service routine for the input capture IC1 module can finally be implemented 
using a simple switch statement: 

  void __ISR( _INPUT_CAPTURE_1_VECTOR, ipl1) IC1Interrupt( void)  
  { // input capture interrupt service routine 
 int d;  

 // 1. reset timer on every edge  
 TMR2 = 0;  

 Table 12.2 :     PS/2 receive state machine transitions.  

State  Conditions Effect 

 Start      Data  �  low      Init bitcount 
 Init parity 
 Transition to bit state 

 Bit  Bitcount  �  8      Shift in key code, LSB first (shift right) 
 Update parity 
 Increment bitcount 

 Bitcount  �  8  Transition to parity state 

 Parity    Parity  �  even  Error; transition back to start 

 Parity  �  odd  Transition to stop 

 Stop        Data  �  low  Error; transition back to start 

 Data  �  high      Save the key code in buffer 
 Set flag 
 Transition to start 
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 switch( PS2State){  
 default:  
 case PS2START: 
 if ( ! PS2DAT)        // verify start bit  
 { 
 KCount = 8;        // init bit counter  
 KParity = 0;        // init parity check  
 PR2 = TMAX;        // init timer period  
 T2CON = 0x8000;        // enable TMR2, 1:1  
 PS2State = PS2BIT;     

 }  
 break;     

 case PS2BIT: 
 KBDBuf >>=1;        // shift in data bit  
 if ( PS2DAT) 
 KBDBuf += 0x80;     

 KParity ^= KBDBuf;        // update parity  
 if ( --KCount == 0)        // if all bit read, move on 
 PS2State = PS2PARITY;     

 break;     

 case PS2PARITY: 
 if ( PS2DAT)        // verify parity bit 
 KParity ^= 0x80;     

 if ( KParity  &  0x80)        // if parity odd, continue 
 PS2State = PS2STOP;     

 else 
 PS2State = PS2START;     

 break;     

 case PS2STOP: 
if ( PS2DAT)        // verify stop bit  
 { 
 KBDCode = KBDBuf;        // save code in mail box  
 KBDReady = 1;        // set flag, code available  
 T2CON = 0;        // stop the timer     

 }  
 PS2State = PS2START;  
 break;     

 } // switch state machine  
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 // clear interrupt flag  
 d = IC1BUF;        // discard capture  
 mIC1ClearIntFlag();     

  } // IC1 Interrupt     

  Testing Using a Stimulus Scripts 
 The small perforated prototyping area can be used to attach a PS/2 mini-DIN connector to 
the Explorer 16 demonstration board, the only alternative being the development of a custom 
daughter board (PICTail) for the expansion connectors. Before committing to designing such 
a board, though, we would like to make sure that the chosen pin-out and code is going to 
work. The MPLAB SIM software simulator will once more be our tool of choice. 

 In previous chapters we have used the software simulator in conjunction with the Watch 
window, the StopWatch, and the Logic Analyzer to verify that our programs were 
generating the proper timings and outputs, but this time we will need to simulate inputs as 
well. To this end, MPLAB SIM offers a considerable number of options and resources—
so many in fact that the system might seem a bit intimidating. First, the simulator offers 
two types of input stimuli: 

●      Asynchronous ones, typically triggered manually by the user  

●      Synchronous ones, triggered automatically by the simulator after a scripted 
amount of time (expressed in processor cycles or seconds) 

 The scripts containing the descriptions of the synchronous stimuli (which can be quite 
complex) are prepared using the Stimulus window (see  Figure 12.12   ). You must have the 
MPLAB SIM selected as your active debugging tool ( Debugger | Select Tool | MPLAB 
SIM ) to open the Stimulus window by selecting  Stimulus | New Workbook  from the 
Debugger menu. To prepare the simplest type of stimulus script, one that assigns values 
to specific input pins (but also entire registers) at given points in time, you can select the 
first tab,  Pin/Register Actions . 

 After selecting the unit of measurement of choice, microseconds in our case, click the 
first row  of the table that occupies most of the dialog box window space (where it says 
 “ click here to Add Signals ” ). This will allow you to add columns to the table. Add  one
column  for every pin for which you want to simulate inputs. In our example, that would 
be RG12  for the PS/2 Data line and IC1 for the Input Capture pin that we want connected 
to the PS2 Clock line. At this point we can start typing in the stimulus timing table. 
To simulate a generic PS/2 keyboard transmission, we need to produce a 10 kHz clock 



Capturing User Inputs   297

signal for 11 cycles, as represented in the PS/2 keyboard waveform in  Figure 12.6 . This 
requires an event to be inserted in the timing table each 50us. As an example,  Table 12.3    
illustrates the trigger events I recommend you add to the Stimulus window timing table to 
simulate the transmission of key code  0x79 . 

 Once the timing table is filled, you can save the current content for future use with the  Save
button. The file generated will be an ASCII file with the .SBS extension. In theory you 
could edit this file manually with an MPLAB IDE editor or any basic ASCII editor, but 
you are strongly discouraged from doing so. The format is more rigid than meets the eye 
and you might end up trashing it. If you were wondering why the term  “ workbook ”  is used 
for what looks like a simple table, you are invited to explore the other panes (accessible 
by clicking the tabs at the top of the dialog box) of the Stimulus window. You will see that 
what we are using in this example is just one of the many methods available, representing 
a minuscule portion of the capabilities of the MPLAB SIM simulator. A workbook file can 
contain a number of different types of stimuli produced by any (or multiple) of those panes. 

  Segment of the Stimulus workbook file  
  ## SCL Builder Setup File: Do not edit!!  

  ## VERSION: 3.60.00.00  
  ## FORMAT:  v2.00.01  
  ## DEVICE:  PIC32MX360F512L  

  ## PINREGACTIONS 
  us

 Figure 12.12 :     The Stimulus window.    
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 Table 12.3 :     SCL Generator timing example for basic.  

 Time (us) RG12  IC1 Comment

    0  1  1  Idle state, both lines are pulled up 

  100  1  1 

  150  0  0  First falling edge, start bit (0) 

  200  1  1 

  250  1  0  Bit 0, k ey code LSb (1) 

  300  0  1 

  350  0  0  Bit 1 (0) 

  400  0  1 

  450  0  0  Bit 2 (0) 

  500  1  1 

  550  1  0  Bit 3 (1) 

  600  1  1 

  650  1  0  Bit 4 (1) 

  700  1  1 

  750  1  0  Bit 5 (1) 

  800  1  1 

  850  1  0  Bit 6 ( 1) 

  900  0  1 

  950  0  0  Bit 7, key code MSb (0) 

 1000  0  1 

 1050  0  0  Parity bit (0) 

 1100  1  1 

 1150  1  0  Stop bit (1) 

 1200  1  1  Idle 
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  No Repeat  
  RG12  
  IC1  
  --  
  0  
  1  
  1  
  --  
  100  
  1  
  1  
  --  
  150  
  0  

  0     

 Before we get to use the generated stimulus file, we have to complete the project with 
a few final touches. Let ’ s prepare an include file to publish the accessible function: 
initKBD() , the flag  KBDReady , and the buffer for the received key code  KBDCode :       

  /*
  **  
  ** PS2IC.h 
  **  
  ** PS/2 keyboard input library using input capture  
  */
  extern volatile int KBDReady;  
  extern volatile unsigned char KBDCode;  

  void initKBD( void);     

 Note that there is no reason to publish any other detail of the inner workings of the PS/2 
receiver implementation. This will give us freedom to try a few different methods later 
without changing the interface. Save this file as  PS2IC.h  and include it in the project. 

 Let ’ s also create a new file,  PS2ICTest.c , that will contain the usual template with the 
main()  routine and will use the PS2IC.c module to test its functionality:       

  /*
  ** PS2ICTest.c 
  **  
  */
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  // configuration bit settings, Fcy=72MHz, Fpb=36MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include <p32xxxx.h>  
  #include <explore.h>  
  #include "PS2IC.h"  

  main()  
  { 
 int Key;  
 initEX16();        // init and enable interrupts  
 initKBD();        // initialization routin e   
 while ( 1)  
 { 
 if ( KBDReady)        // wait for the fla g   
 { 
 Key = KBDCode;        // fetch the key code  
 KBDReady = 0;        // clear the flag     

 }        
 } // main loop  

  } //main     

 The  initEX16()  function takes care of the fine tuning of the PIC32 for performance 
but also enables the vectored interrupts mode. The call to the  initKBD()  function takes 
care of the PS/2 state machine initialization, sets the chosen input pins, and configures the 
interrupts for the Input Capture module. The main loop will wait for the interrupt routine 
to raise the KBDready  flag, indicating that a key code is available; it will fetch the key 
code and copy it in the local variable  Key.  Finally, it will clear the  KBDReady  flag, ready 
to receive a new character. 

Now remember to add the file to the project and build all. Instead of immediately 
launching the simulation, select the Stimulus  window once more, and click the  Apply
button.

      Note     

 Keep the Stimulus window open (in the background). Resist the temptation to click the Exit 
button, as that would close the workbook and leave us without stimuli. 
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 Figure 12.13 :     In the Output window (MPLAB SIM pane), a stimulus 
action has been triggered.    

 It is your choice now to proceed by single-stepping or animating through the program to 
verify its correct execution. My suggestion is that you place a  breakpoint  inside the main 
loop on the instruction copying  KBDCode  to the  Key  variable. Open the  Watch  window 
and add Key  from the Symbol list, then  RUN . 

 After a few seconds, the execution should terminate at the breakpoint, and the content of 
Key  should reflect the data we sent through the simulated PS/2 stimulus script:  0x79 !

  The Simulator Profiler 
 If you were curious about how fast the simulation of a PIC32 could run on your 
computer, there is an interesting feature available to you in the MPLAB SIM Debugger 
menu: the profile. Select the Profile submenu ( Debugger | Profile ) and click  Reset
Profile  (see  Figure 12.14   ). 

 This will clear the simulator profile counters and timers. Then click the  Reset  button and 
repeat the simulation ( Debugger | Run ) until it encounters the breakpoint again. This 
time select Debugger | Profiler | Display Profile  to display the latest statistics from 
MPLAB SIM (see Figure 12.15   ). 

 A relatively long report will be available in the output window (MPLAB SIM pane) 
detailing how many times each instruction was used by the processor during the 
simulation and, at the very bottom, offering an assessment of the absolute  “ simulation ”  

 Click the  Reset  button (or select  Debugger | Reset ) and watch for the first stimulus to 
arrive as the microsecond 0 trigger is fired. Remember, both lines  RG12  and  IC1  are 
supposed to be set high according to our timetable. A message will confirm this in the 
Output window (see  Figure 12.13   ). 
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 Figure 12.15 :     Simulator Profile output.    

 Figure 12.14 :     The Simulator Profile submenu.    

speed. In my case, that turned out to be 1.4 MIPS. A respectable result after all, although 
nothing to write home about. Contrary to the simulation of other PIC® microcontrollers, 
where these numbers would have compared well with the actual processor real-time 
performance, compared to the PIC32 the software simulation (on my laptop) ran at just 
1/50th of the actual silicon speed!  

  Change Notification 
 Though the input capture technique worked all right, there are other options that we 
might be curious to explore to interface efficiently with a PS/2 keyboard. In particular 
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there is another interesting peripheral available on the PIC32 that could offer an 
alternative method to implement a PS/2 interface: the Change Notification (CN) module. 
There are as many as 22 I/O pins connected with this module, and this can give us 
some freedom in choosing the ideal input pins for the PS/2 interface while making sure 
they don ’ t conflict with other functions required in our project or already in use on the 
Explorer 16 board. 

 Only three control registers are associated with the CN module. The  CNCON  register 
contains the basic control bits to enable the module, and the CNEN  register contains the 
enable bits for each of the CN input pins. Note that only one interrupt vector is available 
for the entire CN module; therefore it will be the responsibility of the interrupt service 
routine to determine which one has actually changed if more than one is enabled. Finally, 
the CNPUE  register controls the individual activation of internal pull-up resistors available 
for each input pin (see Figure 12.16   ). 

Virtual
Address

BF88_61C0 CNCON 31:24

23:16

15:8

7:0

31:0

31:0

31:0

31:24

23:16

15:8

7:0

31:0

31:0

31:0

31:24

23:16

15:8

7:0

31:0

31:0

31:0

ON

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

FRZ SIDL

Write clears selected bits in CNCON, Read yields undefined

Write sets selected bits in CNCON, Read yields undefined

Write inverts selected bits in CNCON, Read yields undefined

Write clears selected bits in CNEN, Read yields undefined

Write sets selected bits in CNEN, Read yields undefined

Write inverts selected bits in CNEN, Read yields undefined

Write clears selected bits in CNPUE, Read yields undefined

Write sets selected bits in CNPUE, Read yields undefined

Write inverts selected bits in CNPUE, Read yields undefined

CNCONCLR

CNCONSET

CNCONINV

CNEN

CNEN[15:8]

CNEN[7:0]

CNEN[15:8]

CNEN[7:0]

CNENCLR

CNENSET

CNENINV

CNPUE

CNPUECLR

CNPUESET

CNPUEINV

Note 1: CNEN and CNPUE bit(s) are not implemented on 64-pin variants and read as ‘0’

BF88_61C4

BF88_61C8

BF88_61CC

BF88_61D0

BF88_61D4

BF88_61D8

BF88_61DC

BF88_61E0

BF88_61E4

BF88_61E8

BF88_61EC

Name
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5

CNEN
211

CNEN
201

CNEN
191

CNEN
18

CNEN
17

CNEN
16

CNPUE
211

CNPUE
201

CNPUE
191

CNPUE
18

CNPUE
17

CNPUE
16

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

 Figure 12.16 :     The CN control registers table.    
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Change notifications

Clock line

Data line
Valid data

 Figure 12.17 :     PS/2 interface bit timing Change Notification event detail.    

 In practice, all we need to support the PS/2 interface is just one of the CN inputs 
connected to the PS2 clock line. The PIC32 weak pull-up will not be necessary in this 
case since it is already provided by the keyboard. There are 22 pins to choose from, 
and we will find a CN input that is not shared with the ADC (remember, we need a 5 V 
tolerant input) and is not overlapping with some other peripheral used on the Explorer 16 
board. This takes a little studying between the device datasheet and the Explorer 16 user 
guide. But once the input pin is chosen, say,  CN11  (multiplexed with pin  RG9 , the  SS  line 
of the SPI2 module and the PMP module Address line PMA2 ), a new initialization routine 
can be written in just a couple of lines (see  Figure 12.17   ):       

  #define PS2DAT _RG12        // PS2 Data input pin  
  #define PS2CLK _RG9        // PS2 Clock input pin (CN11)  

  void initKBD( void)  
  { 
 // init I/Os  
 _TRISG9 = 1;        // make RG9 an input pin  
 _TRISG12 = 1;        // make RG12 an input pin  

 // clear the flag  
 KBDReady = 0;  
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 // configure Change Notification system  
 CNENbits.CNEN11 = 1;        // enable PS2CLK (CN11)  
 CNCONbits.ON = 1;        // turn on Change Notification  
 mCNSetIntPriority( 1);        // set interrupt priority >0  
 mCNClearIntFlag();        // clear the interrupt flag  
 mCNIntEnable( 1);        // enable interrupt     

  } // init KBD     

 As per the interrupt service routine, we can use exactly the same state machine used in 
the previous example, adding only a couple of lines of code to make sure that we are 
looking at a falling edge of the clock line. 

 In fact, using the input capture module, we could choose to receive an interrupt only on the 
desired clock edge, whereas the change notification module will generate an interrupt both 
on falling and rising edges. A simple check of the status of the clock line immediately after 
entering the interrupt service routine will help us tell the two edges apart: 

  void __ISR( _CHANGE_NOTICE_VECTOR, ipl1) CNInterrupt( void)  
  { // change notification interrupt service routine 

 // 1. make sure it was a falling edge  
 if ( PS2CLK == 0)  
 { 
 switch( PS2State){  
 default:  
 case PS2START:        // verify start bit 
 if ( ! PS2DAT)  
 { 
 KCount = 8;        // init bit counter  
 KParity = 0;        // init parity check  
 PS2State = PS2BIT;     

 }  
 break;     

 case PS2BIT: 
 KBDBuf >>=1;        // shift in data bit  
 if ( PS2DAT) 
 KBDBuf += 0x80;     

 KParity ^= KBDBuf;        // update parity  
 if ( --KCount == 0)        // if all bit read, move on 
 PS2State = PS2PARITY;     

 break;     
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 case PS2PARITY: 
 if ( PS2DAT)        // verify parity 
 KParity ^= 0x80;     

 if ( KParity  &  0x80)        // if parity odd, continue 
 PS2State = PS2STOP;     

 else 
 PS2State = PS2START;     

 break;     

 case PS2STOP: 
 if ( PS2DAT)        // verify stop bit  
 { 
 KBDCode = KBDBuf;        // save code in mail box  
 KBDReady = 1;        // set flag, code available     

 }  
 PS2State = PS2START;  
 break;     

 } // switch state machine     
 } // if falling edge  

 // clear interrupt flag  
 mCNClearIntFlag();     

  } // CN Interrupt     

 Add the constants and variables declarations already used in the previous example:       

  // definition of the keyboard PS/2 state machine  
  #define PS2START        0 
  #define PS2BIT        1 
  #define PS2PARITY        2 
  #define PS2STOP        3 

  // PS2 KBD state machine and buffer  
  int PS2State;  
  unsigned char KBDBuf;  
  int KCount, KParity;  

  // mailbox 
  volatile int KBDReady;  

  volatile unsigned char KBDCode;     

 Package it all together in a file that we will call  PS2CN.c . 
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 The include file PS2CN.h will be practically identical to the previous example, since we 
are going to offer the same interface: 

  /*
  **  
  ** PS2CN.h 
  **  
  ** PS/2 keyboard input module using Change Notification  
  */

  extern volatile int KBDReady;  
  extern volatile unsigned char KBDCode;  

  void initKBD( void);     

 Create a new project called  PS2CN  and add both the .c and the .h files to the 
project.

 Finally, create a main module to test this new technique. One more time, it will be mostly 
identical to the previous project:       

  /*
  ** PS2CNTest.c 
  **  
  */
  // configuration bit settings, Fcy=72MHz, Fpb=36MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include <p32xxxx.h>  
  #include <explore.h>  
  #include "PS2CN.h"  

  main()  
  { 
 initEX16();        // init and enable interrupts  
 initKBD();        // kbd initialization  

 while ( 1)  
 { 
 if ( KBDReady)        // wait for the flag  
 { 
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 PORTA = KBDCode;        // fetch the key code  
 KBDReady = 0;        // clear the flag     

 }     
 } // main loop     

  } //main     

 Save the project, then build the project ( Project | BuildAll ) to compile and link all the 
modules. To test the change notification technique, we will use once more MPLAB SIM 
stimulus generation capabilities. Once more we will repeat most of the steps performed 
in the previous project. Starting with the Stimulus window ( Debugger | Stimulus | New 
Workbook ), we will create a new workbook. Inside the window, create  two columns , 
one for the same PS2 Data line connected to RG12 , but the PS2 Clock line will be 
connected to the CN11  Change Notification module input this time. Add the same 
sequence of stimuli as presented in  Table 12.3 , replacing the  IC1   input  column with 
the CN11  column. Save the workbook as  PS2CN.sbs  and then click the  Apply  button to 
activate the stimulus script. 

 We are ready now to execute the code and test the proper functioning of the new PS/2 
interface. Open the  Watch  window and add  Key  from the symbols list. Then set a 
breakpoint  inside the main loop on the line where  KBDCode  is copied to the  Key
variable. Finally, perform a reset ( Debugger | Reset ) and verify that the first event is 
triggered (setting both PS/2 input lines high at time 0 us). Run the code ( Debugger |
RUN ) and, if all goes well, you will see the processor stop at the breakpoint after less 
than a second, and you will see the contents of Key  to be updated to reflect the key code 
0x79 . Success again! 

  Evaluating Cost 
 Changing from the Input Capture to the Change Notification method was almost too easy. 
The two peripherals are extremely potent and, although designed for different purposes, 
when applied to the task at hand they performed almost identically. In the embedded 
world, though, you should constantly ask yourself if you could solve the problem with 
fewer resources even when, as in this case, there seems to be abundance. 

 Let ’ s evaluate the real cost of each solution by counting the resources used and their 
relative scarcity. In using the Input Capture, we have in fact used one of five IC modules 
available in the PIC32MX360F512L model. This peripheral is designed to operate in 
conjunction with a timer (Timer2 or Timer3), although we are not using the timing 
information in our application but only the interrupt mechanism associated with the 
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input edge trigger. When using the Change Notification, we are using only one of 22 
possible inputs, but we are also taking control of the sole interrupt vector available to this 
peripheral. In other words, should we need any other input pin to be controlled by the 
change notification peripheral, we will have to share the interrupt vector, adding latency 
and complexity to the solution. I would call this a tie.  

  I/O Polling 
 There is one more method that we could explore to interface to a PS/2 keyboard. It is 
the most basic one and it implies the use of a timer, set for a periodic interrupt, and any 
5V tolerant I/O pin of the microcontroller. In a way, this method is the most flexible 
from a configuration and layout point of view. It is also the most generic since any 
microcontroller model, even the smallest and most inexpensive, will offer at least one 
timer module suitable for our purpose. The theory of operation is pretty simple. At 
regular intervals an interrupt will be generated, set by the value of the period register 
associated with the chosen timer (see  Figure 12.18   ). 

Sampling points

Clock line

Data line Valid data

 Figure 12.18 :     PS/2 interface bit timing I/O polling sampling points.    

 We will use Timer4 this time, just because we never used it before, and its associated 
period register  PR4 . The interrupt service routine  T4Interrupt()  will sample the status 
of the PS/2 Clock line and it will determine whether a falling edge has occurred on the 
PS/2 Clock line over the previous period. When a falling edge is detected, the PS/2 Data 
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line status will be considered to receive the key code. To determine how frequently we 
should perform the sampling and therefore identify the optimal value of the  PR4  register, 
we should look at the shortest amount of time allowed between two edges on the PS/2 
clock line. This is determined by the maximum bit rate specified for the PS/2 interface 
that, according to the documentation in our possession, corresponds to about 16 k bit/s. 
At that rate, the clock signal can be represented by a square wave with an approximately 
50-percent duty cycle and a period of approximately 62.5 us. In other words, the clock 
line will stay low for little more than 30 us each time a data bit is presented on the PS/2 
Data line, and it will stay high for approximately the same amount of time, during which 
the next bit will be shifted out. 

 By setting  PR4  to a value that will make the interrupt period shorter than 30 us (say 
25 us), we can guarantee that the clock line will always be sampled at least once between 
two consecutive edges. The keyboard transmission bit rate, though, could be as slow 
as 10 k bit/s, giving a maximum distance between edges of about 50 us. In that case we 
would be sampling the clock and data lines twice and possibly up to three times between 
each clock edge. In other words, we will have to build a new state machine to detect the 
actual occurrence of a falling edge and to properly keep track of the PS/2 clock signal 
(see  Figure 12.19   ). 

Clock � 0, Falling Edge

Clock � 1Clock � 1Clock � 0

State 1State 0

 Figure 12.19 :     Clock-polling state machine graph.    

 The state machine requires only two states, and all the transitions can be summarized in 
the  Table 12.4   . 

 When a falling edge is detected, we can still use the same state machine developed 
in the previous projects to read the data line. It is important to note that in this case 
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the value of the data line is not guaranteed to be sampled right after the actual falling 
edge of the clock line has occurred but instead could be considerably delayed. To 
avoid the possibility of reading the data line outside the valid period, it is imperative 
to simultaneously sample both the clock and the data line. This will be performed by 
copying the value of the two inputs in two local variables ( d  and  k ) at the very beginning 
of the interrupt service routine. In our example, we will choose to use  RG12  (again) for 
the data line and RG13  for the clock line. Here is the skeleton implementation of the 
Clock-polling state machine illustrated previously:       

  #define PS2CLK _RG13        // PS2 Clock output  
  #define PS2DAT _RG12        // PS2 Data input pin  

  // PS2 KBD state machine and buffer  
  int PS2State;  
  unsigned char KBDBuf;  

  // mailbox 
  volatile int KBDReady;  
  volatile unsigned char KBDCode;  

  void __ISR( _TIMER_4_VECTOR, ipl1) T4Interrupt( void)  
  { 
 int d, k;  

 // sample the inputs clock and data at the same time  
 d = PS2DAT;  
 k = PS2CLK;  

 Table 12.4 :     Clock-polling state machine transitions.  

State  Conditions Effect 

 State0    Clock  �  0  Remain in State0 

 Clock  �  1  Rising Edge, Transition to State1 

 State1        Clock  �  1  Remain in State1 

 Clock  �  0      Falling edge detected 
 Execute the Data state machine 
 Transition to State0 
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 // keyboard state machine  
 if ( KState)  
 { // previous time clock was high KState 1 
 if ( !k)        // PS2CLK == 0  
 { // falling edge detected, 
 KState = 0;        // transition to State0  

  <<<< insert data state machine here >>>>     

 } // falling edge  
 else  
 { // clock still high, remain in State1  

 } // clock still high     
 } // state 1  

 else  
 { // state 0 
 if ( k)       // PS2CLK == 1  
 { // rising edge, transition to State1 
 KState = 1;     

 } // rising edge  
 else  
 { // clocl still low, remain in State0  

 } // clock still low     
 } // state 0  

 // clear the interrupt flag  
 mT4ClearIntFlag();     

  } // T4 Interrupt     

 Thanks to the periodic nature of the polling mechanism we just developed, we can add 
a new feature to the PS2 interface to make it more robust with minimal effort. First, we 
can add a counter to idle loops of both states of the clock state machine. This way we will 
be able to create a timeout to be able to detect and correct error conditions, should the 
PS/2 keyboard be disconnected during a transmission or if the receive routine should lose 
synchronization for any reason. 

 The new transition table ( Table 12.5   ) is quickly updated to include the timeout counter 
KTimer.
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 The new transition table adds only a few instructions to our interrupt service routine: 

  void __ISR( _TIMER_4_VECTOR, ipl1) T4Interrupt( void)  
  { 
 int d, k;  

 // sample the inputs clock and data at the same time  
 d = PS2DAT;  
 k = PS2CLK;  

 // keyboard state machine  
 if ( KState)  
 { // previous time clock was high KState 1 
 if ( !k)        // PS2CLK = 0  
 { // falling edge detected, 
 KState = 0;        // transition to State0  
 KTimer = KMAX;        // restart the counter  

  <<<< insert data state machine here >>>>     

 } // falling edge  
 else  
 { // clock still high, remain in State1 

 Table 12.5 :     Clock-polling (with timeout) state machine transition table.  

State  Conditions Effect 

 State0          Clock  �  0        Remain in State0 
 Decrement KTimer 
 If KTimer  �  0, error 
 Reset the data state machine 

 Clock  �  1  Rising Edge, Transition to State1 

 State1        Clock  �  1        Remain in State1 
 Decrement KTimer 
 If KTimer  �  0, error 
 Reset the data state machine 

 Clock  �  0        Falling edge detected 
 Execute the Data state machine 
 Transition to State0 
 Restart KTimer 
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 KTimer--;  
 if ( KTimer == 0)        // Timeout
 PS2State = PS2START;        // Reset data SM        

 } // clock still high     
 } // Kstate 1  
 else  
 { // Kstate 0 
 if ( k)        // PS2CLK == 1  
 { // rising edge, transition to State1 
 KState = 1;     

 } // rising edge  
 else  
 { // clocl still low, remain in State0 
 KTimer--;  
 if ( KTimer = 0)        // Timeout
 PS2State = PS2START;        // Reset data SM        

 } // clock still low     
 } // Kstate 0  

 // clear the interrupt flag  
 mT4ClearIntFlag();     

  } // T4 Interrupt     

  Testing the I/O Polling Method 
 Let ’ s now insert the Data state machine from the previous projects, modified to operate 
on the value sampled in  d  and  k  at the interrupt service routine entry. It fits entirely in a 
single switch  statement:       

  switch( PS2State){ 
 default:  
 case PS2START: 
 if ( !d)       // PS2DAT == 0  
 { 
 KCount = 8;        // init bit counter  
 KParity = 0;        // init parity check  
 PS2State = PS2BIT;     

 }  
 break;     
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 case PS2BIT: 
 KBDBuf >>=1;        // shift in data bit  
 if ( d)        // PS2DAT == 1 
 KBDBuf += 0x80;     

 KParity ^= KBDBuf;        // calculate parity  
 if ( --KCount == 0)        // all bit read 
 PS2State = PS2PARITY;     

 break;     

 case PS2PARITY: 
 if ( d)        // PS2DAT == 1 
 KParity ^= 0x80;     

 if ( KParity  &  0x80)        // parity odd, continue 
 PS2State = PS2STOP;     

 else 
 PS2State = PS2START;     

 break;     

 case PS2STOP: 
 if ( d)        // PS2DAT == 1  
 { 
 KBDCode = KBDBuf;        // write in the buffer  
 KBDReady = 1;     

 }  
 PS2State = PS2START;  
 break;     

 } // switch        

 Let ’ s complete this third module with a proper initialization routine: 

  void initKBD( void)  
  { 
 // init I/Os  
 ODCGbits.ODCG13 = 1;        // make RG13 open drain (PS2clk)  
 _TRISG13 = 1;        // make RG13 an input pin (for now)  
 _TRISG12 = 1;        // make RG12 an input pin  

 // clear the kbd flag  
 KBDReady = 0;  
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 // configure Timer4  
 PR4 = 25*TPS - 1;        // 25 us  
 T4CON = 0x8000;        // T4 on, prescaler 1:1  
 mT4SetIntPriority( 1);        // lower priority  
 mT4ClearIntFlag();        // clear interrupt flag  
 mT4IntEnable( 1);        // enable interrupt     

  } // init KBD     

 This is quite straightforward. 

 Let ’ s save it all in a module we can call  PS2T4.c.  Let ’ s create a new include file, too: 

  /*
  **  
  ** PS2T4.h 
  **  
  ** PS/2 keyboard input library using T4 polling  
  */

  extern volatile int KBDReady;  
  extern volatile unsigned char KBDCode;  

  void initKBD( void);     

 It is practically identical to all previous modules include files, and the main test module 
will not be much different either:       

  /*
  ** PS2T4 Test  
  **  
  */
  // configuration bit settings, Fcy=72MHz, Fpb=36MHz  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include <p32xxxx.h>  
  #include <explore.h>  
  #include "PS2T4.h"  

  main()  
  { 
 initEX16();        // init and configure interrupts  
 initKBD();        // initialization routine  
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 while ( 1)  
 { 
 if ( KBDReady)        // wait for the flag  
 { 
 PORTA = KBDCode; // fetch the key code  
 KBDReady = 0;        // clear the flag     

 }     
 } // main loop     

  } //main     

 Create a new project  T4  and add all three files to it. Build all and follow the same series 
of steps used in the previous two examples to generate a stimulus script. Remember that 
this time the stimulus for the Clock line must be provided on the  RG13  pin. Open the 
Watch  window and add  PORTA  and  KBDCode . Finally set a  breakpoint  to the line after 
the assignment to PORTA  and execute  Debug  |  Run . If all goes well, even this time you 
should be able to see PORTA  updated in the Watch window and showing a new value of 
0x79 . Success again! 

  Cost and Efficiency Considerations 
 Comparing the cost of this solution to the previous two, we realize that the I/O polling 
approach is the one that gives us the most freedom in choosing the input pins and uses only 
one resource, a timer, and one interrupt vector. The periodic interrupt can also be seamlessly 
shared with other tasks to form a common time base if they all can be reduced to multiples 
of the polling period. The time-out feature is an extra bonus; to implement it in the previous 
techniques, we would have had to use a separate timer and another interrupt service routine 
in addition to the Input Capture or Change Notification modules and interrupts. 

 Looking at the efficiency, the Input Capture and the Change Notification methods appear 
to have an advantage because an interrupt is generated only when an edge is detected. 
Actually, as we have seen, the Input Capture is the best method from this point of view, 
since we can select precisely the one type of edge we are interested in—that is, the falling 
edge of the PS/2 Clock line. 

 The I/O polling method appears to require the longest interrupt routine, but the number 
of lines does not reflect the actual weight  of the interrupt service routine. In fact, when 
we look closer, of the two nested state machines that compose the I/O polling interrupt 
service routine, only a few instructions are executed at every call, resulting in a very short 
execution time and minimal overhead. 
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 To verify the actual software overhead imposed by the interrupt service routines, we can 
perform one simple test on each one of the three implementations of the PS/2 interface. 
I will use only the last one as an example. We can allocate one of the I/O pins (one of the 
LED outputs on PORTA not used by the JTAG port would be a logical choice) to help us 
visualize when the microcontroller is inside an interrupt service routine. We can set the 
pin on entry and reset it right before exit:       

  void __ISR(..) T4Interrupt( void)  
  { 
 _RA2 = 1;         // flag up, inside the ISR  

 <<< Interrupt service routine here >>  

 _RA2 = 0;         // flag down, back to the main     

  }     

 Using MPLAB SIM simulator Logic Analyzer view, we can visualize it on our computer 
screen. Follow the Logic Analyzer checklist so you will remember to enable the  Trace
buffer, and set the correct  simulation  speed. Select the  RA0  channel and rebuild the 
project.

 To test the first two methods (IC and CN), you will need to open the  Stimulus  window 
and apply the scripts  to simulate the inputs. Without them there will be no interrupts 
at all. When testing the I/O polling routine, you won ’ t necessarily need it; the Timer4 
interrupt keeps coming anyway and, after all, we are interested in seeing how much time 
is wasted by the continuous polling when no keyboard input is provided. 

 Let MPLAB SIM run for a few seconds, then stop the simulation and switch back to the 
Logic Analyzer  window. You will have to zoom in quite a bit to get an accurate picture 
(see  Figure 12.20   ). 

 Activate the  cursors       and drag them to measure the number of cycles between two 
consecutive rising edges of  RA2 , marking two successive entries in the interrupt service 
routine. Since we selected a 25 us period, you should read 900 cycles between calls (25 us * 
36 cycles/us @72 MHz). 

 Measuring the number of cycles between a rising edge and a falling edge of  RA2  instead 
will tell us, with good approximation, how much time we are spending inside the 
interrupt service routine; 36 cycles is what I found. The ratio between the two quantities 
will give us an indication of the computing power absorbed by the PS/2 interface. In our 
case that turns out to be just 4 percent.  
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  Keyboard Buffering 
 Independently from the solution you will choose of the three we have explored 
so far, there are a few more details we need to take care of before we can claim to 
have completed the interface to the PS/2 keyboard. First, we need to add a buffering 
mechanism between the PS/2 interface routines and the  “ consumer ”  or the main 
application. So far, in fact, we have provided a simple mailbox mechanism that can store 
only the last key code received. If you investigate further how the PS/2 keyboard protocol 
works, you will discover that when a single key is pressed and released, a minimum 
of three (and a maximum of five) key codes are sent to the host. If you consider Shift, 
Ctrl, and Alt key combinations, things get a little more complicated and you realize 
immediately that the single-byte mailbox is not going to be sufficient. My suggestion is to 
use at least a 16-byte first-in/first-out (FIFO) buffer. The input to the buffer can be easily 
integrated with the receiver interrupt service routines so that when a new key code is 
received it is immediately inserted in the FIFO. 

 The buffer can be declared as an array of characters, and two pointers will keep track of 
the head  and  tail  of the buffer in a circular scheme (see  Figure 12.21   ).       

 Figure 12.20 :     Logic Analyzer view, measuring the I/O polling period.    
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  // circular buffer  
  unsigned char KCB[ KB_SIZE];  

  // head and tail or write and read pointers  

  volatile int KBR, KBW;     

 Following a few simple rules, we can keep track of the buffer content: 

●      The write pointer  KBW  (or head) marks the first empty location that will receive 
the next key code.  

●      The read pointer  KBR  (or tail) marks the first filled location.  

●      When the buffer is empty,  KBR  and  KBW  are pointing at the same location.  

●      When the buffer is full,  KBW  points to the location before  KBR .

●      After reading or writing a character to/from the buffer, the corresponding pointer 
is incremented.  

●      Upon reaching the end of the array, each pointer will wrap around to the first 
element of the array. 

 Insert the following snippet of code into the initialization routine: 

  // init the circular buffer pointers 

 KBR = 0;  

 KBW = 0;        

KBR

KCB[16]

KBW
Filled

Empty

[0] [1] [15]

 Figure 12.21 :     Circular buffer (FIFO).    
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 Then update the state machine STOP state: 

  case PS2STOP: 
 if ( PS2IN  &  DATMASK)        // verify stop bit  
 { 
 KCB[ KBW] = KBDBuf;        // write in the buffer  
 // check if buffer full  
 if ( (KBW+1)%KB_SIZE != KBR)
 KBW++;        // else increment ptr     

 KBW %= KB_SIZE;        // wrap around     
 }  
 PS2State = PS2START;  

 break;        

 Notice the use of the  %  operator to obtain the reminder of the division by the buffer size. 
This allows us to keep the pointers wrapping around the circular buffer. 

 A few considerations are required for fetching key codes from the FIFO buffer. 
In particular, if we choose the input capture or the change notification methods, we will 
need to make a new function available (  getKeyCode() ) to replace the mailbox/flag 
mechanism. The function will return FALSE  if there are no key codes available in the 
buffer and  TRUE  if there is at least one key code in the buffer, and the code is returned 
via a pointer: 

  int getKeyCode( char *c)  
  { 
 if ( KBR == KBW)        // buffer empty 
 return FALSE;     

 // else buffer contains at least one key code  
 *c = KCB[ KBR++];        // extract the first key code  
 KBR %= KB_SIZE;        // wrap around the pointer  

 return TRUE;     

  } // getKeyCode     

 Notice that the extraction routine modifies only the read pointer; therefore it is safe to 
perform this operation when the interrupts are enabled. Should an interrupt occur during 
the extraction, there are two possible scenarios: 

●      The buffer was empty, a new key code will be added, but the  getKeyCode()
function will  “ notice ”  the available character only at the next call.  
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●      The buffer was not empty, and the interrupt routine will add a new character to the 
buffer tail, if there is enough room. 

 In both cases there are no particular concerns of conflicts or dangerous consequences. 

 But if we choose the polling technique, the timer interrupt is constantly active and we can 
use it to perform one more task for us. The idea is to maintain the simple mailbox and 
flag mechanism for delivering key codes as the interface to the receive routine and have 
the interrupt constantly checking the mailbox, ready to replenish it with the content from 
the FIFO. This way we can confine the entire FIFO management to the interrupt service 
routine, making the buffering completely transparent and maintaining the simplicity of 
the mailbox delivery interface. The new and complete interrupt service routine for the 
polling I/O mechanism is presented here: 

  void __ISR( _TIMER_4_VECTOR, ipl1) T4Interrupt( void)  
  { 
 int d, k;     

  //_RA2 =1;

 // 1. check if buffer available  
 if ( !KBDReady  &  &  ( KBR!=KBW)) 
 { 
 KBDCode = KCB[ KBR++];  
 KBR %= KB_SIZE;  
 KBDReady = 1;        // flag code available     

 }  

 // 2. sample the inputs clock and data at the same time  
 d = PS2DAT;  
 k = PS2CLK;  

 // 3. Keyboard state machine  
 if ( KState)  
 { // previous time clock was high KState 1 
 if ( !k)        // PS2CLK == 0  
 { // falling edge detected, 
 KState = 0;        // transition to State0  
 KTimer = KMAX;        // restart the counter  
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 switch( PS2State){  
 default:  
 case PS2START: 
 if ( !d)       // PS2DAT == 0  
 { 
 KCount = 8;        // init bit counter  
 KParity = 0;        // init parity check  
 PS2State = PS2BIT;     

 }  
 break;     

 case PS2BIT: 
 KBDBuf >>= 1;        // shift in data bit  
 if ( d)        // PS2DAT == 1 
 KBDBuf += 0x80;     

 KParity ^= KBDBuf;        // calculate parity  
 if ( --KCount == 0)        // all bit read 
 PS2State = PS2PARITY;     

 break;     

 case PS2PARITY: 
 if ( d)        // PS2DAT == 1 
 KParity ^= 0x80;     

 if ( KParity  &  0x80)        // parity odd, continue 
 PS2State = PS2STOP;     

 else 
 PS2State = PS2START;     

 break;     

 case PS2STOP: 
 if ( d)        // PS2DAT == 1  
 { 
 KCB[ KBW] = KBDBuf; // write in the buffer  
 // check if buffer full  
 if ( (KBW+1)%KB_SIZE != KBR)
 KBW++; // else increment ptr     

 KBW %= KB_SIZE;        // wrap around     
 }  
 PS2State = PS2START;  
 break;     
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 } // switch     
 } // falling edge  
 else  
 { // clock still high, remain in State1 
 KTimer--;  
 if ( KTimer == 0)        // timeout 

    PS2State = PS2START; // reset data SM        
 } // clock still high     

 } // Kstate 1  
 else  
 { // Kstate 0 
 if ( k)        // PS2CLK == 1  
 { // rising edge, transition to State1 
 KState = 1;     

 } // rising edge  
 else  
 { // clocl still low, remain in State0 
 KTimer--;  
 if ( KTimer == 0)        // timeout 

    PS2State = PS2START; // reset data SM        
 } // clock still low     

 } // Kstate 0  

 // 4. clear the interrupt flag  
 mT4ClearIntFlag();     

  //_RA2 = 0;  

  } // T4 Interrupt     

  Key Code Decoding 
 So far we have been talking exclusively about key codes, and you might have assumed 
that they match the ASCII codes for each key—say, if you press the A key on the keyboard 
you would expect the corresponding ASCII code (0x41) to be sent. But things are not that 
simple. To maintain a level of layout neutrality, all PC keyboards use  scan codes,  where 
each key is assigned a numerical value that is related to the original implementation of 
the keyboard scanning firmware of the first IBM PC, circa 1980. The translation from 
scan codes to actual ASCII characters happens at a higher level according to specific 
(international) keyboard layouts and, nowadays, is performed by Windows drivers. Keep 
in mind also that for historical reasons there are at least three different and partially 
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compatible  “ scan code sets. ”  Fortunately, by default, all keyboards support the scan code 
set #2, which is the one we will focus on in the following discussion. 

 Each time a key is pressed (any key, including a Shift or Ctrl key), the scan code 
associated with it is sent to the host; this is called the make  code. As soon as the same key 
is released, a new (sequence of ) codes is sent to the host; this is called the  break  code. 
The break code is typically composed of the same make code but prefixed with  0xF0 . 
Some keys have a 2-byte-long make code (typically the Ctrl, Alt, and arrow keys) and 
consequently the break code is 3 bytes long (see  Table 12.6   ). 

 Table 12.6 :     Example of make and break codes used in Scan Code Set 2 (default).  

Key Make Code  Break Code 

 A  1C  F0, 1C 

 5  2E  F0, 2E 

 F10  09  F0, 09 

 Right Arrow  E0, 74  E0, F0, 74 

 Right Ctrl  E0, 14  E0, F0, 14 

 To process this information and translate the scan codes intro proper ASCII, we will need a 
table that will help us map the basic scan codes for a given keyboard layout. The following 
code will illustrate the translation table for a common U.S. English keyboard layout: 

  // PS2 keyboard codes (standard set #2)  
  const char keyCodes[128]={ 

0, F9, 0, F5, F3, F1, F2, F12,        //00 
0, F10, F8, F6, F4, TAB,  ' ' ' , 0,        //08 
0, 0,L_SHFT, 0,L_CTRL,  'q', ' 1 ' ,        0, //10 
0, 0,  ' z ' , 's', ' a ' , 'w', ' 2 ' , 0,        //18 
0, ' c ' , 'x', ' d ' , 'e', ' 4 ' , '3', 0,        //20 
0, '   ' , ' v ' , 'f', ' t ' , 'r', ' 5 ' , 0,        //28 
0, ' n ' , 'b', ' h ' , 'g', ' y ' , '6', 0,        //30 
0, 0,  ' m ' , 'j', ' u ' , '7', ' 8 ' , 0,        //38 
0, ' , ' , 'k', ' i ' , 'o', ' 0 ' , '9', 0,        //40 
0, ' . ' , '/', ' l ' , ';', ' p ' , '-', 0,        //48 
0, 0,  ' \ '  ' , 0,  ' [ ' , '=', 0, 0,        //50        
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 CAPS, R_SHFT,ENTER,  ' ]', 0,0x5c, 0, 0,        //58 
0, 0, 0, 0, 0, 0, BKSP, 0,        //60 
0, ' 1 ' , 0,  ' 4 ' , '7', 0, 0, 0,        //68 
0, ' . ' , '2', ' 5 ' , '6',  ' 8 ' , ESC, NUM,        //70           

F11, ' + ' , '3', ' - ' , '*',  ' 9 ' , 0,        0 //78        

};       

 Notice that the array has been declared as  const  so that it will be allocated in program 
memory space to save precious RAM space. 

 It will also be convenient to have available a similar table for the Shift function of 
each key:       

  const char keySCodes[128] = { 
0, F9, 0, F5, F3, F1, F2, F12,        //00 
0, F10, F8, F6, F4, TAB,  '~', 0,        //08 
0, 0,L_SHFT, 0,L_CTRL,  ' Q', ' ! ' , 0,        //10 
0, 0,  ' Z ' , 'S', ' A ' , 'W', ' @ ' , 0,        //18 
0, ' C ' , 'X', ' D ' , 'E', ' $ ' , '#', 0,        //20 
0, '   ' , ' V ' , 'F', ' T ' , 'R', ' % ' , 0,        //28 
0, ' N ' , 'B', ' H ' , 'G', ' Y ' , '^', 0,        //30 
0, 0,  ' M ' , 'J', ' U ' , '  & ' , ' * ' , 0,        //38 
0, ' < ' , 'K', ' I ' , 'O', ' ) ' ,  ' ('', 0,        //40 
0, ' > ' , '?', ' L ' , ':', ' P ' , '_', 0,        //48 
0, 0,  ' \" ' , 0,  ' { ' , '+', 0, 0,        //50        

 CAPS, R_SHFT,ENTER,  ' }', 0,  ' | ' , 0, 0,        //58        
0, 0, 0, 0, 0, 0, BKSP, 0,        //60 
0, ' 1 ' , 0,  ' 4 ' , '7', 0, 0, 0,        //68 
0, ' . ' , '2', ' 5 ' , '6', ' 8 ' , ESC, NUM,        //70        

F11, ' + ' , '3', ' - ' , '*', ' 9 ' , 0, 0        //78        

};       

 For all the ASCII characters, the translation is straightforward, but we will have to 
assign special values to the function, Shift, and Ctrl keys. Only a few of them will find a 
corresponding code in the ASCII set: 

  // special function characters  
  #define TAB 0x9  
  #define BKSP 0x8  
  #define ENTER 0xd  

  #define ESC 0x1b     
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 For all the others we will have to create our own conventions or, until we have a use for 
them, we might just ignore them and assign them a common code (0): 

  #define L_SHFT 0x12  
  #define R_SHFT 0x12  
  #define CAPS 0x58  
  #define L_CTRL 0x0  
  #define NUM 0x0  
  #define F1 0x0  
  #define F2 0x0  
  #define F3 0x0  
  #define F4 0x0  
  #define F5 0x0  
  #define F6 0x0  
  #define F7 0x0  
  #define F8 0x0  
  #define F9 0x0  
  #define F10 0x0  
  #define F11 0x0  

  #define F12 0x0     

 The  getC()  function will perform the basic translations for the most common keys and it 
will keep track of the Shift keys status as well as the Caps key toggling:       

  int CapsFlag=0;  
  char getC( void)  
  { 
 unsigned char c;  

 while( 1)  
 { 

 while( !KBDReady);       // wait for a key to be pressed  
 // check if it is a break code  
 while (KBDCode == 0xf0)  
 { // consume the break code 
 KBDReady = 0;  
 // wait for a new key code  
 while ( !KBDReady);  
 // check if the shift button is released  
 if ( KBDCode == L_SHFT) 

    CapsFlag = 0;     



328   Day 12

 // and discard it  
 KBDReady = 0;  
 // wait for the next key  
 while ( !KBDReady);     

 }  
 // check for special keys  
 if ( KBDCode == L_SHFT)  
 { 
 CapsFlag = 1;  
 KBDReady = 0;     

 }  
 else if ( KBDCode == CAPS)  
 { 
 CapsFlag = !CapsFlag;  
 KBDReady = 0;     

 }  

 else // translate into an ASCII code  
 { 
 if ( CapsFlag) 
 c = keySCodes[KBDCode%128];     

 else 
 c = keyCodes[KBDCode%128];     

 break;     
 }     

 }  
 // consume the current character  
 KBDReady = 0;  
 return ( c);     

  } // getC     

  Debriefing 
 Today we explored several popular mechanisms used in embedded control to obtain user 
input. Starting from basic buttons and mechanical switch debouncing, we explored rotary 
encoders and analyzed the challenges of interfacing to (PS/2) computer keyboards. This 
gave us the perfect opportunity to exercise two new peripheral modules: Input Capture 
and Change Notification. We discussed methods to implement a FIFO circular buffer, 
and we polished our interrupt management skills a little. We managed to learn something 
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new about the MPLAB SIM simulator as well, using for the first time asynchronous 
input stimuli to test our code. Throughout the entire day our focus has been constantly on 
balancing the use of resources and the performance offered by each solution.  

  Notes for the PIC24 Experts 
 The IC module of the PIC32 is mostly identical to the PIC24 peripheral, yet some 
important enhancements have been included in its design. Here are the major differences 
that will affect your code while porting an application to the PIC32: 

  1.     The  ICxCON  register now follows the standard peripheral module layout and 
offers an  ON  control bit that allows us to disable the module when not used, for 
reduced power consumption.  

  2.     The  ICxC32  control bit allows 32-bit capture resolution when the module is used 
in conjunction with a timer pair (forming a 32-bit timer).  

  3.     The  ICxFEDGE  control bit allows the selection of the first edge (rising or falling) 
when the IC module operates in the new mode 6 ( ICxM=110 ).

 The CN module of the PIC32 is mostly identical to the PIC24 peripheral, yet some 
important enhancements have been included in its design. Here are the major differences 
that will affect your code while porting an application to the PIC32: 

  1.     A new  CNCON  register has been added to offer a standard set of control bit, 
including ON, FRZ  and  IDL  to better manage the module behavior in low-power 
consumption modes.  

  2.     The  CNEN  (32-bit) control register now groups all the input pin enable bits previously 
contained in two separate (16-bit) registers of the PIC24 ( CNEN1  and  CNEN2 ). 

  3.     Similarly, the  CNPUE  (32-bit) control register groups all the pull-up enable bits 
previously contained in two separate (16-bit) registers of the PIC24 ( CNPUE1  and 
CNPUE2 ).     

  Tips  &  Tricks 
 Each PS/2 keyboard has an internal FIFO buffer 16 key codes deep. This allows the 
keyboard to accumulate the user input, even when the host is not ready to receive. 
The host, as we mentioned at the beginning of this chapter, has the option to stall the 



330   Day 12

communication by pulling low the Clock line at any given point in time (for at least 
100us) and can hold it low for the desired period of time. When the Clock line is released, 
the keyboard resumes transmissions. It will retransmit the last key code, if it had been 
interrupted, and will offload its FIFO buffer. 

 To exercise our right to stall the keyboard transmissions as a host, we have to control the 
Clock line with an output using an open drain driver. Fortunately, this is easy with the 
PIC32, thanks to its configurable I/O port modules. In fact, each I/O port has an associated 
control register ( ODCx ) that can individually configure each pin output driver to operate in 
open-drain mode. 

 Note that this feature is extremely useful in general to interface PIC32 outputs to any 
5V device. In our example, turning the PS/2 Clock line into an open-drain output would 
require only a few lines of code: 

  _ODG13 = 1;        // cfg PORTG pin 13 output in open-drain mode  
  _LATG13 = 1;        // initially let the output in pull up  

  _TRISG13 = 0;        // enable the output driver     

 Note that, as usual for all PIC microcontrollers, even if a pin is configured as an output, 
its current status can still be read as an input. So there is no reason to switch continuously 
between input and output when we alternate sending commands and receiving characters 
from the keyboard.  

  Exercises 
  1.     Add a function to send commands to the keyboard to control the status LEDs and 

set the key repeat rate.  

  2.     Replace the stdio.h library input helper function  _mon_getc()  to redirect the 
keyboard input as the  stdin  stream input.  

  3.     Add support for a PS/2 mouse interface.      

   Books
             Nisley, Ed. The Embedded PCs ISA Bus          (    Annabooks/Rtc Books         ,  1997   )        .     Speaking of 

legacy interfaces, the ISA bus, the heart of every IBM PC for almost two decades, 
is today interestingly surviving in some industrial control  “ circles ”  (like the PC104 
platform) and embedded applications. 
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 Links 
www.computer-engineering.org . This is an excellent Web site where you will find a lot of 

useful documentation on the PS/2 keyboard and mouse interface. 

www.pc104.com/whatis.html . The PC104 platform, one of the first attempts at bringing 
the IBM PC architecture to single-board computers for embedded control.                
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  The Plan 
 Thanks to the recent advancements in the so-called  chip-on-glass  (COG) technology 
and the mass adoption of LCD displays in cell phones and many consumer applications, 
small displays with integrated controllers are becoming more and more common and 
inexpensive. The integrated controller takes care of the image buffering and performs 
simple text and graphics commands for us, offloading our applications from the hard 
work of maintaining the display. But what about those cases when we want to have full 
control of the screen to produce animations and or simply bypass any limitation of the 
integrated controller? 

 In today ’ s exploration we will consider techniques to interface directly to a TV screen or, 
for that matter, any display that can accept a standard composite video signal. It will be a 
good excuse to use new features of several peripheral modules of the PIC32 and review 
new programming techniques. Our first project objective will be to get a nice dark screen 
(a well-synchronized video frame), but we will soon see to fill it up with several useful 
and (why not?) entertaining graphical applications. 

  Preparation 
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32 
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer 
16 demonstration board and In-Circuit Debugger of your choice). You will also need a 
soldering iron and a few components at hand to expand the board capabilities using the 
prototyping area or a small expansion board. You can check on the companion Web site 
( www.exploringPIC32.com ) for the availability of expansion boards that will help you 
with the experiments.  

D A Y  1 3 



334   Day 13

  The Exploration 
 There are many different formats and standards in use in the world of video today, but 
perhaps the oldest and most common one is the so called “ composite ”  video format. This 
is what was originally used by the very first TV sets to appear in the consumer market. 
Today it represents the minimum common denominator of every video display, whether 
a modern high-definition flat-screen TV of the latest generation, a DVD player, or a 
VHS tape recorder. All video devices are based on the same basic concept, that is, the 
image is  “ painted, ”  one line at a time, starting from the top left corner of the screen and 
moving horizontally to the right edge, then quickly jumping back to the left edge at a 
lower position and painting a second line, and so on and on in a zigzag motion until 
the entire screen has been scanned. Then the process repeats and the entire image is 
refreshed fast enough for our eyes to be tricked into believing that the entire image 
is present at the same time, and if there is motion, that it is fluid and continuous 
(see  Figure 13.1   ). 

Frame

Line 1

Line 2

Line N

 Figure 13.1 :     Video image scanning.    

 In different parts of the world, slightly incompatible systems have been developed over 
the years, but the basic mechanism remains the same. What changes is the number of 
lines composing the image, the refreshing frequency, and the way the color information is 
encoded.
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  Table 13.1    illustrates three of the most commonly used video standards adopted in the 
United States, Europe, and Asia. All those standards encode the “ luminance ”  information 
(that is, the underlying black-and-white image) together with synchronization information 
in a similarly defined composite signal.  Figure 13.2    shows the NTSC composite signal in 
detail.

Figure 13.2 :     NTSC composite signal horizontal line detail.    

 Table 13.1 :     International video standard examples.  

United States  Europe and Asia  France and Others 

 Standard  NTSC  PAL  SECAM 

 Frames per second  29.97 *   25  25 

 Number of lines  525  625  625 

*  NTSC used to be 30 frames per second, but the introduction of the new color standard changed it to 29.97, 
to accommodate a specific frequency used by the  “ color subcarrier ”  crystal oscillator. 

 The term  composite  is used to describe the fact that this video signal is used to combine 
and transmit in one three different pieces of information: the actual luminance signal and 
both horizontal and vertical synchronization information. 

White 100

Video

63.5 US

Video

52.6 μS

1.
5

μS

1.
5

μS

Blanking
10.9 μS

4.7 μS

9 ALT
2.5

40 IRE

Back
porch

Sync tip

Front
porch

Blacker
than black

�40

4.7 μS

�40

Set-up
0 BURST

Front
porch

Black – 10

IR
E

 U
ni

ts



336   Day 13

 The horizontal line signal is in fact composed of: 

  1.     The horizontal synchronization pulse, used by the display to identify the 
beginning of each line  

  2.     The so-called  “ back porch, ”  the left edge of the dark frame around the image  

  3.     The actual line luminosity signal; the higher the voltage, the more luminous the 
point

  4.     The so-called  “ front porch, ”  producing the right edge of the image    

 The color information is transmitted separately, modulated on a high-frequency 
subcarrier. A short burst of pulses in the middle of the back porch is used to help 
synchronize with the subcarrier. The three main standards differ significantly in the way 
they encode the color information but, if we focus on a black-and-white display, we can 
ignore most of the differences and remove the color subcarrier burst altogether. 

 All these standard systems utilize a technique called  interlacing  to provide a (relatively) 
high-resolution output while requiring a reduced bandwidth. In practice only half the 
number of lines is transmitted and painted on the screen in each frame. Alternate frames
present only the odd or the even lines composing the picture so that the entire image 
content is effectively updated at the nominal rate (25       Hz and 30       Hz, respectively). The 
actual frame rates are effectively double. This is effective for typical TV broadcasting but 
can produce an annoying flicker when text and especially horizontal lines are displayed, 
as is often the case in computer monitor applications. 

 For this reason, all modern computer displays are not using interlaced but instead use 
progressive  scanning. Most modern TV sets, especially those using LCD and plasma 
technologies, perform a deinterlacing  of the received broadcast image. In our project we 
will avoid interlacing as well, but we ’ ll sacrifice half the image resolution in favor of a 
more stable and readable display output. In other words, we will transmit frames of 262 
lines (for NTSC) at the double rate of 60 frames per second. Readers who have easier 
access to PAL or SECAM TV sets/monitors will find it relatively easy to modify the 
project for a 312-line resolution with a refresh rate of 50 frames per second. A complete 
video frame signal is represented in Figure 13.3   . 

 Notice that, of the total number of lines composing each frame, three line periods are 
filled by prolonged  synchronization pulses  to provide the vertical synchronization 
information, identifying the beginning of each new frame. They are preceded and 
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followed by groups of three additional lines, referred to as the pre- and post-equalization 
lines.

  Generating the Composite Video Signal 
 If we limit the scope of the project to generating a simple black-and-white image (no gray 
shades, no color) and a noninterlaced image as well, we can considerably simplify our 
project ’ s hardware and software requirements. In particular, the hardware interface can be 
reduced to just three resistors of appropriate value connected to two digital I/O pins. One 
of the I/O pins will generate the synchronization pulses and the other I/O pin will produce 
the actual luminance signal (see Figure 13.4   ). 

261 262 1 2 3 4 5 6 7 8 9 10 18 19 20 21 22

Image first line
Post-equalizing
pulses

Pre-equalizing
pulses

Vertical sync
pulse

Frame start

 Figure 13.3 :     A complete video frame signal.    
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Figure 13.4 :     Simple hardware interface for composite video output.    

 The values of the three resistors must be selected so that the relative amplitudes of the 
luminance and synchronization signals are close to the standard specifications, the signal 
total amplitude is close to 1       V peak to peak, and the output impedance of the circuit is 
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approximately 75 ohms. With the standard resistor values shown in the previous figure, 
we can satisfy such requirements and generate the three basic signal levels required to 
produce a black-and-white image (see Table 13.2    and  Figure 13.5   ). 

 Table 13.2 :     Generating luminance and synchronization pulses.  

 Signal Feature Sync Video

 Synch pulse  0  0 

 Black level  1  0 

 White level  1  1 

LINE_T

Frame

White level

Black level

Horizontal
sync
pulse

Line x

~1 V

 Figure 13.5 :     Simplified composite video signal.    

 Since we are not going to utilize the interlacing feature, we can also simplify the pre-
equalization, vertical synchronization, and post-equalization pulses by producing a single 
horizontal synchronization pulse per each period, as illustrated in  Figure 13.6    

 The problem of generating a complete video output signal can now be reduced to (once 
more) a simple state machine that can be driven by a fixed period time base produced by 
a single timer interrupt. The state machine will be quite trivial because each state will 
be associated with one type of line composing the frame, and it will repeat for a fixed 
amount of times before transitioning to the next state (see  Figure 13.7)   . 
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 Table 13.3 :     Video state machine transitions table.  

State  Repeat Transition to 

 Pre-equal  PREEQ_N times  Vertical Sync 

 Vertical Sync  3 times  Post-equal 

 Post-equal  POSTEQ_N times  Image line 

 Image line  VRES times  Pre-equal 

261 262 1 2 3 4 5 6 7 8 9 10 18 19 20 21 22

Image first line
Post-equalizing
pulses

Pre-equalizing
pulses

Vertical sync
pulse

Frame start

 Figure 13.6 :     Simplified composite video frame (noninterlaced).    
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Figure 13.7 :     Vertical state machine graph.    

 A simple table will help describe the transitions from each state (see  Table 13.3   ). 

 Although the number of vertical synchronization lines is fixed and prescribed by the 
video standard of choice (NTSC, PAL, and so on), the number of lines effectively 
composing the image inside each frame is up to us to define (within limits, of course). In 
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fact, although in theory we could use all the lines available to display the largest possible 
amount of data on the screen, we will have to consider some practical limitations, in 
particular the amount of RAM we are willing to allocate to store the video image inside 
the PIC32 microcontroller (see  Figure 13.8   ). These limitations will dictate a specific 
number of lines ( VRES ) to be used for the image, whereas all the remaining lines (up to 
the standard line count) will be left blank. 

Frame Image

POSTEQ_N

PREEQ_N

LINE_NVRES

 Figure 13.8 :     Defining frame and image resolution.    

 In practice, if  LINE_N  is the total number of lines composing a video frame and  VRES  is 
the desired vertical resolution, we will determine a value for  PREEQ_N  and  POSTEQ_N  as 
follows:       

  // timing for composite video vertical state machine  
  #ifdef NTSC  
  #define LINE_N .262        // number of lines in NTSC frame  
  #define LINE_T .2284        // Tpb clock in a line (63.5us)  
  #else  
  #define LINE_N. 312        // number of lines in PAL frame  
  #define LINE_T. 2304        // Tpb clock in a line (64us)  
  #endif  

  // count the number of remaining black lines top+bottom  
  #define VSYNC_N 3        // V sync lines  
  #define VBLANK_N (LINE_N -VRES -VSYNC_N)  
  #define PREEQ_N VBLANK_N/2 // preeq+bottom blank  

  #define POSTEQ_N VBLANK_N -PREEQ_N // posteq + top blank     

 If we choose Timer3 to generate our time base, set to match the horizontal synchronization 
pulse period ( LINE_T ) as shown in  Figure 13.5 , we can use the timer ’ s associated interrupt 
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service routine to execute the vertical state machine. Here is a skeleton of the interrupt service 
routine on top of which we can start flashing the complete composite video logic: 

  // next state table  
  int VS[4] = { SV_SYNC, SV_POSTEQ, SV_LINE, SV_PREEQ};  
  // next counter table  
  int VC[4] = { VSYNC_N,  POSTEQ_N,  VRES,  PREEQ_N}; 

  void __ISR( _TIMER_3_VECTOR, ipl7) T3Interrupt( void)  
  { 
 // advance the state machine  
 if ( --VCount == 0)  
 { 
 VCount=VC[ VState & 3];  
 VState=VS[ VState & 3];     

 }  

 // vertical state machine  
 switch ( VState) { 
 case SV_PREEQ: 
 // horizontal sync pulse  
 ...  
 break;     

 case SV_SYNC: 
 // vertical sync pulse  
 ...  
 break;     

 case SV_POSTEQ: 
 // horizontal sync pulse  
 ...  
 break;     

 default:  
 case SV_LINE: 
 ...  
 break;        

} //switch 

 // clear the interrupt flag  
 mT3ClearIntFlag();     

  } // T3Interrupt     
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 To generate the actual horizontal synch pulse output, there are several options we can 
explore: 

  1.     Control an I/O pin directly and use various delay loops.  

  2.     Control an I/O and use a second timer (interrupt) to produced the required 
timings.

  3.     Use the Output Compare modules and the associated interrupt service routines.    

 The first solution is probably the simplest to code but has the clear disadvantage of 
keeping the processor constantly tied in endless loops, preventing it from performing any 
useful work while the video signal is being generated. 

 The second solution is clearly more efficient, and by now we have ample experience in 
using timers and their interrupt service routines to execute small state machines. 

 The third solution involves the use of a new peripheral we have not yet explored and 
deserves a little more attention.  

  The Output Compare Modules 
 The PIC32MX family of microcontrollers offers a set of five Output Compare peripheral 
modules that can be used for a variety of applications, including single pulse generation, 
continuous pulse generation, and pulse width modulation (PWM). Each module can be 
associated to one of two 16-bit timers (Timer2 or Timer3) or a 32-bit timer (obtained by 
combining Timer2 and Timer3) and has one output pin that can be configured to toggle 
and produce rising or falling edges as necessary (see  Figure 13.9   ). Most importantly, each 
module has an associated and independent interrupt vector. 

 The basic configuration of the Output Compare modules is performed by the OCxCON
register where a small number of control bits, in a layout that we have grown familiar 
with, allow us to choose the desired mode of operation (see  Figure 13.10   ). 

 When used in continuous pulse mode ( OCM=101 ) in particular, the  OCxR  register is used 
to determine the instant (relative to the value of the associated timer) when the output pin 
will be set, while the OCxRS  register determines when the output pin will be cleared (see 
 Figure 13.11   ). 

 Choosing the OC3 module, we can now connect the associated output pin  RD2  directly as 
our Synch  output, shown in  Figure 13.4 . 
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 Figure 13.9 :     Output Compare module block diagram.    

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

U-0

U-0 U-0

U-0

R/W-0 R/W-0 R/W-0

ON FRZ SIDL

R/W-0 R/W-0 R/W-0 R/W-0R/W-0 R-0

U-0 U-0 U-0 U-0 U-0

Bit 8

Bit 0Bit 7
OC32 OCFLT OCTSEL

Bit 15

U-0 U-0 U-0 U-0 U-0 U-0

Bit 24Bit 31

Bit 23 Bit 16

OCM�2:0�

 Figure 13.10 :     Output Compare Control register OCxCON.    
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 We can also start flashing the vertical state machine body to make sure that in each 
state the OC3 produces pulses of the correct width. In fact, though during normal, pre-
equalization, and post-equalization lines, the horizontal synch pulse is short (approx. 
5us), during the three lines devoted to the vertical synchronization the pulse must be 
widened to cover most of the line period (see lines 4, 5 and 6 in  Figure 13.6 ):       

   ...  
 // vertical state machine  
 switch ( VState) { 
 case SV_SYNC: // 1 
 // vertical sync pulse  

 OC3R=LINE_T - HSYNC_T - BPORCH_T;  
 break;           

 case SV_POSTEQ: // 2 
 // horizontal sync pulse  
 OC3R=HSYNC_T;  
 break;     

 case SV_PREEQ: // 0 
 // prepare for the new frame  
 VPtr=VA;  
 break;     

 default:  
 case SV_LINE: // 3 
 VPtr += HRES/32;  
 break;     

} //switch 

   ...      

Timer3
Interrupt

OC3R (short pulse)

Timer3 period (PR3 � 1)

OC3R (long pulse, vertical sync)

 Figure 13.11 :     Output Compare module continuous pulse mode.    
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  Image Buffers 
 So far we have been working on the generation of the synchronization signals  Synch
connected to our simple hardware interface (refer back to  Figure 13.4 ). The actual 
image represented on the screen will be produced by mixing in a second digital signal. 
Toggling the  Video  pin, we can alternate segments of the line that will be painted in 
white ( 1 ) or black ( 0 ). Since the NTSC standard specifies a maximum luminance signal 
bandwidth of about 4.2       MHz (PAL has very similar constraints) and the space between 
front and back porch is 52us wide, it follows that the maximum number of alternate 
segments (cycles) of black and white we can display is 218, (52  �  4.2), or in other 
words, our maximum theoretical horizontal resolution is 436 pixels per line (assuming 
the screen is completely used from side to side). The maximum vertical resolution is 
given by the total number of lines composing each frame minus the minimum number 
of equalization (6) and vertical synchronization (3) lines. (This gives 253 lines for the 
NTSC standard.) 

 If we were to generate the largest possible image, it would be composed of an array of 
253 �  436 pixels, or 110,308 pixels. If 1 bit is used to represent each pixel, a complete 
frame image would require us to allocate an array of 13.5       K bytes, using up almost 50 
percent of the total amount of RAM available on the PIC32MX360. In practice, though 
it is nice to be able to generate a high-resolution output, we need to make sure that the 
image will fit in the available RAM, possibly leaving enough space for an application 
to run comfortably along and allowing for adequate room for stack and variables. 
There are an almost infinite number of possible combinations of the horizontal and 
vertical resolution values that will give an acceptable memory size, but there are two 
considerations that we will use to pick the perfect numbers: 

●      A horizontal resolution value multiple of 32 will make the math involved 
in determining the position of each pixel in the image buffer easier and will 
maximize the use of the microcontroller ’ s 32-bit bus.  

●      A ratio between the horizontal and vertical resolution close to 4:3 will avoid 
geometrical distortions of the image—circles drawn on the screen will look like 
circles rather than ovals.    

 Choosing a horizontal resolution of 256 pixels ( HRES ) and a vertical resolution of 200 
lines ( VRES ) we obtain an image memory requirement of 6,400 bytes (256  �  200/8), 
representing roughly 20 percent of the total amount of RAM available. Using the 
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MPLAB C32 compiler, we can easily allocate a single array of integers (grouping 32 
pixels at a time in each word) to contain the entire image memory map:       

  int VMap[VRES * (HRES/32)];     

  Serialization, DMA, and Synchronization 
 If each image line is represented in memory in the  VMap  array by a row of (eight) 
integers, we will need to serially output each bit (pixel) in a timely fashion in the 
short amount of time (52us) between the back and the front porch part of the composite 
video waveform. In other words, we will need to set or clear the chosen  Video  output 
pin with a new pixel value every 200       ns or faster. This would translate into about 
14 instruction cycles between pixels, way too fast for a simple shift loop, even if 
we plan on coding it directly in assembly. Worse, even assuming we managed to 
squeeze the loop so tight, we would end up using an enormous percentage of the 
processing power for the video generation, leaving very few processor cycles for the 
main application. 

 Fortunately, we already know one peripheral of the PIC32 that can help us 
efficiently serialize the image data: It ’ s the SPI synchronous serial communication 
module. In a previous chapter we used the SPI2 module to communicate with a serial 
EEPROM device. In that chapter we noted how the SPI module is in fact composed of a 
simple shift register that can be clocked by an external clock signal (when in slave mode) 
or by an internal clock (when in master mode). Today we can use the SPI1 module as 
a master connecting the SDO  (serial data output,  RF8 ) pin directly to the  Video  pin of 
the video hardware interface, leaving the  SDI  (data input) and  SCK  (clock output) pins 
unused. Among the many new and advanced features of the PIC32 SPI module and the 
PIC32 in general there are two that fit our video application particularly well: 

●      The ability to operate in 32-bit mode  

●      The connection to another powerful peripheral, the Direct Memory Access 
(DMA) controller 

 Operating in 32-bit mode, we can practically quadruple the transfer speed of data 
between the image memory map and the SPI module. By leveraging the connection with 
the DMA controller, we can completely offload the microcontroller core from any activity 
involving the serialization of the video data. 
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 The bad news is that the DMA controller of the PIC32 is an extremely powerful and 
complex module that requires as many as 20 separate control registers for its configuration. 
But the good news is that all this power can be easily managed by an equally powerful and 
well-documented library, dma.h, which is easily included as part of plib.h. 

 The DMA module shares the 32-bit-wide system bus of the PIC32 and operates at the 
full system clock frequency. It can perform data transfers of any size to and from any of 
the peripherals of the PIC32 and any of the memory blocks. It can generate its own set of 
specific interrupts and can multitask, so to speak, since each one of its four channels can 
operate at the same time (interleaving access to the bus) or sequentially (channels activity 
can be chained so that the completion of a transfer initiates another). See Figure 13.12   . 

INT controller System IRQ

Peripheral bus Address decoder Channel 0 Control

Channel 1 Control

Channel n Control

Channel priority
arbitration

Bus
interface

I0

I1 Y

I2

In
SE
L

SEL
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 Figure 13.12 :     DMA controller block diagram.    

 The arbitration for the use of the system bus is provided by the BMX module (which we 
have encountered before) and happens seamlessly. In particular, when the microcontroller 
cache system is enabled and the pre-fetch cache is active, the effect on the performance 
of the microcontroller can hardly be noticed. In fact, when an application requires a fast 
data transfer, nothing beats the performance and efficiency of the DMA controller. 
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 The DMA module initialization requires just a couple of function calls: 

●       DmaCHOpen() , enables the module and prepares it for  “ normal ”  data transfers, 
those to and from peripherals normally requiring up to a maximum of 256 bytes 
of data at a time, or extended ones, those from memory to memory that extend for 
up to 64 K bytes.  

●       DmaChnSetEventControl(),  determines which peripheral event (interrupt) 
will be used to trigger the transfer of each block of data.  

●       DmaChnSetTxfer() , informs the controller of where the data will be coming 
from, where it will be transferred to, how many bytes at a time should be sent, and 
how many bytes in total will need to be transferred.  

●       DmaChnSetControl() , allows us to chain multiple channels for sequential 
execution.    

 So, for example, we can initialize channel 0 of the DMA controller to respond to the SPI1 
module requests (interrupt on transmit buffer empty), transferring 32 bits (4 bytes) at a 
time for a total of 32 bytes per line, with the following three lines of code: 

  DmaChnOpen( 0, 0, DMA_OPEN_NORM);  
  DmaChnSetEventControl( 0, DMA_EV_START_IRQ_EN |    

 DMA_EV_START_IRQ(_SPI1_TX_IRQ));        
  DmaChnSetTxfer( 0, (void*)VPtr, (void *) & SPI1BUF, 

 HRES/8, 4, 4);        

 All we need to do is have the PIC32 initiate the first SPI transfer, writing the first 32-bit 
word of data to the SPI1 module data buffer ( SPI1BUF ), and the rest will be taken care of 
automatically by the DMA module to complete the rest of the line. 

 Unfortunately, this creates a new efficiency problem. Between the Timer3 interrupt 
marking the beginning of a new line period, and the beginning of the SPI1 transfer, there 
is a difference of about 10us. Not only this is an incredibly long time to  “ wait out ”  for a 
microcontroller operating at 72       Mhz (up to 720 useful instructions could be executed in 
that time), but the timing of this delay must be extremely accurate. Even a discrepancy 
of a single clock cycle would be amplified by the video synchronization circuitry of the 
TV and would result in a visible  “ indentation ”  of the line. Worse, if the discrepancy were 
not absolutely deterministic, as it could/would be if the PIC32 cache were enabled (the 
cache behavior is by its very definition unpredictable), this would result in a noticeable 
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oscillation of the left edge of the screen. Since we are not willing to sacrifice such a key 
element of the PIC32 performance, we need to find another way to close the gap while 
maintaining absolute synchronization between horizontal synch pulse and SPI data 
serialization transfer start (see  Figure 13.13   ). 

LINE_T

�5 us5 us

Timer3
Interrupt

SPI1 transfer
start

Frame Line x

~1 V

Figure 13.13 :     Synchronization of synch pulse and SPI transfer start.    

 By looking more carefully at the SPI module and comparing it with previous PIC®

architectures, you will discover that there is one particular new feature that seems to have 
been added exactly for this purpose. It is called the Framed Slave mode and it is enabled 
by the FRMEN  bit in the  SPIxCON  register. Not to be confused with the bus master and 
slave mode of operation of the SPI port, there are in fact two new  framed  modes of 
operation for the SPI. In framed mode, the SS  pin, otherwise used to select a specific 
peripheral on the SPI bus, changes roles. It becomes a synchronization signal of sorts: 

●      When a framed master mode is selected, it acts as an output, flagging the first bit 
of a new transfer.  

●      When a framed slave mode is selected, it acts as an input, triggering the beginning 
of an impending data transfer.    

 Note that the SPI port can now be configured in a total of four modes: 

●    SPI bus master, framed master  

●     SPI bus master, framed slave  
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●       SPI bus slave, framed master 

●       SPI bus slave, framed slave    

 In particular, we are interested in the second case, where the SPI port is a bus master and so 
does not require an external clock signal to appear on the  SCK  pin, but it is a framed slave, 
so it will wait for the  SS  pin to become active before starting a data transfer. As a final nice 
touch, you will discover that it is possible to select the polarity of the  SS  frame signal. 

Our synchronization problem is now completely solved (see  Figure 13.14   ). We can 
connect (directly or via a small value resistor) the OC3 output ( RD2  pin) to the SPI1 
module SS input ( RB2  pin) with active polarity high.

VideoRF8 SDO1

RD2 OC3

RB2 SS1
1 K

680

120

120

GND

1
2

Sync

Slave
RCA Video Conn.

 Figure 13.14 :     Composite video interface.    

Note

 One of the many functions assigned to the  RB2  pin is the channel 2 input to the ADC. As with 
all such pins, it is by default configured as an analog input at power-up. When it ’ s in such a 
configuration, its digital input value is always 1 (high). Before using it as an effective framed 
slave input, we will need to remember to reconfigure it as a digital input pin. 

   With this connection, the rising edge of the horizontal synchronization pulse produced 
by the OC3 module will trigger the beginning of the transmission by the SPI1 module, 
provided we preloaded its output buffer with data ready to be shifted out. But it is still too 
early to start sending out the line data (the image pixels from the video map). We have to 
respect the back-porch timing and then leave some additional time to center our image on 
the screen. One quick way to do this is to begin every line preloading the SPI1 module 
buffer with a data word containing all zeros. The SPI1 module will be shifting out data, 
but since the first 32 bits are all zeros, we will buy some precious time and we will let the 
DMA take care of the real data later. 
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 But how much time does one word of 32 bits take to be serialized by the SPI1 module? 
If we are operating at 72       MHz with a peripheral clock divider by 2, and assuming an SPI 
baud rate divider by 4 (SPI1BRG � 1), we are talking of just 3.5us. That ’ s definitely 
below the minimum specs for the NTSC back porch. There are two practical methods to 
extend the back-porch timing further: 

●      Add one more column to the image map, one more word that is always set to 0 
and is never used to paint any actual image.  

●      Use another DMA channel always pointing to a string of words (as many as we 
desire) set to zero and queue the two DMA channels execution automatically.    

 Both methods add cost to our application, since both are using precious resources. Adding one 
column implies using more RAM, 800 bytes more for the precision. Using a second channel 
of DMA (out of the four total) seems also a high price to pay. My choice goes to the DMA, 
though, because to me it seems there ’ s never enough RAM, and this way we get to experiment 
with yet another cool feature of the PIC32 DMA controller: DMA channel chaining. 

 It turns out that there is another friendly function call,  DmaChnSetControl() , that can 
quickly perform just what we need, triggering the execution of a specific channel DMA 
transfer to the completion of a previous channel DMA transfer. Here is how we link the 
execution of channel 0 (the one drawing a line of pixels) to the previous execution of 
channel 1:       

  // chain DMA0 to completion of DMA1 transfer       

DmaChnSetControl( 0,     DMA_CTL_CHAIN_EN | DMA_CTL_CHAIN_DIR);     

 Notice that only contiguous channels can be chained. Channel 0 can be chained only to 
channel 1; channel 1 can be chained to channel 0 or channel 2 (you decide the  “ direction ”  
up or down), and so on. 

 We can now configure the DMA channel 1 to feed the SPI1 module with some more 
bytes of zero; four more will take our total back-porch time to 7us: 

  // DMA 1 configuration back porch extension 
  DmaChnOpen( 1, 1, DMA_OPEN_NORM);  
  DmaChnSetEventControl( 1, DMA_EV_START_IRQ_EN | 

    DMA_EV_START_IRQ(_SPI1_TX_IRQ));           

  DmaChnSetTxfer( 1, (void*)zero, (void *) & SPI1BUF,    

8, 4, 4);     
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 The symbol  zero , used here could be a reference to a 32-bit integer variable that needs to 
be initialized to zero or an array of such integers to allow us to extend the back porch and 
further center the image on the screen. 

 Now that we have identified all the pieces of the puzzle, we can write the complete 
initialization routine for all the modules required by the video generator:       

  void initVideo( void)  
  { 

 // 1. init the SPI1  
 // select framed slave mode to synch SPI with OC3  
 SpiChnOpen( 1, SPICON_ON | SPICON_MSTEN | SPICON_MODE32 

 | SPICON_FRMEN | SPICON_FRMSYNC | SPICON_FRMPOL 
 , PIX_T);        

 // 2. make SS1(RB2) a digital input  
 AD1PCFGSET = 0 x 0004;  

 // 3. init OC3 in single pulse, continuous mode  
 OpenOC3( OC_ON | OC_TIMER3_SRC | OC_CONTINUE_PULSE, 

    0, HSYNC_T);        

 // 4. Timer3 on, prescaler 1:1, internal clock, period  
 OpenTimer3( T3_ON | T3_PS_1_1 | T3_SOURCE_INT, LINE_T-1);  

 // 5. init the vertical sync state machine  
 VState = SV_LINE;  
 VCount = 1;  

 // 6. init the active and hidden screens pointers  
 VA = VMap1;  

 // 7. DMA 1 configuration back porch extension  
 DmaChnOpen( 1, 1, DMA_OPEN_NORM);  
 DmaChnSetEventControl( 1, DMA_EV_START_IRQ_EN | 

    DMA_EV_START_IRQ(_SPI1_TX_IRQ));        
 DmaChnSetTxfer( 1, (void*)zero, (void *) & SPI1BUF, 

 8, 4, 4);     
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 // 8. DMA 0 configuration image serialization  
 DmaChnOpen( 0, 0, DMA_OPEN_NORM);  
 DmaChnSetEventControl( 0, DMA_EV_START_IRQ_EN | 

    DMA_EV_START_IRQ(_SPI1_TX_IRQ));        
 DmaChnSetTxfer( 0, (void*)VPtr, (void *) & SPI1BUF, 

 HRES/8, 4, 4);     
 // chain DMA0 to completion of DMA1 transfer  
 DmaChnSetControl( 0, DMA_CTL_CHAIN_EN | DMA_CTL_CHAIN_DIR);  

 // 9. Enable Timer3 Interrupts  
 // set the priority level 7 to use shadow register set  
 mT3SetIntPriority( 7);  
 mT3IntEnable( 1);     

  } // initVideo     

  Completing a Video Library 
 We can now complete the coding of the entire video state machine, adding all the 
definitions and pin assignments necessary: 

  /*
  **  graphic.c 
  **  Composite Video using:  
  **      T3      time based  
  **      OC3      Horizontal Synchronization pulse  
  **      DMA0      image data  
  **      DMA1        back porch extension  
  **      SPI1      in Frame Slave Mode  
  */
  #include  < p32xxxx.h >   
  #include  < plib.h >   
  #include  < string.h >   
  #include  < graphic.h >   

  // timing for composite video vertical state machine  
  #ifdef NTSC  
  #define LINE_N 262        // number of lines in NTSC frame  
  #define LINE_T 2284        // Tpb clock in a line (63.5us)  
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  #else  
  #define LINE_N 312        // number of lines in PAL frame  
  #define LINE_T 2304        // Tpb clock in a line (64us)  
  #endif

    // count the number of remaining black lines top+bottom  
  #define VSYNC_N 3        // V sync lines  
  #define VBLANK_N (LINE_N -VRES -VSYNC_N)  
  #define PREEQ_N VBLANK_N/2        // preeq + bottom blank  
  #define POSTEQ_N VBLANK_N -PREEQ_N // posteq + top blank  

  // definition of the vertical sync state machine  
  #define SV_PREEQ 0  
  #define SV_SYNC 1  
  #define SV_POSTEQ 2  
  #define SV_LINE 3  

  // timing for composite video horizontal state machine  
  #define PIX_T 4        // Tpb clock per pixel  
  #define HSYNC_T 180        // Tpb clock width horizontal pulse  
  #define BPORCH_T 340      // Tpb clock width back porch  

  int VMap1[ VRES*(HRES/32)]; // image buffer  
  int *VA = VMap1;        // pointer to the Active VMap  

  volatile int *VPtr;  
  volatile short VCount;  
  volatile short VState;  

  // next state table  
  short VS[4] = { SV_SYNC, SV_POSTEQ, SV_LINE, SV_PREEQ};  
  // next counter table  
  short int VC[4]={ VSYNC_N, POSTEQ_N, VRES, PREEQ_N};  

  int zero[2]= {0 x 0, 0 x 0};  

  void __ISR( _TIMER_3_VECTOR, ipl7) T3Interrupt( void)  
  { 
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 // advance the state machine  
 if ( --VCount == 0)  
 { 
 VCount = VC[ VState & 3];  
 VState = VS[ VState & 3];        

 }  

 // vertical state machine  
 switch ( VState) { 
case SV_SYNC:   // 1 
 // vertical sync pulse  
 OC3R = LINE_T - HSYNC_T - BPORCH_T;  
 break;        

    case SV_POSTEQ: // 2 
 // horizontal sync pulse 
 OC3R = HSYNC_T;  
 break;           

    case SV_PREEQ: // 0 
 // prepare for the new frame  
 VPtr = VA;  
 break;  

 default:  
 case SV_LINE: // 3 
 // preload of the SPI waiting for SS (Synch high)  
 SPI1BUF = 0;  
 // update the DMA0 source address and enable it  
 DCH0SSA = KVA_TO_PA((void*) VPtr);  
 VPtr += HRES/32;           
       DmaChnEnable( 1); 
 break;           

     } //switch 

 // clear the interrupt flag  
 mT3ClearIntFlag();     

  } // T3Interrupt     

 Notice how at the beginning of each line containing actual image data ( SV_LINE ) we 
update the DMA source pointer ( DCH0SSA ) to point to the next line of pixels, but in doing 
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so, we take care to translate the address to a physical address using the  KVA_TO_PA()
inline function, which involves a simple bit-masking exercise. As you can understand, 
the DMA controller does not need to be concerned with the way we have remapped the 
memory and the peripheral space; it demands a physical address. Normally it is the DMA 
library that takes care of such a low-level detail, and we could have once more used the 
DmaChnSetTxfer()  function to get the job done, but I could not help it—I just needed 
an excuse to show you how to directly manipulate the DMA controller registers and in 
the process save a few instruction cycles. 

 To make it a complete graphic library module, we need to add a couple of accessory 
functions, such as: 

  void clearScreen( void)  
  { // fill with zeros the Video array 
 memset( VA, 0, VRES*( HRES/8));     

  } //clearScreen 

  void haltVideo( void)  
  { 
 T3CONbits.TON = 0; // turn off the vertical state machine     

  } //haltVideo     

 In particular,  clearScreen()  will be useful to initialize the image memory map, the 
VMap array. However,  haltVideo()  will be useful to suspend the video generation, 
should an important task/application require 100 percent of the PIC32 processing power. 

 Save all the preceding functions in a file called  graphic.c  and place it in our  lib  directory, 
I can foresee an extensive use of its functions in this and the next few chapters. Also add 
this file to a new project called  Video . 

 Then create a new file and add the following definitions:       

  /*
  ** graphic.h 
  **  
  ** Composite video and graphic library  
  **  
  */
  #define NTSC         // comment if PAL required  
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  #define VRES         200         // desired vertical resolution  
  #define HRES         256      // desired horizontal resolution pixel  

  void initVideo( void);  

  void haltVideo( void);  

  void clearScreen( void);     

 Notice how the horizontal resolution and vertical resolution values are the only two 
parameters exposed. Within reasonable limits (due to timing constraints and the many 
considerations exposed in the previous sections), they can be changed to adapt to specific 
application needs, and the state machine and all other mechanisms of the video generator 
module will adapt their timing as a consequence. 

 Save this file as  graphic.h  and add it to the common  include  directory.  

  Testing the Composite Video 
 To test the composite video module we have just completed, we need only the MPLAB 
SIM simulator tool and possibly a few more lines of code for a new main module, to be 
called GraphicTest.c :       

  /*
  ** GraphicTest.c 
  **  
  ** A dark screen  
  **  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include  < p32xxxx.h >   
  #include  < plib.h >   
  #include  < explore.h >   
  #include  < graphic.h >   
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  main()  
  { 
// initializations 
 initEX16(); // init and enable vectored interrupts  
 clearScreen(); // init the video map  
 initVideo(); // start the video state machine  

 // main loop 
 while( 1)  
 {  

 } // main loop        

  } // main     

 Remember to  add  the  explore.c  module from the  lib  directory, then save the project and 
use the Build Project checklist to build and link all the modules. 

 Open the  Logic Analyzer  window and use the Logic Analyzer checklist to add the  OC3
signal (sync) and the SDO1  (video) to the analyzer channels. 

 At this point you could run the simulator for a few seconds and, after pressing the  halt
button, switch to the  Logic Analyzer  output window to observe the results (see  Figure 
13.15   ). The trace memory of the simulator is of limited capacity (unless you have 
configured it to use the extended buffers) and can visualize only a small subset of an 
entire video frame. In other words, it is very likely that you will be confronted with a 
relatively uninteresting display containing a regular series of sync pulses. Unfortunately, 
the MPLAB SIM simulator does not yet simulate the output of the SPI port, so for that, 
we ’ ll have to wait until we run the application on real hardware. 

 Regarding the sync line, there is one interesting time we would like to observe: that 
is when we generate the vertical synchronization signal with a sequence of three 
long horizontal synch pulses at the beginning of each frame. By setting a breakpoint 
on the first line of the  SV_POSTEQ  state inside the Timer3 interrupt service routine, 
you can make sure that the simulation will stop close to the beginning of a new 
frame.

 You can now zoom in the central portion to verify the proper timing of the sync pulses in 
the pre/post and vertical sync lines (see  Figure 13.16   ). 
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 Figure 13.15 :     Screen capture of the Logic Analyzer window, Vertical Sync pulses.    

 Figure 13.16 :     Zoomed view of a single pre-equalization line.    
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 Keep in mind that the Logic Analyzer window approximates the reading to the nearest 
screen pixel, so the accuracy of your reading will depend on the magnification (improving 
as you zoom in) and the resolution of your PC screen. Naturally, if what you need is to 
determine with absolute precision a time interval, the most direct method is to use the 
Stopwatch function of the MPLAB SIM software simulator together with the appropriate 
breakpoint settings.  

  Measuring Performance 
 It might be interesting to get an idea of the actual processor overhead caused by the 
video module. Using the Logic Analyzer we can visualize and attempt to estimate the 
percentage of time the processor spends inside the interrupt service routine. 

 As we did before, we will use a pin of PORTA (RA2) as a flag that will be set to indicate 
when we are inside the interrupt service routine and cleared when we are executing the 
main loop.       

  void __ISR() T3Interrupt( void)  
  {  
  _RA2=1;  
  ...  
  _RA2=0;  

  } // T3Interrupt     

 After recompiling and adding RA2 to the channels captured by the Logic Analyzer tool 
(see  Figure 13.17   ), we can zoom in a single horizontal line period. Using the cursors, we 
can measure the approximate duration of an interrupt service routine. We obtain a value 
of 35 cycles out of a line period of 2284 cycles, representing an overhead of less than 
1.5 percent of the processor time—a remarkable result due in great part to the support of 
the DMA controller!  

  Seeing the Dark Screen 
 Playing with the simulator and the Logic Analyzer tool can be entertaining for a little 
while, but I am sure at this point you will feel an itch for the real thing! You ’ ll want to 
test the video interface on a real TV screen or any other device capable of receiving an 
composite video signal, connected with the simple (resistors only) interface to an actual 
PIC32. If you have an Explorer 16 board, this is the time to take out the soldering iron 
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and connect the three resistors to a standard RCA video jack using the small prototyping 
area in the top-right corner of the demo board. Alternatively, if you feel your electronic 
hobbyist skills are up to the task, you could even develop a small PCB for a daughter 
board (a PICTail™) that would fit in the expansion connectors of the Explorer 16. 

 Check the companion Web site ( www.pic32explorer.com ) for the availability of 
expansion boards that will allow you to follow all the advanced projects presented in the 
third part of the book. 

 Whatever your choice, the experience will be breathtaking. 

 Or  . . .  not (see  Figure 13.18   )! In fact, if you wire all the connections just right, when you 
power up the Explorer 16 board you are going to be staring at just a blank or, I should 
say,  “ black ”  screen. Sure, this is an achievement; in fact, this already means that a lot of 
things are working right, since both the horizontal and vertical synchronization signals 
are being decoded correctly by the TV set and a nice and uniform black background is 
being displayed.  

 Figure 13.17 :     Screen capture of the Logic Analyzer output, measuring performance.    
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  Test Pattern 
 To spice things up, let ’ s start filling that video array with something worth looking at, 
possibly something simple that can give us immediate feedback on the proper functioning 
of the video generator. Let ’ s create a new test program as follows:       

  /*
  ** GraphicTest2.c 
  **  
  ** A test pattern  
  **  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include  < p32xxxx.h >   
  #include  < plib.h >   
  #include  < explore.h >   
  #include  < graphic.h >   

  extern int * VA;         // pointer to the image buffer  

  main()  
  { 
 int x, y;  

 Figure 13.18 :     The dark screen.    
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// initializations 
 initEX16();            // init and enable vectored interrupts  
 clearScreen();   // init the video map  
 initVideo();    // start the video state machine  

 // fill the video memory map with a pattern  
 for( y=0; y < VRES; y++) 
 for (x=0; x < HRES/32; x++) 
 VA[y*HRES/32+x]= y;           

    // main loop 
 while( 1)  
 {  

 } // main loop        

  } // main     

 Instead of calling the  clearScreen()  function, this time we used two nested  for  loops 
to initialize the VMap  array. The external ( y ) loop counts the vertical lines, and the internal 
(x) loop moves horizontally, filling the eight words (each containing 32 bits) with the same 
value: the line count. In other words, on the first line, each 32-bit word will be assigned the 
value 0; on the second line, each word will be assigned the value 1, and so on until the last 
line (200th), where each word will be assigned the value 199 ( 0x000000C7  in hexadecimal). 

 If you build the new project and test the video output you should be able to see the 
pattern shown in  Figure 13.19   . 

 Figure 13.19 :     A screen capture of the test pattern.    
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 In its simplicity, there is a lot we can learn from observing the test pattern. First, we notice 
that each word is visually represented on the screen in binary, with the most significant bit 
presented on the left. This is a consequence of the order used by the SPI module to shift out 
bits: that is, MSb first. Second, we can verify that the last row contains the expected pattern, 
0x000000c7 , so we know that all rows of the memory map are being displayed. Finally, 
we can appreciate the detail of the image. Different output devices (TV sets, projectors, 
LCD panels, and so on) will be able to lock the image more or less effectively and/or will be 
able to present a sharper image, depending on the actual display resolution and their input 
stages bandwidth. In general, you should be able to appreciate how the PIC32 can generate 
effectively straight vertical lines. This is not a trivial achievement. 

 This does not mean that on the largest screens you will not be able to notice small 
imperfections here and there as small echoes and possibly minor visual artifacts in the 
output image. Realistically, the simple three-resistor interface can only take us so far. 

 Ultimately the entire composite video signal interface could be blamed for a lower-
quality output. As you might know, S-Video, VGA, and most other video interfaces 
keep luminance and synchronization signals separate to provide a more stable and clean 
picture.

  Plotting 
 Now that we are reassured about the proper functioning of the graphic display module, 
we can start focusing on putting it to good use. The first natural step is to develop a 
function that allows us to light up one pixel at a precise coordinate pair ( x, y ) on the 
screen. The first thing to do is derive the line number from the  y  coordinate. If the  x  and 
y  coordinates are based on the traditional Cartesian plane representation, with the origin 
located in the bottom-left corner of the screen, we need to invert the address before 
accessing the memory map so that the first row in the memory map corresponds to the  y
maximum coordinate VRES-1 or 199 while the last row in the memory map corresponds 
to the y  coordinate 0. Also, since our memory map is organized in rows of eight words, 
we need to multiply the resulting line number by 32 to obtain the address of the first word 
on the given line. This can be obtained with the following expression:     

  VH[ (VRES-1  - y) *8]     

 where  VH  is a pointer to the image buffer. 

 Pixels are grouped in 32-bit words, so to resolve the  x  coordinate we first need to identify 
the word that will contain the desired pixel. A simple division by 32 will give us the word 
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offset on the line. Adding the offset to the line address as we calculated will provide us 
with the complete word address inside the memory map: 

  VH[ (VRES-1  - y)*8 + (x/32)]     

 To optimize the address calculation, we can use shift operations to perform the 
multiplication and divisions as follows:       

  VH[ ((VRES-1  - y) <<   3)+(x>>  5)]     

 To identify the bit position inside the word corresponding to the required pixel, we 
can use the reminder of the division of  x  by 32, or more efficiently, we can mask out 
the lower 5 bits of the  x  coordinate. Since we want to turn the pixel on, we will need 
to perform a binary OR operation with an appropriate mask that has a single bit set in 
the corresponding pixel position. Remembering that the display puts the MSb of each 
word to the left (the SPI module shifts bits MSb first), we can build the mask with the 
following expression:       

  (0x 80000000  >>  ( x  &  0 x 1f))     

 Putting it all together, we obtain the core of the plot function: 

  VH[ ((VRES-1-y) << 3)+(x>>  5)] |= ( 0 x 80000000 >>   (x & 0 x 1f));     

 As a final touch we can add  “ clipping ” —that is, a simple safety check, just to make sure 
that the coordinates we are given are in fact valid and within the current screen map 
limits.

 Add the following few lines of code to the  graphic.c  module we saved in the  lib
directory:

  void plot( unsigned x, unsigned y)  
  { 

 if ((x < HRES) &  &  (y <VRES) ) 
 VH[ ((VRES-1-y) <<   3)+(x >>   5)] |= ( 0 x 80000000 >>   (x & 0 x 1f));        

  } // plot     

 By defining the  x  and  y  parameters as  unsigned  integers, we guarantee that, should 
negative values be passed along, they will be discarded too because they will be 
considered large integers outside the screen resolution. 
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 Now let ’ s remember to add the function prototype to the  graphic.h  file in the  include
directory:

  void plot( unsigned x, unsigned y);     

    Watch Out  

The plot()   function  as defined is efficient, but it is  not  scalable. In other words, if you 
change the HRES  or  VRES  parameters in the graphic.h file, you will have to rethink the way 
you compute the address and bit position of a pixel for a given  x, y  pair of coordinates.

  A Starry Night 
 To test the newly developed  plot()  function, let ’ s once more modify the Video project. 
We will include the graphic.c and graphic.h files, but we will also use the pseudo-random 
number-generator functions available in the standard C library stdlib.h. By using the 
pseudo-random number generator to produce random x  and  y  coordinates for 1,000 
points, we will test both the plot()  function and, in a way, the random generator itself 
with the following simple code: 

  /*
  ** GraphicTest3.c 
  **  
  ** A starry night  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  
  #include  < p32xxxx.h >   
  #include <plib.h >   
  #include  < explore.h >   
  #include  < graphic.h >   

  main()  
  { 

 int i;  
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// initializations 
 initEX16();            // init and enable vectored interrupts  
 clearScreen();         // init the video map  
 initVideo();           // start the video state machine  

 for( i=0; i < 1000; i++) 
 { 
 plot( rand()%HRES, rand()%VRES);        

    }  
 // main loop 
 while( 1)  
 {        

   } // main loop  

  } // main     

 Save the file as  GraphicTest3.c  and add it to the Video project to replace the previous 
demo. Once you build the project and program the Explorer 16 board with your in circuit 
emulator of choice, the output on your video display should look like a nice starry night, 
as in the screen shot captured in Figure 13.20   . 

 Figure 13.20 :     Screen capture: plotting a starry night.    

 A starry night it is, but not a realistic one, you ’ ll notice, since there is no recognizable trace 
of any increased density of stars around a belt—in other words, there is no Milky Way! 
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 This is a good thing! This is a simple proof that our pseudo-random number generator is 
in fact doing the job it is supposed to do.  

  Line Drawing 
 The next obvious step is drawing lines, or I should say line  segments . Granted, horizontal 
and vertical line segments are not a problem; a simple  for  loop can take care of them. 
But drawing oblique lines is a completely different thing. We could start with the basic 
formula for the line between two points that you will remember from school days: 

  y=y0 + (y1-y0)/(x1-x0) * ( x-x0)     

 where  (x0,y0)  and  (x1,y1)  are, respectively, the coordinates of two generic points 
that belong to the line. 

 This formula gives us, for any given value of  x , a corresponding  y  coordinate. So we 
might be tempted to use it in a loop for each discreet value of  x  between the starting and 
ending point of the line, as in the following example:       

  /*
  ** LineTest1.c 
  **  
  ** testing the basic line drawing function  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  
  #include  < p32xxxx.h >   
  #include  < plib.h >   
  #include  < explore.h >   
  #include  < graphic.h >   

  main()  
  { 
 int x;  
 float x0 = 10.0,        y0 = 20.0;  
 float x1 = 200.0,        y1 = 150.0;  
 float x2 = 20.0,        y2 = 150.0;  



UTube   369

// initializations 
 initEX16();            // init and enable vectored interrupts  
 clearScreen();         // clear the image buffer  
 initVideo();           // start the video state machine  

 // draw an oblique line (x0,y0) – (x1,y1)  
 for( x = x0; x < x1; x++) 
 plot( x, y0 + (y1-y0)/(x1-x0)* (x-x0));        

  
 // draw a second (steeper) line (x0,y0) – ( x2,y2)  
 for( x = x0; x < x2; x++) 
 plot( x, y0+(y2-y0)/(x2-x0)* (x-x0));        

  
 // main loop 
 while( 1)  
 {  

 } // main loop        

  } // main // main     

 The output produced (Figure 13.21) is an acceptably continuous segment only for the 
first (shallower) line, where the horizontal distance  (x1-x0)  is greater than the vertical 
distance (y1-y0) . In the second, much steeper, line, the dots appear disconnected and 
we are clearly unhappy with the result. Also, we had to perform floating-point arithmetic, 

 Figure 13.21 :     Screen capture: drawing oblique lines.    
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a computationally expensive proposition compared to integer arithmetic, as we have seen 
in previous chapters.  

  Bresenham Algorithm 
 Back in 1962, when working at IBM in the San José development lab, Jack E. Bresenham 
developed a line-drawing algorithm that uses exclusively integer arithmetic and is today 
considered the foundation of any computer graphic program. Its approach is based on 
three optimization “ tricks ” : 

  1.     Reduction of the drawing direction to a single case (left to right)  

  2.     Reduction of the line steepness to the single case where the horizontal distance is 
the greatest  

  3.     Multiply both sides of the equation by the horizontal distance ( deltax ) to obtain 
only integer quantities 

 The resulting line-drawing code is compact and extremely efficient; here is an adaptation 
for our video module: 

  #define abs( a) (((a) >  0) ? (a) : -(a))  

  void line( short x0, short y0, short x1, short y1)  
  { 

 short steep, t ;  
 short deltax, deltay, error;  
 short x, y;  
 short ystep;  

 // simple clipping  
 if (( x0  <  0) || (x0  >  HRES)) 

  return;        
    if (( x1  <  0) || (x1  >  HRES)) 
     return;        
    if (( y0  <  0) || (y0  >  VRES)) 

   return;        
   if (( y1  <  0) || (y1  >  HRES)) 

   return;        



UTube   371

   steep = ( abs(y1 - y0)  >  abs(x1 - x0));  

   if ( steep )  
   { // swap x and y 
   t = x0; x0 = y0; y0 = t;  
   t = x1; x1 = y1; y1 = t;           

   }  
   if (x0  >  x1)  
   { // swap ends 
   t = x0; x0 = x1; x1 = t;  
   t = y0; y0 = y1; y1 = t;           

   }  

   deltax = x1 - x0;  
     deltay = abs(y1 - y0);  
   error = 0;  
   y = y0;  

   if (y0  <  y1) ystep = 1; else ystep =  - 1;  
   for (x = x0; x  <  x1; x++)  

     { 
 if ( steep) plot(y,x); else plot(x,y);  

  error += deltay; 
 if ( (error<<1) >  = deltax)           

   { 
  y += ystep; 

 error -= deltax;           

 } // if  
  } // for     

  } // line     

 We can add this function to the video module  graphic.c  and add its prototype to the 
include  file  graphic.h :       

  void line( short x0, short y0, short x1, short y1);     

 To test the efficiency of the Bresenham algorithm, we can create a new small project and, 
once more, use the pseudo-random number-generator function. The following example 
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code will first draw a frame around the screen and then exercise the line-drawing routine, 
producing 100 lines at randomly generated coordinates: 

  /*
  ** Bresenham.c 
  **  
  ** Fast line drawing algorithm example  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include  < p32xxxx.h    >
  #include  < plib.h >   
  #include  < explore.h >   
  #include  < graphic.h >   

  main()  
  { 

 int i;  

// initializations 
 initEX16();            // init and enable vectore interrupts  
 initVideo();           // start the state machines  

 // main loop 
 while( 1)  
 {  
 clearScreen();  
 line( 0, 0, 0, VRES-1);  
 line( 0, VRES-1, HRES-1, VRES-1);  
 line( HRES-1, VRES-1, HRES-1, 0);  
 line( 0, 0, HRES-1, 0);  

 for( i=0; i < 100; i++) 
 line( rand()%HRES, rand()%VRES, 

        rand()%HRES, rand()%VRES);                    
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 // wait for a button to be pressed  
 getKEY();  
 } // main loop        

  } // main     

 The main loop also uses the  getKey()  function, developed in the previous 
chapters and added to the explore.h module, to wait until a button is pressed before 
the screen is cleared and a new set of 100 random lines is drawn on the screen (see  
Figure 13.22   ). 

 Figure 13.22 :     Screen capture: Bresenham line-drawing test.    

 You will be impressed by the speed of the line-drawing algorithm. Even when 
increasing the number of lines drawn to batches of 1,000, the PIC32 performance 
will be apparent.  

  Plotting Math Functions 
 With the completed graphic module we can now start exploring some interesting 
applications that can take full advantage of its visualization capabilities. One classical 
application could be plotting a graph based on data logged from a sensor, or more simply 
for our demonstration purposes, calculated on the fly from a given math function. 
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 For example, let ’ s assume that the function is a sinusoid (with a twist), as in the 
following:       

  y(x) = x * sin( x)     

 Let ’ s also assume that we want to plot its graph for values of  x  between  0  and  8*PI . 

 With minor manipulations, we can scale the function to fit our screen, remapping the 
input range from 0  to  200  and the output range to the  +75/-75  value range. 

 The following program example will plot the function after tracing the  x  and  y  axes: 

  /*
  ** graph1d.c 
  **  
  ** Plotting a function graph  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  
  #include  < p32xxxx.h>  
  #include  < plib.h >   
  #include  < explore.h >   
  #include  < graphic.h >   
  #include  < math.h >   

  #define X0 10  
  #define Y0 (VRES/2)  

  main( void)  
  { 

 int x, y;  
 float xf, yf;  

// initializations 
 initEX16();     // init and enable vectored interrupts  
 clearScreen();  
 initVideo();    // init video state machine  
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 // draw the x and y axes crossin in (X0,Y0)  
 line( X0, 10, X0, VRES-10);       // y axes  
 line( X0-5, Y0, HRES-10, Y0);     // x axes  

 // plot the graph of the  function  for 
 for( x=0; x<  200; x++)  
 { 
 xf = (2 * M_PI / 50) * (float) x;  
 yf = 75.0 / ( 8 * M_PI) * xf * sin( xf);  
 plot( x+X0, yf+Y0);          

  }  

 // main loop  
 while( 1);     

  } // main     

 Notice the inclusion of the math.h library to obtain the prototypes of the  sin()  function 
and some useful definitions, among which is the value of pi, or I should say  M_PI . 

 Save the file as  graph1d.c  and replace it as the main module of the Video project. Build 
the project and program the Explorer 16 board with your in-circuit debugger of choice. 
Quick, the new function graph will appear on the screen (see  Figure 13.23   )! 

 Figure 13.23 :     Screen capture: a sinusoidal function graph.    



376   Day 13

 Should the points on the graph become too sparse, we have the option now to use the 
line-drawing algorithm to connect each point to the previous one.  

  Two-Dimensional Function Visualization 
 More interesting and perhaps entertaining could be plotting two-dimensional function 
graphs. This adds the thrill of managing the perspective distortion and the challenge of 
connecting the calculated points to form a visually pleasant grid. 

 The simplest method to squeeze the third axis in a two-dimensional image is to utilize 
what is commonly known as an  isometric projection , a method that requires minimal 
computational resources while providing a small visual distortion. The following 
formulas applied to the x ,  y , and  z  coordinates of a point in a three-dimensional space 
produce the px  and  py  coordinates of the projection on a two-dimensional space (our 
video screen; see Figure 13.24   ).       

  px = x + y/2;  

  py = z + y/2;     

 Figure 13.24 :     Isometric projection.    

y

x

z
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 To plot the three-dimensional graph of a given function:  z = f(x,y)  we proceed on a 
grid of points equally spaced in the x  and  y  plane using two nested  for  loops. For each 
point we compute the function to obtain the z  coordinate, and we apply the isometric 

°
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projection to obtain a (px,py)  coordinate pair. Then we connect the newly calculated 
point with a segment to the previous point on the same row (previous column). A second 
segment needs to be drawn to connect the point to a previously computed point in the 
same column and the previous row (see  Figure 13.25   ). 

7 y
Previous row

Newly calculated point
(px, py)

Previous point
(prev.x, prev.y)

x

 Figure 13.25 :     Drawing a grid to enhance a two-dimensional graph visualization.    

 Although it is a trivial task to keep track of the coordinates of the previously computed 
point on the same row, recording the coordinates of the points on  “ each ”  previous row 
might require significant memory space. If, for example, we are using a grid of 20  �  20 
points, we would need to store the coordinates of up to 400 points. Requiring two integers 
each, that would add up to 800 words, or 3,200 bytes of precious RAM. In reality, as 
should be evident from the preceding picture, all we really need is the coordinates of 
the points on the  “ edge ”  of the grid as painted so far. Therefore, with a little care, we 
can reduce the memory requirement to just 20 coordinate pairs by maintaining a small 
(rolling) buffer. 

 The following example code visualizes the graph of the function: 

  z(x,y) = 1/ sqrt( x2 + y2) * cos ( sqrt( x2 + y2)     

 for values of  x  and  y  in the range  - 3*PI  to  +3*PI :       

  /*
  ** graph2d.c 
  **  
  ** 07/02/06 v1.0 LDJ  
  ** 11/21/07 v2.0 LDJ PIC32 porting  
  */
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  // configuration bit settings  
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include <  p32xxxx.h >   
  #include  < explore.h >   
  #include  < graphic.h >   
  #include  < math.h >   

  #define X0 10        // graph offset  
  #define Y0 10  
  #define NODES 20        // define grid  
  #define SIDE 10  
  #define STEP 1        // movement increment  

  typedef struct {   
 int x;  
 int y;           

} point;     

  point edge[NODES], prev;  

  main( void)  
  { 
 int i, j, x, y, z;  
 float xf, yf, zf, sf;  
 int px, py;  
 int xoff, scale;  

// initializations 
 initEX16();  
 clearScreen();  
 initVideo();  

 xoff = 100;  

 scale = 75;  

 while (1)  
   { 

 // clear hidden screen  
 clearScreen();  
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 // draw the x, y and z axes crossing in (X0,Y0)  
 line( X0, 10, X0, 10);        // z axis  
 line( X0-5, Y0, HRES-10, Y0);        // x axis  
 line( X0-2, Y0-2, X0+120, Y0+120); // y axis  

  // init the array of previous egde points  
 for( j=0; j < NODES; j++) 
 { 
 edge[j].x = X0+ j*SIDE/2;  

    edge[j].y = Y0+ j*SIDE/2;                 
 }  

 // plot the graph of the function for  
 for( i=0; i < NODES; i++) 
 { 
 // transform the x range to 0..200 offset 100  
 x = i * SIDE;  
 xf = (6 * M_PI/200) * (float)(x-xoff);  
 prev.y = Y0;  
 prev.x = X0 + x;  

 for ( j=0; j < NODES; j++) 
 { 
 // transform the y range to 0..200 offset 100  
 y = j * SIDE;  
 yf = (6 * M_PI / 200) * (float)(y-100);  

 // compute the function  
 sf = sqrt( xf * xf + yf * yf);  
 zf = 1/(1+ sf) * cos( sf );  

 // scale the output  
 z = zf * scale;  

    // apply isometric perspective and offset  
    px = X0 + x+ y/2;  
    py = Y0 + z + y/2;  

  // plot the point  
    plot( px, py);  
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  // draw connecting lines to visualize the grid  
    line( px, py, prev.x, prev.y);  

  line( px, py, edge[j].x, edge[j].y);  

    // update the previous points  
    prev.x = px;  
    prev.y = py;  
    edge[j].x = px;  
    edge[j].y = py;                       

 } // for j                 
 } // for i  

 // wait for a button  
 getKEY();     

 } // main loop     

  } // main     

 Save the file as  graph2d.c  and replace it in the Video project as the main source. After 
building the project and programming the Explorer 16 demo board, you will notice how 
quickly the PIC32 can produce the output graph, although significant floating-point math 
is required because the function is applied sequentially to 400 points and as many as 800 
line segments are drawn on the video (see  Figure 13.26   ).

 Figure 13.26 :     Screen capture: graph of a two-dimensional function.    
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  Fractals 
Fractals  is a term coined by Benoit Mandelbrot, a mathematician and fellow researcher 
at the IBM Pacific Northwest Labs, back in 1975 to denote a large set of mathematical 
objects that presented an interesting property: that of appearing self-similar  at all scales 
of magnification, as though constructed recursively with an infinite level of detail. There 
are many examples of fractals in nature, although their self-similarity property is typically 
extended over a finite scale. Examples include clouds, snowflakes, mountains, river 
networks, and even the blood vessels in our bodies. 

 Since it lends itself to impressive computer visualizations, the most popular example of 
mathematical fractal object is perhaps the Mandelbrot set. It ’ s defined as a subset of the 
complex plane where the quadratic function  z2  + c  is iterated. By exclusion, points 
c  of the complex plane for which the iteration does not  “ diverge ”  are considered to be 
part of the set. Since it is easy to prove that once the modulus of  z  is greater than 2, the 
iteration is bound to diverge; hence the given point is not part of the set, we can proceed 
by elimination. The problem is that as long as the modulus of z  remains smaller than 2,we 
have no way of telling when to stop the iteration and declare the point part of the set. So, 
typically, computer algorithms that depict the Mandelbrot set use an approximation by 
setting an arbitrary maximum number of iterations past which a point is simply assumed 
to be part of the set. 

 Here is an example of how the inner iteration can be coded in C language:   

// initialization     
 x = x0;  
 y = y0;  
 k = 0;  

 // core iteration  
 do {  
 x2 = x*x;  
 y2 = y*y;  
 y = 2*x*y+y0;  
 x = x2-y2+x0;  
 k++;  

  } while ( (x2 + y2  <  4)  &  &  ( k  <  MAXIT));  
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     // check if the point belongs to the Mandelbrot set  

 if ( k == MAXIT) plot( j, i);     

 where  x0  and  y0  are the coordinates in the complex space of the point  c . 

 We can repeat this iteration for each point of a squared subset of the complex plane 
to obtain an image of the entire Mandelbrot set. The considerations we made on the 
modulus of c  imply that the entire set must be contained in the disc of radius 2 centered 
on the origin, so, as we develop a first program, we will scan the complex plan in a grid 
of HRES   xVRES  points (to use the fullscreen resolution of our video module), making sure 
to include the entire disc: 

  /*
  ** Mandelbrot.c 
  **  
  ** Mandelbrot Set graphic demo  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include  < p32xxxx.h >   
  #include  < plib.h >   
  #include  < explore.h >   
  #include  < graphic.h >   

  #define SIZE VRES  
  #define MAXIT 64  

  void mandelbrot( float xx0, float yy0, float w)  
  { 
 float x, y, d, x0, y0, x2, y2;  
 int i, j, k;  
 // calculate increments  
 d = w/SIZE;  
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 // repeat on each screen pixel  
 y0 = yy0;  
 for (i=0; i < SIZE; i++) 
 { 
 x0 = xx0;  
 for (j=0; j < SIZE; j++) 
 { 
// initialization 
 x = x0;  
 y = y0;  
 k = 0;  

 // core iteration  
 do {  
 x2 = x*x;  
 y2 = y*y;  
 y = 2*x*y + y0;  
 x = x2-y2 + x0;  
 k++;  

 } while ( (x2 + y2  <  4)  &  &  ( k  <  MAXIT));  

 // check if the point belongs to the Mandelbrot set  
 if ( k == MAXIT) plot( j, i);  

 // compute next point x0  
 x0 += d;                 

 } // for j  
 // compute next y0           

     y0 += d;  
 } // for i     

  } // mandelbrot  

  int main( void)  
  { 
 float x, y, w;  
 int c;  
// initializations 
 initEX16();            // init and enable vectored interrupts  
 initVideo();           // init the video state machine  
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 // intial coordinates lower left corner of the grid  
x =  - 2.0;  
 y =  - 2.0;  
 // initial grid size  
 w = 4.0;  

 clearScreen();     // clear the screen  
 mandelbrot( x, y, w);       // draw new image  

 while( 1);     

  } // main     

 Save this file as  Mandelbrot.c  and add it to a new project that we will call  Mandelbrot . 
Make sure that all the other required modules are added to the project too, including 
graphic.c ,  graphic.h , and  explore.c . Build the project, program the Explorer 16 
board using your in-circuit debugger of choice, and if all is well, when you let the 
program run you will see the so-called Mandelbrot “ cardiod ”  appear on your screen 
(see  Figure 13.27   ). 

 Figure 13.27 :     Screen capture: Mandelbrot cardiod.    

I will confess that since when, as a kid, I bought my first personal computer—actually, 
home computer  was the term used back then for the Sinclair ZX Spectrum—I have been 
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playing with fractal programs. So I have a vivid memory of the long hours I used to 
spend staring at the computer screen, waiting for the old trusty ZX80 processor (running 
at the whopping speed of 3.5       MHz) to paint this same images. A few years later, my 
first IBM PC, an XT clone running on a 8088 processor at a not much higher clock 
speed of 4       MHz, was not faring much better and, although the screen resolution of my 
monochrome Hercules graphic card was higher, I would still launch programs in the 
evening to watch the results the following morning after what amounted sometimes to up 
to eight hours of processing.

WOW

 Clearly, the amount of computation required to paint a fractal image varies enormously with the 
chosen area and the number of maximum iterations allowed ( MAXIT ), but, although I have seen 
this program run by several other processors, including the PIC24 (at 32       MHz), the first time I 
saw the PIC32 paint the cardiod in less than 5 seconds, I got really excited again! 

 The real fun has just begun. The most interesting parts of the Mandelbrot set are at the 
fringes, where we can increase the magnification and zoom in to discover an infinitely 
complex world of details. By visualizing not just the points that belong to the set but also 
the ones that diverge at its edges, and by assigning each point a  “ color ”  that depends on 
how fast they do diverge, we can further improve  “ aesthetically ”  the resulting image. 
Since we have only a monochrome display, we will simply use alternate bands of black 
and white assigned to each point according to the number of iterations it took before it 
either reached the maximum modulus or the maximum number of iterations. Simply 
enough, this means we will have to modify just one line of code from our previous 
example:       

  // check if the point belongs to the Mandelbrot set  

  if ( k  &  2) plot( j, i);     

 Also, since the best way to play with Mandelbrot sets is to explore them by selecting new 
areas and zooming in the details, we can modify the main program loop to let us select 
a portion of the image by pressing one of the four buttons on the Explorer 16 board. We 
can imagine splitting the image into four corresponding quadrants, numbered clockwise 
starting from the top left, and doubling the resolution by halving the grid dimension ( w ) 
(see  Figure 13.28   ).       
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  int main( void)  
  { 
 float x, y, w;  
 int c;  

// initializations 
 initEX16();  
 initVideo();      // start the state machines  

 // intial coordinates lower left corner of the grid  
x =  - 2.0;  
 y =  - 2.0;  
 // initial grid size  
 w = 4.0;  

 while( 1)  
 { 

 clearScreen();               // clear the screen  
 mandelbrot( x, y, w);       // draw new image  
 // wait for a button to be pressed  
 c = getKEY();  
 switch ( c){  
 case 8:          // first quadrant 
 w/= 2;  
 y += w;  
 break;           

1 2

34

x
w

y

(x0, y0)

 Figure 13.28 :     Splitting the screen into four quadrants.    
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 case 4:          // second quadrant 
 w/= 2;  
 y += w;  
 x += w;  
 break;        

 case 2:          // third quadrant 
 w/= 2;  
 x += w;  
 break;           

 default:  
 case 1:          // fourth quadrant 
 w/= 2;  
 break;              

 } // switch           
 } // main loop     

  } // main     

  Figure 13.29              shows a selection of interesting areas you will be able to explore with a little 
patience.

(b) (�0.37500 �j 0.57813)
   w� 0.01563

(a) (�0.25 �j 0.5)
   w� 0.25

Figure 13.29.
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(e) (�1.28125 �j 0.4688)
   w� 0.01563

(d) (�0.34375 �j 0.56250)
   w� 0.3125

(c) (�1.28125 �j 0.3125)
   w� 0.3125

Figure 13.29: (Contiuned).
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0 0 0 1 1 1 0 0 

0 0 1 0 0 0 1 0 

0 0 1 0 0 0 1 0 

0 0 1 1 1 1 1 0 

0 0 1 0 0 0 1 0 

0 0 1 0 0 0 1 0 

0 0 1 0 0 0 1 0 

0 0 0 0 0 0 0 0 

 Figure 13.30 :     The letter A as represented in a simple 8  �  8 font.    

  Text 
 So far we have been focusing on simple graphical visualizations, but on more than one 
occasion you might feel the desire to actually augment the information presented on the 
screen with some text. Writing text on the video memory is no different than plotting 
points or drawing lines; in fact, it can be achieved using a variety of methods, including 
the plotting and line-drawing functions we have already developed. But for greater 
performance and to require the smallest possible amount of code, the easiest way to text on 
our graphic display is to develop a fixed spacing font. Each character can be drawn in an 
8 �  8 pixel box; this way 1 byte will encode each row and 8 bytes will encode the entire 
character. We can then assemble a basic set of alphabetical, numerical, and punctuation 
characters, using the order in which they are appear in the ASCII character set, as a single 
array of char  integers that will constitute our simple  font  (see  Figure 13.30   ). 

 To save space, we don ’ t need to create the first 32 codes of the ASCII set that correspond 
mostly to commands and special synchronization codes used by teletypewriters and 
modems of the old days. 

  /*
  ** 8  x  8 Simple Character Font  
  **  
  */
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  #define F_OFFS   0 x 20 // initial offset  
  #define F_SIZE   96 // define only the first 96 characters  

  const char Font8 x 8[]={  
  // 20 - SPACE  
 0 x00,        // 0b 0000000,  
 0 x00,        // 0b 0000000,  
 0 x00,        // 0b 0000000,  
 0 x00,        // 0b 0000000,  
 0 x00,        // 0b 0000000,  
 0 x00,        // 0b 0000000,  
 0 x00,        // 0b 0000000,  
 0 x00,        // 0b 0000000,     

  // 1 - ! 
 0 x18,        // 0b 0011000,  
 0 x18,        // 0b 0011000,  
 0 x18,        // 0b 0011000,  
 0 x18,        // 0b 0011000,  
 0 x18,        // 0b 0011000,  
 0 x00,        // 0b 0000000,  
 0 x18,        // 0b 0011000,  
 0 x00,        // 0b 0000000,     

  ...  

  } // Font 8 x 8[]     

 Notice that the  Font8 x 8[]  array is defined with the attribute  const  because its contents 
are supposed to remain (mostly) unchanged during the execution of the program, and it is 
best allocated in the Flash memory of the PIC32 to save precious RAM memory space.

  Of course, the definition of the shape of each character can be a matter of personal taste. 
You are welcome to modify the  Font8 x 8[]  array contents to suit your preferences. 

Note

 Defining a new font is a long and detailed work, but it is one that gives a lot of space to 
creativity, and I know that some of you will find it pretty entertaining. A complete listing of the 
font.h file would waste several pages of this book, so I decided to omit it here. You can find it 
on the companion CD-ROM. 



UTube   391

 Printing a character on the screen is now a matter of copying 8 bytes from the font 
array to the desired position on the screen. In the simplest case, characters can be 
aligned to the words that compose the image buffer of the graphics module. In this 
way the character positions are limited to 32 characters per line (256/8, assuming 
HRES � 256) and a maximum of 25 rows of text could be displayed (200/8, assuming 
VRES � 200). 

 A more advanced solution would call for absolute freedom in positioning each character 
at any given pixel coordinate. This would require a type of manipulation, often referred 
to as BitBLT  (an acronym that stands for  bit block transfer ) that is common in computer 
graphics, particularly in video game design. In the following we will stick to the simpler 
approach. looking for the solution that requires the smallest amount of resources to get the 
job done. 

  Printing Text on Video 
When printing text on video we need the assistance of a cursor, a virtual placeholder to 
keep track of where on the screen we are going to place the next character. As we print, 
it is easy to advance the cursor to mimic somewhat the behavior of a typewriter as it 
zigzags across the sheet and as it scrolls the paper.

OOPS

 As I am writing this, it occurs to me that many of you might have never used a typewriter in 
real life and that the beauty of this parallel is going to be totally lost on you. Maybe it feels like 
I might be talking of reed pens and kalamoi or parchment . . . 

 Our cursor will be made of two integers, holding the  x  and  y  of a new coordinate system 
that is now upside down with respect to the traditional Cartesian orientation and much 
more coarse as it counts rows and columns rather than individual pixels: 

●       cx , will indicate the current column, counting from left to right, from 0 to 31.  

●       cy , will indicate the row, counting from top to bottom, from 0 to 24. 
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 To print one ASCII character on the screen at the current cursor position, we will create 
the putcV()  function that will perform the following simple steps: 

  1.     Check whether the character requested is within the range of characters for which 
we have font definition (from ASCII code  0 x 20  all the way up to  0x  7F ):          

  void putcV( char a)  
  {  
     int i, j, *p;  
     const char *pf;  

     // 1. check if char in range  
     if ( a  <  F_OFFS) 

             return;     
     if ( a  > = F_OFFS+F_SIZE) 

          return;        

    2.     Check whether the cursor position is within the screen boundaries, wrapping 
around and scrolling as necessary:    

  // 2. check page boundaries and wrap or scroll as 
necessary     

    if ( cx  > = HRES/8)        // wrap around x  
    { 
       cx = 0;  
       cy++;     
    }  
    if ( cy  > = VRES/8)        // scroll up y  
    { 
     int *pd = VH;  

  int *ps = pd+(HRES/32)*8;  
  for( i=0; i < (HRES/32)*(VRES-8); i++) 

       *pd++ = *ps++;        
      for( i=0; i < (HRES/32)*8; i++) 
       *pd++ = 0;        
        // keep cursor within boundary  
     cy=VRES/8-1;     

  }     
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  3.     Find the address inside the image buffer corresponding to the cursor location ( p ), 
and find the character definition inside the  Font8 x 8[]  array ( pf ):

  // 3. set pointer to word in the video map 
 p =  & VH[ cy * 8 * HRES/32 + cx/4];  

   // set pointer to first row of the character in font 
array  

     pf =  & Font8 x 8[ (a-F_OFFS) <<    3];        

    4.     Copy the character byte after byte, taking care to clear the background image 
before overimposing each character row:    

                // 4. copy one by one each line of the character on 
screen     
 for ( i=0; i < 8; i++) 
 { 

      j = (3-(cx  &  3)) <<   3;        // consider MSB first  
      *p  &= ~(0xff <<    j);        // clear background  
    *p |= ((*pf++)  <<    j);        // overimposed character  

       // point to next row  
       p += HRES/32;     

    } // for     

    5.     Finally, advance the cursor position: 

                 // 5. advance cursor position        
         cx++;     

      } // putcV     

 Add this function to the bottom of the  graphic.c  module and its prototype to the bottom 
of the graphic.h  include file:       

  void putcV( char a);     

 For our convenience we can now create a small function that will print an entire (zero-
terminated) ASCII string on the screen: 

  void putsV( char *s)  
  { 
 while (*s) 
 putcV( *s++);        
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    // advance to next line     
    cx=0; cy++;} // putsV     

  } // putsV     

 Add this function to the  graphic.c  library module and its prototype to the  graphic.h :       

  void putsV( char *s);     

 Since we ’ re at it, let ’ s add a couple more useful macros to the  graphic.h  file:       

  #define Home()         { cx=0; cy=0;}  
  #define Clrscr()        { clearScreen(); Home();}  

  #define AT( x, y)        { cx = (x); cy =(y);}     

●       Home()  will simply position the cursor on the upper-left corner of the screen.  

●       Clrscr()  will clear the screen first and then reposition the cursor to the top.  

●       AT(x, y)  will position the cursor at the desired column ( x ) and row ( y ).     

  Text Test 
 To quickly test the effectiveness of the new text functions, we can now create a short 
program that, after printing a small banner on the first line of the screen, will print out 
each character defined in the 8  �  8 font:       

  //*  
  ** TextTest.c 
  **  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  
  #include  < p32xxxx.h >   
  #include  < explore.h >   
  #include  < graphic.h >   

  main( void)  
  { 
 int i;  
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// initializations 
 initEX16();   // init and enable vectored interrupts  
 initVideo(); // start the state machines  

 Clrscr();  

 AT( 5, 2);  
 putsV(  " Exploring the PIC32! " );  

 AT( 0, 4);  
 for( i=0; i < 128; i++) 
 putcV( i);        

      while (1);     

  } // main     

 Save this file as  TextTest.c  and add it to a new project that we will call  TextTest . Make 
sure that all the other required modules are added to the project too, including graphic.
c ,  graphic.h , and  explore.c . Build the project, program the Explorer 16 board using your 
in-circuit debugger of choice, and if all is well, when you run you will see the screen 
come alive with a nice welcome message (see  Figure 13.31   ).  

  The Matrix Reloaded 
 To further test the new text page video module, we will modify an example we saw 
in a previous chapter: the Matrix. Back then, we were using the asynchronous serial 

 Figure 13.31 :     Screen capture: text test.    
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communication module (UART1) to communicate with a VT100 computer terminal or, 
more likely, a PC running the HyperTerminal program configured for emulation of the 
historical DEC VT100 terminal ’ s protocol. Now we can replace the  putcU()  function 
calls used to send a character to the serial port, with putcV()  function calls directed to the 
graphic interface. 

 Let ’ s modify the  TextTest  project by replacing the  TextTest.c  main module with the new 
Matrix2.c  module, modified as follows:       

  /*
  ** Matrix2.c 
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  
  #include  < p32xxxx.h >   
  #include  < graphic.h >   

  #define COL          HRES/8  
  #define ROW            VRES/8  

  main()  
  { 
 int v[ COL];   // vector containing length of each string  
 int i,j,k;  

 // 1. initializations  
 initEX16();  
 initVideo();  
 Clrscr();             // clear the screen  

 // 2. init each column length  
 for( j =0; j  <  COL; j++) 

       v[j] = rand()%ROW;        

 // 3. main loop  
 while( 1)  
 { 

  // 3.1 refresh the screen with random columns  
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    for( i=0; i < ROW; i++) 
 { 
 AT( 0, i);  
 // refresh one row at a time  
 for( j=0; j < COL; j++) 
 { 
 // fill random char down to each column length  
 if ( i  <  v[j]) 

        putcV(  ' ! ' +(rand()%15));  
   else 

       putcV( ' ');             
          } // for j           

           } // for i        

  // 3.2 randomly increase or reduce each column length  
  for( j=0; j < COL; j++) 
  { 
      switch ( rand()%3){  
     case 0: // increase length 
         v[j]++;  
          if (v[j] > ROW) 
             v[j]=ROW;           
      break;        

   case 1:   // decrease length 
        v[j]--;  
        if (v[j] < 1)  
            v[j]=1;  
        break;     

   default:// unchanged  
          break;           
   } // switch  

 } // for j  
  } // main loop     

  } // main     

 After saving and building the project, program the Explorer 16 board using your in-
circuit debugger of choice and run the program (see  Figure 13.32   ). You will notice how 
much faster the screen updates can be compared because the program now has direct 
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access to the video memory and no serial connection limits the information transfers 
(as fast as the 115,200 baud connection was in our previous demo project; that was our 
bottleneck). The demo will run so fast that you will need to add a delay of a few extra 
milliseconds to give your eyes time to focus. 

 // 3.3 delay to slow down the screen update  

   Delayms( 5);     

  Debriefing 
 Today we have explored the possibility of producing a video output using a minimal 
hardware interface composed in practice of only three resistors. We learned to use four 
peripheral modules together to build the complex mechanism required to produce a 
properly formatted NTSC composite video signal. Combining a 16-bit-timer, an output 
compare module, one SPI port, and a couple of channel of the DMA module we have 
obtained video capabilities at the cost of just 1.5% processor overhead. After developing 
basic graphic functions to plot individual pixels first and efficiently draw lines, we 
explored some of the possibilities offered by the availability of a graphic video output, 
including unidimensional and two-dimensional function graphing. We completed our 

 Figure 13.32 :     Screen capture, the Matrix . . .  Reloaded.    
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explanations with a brief foray in the world of fractals and learning to display text on top 
of graphics.  

  Notes for the PIC24 Experts 
 The OC module of the PIC32 is mostly identical to the PIC24 peripheral, yet some 
important enhancements have been included in its design. Here are the major differences 
that will affect your code while porting an application to the PIC32: 

  1.     The  OCxCON  control register layout has been updated to resemble more closely 
the layout of most other peripherals so that the module ON ,  FRZ , and  IDL  bits are 
now available to better control operation in the low-power modes.  

  2.     The  OC32  control bit has been added to enable a 32-bit mode of operation when 
the module is associated with a 32-bit timer pair.     

 Tips  &  Tricks 
 The final touch, to complete our brief excursion into the world of graphics, would be to add 
some animation capabilities to our graphic libraries. To make the motion fluid and avoid an 
annoying flicker of the image on the screen, a technique known as  double buffering  is often 
used. This requires the allocation of two image buffers of identical size. One, the  “ active ” 
buffer, is shown on the screen; the other, the  “ hidden ”  buffer, is where the drawing takes 
place. When the drawing on the hidden buffer is completed, the two are swapped. What 
used to be the active buffer is not visible anymore. The (now) hidden buffer can be cleared 
without fear of producing any flicker, and the drawing process can restart. 

 With the current image resolution settings (256  �  200), the RAM usage grows to a total 
of 12,800 bytes (256*200*2/8), which represents only approximately 40 percent of the 
total RAM available on the PIC32MX360. 

 To extend our graphic libraries and support double buffering, we can implement the 
following simple modifications: 

●      At the top of the  graphic.c  module, add the declaration of a second image buffer;        

  #ifdef DOUBLE_BUFFER  
  int VMap2[ VRES*(HRES/32)]; // second image buffer  

  #endif     
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●      Inside the  initVideo()  function, where the  VA  and  VH  pointers were assigned 
initial values, add a new conditional assignment. (Now you can understand why I 
had chosen to use two separate pointers to the same image buffer.)               

   // 6. init the active and hidden screens pointers           
   VA = VMap1;     
  #ifdef DOUBLE_BUFFER 
     VH = VMap2;     
  #else 
     VH = VA;     

  #endif     

●      Add the new function  clearHScreen(),  to clear the hidden buffer in double-
buffering mode:            

  void clearHScreen( void)  
  { // fill with zeros the Hidden Video array 
     memset( VH, 0, VRES*( HRES/8));  
     // reset text cursor position  
     cx = cy = 0;     

  } //clearHScreen     

●      Add the  swapV()  function to swap the two buffers (it ’ s just the pointers that get 
swapped): 

  void swapV( void)  
  { 

     int * V;  

     if ( VState == SV_LINE)         // wait end of the frame 
      while ( VCount != 1);           

     V = VA; VA = VH; VH = V;        // swap the pointers  
     VPtr = VA;     

  } // swapV     

 Notice that care must be taken not to perform the swap in the middle of a frame but 
synchronized with the end of one frame and the beginning of the next. 
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 One last utility function can be added for all those cases when the animation needs to be 
suspended and the display has to return to a simple buffering mode:       

  void singleV( void)  
  { // make all functions work on a single image buffer  
 VA = VMap1;  
 VH = VA;  

  }     

 Remember to add all the corresponding function prototypes to the  graphic.h  include file 
and additionally, at the top, declare the new symbol  DOUBLE_BUFFER :       

  #define DOUBLE_BUFFER   // comment if single buffering required  
  void clearHScreen( void);  
  void swapV(void);  

  void singleV( void);     

Note

 All the examples developed in this chapter and the previous one can now be recompiled 
using the newly extended graphic modules with the condition that the  DOUBLE_BUFFER
declaration is either commented out or the singleV()   function  is called immediately after 
the initVideo()  call! 

  Exercises 

  1.     Modify the  Mandelbrot.c  demo to use a 32-bit timer to self-time the PIC32 
performance and display the time and coordinates of the image on the screen.  

  2.     Create a combined demo project that uses the PS/2 keyboard input and the 
graphic libraries to provide a terminal console.  

  3.     Modify the  graph2D.c  demo and allow the user to  “ manipulate ”  the function 
using the four buttons on the Explorer 16 demo board to increase and decrease 
the scaling factor and change the position of the  “ peak ”  while refreshing the 
screen using the double-buffering animation technique.  

  4.     Experiment with 3D geometry, drawing objects in perspective and rotating them 
in space. 
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   Books
        Mandelbrot ,       Benoit ,    B.         ,      The Fractal Geometry of Nature        (    W. H. Freeman         ,  1982   )        .     This is 

 “ the ”  book on fractals, written by the man who contributed most to the rediscovery of 
fractal theory. 

        Hofstadter ,       Douglas ,                 Godel, Escher, Bach: An Eternal Golden Braid       ,  20th Anniversary 
Edition    (    Basic Books         ,  1999   )        .     One of the most inspiring books in my library. At 777 
pages, it ’ s not easy reading, but it will take you on a journey through graphics, math, 
and music and the surprising connections among the three. 

 Links 

http://en.wikipedia.org/wiki/Fractals  . A starting point for you to begin the online 
exploration of the world of fractals. 

http://en.wikipedia.org/wiki/Zx_spectrum  . The Sinclair ZX Spectrum was one of the first 
personal computers (home computers, as they used to be called) launched in the early 
1980s. Its graphic capabilities were very similar to those of the graphic libraries we 
developed in this project. Although it used several custom logic devices to produce a 
video output, its processing power was less than a tenth that of the PIC32. Still, the 
limited ability to produce color (only 16 colors with a resolution of a block of 8  � 

 8 pixels) enticed many programmers to create thousands of challenging and creative 
video games.            



     Mass Storage   

  The Plan 
 In many embedded-control applications, you might find a need for a larger nonvolatile 
data storage space well beyond the capabilities of the common Serial EEPROM devices 
and the Flash program memory available inside the microcontroller itself. You might be 
looking for orders of magnitude more—hundreds of megabytes and possibly gigabytes. 
If you own a digital camera, an MP3 player, or even just a cell phone, you have probably 
become familiar with the storage requirements of consumer multimedia applications and 
with the available mass storage technologies. Hard disk drives have become smaller and 
less power thirsty, but also a multitude of solid state solutions (based once more on Flash 
technologies such as Compact Flash, Smart Media, Secure Digital, Memory Stick, and 
others) have flooded the market, and because of the volumes absorbed by the consumer 
applications, the price range has been reduced to a point where it is possible, if not 
convenient, to integrate these devices into embedded-control applications. 

 In this lesson we will learn how to interface one of the most common and inexpensive 
mass storage device types to a PIC32 microcontroller using the smallest amount of 
processor resources.  

  Preparation 
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32 
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer 
16 demonstration board, an In-Circuit Debugger of your choice), and a soldering iron 
and a few components you ’ ll need ready at hand to extend the board capabilities using 
the prototyping area or a small expansion board. You can check on the book ’ s companion 
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Web site ( www.exploringPIC32.com ) for the availability of expansion boards that will 
help you with the experiments.  

  The Exploration 
 Each one of the many competing mass storage technologies has its strengths and 
weaknesses, since each was designed for a somewhat different target application. We 
will choose the ideal mass storage media for our applications according to the following 
criteria:

●      Availability of the memory and required connectors  

●      Pin count required by the physical interface (possibly serial)  

●      Memory capacity 

●      Open specifications available  

●      Ease of implementation 

●      Cost of the memory and the required connectors 

 The Secure Digital (SD) card standard compares favorably in all those aspects; today 
it is one of the most commonly adopted mass storage media for digital cameras and 
many other multimedia consumer applications. The SD card specifications represent an 
evolution of a previous technology known as Multi Media Card, or MMC, with which 
they are still partially (backward) compatible both electrically and mechanically. The 
Secure Digital Card Association (SDCA) owns and controls the technical specification 
standards for SD memory cards, and they require all companies that plan to actively 
engage in the design, development, manufacture, or sale of products that utilize the SD 
specifications to become members of the association. As of this writing, a general SDCA 
membership will cost you $2,000 in annual fees. The Multi Media Card Association 
(MMCA), on the other side, does not require implementers to become members and 
makes copies of the MMC specifications available for sale starting at $500. So both 
technologies are far from free or  “ open ”  by any means. 

 Fortunately there is a  “ subset ”  of the SD specifications that has been released to the 
public by the SDCA in the form of a “ simplified physical specification ” . This information 
is truly all we need to develop a basic understanding of the SD/MMC memory 
technology and get started designing a PIC32 mass storage interface.  
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 The Physical Interface 
SD cards require only nine electrical contacts and an SD/MMC compatible connector, 
which can be purchased through most online catalogs for less than a couple of dollars. 
The connector requires only a couple of pins more to account for insertion detection and 
write protection switch sensing. Two main modes of communication are available: the 
first one (known as the SD bus) is original to the SD/MMC standard and it requires a 
nibble (4-bit) wide bus interface; the second mode is serial and is based on the popular 
SPI bus standard. It is this second mode that makes the SD/MMC mass storage devices 
particularly appealing for all embedded-control applications, since most microcontrollers 
will either have a hardware SPI interface available or will be able to easily emulate one 
(bit-banging) with a reduced number of I/Os. Finally, the physical specifications of 
the SD/MMC cards indicate an operating voltage range of 2.0       V to 3.6       V that is ideally 
suited for all application with modern microcontrollers implemented in advanced CMOS 
geometries, as is the case of the PIC32MX family (see  Figure 14.1   ).

SD

8. DAT1
7. DAT0/DO 7. DAT0/DO

6. Vss2 6. Vss2

5. CLK 5. CLK

4. Vcc 4. Vcc

3. Vss1 3. Vss1

2. CMD/DI 2. CMD/DI

1. DAT3/CS 1. DAT3/CS

9. DAT2

MMC

 Figure 14.1 :     SD card and MMC card connectors pin-out.    

      Note     

 Logically and electrically, miniSD cards, microSD cards, and SD cards are identical. Only the 
form factor, size, and number of pins are different from the original standard. Both the miniSD 
cards and microSD cards were designed to meet special size requirements. With an adapter or 
an appropriate connector, they can be used in the following application. 
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 Interfacing to the Explorer 16 Board 
 Unfortunately, although the number of electrical connections required for the SPI 
interface is very small, all SD/MMC card connectors available on the market are 
designed for surface-mount applications only, which makes it almost impossible to 
breadboard a card interface or use the prototyping area of the Explorer 16 demonstration 
board.

Since in the previous chapters we used the first SPI peripheral module (SPI1) to produce 
a video output and the application does not allow for sharing the resource, we will share 
instead the second SPI module (SPI2) between the SD card interface and the EEPROM 
interface using separate Chip Select ( cs ) signals for the two. In addition to the usual 
 SCK  ,   SDI  , and   SDO   pins, we will provide pull-ups for the unused pins (reserved for the 
4-bit-wide SD bus interface) of the SD/MMC connector and for two more pins that will 
be dedicated to the Card Detect and Write Protect signals (see Figure 14.2   ).
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SD card connector
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o 11

o 12
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RG8 SDO2

RG6 SCK2

RG7 SDI2

RF1 SDCD

RG1 SDWD

 Figure 14.2 :     SD/MMC card interface to Explorer 16 demo board.    
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      Note     

 Microchip has recently made available an expansion board known as the PICTail® Daughter 
Board for SD and MMC Cards (AC164122) that can be effectively used to complete all the 
projects presented in this chapter. An alternative set of pin assignments to support the new 
PICTail board will be offered on the companion web site: www.ExploringPIC32.com.      

  Starting a New Project 
 After creating a new project that we will obviously call  SDMMC , let ’ s start writing the 
basic initialization routines for all the necessary I/Os and the configuration of the SPI2 
module:

  /*
  ** SDMMC.c SD card interface  
  */
  #include <p32xxxx.h>  
  #include <sdmmc.h>  

  // I/O definitions  
  #define SDWP         _RG1         // Write Protect input  
  #define SDCD         _RF1         // Card Detect input  
  #define SDCS         _RF0      // Card Select output  

  void initSD( void)  
  { 
 SDCS = 1;        // initially keep the SD card disabled  
 _TRISF0 = 0;        // make Card select an output pin  

 // init the SPI2 module for a slow (safe) clock speed first  
 SPI2CON = 0x8120; // ON, CKE=1; CKP=0, sample middle  
 SPI2BRG = 71;       // clock = Fpb/144 = 250kHz     

  } // initSD     

 In particular, in the  SPI2CON  register we need to configure the SPI module to operate 
in master mode with the proper clock polarity, clock edge, input sampling point, and an 
initial clock frequency. The clock output ( SCK ) must be enabled and set low when idle. 
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The sampling point for the SDI input must be centered. The frequency is controlled by 
means of the SPI baud rate generator ( SPI2BRG ) that divides the peripheral clock (Tpb). 
After power-up and until the SD card is properly initialized, we will have to keep the SPI 
clock speed to a safe setting, below 400       kHz; therefore we will use a setting of Tpb/144 to 
obtain a 250       kHz clock signal. This is just a temporary arrangement, though; after sending 
only the first few commands, we will be able to speed up the communication considerably. 

 Notice how only the   SDCS   signal (  RF0   pin) needs to be manually configured as an output 
pin, whereas  SCK2   and   SDO 2  (corresponding to the   RG6   and   RG8   pins) are automatically 
configured as outputs as soon as we enable the SPI 2 peripheral.  

  Selecting the SPI Mode of Operation 
 When an SD/MMC card is inserted in the connector and powered up, it starts in the 
default mode of communication: the SD bus mode. To inform the card that we intend 
to communicate using the alternative SPI mode, all we need to do is to select the card 
( SDCS   pin low) and start sending the first reset command. We can be assured that once 
it ’ s entered the SPI mode, the card will not be able to change back to the SD bus mode 
unless the power supply is cycled. However, this means that if the card is removed from 
the slot without our knowledge and then reinserted, we will have to make sure that the 
initialization routine or at least the reset command are repeated, to get back to the SPI 
mode. We can detect the card presence at any time by checking the status of the   SDCD 
line (  RF1   input pin).  

  Sending Commands in SPI Mode 
 In SPI mode, commands are sent to an SD/MMC card as packets of 6 bytes, and all 
responses from the SD card are provided with multiple byte data blocks of variable 
length. So all we need to communicate with the memory card is the usual basic SPI 
routine to send and receive (the two operations are really the same, as we have seen in the 
previous chapters) a byte at a time: 

  // send one byte of data and receive one back at the same time  
  unsigned char writeSPI( unsigned char b)  
  { 
 SPI2BUF=b;        // write to buffer for TX  
 while( !SPI2STATbits.SPIRBF); // wait transfer complete  
 return SPI2BUF;        // read the received value     

  }// writeSPI     
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 For improved code readability and convenience, we will also define two more macros 
that will mask the same write SPI ()  function as a pure  read SPI (),  or just as a clock 
output function clock SPI () . Both macros will send a dummy byte of data ( 0xFF ): 

#define readSPI()  writeSPI( 0xFF)

#define clockSPI() writeSPI( 0xFF)

 To send a command, we will start selecting the card (  SDCS   low) and send through the SPI 
port a packet composed of three parts: 

●      The first part is a single byte containing a command index. The following 
definitions cover all the commands we will be using for this project:     

  // SD card commands  
  #define RESET        0 // a.k.a. GO_IDLE (CMD0)  
  #define INIT        1 // a.k.a. SEND_OP_COND (CMD1)  
  #define READ_SINGLE        17 

  #define WRITE_SINGLE        24     

●      The command index is followed by a 32-bit memory address. It is an unsigned 
integer (32-bit) value that must be sent MSB first.  

●      Finally, the command packet is completed by a single byte CRC. 

 The Cyclic Redundancy Check (CRC) feature is always used in SD bus mode to make sure 
that every command and every block of data transmitted on the bus is free from error. But, 
as soon as we switch to the SPI mode after sending the reset command, the CRC protection 
is automatically disabled and the CRC value is ignored. In fact, from that moment on, the 
card assumes that a direct and reliable connection to the host, the PIC32 in our case, is 
available. By taking advantage of this default behavior, we can simplify our code by using 
a single precomputed value. This will be the CRC code of the  RESET  command. For all 
the subsequent commands, the CRC field will be a  “ don ’ t care. ”  Here is the first part of the 
sendSDCmd()  function that we will use to send all commands to the SD card: 

  int sendSDCmd( unsigned char c, unsigned a)  
  // c command code  
  // a byte address of data block  
  {  
 int i, r;  

 // enable SD card  
 enableSD();  
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  // send a comand packet (6 bytes)  
  writeSPI( c | 0x40);        // send command  
  writeSPI( a>>24);        // msb of the address  
  writeSPI( a>>16);  
  writeSPI( a>>8);  
  writeSPI( a);        // lsb

  writeSPI( 0x95);        // send CMD0 CRC     

 After sending all 6 bytes to the card, we are supposed to wait for a response byte. In fact, 
it is important that we keep sending  “ dummy ”  data continuously clocking the SPI port. 
The response will be 0xFF;  basically, the  SDI  line will be kept high until the card is 
ready to provide a proper response code. The specifications indicate that up to 64 clock 
pulses, or 8 bytes, might be necessary before a proper response is received. Should we 
exceed this limit, we would have to assume a major malfunctioning of the card and abort 
communication:

  // now wait for a response, allow for up to 8 bytes delay  
  for( i=0; i<8; i++)  
  { 
  r=readSPI();  
  if ( r != 0xFF) 
  break;     

 }  
 return ( r);  

 // NOTE CSCD is still low!     

  } // sendSDCmd     

 If we receive a response code, each bit, if set, will provide us with an indication of a 
possible problem (see Table 14.1   ). 

 Notice that, on return, the  sendSDCmd()  function leaves the SD card still selected 
(SDCS  low) so that commands such as Block Write and Block Read, which require 
additional data to be sent to or received from the card, will be able to proceed. In all 
other commands that do not require additional data transfers, we will have to remember 
to deselect the card (set SDCS  high) immediately after the function call. Furthermore, 
since we want to share the SPI2 port with other peripherals such as the Serial EEPROM 
mounted on the Explorer 16 board, we need to make sure that the SD/MMC card receives 
a few more clock cycles (eight will suffice) immediately after the rising edge of the chip 
select line ( SDCS ). According to the SD/MMC specifications, this will allow the card to 
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complete a few important housekeeping chores, including the proper release of the  SDO
line, essential to allow other devices on the same bus to communicate properly. 

 Here is another pair of macros that will help us perform this consistently:    

  #define disableSD() SDCS = 1; clockSPI()  

  #define enableSD() SDCS = 0     

  Completing the SD Card Initialization 
 Before the card can be effectively used for mass storage applications, a well-defined 
sequence of commands needs to be completed. This sequence is defined in the 
original MMC card specifications and has been modified only slightly by the SD card 
specifications. Since we are not planning on using any of the advanced features specific 
to the SD card standard, we will use the basic sequence as defined for MMC cards for 
maximum compatibility. There are five steps in a sequence that starts as soon as the card 
is inserted in the connector and powered up: 

  1.     The CS line is initially kept high (the card is not selected).  

  2.     More than 74 clock pulses must be provided before the card becomes capable of 
receiving commands.  

 Table 14.1 :     SD card 
Command Response codes.  

Bit Description

 0  Idle state 

 1  Erase Reset 

 2  Illegal command 

 3  Communication CRC error 

 4  Erase sequence error 

 5  Address error 

 6  Parameter error 

 7  0 (always) 
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  3.     The card must then be selected. 

  4.     The  RESET  ( CMD0 ) command is sent; the card should respond by entering the Idle 
state and (activating the SPI mode).  

  5.     An  INIT  ( CMD1 ) command is provided and repeated until the card exits the Idle 
state.

 The following segment of the function  initMedia()  will perform exactly those initial 
five steps:       

  int initMedia( void)  
  // returns 0 if successful  
  // E_COMMAND_ACK  failed to acknowledge reset command  
  // E_INIT_TIMEOUT failed to initialize 
  { 
 int i, r;  

 // 1. with the card NOT selected  
 disableSD();  

 // 2. send 80 clock cycles start up  
 for ( i=0; i<10; i++) 
 clockSPI();     

 // 3. now select the card  
 enableSD();  

 // 4. send a single RESET command  
 r = sendSDCmd( RESET, 0); disableSD();  
 if ( r != 1)        // must return Idle 
 return E_COMMAND_ACK;        // comand rejected     

 // 5. send repeatedly INIT until Idle terminates  
 for (i=0; i<I_TIMEOUT; i++)  
 { 
 r = sendSDCmd( INIT, 0); disableSD();  
 if ( !r) 
 break;        

 }  
 if ( i == RI_TIMEOUT)  

 return E_INIT_TIMEOUT; // init timed out        
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 The initialization command can require quite some time, depending on the size and 
type of memory card, normally measured in several tenths of a second. Since we are 
operating at 250       kb/s, each byte sent will require 32 us. If we consider 6 bytes for every 
command retry, using a count up to 10,000 will provide us with a generous timeout limit 
(I_TIMEOUT ) of approximately three tenths of a second as per SD card specifications. 

 It is only upon successful completion of the preceding sequence that we will be allowed 
to finally switch gear and dramatically increase the clock speed to the highest possible 
value supported by our hardware. With minimal experimentation you will find that an 
Explorer 16 board, with a properly designed daughter board providing the SD/MMC 
connector, can easily sustain a clock rate as high as 18       MHz. This value can be obtained 
by reconfiguring the SPI baud rate generator for a 1:2 ratio. We can now complete the 
initMedia()  function with the last segment:          

 // 6. increase speed  
 SPI2CON = 0; // disable the SPI2 module  
 SPI2BRG = 0; // Fpb/(2*(0+1))= 36/2 = 18       MHz
 SPI2CON = 0 x 8120; // re-enable the SPI2 module  
 return 0;     

  } // init media     

 Reading Data from an SD/MMC Card 
 SD/MMC cards are solid-state devices typically containing large arrays of Flash 
memory, so we would expect to be able read and write any amount of data (within the 
card capacity limits) at any desired address. In reality, compatibility considerations with 
many previous (legacy) mass storage technologies have imposed a number of constraints 
on how we can access the memory. In fact, all operations are defined in blocks of a 
fixed size that by default is 512 bytes. It is not a coincidence that 512 bytes is the exact 
standard size of a data  “ sector ”  of a typical personal computer hard disk. Although this 
can be changed with an appropriate command, we will maintain the default setting so 
that later we will be able to take advantage of this compatibility. In the next chapter we 
will develop a set of routines that will allow us to implement a complete file system 
compatible with the most common PC operating systems. This way we will be able to 
access files written on the SD card by a personal computer, and vice versa, a personal 
computer will be able to access files written by our applications onto an SD card. 

 The  READ_SINGLE (CMD17)  is all we need to initiate a transfer of a single sector from a 
given address in memory. The command takes as an argument a 32-bit  “ byte address, ”  but 
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when accessing sectors of data, we will be constantly referring to logical block addresses,
or LBAs, borrowing from a term used in other mass storage applications. 

  typedef unsigned LBA;      // logic block address, 32 bit wide     

 To avoid confusion, in the following we will uniformly use only LBAs or block 
addresses, and we will obtain an actual byte address by multiplying the LBA value by 
512 just before passing the parameter to the READ_SINGLE  command. 

 Writing a sector of data to an SD card requires the following five steps: 

  1.     Send a  READ_SINGLE  command.  

  2.     Wait for the SD card to respond with a specific token:  DATA_START . This will be 
the card ’ s way to tell us it is ready to send the block of data.

   Since the card might need a little time to locate the block of data, just like 
during the initialization phase, it is important to impose a timeout. Since only 
the readSPI()  function is called repeatedly, sending/receiving only 1 byte at 
a time (@18       MHz) while waiting for the data token, a timeout counter of 25,000 
(R_TIMEOUT ) will provide an effective time limit of less than one millisecond. 

 3.     Once the  DATA_START  token is received, we can confidently read in a rapid 
sequence all 512 bytes composing the requested block of data.

 4.    They will be followed by a 16-bit CRC value that we should read, but otherwise 
we can discard. It is only at this point that we will deselect the memory card and 
terminate the entire read command sequence. 

The following routine  readSECTOR() performs the entire sequence in a few lines 
of code:       

  #define DATA_START  0xFE  

  int readSECTOR( LBA a, char *p)  
  // a      LBA of sector requested  
  // p        pointer to sector buffer  
  // returns TRUE if successful 
  { 
 int r, i;  

 // 1. send READ command  
 r = sendSDCmd( READ_SINGLE, ( a << 9));  
 if ( r == 0)  // check if command was accepted  
 { 
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 // 2. wait for a response  
 for( i=0; i<R_TIMEOUT; i++)  
 { 
 r = readSPI();  
 if ( r == DATA_START)  

    break;     
 }  

 // 3. if it did not timeout, read 512 byte of data  
 if ( i != R_TIMEOUT)  
 { 
 i = 512;  
 do{ 
 *p++ = readSPI();     

 } while (--i>0);  

 // 4. ignore CRC  
 readSPI();  
 readSPI();     

 } // data arrived     
 } // command accepted  

 // 5. remember to disable the card  
 disableSD();  

 return ( r == DATA_START);  // return TRUE if successful     

  } // readSECTOR     

      Note     

 To provide a visual indication of activity on the memory card similarly to hard drives and 
diskette drives, we could assign one of the LEDs available on the Explorer 16 board as the 
 “ read ”  LED, hoping this will help prevent a user from removing the card while in use. The LED 
can be turned on before each read command and turned off at the end. 

 Other strategies are possible, though. For example, similarly to common practice on USB Flash 
drives, an LED could be turned on as soon as the card is initialized, regardless of whether an 
actual command is performed on it at any given point in time. Only calling a deinitialization 
routine would turn the LED off and indicate to the user that the card can be removed.      
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  Writing Data to an SD/MMC Card 
 Based on the same considerations we made for the  readSECTOR()  function, we will 
develop a  writeSECTOR()  function that will be similarly constrained to operate on 512-
byte-wide blocks of data. The write sequence we will use, as you would expect, is the 
WRITE_SINGLE  command and will be composed of five steps. However, this time the 
data transfer will be in the opposite direction: 

  1.     Send a  WRITE_SINGLE  command and check the SD card response to make sure 
that the command is accepted.  

  2.     Send the  DATA_START  token and immediately after it, in a short loop, all 512 
bytes of data.  

  3.     Send 2 bytes for the 16-bit CRC (any dummy value will do) since the CRC check 
is not enabled in SPI mode.  

  4.     Check the SD card response. The token  DATA_ACCEPT  will confirm that the 
entire block of data has been received and the write operation has started.  

  5.     Wait for the completion of the write command. While the card is busy writing, 
it will keep the  SDO  line low. So we will wait for the  SDO  line to return high. 
Once more a timeout must be imposed to limit the amount of time allowed to 
the card to complete the operation. Since all SD/MMC memories are based on 
Flash memory technology, we can expect the time typically required for a write 
operation to be considerably longer than that required for a read operation. 
A timeout value of 250,000 ( W_TIMEOUT ) will provide us with a 100 ms limit 
that is more than sufficient to accommodate even the slowest memory card on 
the market. 

It is only at this point that we will deselect the memory card and terminate the entire 
write command sequence: 

  #define DATA_ACCEPT 0x05  

  int writeSECTOR( LBA a, char *p)  
  // a      LBA of sector requested  
  // p      pointer to sector buffer  
  // returns TRUE if successful 
  { 
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 unsigned r, i;  

 // 1. send WRITE command  
 r = sendSDCmd( WRITE_SINGLE, ( a << 9));  
 if ( r == 0) // check if command was accepted  
 { 

 // 2. send data  
 writeSPI( DATA_START);  

 // send 512 bytes of data  
 for( i=0; i<512; i++) 
 writeSPI( *p++);     

 // 3. send dummy CRC  
 clockSPI();  
 clockSPI();  

 // 4. check if data accepted  
 r = readSPI();  
 if ( (r  &  0xf) == DATA_ACCEPT)  
 { 

 // 5. wait for write completion  
 for( i=0; i<W_TIMEOUT; i++)  
 {  

    r = readSPI();  
    if ( r != 0 ) 
    break;     

 }     
 } // accepted  
 else 
 r = FAIL;        

 } // command accepted  

 // 6. remember to disable the card  
 disableSD();  

 return ( r); // return TRUE if successful     

  } // writeSECTOR     
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 Save the source we developed so far in a file called  SDMMC.c  to be placed inside the  lib
directory. We will have ample use for it in the next few chapters. 

 As a final nice touch, we should add the following two functions to manage the SD/MMC 
connector switches: 

  // SD card connector presence detection switch  
  int getCD( void)  
  // returns TRUE card present 
  //        FALSE card not present  
  { 
 return !SDCD;     

  }     

 When a card is inserted in the connector, the Card Detect switch is closed and the  SDCD
input pin is pulled low. The  getCD()  function will allow us to detect the card ’ s presence 
by returning TRUE  when the card is inserted and ready for use. 

 Similarly, when the Write Protection tab on the card is  not  in the  “ lock ”  position and the 
card is inserted, the Write Protect switch will close and the corresponding SDWP  input pin 
will be pulled low.       

  // card Write Protect tab detection switch  
  int getWP( void)  
  // returns TRUE write protect tab on LOCK  
  //       FALSE write protection tab OPEN  
  { 
 return SDWP;     

  }     

 The  getWP()  function, called when the card is properly inserted, will return  TRUE  if the 
card is locked. 

 Notice that the Write Protect tab on the SD/MMC card is similar to cassette and VHS 
tape protection tabs. It is merely suggesting that the device should not be written to. 

      Note     

 Similarly to the  readSECTOR()  function, a second LED can be assigned to indicate when a 
write operation is being performed and alert the user. Should the card be removed during the 
write sequence, data will most likely be lost or corrupted. 
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So it is our responsibility to respect the user ’ s desire and implement a check for the WP 
switch at the beginning of our  writeSECTOR()  function and abort immediately if the 
lock is set. 

  // 0. check Write Protect 
 if ( getWP()) 

 return FAIL;           

 Finally, let ’ s create a new include file called  SDMMC.h  that we will save in a common 
include  directory to provide the prototypes and basic definitions used in the SD/MMC 
interface module: 

  /*
  ** SDMMC.h SD card interface  
  */
  #define FAIL      FALSE  
  // Init ERROR code definitions  
  #define E_COMMAND_ACK          0x80 
  #define E_INIT_TIMEOUT         0x81 

  typedef unsigned LBA; // logic block address, 32 bit wide  

  void initSD( void);        // initializes I/O pins and SPI  
  int initMedia( void);        // initializes the SD/MMC memory device  
  int getCD();        // chech card presence  
  int getWP();        // check write protection tab  
  int readSECTOR ( LBA, char *); // reads a block of data  

  int writeSECTOR( LBA, char *); // writes a block of data     

  Testing the SD/MMC Interface 
 Whether you believe it or not, the four minuscule routines we just developed are all 
we need to gain access to the seemingly unlimited amount of “ storage space ”  offered 
by the SD/MMC memory cards. For example, a 1GB SD card would provide us with 
approximately 2,000,000 (yes, that is 2 million) individually addressable memory blocks 
(sectors), each 512 bytes large. Note that as of this writing, SD/MMC cards of this 
capacity are normally offered for retail in the United States for less than $20! 

 Let ’ s develop a small test program to demonstrate the use of the SD/MMC module. The 
idea is to simulate a somewhat typical application that is required to save some large 
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amount of data on the SD/MMC memory card. A fixed number of blocks of data will be 
written in a predetermined range of addresses and then read back to verify the successful 
completion of the process. We will use the LCD to report diagnostic information and 
track the progress. 

 Let ’ s create a new source file that we will call  RWTest.c , and let ’ s start by adding the 
usual header and processor specific include files, followed by the new  sdmmc.h  library:       

  /*
  **         RWTest.c 
  **  
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include <p32xxxx.h>  
  #include <explore.h>  
  #include <LCD.h>  

  #include <SDMMC.h>     

 Then let ’ s define two byte arrays, each the size of a default SD/MMC memory block that 
is 512 bytes:       

  #define B_SIZE          512         // data block size  
  char data[ B_SIZE];  

  char buffer[ B_SIZE];     

 The test program will fill the first array with a specific and easy to recognize pattern and 
will repeatedly write its contents onto the memory card. The chosen address range will be 
defined by two constants: 

  #define START_ADDRESS        10000        // start block address  

  #define N_BLOCKS        10        // number of blocks     

 The LED2 connected on the PORTA  RA2  pin on the Explorer 16 demonstration board 
will provide us with visual feedback about the SD card usage status. Notice that this I/O 
is available even if you are using the PIC32 Starter Kit and therefore the JTAG port is 
enabled:

  #define LED  _RA2     
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 The first few lines of the main program can now be written to initialize the I/Os required 
by the SD/MMC module on the LCD: 

  main( void)  
  { 
 LBA addr;  
 int i, j, r;  

 // 1. initializations  
 initEX16();     
 initLCD();        // init LCD module  
 initSD();               // init SD/MMC module  

 // 2. fill the buffer with pattern  
 for( i=0; i<B_SIZE; i++) 

 data[i]= i;        

 The next code segment will prompt the user to insert the card in the slot and will check 
for the presence of the SD card in a loop. After a short debouncing delay, the initialization 
routine is performed to prepare the card to receive SPI commands:       

  // 3. wait for the card to be inserted  
  putsLCD(  " Insert card.. " );  
  while( !getCD());      // check CD switch  
  Delayms( 100);        // wait contacts de-bounce  
  if ( initMedia())        // init card  
  { // if error code returned 

    clrLCD();  
    putsLCD(  " Failed Init " );  
    goto End;     

  }     

 When ready, we proceed with the actual data writing phase. The LED is turned on to 
indicate that the SD card is in use, and a status message is printed on the first line of the 
LCD display. Two nested loops repeatedly call the  writeSECTOR()  function to write 
16 groups of 10 sectors starting at the absolute LBA=10,000 . Every 10 sectors (approx. 
5 KBytes) a brick character (black box) is added on the second line of the LCD display 
to form a progress bar. Should any write command fail, the procedure is immediately 
aborted and an error message is reported on the LCD: 

  // 4. fill 16 groups of N_BLOCK sectors with data  
  LED = 1;        // SD card in use  
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  clrLCD();  
  putsLCD(  " Writing\n " );  
  addr = START_ADDRESS;  
  for( j=0; j<16; j++)  
  { 
 for( i=0; i<N_BLOCKS; i++)  
 { 

 if (!writeSECTOR( addr+i*j, data))  
 { // writing failed 

 putsLCD(  " Failed to Write " );  
 goto End;     

 }     
 } // i  
 putLCD( 0xff);     

} // j     

 Then it is time to read back each sector of data and verify its content. After the LCD is 
updated to reflect the new phase, the same two nested loops perform the reading and 
verification in groups of 10 sectors. After each group of sectors is read and verified, a new 
brick (black bar) is added to the display to indicate the progress. Should any of these steps 
fail, the procedure is immediately aborted and an error message is displayed on the LCD: 

  // 5. verify the contents of each sector written  
  clrLCD();  
  putsLCD(  " Verifying\n " );  
  addr = START_ADDRESS;  
  for( j=0; j<16; j++)  
  { 
 for( i=0; i<N_BLOCKS; i++)  
 { // read back one block at a time 
 if (!readSECTOR( addr+i*j, buffer))  
 { // reading failed 
 putsLCD(  " Failed to Read " );  
 goto End;     

 }  

 // verify each block content  
 if ( memcmp( data, buffer, B_SIZE))  
 { // mismatch 
 putsLCD(  " Failed to Match " );  
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 goto End;     
 }     

 } // i  
 putLCD(0xff);     

   } // j     

 Notice how the  memcmp()  function, part of the standard C string.h library, is used to 
efficiently perform the data comparison. It returns a zero value when the two buffers ’  
content is identical, a nonzero value otherwise. 

 If all went well, a success message is printed on the LCD and the LED is turned off, since 
the SD card is no more in use and can now be removed:          

 // 7. indicate successful execution  
 clrLCD();  
 putsLCD(  "  Success! " );     

  End: 
 LED = 0;  // SD card not in use  
 // main loop  
 while( 1);     

  } // main     

Make sure to add all the required source files— SDMMC.h ,  SDMMC.c ,  LCDlib.c , 
explore.c , and  RWTest.c —to the project, then build all and program the Explorer 16 
board with your in-circuit debugger of choice. You will need a daughter board with the 
SD/MMC connections as described at the beginning of the lesson and an empty SD card 
to perform the test.

      Warning     

 This is the real thing! When you run the RWTest program, the contents of the SD card will be 
modified, overwriting any data on the card and potentially corrupting any files. Make sure you have 
saved all the family photos and your favorite MP3 files somewhere else! Only in the next chapter 
we will develop a library compatible with common PC  “ file systems. ”  It will allow us to share the 
SD card without risk of damaging existing files, reading and writing data using a common format. 

 As you run the code, the efforts of building the SD/MMC interface (or the expense of 
purchasing one) will be more than compensated by the joy of seeing the PIC32 perform 
the test flawlessly in a few seconds. 
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 Also, admire how small the overall amount of code and resources we used was (see 
 Figure 14.3   )! 

 All together, the test program and the SD/MMC access library module have used only 
1.930 words of the processor Flash program memory—that is, less than 2 percent of the 
total available memory. Not to mention that, as in all previous lessons, this result was 
obtained with all compiler optimization options turned off.  

  Debriefing 
 In my personal opinion, it does not get cheaper or easier than this with any other mass 
storage technology. After all, we can use only a handful of pull-up resistors, a cheap 
connector, and just a few I/O pins to enormously expand the storage capabilities of our 
applications. In terms of PIC32 resources required, only the SPI peripheral module has 
been used, and even that could be shared with other applications. 

 The simplicity of the approach has his obvious limitations, though. Data can be written 
only in blocks of fixed size, and its position inside the memory array will be completely 
application specific. In other words, there will be no way to share data with a personal 
computer or other device capable of accessing SD/MMC memory cards unless a 
 “ custom ”  application is developed. Worse, if an attempt is made to use a card already 
used by a PC, PC data would likely be corrupted and the entire card might require 
complete reformatting. In the next lesson, we will address these issues by developing a 
complete file system library.  

 Figure 14.3 :     MPLAB memory usage gauges.    
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  Tips  &  Tricks 
 The choice of operating on the default block size of 512 bytes was dictated mostly by 
historical reasons. By making the low-level access routines in this lesson conform with 
the standard size adopted by most other mass storage media devices (including hard 
drives), we made developing the next layer (the file system) easier. But if we were 
looking for maximum performance, this could have been the wrong choice. In fact, if 
we were looking for faster write performance, typically the bottleneck of every Flash 
memory media, we would be better off looking at much larger data blocks. 

 Flash memory typically offers very fast access to data (reading) but is relatively slow when it 
comes to writing. Writing requires two steps: First, a large block of data (often referred to as a 
page ) must be erased; then the actual writing can be performed on smaller blocks. The larger 
the memory array, the larger, proportionally, the erase page size will be. For example, on a 
512 Mbyte memory card, the erase page can easily exceed 2 k bytes. Although these details 
are typically hidden from the user as the main controller inside the card takes care of the erase/
write sequencing and buffering, they can have an impact on the overall performance of the 
application. In fact, if we assume a specific SD card has a 2       k byte page, writing any amount 
of data ( � 2 k) would require the internal card controller to perform the following steps: 

●      Read the contents of an entire 2       k byte block in an internal buffer.  

●      Erase it, and wait for the erase time.  

●      Replace a portion of the buffer content with the new data.  

●      Write back the entire 2       k byte block, and wait for the write time.    

 By performing write operations only on blocks of 512 bytes each, to write 2       k bytes of data 
our library would have to ask the SD card controller to perform the entire sequence four 
times, whereas it could be done in just one sequence by changing the data block length 
or using a multiple-block write command. Although this approach could theoretically 
increase the writing speed by 400 percent in our example, consider the option carefully 
because the price to pay could be quite high. In fact, consider the following drawbacks: 

●      The actual memory page size might not be known or guaranteed by the 
manufacturer, although betting on increasing densities of Flash media (and 
therefore increasing page size) is pretty safe.  

●      The size of the RAM buffer to be allocated inside the PIC32 application is 
increased, and this is a precious resource in any embedded application.  
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●      The higher software layers (which we will explore in the next lesson) might be 
more difficult to integrate if the data block size varies.  

●      The larger the buffer, the larger the data loss if the card is removed before the 
buffer is flushed. 

  Exercises   
  1.     Experiment with various data block sizes to identify where your SD card provides 

the best write performance. This will give you an indirect indication of the actual 
page size of the Flash memory device used by the card manufacturer.  

  2.     Experiment with multiple-block write commands or by changing the block length 
to verify how the internal buffering is performed by the SD card controller and if 
the two methods are equivalent.      

   Books
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interfaces used on most of the older (nonsolid-state) mass storage devices used in the 
world of personal computers. You will see they were not that much more complex. 

        Axelson ,    J.         ,      USB Mass Storage: Designing and Programming Devices and Embedded 
Hosts       (    Lakeview Research      ,  WI      ,  2006   )        .     This book continues the excellent series on 
USB by Jan Axelson. Low-level interfacing directly to an SD/MMC card was easy, as 
you have seen in this chapter, but creating a proper USB interface to a mass storage 
device is a project of a much higher order of complexity.       

 Links 
www.mmca.org/home  . The official Web site of the MultiMedia Card Association 

(MMCA).

www.sdcard.org  . The official Web site of the Secure Digital Card Association (SDCA). 

www.sdcard.org/Sdio/Simplified%20SDIO%20Card%20Specification.pdf  . The simplified 
SDIO card specifications. With SDIO, the SD interface is no longer used only for 
mass storage but is also a viable interface for a number of advanced peripherals and 
gizmos, such as GPS receivers, digital cameras, and more. 
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  The Plan 
 Just yesterday, we developed a basic interface module (both software and hardware) to 
gain access to an SD/MMC card and support applications that require large amounts of 
data storage. A similar interface could be built for several other types of mass storage 
media, but in this lesson we will instead focus on the algorithms and data structures 
required to properly share information on the mass storage device with the most common 
PC operating systems (DOS, Windows, and some Linux distributions). In other words, 
we will develop a module for access to a standard file system known commonly as 
FAT16. 

 The first FAT file system was created by Bill Gates and Marc McDonald in 1977 for 
managing disks in Microsoft Disk BASIC. It used techniques that had been available in 
file systems many years before that, and it has continued to evolve in numerous versions 
over the last few decades to accommodate ever larger-capacity mass storage devices and 
new features. Among the many versions still in use today, the FAT12, FAT16, and FAT32 
are the most common ones. FAT16 and FAT32, in particular, are recognized by practically 
every PC operating system currently in use; the choice between the two is mostly dictated 
by efficiency considerations and the capacity of the media. Ultimately, for most Flash 
mass storage devices of common use in consumer multimedia applications, FAT16 is the 
file system of choice.  

  Preparation 
 Today ’ s exploration continues using the hardware platform used in the previous chapter. 
You will need an Explorer 16 or equivalent demo board with an additional expansion 
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board or prototyped circuit to connect an SD card connector and a few pull-up resistors. 
Check the companion Web site at  www.exploringPIC32.com  for a list of expansion 
options available to facilitate the experiments presented in this chapter.  

  The Exploration 
 The term  FAT  is an acronym for  File Allocation Table , which is also the name of one of 
the most important data structures used in this file system. After all, a file system is just 
a method for storing and organizing computer files and the data they contain to make it 
easy to find and access them. Unfortunately, as often is the case in the history of personal 
computing, standards and technologies are the fruit of constant evolutionary progress 
rather than original creation. For this reason many of the details of the FAT file system we 
will reveal in the following discussion can only be explained in the context of a struggle 
to continue and maintain compatibility with an enormous mass of legacy technologies 
and software over many years.  

  Sectors and Clusters 
 Still, the basic ideas at the root of a FAT file system are quite simple. As we saw in 
the previous lesson, most mass storage devices follow a  “ tradition ”  derived from the 
hard disk technology of managing memory space in blocks of a fixed size, 512 bytes, 
commonly referred to as sectors . In a FAT file system, a small number of these sectors 
are reserved and used as a sort of general index: the File Allocation Table. The remaining 
sectors (the majority) are available for proper data storage, but instead of being handled 
individually, small groups of contiguous sectors are handled jointly to form new, larger 
entities known as  clusters . Clusters can be as small as one single sector or can be formed 
by as many as 64 sectors. It is the use of each cluster and its position that is tracked 
inside the File Allocation Table. Therefore, clusters are the true smallest unit of memory 
allocation in a FAT file system (see  Figure 15.1   ). 

 The simplified diagram illustrates a hypothetical example of a FAT file system formatted 
for 1,022 clusters, each composed of 16 sectors. (Notice that the data area always starts 
with cluster number 2.) In this example, each cluster would contain 8       KB of data and the 
total storage capacity would be about 8       MB. 

 Note that the larger clusters are, the fewer will be required to manage the entire memory 
space and the smaller the allocation table required, hence the higher efficiency of the file 
system. On the contrary, if many small files are to be written, the larger the cluster size, 
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the more space will be wasted. It is typically the responsibility of the operating system, 
when formatting a storage device for use with a FAT file system, to decide the ideal 
cluster size to be used for an optimal balance.  

  The File Allocation Table 
 In a FAT16 file system, the File Allocation Table is essentially an array of 16-bit integers. 
Each element of the table represents one cluster. If a cluster is considered empty and 
available, the corresponding entry in the table will contain the value  0 x 0000 . If a cluster 
is in use and it contains an entire file of data, its corresponding entry in the table will 
contain the value  0xFFFF . If a file is larger than the size of a single cluster, a chain of 
clusters is formed. In the FAT each element will contain the index of the next cluster in 
the chain. The last cluster in the chain will have the corresponding entry set to  0xFFFF . 

 Additionally, certain unique values are used to mark reserved clusters ( 0 x 0001 ) and bad 
clusters ( 0xFFF7 ). Since  0 x 0000  and  0 x 0001  have been assigned special meanings (free 
and reserved, respectively), this explains why the convention wants the cluster counting 
to start in the data area with cluster number 2. Inside the FAT, the corresponding first two 
entries are similarly reserved. 

 In  Figure 15.2   , you can see an example of a FAT for the system presented in our previous 
example in  Figure 15.1 . Clusters 0 and 1 are reserved. Cluster 2 appears to contain some 
data, meaning that some or all of the (16) sectors forming the cluster have been filled 
with data from a file whose size must have been less than 8       KB. 

Cluster2

Cluster 4: Sector0

Cluster 4: Sector1

Cluster 4: Sector15

Sector 0

Reserved

Reserved

Data
space

(clusters)

FAT

Cluster3

Cluster4

Cluster 1022

Cluster 1023

 Figure 15.1 :     Simplified example of a FAT file system layout.    
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Cluster 0�0000Cluster 0�0000

Cluster 0�0001Cluster 0�0001

Cluster 0�0002

Cluster 0�0003

0�FFFF

0�0004

0�0005

0�FFFF

0�0000

0�0000

Cluster 0�0004

Cluster 0�0005

Cluster 0�0006

Cluster 0�1023

Reserved

In use, single cluster

In use, pointing to next cluster
in chain
In use, pointing to next cluster
in chain

In use, last cluster in chain

 Figure 15.2 :     Cluster chains in a File Allocation Table.    

 Cluster 3 appears to be the first cluster in a chain of three that also includes Clusters 4 
and 5. All of Cluster 3 and 4 sectors and some or all of Cluster 5 sectors must have been 
filled with data from a file whose size (we can only assume so far) was more than 16       KB 
but less than 24       KB. All following clusters appear to be empty and available. 

 Notice that the size of a FAT itself is dictated by the total number of clusters multiplied 
by 2 (2 bytes per cluster) and that it can spread over multiple sectors. In our previous 
example, a FAT of 1,024 clusters would have required 2,048 bytes, or four sectors of 
512 bytes each. Also, since the file allocation table is perhaps the most critical structure 
in the entire FAT file system, multiple copies (typically two) are maintained and allocated 
one after the other before the beginning of the data space.  

  The Root Directory 
 The role of the FAT is to keep track of how and where data is allocated. It does not 
contain any information about the nature of the file to which the data belonged. For that 
purpose there is another structure, called the root directory,  whose sole purpose is that 
of storing filenames, sizes, dates, times, and a number of other attributes. In a FAT16 file 
system, the root directory, or simply the  root  from now on, is allocated in a fixed amount 
of space and a fixed position right between the FAT (second copy) and the first data 
cluster (cluster #2), as shown in  Figure 15.3   . 
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Cluster 1022

Cluster 4

Cluster 3
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Cluster 4: Sector 1
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FAT2
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space
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 Figure 15.3 :     Example of a FAT file system layout.    
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Attributes
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First Cluster

File Size

offset: 0

offset: 8

offset: 11

offset: 22

offset: 24

offset: 26

offset: 28

 Figure 15.4 :     Basic Root Directory Entry structure.    

 Since both position and size (number of sectors) are fixed, the maximum number of files 
(or directory entries) in the root directory is limited and determined when formatting the 
media. Each sector allocated to the root will allow for 16 file entries to be documented 
where each entry will require a block of 32 bytes, as represented in  Figure 15.4   . 
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 The  Name  and  Extension  fields are the most obvious if you are familiar with the older 
Microsoft operating systems using the 8:3 conventions. The two fields need only to be 
padded with spaces and the dot can be discarded. 

 The  Attributes  field is composed of a group of flags with the meanings shown in 
 Table 15.1   . 

 Table 15.1 :     File attributes in a directory entry.  

Bit Mask Description

 0  0 � 01  Read only 

 1  0 � 02  Hidden 

 2  0 � 04  System 

 3  0 � 08  Volume label 

 4  0 � 10  Subdirectory 

 5  0 � 20  Archive 

 The  Time  and  Date  fields refer to the last time the file was modified and must be 
encoded in a special format to compress all the information in just two 16-bit words 
(see Tables 15.2 and 15.3     ). 

 Table 15.2 :     Time encoding in a directory entry field  .

Bits Description

 15–11  Hours (0–23) 

 10–5  Minutes (0–59) 

  4–0  Seconds/2 (0–29) 

 Table 15.3 :     Date encoding in a directory entry field.  

Bits Description

 15–9  Year (0  �  1980, 127  �  2107) 

  8–5  Month (1  �  January, 12  �  December) 

  4–0  Day (1–31) 
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 Notice how the  Date  field encoding does not allow for the code  0 x 0000  to be 
interpreted as a valid date. This can provide clues to the file system when the field 
is not used or could be corrupted. 

 The  First Cluster  field provides the fundamental link with the FAT table. This 16-bit 
word contains the number of the first, and possibly only, cluster containing the 
file data. 

 Finally, the  Size  field, a 32-bit integer, contains the size (in bytes) of the file data. 

 Looking at the first character of the filename in a directory entry, we can also tell if and 
how the entry is currently in use: 

●      If it contains an ASCII printable character, the entry is valid and in use.  

●      If it is zero, the entry is empty. When browsing through a directory, we can 
also deduce that the list of files is terminated here as the file system proceeds 
sequentially using all entries in the directory table in strict sequential order.    

 There is a third possibility when a file is removed from the directory. In this case the first 
character of the filename is simply replaced by a special code ( 0xE5 ). This indicates that 
the contents of the entry are no longer valid and the entry can be reused for a new file at 
the next opportunity. However, when browsing through the list searching for a file, we 
should continue because more active entries might follow it. 

 There would be much more to say to fully document the structure of a FAT16 file 
system, but if you have followed the introduction so far, you should have a reasonable 
understanding of its core mechanisms and you will be ready to dive in for more detail 
since we will start soon writing some code.  

  The Treasure Hunt 
 So far we have maintained a certain level of simplification by ignoring some fundamental 
questions, such as: 

●      Where do we learn about the storage device capacity?  

●      How can we tell where the FAT is located?  

●      How can we tell how many sectors (1–64) compose each cluster?  

●      How can we tell where the data space starts? 
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 The answers to all those questions will be found soon, but the process will resemble a 
treasure hunt more than a logical sequence of steps. In fact, you will find the first set of 
clues in  Figure 15.5   . By interpreting these clues we will gradually build a new function 
that will allow us to  mount  the file system and unlock its contents—the treasure. 

 Figure 15.5 :     The first set of clues.    

 Using the  SDMMC.c  module functions developed in our previous explorations, we will 
start by initializing the I/Os with the initSD()  function and checking for the presence of 
the card in the slot. 

 // 0. init the I/Os  
 initSD();  

 // 1. check if the card is in the slot  
 if (!detectSD())  
 { 
 FError = FE_NOT_PRESENT;  
 return NULL;     

 }     

 We will proceed by initializing the SD card for operation in SPI mode with the 
initMedia()  function.       
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 // 2. initialize the card  
 if ( initMedia())  
 { 
 FError = FE_CANNOT_INIT;  
 return NULL;     

 }     

 We will also use the standard C libraries  malloc()  function to dynamically allocate two 
data structures: 

 // 3. allocate space for a MEDIA structure  
 D = (MEDIA *) malloc( sizeof( MEDIA));  
 if ( D == NULL)               // report an error  
{
 FError = FE_MALLOC_FAILED;  
 return NULL;     

 }  

 // 4. allocate space for a temp sector buffer  
 buffer = (unsigned char *) malloc( 512);  
 if ( buffer == NULL)               // report an error  
 { 
 FError = FE_MALLOC_FAILED;  
 free( D);  
 return NULL;     

 }     

 The first one is called  MEDIA . It will be fully revealed to you later on but, for now, it will 
suffice to say that it will act as the repository for the many  “ answers ”  we are seeking. 
Perhaps a more appropriate name would ’ ve been  CHEST ? 

 The second structure, called  buffer,  is simply a 512-byte large array that will be used to 
retrieve sectors of data during the hunt. 

Notice that to allow the  malloc()  function to successfully allocate memory, you must 
remember to inform the MPLAB® C32 linker to reserve some RAM space for the heap.

      Hint     

 Follow the Project Build checklist to learn how to reach and modify the linker settings of your 
project.
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 Mostly historical reasons dictate that the first sector ( LBA 0 ) of a mass storage device 
will contain what is commonly known as a  master boot record  (MBR). 

 Here is how we invoke the  readSECTOR()  function for the first time to access 
the MBR.       

 // 5. get the Master Boot Record  
 if ( !readSECTOR( 0, buffer))  
 { 
 FError = FE_CANNOT_READ_MBR;  
 free( D); free( buffer);  
 return NULL;     

 }     

 A signature, consisting of a specific word value (0x55AA) present in the last word of the 
MBR sector, will confirm that we have indeed read the correct data. 

  #define FO_SIGN               0 x 1FE        // MBR signature location (55,AA)  

 // 6. check if the MBR sector is valid  
 //        verify the signature word  
 if (( buffer[ FO_SIGN] != 0 x 55) || 

 ( buffer[ FO_SIGN +1] != 0 x AA))     
 { 
 FError = FE_INVALID_MBR;  
 free( D); free( buffer);  
 return NULL;     

 }     

 Once upon a time, this record used to contain actual code to be executed by a PC upon 
power-up. No personal computer does this anymore, though, and certainly there is no use 
for that 8086 code in our PIC32 applications. Most of the time you will find the MBR 
(see  Figure 15.6   ) to be completely filled with zeros except for a few locations where 
critical information used to be stored. For example, starting at offset  0 x 01BE,  you will 
find what is called a  partition table . This table is composed of only four entries of 16 
bytes each. The role of a partition table is that of allowing for a single media device to 
host multiple operating systems and/or split the storage space in safe areas, where each 
one acts as a completely separate device. 
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 For our purposes it is safe to assume (demand) that the entire SD/MMC card is formatted 
with a single partition. Therefore, we need to focus only on the first entry (16-byte block) 
in the partition table. Of those 16 bytes, we need to access only a few to obtain: 

●      The partition size (should include the entire card)  

●      The starting sector 

●      Most importantly, the type of file system contained 

 Figure 15.6 :     Hex dump of an MBR.    
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 A couple of macros will help us read the data from the partition table and assemble it into 
16-bit and 32-bit words: 

  #define ReadW( a, f) *(unsigned short*)(a+f)  
  #define ReadL( a, f) *(unsigned short*)(a+f)+\ 

 (( *(unsigned short*)(a+f+2)) <  < 16)        

 Also, the following definitions will point us to the right offset in the MBR. 

  //-------------------------------------------------------------  
  // Master Boot Record key fields offsets  
  #define FO_MBR        0L // master boot record sector LBA  
  #define FO_FIRST_P        0 x 1BE // offset of first partition table  
  #define FO_FIRST_TYPE 0 x 1C2 // offset of first partition type  
  #define FO_FIRST_SECT 0 x 1C6 // first sector of first partition  
  #define FO_FIRST_SIZE 0 x 1CA // number of sectors in partition  
  #define FO_SIGN        0 x 1FE // MBR signature location (55,AA) 

 // 7. read the number of sectors in partition  
 psize = ReadL( buffer, FO_FIRST_SIZE);  

 // 8. check if the partition type is acceptable  
 i = buffer[ FO_FIRST_TYPE];  
 switch ( i)  
 { 
 case 0 x 04:  
 case 0 x 06:  
 case 0 x 0E: 
 // valid FAT16 options  
 break;     

 default: 
 FError = FE_PARTITION_TYPE;  
 free( D); free( buffer);  
 return NULL;        

 } // switch        

 For historical reasons, several codes correspond to different types of partitions. We will 
be able to correctly decode at least three types of FAT16 partitions, including  0 x 04 , 
0 x 06 , and  0 x 0E . 

 Getting access to the MBR and finding the partition table is a bit like getting a map with a 
new set of symbols and clues that need to be interpreted (see  Figure 15.7   ). 
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 Extracting a 32-bit word found at offset  FO_FIRST_SECT  ( 0 x 1C6 ) as part of the first 
(and the only, in our assumptions) partition table entry, we obtain the address (LBA) of 
the very first sector of the partition. 

 // 9. get the first partition first sector - >  Boot Record  
 firsts = ReadL( buffer, FO_FIRST_SECT);  

 // 10. get the sector loaded (boot record) 
 if ( !readSECTOR( firsts, buffer))  
 { 
  free( D); free( buffer);  

    return NULL;     

 }        

 It has a signature, similarly to the MBR, located in the last word of the sector, and we 
need to verify it before proceeding. 

 Figure 15.7 :     The map.    
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 // 11. check if the boot record is valid  
 //          verify the signature word 
 if (( buffer[ FO_SIGN] != 0 x 55) || 

    ( buffer[ FO_SIGN +1] != 0 x AA))     
 { 

    FError = FE_INVALID_BR;  
    free( D); free( buffer);  
    return NULL;     

 }     

 It is called the (first partition)  boot record , and once more it is supposed to contain actual 
executable code that is of no value to us (see  Figure 15.8   ). 

 Figure 15.8 :     Hex dump of a boot record.    
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 Fortunately, in the same record at fixed and known positions there are more of the 
answers we were looking for and new clues that will help us complete the map of the 
entire FAT16 file system. These are the key offsets in the boot record buffer:       

  // Partition Boot Record key fields offsets  
  #define BR_SXC           0 x d        // (byte) sectors per cluster  
  #define BR_RES           0 x e        // (word) reserved sectors  
  #define BR_FAT_SIZE  0 x 16        // (word) FAT size in sectors  
  #define BR_FAT_CPY   0 x 10        // (byte) number of FAT copies  

  #define BR_MAX_ROOT  0 x 11        // (odd word) max entries in root     

 With the following code we can calculate the size of a cluster:       

 // 12. determine the size of a cluster  
D-> sxc = buffer[ BR_SXC];  

 // this will also act as flag that the media is mounted     

 Determine the position of the FAT, its size, and the number of copies: 

 // 13. determine fat, root and data LBAs  
 // FAT = first sector in partition (boot record)  
 //          +reserved records 
D-> fat = firsts + ReadW( buffer, BR_RES);  
D-> fatsize = ReadW( buffer, BR_FAT_SIZE);  

D-> fatcopy = buffer[ BR_FAT_CPY];     

 Find the position of the root directory, too: 

 // 14. ROOT = FAT + (sectors per FAT * copies of FAT)  

D-> root = D- > fat + ( D- > fatsize * D- > fatcopy);     

 But be careful now! As we get ready to make the last few steps, watch out for a trap! 

 // 15. MAX ROOT is the maximum number of entries  
 //       in the root directory  

D-> maxroot = ReadW( buffer, BR_MAX_ROOT) ;     

 Can you see it? No? Okay, here ’ s a hint: Look at the value of the  BR_MAX_ROOT  offset 
as defined a few lines before. You will notice that this is an odd address ( 0 x 11 ). This is 
all it takes for the  ReadW()  macro, which attempts to use it as a word address, to throw a 
processor exception (misaligned word access) and trap the PIC32 in the general exception 
handler!



442   Day 15

 We need a special macro (perhaps less efficient) that can assemble a word 1 byte at a time 
without falling into the trap! 

  // this is the safe versions of ReadW to be used on odd 
address fields  
  #define ReadOddW( a, f) (*(a+f) + ( *(a+f+1)  <  <  8)) 

 // 15. MAX ROOT is the maximum number of entries  
 //   in the root directory  

D-> maxroot = ReadOddW( buffer, BR_MAX_ROOT) ;        

 The last two pieces of information are easy to grab now. With them we learn where the 
data area (divided into clusters) begins and how many clusters are available:       

 // 16. DATA = ROOT + (MAXIMUM ROOT *32/512)  
D-> data = D- > root + ( D- > maxroot >  >  4); 
 // assuming maxroot % 16 == 0!!!  

 // 17. max clusters in this partition  
 //          = (tot sectors - sys sectors )/sxc  

D-> maxcls = (psize - (D- > data-firsts))/D- > sxc;     

 It took us as many as 17 careful steps to get to the treasure, but now we have all 
the information we need to fully figure out the layout of the FAT16 file system 
present on the SD/MMC memory card or, practically, any other mass storage media 
formatted according to the FAT16 standard. The treasure, after all, is nothing more than 
another map—a map we will use from now on to find files on a mass storage device (see 
 Figure 15.9   ). 

 It ’ s time to organize the information we spent so much effort to retrieve. We will use the 
MEDIA  structure, allocated on the heap at the very beginning.       

  typedef struct { 
 LBA         fat;               // lba of FAT  
 LBA         root;               // lba of root directory  
 LBA         data;               // lba of the data area  
 unsigned maxroot;        // max entries in root  
 unsigned maxcls;        // max clusters in partition  
 unsigned fatsize;        // number of sectors  
 unsigned char fatcopy;        // number of FAT copies  
 unsigned char sxc;        // number of sectors per cluster  

} MEDIA;        
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 All the code we have developed can now be assembled in the  mount()  function. This is 
a name that will sound familiar to those of you who have experience in programming for 
the Linux family of operating systems. 

 For a mass storage device to be used in Linux, it must be first  “ mounted ”  on the file 
system or, in other words, attached as a new branch of the main (system) file system. 
Windows users might not be familiar with the concept because they don ’ t have the option 
to choose if, when, or where a new device file system is mounted. All new mass storage 
devices are automatically and unconditionally  “ mounted ”  by Windows at power-up, or 
after insertion of any removable media, at the very root of the Windows file system by 
assigning them a unique, single-letter identifier (C:, D:, E:, and so on). 

  MEDIA * mount( void)  
  { 
 LBA psize;        // number of sectors in partition  
 LBA firsts;        // first sector inside the first partition  
 int i;  
 unsigned char *buffer;  

  ...  insert here all 17 steps of our treasure hunt  

 // 18. free up the temporary buffer  
 free( buffer);  
 return D;     

  } // mount     

Sector 0 � MBR
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Fat size

Fat copy

Root

Data
Roor Directory

Cluster 2

Cluster 3

Cluster 4 Cluster 4: Sector sxc

Cluster 4: Sector 1

SXC

Cluster 4: Sector 0

Cluster maxclsMaxcls

 Figure 15.9 :     The FAT16 complete layout.    
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 Let ’ s also define a global pointer  D  to a  MEDIA  structure. It will serve as the root for 
the entire file system in the assumption, for now, that only one storage device will be 
available at any given point in time (one connector/slot, one card). 

  // global definitions  

  MEDIA *D;     

 We will also define an  unmount()  function that will have the sole duty of releasing the 
space allocated for the MEDIA  structure.       

  void unmount( void)  
  { 
 free( D);     

  } // unmount     

  Opening a File 
 Now that we have unlocked the secret of the FAT16 file system, we can return to our 
original objective: accessing individual files and sharing them with a PC. In this section 
we will develop a set of high-level functions similar to those used for file manipulation 
in most operating systems. We will need a function to find a file location on the storage 
device, one for reading the data sequentially from the file, and possibly one more to write 
data and create new files. 

 In a logical order we will start developing what we will call the  fopenM()  function. 
Its role will be that of finding all possible information regarding a file (if present) and 
gathering it in a new structure that we will call  MFILE .

      Note     

 The name of this structure was chosen so to avoid conflicts with similar structures and functions 
defined inside the standard C library stdio.h. 

  typedef struct { 
 MEDIA * mda;               // media structure pointer  
 unsigned char * buffer;        // sector buffer  
 unsigned short cluster;        // first cluster  
 unsigned short ccls;        // current cluster in file  
 unsigned short sec;        // sector in current cluster  
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 unsigned short pos;        // position in current sector  
 unsigned short top;        // bytes in the buffer  
int  seek;               // position in the file  
int  size;               // file size  
 unsigned short time;        // last update time  
 unsigned short date;        // last update date  
 char         name[11];        // file name  
 char         mode;               // mode  ' r ' , 'w'   
 unsigned short fpage;        // FAT page currently loaded  
 unsigned short entry;        // entry position in cur dir  

} MFILE;     

 I know, at first sight it looks like a lot—it is more than 40 bytes large—but as you will see 
in the discussion, we will end up needing all of them. You will have to trust me for now. 

 Mimicking standard C library implementations (common to many operating systems), 
the fopenM()  function will receive two (ASCII) string parameters: the filename and 
a  “ mode ”  string, containing  r  or  w , that will indicate whether the file is supposed to be 
opened for reading or writing. 

  MFILE *fopenM( const char *filename, const char *mode)  
  { 
 char c;  
 int i, r, e;  
 unsigned char *b;  

 MFILE *fp;        

 To optimize memory usage, an  MFILE  structure is allocated only when necessary, and it 
is in fact one of the first tasks of the  fopenM()  function. A pointer to the data structure is 
its return value. Should  fopenM()  fail, a  NULL  pointer will be returned. 

 Of course a prerequisite for opening a file is to have the storage device file system 
mapped out, and that is the responsibility of the mount()  function. A pointer to a  MEDIA
structure must have already been deposited in the global  D  pointer.       

 // 1. check if a storage device is mounted  
 if ( D == NULL)         // unmounted 
 { 
 FError = FE_MEDIA_NOT_MNTD;  
 return NULL;     

  }     
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 Since all activity with the storage device must be performed in blocks of 512 bytes, we 
will need that much space to be allocated for us to act as a read/write buffer.       

 // 2. allocate a buffer for the file  
 b = (unsigned char*)malloc( 512);  
 if ( b == NULL)  
 { 
 FError = FE_MALLOC_FAILED;  
 return NULL;     

 }     

 Only if that amount of memory is available can we proceed and allocate some more 
memory for the MFILE  structure proper.       

 // 3. allocate a MFILE structure on the heap  
 fp = (MFILE *) malloc( sizeof( MFILE));  
 if ( fp == NULL)               // report an error  
 { 
 FError = FE_MALLOC_FAILED;  
 free( b);  
 return NULL;     

 }     

 The  buffer  pointer and the  MEDIA  pointers can now be recorded inside the  MFILE  data 
structure.

 // 4. set pointers to the MEDIA structure and buffer  
 fp- > mda = D; 

 fp- > buffer = b;     

 The filename parameter must be extracted and each character must be translated to 
uppercase (using the standard C library functions defined in ctype.h) and padded, if 
necessary, with spaces to an eight-character length. 

 // 5. format the filename into name  
 for( i=0; i < 8; i++) 
 { 
 // read a char and convert to upper case  
 c = toupper( *filename++);  
 // extension or short name noextension  
 if (( c ==  ' . ' ) || ( c ==  ' \0 ' )) 
 break;     
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 else 
 fp- > name[i] = c;        

 } // for  
 // if short fill the rest up to 8 with spaces  

 while ( i < 8) fp- >name[i++] = ' ';    

 Similarly, after discarding the dot, an extension of up to three characters must be 
formatted and padded. 

 // 6. if there is an extension  
 if ( c !=  ' \0 ' )  
 { 
 for( i=8; i < 11; i++) 
 { 
 // read char, convert to upper case  
 c = toupper( *filename++);  
 if ( c ==  ' . ' ) 
 c = toupper( *filename++);     

 if ( c ==  ' \0 ' )        // short extension 
 break;     

 else 
 fp- > name[i] = c;        

 } // for  
 // if short fill the rest up to 3 with spaces  
 while ( i < 11) fp- >name[i++] = '   ' ;    

 } // if     

 Though most C libraries provide extensive support for multiple  “ modes ”  of access to 
files, such as distinguishing between text and binary files and offering an  “ append ”  
option, we will accept, at least initially, a subset consisting of just the two basic options: 
r  and  w .       

 // 7. copy the file mode character (r, w)  
 if ((*mode ==  ' r ' )||(*mode == ' w ' )) 
 fp- > mode=*mode;     

 else  
 { 
 FError = FE_INVALID_MODE;  
 goto ExitOpen;     

 }     
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 With the filename properly formatted, we can now start searching the root directory of the 
storage device for an entry of the same name.    

 // 8. Search for the file in current directory     
 if ( ( r=findDIR( fp)) == FAIL)  
 { 
 FError=FE_FIND_ERROR;  
 goto ExitOpen;     

 }     

 Let ’ s leave the details of the search out for now and trust the  findDIR()  function to 
return to us one of three possible values:  FAIL, NOT_FOUND,  and eventually  FOUND.

A possible failure must always be taken into account. After all, before we consider the 
possibility of major fatal failures of the storage device, there is always the possibility 
that the user simply removed the card from its slot without our knowledge. If that is the 
case, as in all prior error cases, we have no business continuing in the process. We ’ d 
better immediately release the memory allocated thus far and return with a  NULL  pointer 
after leaving an error code in the dedicated  “ mail box ”   FError,  just as we did during the 
mount process. 

 However, if the search for the file is completed without error (whether it was found or 
not), we can continue initializing the MFILE  structure.

 // 9. init all counters to the beginning of the file  
 fp- > seek = 0;        // first byte in file  
 fp- > sec = 0;        // first sector in the cluster  

 fp- > pos = 0;        // first byte in sector/cluster     

 The counter  seek  will be used to keep track of our position inside the file as we 
sequentially access its contents. Its value will be a 32-bit integer ( unsigned ) between 
0  and the size of the entire file expressed in bytes. 

 The  sec  field will keep track of which sector inside the current cluster we are currently 
operating on. Its value will be an integer between  0  and  sxc-1,  the number of 
sectors composing each data cluster. Finally,  pos  will keep track of which byte inside the 
current buffer we are going to access next. Its value will be an integer between 
0  and  511.

 // 10. depending on the mode (read or write)  
 if ( fp- > mode ==  ' r ' )  

 {     
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 At this point, different things need to be done depending on whether an existing file needs 
to be opened for reading or a new file needs to be created for writing. Initially we will 
complete all the necessary steps for the fopenM()  function when invoked in the read ( r ) 
mode, in which case the file had better be found.          

 // 10.1  ' r '  open for reading     
 if ( r == NOT_FOUND)  
 { 
 FError = FE_FILE_NOT_FOUND;  
 goto ExitOpen;     

 }     

 If it was indeed found, we trust the  findDIR()  function will have filled a couple more 
fields of the  MFILE  structure for us, including: 

●      Entry, indicating the position in the root directory where the file was found  

●      Cluster, indicating the number of the first data cluster used to store the file data 
as retrieved from the directory entry  

●      Size, indicating the number of bytes composing the entire file  

●    Time and date of creation  

●      The file attributes    

 The first cluster number will become our current cluster:  ccls.

 else  
 { // found  

 // 10.2 set current cluster pointer on first cluster 

 fp- > ccls=fp- > cluster;        

 Now we have all the information required to identify the first sector of data into the 
buffer. The function  readDATA() , which we will describe in detail shortly, will perform 
the simple calculation required to convert the  ccls  and  sec  values into an absolute 
sector number inside the data area and will use the low-level  readSECTOR()  function to 
retrieve the data from the storage device.       

 // 10.3 read a sector of data from the file  
 if ( !readDATA( fp))  
 { 

    goto ExitOpen;     

 }     
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 Notice that the file length is not constrained to be a multiple of a sector size, so it is 
perfectly possible that only a part of the data retrieved in the buffer belongs to the actual 
file. The  MFILE  structure field  top  will help us keep track of where the actual file data 
ends and padding possibly begins.       

 // 10.4 determine how much data is really inside buffer  
 if ( fp- > size-fp- > seek < 512) 

 fp- > top=fp- > size-fp- > seek;     
 else 

 fp- > top=512;     
 } // found  

 } //  ' r '      

 This is all we really need to complete the  fopenM()  function, so when opening a file for 
reading, we can return with the precious pointer to the MFILE  structure.    

 // 12. Exit with success  

 return fp;     

 In case any of the previous steps failed, we will exit the function returning a  NULL
 pointer after having released both the memory allocated for the sector buffer and the 
MFILE  structure.       

 // 12. Exit with error  
  ExitOpen: 
 free( fp- > buffer);  
 free( fp);  
 return NULL;     

  } // fopenM     

 In a top-down fashion, we can now complete the two accessory functions used during the 
development of  fopenM() , starting with  readDATA() :       

  unsigned readDATA( MFILE *fp)  
  { 
 LBA l;  

 // calculate lba of cluster/sector  
 l = fp- > mda- > data+(LBA)(fp- > ccls-2) * fp- > mda- > sxc+fp- > sec;  
 fp- > fpage = -1; // invalidate FAT cache  

 return( readSECTOR( l, fp- > buffer));     

  } // readDATA     
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 Ignoring for a moment the  fpage  field, notice how we use  data  and  sxc  from the 
MEDIA  structure to compute the correct absolute address (LBA) of the desired data sector. 
Very simple! 

 Similarly, we create a function to read from the root directory a sector of data containing 
a given entry.       

  unsigned readDIR( MFILE *fp, unsigned e)  
  // loads current entry sector in file buffer  
  // returns FAIL/TRUE 
  { 
 LBA l;  

 // load the root sector containing the DIR entry  " e "   
 l = fp- > mda- > root + (e >  >  4); 
 fp- > fpage = - 1; // invalidate FAT cache  

 return ( readSECTOR( l, fp- > buffer));     

  } // readDIR     

 We know that each directory entry is 32 bytes large; therefore each sector will contain 
16 entries. 

 The  findDIR()  function can now be quickly coded as a short sequence of steps enclosed 
in a search loop through all the available entries in the root directory.       

  unsigned findDIR( MFILE *fp)  
  // fp file structure 
  // return found/not_found/fail 
  { 
 unsigned eCount; // current entry counter  
 unsigned e; // current entry offset  
 int i, a;  
 MEDIA *mda = fp- > mda;  

 // 1. start from the first entry  
 eCount = 0;  

 // load the first sector of root  
 if ( !readDIR( fp, eCount)) 

 return FAIL;           

 We start by loading the first root sector, containing the first 16 entries, in the buffer. For 
each entry we compute its offset inside the buffer.       
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 // 2. loop until you reach the end or find the file  
 while ( 1)  
 {  
 // 2.0 determine the offset in current buffer 

 e = (eCount & 0xf) * DIR_ESIZE;        

 And we inspect the first character of the entry filename. 

 // 2.1 read the first char of the file name 

 a = fp- > buffer[ e + DIR_NAME];        

 If its value is 0, indicating an empty entry and the end of the list, we can immediately 
exit, reporting that the filename was not found. 

 // 2.2 terminate if it is empty (end of the list)  
 if ( a == DIR_EMPTY)  
 { 
 return NOT_FOUND;     

 } // empty entry     

 The other possibility is that the entry was marked as deleted, in which case we will skip it 
but we will continue searching. 

 // 2.3 skip erased entries if looking for a match  
 if ( a != DIR_DEL)  

    {     

 Otherwise, it ’ s a valid and healthy entry, and we should check the attributes to determine 
if it corresponds to a proper file or any other type of object. The possibilities include: 

●      Subdirectories  

●      Volume labels 

●      Long filenames 

 None of them is of our concern, since we will choose to keep things simple and we will 
steer clear of the most advanced and sometimes patented features of the more recent 
versions of the FAT file system standard. 

 // 2.3.1 if not VOLume or DIR compare the names  
 a = fp- > buffer[ e + DIR_ATTRIB];  
 if ( !(a  &  (ATT_DIR | ATT_HIDE)) )  

 {     
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 We will then compare the filenames character by character, looking for a complete 
match.

 // compare file name and extension  
 for (i=DIR_NAME; i < DIR_ATTRIB; i++) 
 { 
 if ( fp- > buffer[ e+i] != fp- >  name[i]) 
 break; // difference found        

 }     

 Only if every character matches will we extract the essential pieces of information from 
the entry and copy them into the MFILE structure, returning a  FOUND  code.       

 if ( i == DIR_ATTRIB)  
 { 
 // entry found, fill the file structure  
 fp- > entry = eCount;  // store index  
 fp- > time = ReadW( fp- >buffer, e+DIR_TIME); 
 fp- > date = ReadW( fp- >buffer, e+DIR_DATE); 
 fp- > size = ReadL( fp- >buffer, e+DIR_SIZE); 
 fp- > cluster = ReadL( fp- >buffer, e+DIR_CLST); 
 return FOUND;     

 }  
 } // not a dir nor a vol  

 } // not deleted     

 Should the filename and extension differ, we will simply continue our search with the 
next entry, remembering to load the next sector from the root directory after each group 
of 16 entries. 

 // 2.4 get the next entry 
 eCount++;  
 if ( (eCount  &  0xf) == 0)  
 { // load a new sector from the Dir 

 if ( !readDIR( fp, eCount)) 
 return FAIL;           

 }     

 We know the maximum number of entries in the root directory ( maxroot ) and we need 
to terminate our search if we reach the end of the directory without a match indicating 
NOT_FOUND .       
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 // 2.5. exit the loop if reached the end or error  
 if ( eCount  > = mda- > maxroot) 
 return NOT_FOUND; // last entry reached     

 }// while  

  } // findDIR     

  Reading Data from a File 
 Finally, this is the moment we have been waiting for so long. The file system is mounted, 
a file is found and opened for reading. It is time to develop the  freadM()  function to 
freely read blocks of data from it. 

  unsigned freadM( void * dest, unsigned size, MFILE *fp)  
  // fp  pointer to MFILE structure  
  // dest pointer to destination buffer 
  // count number of bytes to transfer 
  // returns number of bytes actually transferred 
  { 
 MEDIA * mda = fp- > mda;  
 unsigned count=size; // counts bytes to be transfer  

 unsigned len;        

 The name, number, and sequence of parameters passed to this function are again 
supposed to mimic closely that of similarly named functions available in the standard C 
libraries. A destination buffer is supplied where the data read from the file will be copied, 
and a number of bytes is requested while passing the usual pointer to an open MFILE

structure.

 The  freadM()  function will do its best to read as many of the bytes requested as 
possible from the file and will return an unsigned integer value to report how many it 
effectively managed to get. In our simple implementation, if the number returned will 
not be identical to that requested by the calling application, we will have to assume that 
something major has happened. Most probably the end of file has been reached, but we 
will not make a distinction if, instead, another type of failure has occurred—for example, 
the card has been removed during the process. 

 As usual, we will not trust the pointer passed in the argument, and we will check instead 
to see whether it is pointing to a valid, initialized,  MFILE  structure.    
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 // 1. check if fp points to a valid open file structure  
 if (( fp- > mode !=  ' r ' ))  
 { // invalid file or not open in read mode 
 FError = FE_INVALID_FILE;  
 return 0;     

 }     

 Only then we will enter a loop to start transferring the data from the sector data buffer.       

 // 2. loop to transfer the data  
 while ( count > 0)  

 {     

 Inside the loop, the first condition to check will be our current position with regard to the 
total file size. 

 // 2.1 check if EOF reached  
 if ( fp- > seek > = fp- > size)  
 { 
FError=FE_EOF;  // reached the end 
 break;     

 }     

 Notice that this error will be generated only if the application calling the  freadM()
function will ignore the previous symptom: the last  freadM()  call returned with a 
number of data bytes inferior to what was requested or if the calling application has 
requested the exact number of bytes available in the file with the previous calls. 

 Otherwise we will verify whether the current buffer of data has already been used up 
completely.       

 // 2.2 load a new sector if necessary  
 if (fp- > pos == fp- > top)  

 {     

 If necessary we will reset our buffer pointers and attempt to load the next sector from 
the file.       

 fp- > pos = 0; 

 fp- > sec++;     

 If we already used up all the sectors in the current cluster, this might force us to step into 
the next cluster by peeking inside the FAT and following the chain of clusters. 
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 // 2.2.1 get a new cluster if necessary  
 if ( fp- > sec == mda- > sxc)  
 { 
 fp- > sec = 0; 
 if ( !nextFAT( fp, 1))  
 { 
 break;     

 }     

 }     

 In either case we load the new sector of data in the buffer, paying attention to verify the 
possibility that it might be the last one of the file and it might be only partially filled.       

 // 2.2.2 load a sector of data  
 if ( !readDATA( fp))  
 { 
 break;     

 }  
 // 2.2.3 determine how much data is inside buffer  
 if ( fp- > size-fp- > seek < 512) 
 fp- > top = fp- >size - fp- > seek;     

 else 
 fp- > top = 512;     

 } // load new sector     

 Now that we know we have data in the buffer, ready to be transferred, we can determine 
how much of it we can transfer in a single chunk. 

 // 2.3 copy as many bytes as possible in a single chunk  
 // take as much as fits in the current sector  
 if ( fp- > pos+count < fp- > top) 
 // fits all in current sector  
 len = count;     

 else 
 // take a first chunk, there is more  
 len = fp- > top - fp- > pos;  

    memcpy( dest, fp- > buffer + fp- >pos, len);        

 Using the  memcpy()  function from the standard C libraries (string.h) to move a block of 
data from the file buffer to the destination buffer, we get the best performance as these 
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routines are optimized for speed of execution. The pointers and counters can be updated 
and the loop can be repeated until all the data requested has been transferred. 

 // 2.4 update all counters and pointers  
 count - = len;  // compute what is left  
 dest += len;  // advance destination pointer  
 fp- > pos += len;  // advance pointer in sector  
 fp- > seek += len;  // advance the seek pointer  

 } // while count     

 Finally, we can exit the function and return the number of actual bytes transferred in 
the loop.       

 // 3. return number of bytes actually transferred  
 return size-count;  

  } // freadM     

 The  nextFAT()  function helped us follow the cluster chain, hopping from the current 
cluster to the next one.       

  unsigned nextFAT( MFILE * fp, unsigned n)  
  // fp file structure 
  // n  number of links in FAT cluster chain to jump through  
  //   n==1, next cluster in the chain  
  { 
 unsigned c;  
 MEDIA * mda=fp- > mda;  

 // loop n times  
 do { 
 // get the next cluster link from FAT  
 c = readFAT( fp, fp- > ccls);  
 // compare against max value of a cluster in FATxx  
 // return if eof  
 if ( c  > = FAT_MCLST) // check against eof 
 { 
 FError=FE_FAT_EOF;  
 return FAIL; // seeking beyond EOF     

 }  
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 // check if cluster value is valid  
 if ( c  > = mda- > maxcls)  
 { 
 FError = FE_INVALID_CLUSTER;  
 return FAIL;     

 }   

 } while (--n > 0);// loop end 

 // update the MFILE structure  
 fp- > ccls=c;  

 return TRUE;     

  } // get next cluster        

 As you noticed, the  nextFAT()  function uses, in its turn, the services of the 
readFAT()  function to perform the hard work of actually loading an entire segment 
(sector) of the FAT.       

  unsigned readFAT( MFILE *fp, unsigned ccls)  
  // mda  disk structure 
  // ccls  current cluster 
  // return  next cluster value,  
  //  0xffff if failed or last  
  { 
 unsigned p, c;  
 LBA l;  

 // get page of current cluster in fat  
 p = ccls  >  > 8; // 256 clusters per sector  

 // check if already cached  
 if (fp- > fpage != p)  
 { 
 // load the fat sector containing the cluster  
 l = fp- > mda- > fat + p; 

 if ( !readSECTOR( l, fp- > buffer)) 
 return FAT_EOF; // failed     
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 // note the sector contains a valid FAT page cache  
 fp- > fpage = ccls >  > 8;     

 }  

 // get the next cluster value  
 // cluster = 0xabcd  
 // packed as:  0 | 1 | 2 | 3 | 
 // word p  0 1 | 2 3 | 4 5 | 6 7 |..  
 // cd ab| cd ab| cd ab| cd ab| 
 c = ReadOddW( fp- > buffer, ((ccls &  0xFF) <  < 1));  

 return c;     

  } // readFAT     

 Since each sector of the FAT (we will call it a  page  from now on) contains 256 entries, 
it is very likely that when we follow a chain of clusters or, as soon will be the case 
when we look for an empty cluster, we will need to access the same page over and over. 
Instead of wasting time continuously reloading the same sector, the  readFAT()  function 
tries to keep track of the contents (cache) of the file buffer using the  fpage  element of 
the MFILE structure to maintain the index of the last FAT page loaded. This requires 
some cooperation from the readDATA()  and  readDIR()  functions so that when they 
overwrite the buffer contents with their contents (file data and directory table entries, 
respectively), they update the  fpage  index, invalidating it, using the index value  � 1 to 
alert readFAT() .

  Closing a File 
 Since we can only open a file for reading with the  fopenM()  function as defined so far, 
there is not much work to perform upon closing the file.       

  unsigned fcloseM( MFILE *fp)  
  { 
 unsigned e, r;  
 r = TRUE;  
 // free up the buffer and the MFILE struct  
 free( fp- > buffer);  
 free( fp);  
 return( r);     

  } // fcloseM     
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  The Fileio Module 
 We can save all the functions created so far in a file called  fileio.c , the beginning of our 
file input/output library. We will need to add the usual header and a few include files: 

  /*
  ** fileio.c 
  **  
  ** FAT16 support  
  */

  // standard C libraries used  
  #include  < stdlib.h >  // NULL, malloc, free ...   
  #include  < ctype.h >  // toupper... 
  #include  < string.h >  // memcpy... 

  #include  < sdmmc.h >  // sd/mmc card interface  

  #include  " fileio.h "  // file I/O routines     

 And of course, we will need to create a  fileio.h  include file as well, with all the 
definitions and prototypes that we want to publish for future applications to use. 

  /*
  ** fileio.h 
  **  
  ** FAT16 support  
  */

  extern char FError;        // mailbox for error reporting  

  // FILEIO ERROR CODES  
  #define FE_IDE_ERROR         1 // IDE command execution error  
  #define FE_NOT_PRESENT         2 // CARD not present  
  #define FE_PARTITION_TYPE         3 // WRONG partition type  
  #define FE_INVALID_MBR         4 // MBR sector invalid signtr  
  #define FE_INVALID_BR         5 // Boot Record invalid signtr  
  #define FE_MEDIA_NOT_MNTD         6 // Media not mounted  
  #define FE_FILE_NOT_FOUND         7 // File not found,open for read  
  #define FE_INVALID_FILE         8 // File not open  
  #define FE_FAT_EOF         9 // attempt to read beyond EOF  
  #define FE_EOF        10 // Reached the end of file  
  #define FE_INVALID_CLUSTER        11 // Invalid cluster > maxcls  
  #define FE_DIR_FULL        12 // All root dir entry are taken  
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  #define FE_MEDIA_FULL        13 // All clusters taken  
  #define FE_FILE_OVERWRITE        14 // A file with same name exist  
  #define FE_CANNOT_INIT        15 // Cannot init the CARD  
  #define FE_CANNOT_READ_MBR        16 // Cannot read the MBR  
  #define FE_MALLOC_FAILED        17 // Could not allocate memory  
  #define FE_INVALID_MODE        18 // Mode was not r.w.  
  #define FE_FIND_ERROR        19 // Failure during FILE search  

  typedef struct { 
LBA  fat;        // lba of FAT  
LBA  root;        // lba of root directory  
LBA  data;        // lba of the data area  
 unsigned short maxroot;        // max entries in root dir  
 unsigned short maxcls;        // max clusters in partition  
 unsigned short fatsize;        // number of sectors  
 unsigned char fatcopy;        // number of copies  
 unsigned char sxc;        // number sectors per cluster  
} MEDIA;     

  typedef struct { 
 MEDIA * mda;        // media structure pointer  
 unsigned char * buffer;        // sector buffer  
 unsigned short cluster;        // first cluster  
 unsigned short ccls;        // current cluster in file  
 unsigned short sec;        // sector in current cluster  
 unsigned short pos;        // position in current sector  
 unsigned short top;        // bytes in the buffer  
int  seek;        // position in the file  
int  size;        // file size  
 unsigned short time;        // last update time  
 unsigned short date;        // last update date  
char  name[11];        // file name  
char  mode;        // mode  ' r ' , 'w'   
 unsigned short fpage;        // FAT page currently loaded  
 unsigned short entry;        // entry position in cur dir  
} MFILE;     

  // file attributes  
  #define ATT_RO 1        // attribute read only  
  #define ATT_HIDE 2        // attribute hidden  
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  #define ATT_SYS 4        // "   system file 
  #define ATT_VOL 8        // "   volume label 
  #define ATT_DIR 0 x 10        //  "   sub-directory 
  #define ATT_ARC 0 x 20        //  "   (to) archive 
  #define ATT_LFN 0 x 0f        // mask for Long File Name  

  #define FOUND 2        // directory entry match  
  #define NOT_FOUND 1        // directory entry not found  

  // macros to extract words and longs from a byte array  
  // watch out, a processor trap will be generated if the address  
  //  is not word aligned  
  #define ReadW( a, f) *(unsigned short*)(a+f)  
  #define ReadL( a, f) *(unsigned short*)(a+f)+\ 

 (( *(unsigned short*)(a+f+2)) <  < 16)     

  // this is a  " safe "  versions of ReadW 
  //         to be used on odd address fields  
  #define ReadOddW( a, f) (*(a+f)+( *(a+f+1)  <  <  8)) 

  // prototypes 
  unsigned nextFAT( MFILE * fp, unsigned n);  
  unsigned newFAT( MFILE * fp);  

  unsigned readDIR( MFILE *fp, unsigned entry);  
  unsigned findDIR( MFILE *fp);  
  unsigned newDIR ( MFILE *fp);  

  MEDIA * mount( void);  
  void    unmount( void);  

  MFILE *  fopenM  ( const char *name, const char *mode);  
  unsigned freadM  ( void * dest, unsigned count, MFILE *);  
  unsigned fwriteM ( void * src, unsigned count, MFILE *);  
  unsigned fcloseM ( MFILE *fp);  

  unsigned listTYPE( char *list, int max, const char *ext );     

 Don ’ t worry for now if we have not fleshed out all the functions yet; we will continue 
working on them as we proceed through the rest of this chapter.  
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  Testing  fopenM()  and  freadM()
 It might seem like a long time since we built the last project. To verify the code that we 
have developed so far, we had to reach a critical mass, a minimal core of routines without 
which no application could have worked. Now that we have this core functionality, we 
can develop for the first time a small test program to read from an SD/MMC card a file 
created in the FAT16 file system. We will call it  ReadTest . 

 The idea is to copy a text file (any text file would work) on the SD/MMC card from your 
PC and then have the PIC32 read the file, count the number of lines, and display it on 
the LCD. 

 Here is the main module that you will save as  ReadTest.c :       

  /*
  ** ReadTest.c 
  **  
  ** 07/18/07 v2.0 LDJ  
  ** 11/23/07 v3.0 LDJ using the LCD display  
  */

  #include  < p32xxxx.h >   
  #include  < plib.h >   
  #include  < explore.h >   
  #include  < SDMMC.h >   
  #include  < LCD.h >   
  #include  " fileio.h "   

  #define B_SIZE 10  
  char data[ B_SIZE];  

  int main( void)  
  { 
 MFILE *fs;  
 unsigned r;  
 int i, c;  
 char s[16];  

 //initializations  
 initEX16();  
 initLCD(); // init LCD display  
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 // main loop  
 while( 1)  
 { 
 putsLCD(  " Insert card... " );  
 while( !getCD()); // wait for card to be inserted  
 Delayms( 100); // de-bounce  
 clrLCD();  

 if ( mount())  
 { 
 putsLCD(  " mount\n " );  
 if ( (fs = fopenM(  " Text.txt " , "r" )))  
 { 
 c = 0;  
 putsLCD( " Reading... " );  
 do{ 
 r = freadM( data, B_SIZE, fs);  
 for( i = 0; i < r; i++) 
 { 
 if ( data[ i]== ' \n ' )  
 { 
 c++;  
 sprintf( s,  " \n%d lines ", c); 
 putsLCD( s);     

 }        
 } // for i     

} while( r==B_SIZE);  
 fcloseM( fs);  
 homeLCD();  
 putsLCD( " File closed " );     

 }  
 else 
 putsLCD( " File not found! " );  

 unmount();     
 } // mounted  
 else 

    putsLCD( " Mount Failed! " );     

 getKEY();     
 } // loop     

  } // main     
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 The sequence of operation is similar to the one we adopted when testing the basic 
SD/MMC access module, only this time instead of calling the initMedia()  function and 
then starting to directly read and write sectors to and from the SD/MMC card, we called 
the mount()  function to access the FAT16 file system on the card. We opened the data file 
using its  “ proper ”  name, and we read data from it in blocks of arbitrary length ( B_SIZE ), 
scanning them for new line characters to mark the end of each text line. Once we ’ d 
exhausted the content of the entire file, we closed it, deallocating all the memory used. 

 To build the project, you will need to remember to include all the following modules: 

●      SDMMC.c  

●      fileio.c  

●      LCDlib.c  

●      explore.c  

●      ReadTest.c 

 Remember to follow the checklist for your in-circuit debugger of choice, but also in 
the Project Build Options dialog box  (Project  |  Build Options  |  Project) , remember 
to reserve some space for the heap so that the fileio functions will be able to allocate 
memory dynamically for the file system structures and buffers. Even if 580 bytes should 
suffice, give the heap ample room to maneuver; I recommend you allocate at least 
2 K bytes. 

 After building the project and programming the Explorer 16 board, we are ready to run 
the test. If all goes well you will be prompted to insert the SD card in the slot and you 
will quickly see a counter updating on the second line of the LCD, probably too fast for 
you to read anything but the last value. 

 Notice that you can recompile the project and run the test with different sizes for the data 
buffer from 1 byte to as large as the memory of the PIC32 will allow. The  freadM()
function will take care of reading as many sectors of data required to fulfill your request 
as long as there is data in the file.  

  Writing Data to a File 
 We are far from finished, though. The fileio.c module is not complete until we include 
the ability to create new files. This will require us to create an  fwriteM()  function but 
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also to complete a piece of the fopenM()  function and a considerable extension of the 
fcloseM()  function. So far we had  fopenM()  return with an error code when a file 
could not be found in the root directory or the mode was not  r . But this is exactly what 
we want when we open a new file for writing. When we check for the mode parameter 
value, we need to add a new option. This time, it is when the file is  NOT_FOUND  during 
the first scan of the directory that we want to proceed. 

 else // 11. open for  ' write '   
 { 
 if ( r == NOT_FOUND)  

 {        

 A new file needs a new cluster to be allocated to contain its data. The function  newFAT()
will be used to search in the FAT for an available spot, a cluster that is still marked (with 
0 x 0000 ) as available. This search could fail and the function could return an error that, 
among other things, could indicate that the storage device is full and all data clusters 
are taken. Should the search be successful, though, we will take note of the new cluster 
position and update the MFILE  structure, making it the first cluster of our new file.       

 // 11.1 allocate a first cluster to it  
 fp- > ccls = 0;  // indicate brand new file  
 if ( newFAT( fp) != TRUE)  
{ // must be media full 
 FError=FE_MEDIA_FULL;  
 goto ExitOpen;     

 }  

 fp- > cluster = fp- > ccls;     

 Next, we need to find an available entry space in the directory for the new file. This will 
require a second pass through the root directory, this time looking for either the first entry 
that is marked as deleted (code  0xE5 ) or for the end of the list where an empty entry is 
found (marked with the code  0 x 00 ).       

 // 11.2 create a new entry  
 // search again, for an empty entry this time  
 if ( (r = newDIR( fp)) == FAIL)  
{  // report any error 

FError = FE_IDE_ERROR; 
 goto ExitOpen;     

 }     
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 The function  newDIR()  will take care of finding an available entry and, similarly to the 
findDIR()  function used before, will return one of three possible codes: 

●       FAIL , indicating a major problem occurred (or the card was removed)  

●       NOT_FOUND , the root directory must be full  

●       FOUND , an available entry has been identified 

 // 11.3 new entry not found  
 if ( r == NOT_FOUND)  
 { 
 FError=FE_DIR_FULL;  
 goto ExitOpen;     

 }     

 In both the first two cases we have to report an error and we cannot continue. But if an 
entry is found, we have plenty of work to do to initialize it. 

 After calculating the offset of the entry in the current buffer, we will start filling some of 
its fields with data from the MFILE structure. The file size will be first. 

 else // 11.4 new entry identified fp- > entry filled 
 { 

// 11.4.1 
 fp- > size = 0; 

 // 11.4.2 determine offset in DIR sector  
 e = (fp- > entry &  0xf) * DIR_ESIZE;  

 // 11.4.3 init all fields to 0  
 for (i=0; i < 32; i++) 

    fp- > buffer[ e +i ] = 0;           

 The time and date fields could be derived from the RTCC module registers or any other 
timekeeping mechanism available to the application, but a default value will be supplied 
here only for demonstration purposes. 

 // 11.4.4 set date and time  
 fp- > date = 0 x 378A; // Dec 10th, 2007  
 fp- > buffer[ e + DIR_CDATE] = fp- > date;  
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 fp- > buffer[ e + DIR_CDATE+1] = fp- > date >  > 8;  
 fp- > buffer[ e + DIR_DATE] = fp- > date;  
 fp- > buffer[ e + DIR_DATE+1] = fp- > date >  > 8;  

 fp- > time = 0 x 6000; // 12:00:00 PM  
 fp- > buffer[ e + DIR_CTIME] = fp- > time;  
 fp- > buffer[ e + DIR_CTIME+1] = fp- > time >  > 8;  
 fp- > buffer[ e + DIR_TIME] = fp- > time+1;  

 fp- > buffer[ e + DIR_TIME+1] = fp- > time >  > 8;     

 The file ’ s first cluster number, the filename, and the attributes (defaults) will complete the 
directory entry.       

 // 11.4.5 set first cluster  
 fp- > buffer[ e + DIR_CLST] = fp- > cluster;  
 fp- > buffer[ e + DIR_CLST+1] = (fp- > cluster >  > 8);  

 // 11.4.6 set name  
 for ( i = 0; i < DIR_ATTRIB; i++) 

 fp- > buffer[ e + i] = fp- > name[i];     

 // 11.4.7 set attrib  
 fp- > buffer[ e + DIR_ATTRIB] = ATT_ARC;  

 // 11.4.8 update the directory sector;  
 if ( !writeDIR( fp, fp- > entry))  
 { 

 FError=FE_IDE_ERROR;  
 goto ExitOpen;     

 }  
 } // new entry  

 } // not found     

 Back to the results of our first search through the root directory. In case a file with the 
same name was indeed found, we will need to report an error.       

 else // file exist already, report error  
 { 

 FError = FE_FILE_OVERWRITE;  
 goto ExitOpen;     

 }     
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 Alternatively, we would have had to delete the current entry first, release all the clusters 
used, and then start from the beginning. After all, reporting the problem as an error is an 
easier way out for now. 

 So much for the changes required to the  fopenM()  function. We can now start writing 
the proper new  fwriteM()  function, once more modeled after a similarly named 
standard C library function. 

 unsigned fwriteM( void *src, unsigned count, MFILE * fp)  
 // src points to source data (buffer)  
// count number of bytes to write 
// returns number of bytes actually written 
 { 

 MEDIA *mda = fp- > mda;  
 unsigned len, size = count;  

 // 1. check if file is open  
 if ( fp- > mode !=  ' w ' )  
 {  // file not valid or not open for writing 

 FError = FE_INVALID_FILE;  
 return FAIL;        

 }     

 The parameters passed to the function are identical to those used in the  freadM()
function. The first test we will perform on the integrity of the  MFILE  structure, passed as 
a parameter, is the same as well. It will help us determine if we can trust the contents of 
the MFILE  structure having been successfully prepared for us by a call to  fopenM() . 

 The core of the function will be a loop as well: 

 // 2. loop writing count bytes  
 while ( count > 0)  

 {     

 Our intention is that of transferring as many bytes of data as possible at a time, using the 
fast  memcpy()  function from the string.h libraries. 

 // 2.1 copy as many bytes at a time as possible  
 if ( fp- > pos+count < 512) 
 len = count;     

 else 
 len = 512- fp- > pos ;     

  memcpy( fp- > buffer+ fp- >pos, src, len);     
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 We need to update a number of pointers and counters to keep track of our position as we 
add data to the buffer and increase the size of the file.       

 // 2.2 update all pointers and counters  
 fp- > pos+=len;  // advance buffer position  
 fp- > seek+=len;  // count the added bytes 
 count-=len;  // update the counter  
 src+=len;  // advance the source pointer  

 // 2.3 update the file size too  
 if (fp- > seek > fp- > size) 

 fp- > size = fp- > seek;        

 Once the buffer is full, we need to transfer the data to the media in a sector of the 
currently allocated cluster: 

 // 2.4 if buffer full, write current buffer to current 
 sector 

 if (fp- > pos == 512)  
 { 

 // 2.4.1 write buffer full of data  
 if ( !writeDATA( fp)) 

 return FAIL;           

 Notice that an error at this point would be rather fatal. We will return the code  FAIL , 
the value of which is 0, therefore indicating that not a single byte has been transferred. 
In fact, all the data written to the storage device thus far is now lost. 

 If all proceeds correctly, though, we can now increment the sector pointers, and if we 
have exhausted all the sectors in the current cluster, we must consider the need to allocate 
a new one, calling  newFAT()  once more.       

 // 2.4.2 advance to next sector in cluster  
 fp- > pos = 0; 
 fp- > sec++;  

 // 2.4.3 get a new cluster if necessary  
 if ( fp- > sec == mda- > sxc)  
 { 
 fp- > sec = 0; 
 if ( newFAT( fp)== FAIL) 
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 return FAIL;        
     }  

 } // store sector  

 } // while count     

 Shortly, when developing  newFAT() , we will have to make sure that the function 
accurately maintains the chaining of the clusters in the FAT as they get added to a file. 

 // 3. number of bytes actually written  

 return size-count;  

  } // fwriteM     

 The function is now complete and we can report the number of bytes written upon exit 
from the loop.  

  Closing a File, Take Two 
 Closing a file opened for reading was a mere formality and a matter of releasing some 
memory from the heap, but when we close a file that has been opened for writing, 
there is an additional amount of housekeeping work that needs to be performed. 

 A new and improved  fcloseM()  function is needed, and it will start with a check of the 
mode  field.       

  unsigned fcloseM( MFILE *fp)  
  { 
 unsigned e, r;  
 r = FAIL;  

 // 1. check if it was open for write  
 if ( fp- > mode ==  ' w ' )  

 {        

 In fact, when we close a file, there might still be some data in the buffer that needs to be 
written to the storage device, although it does not fill an entire sector.       

 // 1.1 if the current buffer contains data, flush it  
 if ( fp- > pos >0)
 { 
 if ( !writeDATA( fp)) 

 goto ExitClose;        

 }     
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 Once more, any error at this point is a rather fatal event and will mean that all the file data 
is lost, since the fcloseM()  function will not properly complete. 

 The proper root directory sector must be retrieved and an offset for the directory entry 
must be calculated inside the buffer. 

 // 1.2   finally update the dir entry,  
 // 1.2.1  retrive the dir sector  
 if ( !readDIR( fp, fp- > entry)) 

 goto ExitClose;     

 // 1.2.2 determine position in DIR sector  

 e = (fp- > entry &  0xf) * DIR_ESIZE;     

 Next we need to update the file entry in the root directory with the actual file size (it was 
initially set to zero). 

 // 1.2.3 update file size  
 fp- > buffer[ e + DIR_SIZE]  = fp- > size;  
 fp- > buffer[ e + DIR_SIZE+1]= fp- > size >  > 8;  
 fp- > buffer[ e + DIR_SIZE+2]= fp- > size >  > 16;  

 fp- > buffer[ e + DIR_SIZE+3]= fp- > size >  > 24;     

 Finally, the entire root directory sector containing the entry is written back to the media. 

 // 1.2.4 update the directory sector;  
 if ( !writeDIR( fp, fp- > entry)) 
 goto ExitClose;     

 } // write     

 If all went well, we will complete the  fcloseM()  function, deallocating the memory 
used.

 // 2. exit with success  
 r = TRUE;  

  ExitClose: 
 // 3. free up the buffer and the MFILE struct  
 free( fp- > buffer);  
 free( fp);  

 return( r);     

  } // fcloseM     
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  Accessory Functions 
 In completing  fopenM(), fcloseM()  and creating the new  fwriteM()  function, 
we have used a number of lower-level functions to perform important repetitive 
tasks.

 We will start with  newDIR() , used to find an available spot in the root directory to create 
a new file. The similarity with  findDIR()  is obvious, yet the task performed is very 
different.       

  unsigned newDIR( MFILE *fp)  
  // fp file structure 
  // return found/fail, fp- >entry filled 
  { 
 unsigned eCount;  // current entry counter  
 unsigned e;  // current entry offset  
 int a;  
 MEDIA *mda = fp- > mda;  

 // 1. start from the first entry  
 eCount = 0;  
 // load the first sector of root  
 if ( !readDIR( fp, eCount)) 
 return FAIL;     

 // 2. loop until you reach the end or find the file  
 while ( 1)  
 {  
 // 2.0 determine the offset in current buffer 
 e = (eCount & 0xf) * DIR_ESIZE;     

 // 2.1 read the first char of the file name 
 a = fp- > buffer[ e + DIR_NAME];     

 // 2.2 terminate if it is empty (end of the list)or deleted 
 if (( a == DIR_EMPTY) ||( a == DIR_DEL))  
 { 
 fp- > entry = eCount; 
 return FOUND;     

 } // empty or deleted entry found     
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 // 2.3 get the next entry 
 eCount++;  
 if ( (eCount  &  0xf) == 0)  
 { // load a new sector from the root 
 if ( !readDIR( fp, eCount)) 

 return FAIL;     
 }     

 // 2.4 exit the loop if reached the end or error 
 if ( eCount  >  mda- > maxroot) 

 return NOT_FOUND; // last entry reached        
 }// while  

 return FAIL;        

  } // newDIR     

 The function  newFAT()  was used to find an available cluster to allocate for a new block 
of data/new file:       

  unsigned newFAT( MFILE * fp)  
  // fp file structure 
  // fp- > ccls  ==0 if first cluster to be allocated  
  //  !=0 if additional cluster  
  // return  TRUE/FAIL 
  // fp- >ccls new cluster number 
  { 
 unsigned i, c = fp- > ccls;  

 // sequentially scan through FAT  
 do { 
 c++;  // check next cluster in FAT  
 // check if reached last cluster in FAT,  
 // re-start from top  
 if ( c  > = fp- > mda- > maxcls) 
 c = 0;     

 // check if full circle done, media full  
 if ( c == fp- > ccls)  
 { 
 FError = FE_MEDIA_FULL;  
 return FAIL;     

 }  
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 // look at its value  
 i = readFAT( fp, c);     

 } while ( i!=0);    // scanning for an empty cluster  

 // mark the cluster as taken, and last in chain  
 writeFAT( fp, c, FAT_EOF);  

 // if not first cluster, link current cluster to new one  
 if ( fp- > ccls >0)
 writeFAT( fp, fp- > ccls, c);     

 // update the MFILE structure  
 fp- > ccls = c; 

 // invalidate the FAT cache  
 //  (since it will soon be overwritten with data)  
 fp- > fpage = -1; 

 return TRUE;     

  } // newFAT     

 When allocating a new cluster beyond the first one,  newFAT()  keeps linking the clusters 
in a chain, and it marks every cluster as properly used. In its turn, the function uses one 
more accessory function. The writeFAT()  function updates the contents of the FAT and 
keeps all its copies current. 

  unsigned writeFAT( MFILE *fp, unsigned cls, unsigned v)  
  // fp MFILE structure 
  // cls current cluster 
  // v next value 
  // return TRUE if successful, or FAIL  
  { 
 unsigned p;  
 LBA l;  

 // get address of current cluster in fat  
 p = cls * 2; // always even  
 // cluster = 0xabcd  
 // packed as: 0  | 1    | 2    | 3    |  
 // word p 1  2 | 3  4 | 4  5 | 6  7 |..  
 // cd ab| cd ab| cd ab| cd ab|  



476   Day 15

 // load the fat sector containing the cluster  
 l = fp- > mda- > fat + (p >  >  9 );  
p &= 0 x 1fe;  
 if ( !readSECTOR( l, fp- > buffer)) 
 return FAIL;     

 // get the next cluster value  
 fp- > buffer[ p] = v; // lsb  
 fp- > buffer[ p+1] = (v >  > 8); // msb  

 // update all FAT copies  
 for ( i=0; i < fp- > mda- > fatcopy; i++, l += fp- > mda- > fatsize) 
 if ( !writeSECTOR( l, fp- > buffer)) 

 return FAIL;        

 return TRUE;     

  } // writeFAT     

 Finally,  writeDATA()  was used by both  fwriteM()  and  fcloseM()  to write actual 
sectors of data to the storage device, computing the sector address based on the current 
cluster number.       

  unsigned writeDATA( MFILE *fp)  
  { 
 LBA l;  

 // calculate lba of cluster/sector  
 l=fp- > mda- > data+(LBA)(fp- > ccls-2) * fp- > mda- > sxc+fp- > sec;  

 return ( writeSECTOR( l, fp- > buffer));     

  } // writeDATA     

  Testing the Complete Fileio Module 
 It is time to test the functionality of the entire fileio.c module we just completed. This 
time, after mounting the file system, we will open a source file (which could be any file) 
and copy its contents into a new  “ destination ”  file that we will create on the spot. Here is 
the code we will use for the WriteTest.c  main file. 

  /*
  **       WriteTest.c  
  **  
  */
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  #include  < p32xxxx.h >   
  #include  < explore.h >   
  #include  < LCD.h >   
  #include  < SDMMC.h >   
  #include  " fileio.h "   

  #define B_SIZE 100  

  char data[B_SIZE];  

  int main( void)  
  { 
 MFILE *fs, *fd;  
 unsigned c, i, p, r;  
 char s[32];  

 //initializations  
 initEX16();  
 initLCD();        //init LCD display  

 putsLCD(  " Insert card ... \n " );  
 while( !getCD());        // wait for card to be inserted  
 Delayms( 100);        // wait for card to power up  

 if ( mount())  
 { 
 clrLCD();  
 if ( (fs = fopenM(  " source.txt " , "r" )))  
{
 if ( (fd = fopenM(  " dest.txt " , "w" )))  
 {  
 c = 0;        // init byte counter  
 p = 0;        // init progress index  
 i = fs- > size/16;        // progress bar increment  

 putsLCD( " Copying\n " );  
 do{ 
 // copy data  
 r = freadM( data, B_SIZE, fs);  
 r = fwriteM( data, r, fd);  

 // update progress bar  
 c += r;  
 while (p  <  c/i)  
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 { 
 p++;  
 putLCD( 0xff);  // add one bar     

 }     
 } while( r == B_SIZE);  

 r = fcloseM( fd);  
 if ( r == TRUE)  
 { 
 clrLCD();  
 sprintf( s,  " Copied \n%d bytes ", c); 
 putsLCD( s);     

 } // close dest  
 else 
 putsLCD( " ER:closing dest " );     

 } // open dest  
 else 
 putsLCD( " ER:creating file " );     

 fcloseM( fs);     
 } // open source  
 else 
 putsLCD( " ER:open source " );     

 unmount();     
 } // mount  
 else 
 putsLCD( " ER:mount failed " );     

 // main loop  
 while( 1);     

  } // main     

 Make sure you replace the source filename (SOURCE.TXT) with the actual name of the 
file you copied on the card for the experiment. 

 After creating a new project (let ’ s call it  WriteTest  this time), we will need to add all the 
necessary modules to the project window, including: 

●      SDMMC.c  

●      fileio.c  
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●      explore.c  

●      LCDlib.c  

●      WriteTest.c 

Once more, remember to follow the checklists for a new project and for the in-circuit 
debugger setup, but this time remember to add even more space for the heap so that we 
will be able to dynamically allocate two buffers for two  MFILE  structures.

      Note     

 Once enough space is left for the global variables and the stack, there is no reason to withhold 
any memory from the heap. Allocate as large a heap as possible to allow  malloc()  and 
free()  to make optimal use of all the memory available.      

 After building the project and programming the executable on the Explorer 16 board, we 
are ready to run the test. Insert the SD card in the slot when prompted, and if all goes well 
for a fraction of a second, dependent on the size of the source file chosen, you will be 
able to see a progress bar gradually filling the second line of the LCD. When the copy is 
completed, a message similar to the following will appear on the LCD: 

  Copied  

  1806 bytes     

 Once more the actual number of bytes should reflect the size of the source file used. At 
this point if you transfer the SD/MMC card back to your PC, you should be able to verify 
that a new file has been created (see  Figure 15.10   ). 

 Its size and contents are identical to the source file, whereas the date and time reflect the 
values we set in the  fopenM()  function. 

 Notice that if you try to run the test program a second time, it is bound to fail now.       

  ER:creating file     

 This is because, as discussed during the development of the  fopenM()  function, we 
chose to report an error when trying to create a new file (open a file for writing) and we 
find a file with the same name already present. 
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 Figure 15.10 :     Windows Explorer Screen capture.    

 Notice that you can recompile the project and run the test with different sizes for the 
data buffer, from 1 byte to as large as the memory of the PIC32 will allow. Both the 
freadM()  and  fwriteM()  functions will take care of reading and writing as many 
sectors of data as are required to fulfill your request. The time required to complete the 
operation will change slightly, though.  

  Code Size 
 The size of the code produced by the WriteTest project is considerably larger than the 
simple SDMMC.c module we tested in the previous chapter (see  Figure 15.11   ). 

 Still, with all optimization options turned off, the code will add up to just 
8,743 words. This represents only 6 percent of the total program memory space 
available on the PIC32MX360. I consider this a very small price to pay for a lot of 
functionality!
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 Figure 15.11 :     The memory usage gauge.    

  Debriefing 
 In this lesson we learned the basics of the FAT16 file system and developed a small 
interface module that allows a PIC32 microcontroller to read and write data files to and 
from a generic mass storage device. By using the SDMMC.c module, developed in the 
previous lesson for the low-level interface, we have created a basic file I/O interface for 
SD/MMC memory cards. 

 Now you can share data between a PIC32 application and almost any other 
computer system that is capable of accessing SD/MMC cards, from PDAs to laptops 
and desktop PCs; from DOS, Windows, and Linux machines to Apple computers 
running OS-X.  

  Tips  &  Tricks 
 A frequent question I am asked by embedded-control engineers is:  “ How can I interface 
to a  ‘ thumb drive ’  (sometimes referred to as a  USB stick ), a USB mass storage device, to 
share/transport data between my application and a PC? ”

 The short answer is simple:  “ Don ’ t, if you can help it! ”  The longer answer is:  “ Use an 
SD card instead! ”  and here is why. As you have seen in this lesson and the previous one, 
reading and writing to an SD card (miniSD and microSD included) is really simple and 
requires very little code and only one SPI port. 
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 The USB interface, on the other side, has all the appeal and appearance of simplicity from 
the user perspective, but reading and writing to a USB thumb drive can be deceptively 
complex and expensive for a modest embedded-control application. First, the simplicity 
of the SPI interface must be replaced by the relatively greater complexity of the USB bus 
interface. What is required, then, is not just the standard USB interface but a host USB 
interface and corresponding software stack. 

 As of this writing, it has already been announced that future versions of the PIC32 will 
offer an integrated host USB interface, but there will be a considerable price to pay in 
terms of Flash and RAM required to support the complete software stack. This can be 
estimated at several orders of magnitude larger and more complex than the basic SD/
MMC card solution we examined today.  

  Exercises 
  1.     Review the FAT16 support libraries offered with the PIC32 tool suite. Now you 

have the tools to understand all that code and use the most advanced features with 
confidence.  

  2.     Use the RTCC to provide the current time and date information when writing 
to a new file.  

  3.     Evaluate the opportunity to use a separate buffer for more advanced FAT page 
caching, to further improve read/write performance.  

  4.     Evaluate the modifications required to perform buffering of entire clusters and 
perform multiblock read/write operations to optimize the SD card low-level 
performance.

   Books
        Pate ,    Steve D.         ,      Unix Filesystems: Evolution, Design, and Implementation                   (John Wiley      , 

 2003   )        .     Windows is our primary concern when we think of sharing files with a 
personal computer, but you have to look at Unix (and Linux) to find serious file 
systems for mission-critical data storage. 
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 Links 
www.tldp.org/LDP/tlk/tlk-title.html .  The Linux Kernel , by David A Rusling, is an online 

book that describes the inner workings of Linux and its file system.      

http://en.wikipedia.org/wiki/File_Allocation_Table . Once more, this is an excellent 
page of Wikipedia that describes the history and many ramifications of the FAT 
technology.      

http://en.wikipedia.org/wiki/List_of_file_systems . An attempt to list and classify all major 
computer file systems in use. 

http://en.wikipedia.org/wiki/ISO-9660 . Want to know how files are written on a 
CD-ROM? The ISO-9660 file system is the answer. 
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                     Musica, Maestro!   

  The Plan 
 Gone is the time when music was an analog thing and the home stereo took up an 
entire rack of expensive electronics. Starting with music CDs almost 20 years ago and 
continuing today with iPods and MP3 players, music is now stored and consumed 
in digital form. For consumer and embedded applications, audio is an available and 
inexpensive option to delight but also to communicate with the user. 

 In this lesson we will explore the possibility to produce audio signals using the Output 
Compare modules of the PIC32. In Pulse Width Modulation (PWM) mode, and in 
combination with a more or less sophisticated low-pass filters, the Output Compare 
modules can be used effectively as DACs to produce an analog output signal. By 
modulating the analog signal with frequencies that fall into the range recognized by the 
human ear, between approximately 20       Hz and 20       kHz, we get sound! 

  Preparation 
 In addition to the usual software tools, including the MPLAB® IDE, the MPLAB C32 
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer 
16 demonstration board, an In-Circuit Debugger of your choice, and a soldering iron and 
a few components you ’ ll need ready at hand to expand the board capabilities using the 
prototyping area or a small expansion board. You can check on the companion Web site 
( www.exploringPIC32.com ) for the availability of expansion boards that will help you 
with the experiments that follow.  

D A Y  1 6 
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  The Exploration 
 The way a PWM signal works is pretty simple. A pulse is produced at regular intervals 
(T ), typically provided by a timer and its period register. The pulse width ( Ton ), though, 
is not fixed, but it is programmable and it could vary between 0 and 100 percent of the 
timer period. The ratio between the pulse width ( Ton ) and the signal period ( T ) is called 
the duty cycle  (see  Figure 16.1   ). 

50% duty cycle
Ton/T � 1/2

10% duty cycle
Ton/T � 1/10 Ton

Ton

T

T

 Figure 16.1 :     Examples of PWM signals of different duty cycles.    

 Two extreme cases are possible for the duty cycle: 0 percent and 100 percent. The first 
one would correspond to a signal that is always off. The second one would be the case 
when the output signal is always on. The number of possible cases in between, typically 
a relatively small finite number expressed as a logarithm in base 2, is commonly referred 
to as the resolution  of the PWM. If, for example, there are 256 possible pulse widths, we 
say that we have a PWM signal with an 8-bit resolution. 

 If you could feed an ideal PWM signal with a fixed duty cycle to a spectrum 
analyzer to study its composition, you would discover that it contains three parts 
(see  Figure 16.2   ): 

●      A DC component, with an amplitude directly proportional to the duty cycle  

●      A sinusoid at the fundamental frequency (  f  =  1/T )

●      Followed by an infinite number of harmonics whose frequency is a multiple of the 
fundamental ( 2f, 3f, 4f, 5f, 6f  . . . )    
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 Therefore, if we could attach an  “ ideal ”  low-pass filter to the output of a PWM signal 
generator to remove all frequencies from the fundamental and up, we could obtain just a 
clean DC analog signal whose amplitude would be directly proportional to the duty cycle. 

 Of course, such an ideal filter does not exist, but we can use more or less sophisticated 
approximations of it to remove as much of the unwanted frequency components as needed 
(see  Figure 16.2   ). This filter could be as simple as a single passive R/C circuit (first-order 
low-pass filter) or could require several ( N ) active stages ( 2xN -order low-pass filter). 

50% duty cycle
Ton/T � 1/2
Analog out � 0.5

10% duty cycle
Ton/T � 1/10
Analog out � 0.1

Ton

Ton

T

T

 Figure 16.3 :     Analog output of PWM and ideal low-pass filter circuit.    

Amplitude

DC component

Fundamental
Harmonics

Low pass filter
Frequencyf � 1/T 2f 3f 

 Figure 16.2 :     Frequency spectrum of a PWM signal.    

 If we aim to produce an audio signal and we choose the PWM frequency wisely, we can 
take advantage of the natural limitation of the human ear that will act as an additional 
filter, ignoring any signal whose frequency is outside the 20       Hz–20       kHz range. In 
addition, most of the audio amplifiers we might want to feed the output signal into will 
include a similar type of filter in their input stages. In other words, if we make sure 
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that the PWM signal operates on a frequency at or above 20       kHz, both phenomena will 
contribute to help our cause and will allow us to use a simpler and more inexpensive filter 
circuit.

 Intuitively enough, since we can change the duty cycle only once every PWM period 
(T  ), the higher the frequency of the PWM, the faster we will be able to change the output 
analog signal, and therefore the higher will be the frequency of the audio signal we will 
be able to generate. 

 In practical terms, this means that the highest audio signal a PWM can produce is only half 
of the PWM frequency. So, for example, a 20       kHz PWM circuit will be able to reproduce 
only audio signals up to 10       kHz, whereas to cover the entire audible frequency spectrum 
we need a base period of at least 40       kHz. Now you understand why it is not a coincidence 
that music CDs are digitally encoded at the rate of 44,100 samples per second. 

  OC PWM Mode 
 In a previous chapter we used the PIC32 Output Compare modules to produce precise 
timing intervals (to obtain the horizontal synchronization signal required to generate 
a composite video output). This time we will use the OC modules in PWM mode to 
generate a continuous stream of pulses with the desired duty cycle. 

 All we need to do to initialize the OC module to generate a PWM signal is set the 
three OCM  bits in the  OCxCON  control register (see  Figure 16.4   ) for the basic PWM 

U-0
— — — — — — — —

— —

— —

— — — — — —

U-0 U-0 U-0 U-0 U-0 U-0 U-0

U-0

R/W-0 R/W-0 R/W-0

U-0 U-0 R/W-0
OC32 OCFLT OCTSEL OCM�2:0�

Bit 24

Bit 16

Bit 8

Bit 0Bit 7

R-0 R/W-0 R/W-0 R/W-0 R/W-0

U-0 U-0 U-0 U-0 U-0
SIDL

Bit 15
ON FRZ

U-0 U-0 U-0 U-0 U-0 U-0 U-0

Bit 31

Bit 23

 Figure 16.4 :     The Output Compare module main control register  OCxCON .    



Musica, Maestro   489

configuration  0 x 110 . A second PWM mode is available ( 0 x 111 ), but we have no use for 
the fault input pins, commonly required by a different set of applications as a protection 
mechanism (motor control/power conversion). Next we need to select the timer on which 
to base the PWM period. The choice is limited to Timer2 or Timer3, but since we already 
used the latter for the video projects, this time we will give Timer2 our preference 
(see  Figure 16.5   ). 

Set Flag bit
OCxF(1)

Output
logic

S
R

Q

Ouput enable

OCTSEL 00

16 16

Note 1:  Where ‘x’ is shown, reference is made to the registers associated with the respective output compare
               channels 1 through 5.
          2:  The OCFA pin controls OC1-OC3 channels. The OCFB pin controls OC4-OC5 channels.
          3:  Each output compare channel can use one of two selectable 16-bit time or a single 32-bit timer base.

Period match signals
from time bases
(see Note 3).

TMR register inputs
from time bases
(see Note 3).

Comparator

OCxR(1)

OCxRS(1)

11

3

OCM�2:0�
Mode select

OCFA or OCFB
(see Note 2)

OCx(1)

 Figure 16.5 :     Output Compare module block diagram.    

 Keeping in mind that we want to be able to produce at least a 44.1       kHz PWM period, 
and assuming a peripheral clock of 36       MHz, our standard configuration when using the 
Explorer 16 board, we can calculate the optimal configuration of the Timer2 ( T2CON ) 
and its period register ( PR2 ). With a prescaler set to a 1:1 ratio, we obtain 816 clock ticks 
per period when generating an exact 44.1       kHz PWM period. This value dictates also the 
maximum resolution of the duty cycle for the Output Compare module. 

 Since we will have 816 possible values of the duty cycle, we could claim a resolution 
between 9 and 10 bits because we have more than 512 (2 8 ) but fewer than 1024 (2 9 ) steps. 
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Reducing the frequency to 20       kHz would give us 1 bit (literally) of additional resolution 
(taking us between 10 and 11), but that would also mean that we would be limiting 
the output frequency range to a maximum of 10       kHz, probably a small but noticeable 
difference to the human ear. 

 Once the chosen timer is configured and just before writing to the  OCxCON  register, we 
will need to set, for the first time, the value of the duty cycle writing to the register  OCxR , 
and the register  OCxRS . In PWM mode, the two registers will work in a master/slave 
configuration. Once the PWM module is started (writing the mode bits in the  OCxCON
register), we will be able to change the duty cycle by writing only to the  OCxRS  (slave) 
register. The  OCxR  register (master) will update, copying a new value from the slave 
OCxRS  only and precisely at the beginning of each new period, to avoid glitches and to 
leave us with an entire period ( T  ) of time to prepare the next duty cycle value. 

 Here is an example of a simple initialization routine for the OC1 module: 

  void initDA( int samplerate)  
  { 
 // init OC1 module  
OpenOC1( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); 

 // init Timer2 mode and period (PR2)  
 OpenTimer2( T2_ON | T2_PS_1_1 | T2_SOURCE_INT, 

 FPB/samplerate);     
 PR2 = FPB/samplerate-1;  
 mT2SetIntPriority( 4);  
 mT2ClearIntFlag();  
 mT2IntEnable( 1);  

  } // initDA        

 Notice that we have also taken the opportunity to enable the timer interrupts so that 
we will be alerted each time a new period starts and we can decide how and whether 
to update the next duty cycle value writing to  OC1RS  (or using the  SetDCOC1PWM()
function).

  Testing the PWM as a D/A Converter 
 To start experimenting on the Explorer 16, we will need to add just a couple of discrete 
components to the prototyping area. A resistor of 1 kOhm value and a capacitor of 100 nF 
value will produce the simplest low-pass filter (first order with a 1.5       kHz cutoff 
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frequency). We can connect the two in series and wire them to the output pin of the OC1 
module found on pin 0  of  PORTD , as represented in the schematic in  Figure 16.6   . 

R1

C1

100 nF

RD0  OC1

GND

Test

1 k

 Figure 16.6 :     Using a PWM signal to produce an analog output.    

 A couple of more lines of code will complete our short test project: 

  void __ISR( _TIMER_2_VECTOR, ipl4) T2Interrupt( void)  
  { 
 // clear interrupt flag and exit  
 mT2ClearIntFlag();     

  } // T2 Interrupt  

  main( void)  
  { 
 initEX16();             // init and enable vectored interrupts  
 initDA( 44100);             // init the PWM for 44.1kHz  
 SetDCOC1PWM( PR2/2);  

 // main loop  
 while( 1);     

  }// main     

 Add the usual header and include files, and save the code in a new file called  TestDA.c . 
You can then create a quick test project that will contain this single file (I called it 
Audio ), build it, and using the in-circuit debugger of your choice, program the Explorer 
16 board. Connect a meter or an oscilloscope probe, if available, to the test point in 
 Figure 16.6  and run the program to verify the output average DC level. 
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 The needle of the meter (or the trace of the scope) will swing to indicate an average 
value of 1.5V—that is, 50 percent of the regular voltage output of a digital I/O 
pin on the Explorer 16 board. This is consistent with the value of the duty cycle set 
by the initialization routine to half of the PWM period ( PR2/2 ). If you have an 
oscilloscope, you can also point the probe directly at the other end of the R1  resistor 
(directly to the output pin of the OC1 module) and verify that a square wave of 
the exact frequency of 44.1       kHz is present with a duty cycle of 50 percent 
(see  Figure 16.7   ). 

 Figure 16.7 :     Snapshot of OC1 output (bottom) and filter (top).    

 You can now change the initialization routine to experiment with other values of the duty 
cycle between  0  and  PR2  to verify the response of the circuit and the proportionality of 
the average output signal between 0 and 3V.  

  Producing Analog Waveforms 
 With help from the OC1 module, we have just crossed the boundary between the digital 
world, made of ones and zeros, and the analog world, where we have been capable of 
generating a multitude of values between 0 V and 3 V. 
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 We can now start playing with the duty cycle, changing it from period to period to 
produce waveforms of any sort and shape. Let ’ s start by modifying the project a little bit, 
adding some code to the interrupt routine that so far was left empty: 

  void __ISR( _TIMER_2_VECTOR, ipl4) T2Interrupt( void)  
  { 
 OC1RS = (count  <  22) ? PR2 : 0;  
 count++;  
 if ( count  > = 44) 
 count = 0;     

 // clear interrupt flag and exit  
 mT2ClearIntFlag();     

  } // T2 Interrupt     

 You will need to declare count as a global integer and remember to initialize it to 0. 

 Save the new code as  TestDA2.c , and after replacing it as the main file in the project, 
rebuild the project and test it on the Explorer 16 board. 

 Every 20 PWM periods the filter output will alternate between the value 3 V (100 percent) 
and the value 0 V (0 percent), producing a square wave visible on the oscilloscope at a 
frequency of approximately 1       Khz (44.1       kHz/44), as shown in  Figure 16.8   . 

 Figure 16.8 :     TestDA2 output, 1     kHz square wave.    
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 A more interesting waveform could be generated by the following algorithm:       

  void __ISR( _TIMER_2_VECTOR, ipl4) T2Interrupt( void)  
  { 
 OC1RS = count*PR2/44;  
 count++;  
 if ( count  > = 44) 
 count = 0;     

 // clear interrupt flag and exit  
 mT2ClearIntFlag();     

  } // T2 Interrupt     

 This will produce a triangular waveform (saw tooth) of approximately 3 V peak 
amplitude, with a gradual ramp of the duty cycle from 0 to 100 percent in 40 steps 
(2.5 percent each), followed by an abrupt fall back to 0, where it will repeat. This signal 
will repeat with a frequency of approximately 1       kHz as well (see  Figure 16.9   ). 

 Figure 16.9 :     TestDA3 output, 1     kHz triangular wave.    

Save the new code as  “ TestDA3.c ” , replace it as the main file of the project and rebuild. 

 None of the two examples will qualify as a  Ï nice ”  sound if you try and feed them to an 
audio amplifier, although they will both have a recognizable (fundamental) high-pitched 
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tone at about 1       kHz. Lots of harmonics will be present and audible in the audio spectrum 
and will give the sound an unpleasant buzz. 

 To generate a single clean tone, what we need is a pure sinusoid. The interrupt service 
routine that follows would serve the purpose, generating a perfect sinusoid at the 
frequency of 441       Hz; in musical terms that would be very close to an A4 ( a  La  for those 
of  “ us ”  who have not studied music using the modern Boethian notation but rather the 
older Do-Re-Mi-Fa-Sol-La-Si ).       

  void __ISR( _TIMER_2_VECTOR, ipl4) T2Interrupt( void)  
  { 
 // compute the new sample for the next cycle  
 OC1RS = PR2/2 + PR2/2 * sin(count* 2*M_PI/100);  
 count++;  

 // clear interrupt flag and exit  
 mT2ClearIntFlag();     

  } // T2 Interrupt     

 Unfortunately, as fast as the PIC32 and the math libraries of the MPLAB C32 compiler 
are, there are no chances for us to be able to use the (floating point) sin() function and 
perform the multiplications and additions required to calculate a new duty cycle value 
in time at the required rate of 440       Hz.The Timer2 interrupt hits every 22 us, too short a 
time for such a complex floating-point calculation. So, the interrupt service routine would 
end up  “ skipping ”  interrupts and producing a sinusoidal output that is only half (or less) 
than the required frequency (one octave lower). For real-time performance, we need to 
pretabulate the sinusoid values to perform the smallest number of calculations possible, 
preferably working on integers only. Here is an example that uses a constant table 
containing precomputed values stored in the Flash program memory of the PIC32:       

  const short Table[ 100]={  
  // insert comma separated values here ...   

  };    

 To obtain the table values, let ’ s use a spreadsheet program to compute the following formula: 

  = offset + INT( amplitude * SIN( ROW * 6.28/ PERIOD))     

 Substituting a period of 100 samples (441       Hz), an offset of 410, and an amplitude of 400, 
we obtain: 

  =410 + INT( 400*SIN(6.28*A1/100))     
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 Let ’ s fill the first column ( A ) of the spreadsheet with a counter and copy the formula over 
the first 100 rows of the second column ( B ), formatting the output for zero decimal digits 
(see  Figure 16.10   ). 

 Figure 16.10 :     Spreadsheet to compute a 100-point sinusoid.    

 Select the first  100  cells of the  B  column and paste them directly into the MPLAB Editor. 
Add commas at the end of each line and close the curly brackets at the end of the table:       

  const short Table[ 100]={  
  // insert comma separated values here ...   
  410,  
  435,  
  460,  
  484,  
  509,  
  533,  
   ...   

  383};     
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 The new interrupt routine will simply cycle through each element of the table: 

  void __ISR( _TIMER_2_VECTOR, ipl4) T2Interrupt( void)  
  { 
 OC1RS = Table[ count++];  
 if ( count  > = 100) 
 count = 0;     

 // clear interrupt flag and exit  
 mT2ClearIntFlag();     

  } // T2 Interrupt     

 This time we will be able to easily produce the desired tone, and there will be plenty 
more time between the Timer2 interrupt calls to perform other tasks as well. 

 Save the new file as  TestDA4.c  and replace it as the main file of the project. Build 
and program the Explorer 16 demonstration board to check the resulting output (see 
 Figure 16.11   ).  

 Figure 16.11 :     TestDA4 output, 440     Hz sinusoid.    

  Reproducing Voice Messages 
 Once we learn how to produce sound, there ’ s no stopping us. There are infinite 
applications in embedded control in which we can put these capabilities to use. Any 
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 “ human ”  interface can be greatly enhanced by using sound to provide feedback, to capture 
the attention of the user with alerts and error messages, or, if done properly, to simply 
enhance the user experience. But we don ’ t have to limit ourselves to simple tones or basic 
melodies. We can reproduce any kind of sound, as long as we have a description of the 
required waveforms. Just like the table used for the sinusoid in the previous example, 
we could use a larger table to contain the unmistakable sound produced by a particular 
instrument or even a complete vocal message. The only limit is the room available in the 
Flash program memory of the PIC32 to store the data tables next to the application code. 

 If, in particular, we look at the possibility of storing voice messages, knowing that the 
energy of the human voice is mostly concentrated in the frequency range between 400       Hz 
and 4       kHz, we can considerably reduce our output frequency requirements and limit the 
PWM playback at the rate of only 8,000 samples per second. Notice that we should still 
maintain a high PWM frequency to keep the PWM signal harmonics outside the audio 
frequency range and the low-pass filter simple and inexpensive. It is only the rate at 
which we change the PWM duty cycle and we read new data from the table that will 
have to be reduced. For example, modifying the duty cycle only once every four 
interrupts would give us an 11,025       Hz sample rate. At this rate we would theoretically 
be able to play back as much as 40 seconds of voice messages (8-bit mono) stored 
inside the PIC32MX360 Flash memory. That is already a lot of talking for a single chip 
solution.

 To further increase the capacity, potentially doubling it, we could start looking at simple 
compression techniques used for voice applications, such as ADPCM, for example. 
ADPCM stands for Adaptive Differential Pulse-Coded Modulation , and it is based on 
the assumption that the difference between two consecutive samples is smaller than the 
absolute value of each sample and can therefore be encoded using a smaller number of 
bits. The actual number of bits used is then optimized, and it changes dynamically to 
minimize signal distortion while providing a desired compression ratio. Hence the use of 
the term adaptive .

  A Media Player 
 In the rest of this chapter, we will explore a much more ambitious project. Putting to use 
all the libraries and capabilities we have acquired in the last several chapters, we will 
attempt to create a basic multimedia application capable of playing stereo music files off 
an SD/MMC memory card. 
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 The idea is to use two of the five OC modules available on the PIC32MX360, and since 
we care about the quality of the output, we will need a slightly more sophisticated filter 
than the single resistor and capacitor circuit (first-order low-pass filter) used so far in the 
TestDA project. 

 Using a low-cost dual operational amplifier like the MCP602, we can design a very 
simple Sallen Key (second-order) low-pass filter for the audio band that ’ s perfectly 
capable of driving a small headset or to feed a more powerful stereo amplifier 
(see  Figure 16.12   ). 
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 Figure 16.12 :     A simple audio PWM filter circuit.    

 As per the media format of choice, it will be the uncompressed  WAVE format  that 
is compatible with almost any audio application and is often the default  “ lossless ”  
destination format for extracting files from a music CD. 

 We will start by creating a brand-new project that we will call  Wave . We will 
immediately add to the project source files list the SD/MMC low-level interface 
(SDMMC.c ) and the file I/O library ( fileio.c ) for access to a FAT16 file system.  
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  The WAVE File Format 
 After opening a file for reading, we will need to understand the specific format used to 
encode the data. Files with the .wav extension, encoded in the WAVE format, are among 
the simplest and best documented. The WAVE format is a variant of the  RIFF file format , 
a standard across multiple operating systems that uses a particular technique to store 
multiple pieces of information/data, dividing them into  chunks . A chunk (see  Table 16.1   ) 
is nothing more than a block of data prefixed by a header containing two 32-bit elements: 
the chunk ID  and the  chunk size . 

 Table 16.1 :     Format of a generic  “ chunk. ”   

Offset  Size Description Value 

 0x00  4  Chunk ID  ASCII 

 0x04  4  Chunk size (size of the content)  Size 

 0x08  Size  Data content 

 0x08  �  size  0–1  Optional padding  0x00 

 Note also that the chunk total size must be a multiple of two so that all the data in a RIFF 
file ends up being nicely word aligned. If the data block size is not a multiple of two, an 
extra byte of padding is added to the chunk. 

 A chunk with the RIFF ID is always found at the beginning of a WAVE file, and its data 
block begins with a 4-byte  type  field. This  type  field must contain the string  WAVE . 
Chunks can be nested like Russian dolls, but there can also be multiple subchunks inside 
a given type of chunk. 

  Table 16.2    illustrates a WAVE file RIFF chunk structure. 

 Table 16.2 :     RIFF chunk of type WAVE.  

Offset  Size Description Value 

 0x00  4  This is the RIFF chunk ID  RIFF 

 0x04  4  Size of the data block � 4  Size 

 0x08  4  Type ID  WAVE 

 0x10  Size-4  Data block (subchunks)   
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 The data block in his turn contains a  fmt  chunk followed by a  data  chunk. As often is the 
case, one image is worth a million words (see  Figure 16.13   ). 

Chunk ID ‘‘RIFF’’
Chunk Size

Chunk ID ‘‘fmt’’
Chunk Size

Sample Info

Other chunks

Audio Samples

Chunk ID ‘‘data’’
Chunk Size

Chunk type ‘‘WAVE’’

 Figure 16.13 :     Basic WAVE file layout.    

 The  fmt  chunk contains a defined sequence of parameters that fully describes the stream 
of samples that follows in the  data  chunk, as represented in  Table 16.3   . 

 In between the  fmt  and  data  chunks, there could be other chunks containing additional 
information about the file, so we might have to scan the chunk IDs and skip through the 
list until we find the ( data ) chunk we are looking for.  

  The  play()  Function 
 Let ’ s create a new  playWAV()  function that will take care of opening a WAVE file and, 
after capturing and decoding the information in the fmt  chunk, will configure two PWM 
modules and will feed them with audio samples to reproduce a complete song in stereo. 
We will add the function to the  TestDA4.c  module, promptly renamed  AudioPWM.c .       
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  /*
  ** AudioPWM.c 
  **  
  */
  #include  < p32xxxx.h >   
  #include  < plib.h >   
  #include  < stdlib.h >   
  #include  < explore.h >   
  #include  < sdmmc.h >   
  #include  < fileio.h >   
  #include  " AudioPWM.h "   

  #define B_SIZE 512 //              audio buffer size  

  // audio configuration  
  typedef struct { 
 char stereo;               // 0 - mono 1- stereo  
 char fix;               // sign fix 0 x 00 8-bit, 0 x80 16-bit 
 char skip;             // advance pointer to next sample  
 char size;               // sample size (8 or 16-bit)     

  } AudioCfg; 

 Table 16.3 :     The fmt chunk content.  

Offset  Size Description Value 

 0x00  4  Chunk ID   Fmt

 0x04  4  Chunk size  16 � extra format bytes 

 0x08  2  Compression code  Unsigned  int

 0x0a  2  Number of channels  Unsigned  int

 0x0c  4  Sample rate  Unsigned  long

 0x10  4  Average bytes per second  Unsigned  long

 0x14  2  Block align  Unsigned  int

 0x16  2  Significant bits per sample  Unsigned  int  ( � 1) 

 0x18  2  Extra format bytes  Unsigned  int
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  // chunk IDs  
  #define RIFF_DWORD 0 x 46464952UL  
  #define WAVE_DWORD 0 x 45564157UL  
  #define DATA_DWORD 0 x 61746164UL  
  #define FMT_DWORD 0 x 20746d66UL  
  #define WAV_DWORD 0 x 00564157UL  

  typedef struct { 
 // data chunk  
 unsigned int dlength;               // actual data size  
 chardata[4];            // " data "   

// format chunk 
unsigned short bitpsample; // bit per sample 
unsigned short bpsample; // bytes per sample 

 // (4=16bit stereo)     

unsigned int bps;               // bytes per second  
unsigned int srate;               // sample rate in Hz  
unsigned short channels;               // # of channels 

 // (1= mono,2= stereo)     

unsigned short subtype;             // always 01  
unsigned int flength;               // size of this block (16)  
char fmt_[4];              //  " fmt_ "   

 char type [4];                // file type name  " WAVE "   
unsigned int tlength;               // size of encapsulated block  
char riff[4];             // envelope  " RIFF "      

  } WAVE;     

 The  WAVE  and  AudioCfg  structures will be useful to collect all the  fmt  parameters and 
organize the useful information in one place while the chunk ID macros will help us 
recognize the different unique IDs, treating them as 32-bit integers and allowing us a 
quick and efficient comparison. 

 Let ’ s start coding the  playWAV()  function. It needs just one parameter: the filename.       
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  int playWAV( char *name)  
  { 
WAVE   wav; 
MFILE  *f; 
 unsigned int lc, r;  
 int wi, pos, rate, period, last;  
 char s[16];  

 // 1. open the file  
 if ( (f = fopenM( name,  " r " )) == NULL) 
 { // failed to open 
 return FALSE;     

 }        

 After trying to open the file and reporting an error if unable, we will immediately 
start looking inside the data buffer for the RIFF chunk ID and the WAVE type ID as a 
signature. This will confirm that we have the right kind of file:       

 // 2. verify it is a RIFF formatted file  
 if ( ReadL( f- > buffer, 0) != RIFF_DWORD) 
 { 
 fcloseM( f);  
 return FALSE;     

 }  

 // 3. look for the WAVE chunk signature  
 if ( (ReadL( f- > buffer, 8)) != WAVE_DWORD) 
 { 
 fcloseM( f);  
 return FALSE;     

 }     

 If successful, we should verify that the  fmt  chunk is the first in line inside the data block. 
Then we will harvest all the information needed to process the  data  block for the playback. 

 // 4. look for the chunk containing the wave format data  
 if ( ReadL( f- > buffer, 12) != FMT_DWORD) 
 { 
 fcloseM( f);  
 return FALSE;     

 }  
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wav.channels = ReadW( f- >buffer, 22); 
 wav.bitpsample = ReadW( f- > buffer, 34); 
 wav.srate        = ReadL( f- > buffer, 24); 
 wav.bps        = ReadL( f- > buffer, 28); 

wav.bpsample = ReadW( f- >buffer, 32);     

 Next, we start looking for the  data  chunk, inspecting the chunk ID fields of the next 
block of data after the end of the fmt  chunk and skipping the entire block if there ’ s no 
matching.

 // 5. search for the data chunk  
 wi = 20 + ReadW( f- > buffer, 16); 
 while ( wi  <  512)  
 { 
 if (ReadL( f- > buffer, wi) == DATA_DWORD) 
 break;     

 wi += 8 + ReadW( f- > buffer, wi+4);     
 }  
 if ( wi  > = 512) // could not find in current sector  
 { 
 fcloseM( f);  
 return FALSE;     

 }     

If, in the process, we exhaust the content of the currently loaded buffer of data, we know 
we have a problem.

    Note  

    Typical .wav files produced by extracting data from a music CD will have just the  data  chunk 
immediately following the  fmt  chunk. Other applications (MIDI interfaces, for example) can 
generate WAVE files with more complex structures, including multiple  data  chunks, playlists, 
cues, labels, and the like, but we aim at playing back only the plain-vanilla type of WAVE files. 

 Once it ’ s found, the size of the  data  chunk will tell us the real number of samples 
contained in the file. 

 // 6. find the data size (actual wave content)  

 wav.dlength = ReadL( f- > buffer, wi+4);     
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 The playback sample rate must now be taken into consideration to determine whether 
we can play that  “ fast. ”  It could happen that the requested sample rate exceeds our 
capabilities, and we might have to skip every other sample to reduce the data rate. We 
will consider 48 k samples/sec our limit, although strictly speaking, at up to 96 k 
samples/s, the PIC32 would still be able to produce a PWM output with 8 bits of 
resolution. Higher rates will be treated by gradually dividing the rate by a factor of two 
and doubling the skip factor.       

 // 7. if sample rate too high, skip  
 rate = wav.bps / wav.bpsample; // rate = samples per second  
 ACfg.skip = wav.bpsample;        // skip to reduce bandwith  
 while ( rate  >  48000)  
 { 

 rate  >  > = 1; // divide sample rate by two  
 ACfg.skip  <  < = 1; // multiply skip by two     

 }     

 We can then compute the required PWM period value (to be used to set the  PR2  register). 
A problem could occur if the required period exceeds the available bits in the register (16), 
resulting in a period value greater than 65,536. 

 // 8. check if sample rate too low  
 period = (FPB/rate)-1;  
 if ( period  >  ( 65536L))        // max timer period 16 bit  
 { // period too long 
 fcloseM( f);  
 return FALSE;     

 }     

 Next, the global structure  ACfg  is initialized with a few parameters that will help our 
interrupt service routine manage the audio playback: 

 // 9. init the Audio state machine  
 CurBuf = 0;  
 pos = wi+8;               // data begin  
 ACfg.stereo = (wav.channels == 2);  
 ACfg.size = 1;               // #bytes per channel  
 ACfg.fix = 0;               // sign fix / 16 bit file  
 if ( wav.bitpsample == 16)  
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 {               // if 16-bit 
 pos++;               // add 1 to get the MSB  
 ACfg.size = 2;             // two bytes per sample  
 ACfg.fix = 0 x 80;               // fix the sign     

 }     

 During the playback we will keep track of the number of samples extracted from the file, 
to determine when we have reached the end. The 32-bit integer variable  lc  will help us 
keep track of the number of samples left to play. 

 // 10 # of bytes composing the wav data chunk  

 lc = wav.dlength;     

 Notice that so far we have not used the  freadM()  function; we have been (cheating) 
peeking inside the file buffer, knowing  fopenM() already had it loaded. 

 To make the playback smooth, we will use a double buffering scheme so that as the audio 
interrupt routines are fetching data from one buffer, we will take our time to refill the 
other buffer with new data from the file. The array  ABuffer[]  is defined as two blocks 
of B_SIZE  bytes each (see  Figure 16.14   ). 

‘‘fmt’’
chunk

‘‘data’’
chunk

MFILE *f

playWAV( )

ABuffer [1]

ABuffer [0]

AEmptyFlag

Set

T2Interrupt( )

CurBuf

Timer 2

R

L

Clear

OC2

OC1

 Figure 16.14 :     WAVE player dataflow.    
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 For maximum performance,  B_SIZE  should be chosen as the size of a sector or an integer 
multiple of it so that the calls to the freadM()  function will be able to transfer entire 
sectors of data at a time. We will have to verify that the time required for  freadM()  to 
fill one buffer will be shorter than the time required to play back (consume) all the data in 
the second buffer. When starting the double-buffering scheme, we can fill both buffers to 
get a head start: 

 // 11. pre-load both buffer  
 r = freadM( ABuffer[0], B_SIZE*2, f);  
 lc -= r;  

 AEmptyFlag = FALSE;     

 At this point we are ready to initialize the audio playback  “ machine, ”  which will be 
simply our T2Interrupt()  function modified to accommodate two channels for stereo 
playback using the OC1 and OC2 modules. We will initialize the OC modules first 
calling the initAudio()  function and then we will start the Timer2 module and its 
interrupt to activate the playback. 

 // 12. configure Player state machine and start  
 initAudio();  

 startAudio( rate, pos, r-pos);     

 As the timer interrupt is activated, the service routine immediately starts consuming 
data from the first buffer, and as soon as its whole content is exhausted, it will set the 
AEmptyFlag  flag to let us know that new data needs to be retrieved from the WAVE 
file and the second buffer will be selected as the active one. Therefore, to maintain 
the playback flowing smoothly, we will sit in a tight loop, constantly checking for the 
AEmptyFlag , ready to perform the refill, counting the bytes we read from the file until 
we use them all up. 

 // 13. keep feeding the buffers in the playing loop  
 // as long as entire buffers can be filled  
 while (lc  >  0)  
 { // 13.1 check user input to stop playback 
 if ( readKEY())               // if any button pressed  
 { 
 lc = 0;               // playback completed  
 break;     

 }  
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 // 13.2 check if a buffer needs a refill  
 if ( AEmptyFlag)  
 { 
 r = freadM( ABuffer[1-CurBuf], B_SIZE, f);  
 lc-= r;               // decrement byte count  
 AEmptyFlag = FALSE;        // refilled 

 // 13.3  <  < put here additional tasks >  >   
 putsLCD( " \n " );      // on the second line  
 sprintf( s,  " %dKB " , (wav.dlength-lc)/1024); 
 putsLCD( s);             // byte count  
 }        

 } // while wav data available     

 In the  “ feeding ”  loop we need to check for user input, reading the Explorer 16 buttons 
status, so that pressing a button we can stop the playback at any time. Immediately after 
loading a new buffer full of data, we will have a little time to spare, so this is the perfect 
place to put additional (short) tasks, such as updating a byte count on the LCD display, 
for example. 

 When the data left in the file is no longer sufficient to fill an entire buffer load, we can 
pad the buffer to size, repeating the last sample. 

 // 14. pad the rest of the buffer  
 last = ABuffer[1-CurBuf][r-1];  
 while( r < B_SIZE)  
ABuffer[1-CurBuf][r++] = last;  

AEmptyFlag = FALSE;         // refilled     

 We wait then for the completion of the playback of the very last buffer, and we 
immediately terminate the audio playback. 

 // 15.finish the last buffer  
 AEmptyFlag = FALSE;  
 while (!AEmptyFlag);  

// 16. stop playback  

haltAudio();     
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 Closing the file, we will release the allocated memory and we will return to the calling 
application.

 // 17. close the file  
 fcloseM( f);  

 // 18. return with success  
 return TRUE;  

  } // play     

  The Audio Routines 
The playWAV()  function we have just completed relied heavily on the lower-level 
audio functions to perform the actual Timer and OC peripheral initialization as well as 
the actual periodic update of the PWM duty cycle. The OC1 and OC2 modules are used 
simultaneously to produce the left and right channels. The timer interrupt routine will 
remain the real core of the playback functionality, just as in the previous TestDA project. 
A global pointer BPtr  will keep track of our position inside each buffer as we will be 
using up the data to feed the PWM modules with new samples at every period.       

  void __ISR( _TIMER_2_VECTOR, ipl4) T2Interrupt( void)  
  { 
 // 0. allow interrupt nesting  
 asm(  " ei " );  

 // 1. load the new samples for the next cycle  
 OC1RS = 30+(*BPtr ^ ACfg.fix);  
 if ( ACfg.stereo) 
 OC2RS = 30 + (*(BPtr + ACfg.size) ^ ACfg.fix);     

else  // mono 

 OC2RS = OC1RS;        

Note   

 Although we can assign a medium priority to the Timer2 interrupt, we want to immediately 
reenable the interrupts so that a higher-priority interrupt can be immediately nested and 
serviced. After all, we have the luxury of an entire sampling period (22 us @ 44.1       kH) available 
to update the duty cycles of the two OC modules, whereas other higher-priority interrupts (for 
example, the composite video module, if we ’ re to use it simultaneously  . . .  hint) might be less 
willing to wait for this interrupt to complete. 
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   The pointer is advanced by a number of bytes that depends on both the size of the 
samples (16 or 8 bits each) as well as the need to skip samples to reduce the sample rate 
when the playWAV()  function determines it is necessary. 

 // 2. skip samples to reduce the bitrate  

 BPtr += ACfg.skip;     

 As soon as a buffer-load of data is used up, we need to swap the active buffer. 

 // 3. check if buffer emptied  
 if ( --BCount == 0)  
{  
 // 3.1 swap buffers  
 CurBuf = 1- CurBuf;  

 // 3.2. place pointer on first sample  
 BPtr =  & ABuffer[ CurBuf][ACfg.size-1]; 

 // 3.3 restart counter  
 BCount = B_SIZE/ACfg.skip;  

 // 3.4 flag a new buffer needs to be filled  
 AEmptyFlag = 1;  

 }     

 We also reload the samples pointer, reset the samples counter, and set a flag to alert the 
playWAV()  routine that we need a new buffer to be prepared before we run out of data 
again. Only then can we exit after clearing the interrupt flag. 

 // 4. clear interrupt flag and exit  
 mT2ClearIntFlag();  

  } // T2Interrupt     

 The initialization routine is also minimally changed from the original of the TestDA 
project.

  void initAudio( void)  
  { // configures peripherals for Audio playback 

 // 1. activate the PWM modules  
 // CH1 and CH2 in PWM mode, TMR2 based  
 OpenOC1( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 

 0, 0);     
 OpenOC2( OC_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 

 0, 0);     
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 // 2. init the timebase  
 // enable TMR2, prescale 1:1, internal clock, period  
 OpenTimer2(T2_ON | T2_PS_1_1 | T2_SOURCE_INT, 0);  
 mT2SetIntPriority( 4);        // set TMR2 interrupt priority     

  } // initAudio     

 But the actual audio playback is only started when we enable the Timer 2 interrupts, and 
that happens only after the playback state machine is properly initialized:   

  void startAudio( int bitrate, int position, int count)  
  { // begins the audio playback 

 // 1. init pointers and flags  
 CurBuf = 0;               // buffer 0 active first  
 BPtr = ABuffer[ CurBuf] + position;  
 AEmptyFlag = FALSE;  

 // 2. number of actual samples to be played  
 BCount = count/ACfg.skip;  

 // 3. set the period for the given bitrate  
 PR2 = FPB / bitrate-1;  

 // 4. enable the interrupt state machine  
 mT2ClearIntFlag();               // clear interrupt flag  
 mT2IntEnable( 1);             // enable TMR2 interrupt     

  } // startAudio     

 Correspondingly, the  haltAudio()  function is just a matter of disabling the timer 
interrupts and therefore freezing the Output Compare module update, and with it the 
entire state machine. 

  void haltAudio( void)  
  { // stops playback state machine 
 mT2IntEnable( 0);     

  } // halt audio     

 To complete the audio module, we need just a simple header to publish the details of the 
playWAV()  function and make it available to the project main module.       
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  /*
  ** AudioPWM.h 
  */

  int playWAV( char *name);     

  A Simple WAVE File Player 
 Let ’ s create a new main module that we will call  WavePlayer.c . We will use the LCD 
display to prompt the user and to provide a little visual feedback in case of error as 
well as during the playback (see the notes 13.3 inside the core playWAV()  function 
loop).

  /*
  ** WavePlayer.c 
  */
  // configuration bit settings, Fcy=72       MHz, Fpb=36       MHz
  #pragma config POSCMOD=XT, FNOSC=PRIPLL  
  #pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1  
  #pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF  

  #include  < p32xxxx.h >   
  #include  < plib.h >   
  #include  < explore.h >   
  #include  < SDMMC.h >   
  #include  < fileio.h >   
  #include  < LCD.h >   
  #include  " AudioPWM.h "   

  main( void)  
  { 
 initEX16();  
 initLCD();  
 putsLCD(  " Insert card...\n " );  
 while ( !getCD());  
 Delayms( 100);  

 if ( !mount()) 
 putsLCD( " Mount Failed " );     
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 else  
 { 
 clrLCD();  
 putsLCD( " Playing ...  " );  
 if (!playWAV(  " VOLARE.WAV " ))  
 { 
 clrLCD();  
 putsLCD( " File not found " );     

 }     
 }  

 while( 1)  
 {  
 } // main loop     

  } //main     

 Build the project and program the code on the Explorer 16 board using your in-circuit 
debugger of choice, but don ’ t forget to reserve room for the heap because the 
fileio module will use it to allocate buffers and data structures (remember to be 
generous  . . . ). 

 To proceed gradually, I recommend that you test the program with WAVE files of 
increasingly high sample rates and sizes. For example, you should run the first test 
with a WAVE file using 8-bit samples, mono, at 8k samples/second. Then proceed by 
gradually increasing the complexity of the format and the speed of playback, possibly 
aiming to reach with a last test the full capabilities of our application with a 16-bit per 
sample, stereo, 44,100 samples/second file. The reason for this gradual increase is that 
we need to verify whether the performance of the fileio.c module is up to the task. As the 
sample rate, number of channels, and size of the samples increase, so does the bandwidth 
required from the file system. We can quickly calculate the performance levels required 
by a few combinations of the above parameters. 

 Table 16.4    shows the byte rate required by each file format—that is, the number 
of bytes that get consumed by the playback function for every second (sample size  �
channels �  sample rate). In particular, the last column shows how often a new buffer 
full of data will be required to be replenished (512 / byte rate), which gives us 
the time available for the  playWAV()  routine to read the next sector of data from the 
WAV file.



Musica, Maestro   515

 Now if you start experimenting gradually, as I suggested, moving down the table, you 
should be able to verify that you can obtain a smooth playback with any type of WAVE 
file all the way down to the latest row, where a sustained bit rate of more than 1.4 Mbit 
per second ( 8*Byterate ) is required to keep the playback going uninterrupted.  

 Table 16.4 :     WAVE file playback bandwidth requirements.  

File Sample Size  Channels Sample Rate  Byte Rate  Reload 
Period (ms) 

 Voice mono  1  1   8,000    8,000  64.0 

 Voice stereo  1  2   8,000   16,000  32.0 

 Audio 8-bit mono  1  1  22,050   22,050  23.2 

 Audio 8-bit stereo  1  2  22,050   44,100  11.6 

 Audio 8-bit high 
bit-rate mono 

 1  1  44,100   44,100  11.6 

 Audio 8-bit high 
bit-rate stereo 

 1  2  44,100   88,200   5.8 

 Audio 16-bit mono  2  1  44,100   88,200   5.8 

 Audio 16-bit stereo  2  2  44,100  176,400   2.9 

      Note     

 Since we decided for simplicity to use uniformly 8 bits of resolution for the PWM outputs, you 
shouldn ’ t expect any increase in the quality of the audio output once you attempt to play back 
a WAVE file in one of the last two formats. All you will obtain at that point is a waste of the 
space on the SD/MMC memory card. If you want to maximize the use of the available storage 
space, make sure that when you copy a file onto the card, you reduce the sample size to 8 bits. 
That way you will be able to pack a double number of music files on the card. 

  Debriefing 
 This final lesson was perhaps the ideal conclusion for our long journey as we mixed 
the most advanced software and hardware capabilities in a project that covered both 
the digital and the analog domain. We started using the Output Compare peripherals to 
produce analog signals in the audio spectrum of frequencies. We used this new capability 
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together with the fileio.c module, developed in the previous lesson, to play back 
uncompressed music files (WAVE file format) from a mass storage device (SD/MMC 
card). The basic media player application we obtained represents only a new starting 
point. There is no limit to the possible expansions of this project, and if I have managed 
to excite your curiosity and imagination, there is no limit to what you can do with the 
PIC32 and the MPLAB C32 compiler.  

  Tips  &  Tricks 
 The beginning and the end of the playback are two critical moments for the PWM 
modules. At rest the output filter capacitor is discharged and the output voltage is 0 V. But 
as soon as the playback begins, a 50-percent duty cycle will force it to ramp very quickly 
to approximately a 1.5 V level, producing a loud and unpleasant click. The opposite might 
happen at the end should we turn off the PWM modules instead of simply disabling 
the interrupts as we did in the demo project. The phenomenon is not dissimilar to what 
happens to analog amplifier circuits at power-on and -off. A simple workaround consists of 
adding just a couple of lines of code. Before the timer interrupt is enabled and the playback 
machine starts, add a small (timed) loop to gradually increase the output duty cycle from 
zero all the way up to the value of the first sample taken from the playback buffer. 

  Exercises   
  1.     Investigate ADPCM decoding for use with voice messages (see application note 

AN643).

  2.     Search for all the .wav files on the card and build a playlist.  

  3.     Implement a shuffle mode using the pseudo-random number generator and the 
playlist.

  4.     Perform a real-time signal spectrum analysis (FFT) and display the results with a 
video animation (graphic equalizer visualization). 

   Books
        Mandrioli ,    D.   and   Ghezzi ,    C.         ,      Theoretical Foundations of Computer Science        (    John 

Wiley  &  Sons      ,  NY      ,  1987   )        .     Not easy reading, but if you are curious about the deep 
mathematical theoretical foundations of computer science . . .        
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 Links 
http://en.wikipedia.org/wiki/RIFF  . The RIFF file format explained.      

http://en.wikipedia.org/wiki/WAV  . The WAVE file format explained.      

http://ccrma.stanford.edu/courses/422/projects/WaveFormat/  . Another excellent 
description of the WAVE file format.        

  Disclaimer 
 Don ’ t try this at home!  

  Final Note for the Experts 
   “ Nel Blu Dipinto di Blu ”  
 Italy, 1958; Domenico Modugno 
 Written by Franco Migliacci and Domenico Modugno  

Penso che un sogno cosí non ritorni mai piú:
Mi dipingevo le mani e la faccia di blu
Poi d ’ improvviso venivo dal vento rapito
E incominciavo a volare nel cielo infinito
Volare, oh . . . cantare, oh   . . .    

 The lyrics are in Italian. The title translates to  “ In the Blue (Sky), Painted in Blue ”
(volare � to fly). Modugno sings about dreaming of painting his face and hands blue and, 
after being lifted by a sudden wind gust, flying away in the blue sky. 

 Dare to make your dreams came true! 
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sensor  ,   262    
 External clock source (EC) mode  , 

  143
 External low-frequency and low-

power oscillator  ,   142   
 External primary oscillator 

(POSC)  ,   142    

 F
 False logic value  ,   28  ,   29   
 Fast Fourier Transform (FFT)  , 

  153
 algorithm  ,   154–158   
 arrays initialization in  ,   155–156   
 confi guration bit settings  , 

  157–158
 initializations  ,   158   
 symbols used in  ,   156–157    

 FAT  ,   16  
 accessory functions  ,   459  , 

  473–476
 books  ,   482   
 closing a fi le  ,   459  ,   471–472   
 code size  ,   480–481   
 debriefi ng  ,   481   
 exploration  ,   428   
 fi le allocation table  ,   429–430   
 fi leio module  ,   460–462   
 fundamental questions related 

to  ,   433–444   
 links  ,   483   
 opening a fi le  ,   444–454   
 preparation  ,   427–428   
 reading data from a fi le  , 

  454–459
 root directory  ,   430–433   
 sectors and clusters  ,   428–429   
 testing  fopenM()   and

freadM()   ,   463–465   
 testing the complete fi leio 

module  ,   476–480   
 tips  &  tricks  ,   481–482   
 writing data to a fi le  ,   465–471    

 FAT fi le system  ,   427   
fcloseM()   ,   471   
 FFT;    see    Fast Fourier Transform 

(FFT)
 File Allocation Table (FAT)  ,   428  , 

  429–430
 fi leio.c  ,   460  ,   465   
 Files, in project build  

 header fi les  ,   10   
 library fi les  ,   9   
 object fi les  ,   9   
 other fi les  ,   10   
 source fi les  ,   9    

fi ndDIR()   ,   448  ,   449  ,   451  ,   467   
 First-in/fi rst-out (FIFO) buffer  , 

  319–322
 Fixed mapping translation (FMT)  , 

  130–131
 Flash memory  

 bus offering access to  ,   118  ,   121   
 mapping  ,   132–133  ,   134  ,   135   
 memory space allocation  ,   118  , 

  121
 wait states confi guration  , 

  160–163
 Flash memory, of PIC32  ,   390   
 Floating point  ,   69–70  

 measuring performance of;    see
  StopWatch tool    

fmt  chunk  ,   501  ,   504   
Font8x8 [ ]  array  ,   390   
fopenM()   ,   445  ,   450  ,   459   
 For loops  ,   47–48  

 examples of  ,   48–49    
 Fractals, defi nition of  ,   380   
 Frame;    see    Video frame signals   
 Framed Slave mode  ,   349   
freadM()   ,   454  ,   455   
fwriteM()   ,   465–466    

 G
 Gates, Bill  ,   427   
  “getC ()  ”  function  ,   327–328   
  “getK ()  ”  button encoding  , 

  277–280  ,   321   
getKey ()   ,   373   
getLCD ()   ,   229   

 Graphic card  ,   385   
 greater-or-equal to operator  ,   29   
 greater-than operator  ,   29   
 Group priority level  ,   85–86    

 H
haltAudio ()   ,   512   
haltVideo ()   ,   356   
 Hardware interface  

 for generation of composite 
video signal  ,   337    

 HD44780 Controller  
 command bits  ,   223   
 compatibility of with LCD 

display modules  , 
  221–223

 instruction set  ,   222    
 Header fi les  ,   10   
 Heap  ,   128–129   
 Hex dump format  ,   126   
Home ()   ,   394   
 Home computers;    see    ZX 

Spectrum
 Horizontal line signal  ,   336   
 Horizontal synchronization pulse  , 

  336  ,   338  
 generating  ,   342    

 HRES (horizontal resolution);    see
  Resolution

 HyperTerminal Properties dialog 
box  ,   205    

 I
 IBM PC XT  ,   385   
 ICSP/ICD interface  ,   16   
 I 2 C synchronous serial interfaces  , 

  174  ,   175  
 block diagram  ,   174   
vs.  SPI synchronous serial 

interfaces  ,   176–177   
vs.  UART  ,   176–177    

 ICW rotary encoder  ,   283   
ICxC32  control bit  ,   329   
ICxCON  register  ,   329   
ICxFEDGE  control bit  ,   329   
 Image buffers  ,   345–346  

 VH pointer  ,   364    
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 Image memory map  ,   356   
#include   ,   234   
 include directory, creating  , 

  237–240
 include search path  ,   238  ,   240   
 Incremental encoders  ,   280   
initADC()   ,   252   
initAudio()   ,   508   
  “initEX16 ()  ”  function  ,   287   
 initialization  ,   30   
initLCD()   ,   231   
initMedia()  function  ,   412   
initVideo ()   ,   400   
 Inner iteration, in C language  , 

  381–382
 Input capture modules  ,   290–296  

 cost evaluation  ,   308–309    
 Input/output (I/O) pins  ,   200  ,   202  

 direction of  ,   14–15   
 PortA in;    see    PortA   
 PortB in  ,   17–19    

 Input/output (I/O) polling  , 
  309–314

 cost and effi ciency evaluation  , 
  317–319

 testing  ,   314–317    
 Integer data type;    see    Integers   
 Integers  

 in ANSI C standard  ,   62   
 code generated by compiler  ,   63   
 divisions  ,   67–68   
 int integer  ,   62  ,   63   
 long long integers  ,   62  ,   65–66   
 measuring performance of;    see

  StopWatch too   
 multiplication  ,   63   
 optimizations  ,   64  

 testing  ,   64–65     
 Interlacing  ,   336   
 Internal low-frequency and low-

power oscillator (LPRC)  , 
  142

 Internal oscillator (FRC)  ,   142   
 Interrupt

 application of  ,   103–108   
 handler  ,   82  

 declaration  ,   88–89    

 latency  ,   82   
 library management  ,   90   
 managing multiple interrupt  , 

  95–98
 multivectored management;    see

  Multivectored interrupt 
management

 priorities  ,   85–88   
 single vector management;    see

  Single vector interrupt 
management

 sources of  ,   84–85    
 Interrupt-driven rotary encoder 

input  ,   283–287   
 Interrupt Enable bit  ,   85   
 Interrupt Flag bit  ,   85   
 interrupt service routine (ISR)  , 

  82  ;  see also    Interrupt 
handler

 int integers  ,   62  ,   63   
 Isometric projection  ,   376    

 J
 JTAG port  ,   16–17  

 and PortA  ,   16  ,   17   
vs.  ICSP/ICD  ,   16     

 K
 Kata Kana characters  ,   220   
 Kernel mode virtual map  ,   135   
 Keyboards  ,   288  

 interfacing to PS/2  ,   290–324    
 Keyboard-to-host communication 

waveform  ,   289   
 Key code decoding  ,   324–328    

 L
 latency, interrupt  ,   82   
 LCD busy fl ag  ,   228  ,   229   
 LCD display modules  
busyLCD()  function for  , 

  229–231
 and COG technology  ,   220   
 Explorer 16 for  ,   219–221   
 HD44780 compatibility with  , 

  221–223

 initialization sequence  , 
  226–228

 small library of functions to 
access  ,   225–231   

 for WAVE fi le player  ,   513–514    
 25LC256 device datasheet  , 

  179  ,   180  ,   182  ;  see also
  EEPROM, serial   

 LCDlib.c module  ,   276   
 LCD library  ,   231–235   
 LCD module control  

 advanced  ,   341–342   
 PMP confi guration for  , 

  224–225
 LCD module controller RAM 

buffer  ,   220  ;  see also    LCD 
module control   

 LCD module Read Busy Flag  , 
  228   

 LCD status register  ,   228  ,   229   
 LED  ,   415  ,   418  ,   420  ,   421  

 connected to PortA  ,   50    
 less-or-equal to operator  ,   29   
 less-than operator  ,   29   
 lib directory, creating  ,   237–240   
 Library fi les  ,   9   
LINE_T   ,   340   
 Linker script  ,   9  ,   10–11  , 

  125–126
 Linking  ,   9   
 Logical block addresses (LBA)  , 

  414
 Logic analyzer  ,   35–37  ,   358–359  

 measuring performance 
of video interface by  , 
  360–361

 message testing with  ,   53–54   
 view  ,   318  ,   319    

 Logic expression  ,   28   
 Logic operators  ,   28–29   
 long integer  ,   45   
 long long integer  ,   46  ,   62  ,   65–66   
 Loops

 delay loop  ,   33–34   
 do loops  ,   44–45   
 for loops;    see    For loops   
 main loop  ,   30  ,   33–34   
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 for sending message;    see
  Message, loops for   

 while loops  ,   28–30  ,   43  ,   45    
 Low-frequency oscillator  , 

  108–109
 Low-pass fi lter circuit  ,   487  

 analog output of  ,   487    
 Luminance pulse  ,   337    

 M
main ()  function  ,   7  

 infi nite loop for  ,   44    
 Main loops  ,   30  

 delay loops in  ,   33–34    
 Make code  ,   325   
malloc ()   ,   435   
 Mandelbrot, Benoit  ,   380   
 Mandelbrot set  

 algorithm  ,   381–382   
 cardiod  ,   384   
 defi ned  ,   380   
 program  ,   382–384    

 Map fi les  ,   123–126  
 list of archives in  ,   124   
 memory confi guration table  , 

  124–125
 memory sections  ,   125–126    
 Mass storage technologies  , 

  403  ;  see also    Multi media 
card (MMC)  ;   Secure 
digital (SD)card  

 criteria  ,   404    
 master boot record (MBR)  ,   436   
 Math functions  ,   373–376   
 McDonald, Marc  ,   427   
 Mechanical switch  ,   272  

 button inputs  ,   272–280   
 electrical response of  ,   272–273   
 rotary encoders  ,   280–287    

 MEDIA  ,   435  ,   442  ,   444  ,   445   
 Media player  ,   498–499   
memcpy ()   ,   456  ,   469   
 Memory allocation techniques  , 

  118–123
 Memory management unit 

(MMU)  ,   130   

 Memory mapping  
 embedded-control applications 

in  ,   134–135   
 PIC32MX  ,   130–134    

 Memory Usage Gauge  ,   21   
 Message, loops for  

 initializing arrays for  ,   50–51   
 main program with variable 

declarations  ,   51–52   
 testing

 with Explorer 16 
demonstration board  , 
  54–55

 with Logic analyzer  , 
  53–54 

 with PIC32 Starter Kit  , 
  55–57

 timing constants  ,   50    
 Messages, voice  ,   497–498   
 MFILE  ,   444  ,   445  ,   446  ,   448  ,   449  , 

  450  ,   453  ,   454  ,   459  ,   466  , 
  467

 Microchip TC1047A device  , 
  261–266

 Microprocessors  ,   385   
 MicroSD cards  ,   405   
 MiniSD cards  ,   405   
 MIPS core  ,   39  

 assembly programming 
interface  ,   64    

mount()   ,   443  ,   445   
 MPLAB C32 compiler  ,   346   
 MPLAB C32 linker  ,   435–436   
 MPLAB memory usage gauges  , 

  424
 MPLAB SIM, for debugging  , 

  12–13
 MPLAB SIM simulator  ,   357  ,   360   
 MPLAB SIM software simulator  , 

  296  ,   301–302   
mPMPMasterReadByte()   ,   231   
mPMPOpen()   ,   231   
MPSetAddress()   ,   231   
 MSb fi rst  ,   364   
 Multi media card association 

(MMCA)  ,   404   

 Multi media card (MMC)  ,   404  
 connectors pin-out  ,   405    

 Multiple interrupt, managing  , 
  95–98

 coding  ,   95–96   
 steps for new code  ,   97    

 Multivectored interrupt 
management  ,   98–103  

 coding for  ,   101–102   
 Timer2 for  ,   103   
 vector table for  ,   99–100    

 MUXA  ,   252    

 N
newDIR()   ,   467  ,   473   
newFAT()   ,   466  ,   470  ,   474  ,   475   
nextFAT()   ,   457   
 NOT-equal to operator  ,   28   
 NTSC video standard  ,   335  ,   364    

 O
 Object fi les  ,   9   
OC32  control bit  ,   396   
OCM  bits  ,   488   
OCxCON  control register  ,   342  , 

  343  ,   392   
OCxCON  register  ,   488  ,   490   
OCxR  register;    see    OCxCON

register   
OCxRS  register  ,   490   
 OLED;    see    Organic LED displays 

(OLED)
OpenTimerXX ()  function  ,   159   
 Optimizations, integers on  ,   64  

 testing  ,   64–65    
 Organic LED displays (OLED)  , 

  219
 OR operation, binary  ,   365   
 Other fi les  ,   10   
 Output compare modules  , 

  342–344  ,   488–490  
 initialization routine for  ,   490   
 media player and  ,   498–499   
 producing analog waveforms 

with  ,   492–497    
 Output window  ,   301    
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 P
 Pac-Man game program  ,   258–261   
 Painted image  ,   334   
 PAL video standard  ,   335  ,   336   
 Parallel interfaces;    see    Parallel 

master port (PMP)   
 Parallel Master Port (PMP)  ,   177  , 

  223–224
 confi guration for LCD module 

control  ,   224–225    
 partition table  ,   436   
 Performance  ,   144  ,   145   
 peripheral bus clock  ,   147–148   
 Peripheral libraries  ,   40–41   
 Phase locked loops (PLL)  ,   146  

 multiplication factor of  ,   147    
 PIC24  ,   399  ;  see also

  Microprocessors
 PIC32  ,   329  

 interfacing to PS/2  ,   290    
 PIC32 microcontroller  

 amount of RAM to store video 
image in  ,   340  ,   345   

 cache  ,   347  ,   348   
 fl ash memory of  ,   390    

 PIC32MX bus  ,   129–130   
 PIC32MX memory mapping  , 

  130–134
 PIC32 Starter Kit  

 message testing with  ,   55–57    
 PICTail  ,   296   
 PICTail daughter board  ,   407   
 PICTail™  ,   361   
 Pixels, coordinate position of  , 

  364–365
play() ;    see    PlayWAV()   
playWAV()   ,   501–510  

 and audio routines  ,   510–512   
 coding of  ,   503–505   
 and playback sample rate  , 

  506–510
plot ()   ,   366   
 Plotting, of graphical objects  , 

  364–366
PMCON  register  ,   224  ,   245   
PMMODE  register  ,   228  ,   246   

 PMP busy fl ag  ,   228  ,   229   
 PMP data buffer ( PMPDIN )  ,   228   
 PMPDIN;    see    PMP data buffer 

(PMPDIN)
 PMP library  ,   231–235   
PMPMasterWrite()   ,   231   
 PMP mode;    see    Parallel Master 

Port (PMP) mode   
 PMP-to-LCD connection block 

diagram  ,   228   
 Pointers  ,   127–128   
 PortA  ,   7  ,   8  

 direction of pins in  ,   15   
 and JTAG port pins  ,   16  ,   17   
 LEDs connected to  ,   50    

 PortB  ,   17–19   
 PORTD pins  ,   223   
 PORTE pins  ,   223   
POSTEQ_N   ,   340   
 Potentiometer

 and ADC  ,   251–252    
 Power consumption  ,   144–145   
 PR4  ,   309  ,   310   
PREEQ_N   ,   340   
 Preprocessor  ,   6   
 Primary oscillator clock chain  , 

  146–147
 Printing text, on video screen  ,  

 391
 Progress bar project  ,   241–245  

 code for  ,   242–243    
 Progressive scanning  ,   336   
 Project build  

 compiling  ,   9   
 debugging  ,   12–13   
 fi les in  ,   9–10   
 linking  ,   9    

 Project Wizard  ,   4   
PR1  registers  ,   31   
 PS/2

 communication protocol  , 
  289–290

 keyboard, interfacing methods  
 buffering mechanism  , 

  319–324
 change notifi cation (CN) 

module  ,   302–308   
 cost and effi ciency 

evaluation of modules  , 
  308–309  ,   317–319   

 input capture modules  , 
  290–296

 I/O polling  ,   309–319   
 testing using stimulus 

scripts  ,   296–301    
 physical interface  ,   288–289   
 PIC32 interfacing to  ,   290    

 Pseudo-random number 
generators  ,   258  ,   260  

 to test effi ciency of Bresenham 
algorithm  ,   371   

 to test video library project  , 
  366

 Pulse width modulation (PWM) 
mode  ,   485  

 audio routines  ,   510–512   
 and low-pass fi lter  ,   487   
 OC modules;    see    OC modules   
playWAV()   ,   501–510   
 and reproduction of voice 

messages  ,   497–498   
 resolution of  ,   486   
 signals  ,   486–488   
 testing as D/A converter  , 

  488–490
putcU ()   ,   396   
putcV ()   ,   392  ,   396   
putLCD()   ,   240   
putsLCD()   ,   230  ,   232   
 PWM;    see    Pulse width 

modulation (PWM)   
 PWM fi lter circuit, audio  ,   499    

 Q
 Quadrature encoders  ,   281    

 R
\r  character (line end)  ,   233   
 RAM, amount of  

 on PIC32  ,   340  ,   345    
 RAM memory  



Index   525

www.newnespress.com

 bus offering access to  ,   129   
 map fi les  ,   126   
 mapping  ,   132–134   
 memory space allocation  ,   118  , 

  121
 placing heap in  ,   128–129    

rand()   ,   258   
 RCA jack  ,   361   
readDATA()   ,   449  ,   450   
readFAT()   ,   458  ,   459   
 “ readK () ” button encoding  , 

  275–277
readSECTOR()   ,   414  ,   416  ,   436  , 

  449   
READ_SINGLE (CMD17)

command  ,   413–414   
 Read status register command, 

testing  ,   182–186   
ReadW()  macro  ,   441   
 Real-Time Clock and Calendar 

(RTCC)  ,   109–111  
 confi guration of  ,   110–111    

 Resolution, horizontal and 
vertical  ,   340  ,   345  ,   357   

 RIFF chunk  ,   500   
 RIFF fi le format  ,   500  ;  see also

  WAVE fi le format   
 root directory  ,   430–433   
 Rotary encoders  ,   280–283  

 interrupt-driven inputs  , 
  283–287

 state machine  ,   284    
 rotations array  ,   155   
 RS232 transceiver device  ,   198   
 RWTest program  ,   423   
 RX  ,   176    

 S
 SAMP control bit  ,   253  ,   255  , 

  267
 Sampling timing, automating  

 in ADC  ,   254–255    
 Scan codes  ,   324–325   
 Scanning

 progressive  ,   336   
 video image  ,   334    

 SCK clock line  ,   195   
 SCK pin  ,   178  ,   180   
 SCL  ,   174  ,   175   
 SCL Generator timing example 

for basic  ,   298   
 SDA  ,   174  ,   175   
 SDI  ,   174  ,   175  ,   178  ,   193   
 SD/MMC cards  ,   404  ;  see also

  SPI interface  
 to explorer 16 demo board  ,   406   
 project  ,   407–408   
 reading data from  ,   413–415   
 testing  ,   419–424   
 writing data to  ,   416–419    

 SDMMC.c module functions  ,   434   
 SDO  ,   174  ,   178  ,   193   
 SECAM video standard  ,   335  , 

  336   
 Secondary oscillator;    see    Low-

frequency oscillator   
 Sectors  ,   428   
 Secure Digital Card Association 

(SDCA)  ,   404   
 Secure digital (SD) card  ,   404  

 command response code  ,   411   
 connectors pin-out  ,   405   
 initialization  ,   411–413   
 modes of communication  ,   405   
 specifi cations  ,   404  ,   411   
 writing data to  ,   414    

 SEE;    see    EEPROM, serial   
 Serial communication interfaces;   

see    I 2 C synchronous serial 
communication interfaces; 
SPI synchronous serial 
communication interfaces; 
Universal asynchronous 
receiver and transmitters 
(UART)   

 Serial interface engine (SIE), 
USB  ,   215   

 Serialization  ,   346–353   
 Shadow registers  ,   101   
 short integer  ,   46   
 Simulator profi ler  ,   301–302   
sin ()   ,   375  ,   495   

singleV ()   ,   401   
 Single vector interrupt 

management  ,   90–95  
 coding  ,   91  ,   92   
 testing  ,   93   
 Timer2 for  ,   90–91  ,   92  ,   94    

 Sinusoidal function graph  ,   375   
 Slave select (SS)  ,   175   
 Software simulator  ,   10–11   
 Source fi les  ,   9   
 SPI baud rate generator 

( SPI2BRG )  ,   408   
SPI2CON  register  ,   407   
 SPI interface  ,   405  

 selecting  ,   408   
 sending commands in  ,   408–411    

 SPI module  ,   346  
 testing  ,   357–360    

 SPI peripheral module (SPI1)  , 
  406

 SPI synchronous serial interfaces  , 
  174  ;  see also     SPIxCON
control register

 advantage of  ,   175   
 baud rate in  ,   179  ,   180  ,   196   
 block diagram  ,   175   
 clock frequency of  ,   180   
 communication using  ,   179–182   
 module block diagram  ,   178   
 PIC32 ,    175   
vs.  I 2 C  ,   176–177   
vs.  UART  ,   176–177    

SPIxCON  control register  ,   179  , 
  180  ,   194   

 Spreadsheet
 to compute 100-point sinusoid  , 

  496
 Startup code  ,   7   
 Stimulus scripts  ,   296–301   
 StopWatch tool  ,   70–73  

 coding  ,   70–71   
 StepOver command execution  , 

  71–72
 String declaration  ,   116–117   
 Subpriority level  ,   86   
 S-Video  ,   364   
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SV_LINE   ,   355   
SV_POSTEQ   ,   358   
swapV ()   ,   400   
 Synchronization  ,   346–353   
 Synchronization pulses  

 horizontal  ,   336  ,   338   
 vertical  ,   336  ,   339    

 Synchronous serial 
communication interfaces  

 I 2 C;    see    I 2 C synchronous serial 
communication interfaces   

 SPI;    see    SPI synchronous 
serial communication 
interfaces   

versus  UART  ,   174     

 T
T1CON   ,   32–33   
 Temperature sensing  

 in ADC  ,   261–266    
 Temperature sensors;    see

  Microchip TC1047A 
device   

 Text;    see    ASCII character set   
 Text Test project  ,   395   
 Timer1  ,   31–33  ,   226  

 application of  ,   103–108   
 low-frequency oscillator for  , 

  108–109
 Timer2  

 for multivectored interrupt 
management  ,   103   

 for single vector interrupt 
management  ,   90–91  ,   92  , 
  94    

 Timers  
 combining  ,   159–160   
OpenTimerXX ()  for  ,   159   
 Timer1;    see    Timer1   
 Timer2;    see    Timer2   
WriteTimerXX ()  for  ,   159    

T2Interrupt()   ,   508   
 TM162JCAWG1, Tianma  ,   220   
 TMR1  ,   31   
 Tracing function  ,   35–36   
 Triangular waveform  ,   494   

 TRISA register  ,   15   
 True logic value  ,   28  ,   29   
 TV broadcasting  ,   336   
 Two-dimensional function, graph 

of
 visualization  ,   376–380    

 TX  ,   176    

 U
 UART;    see    Universal 

asynchronous receiver and 
transmitters (UART )   

 U2MODE  ,   201  ;  see also
  UxMODE control 
registers  

 initialization value for  ,   201    
 Universal asynchronous receiver 

and transmitters (UART )  ; 
see also    Console library  

 basic functionality of  ,   199   
 baud rate  ,   200  ,   201  ,   202  ,   215   
 baud rate in  ,   176   
 block diagram  ,   176   
 confi guration  ,   200–202   
 control registers;    see    UxMODE 

control registers   
 as debugging tool  ,   211   
 demo project, matrix  ,   211–214   
 modules block diagram  ,   199   
 receiving data from  ,   203   
 sending data to  ,   202–203   
 testing  ,   204–206   
vs.  I 2 C  ,   176–177   
vs.  SPI synchronous serial 

communication interfaces  , 
  176–177

vs.  synchronous serial 
communication interfaces  , 
  174

 USB bus  ,   198  ,   288  ,   290  
 serial interface engine (SIE)  , 

  215
 User-defi ned symbols  ,   240   
 U2STA  ,   201  

 initialization value for  ,   202    
 UxMODE control registers  ,   201    

 V
 Variable declarations  ,   45–46   
 Vectored interrupts  ,   98–103   
 Vertical synchronization pulses  , 

  336  ,   339   
 VGA  ,   364   
 VH pointer  ,   364   
 Video frame signals  ,   336   
 Video image  

 buffering  ,   345–346   
 drawing lines  ,   368–370   
 memory map  ,   346   
 scanning  ,   334    

 Video interfaces  ,   364   
 Video library  ,   353–355   
 Video memory  

 direct memory access 
controller  ,   346   

 image map  ,   346   
 writing text on  ,   387–390    

 Video pins  ,   337  ,   345  ,   346   
 Video project  ,   356–357   
 Video standards, international  , 

  335   
VirtToPhys ()   ,   356   
 Voice messages  

 PWM and reproduction of  , 
  497–498

 Voltage  
 input in ADC  ,   253   
 output in ADC  ,   261    

 VRES (vertical resolution);    see
  Resolution

 VT100 terminal  ,   206  ,   396  
 testing  ,   209–211     

 W
 Wait states confi guration, for fl ash 

memory  ,   160–163   
 WAVE fi le format  ,   500–501  

 uncompressed  ,   499    
 WAVE fi le player  ,   513–515  

 bandwidth require for  ,   515   
 datafl ow  ,   507    

 Waveforms, analog  ,   492–497  
 algorithm for  ,   494   
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 and Boethian notation  ,   495   
 spreadsheet program for  , 

  495–496
 While loop  ,   28–30  ,   43  ,   45  

 logic expression  ,   28–29    
 window array  ,   155   
writeFAT()   ,   475   

writeLCD()   ,   240   
writeSECTOR()  function  ,   416   
WriteSPI2()   ,   181  ,   182   
WriteTimerXX ()  function  , 

  159
 Writing text, on video memory  , 

  387–390

 X
xxCON  registers  ,   224    

 Z
 ZX80 processor;    see

  Microprocessors
 ZX Spectrum  ,   384–385         
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