
PIC Microcontrollers
An Introduction to Microelectronics

Third Edition

Martin Bates

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD

PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB
225 Wyman Street, Waltham, MA 02451, USA

First edition 2000 (published by Arnold)
Second edition 2004
Third edition 2011

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

The right of Martin Bates to be identified as the author of this work has been asserted in accordance with the
Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing
from the publisher. Details on how to seek permission, further information about the Publisher’s permissions
policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than
as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for
any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Number: 2011930131

ISBN: 978-0-08-096911-4

For information on all Newnes publications
visit our website at www.elsevierdirect.com

Printed and bound in the United Kingdom

11 12 13 14 10 9 8 7 6 5 4 3 2 1

http://www.elsevier.com/permissions
http://www.elsevierdirect.com

Preface to the Third Edition

The first edition of this book concentrated on a single chip that was widely used in hobby

electronics and education e the PIC� 16F84A. This has now been superseded by chips

that are faster, cheaper, and more complex and powerful. This has created a dilemma e

whether to still use this chip that is effectively obsolete or substitute a current chip that is

more complicated. In the end, I have done both e sticking with the ’84 due to its relative

simplicity in the initial stages, and then moving on to more recent chips with extra

features, such as the 16F690. At the same time, I have taken advantage of simulation

software that is now available, which provides on-screen animated circuits and

user-friendly microcontroller program debugging.

All the main points in this book are illustrated by simple examples, which are downloadable

from the support website at www.picmicros.org.uk. Program source code can be modified,

reassembled and retested using Microchip’s MPLAB� IDE development system,

downloadable free from www.microchip.com. This website also provides many of the

technical references and data sheets used in the book. The schematic capture and simulation

software is from Labcenter Electronics at www.labcenter.com. A demo version is available, but

to create and test your own applications, a license will be needed. A low-cost package,

including a model for the 16F84A, is currently available.

The book is aimed at beginners, so more experienced readers should skip over any parts that

are already familiar. Some basic principles have been moved to the appendices in this edition,

to make room for updated applications and examples. Again, these are aimed primarily at

learners at college or university, or independent hobbyists. Nevertheless, I hope that more

experienced readers will find some of the examples useful, and will perhaps see the advantages

of some of the techniques described, particularly interactive simulations, which enrich the

application development experience at all levels, and potentially enhance productivity for the

professional electronic design engineer.

Martin Bates
Sussex, England, July 2011

ix

http://www.picmicros.org.uk
http://www.microchip.com
http://www.labcenter.com

Introduction to the Third Edition

The microcontroller is now at the heart of many electronic products. Mobile phones,

microwave ovens, digital television, credit cards, the Internet and many other current

technologies rely on these small, unobtrusive devices to make it all happen.

This book is an attempt to introduce the beginner to this ubiquitous yet complex technology.

Starting with the standard PC (on the basis that most people are familiar with its operation),

the basic concepts and terminology will be established: microprocessor systems, memory,

input and output, and general digital systems ideas. We will then go on to study one of the

biggest selling products the general public has never heard of: the PIC� microcontroller

(MCU). It dominates the market for small-scale industrial applications, with the manufacturer

Microchip Technology Inc. currently reporting annual sales over US $1 billion per annum.

We will start by studying a chip that is no longer commercially significant, but is relatively

simple, with the minimum of advanced features: the PIC 16F84A. This was one of the first

popular small microcontrollers with flash program memory, the kind found in memory sticks.

This allows it to be easily reprogrammed and therefore made it ideal for learning and hobby

electronics. We will learn how to connect up and program this chip, and design simple

applications, such as flashing output LEDs. In addition, simulation software will be

introduced, which makes the design process easier, and more fun. We will then move on to

the PIC 16F690, which has more features and is representative of more recent products in the

PIC range. Many microcontrollers used in real applications such as motor vehicle engine

control or communications systems are more powerful, but the operating principles are just

the same. Other types of control technology will be reviewed for comparison with

microcontrollers.

The book uses numerous examples relating to motor control, because this is a very common

application (disk drives, washing machines, conveyors, etc.). The small direct current motor is

inexpensive and can be easily connected to the output of a PIC via a simple current driver

interface. The response of the motor is easily observed, yet can be complex, which

demonstrates the problems associated with real-time system control. The motor also provides

a link to wider areas of engineering e mechatronics, robots, machine tools and industrial

systems e that is useful for students and engineers in these disciplines.

xi

The big problem with microprocessors and microcontrollers is that, to fully understand how

they work, we have to understand both the hardware and the software at the same time.

Therefore, we have to circle round the subject, looking at the system from different angles,

until a reasonable level of understanding is built up. The book will cover basic hardware

design, interfacing, program development, debugging, testing and analysis using a range of

simple examples. This is supported by appendices, which introduce basic concepts to readers

who do not have this essential background e number systems, digital principles and

microprocessor system concepts, as well as system design exercises. Appendix E covers the

whole design process using the Proteus VSM� electronic design suite.

There is a summary at the start of each chapter, so that its content can be seen at a glance, as

well as a set of questions at the end for self-assessment or formal testing of students (with

full answers at the end of the book) and suggested activities which can be developed into

practical assessments if required. The style of the book is also intended as a model for students

who need to write technical reports for such practical assessments. The stages of application

development should be clearly identified in this case: specification, design, implementation

and testing. Another useful model can be seen in the application notes written by professional

engineers, such as those available on the Microchip website.

The content of each chapter is a compromise between maintaining overall continuity and

allowing each chapter to be read independently. There will therefore be a certain amount of

repetition between chapters, which I hope the reader will not find too irritating, and may aid

learning. It is always difficult to decide exactly what to include in this kind of book, where the

subject is vast and complex. My intention is always to keep it simple, and I hope my selection

will help the reader to begin to get to grips with the fascinating world of microcontrollers,

develop a reasonable understanding of real applications, and perhaps progress to a career in

microcontroller application design. However, an understanding of microcontrollers is essential

for any electrical engineer, since the technology is now central to most electronic products and

industrial systems.

xii Introduction to the Third Edition

CHAPTER 1

Computer Systems

Chapter Outline
1.1. Personal Computer System 5

1.1.1. PC Hardware 6

1.1.2. PC Motherboard 7

1.1.3. PC Memory 9

1.2. Word-Processor Operation 10
1.2.1. Starting the Computer 10

1.2.2. Starting the Application 10

1.2.3. Data Input 11

1.2.4. Data Storage 11

1.2.5. Data Processing 11

1.2.6. Data Output 12

1.3. Microprocessor Systems 13
1.3.1. System Operation 14

1.3.2. Program Execution 15

1.3.3. Execution Cycle 16

1.4. Microcontroller Applications 17
1.4.1. Microcontroller Application Design 17

1.4.2. Programming a Microcontroller 23

Questions 1 25

Activities 1 26

Chapter Points
• A microprocessor system consists of data input, storage, processing and output devices,

under the control of a CPU.

• The main unit of a desktop PC is a modular system, consisting of the motherboard, power supply

and disk drives.

• The motherboard carries the microprocessor (CPU), RAM, BIOS ROM, bus controllers and

I/O interfaces.

• The CPU communicates with the main system chips via a shared set of address and data bus lines.

• The microcontroller provides most of the features of a conventional microprocessor system

on one chip.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10001-1

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

3

http://dx.doi.org/

In this chapter, we will start with something familiar, looking at how a personal

computer (PC) works when running a word processor, to establish a few technical

concepts that are used in microcontrollers (MCUs). Hopefully, most readers will be

familiar with this, and will know how the application functions from the user’s point of

view. Some basic microcontroller system ideas will be introduced by analyzing how

software interacts with computer hardware, allowing the user to enter, store and process

documents. For example, we will see why different kinds of memory are needed to

support the system operation. If you are familiar with these concepts, you can skip this

chapter.

The PC also provides the hardware platform for the PIC� program development system.

The programs for the PIC are written using a text editor, and the machine code

program is created and downloaded to the PIC chip using the PC. The PIC

development system hardware can be seen connected in Figure 1.1. We will see how

this works later.

We will also have a quick look at a basic microcontroller system, set up to operate as a simple

equivalent of the microprocessor-based PC system, to see how it compares. Here, the

microcontroller has a keypad with only 12 keys instead of a keyboard, and a seven-segment

display instead of a screen. Its memory is much smaller than the PC, yet it can carry out the

same basic tasks. In fact, it is far more versatile; the Intel� processors used in the PC are

designed specifically for that system. The microcontroller can be used in a great variety of

circuits, and it is much cheaper.

Figure 1.1
Laptop with PIC demo system attached

4 Chapter 1

1.1. Personal Computer System

The conventional desktop system comprises a main unit, separate keyboard and mouse, and

monitor. The main unit has connectors for these (when wireless peripherals are not available)

and universal serial bus (USB) ports for memory sticks, printers, scanners, etc., as well as

hardwired (Ethernet), or wireless (Wi-Fi) network interfaces. The circuit board (motherboard)

in the main unit carries a group of chips which work together to provide digital processing of

information and control of input and output devices. A power supply for the motherboard and

the peripheral devices is included in the main unit.

The laptop has the same components in a compact form, with integrated keyboard and

screen, while tablet computers are even more compact with a touch-sensitive screen and no

keyboard. The difference between a microprocessor and microcontroller system is

illustrated quite well by comparing a desktop computer with a touch-screen game console

or mobile phone. The facilities and applications are similar, they just differ in scale and

complexity.

A block diagram (Figure 1.2a) is a good way to show such a system in simplified form, so we

can identify the main components and how they connect. In the case of the disk drives and

network, for example, the information flow is bidirectional, representing the process of saving

data to, and retrieving data from, the hard disk or server. The internal architecture of

a microcontroller is shown in its data sheet as a block diagram.

Any microprocessor or microcontroller system must have software to run on the hardware. In

a desktop, this is stored on a hard disk inside the main unit; this can hold a large amount of data

that is retained when the power is off. There are two main types of software required: the

operating system (e.g. Microsoft� Windows) and the application (e.g. Microsoft� Word). As

well as the operating system and application software, the hard disk stores the data created by

the user, in this case, document files.

The keyboard is used for data input, and the screen displays the resulting document. The

mouse provides an additional input device, allowing control operations to be selected from

menus or by clicking on icons and buttons. This provides a much more user-friendly

interface than earlier computers, which had a command-line interface. Then, actions were

initiated by typing a text command such as ‘dir’ to show a directory (folder) of files.

Network specialists still use this type of interface as it allows batch files (list of commands)

to be created to control system operation. The network interface allows us to download data

or applications from a local or remote server, or share resources such as printers over

a local area network (LAN) and provide access to a wide area network (WAN), usually the

Internet. In the domestic environment, a modem is currently needed to connect to the

Internet via a telephone line or cable service. The network browser (e.g. Microsoft� Internet

Explorer) is then another essential application.

Computer Systems 5

1.1.1. PC Hardware

Inside the PC main unit (Figure 1.2b), the traditional motherboard has slots for expansion

boards and memory modules to be added to the system. The power supply and disk drives are

fitted separately into the main unit frame. The keyboard and mouse interface are integrated on

the motherboard. In older designs, expansion boards carried interface circuits for the disk

MAIN
UNIT

Screen

Keyboard

Disk
Drives

Printer

Mouse

Network

USB Ports

Disk Bays

Power Supply

CPU Fan

Motherboard

Expansion Slots

(a)

(b)

Figure 1.2
The PC system: (a) block diagram of PC system; (b) view of PC desktop main unit

6 Chapter 1

drives and external peripherals such as the display and printer, but these functions are now

increasingly incorporated into the motherboard itself. Peripherals are now usually connected

via USB or wirelessly.

The desktop PC is a modular system, which allows the hardware to be put together to meet the

individual user’s requirements, with components sourced from different specialist suppliers,

and allows subsystems, such as disk drives and keyboard, to be easily replaced if faulty. This

also allows easy upgrading (e.g. fitting extra memory chips) and also makes the PC architecture

well suited to industrial applications. In this case, the PC can be ‘ruggedized’ (put into a more

robust casing) for use on the factory floor. This modular architecture is one of the reasons for

the success of the desktop PC hardware, which has continued in the same basic form for many

years, as a universal processor platform. The laptop is the main alternative for the general user,

but it is not so flexible, and tends to be replaced rather than upgraded. Another reason for its

success is the dominance of Microsoft operating systems, which have developed in conjunction

with the Intel-based hardware, providing a standard platform for domestic, commercial and

industrial computers.

1.1.2. PC Motherboard

The main features of typical motherboards are shown in Figure 1.3. The heart of the system is

the microprocessor, a single chip, or central processing unit (CPU). The CPU controls all the

other system components, and must have access to a suitable program in memory before it can

do anything useful. The blocks of program required at any one time are provided by both the

operating system and the application software, which are downloaded to random access

memory (RAM) from the hard disk as required. The programs consist of lists of machine code

instructions (binary code) that are executed in sequence by the CPU.

The Intel CPU has undergone rapid and continuous development since the introduction of the

PC in the early 1980s. Intel processors are classified as complex instruction set computer

(CISC) chips, which means they have a relatively large number of instructions that can be used

in a number of different ways. This makes them powerful, but relatively slow compared with

processors that have fewer instructions; these are classified as reduced instruction set computer

(RISC) chips, of which the PIC microcontroller is an example.

The CPU needs memory and input/output devices for getting data in, storing it and sending it

out again. The main memory block is made up of RAM chips, which are generally mounted in

Dual In-line Memory Modules (DIMMs). As far as possible, input/output (I/O) interfacing

hardware is fitted on the motherboard (keyboard, mouse, USB, etc., preferably wireless), but

additional peripheral interfacing boards may be fitted in the expansion card slots to connect the

main board to extra disk drives and other specialist peripherals, traditionally using the PCI bus,

a parallel data highway 32 bits wide.

Computer Systems 7

All these parts are connected together via a pair of bus controller chips, which handle parallel

data transfers between the CPU and the system. The ‘northbridge’ provides fast access to RAM

and the graphics (screen) interface, while its partner, the ‘southbridge’, handles slower

peripherals such as the disk drives, network and PCI bus. The motherboard itself can be

represented as a block diagram (Figure 1.4) to show how the components are interconnected.

The block diagram shows that the CPU is connected to the peripheral interfaces by a set of bus

lines. These are groups of connections on the motherboard, which work together to transfer the

(a)

(b)

BIOS ROM

RAM DIMM
Slots

Disk
Connectors

Bus
Controller

CPU
Socket

PCI Slots

Interface Chip

Graphics Slot

Keyboard Connector

USB Connector

Mouse Connector

VGA Connector

RAM Boards

Ventilation
System and
CPU

Wireless
Card Slot

Support
Chip

Heatsink

Motherboard

Figure 1.3
PC motherboards: (a) desktop motherboard; (b) laptop motherboard

8 Chapter 1

data from the inputs, such as the keyboard, to the processor, and from the processor to

memory. When the data has been processed and stored, it can be sent to an output peripheral,

such as the screen.

Buses connect all the main chips in the system together, but, because they mainly operate as

shared connections, can only pass data to or from one peripheral interface or memory location

at a time. This arrangement is used because separate connections to all the main chips would

need an impossible number of tracks on the motherboard. The disadvantage of bus connection

is that it slows down the program execution speed, because all data transfers use the same set of

lines, and only one data word can be present on the bus at any one time. To help compensate for

this, the bus connections are as wide as possible. For example, a 64-bit bus, operating at

100MHz (108 Hz), can transfer 6.4 gigabits (6.4� 109 bits) per second. The current generation

of Intel� CPUs also use multiple (typically 4) 64-bit cores in one chip to improve performance.

1.1.3. PC Memory

There are two principal types of memory in the PC system. The main memory block is RAM,

where input data is stored before and after processing in the CPU. The operating system and

application program are also copied to RAM from disk for execution, because access to data in

RAM is faster. Unfortunately, RAM storage is ‘volatile’, which means that the data and

application software disappear when the PC is switched off, and these have to be reloaded each

time the computer is switched back on.

This means that some read-only memory (ROM), which is non-volatile, is needed to get the

system started at switch on. The basic input/output system (BIOS) ROM chip contains enough

MICROPROCESSOR
(CPU)

Keyboard
Mouse

Disk
Drives

BIOS
ROM

Frontside Bus

Northbridge

Southbridge

PCI Bus

Network
USB

RAM Graphics
Interface Screen

LAN / Wi-Fi
Memory Stick
Peripherals, etc.

Figure 1.4
Block diagram of PC motherboard

Computer Systems 9

code to check the system hardware and load the main operating system software from disk. It

also contains some basic hardware control routines so that the keyboard and screen can be used

before the main system has been loaded.

The hard disk is a non-volatile, read and write storage device, consisting of a set of metal disks

with a magnetic recording surface, read/write heads, motors and control hardware. It provides

a largevolume of data storage for the operating system, application and user files. The applications

are stored on disk and then selected as required for loading intomemory; because the disk is a read

andwrite device, user files can be stored, applications added and software updates easily installed.

Standard hard disk drives can now hold over 1 TB (1 terabyte¼ 1012 bytes) of data.

The PC system quickly becomes ever more elaborate, and this description may well already be

out of date in some respects. However, the basic principles of microprocessor system operation

are the same as established in the earliest digital computers, and these also apply to

microcontrollers, as we will see.

1.2. Word-Processor Operation

In order to understand the operation of the PC microprocessor system, we will look at how the

word-processor application uses the hardware and software resources. This will help us to

understand the same basic processes that occur in microcontrollers.

1.2.1. Starting the Computer

When the PC is switched on, the RAM is empty. The operating system, application software

and user files are all stored on the hard disk, so the elements needed to run the word processor

must be transferred to RAM for quick access when using the application. The BIOS gets the

system started. It checks that the hardware is working properly, loads (copies) the main

operating system software (e.g. Windows) from hard disk into RAM, which then takes over. As

you will probably have noticed, this all takes some time; this is because of the amount of data

transfer required and the relatively slow access to the hard drive.

1.2.2. Starting the Application

Windows displays an initial screen with icons and menus, which allow the application to be

selected by clicking on a shortcut. Windows converts this action into an operating system

command which runs the executable file (WINWORD.EXE, etc.) stored on disk. The

application program is transferred from disk to RAM, or as much of it as will fit in the available

memory. The word-processor screen is displayed and a new document file can be created or an

existing one loaded by the user from disk.

10 Chapter 1

1.2.3. Data Input

The primary data input is from the keyboard, which consists of a grid of switches that are

scanned by a dedicated microcontroller within the keyboard unit. This chip detects when a key

has been pressed, and sends a corresponding code to the CPU via a serial data line in the

keyboard cable, or wirelessly. The serial data is a sequence of voltage pulses on a single wire,

which represent a binary code, each key generating a different code. The keyboard interface

converts this serial code to parallel form for transfer to the CPU via the system data bus. It also

signals separately to the CPU that a keycode is ready to be read into the CPU, by generating an

‘interrupt’ signal. This serial-to-parallel (or parallel-to-serial) data conversion process is

required in all the interfaces that use serial data transfer, such as the keyboard, screen and

network (see the appendices formore information on binary coding, and serial and parallel data).

The mouse is a convenient pointer controller for selecting options on screen and drawing

graphics. The original mouse used two rollers set at right angles, with perforated disks

attached. The holes were detected using an opto-sensor, sending pulses representing movement

in two directions to the CPU. This mechanism has been replaced with direct optical sensing of

variations in the surface under the mouse, using complex software to extract the direction and

speed information. This also eliminates unreliable mechanical components.

Data input from a network or USB source is also in serial form, while the internal disk interface

is traditionally in parallel, direct onto the peripheral bus. The parallel connection is inherently

faster, since data bits are transferred simultaneously on all bus lines.

1.2.4. Data Storage

The character data is received by the CPU from the keyboard, or other interface, in parallel

form, via the internal data bus. It is stored in a CPU register and then copied back to RAM.

RAM locations are numbered and accessed via the system address bus, a set of lines that select

a location as a binary number. This is why the CPU has so many pins: for speed of transfer, all

data and address pins, and control lines, are separately connected to the northbridge controller

via the frontside bus, and hence to the RAM. The data is stored in RAM as charge on the gate of

an electronic switch, a field effect transistor (FET; see Appendix B). When charged, the FET is

switched on, and this state can be read back at a later time. The addressing system accesses an

array of these switches in rows and columns to store and retrieve bits of data. Each byte has

a unique address.

1.2.5. Data Processing

The data processing in the CPU required by a simple text editor is minimal; the input

characters are simply stored as binary code and displayed, with a separate graphics processor

Computer Systems 11

converting the character code to a corresponding symbol on the screen. Nevertheless, the

word-processor program has to handle different fonts, word wrapping at the end of lines and

so on. It also has to handle text, page and document formatting, menu systems and the user

interface. Editing embedded graphics is a bit more complex, since each pixel needs handling

separately. The most demanding applications are those where the real world is simulated in

a computer model in order to make predictions about the behavior of complex systems.

Weather forecasting is an extreme example; the fact that we can still only forecast accurately

a few days ahead illustrates the limitations of such system modeling, even on the most

powerful computers.

The circuit simulation software used in this book, Proteus VSM, combining traditional

circuit analysis with an interactive interface, is a good example of system modeling in a PC.

It takes a circuit created as a schematic and applies network analysis (lots of simultaneous

equations) to predict its operation when constructed. For digital elements, logic modeling is

needed, and then the analogue and digital domains are co-simulated. Component

characteristics and input variables are typically represented by 32-bit binary numbers,

which correspond to decimal numbers in exponential form (as on a scientific calculator).

The processor needs to be able to manipulate these circuit variables simultaneously to

represent the circuit conditions at a series of points in time. The output is calculated and

displayed via animated circuit components or virtual instruments, or graphically. Numerous

examples are to follow!

1.2.6. Data Output

Going back to the word processor, the characters must be displayed on the screen as they

are typed in, so the character codes stored in memory are also sent to the screen via the

graphics interface. The display is made up of single colored dots (pixels) organized in lines

across the screen, which are accessed in sequence, forming a scanned display. The shape of

the character on screen must be generated from its code in memory, and sent out on the

correct set of lines at the right time. The display must therefore be created as a two-

dimensional image made up from a serial data stream which sets the color of each pixel on

the screen in turn, line by line, where each line of text occupies a set of adjacent lines.

The exact arrangement depends on the font type and size.

If a file is transferred on a network, it must also be sent in serial form. The characters (letters) in

a text file are normally sent as ASCII code, along with formatting information and network

control codes. ASCII code represents one character as one byte (8 bits) of binary code, and is

therefore a very compact form of the data. The code for the letter ‘A’ (upper case), for example,

is 01000001.

The printer works in a similar way to the screen, except that the output is generated as

lines of dots of ink on a page. In an inkjet printer, you can see the scanning operation

12 Chapter 1

taking place. These days, printer data is usually transferred in serial form on a USB,

wireless or network link. The printer itself is capable of formatting the final output; only

the character code and any formatting codes are needed. A portable document format

(PDF) file is a standard output format for the display and printing of documents containing

text and graphics.

The operation of the word processor can be illustrated using a flowchart, which is a graphical

method of describing a sequential process. Figure 1.5 shows the basic process of text input and

word wrapping at the end of each line. Flowcharts will be used later to represent

microcontroller program operation.

1.3. Microprocessor Systems

All microprocessor systems perform the same essential functions, that is, data or signal input,

storage, processing and output. However, the PC is a relatively complex microprocessor

system, with a hierarchical bus structure, which has developed to improve system performance

by alleviating the bus bottleneck of earlier designs. The Intel PC processor itself also has many

additional performance-enhancing features such as cache memory, multiple processing

pipelines and multiple cores. To understand the microcontroller, we need to go back to

a simpler system.

WORD PROCESSOR

INITIALIZE

KEY PRESSED?

STORE KEY CODE

DISPLAY CHARACTER

END OF LINE?

 WORDWRAP

NO

NO

Figure 1.5
Word-processor flowchart

Computer Systems 13

The basic microprocessor system needs a certain set of chips, with suitable interconnections,

as follows:

• CPU

• RAM

• ROM

• I/O ports.

These devices must be interconnected by:

• Address bus

• Data bus

• Various control lines.

These buses and control lines originate from the CPU, which is in charge of the system. RAM

and ROM chips are usually general purpose hardware, which can be used in any system. The

I/O chips are sometimes designed to work with a particular processor, but all provide specific

interfacing functions. In a basic system, this would be simple digital input and output, with

perhaps a serial port providing an RS232 (see Chapter 12) type data link.

Additional support chips are needed to make a CPU system work. In a minimal system, an

address decoder is needed to select the memory chip or I/O device required for a data transfer

to or from the CPU. This system is illustrated in Figure 1.6a, and there is further information

about microprocessor system operation in Chapter 14 and Appendix C.

1.3.1. System Operation

The CPU controls the system data transfers via the data and address buses and additional control

lines. A clock circuit, usually containing a crystal oscillator (as found in digital watches), is

required; this produces a precise fixed frequency signal that drives the microprocessor along.

The CPU operations are triggered on the rising and falling edges of the clock signal, allowing

their exact timing to be defined. This allows events in the CPU to be completed in the correct

sequence, with sufficient time allowed for each step. The CPU generates all the main control

signals based on the clock. A given CPU can be used in different system designs, depending on

the type of application, the amount of memory needed, the I/O requirements and so on.

The address decoder controls access to memory and I/O registers for a particular design.

Typically, a programmable logic device (PLD) is used to allocate each memory chip to

a specific range of addresses. An input address code in a particular range generates a chip select

output, which enables that device. The I/O port registers, which are set up to handle the data

transfer in and out of the system, are also allocated particular addresses by the same

mechanism, and accessed by the CPU in the same way as memory locations. The allocation of

addresses to particular peripheral devices is called a memory map (Figure 1.6b).

14 Chapter 1

1.3.2. Program Execution

TheROMandRAMwill contain program code and data in numbered locations, that are selected

by a binary code at its address inputs. If the program is in ROM, it can start immediately (as in

the PC BIOS), but RAMmust be loaded from a non-volatile program store, such as a hard disk.

A register is a temporary store for data within the CPU or port. In the port chip, it holds

working data or a control code which sets up how the port will operate. For example, the bits in

the data direction register control whether each port pin operates as an input or an output. The

data being sent in or out is then stored temporarily in the port data register.

The program consists of a list of instructions in binary code stored in memory, with each

instruction and any associated data (operands) being stored in sequential locations. The

program instruction codes are fetched into the CPU and decoded. The CPU sets up the internal

and external control lines as necessary and carries out the operation specified in the program,

such as read a character code from the serial port into the CPU. The instructions are executed in

order of their addresses, unless the instruction itself causes a jump to another point in the

program, or an ‘interrupt’ (signal) is received from an internal or external source. The program

counter keeps track of the current step.

(a)

(b)
Peripheral

Device

Address

Range

Memory

Size

ROM
RAM
Port

CPU

Address
Decoder

ROM RAM
Serial
Port

Address Bus

Data Bus

Control Lines

Clock

Reset

Select RS232

16 registers
32k
1k 0000–03FF

1000–8FFF
E000–E00F

Figure 1.6
Microprocessor system: (a) block diagram; (b) typical memory map

Computer Systems 15

1.3.3. Execution Cycle

Program execution is illustrated in Figure 1.7. Assuming that the application program code is

in RAM, the program execution cycle proceeds as follows:

1. The CPU outputs (1) the address of the memory location containing the required

instruction (this address is kept in the program counter). The sample address is shown in

hexadecimal form (3A24) in Figure 1.7, but it is output in binary form on the address

lines from the processor (for an explanation of hex numbering see Appendix A). The

address decoder logic uses the address to select the RAM chip that has been allocated to this

address. The address bus also connects directly to the RAM chip to select the individual

location, giving a two-stage memory location select process.

2. The instruction code is returned to the CPU from the RAM chip via the data bus (2). The

CPU reads the instruction from the data bus into an instruction register. The CPU then

decodes and executes the instruction (3). The operands (code to be processed) are fetched

(4) from the following locations in RAM via the data bus, in the same way as the

instruction.

3. The instruction execution continues by feeding the operand(s) to the data processing

logic (5). Additional data can be fetched from memory (6). The result of the operation is

stored in a data register (7), and then, if necessary, in memory (8) for later use. In the

meantime, the program counter has been incremented (increased) to the address of the next

instruction code. The address of the next instruction is then output and the sequence

repeats from step 2.

The operating system, the application program and the user data are stored in different parts

of RAM during program execution, and the application program calls up operating system

RAM

CPU sserddAstnetnoC

42A3retnuoCmargorP Instruction 3A24
Operand 3A25

Instruction Register Inst. Code Operand 3A26
Next Instr. 3A27

Data Register Operand etc 3A28

INSTRUCTION
PROCESSING LOGIC

 - - - -

Data Byte 58F1
Data Byte 58F2

Data Register Result Data Byte 58F3
etc - - - -

Step 2

Step 4

Step 1

Step 5

Step 6

Step 7

Step 8

Step 3

Figure 1.7
Program execution sequence

16 Chapter 1

routines as required to read in, process and store the data. PC processors have multi-byte

instructions, which are stored in multiple 8-bit locations, and use complex memory

management techniques to speed up program execution.

1.4. Microcontroller Applications

We have now looked at some of the main ideas to be used in explaining microcontroller

operation: hardware, software, how they interact and how the function of complex systems can

be represented using block diagrams and flowcharts.

The microcontroller provides, in a simplified form, all the main elements of the microprocessor

system on a single chip. As a result, less complex applications can be designed and built

quickly and cheaply. A working system can consist of a microcontroller chip and just a few

external components for feeding data and signals in and out. They tend to be used for control

operations requiring limited amounts of memory but operating at high speed, with external

hardware attached only as required by a specific application.

As an example of a typical microcontroller system, a digital camera, is shown in Figure 1.8(a),

with the microcontroller clearly visible as the large black chip on the main board. A block

diagram is a useful way of identifying the main components and the connections between them

Figure 1.8(b). This is called a mechatronic application, because it has a lot of mechanical

components as well as electronics.

1.4.1. Microcontroller Application Design

A simple microcontroller-based equivalent of the word-processing application described above

is shown in Figure 1.9. The purpose of the system is to store and display numbers that are input

on the keypad. Four inputs and three outputs are required for keypad connection to the

microcontroller, but to simplify the drawing, these parallel connections are represented by the

block arrows. The operation of the keypad is explained in more detail in Chapter 13 (see

Figure 13.3). The seven segment displays show the input numbers as they are stored in the

microcontroller. Each display digit consists of seven light-emitting diodes (LEDs), such that

each digit from 0 to 9 is displayed as a suitable pattern of lit segments.

The basic display program works as follows: when a key is pressed, the digit is displayed on

the right (least significant) digit, and subsequent keystrokes will cause the previously entered

digit to shift to the left, to allow decimal numbers up to 99 to be stored and displayed.

Calculations could then be performed on the data, and the result displayed. Obviously, real

calculators have more digits, but the principle is the same.

The block diagram can then be converted into a circuit diagram using schematic capture

software. Labcenter ISIS, part of the Proteus VSM package, has been used to create

Computer Systems 17

Figure 1.9(b). A provisional choice of microcontroller must be made (which can be changed

later) and the connections worked out. The PIC 16F690 has been selected here because

it has a suitable number of inputs and outputs available, and is used on the Microchip

Technology Inc. (Microchip) demonstration board to be studied later. A programming

connector is also needed to get the program into the MCU. It is not necessary to include

this in the block diagram, as it is implicit in the PIC design.

The starting point for writing the program for the microcontroller is to convert the general

specification such as that given above into a description of the operations, which can be

programmed into the chip using the set of instructions that are available for that

microcontroller. The instruction set is defined by the manufacturer of the device. The process

by which the required function is implemented is called the program algorithm, which can be

described using a flowchart (Figure 1.9c).

(a)

(b)

MCU

Light
Sensor

Lens
Module

LCD
Screen
Module

SD
Memory
Card

 USB Upload

Zoom
Autofocus

Shutter

Image
Data

Functions Flash
Unit

Microcontroller
Board

CCD
Sensor
Module

Shutter Zoom

Figure 1.8
Typical microcontroller system: (a) digital camera (MCU labeled); (b) block diagram of digital

camera

18 Chapter 1

This flowchart is now converted into a program, which is listed as Program 1.1. This

source code is typed into a text editor and converted into a machine code program in the

host PC, and downloaded to the chip via a programming module connected to the USB

port (Figure 1.11). The main object of this book is to provide the reader with sufficient

information to develop this kind of simple application, with a view to progressing to more

complex projects. Proteus VSM allows the circuit to be tested on screen, with this program

(a)

(b)

(c)

MCU

MICROCONTROLLER

0

1 2 3

4 5 6

7 8 9

#*

KEYPAD
Select
Row

Read
Column

DISPLAY

Output Digit

KEYPAD

INITIALIZE

SCAN KEYPAD

SHIFT MSD LEFT

DISPLAY LSD

KEY PRESSED? NO

Figure 1.9
Keypad display system: (a) block diagram; (b) schematic; (c) flowchart (MSD: most significant digit;

LSD: least significant digit)

Computer Systems 19

 00001 ; ************************
 00002 ; KEY690.ASM
 00003 ; MPB Ver 1.0
 00004 ; Demo program scans
 00005 ; a keypad and
 00006 ; displays two digits
 00007 ;*************************
 00008
 00009 ; MCU setup directives
 00010
 00011 PROCESSOR 16F690
2007 00C4 00012 __CONFIG 00C4
 00013 INCLUDE "P16F690.INC"
 00001 LIST
 00002 ; P16F690.INC
 00607 LIST
 00000020 00014 DIGIT EQU 20
 00015
 00016 ; Setup for digital inputs
 00017
0000 1283 1703 00018 BANKSEL ANSEL
0002 019E 00019 CLRF ANSEL
0003 019F 00020 CLRF ANSELH
 00021
 00022 ; Set port data direction
 00023
0004 1683 1303 00024 BANKSEL TRISA
0006 0185 00025 CLRF TRISA
0007 0187 00026 CLRF TRISC
 00027
 00028 ; Initialise ports
 00029
0008 1283 1303 00030 BANKSEL PORTA
000A 30FF 00031 MOVLW 0FF
000B 0085 00032 MOVWF PORTA
000C 0187 00033 CLRF PORTC
 00034
 00035 ; Main loop shows digits
 00036
000D 01A0 00037 Next CLRF DIGIT
000E 2019 00038 CALL Scan
000F 1E20 00039 BTFSS DIGIT,4
0010 280D 00040 GOTO Next
 00041
0011 1220 00042 BCF DIGIT,4
0012 0E87 00043 SWAPF PORTC
0013 0807 00044 MOVF PORTC,W
0014 39F0 00045 ANDLW 0F0
0015 0087 00046 MOVWF PORTC
 00047
0016 0820 00048 MOVF DIGIT,W
0017 0487 00049 IORWF PORTC
0018 280D 00050 GOTO Next
 00051
 00052 ; Scan keypad subroutine

Source Code
Line Number

Memory Location

Machine
Code

Program 1.1
Keypad program list file

20 Chapter 1

 00053
0019 1185 00054 Scan BCF PORTA,3
001A 1F06 00055 BTFSS PORTB,6
001B 2839 00056 GOTO one
001C 1E86 00057 BTFSS PORTB,5
001D 2848 00058 GOTO four
001E 1E06 00059 BTFSS PORTB,4
001F 2857 00060 GOTO seven
0020 1585 00061 BSF PORTA,3
 00062
0021 1105 00063 BCF PORTA,2
0022 1F86 00064 BTFSS PORTB,7
0023 2834 00065 GOTO zero
0024 1F06 00066 BTFSS PORTB,6
0025 283E 00067 GOTO two
0026 1E86 00068 BTFSS PORTB,5
0027 284D 00069 GOTO five
0028 1E06 00070 BTFSS PORTB,4
0029 285C 00071 GOTO eight
002A 1505 00072 BSF PORTA,2
 00073
002B 1205 00074 BCF PORTA,4
002C 1F06 00075 BTFSS PORTB,6
002D 2843 00076 GOTO three
002E 1E86 00077 BTFSS PORTB,5
002F 2852 00078 GOTO six
0030 1E06 00079 BTFSS PORTB,4
0031 2861 00080 GOTO nine
0032 1605 00081 BSF PORTA,4
 00082
0033 0008 00083 RETURN
 00084
 00085 ; Get number when key hit
 00086
0034 3010 00087 zero MOVLW 010
0035 00A0 00088 MOVWF DIGIT
0036 1F86 00089 BTFSS PORTB,7
0037 2834 00090 GOTO zero
0038 2819 00091 GOTO Scan
 00092
0039 3011 00093 one MOVLW 011
003A 00A0 00094 MOVWF DIGIT
003B 1F06 00095 BTFSS PORTB,6
003C 2839 00096 GOTO one
003D 2819 00097 GOTO Scan
003E 3012 00099 two MOVLW 012
003F 00A0 00100 MOVWF DIGIT
0040 1F06 00101 BTFSS PORTB,6
0041 283E 00102 GOTO two
0042 2819 00103 GOTO Scan
 00104
0043 3013 00105 three MOVLW 013
0044 00A0 00106 MOVWF DIGIT
0045 1F06 00107 BTFSS PORTB,6
0046 2843 00108 GOTO three
0047 2819 00109 GOTO Scan

Program 1.1: (continued)

Computer Systems 21

attached to the MCU. Animated inputs and outputs provide instant results, allowing the

program to be developed and debugged quickly and easily (see Appendix E). The list file

shown contains the source code and machine code, which will be explained in the next

chapter.

With suitable development of the software and hardware, the system could be

modified to work as a calculator, message display, electronic lock or similar

application; for example, more digits could be added to the display. Keyboard

scanning and display driving are standard operations for microcontrollers, and the

techniques mentioned here to create a working application will be discussed fully

in later chapters.

 00110
0048 3014 00111 four MOVLW 014
0049 00A0 00112 MOVWF DIGIT
004A 1E86 00113 BTFSS PORTB,5
004B 2848 00114 GOTO four
004C 2819 00115 GOTO Scan
 00116
004D 3015 00117 five MOVLW 015
004E 00A0 00118 MOVWF DIGIT
004F 1E86 00119 BTFSS PORTB,5
0050 284D 00120 GOTO five
0051 2819 00121 GOTO Scan
 00122
0052 3016 00123 six MOVLW 016
0053 00A0 00124 MOVWF DIGIT
0054 1E86 00125 BTFSS PORTB,5
0055 2852 00126 GOTO six
0056 2819 00127 GOTO Scan
 00128
0057 3017 00129 seven MOVLW 017
0058 00A0 00130 MOVWF DIGIT
0059 1E06 00131 BTFSS PORTB,4
005A 2857 00132 GOTO seven
005B 2819 00133 GOTO Scan
 00134
005C 3018 00135 eight MOVLW 018
005D 00A0 00136 MOVWF DIGIT
005E 1E06 00137 BTFSS PORTB,4
005F 285C 00138 GOTO eight
0060 2819 00139 GOTO Scan
 00140
0061 3019 00141 nine MOVLW 019
0062 00A0 00142 MOVWF DIGIT
0063 1E06 00143 BTFSS PORTB,4
0064 2861 00144 GOTO nine
0065 2819 00145 GOTO Scan
 00146
 00147 END ; of program

Program 1.1: (continued)

22 Chapter 1

1.4.2. Programming a Microcontroller

For the examples in this book, we will be using PIC chips that have flash ROM program

memory, which can be easily erased and reprogrammed. This is very useful when learning,

Programmed PIC

chip then fitted in

application circuit

HOST

COMPUTER

Edit, Assemble,
Test, Debug and

Download
PIC Program

APPLICATION

CIRCUIT

PROGRAMMER

UNIT

With Chip Socket Serial Link

PIC chip being

programmed

(a)

(b)

(c)

Figure 1.10
Preprogramming a PIC microcontroller: (a) block diagram; (b) programming unit (courtesy of

Microchip� Technology Inc.); (c) demo target board

Computer Systems 23

but also allows the firmware (microcontroller program) to be upgraded in any application,

e.g. adding an app to a mobile phone, or upgrading its operating system. It is the same kind of

memory used to store the image data in the SD card in the camera, and for general storage in

a memory stick.

There are two ways of programming the PIC microcontroller. The preprogramming

system is shown in Figure 1.10. The programming interface is the basic PICSTART

Plus module, which accepts dual-in line (DIL) pin-out PIC chips up to 40 pins in

a zero insertion force socket. The serial connection to the host PC COM port is

made via an RS232 lead. This protocol is rather slow, and the COM port connector

is not usually fitted to current PCs, so it is being replaced by USB in current

programmers.

HOST

COMPUTER

Edit, Assemble,
Test, Debug and

Download
PIC Program

APPLICATION

CIRCUIT

With PIC Chip
PROGRAMMER

DEBUGGER

USB Link

(a)

(b)

Figure 1.11
In-circuit programming: (a) block diagram; (b) ICSP/ICD programming interface and PIC

mechatronics target board

24 Chapter 1

Alternatively, the PIC can be programmed in circuit, that is, after it has been fitted into the

finished circuit board. This is known as in-circuit serial programming (ICSP), and the same

hardware can also support in-circuit testing and debugging (ICD), as seen in Figure 1.11.

The in-circuit programming module is the Microchip ICD2, which connects to the host via

USB and to the target system via a six-way RJ-45 connector. In this case, the application board

is the PIC Mechatronics demo board, which is used to investigate control of brushed dc motors

and stepper motors.

The program is written as a text file and converted (assembled) to machine code (hex) in the

host computer, using suitable development system software, usually Microchip MPLAB

integrated development environment (IDE). Mistakes in the source code must be corrected

before a hex file can be successfully created. The program operation can then be tested in

MPLAB and downloaded to the target system.

Electronic computer-aided design (ECAD) software such as Proteus VSM also allows us to

simulate the circuit on screen, in order to debug the program before downloading. The

complete circuit can then be checked for correct operation, ideally by running the

microcontroller in debug (fault-finding) mode, if this is supported by that particular device. All

these techniques will be explained later on.

The basic technology for implementing digital systems is described in appendices at the back

of this book. If you are not familiar with any of these hardware concepts, please refer to these

sections as necessary. Appendix A covers information coding and assembler programs,

Appendix B describes the basic electronics of digital systems, and Appendix C show how these

work together to provide data input, storage, processing and storage devices.

Questions 1

1. Name at least two PC user input devices, two user output devices and two storage
devices. (6)

2. Why is the BIOS ROM needed to start the PC, and why does the start-up take
some time? (4)

3. Why are shared bus connections used in a microprocessor system, even though it
slows down program execution? (2)

4. State two advantages of the PC hardware modular design. (4)
5. State the differences between ROM and RAM and the significance for operation of

the PC and typical MCU. (4)
6. State the function, in one sentence, of the following microprocessor system elements:

(a) CPU (2)
(b) ROM (2)
(c) RAM (2)
(d) Address bus (2)
(e) Data bus (2)
(f) Address decoder (2)

Computer Systems 25

(g) Program counter (2)
(h) Instruction register. (2)

7. Explain the essential differences between a typical microprocessor system and
microcontroller, and their applications. (8)

8. Outline the stages in the development of a microcontroller application. (6)

Answers on page 417e18. (Total 50 marks)

Activities 1

1. Open the system folder (control panel, system, device manager) on a PC or laptop and list the
hardware features of the system, noting the characteristics of the CPU, memory and all the
interfaces installed. Investigate why a ‘software driver’ is needed for each peripheral device,
and report briefly on each, identifying the interface hardware, its function, driver name,
version and other relevant information.

2. Under supervision if necessary, carry out the following investigation:
Disconnect the power supply, remove the cover of the main unit of a desktop PC and
identify the main hardware subsystems: power supply, motherboard and disk units. On
the motherboard, identify the CPU, RAM modules, expansion slots, and the keyboard,
graphics, disk and network interface. Photograph or sketch and identify the system main
unit components. Compile an inventory of the system hardware, including relevant
information from Activity 1.

3. Run a word processor and study the process of word wrapping, which occurs at the end of
each line. Describe the algorithm that determines the word placement, and the significance of
the space character in this process. Draw a flowchart to represent this process.

4. Select a typical microcontroller application, such as a mobile phone or coffee machine, write
a description of how it works and devise a block diagram of the system, as shown in the digital
camera in Figure 1.8.

26 Chapter 1

CHAPTER 2

Microcontroller Operation

Chapter Outline
2.1. Microcontroller Architecture 28

2.1.1. Program Memory 29

2.1.2. Program Counter 30

2.1.3. Instruction Register and Decoder 30

2.1.4. Timing and Control 31

2.1.5. Arithmetic and Logic Unit 31

2.1.6. Port Registers 31

2.1.7. Special Function Registers 32

2.2. Program Operations 33
2.2.1. Single Register Operations 35

2.2.2. Register Pair Operations 36

2.2.3. Program Control 38

Questions 2 43

Activities 2 43

Chapter Points
• The PIC microcontroller contains a program execution section and a register processing section.

• The program is list of binary machine code instructions stored in flash memory.

• The program counter steps through the program addresses, and the instructions are decoded and

executed.

• Data is transferred via port registers, stored in RAM/registers and processed in the ALU.

• Special function registers store control, setup and status information.

• Instructions move or process data, or control the execution sequence.

• The content of the data registers is manipulated as single data words or using register pairs.

• Program jumps can be unconditional or conditional, using bit testing or status bits to determine

the sequence.

• Subroutines are distinct program blocks which operate using call, execute and return.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10002-3

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

27

http://dx.doi.org/

In Chapter 1, some basic ideas about microprocessor system operation were introduced. In

order to understand the operation of a typical microcontroller (MCU), some knowledge of both

the internal hardware arrangement and the instruction set is required, so in this chapter we will

look at some basic elements of PIC� microcontroller architecture and essential features of

machine code programs.

If necessary, the reader should refer to the appendices for details of number systems and

assembler coding (Appendix A), logic circuit devices (Appendix B) and data system operation

(Appendix C). These will also allow the PIC microcontroller data sheets, which form the

primary technical reference, to be more readily understood. All PIC data sheets can be

downloaded from the Microchip website www.microchip.com, by selecting MCUs, 8-bit, PIC

16 Family. A table of all 16 series chips, in numerical order, allows their features to be

compared and their PDFs to be downloaded and stored locally for ease of access.

2.1. Microcontroller Architecture

The architecture (internal hardware arrangement) of a complex chip is best represented as

a block diagram. This allows the overall operation to be described without having to analyze

the internal circuit, which is extremely complex, in detail. PIC data sheets contain a definitive

block diagram for each chip. Our starting point is the PIC 16F84A chip, because it has all the

basic features but none of the more advanced elements that will be covered later. Also, the

model for this chip is provided in the entry-level Proteus VSM microcontroller simulation

package. Unfortunately, this chip is now effectively obsolete for new designs and is relatively

expensive compared with more recently introduced chips, which actually have more features,

such as the 16F690 that we will examine later on.

Simplified versions of the block diagrams from the data sheets will be used to help explain

particular aspects of the chip operation. A general block diagram that shows some of the

common features of PIC microcontrollers is seen in Figure 2.1. It shows that the MCU can be

considered in two parts: the program execution section and the register processing section.

Note that the program and data are accessed separately, and do not share the same data bus, as

is the case within some processor systems. This arrangement, known as Harvard architecture,

increases overall program execution speed. The timing and control block coordinates the

operation of the two parts as determined by the program instructions, and responds to external

control inputs, such as the reset and interrupts.

The program execution section contains the program memory, instruction register and control

logic, which store, decode and execute the program. The register processing section has a block

of random access memory (RAM), which starts with the special function registers (SFRs) that

are used to control the processor operations, including the port registers, which are used for

input and output. The rest of this RAM block provides general purpose registers (GPRs) for

28 Chapter 2

http://www.microchip.com

data storage. The arithmetic and logic unit (ALU) processes the data, e.g. add, subtract and

compare.

In some microcontrollers and microprocessors, the main data register is called the accumulator

(A), but the name working register (W), used in the PIC system, is a better description. It

holds the data that the processor is working on at the current time, and most data has to

pass through it. For example, if a data byte is to be transferred from the port register to a RAM

data register, it must be moved into W first. The working register works closely with the

ALU in the data processing operations. Instructions may operate on Wor on the RAM register,

which includes the ports and SFRs.

2.1.1. Program Memory

Microcontrollers used for prototyping and short production runs use flash memory to store the

program. The program can be downloaded while the chip is in the application circuit (in-circuit

programming). Alternatively, the chip is placed in a programming unit attached to the host

computer for program downloading, before fitting it in the application board. For longer

production runs, preprogrammed chips can be ordered from the manufacturer, which use mask

programmed ROM, where the program is incorporated during chip fabrication.

The PIC 16 program consists of a list of 14-bit binary codes, each containing the instruction

and operand (data) in one operation code. The program starts at address zero and the

Clock

Reset

Interrupts

Program Counter

Working
Register

ALU

Timing, Control & Register Selection

ROM
Program
Memory

Special
Function
Registers

Instruction
Decoder

Instruction
Register

RAM Data
Registers

Program Execution Section Register Processing Section

Modify

Address

Literal

Address

Operation

Set Up

Port
Regs

Port
Regs

Input /

Output

Input /

Output

Set

Up

&

Data

Stack

Status

Internal Data Bus

Set Up

Figure 2.1
General microcontroller block diagram

Microcontroller Operation 29

instructions are executed in turn unless a branch instruction or an external ‘interrupt’ occurs.

Usually, the last instruction causes a loop back to repeat the control sequence. The capacity of

the program memory block is one of the most significant features of each PIC, varying from

1024 to 8096 instructions in the 16 series. The higher power PIC 18, 24, 32 and dsPIC ranges

offer more memory, input/output (I/O) and peripheral features.

2.1.2. Program Counter

The Program Counter (PC) is a register that keeps track of the program sequence, by storing the

address of the instruction currently being executed. It is automatically loaded with zero when

the chip is powered up or reset. The program counter is file register number 2 in the SFR set. As

each instruction is executed, PC is incremented (increased by one) to point to the next

instruction. Program jumps are achieved by reloading PC to point to an instruction other than

the next in sequence. This new address is provided in the instruction.

Often, it is necessary to jump from address zero to the start of the actual program at a higher

address, because special control words must be stored in particular low addresses. Specifically,

PIC 16 devices use address 004 to store the ‘interrupt vector’ (start address of the interrupt

routine). In this case, the main program must not be located at address zero; instead, a jump to

a higher address should be placed there. An assembler directive is then needed to place the start

of the program at a higher address. This problem can be ignored for programs that do not use

interrupts, and such simple programs will be located by default at address zero. Interrupts will

be explained in more detail later.

Associated with the program counter is the ‘stack’. This is a temporary program counter store.

When a subroutine is executed (see Chapter 5, Section 5.2.4), the stack register temporarily

stores the current address, so that it can be recovered at a later point in the program. It is called

a stack because the addresses are restored to the PC in the reverse order to which they were

stored, that is, ‘last in, first out’ (LIFO), like a stack of plates.

2.1.3. Instruction Register and Decoder

To execute an instruction, the processor copies the instruction code from the program memory

into the instruction register (IR). It can then be decoded (interpreted) by the instruction

decoder, which is a combinational logic block which sets up the processor control lines as

required. These control lines are not shown explicitly in the block diagram, as they go to all

parts of the chip, and would make it too complicated. In the PIC, the instruction code includes

the operand (working data), which may be a literal value or register address. For example, if

a literal (a number) given in the instruction is to be loaded into the working register (W), it is

placed on an internal data bus and the W register latch enable lines are activated by the timing

and control logic. The internal data bus can be seen in the manufacturer’s block diagram

(Figure 1-1 in the PIC 16F84A data sheet).

30 Chapter 2

2.1.4. Timing and Control

This sequential logic block provides overall control of the chip, sending signals to all parts of

the chip to move the data around and carry out logical operations and calculations (see

Appendix C). A clock signal is needed to drive the program sequence; it is traditionally derived

from an external crystal oscillator, which provides an accurate, fixed frequency signal. More

recent chips have an internal oscillator, which saves on external components.

A maximum frequency of operation is always specified; most current PIC 16 chips run at

a maximum of 20MHz, although newer designs reach 32MHz. All can operate at any

frequency below this maximum, down to 0Hz. This is referred to as a static design: the clock

can be stopped and the current MCU status will be retained. It takes four clock cycles to

execute one instruction, unless it involves a jump, when it is eight. However, the execution of

successive instructions overlaps to double the effective speed (pipelining; see data sheet).

The program starts automatically at program location zero, as long as the reset input is

connected high (power-on reset). If required, a push button reset can be connected, which takes

this input low for a manual reset. This should not normally be needed, but if there is a bug in the

program or another system fault that causes the program to hang (get stuck in loop), a manual

reset is useful, particularly during prototyping.

The only other way to stop or redirect a continuous loop is via an interrupt. Interrupts are

signals generated externally or internally, which force a change in the sequence of operations.

If an interrupt source goes active in the PIC 16, the programwill restart at program address 004,

where the sequence known as the ‘interrupt service routine’ (or a jump to it) must be stored.

More details are provided in Chapter 6.

2.1.5. Arithmetic and Logic Unit

This is a combinational logic block that takes one or two input binary words and combines them

to produce an arithmetic or logical result. In the PIC, it can operate directly on the contents of

a register, but if a pair of data bytes is being processed (e.g. added together), one must be in W.

The ALU is set up according to the requirements of the instruction being executed by the timing

and control block. Typical ALU/register operations are detailed later in this chapter.

2.1.6. Port Registers

Input and output in a microcontroller are achieved by simply reading or writing a port data

register. If a binary code is presented to the input pins of the chip by an external device (e.g.

a set of switches), the data is latched into the register allocated to that port when it is read in the

program. This input data can then be moved (or more accurately, copied) into another register

for processing. If a port register is initialized for output, the code moved to its data register is

Microcontroller Operation 31

immediately available at the pins of the chip. It can then be displayed externally, for example,

on a set of light-emitting diodes (LEDs).

Each port has a ‘data direction’ register associated with its data register. This allows each pin to

be set individually as an input or output before the data is read from or written to the port data

register. A ‘0’ in the data direction register sets the port bit as an output, and a ‘1’ sets it as an

input. These port registers are mapped (addressed) as SFRs, starting from register 05 for port A,

06 for port B, and so on in the original PIC 16 specification. In more recently introduced chips

(e.g. 16LF1826), which need more registers, the ports start at 0Ch (h is a suffix indicating

a hexadecimal number; see Appendix A). The port data direction registers are mapped into

a second register bank (bank 1)with addresses starting at 85h for portA, 86h for portB, and so on.

2.1.7. Special Function Registers

These numbered registers provide dedicated program control registers and processor status

bits. In the PIC, the program counter, port registers and spare registers are all mapped as part of

a block that starts at zero and ends at 0Bh in the 16F84A. For example, the program counter is

register number 02. The working register is the only one that is not located in the main register

block, and is accessed by specifying it in the instruction.

All processors contain control and status registers whose bits are used individually to set up the

processor operating mode, or record significant results from those operations. In the PIC 16, the

status register is located at SFR 03. The most frequently used bit is the zero flag. This is

internally set to 1 if the result of any operation is zero in the destination register (the register

that receives the result). The carry (C) flag is another bit in the status register; it is set if the

result of an arithmetic operation produces a carry-out of the most significant bit of the

destination register, that is, the register overflows.

The status register bits are often used to control program sequence by conditional branching.

Alternate sections of code are executed depending on the condition of the status flag. In the PIC

instruction set, this is achieved by an instruction that tests the bit and skips the next instruction

if it is 0 or 1. The bit test and skip instruction is generally followed by a jump instruction to take

the execution point to another part of the program, or not, as the case may be. This will be

explained more fully in the next section.

The most important SFRs in the 16F84A are listed in Table 2.1. The RAM is divided into

blocks, where bank 0 contains registers 00h to 7Fh, bank 1 registers 80h to FFh and so on, that

is, 128 registers per bank. The SFRs are located at the bottom (lowest addresses) of each

register bank (but the data sheet RAM block diagram shows them at the top). Some

registers are duplicated in different banks (e.g. program counter, PCL), while others are unique

(e.g. data direction register, TRISA). More complex chips that need more registers have extra

banks of RAM. For example, the 16LF1826 has eight. The exact arrangement for each chip

32 Chapter 2

must be carefully studied in the data sheet before attempting any programming for that chip. A

standard header file is available for all chips which assigns the data sheet labels to the SFRs.

2.2. Program Operations

We can see in Appendix A that a machine code program consists of a list of binary codes stored

in the microcontroller memory. They are decoded in sequence by the processor block, which

generates control signals that set up the microcontroller to carry out the instruction. Typical

operations are:

• Load a register with a given number.

• Copy data from one register to another.

• Carry out an arithmetic or logic operation on a data word.

• Carry out an arithmetic or logic operation on a pair of data words.

• Jump to an alternative point in the program.

• Test a bit or word and jump, or not, depending on the result of the test.

• Jump to a subroutine, and return later to the same point.

• Carry out a special control operation.

The machine code program must be made up only from those binary codes that the instruction

decoder will recognize. These codes can be read off from the instruction set given in the data

sheet. When computers were first developed, this was exactly how the program was entered, in

binary, using a set of switches. This is obviously time consuming and inefficient, and it was

soon realized that it would be useful to have a software tool that would generate the machine

code automatically from a program written in a more user-friendly form. Assembly language

programming was therefore developed, when computer hardware had moved on enough to

make it practicable.

Table 2.1: Selected PIC 16 special function registers

File
Register
Address

Name Function

Bank 0
01 TMR0 Timer/Counter allows external and internal clock pulses to be counted
02 PCL Program Counter stores the current execution address
03 STATUS Individual bits record results and control operational options
05 PORTA Bidirectional input and output bits
06 PORTB Bidirectional input and output bits
0B INTCON Interrupt control bits
Bank 1
85 TRISA Port A data direction bits
86 TRISB Port B data direction bits

Microcontroller Operation 33

Assembly language allows the program to be written using mnemonic (memorable) codes.

Each processor has its own set of instruction codes and corresponding mnemonics. For

example, a commonly used instruction mnemonic in PIC programs is ‘MOVWF’, which

means move (actually copy) the contents of the working register (W) to a file register that is

specified as the operand. The destination register is specified by number (file register

address), such as 0Ch (the first general purpose register in the PIC 16F84A). The complete

instruction is:

MOVWF 0C

This is converted by the assembler software (MPASM.EXE) to the hexadecimal code specified

in the instruction set:

008C

The binary code stored in program memory is therefore

0000001 0001100

Note that the instruction is 14 bits in total, with the operand represented, in this case, by the

last seven bits, and the operation code the first seven. The op-code bits are used by the

instruction decoder to select the correct source and destination registers (W and SFR 0C)

prior to the operation. A following clock edge will then trigger the copy operation on the

internal data bus.

There are two main types of instruction, with four identifiable subgroups within each:

1. Data processing operations:

MOVE: copy data between registers

REGISTER: manipulate data in a single register

ARITHMETIC: combine register pairs arithmetically

LOGIC: combine register pairs logically.

2. Program sequence control operations:

UNCONDITIONAL JUMP: jump to a specified destination

CONDITIONAL JUMP: jump, or not, depending on a test

CALL: jump to a subroutine and return

CONTROL: miscellaneous operations.

Together, these types of operations allow inputs to be read and processed, and the results stored

or output, or used to determine the subsequent program sequence.

A complete assembly language example is shown in the final section of Chapter 1. Program 1.1

is the list file KEY690.LST, whose function is to read a keypad and display the inputs. The

source code mnemonics are on the right, with the machine code in column 2 and the memory

location where each instruction is stored in column 1.

34 Chapter 2

2.2.1. Single Register Operations

The processor operates on 8-bit data stored in RAM registers and W. The data can originate in

three ways:

• A literal (numerical value) provided in the program

• An input via a port data register

• The result of a previous operation.

This data is processed using the set of instructions defined for that processor. Table 2.2

shows a typical set of operations that can be applied to a single register. The same binary

number is shown before processing, and then after the operation has been applied to the

register.

As an example of how these operations are specified in mnemonic form in the program, the hex

and assembler code to increment a PIC register is:

0A86 INCF 06

Register number 06 happens to be port B data register, so the effect of this instruction can

be seen immediately at I/O pins of the chip. The corresponding machine code instruction is

0A86h, or 00 1010 1000 0110 in binary (14 bits). As you can see, it is easier to recognize

the mnemonic form. Bit 7 of the instruction code is significant in that it determines the

destination of the result. The default is ‘1’, which causes the result to be left in the

RAM register. ‘0’ places it in W, which helps to reduce the number of move instructions

required.

An example of a single register operation appears at line 33 in the keypad program,

CLRF PORTC, which sets all the output bits connected to the display to zero, switching

it off.

Table 2.2: Single register operations

Operation Before After Comment

CLEAR 0101 1101 / 0000 0000 Reset all bits to zero

INCREMENT 0101 1101 / 0101 1110 Increase value by one

DECREMENT 0101 1101 / 0101 1100 Decrease value by one

COMPLEMENT 0101 1101 / 1010 0010 Invert all bits

ROTATE LEFT 0101 1101 / 1011 1010 Move all bits left by one place*

ROTATE RIGHT 0101 1101 / 1010 1110 Move all bits right by one place*

CLEAR BIT 0101 1101 / 0101 0101 Clear bit (3) to 0

SET BIT 0101 1101 / 1101 1101 Set bit (7) to 1

*Carry bit included.

Microcontroller Operation 35

2.2.2. Register Pair Operations

Table 2.3 shows basic operations that can be applied to pairs of registers. The result is retained

in one of them, the destination register. The data to be combined with the contents of the

destination register is obtained from the source register, typically W or a literal (number

supplied in the instruction). The source register contents generally remains unchanged after the

operation.

The meaning of each type of instruction is explained below, with examples from the PIC

instruction set. As noted above, there is an option to store the result in W, the working register,

if that is the source. Note also that the PIC 16 instruction set does not provide moves directly

between file registers; all data moves are via W.

Status bits are modified by specific register operations. The zero flag (Z) is invariably

affected by arithmetic and logic instructions, and the carry flag (C) by arithmetic

ones, including rotate. The effect on the source, destination and status registers of

each instruction is specified in the instruction set, and this needs to be studied

thoroughly before attempting to write assembler programs. The binary, hex and

assembler code is given, together with the flag(s) affected, if any, in the following

examples.

Table 2.3: Operations on register pairs

Operation Before After Comment

MOVE
Source 0001 1100 0001 1100 Copy operation

Destination xxxx xxxx / 0101 1100 Overwrite destination with source

ADD
Source 0001 1100 0001 1100 Arithmetic operation

Destination 0001 0010 / 0010 1110 Add source to destination

SUB
Source 0001 0010 0001 0010 Arithmetic operation

Destination 0101 1100 / 0100 1010 Subtract source from destination

AND
Source 0001 0010 0001 0010 Logical operation

Destination 0101 1100 / 0001 0000 AND source & destination bits

OR
Source 0001 0010 0001 0010 Logical operation

Destination 0101 1100 / 0101 1110 OR source & destination bits

XOR
Source 0001 0010 0001 0010 Logical operation

Destination 0101 1100 / 0100 1110 Exclusive OR source & destination bits

36 Chapter 2

Move

The most commonly used instruction in any program simply moves data from one register

to another. It is actually a copy operation, as the data in the source register remains

unchanged until overwritten.

00 1000 0000 1100 080C MOVF 0C,W (Z)

This instruction moves the contents of register 0Ch (1210) into the working register. Note

that bit 7, selecting the destination, is ‘0’ for W, which has to be specified in the instruction.

00 0000 1000 1100 008C MOVWF 0C

This instruction is the reverse move, from W to register 0Ch. Bit 7 is now ‘1’, and the zero

flag is not affected, even if the data is zero.

An example of the move instruction is seen at line 46 in the keypad program, MOVWF

PORTC, which outputs a binary code to operate the display.

Arithmetic

Add and subtract are the basic arithmetic operations, carried out on binary numbers. Some

processors also provide multiply and divide in their instruction set, but these can be created if

necessary by using shift, add and subtract operations.

00 0111 1000 1100 078C ADDWF 0C (C,Z)

This instruction adds the contents of W to register 0C. The carry flag will store a carry-out of

the most significant bit (MSB), if the result is greater than the maximum value, FFh (25510),

with the remainder left in the register. For example, if we add the decimal numbers 200 and

100, the result will be 300. The remainder will be 300� 256¼ 44, with the carry flag

representing 256 (result¼ 1 0010 1100 in binary). If the sum is exactly 25610, the register result

will be zero (Z flag set) and carry-out generated (C flag set).

The carry flag is also included when subtracting, so that numbers up to 51110 can be

operated on. Rotate can be used to halve and double binary numbers, while increment and

decrement are also available.

Logic

Logical operations act on the corresponding pairs of bits in a literal or source register, and

destination. The result is normally retained in the destination, leaving the source unchanged.

The result in each bit position is obtained as if the bits had been fed through the equivalent

logical gate (see Appendix B).

11 1001 0000 0001 3901 ANDLW 01 (Z)

This instruction carries out an AND operation on the corresponding pairs of bits in the

binary number in W and the binary number 00000001, leaving the result in W. In this

Microcontroller Operation 37

example, the result is zero if the LSB in W is zero, so it forms a check on the state of that

bit alone.

This type of operation can be used for bit testing if the processor does not provide a specific

instruction, or masking to select a portion of the source data. The AND operation gives

a result 1 if BOTH source bits are 1. The OR operation gives the result 1 if EITHER

bit is 1. XOR gives result 1 if ONE of the bits is 1. This covers all the options for logical

processing.

An example of a logic instruction is seen at line 45 in the keypad program, ANDLW 0F0,

which masks one of the digits for output to the display.

2.2.3. Program Control

As we have already seen, the microcontroller program is a list of binary codes in the program

memory, which are executed in sequence. The sequence is controlled by the program counter,

(PC). Most of the time, PC is simply incremented by one to proceed to the next instruction.

However, if a program jump (branch) is needed, PC must be modified, that is, the address of the

next instruction required loaded into PC, replacing the existing value.

The PC is cleared to zero when the chip is reset or powered up for the first time, so program

execution starts at address 0000. The clock signal then drives the execution sequence forward.

During the execution cycle of the first instruction, the PC is incremented to 0001, so that the

processor is ready to execute the next instruction. This process is repeated unless there is

a jump instruction.

The jump instructions must have a destination address as the operand. This can be given as

a numerical address, but this would mean that the instructions would have to be counted up by

the programmer to work out this address. So, as we can see in the program examples,

a destination address is usually specified in the program source code by using a recognizable

label, such as ‘again’, ‘start’ or ‘wait’. The assembler program then replaces the label with the

actual address when the assembler code is converted to machine code.

Program sequence control operations are illustrated in Figures 2.2e2.4. The diagrams show

the program memory from address zero, with different types of jump instruction at address

0002.

Jump

The unconditional jump (Figure 2.2) forces a jump to another point in the program every time it

is executed. This is carried out by replacing the contents of the program counter with the

address of the destination instruction, in this case, 005. Execution then continues from the new

address. Note that the code for GOTO is 28 combined with the destination address 05, giving

the instruction code 2805h.

38 Chapter 2

This example shows the sequence when jumping over the interrupt vector location 004.

The unconditional jump is also frequently used at the very end of a program to go back to

the beginning of the sequence, and keep repeating it, illustrated below as a program

outline:

Initialize
......

start first instruction
......
......
GOTO start

The label ‘start’ is placed in the first column of the program code, to differentiate it from the

instruction mnemonics, which must be placed in the second column, as we will see. The

spelling of the label and its reference must match exactly, including upper and lower case

letters. The label is replaced by the corresponding address by the assembler when creating the

machine code for the GOTO instruction.

An example of an unconditional jump in the keypad program can be seen at line 50, GOTO

Next, where Next is the label assigned to line 37.

Conditional Jump

The conditional jump instruction is required for making decisions in the program.

Instructions to change the program sequence depending on, for instance, the result of

a calculation or a test on an input, are an essential feature of any microprocessor

instruction set.

Address Program

000 2805 GOTO (28) address 005

001 Put 005 into

002 Program Counter

003 instead of 001

004

005 XXXX Next instruction

006 - carry on from here

007

 05 Program Counter

Figure 2.2
Unconditional jump

Microcontroller Operation 39

In Figure 2.3, the code 1885 tests an input bit of the PIC and skips the next instruction if it is

zero. Instruction YYYY (representing any valid instruction code) is then executed. If the input

bit is high, the instruction 2807 is executed, which causes a jump to address 007, and

instruction ZZZZ is executed next. This is called Bit Test and Skip, and is the way that

conditional branches are achieved in the PIC.

In PIC assembly language, this program fragment looks like this:

..

..

BTFSC 05,1 ; Test bit 1 of file register 5
GOTO dest1 ; Execute this jump if bit ¼ 1

.. ; otherwise carry on from here

..

..

dest1 .. ; branch destination

The PIC is designed with a minimal number of instructions, so the conditional branch has to be

made up from two simpler instructions. The first instruction tests a bit in a register and then

skips (misses out) the next instruction, or not, depending on the result. This next instruction is

usually a jump instruction (GOTO or CALL). Thus, program execution continues either at the

instruction following the jump, if the jump is skipped, or at the jump destination.

The program outline of a conditional jump used in a delay routine, would look like this:

Allocate 'Count' register

..

..

Load 'Count' register with literal XX

Again Decrement 'Count' register
Test 'Count' register for zero

If not zero yet, jump to label 'Again'
When zero, execute this next instruction

..

Address Program

000
001
002 1885 Test input bit
003 2807 and skip this GOTO instruction if zero
004 YYYY and execute this one
005
006
007 ZZZZ Jump to here if not zero

Comment

Figure 2.3
Conditional jump

40 Chapter 2

This software timing loop simply causes a time delay in the program, which is useful,

for instance, for outputting signals at specific intervals. A register is used as a down counter by

loading it with a number, XX, and decrementing it repeatedly until it is zero. A test instruction

then detects that the zero flag has gone active, and the loop is terminated. Each instruction takes

a known time to execute, therefore the delay can be predicted.

An example of a conditional jump can be seen at lines 39 and 40 in the keypad program, where

BTFSS DIGIT,4 is followed by GOTO Next, so that the jump back is only executed if bit 4 of

the register labelled DIGIT (GPR 20) is zero.

Subroutine

Subroutines are used to carry out discrete program functions. They allow programs to be

written in manageable, self-contained blocks, which are then executed as required, often more

than once per program cycle. The instruction CALL is used to jump to a subroutine, which

must be terminated with the instruction RETURN.

CALL has the address of the first instruction in the subroutine as its operand. When the CALL

instruction is decoded, the destination address is copied to the PC, as in theGOTO instruction. In

Address Main Program

000

001 To Call Subroutine

002 20F0 Program Counter
003 YYYY loaded with destination
004 address 0F0
005 and return address 003
006 pushed onto Stack
007 automatically

Subroutine

0F0 ZZZZ

0F1

0F2 To Return from Subroutine

0F3 Program Counter
0F4 0008 reloaded with 003

pulled from Stack

XXXX 0003 Stack
Program xxxx

Counter xxxx

Figure 2.4
Subroutine call

Microcontroller Operation 41

addition, the address of the next instruction in the main program is saved in the ‘stack’, a special

set of registers. The return address is ‘pushed’ onto the stack when the subroutine is called, and

‘pulled’ back into the program counter at the end of the routine, when the RETURN instruction

is executed. These addresses are automatically stored in order and retrieved in reverse order.

In Figure 2.4, the subroutine is a block of code whose start address has been defined by label as

0F0. The CALL instruction at address 002 contains the destination address as its operand.

When this instruction is encountered, the processor carries out the jump by copying the

destination address (F0h) into the program counter. At the same time, the address of the next

instruction in the main program (003) is pushed onto the stack, so that the program can come

back to the original point after the subroutine has been executed.

One advantage of using subroutines is that the block of code can be used more than once in the

program, but only needs to be typed in once. A delay loop can be written as a subroutine. In

a program to generate an output pulse train, it can be ‘called’ twice within a loop, which sets an

output high, delays, sets the output low, and delays again before repeating the whole process.

The delay subroutine can be written such that it takes its delay count from W each time it is

called, making it a variable delay routine, as shown in the outline below:

; Program DELTWICE *******************************

Allocate 'Count' Register
..

..

Load 'Count' register with value XX

CALL 'delay'
Next Instruction
..

..

Load 'Count' register with value YY

CALL 'delay'
Next Instruction

..

..

END of Program

; Subroutine DELAY *******************************

delay Decrement 'Count' register
Test 'Count' register for zero

If not zero, jump to label 'delay'
RETURN from subroutine

; End of code ************************************

42 Chapter 2

An example of a subroutine call is included in the keypad program at line 38, CALL Scan,

which causes a jump to the subroutine starting at line 54. RETURN is encountered at line 83,

when the execution continues from line 39.

A simple application will be developed in the next chapter to illustrate the basic principles of

assembly language programming.

Questions 2

1. Outline the sequence of program execution in a microcontroller, describing the role of the
program memory, program counter, instruction register, instruction decoder, and timing
and control block. (5)

2. A register is loaded with the binary code 01101010. The carry bit is set to zero. State the
contents of the register after the following operations on this data (refer to PIC MCU data
sheet for exact effects):
(a) clear, (b) increment, (c) decrement, (d) complement, (e) rotate right, (f) shift left,
(g) clear bit 5, (h) set bit 0. (8)

3. A source register is loaded with the binary code 01001011, and a destination register loaded
with 01100010. State the contents of the destination register after the following operations:
(a) MOVE, (b) ADD, (c) AND, (d) OR, (e) XOR. (5)

4. In a microcontroller program, a subroutine starts at address 016F and ends with a ‘return’
instructionataddress0172.A ‘call subroutine’ instruction is locatedat address02F3.Assuming
that the microcontroller has one complete instruction in each address, list the changes in the
contents of the program counter and stack between the time of execution of the instruction
before the call and the instruction following the call. Indicate an unknown value as XXXX. (5)

5. Write a program outline for the process by which two numbers, say 4 and 3, could be
multiplied by successive addition. Use the register instructions Clear, Move, Add, Decre-
ment, Test for Zero and Jump if Zero to Label. Load a register with zero, and add 4 to it
three times by using a counter initially loaded with 3 and decremented to zero to control
the loop. (7)

Answers on page 417 (Total 30 marks)

Activities 2

Download the PIC 16F84A data sheet from www.microchip.com.

1. Study the PIC 16F84A block diagram (data sheet Figure 1-1), and identify the features
described in Section 2.1. Note the separate internal instruction and data buses, and
summarize the function of each block. Describe how data is moved between registers and
memory, and the function of the multiplexers (refer to Appendix C).

2. Study the PIC Instruction Set (data sheet Table 7-2). Note the format of the binary code
for each instruction, and identify the meaning of the symbols f, b, k, d, x, C, DC and Z.
Explain why some instructions take two cycles.

Microcontroller Operation 43

http://www.microchip.com

3. Study the list file generated for program BIN4 shown in Figure 4-4, noting the machine
code at the lower left. The program memory addresses from 0000 to 000F appear in column
1, and the machine code instructions appear in column 2. Refer to the instruction set in the
PIC 16F84A data sheet, and analyze the program by deducing the code for each instruction
and operand, identifying SFR and GPR addresses, register bits, destination bit, address labels
and literal values as appropriate. Complete the table below (for all addresses from 0004
through 000F), analyzing each instruction e 0000 to 0003 have been completed as an
example:

Hex

Address

Hex Inst. Binary Inst.

(14 bits)

Inst. Bits Operand Bits Operand Type Instruction

Mnemonic

0000 3000 11 0000 0000 0000 11 00 0000 0000 Literal 00 MOVLW 00

0001 0066 Do not include e e e TRIS 06

0002 2807 10 1000 0000 0111 10 1 000 0000 0111 Address label 0007 GOTO 0007

0003 008C 00 0000 1000 1100 00 0000 1 000 1100 File address 06 MOVWF 06

0004
.

000F (last instruction)

44 Chapter 2

CHAPTER 3

A Simple PIC Application

Chapter Outline
3.1. Hardware Design 46

3.1.1. PIC 16F84A Pin-Out 46

3.1.2. BIN Hardware Block Diagram 47

3.1.3. BIN Circuit Operation 48

3.2. Program Execution 50
3.2.1. Program Memory 51

3.2.2. Program Counter 51

3.2.3. Working Register 51

3.2.4. Port B Data Register 51

3.2.5. Port A Data Register 52

3.2.6. General Purpose Register 52

3.2.7. Bank 1 Registers 52

3.3. Program BIN1 52
3.3.1. Program Analysis 52

3.3.2. Program Execution 54

3.4. Assembly Language 55
3.4.1. Mnemonics 55

3.4.2. Assembly 56

3.4.3. Labels 57

3.4.4. Layout and Comments 58

Questions 3 59

Activities 3 60

Chapter Points
• A block diagram can be used to outline the hardware for an application.

• The PIC 16 chip has 14-bit instructions, containing both the operation code and operand.

• The program is written using assembler mnemonics and labels.

• Layout and comments are used to document the program functions.

• The program is converted into machine code instructions comprising op-codes and operands.

• The program is downloaded to the chip as a hex file.

• The PIC program is stored in flash ROM at addresses from 000.

• The instructions are decoded and executed by the processor control logic.

• The CPU registers and the execution sequence are modified according to the program instructions.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10003-5

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

45

http://dx.doi.org/

We will now develop a minimal machine code program for the PIC�, avoiding complicating

factors as far as possible. A simplified internal architecture will be used to explain the

execution of the program. Since the core architecture and programming methods are similar for

all PIC microcontrollers (MCUs), this serves as an introduction to the whole PIC range,

specifically the 16 series.

The specification for the application is as follows:

The circuit should output a binary count to eight LEDs, under the control of two push-button

inputs. One input will start the output sequence when pressed. The sequence will stop when

the button is released, retaining the current value on the display. The other input will clear

the output (all LEDs off), allowing the count to resume from zero.

3.1. Hardware Design

We need a microcontroller that will provide two inputs and eight outputs, which will drive the

light-emitting diodes (LEDs) without additional interfacing, and has reprogrammable flash

memory to allow the program to be developed in stages. An accurate clock is not required, so

a crystal oscillator is not necessary. The PIC 16F84A meets these requirements; it is a basic

device, so we will not be distracted by unused features. Later, we can replace it with a more

recent processor, such as the PIC 16F690. The 16F84A should not be used for new designs.

3.1.1. PIC 16F84A Pin-Out

The PIC 16F84A microcontroller is supplied in an 18-pin dual in-line (DIL) chip. The pin

labeling, taken from the data sheet (download from www.microchip.com), is shown in

Figure 3.1. Some of the pins have dual functions, which will be discussed later.

RA1
RA0
CLKIN
CLKOUT

RB7
RB6
RB5
RB4

RA2
RA3
RA4

!MCLR

Vss VDD

RB0
RB1
RB2
RB3

Pin 1 Marker

9 10

18

PIC
16F84A

Figure 3.1
Pin-out of PIC 16F84A

46 Chapter 3

http://www.microchip.com

The chip has two ports, A and B, consisting of five and eight pins, respectively. The port pins

allow data to be input and output as digital signals, at the same voltage levels as the supply,

which is connected between VDD and VSS, nominally 5 V. CLKIN and CLKOUT are used to

connect clock circuit components, and the chip then generates a fixed frequency clock

signal that drives all its operations along. !MCLR (NOT Master CLeaR) is a reset input, which

can be used to restart the program. Note that the active low operation of this input is indicated

by a bar over the pin label in the data sheet, or an exclamation mark here. In simple

applications, this input does not need to be used, but it MUST be connected to the positive

supply rail to allow the chip to run. If you construct a circuit and it does not work, check this

point. A summary of the pin functions is provided in Table 3.1.

Port B has eight pins, so we will assign these pins to the LEDs and initialize them as

outputs. Port A has five pins, two of which can be used for the input switches. A resistor and

capacitor will be connected to the CLKIN pin to control the clock frequency. In this chip, an

external crystal can be used for a more precise clock frequency, and in many current chips, an

internal oscillator is provided, which means that no external clock components are needed.

3.1.2. BIN Hardware Block Diagram

The hardware arrangement can be represented in simplified form as a block diagram

(Figure 3.2). This is not really necessary for such a trivial circuit, but is a useful system design

technique for more complex applications. The main parts of the hardware and relevant inputs

Table 3.1: PIC 16F84A pins arranged by function

Pin Label Function Comment

14 VDD Positive supply þ5 V nominal, 2 V to 5.5 V allowed
5 VSS Ground supply 0 V
4 !MCLR Master clear Active low reset input
16 CLKIN Clock input Connect RC clock components to 16
15 CLKOUT Clock output Connect crystal oscillator to 15 and 16
17 RA0 Port A, bit 0 Bidirectional input/output
18 RA1 Port A, bit 1 Bidirectional input/output
1 RA2 Port A, bit 2 Bidirectional input/output
2 RA3 Port A, bit 3 Bidirectional input/output
3 RA4 Port A, bit 4 Bidirectional input/output þ TMR0 input
6 RB0 Port B, bit 0 Bidirectional input/output þ interrupt input
7 RB1 Port B, bit 1 Bidirectional input/output
8 RB2 Port B, bit 2 Bidirectional input/output
9 RB3 Port B, bit 3 Bidirectional input/output
10 RB4 Port B, bit 4 Bidirectional input/output þ interrupt input
11 RB5 Port B, bit 5 Bidirectional input/output þ interrupt input
12 RB6 Port B, bit 6 Bidirectional input/output þ interrupt input
13 RB7 Port B, bit 7 Bidirectional input/output þ interrupt input

A Simple PIC Application 47

and outputs should be identified, together with the direction of signal flow. The type of signal

can be indicated, e.g. parallel or serial data, or analogue waveform. The power connections

need not be shown; it is assumed that suitable supplies are available for the active components.

The idea is to outline the basic hardware arrangement without having to design the circuit in

detail at this stage.

Port A (5 bits) and port B (8 bits) give access to the data registers of the ports, the pins being

labelled RA0 to RA4, and RB0 to RB7, respectively. The two push-button switches will be

connected to RA0 and RA1, and a set of LEDs connected to RB0 to RB7. The switches will

later be used to control the output sequence. However, these inputs will not be used in the first

program, BIN1. The connections required are shown in Table 3.2.

The block diagram can now be converted into a circuit diagram. A drawing is created using

electronic schematic capture software such as Proteus VSM (ISIS) or ORCAD. In Proteus, the

design file can then be used to test the circuit by interactive simulation. When finalized, it can

be converted into a printed circuit board and the hardware produced. The schematic can be

inserted into other documentation as required, or printed separately.

The schematic for the BIN circuit design created in ISIS (BIN.DSN) is shown in Figure 3.3.

This is available on the support website www.picmicros.org.uk and can be used to simulate the

circuit operation described below. The process for editing the schematic and simulating the

circuit operation is described in Appendix E. The operation of the chip itself can be simulated

in MPLAB, the Microchip development system.

3.1.3. BIN Circuit Operation

Active low switch circuits, consisting of normally open push buttons and pull-up resistors, are

connected to the control inputs; the resistors ensure that the inputs are high when the buttons

PIC

16F84A

Input
Port A

CLKIN

!MCLR

Output
LEDs

Input Push Buttons
(Active Low)

RC
Clock

+5V

Clear

Count

Output
Port B

Figure 3.2
Block diagram of BIN hardware

48 Chapter 3

http://www.picmicros.org.uk

are not pressed. The outputs are connected to LEDs in series with current-limiting resistors.

The PIC outputs are capable of supplying enough current (up to 20 mA) to drive LEDs directly,

making the circuit relatively simple. The external clock circuit consists of a capacitor (C) and

resistor (R) in series; the value of C and R multiplied together will determine the chip clock

Table 3.2: PIC 16F84A pin allocation for BIN application

Pin Connection

VSS 0 V
VDD þ5 V
!MCLR þ5 V
CLKIN CR clock circuit
CLKOUT Not connected (n/c)
RA0 Reset switch
RA1 Count switch
RA2 n/c
RA3 n/c
RA4 n/c
RB0 LED bit 0
RB1 LED bit 1
RB2 LED bit 2
RB3 LED bit 3
RB4 LED bit 4
RB5 LED bit 5
RB6 LED bit 6
RB7 LED bit 7

Figure 3.3
BIN ISIS circuit schematic

A Simple PIC Application 49

rate. The resistance in this circuit has been made variable, and the values shown should

allow the clock frequency to be adjusted to 100 kHz. The reset input (!MCLR) must be

connected to the positive supply (þ5 V). Other unused pins can be left open circuit, and unused

input/output (I/O) pins will default to inputs.

3.2. Program Execution

Microcontroller circuits will not function without a program in the chip; this is created using

the PIC development system software on a PC, and downloaded via a serial data link. This

process has already been outlined, and will be described in more detail later, so for now wewill

assume that the program is already in memory.

Figure 3.4 is a block diagram showing a simplified program execution model for the PIC

16F84A. The main elements are the program memory, decoder, working register and file

registers. The binary program, in hexadecimal, is stored in the program memory. The

instructions are decoded one at a time by the instruction decoder, and the required operations

set up in the registers by the control logic. The file registers are numbered from 00 to 4F, with

the first 12 registers (00 to 0B) being reserved for specific purposes. These are called the special

function registers (SFRs). The rest may be used for temporary data storage; these are called the

general purpose registers (GPRs). Only selected registers are shown in this diagram. All

addresses and register contents are in hexadecimal. Appendix A explains hexadecimal

numbers.

Flash ROM

Program

Memory

File

Address High Byte

Low Byte

Registers

00 02 Program
001
002

PCL Counter

0A TRISA XX

XX

05 PORTA
28 03 TRISB 00 06 PORTB

005xx xx

0C GPR1

Instruction

Decoding

& Control Working
Register

30 00 000 0
00
01 86

66

00386

004

PCLATH

1F

00 W

00

Figure 3.4
PIC 16F84A simple program execution model

50 Chapter 3

3.2.1. Program Memory

The program memory is a block of flash read-only memory (ROM), which means it is non-

volatile, but can be reprogrammed. The program created in the host computer is downloaded

via port register pins RB6 and RB7. The methods for doing this will be described in more

detail in Chapter 4, as will the assembler programming language required to create the

program code.

The 14-bit codes are loaded into memory starting at address 000. When the chip is powered

up, the program counter resets automatically to 000, and the first instruction is fetched

from this address, copied to the instruction register in the control block, decoded and

executed. The file registers are modified accordingly, and the resulting output seen at the

ports.

3.2.2. Program Counter, PCL: File Register 02

The program counter keeps track of the program execution by holding the address of the

current instruction. It is automatically incremented to point to the next instruction during

the execution cycle. If there is a jump in the program, the program counter is modified by

the jump instruction (e.g. the last one in this program), so that it then points to the required

jump destination address. PCLATH stands for program counter latch high. This stores the

most significant two bits of the 10-bit program counter, which also cannot be accessed

directly.

3.2.3. Working Register, W

This is the main data register (8 bits), used for holding the data that is currently being worked

on. It is separate from the file register set and is therefore referred to as W in the PIC

program. Literals (values given in the program) must be loaded into W before being moved

to another register or used in a calculation. Most data movements have to be via W, in

two stages, since direct moves between file registers are not available in the basic PIC

instruction set.

3.2.4. Port B Data Register, PORTB: File Register 06

The 8 bits stored in the port B data register will appear on the LEDs connected to pins

RB0eRB7, if the port bits are initialized as outputs. The data direction for each pin is

determined by placing a data direction code in the register TRISB. A ‘0’ in TRISB sets the

corresponding pin in the port register as an output (0¼ output). A ‘1’ sets it to input

(1¼ input). In this case, 00000000 (binary) will be placed in TRISB to set all bits as outputs,

but any combination of inputs and outputs can be used.

A Simple PIC Application 51

3.2.5. Port A Data Register, PORTA: File Register 05

The least significant five bits of File Register 05 are connected to pins RA0eRA4, the other

three being unused. Inputs RA0 and RA1 will be used later to read the push buttons. If not

initialized as outputs, the PIC I/O pins automatically become inputs, i.e. TRISA¼ xxx11111.

We will use this default setting for port A, so this port does not have to be explicitly initialized.

The state of these inputs will have no effect unless the program actually uses them; the first

program BIN1 will not use them.

3.2.6. General Purpose Register 1, GPR1: File Register 0C

The first GPR will be used later in a timing loop. It is the first of a block of 68 such registers,

numbered 0C to 4F in the ’84A chip. They may be allocated by the programmer as

required for temporary data storage, counting and so on.

3.2.7. Bank 1 Registers

The main registers such as the program counter and port data registers are in a random access

memory (RAM) block called register bank 0, while TRISA, TRISB and PCLATH are in

a separate block, bank 1. Bank 0 can be directly addressed, meaning that data can be moved

into it using a simple ‘move’ instruction.

Unfortunately, this is not the case with bank 1. There are two ways to write to these registers.

The first way is a simple method, which we will use initially; it requires the required 8-bit

code to be loaded into W first, and then moved into the bank 1 register using the TRIS

instruction. Later, we will use the recommended method, using bank selection, but this is

a little more complicated. TRIS does not now appear in the main instruction set, but continues

to be recognized by the PIC assembler.

3.3. Program BIN1

The simple program called BIN1 is shown as Program 3.1. It consists of a list of 14-bit binary

machine code instructions, represented as four-digit hex numbers (see Chapter 2). Bits 14

and 15 are assumed to be zero, so the codes are represented by hex numbers in the range 0000

to 3FFF. The program is stored at hex addresses 0000 to 0004 (five instructions) in program

memory.

3.3.1. Program Analysis

The program instructions must be related to the PIC internal architecture, as outlined in

Chapter 2, and specified in the data sheet. The instruction set in the data sheet explains the

significance of each bit in each instruction.

52 Chapter 3

Address 0000: Instruction ¼ 3000 Meaning: MOVE zero into W

The code 3000 means move (copy) a literal (number given in the program) into the working

register (W). All literals must be placed initially in W before transfer to another register. The

literal, which is zero in this case, can be seen in the code as the last two digits, 00.

Address 0001: Instruction ¼ 0066 Meaning: MOVE W into TRISB

This means copy the contents of W to the port B data direction register (TRISB). W contains

00 as a result of the first instruction. This code will set all 8 bits of register TRISB to zero,

making all bits of port B operate as outputs. The file register address of port B (6) is given as the last

digit of the code. These first two instructions are required to initialize port B for output, using

the TRIS command to load the bank 1 register called TRISB, address 86 in the file register set.

Address 0002: Instruction ¼ 0186 Meaning: CLEAR PORTB to zero

This instruction will clear file register 6 (last digit), which sets all bits in the port B data register

(PORTB) to zero. Operations can be carried out directly on the port data register, and the

result will appear immediately on the LEDs in the BIN hardware or simulation.

Address 0003: Instruction ¼ 0A86 Meaning: INCREMENT PORTB

Port B data is now modified by this instruction. The binary value is increased by one, and this

value will be seen on the LEDs. This operation will be repeated as a result of the next

instruction (jump back), so the port LEDs will show a binary count sequence.

Address 0004: Instruction ¼ 2803 Meaning: GOTO last address

This is a jump instruction, which causes the program to go back and repeat the previous

instruction. This is achieved by the instruction overwriting the current program counter contents

with the value 03, the destination address, which is given as the last two digits of the

instruction code. The execution point is thus forced back to the previous instruction, so the

program keeps repeating indefinitely. Most control programs have the same basic structure as

this simple example; an initialization sequence and an endless loop, which will read the

inputs and modify the outputs.

Memory

address

Machine code

instruction Meaning

0000 3000 Load working register (W) with number 00

0001 0066 Store W in port B direction code register

0002 0186 Clear port B data register

0003 0A86 Increment port B data register

0004 2803 Jump back to address 0003 above

Program 3.1
BIN1 Machine Code

A Simple PIC Application 53

3.3.2. Program Execution

BIN1 is a complete working program, which initializes and clears port B, and then keeps

incrementing it. The last two instructions, increment port B and jump back, will repeat

indefinitely, with the value being increased by one each time. In other words, port B data

register will act as an 8-bit binary counter. When it reaches FF, it will roll over to 00 on the next

increment operation.

If you study the binary count table seen in Appendix A (Table A.3), you can see that the least

significant bit is inverted each time the binary count is incremented. The least significant

bit (LSB), RB0, will thus be toggled (inverted) every time the increment operation is repeated.

The next bit, RB1, will toggle at half this rate, and so on, with each bit toggling at half the

frequency of the previous bit. The most significant bit (MSB) therefore toggles at 1/128 of the

frequency of the LSB. The output pattern generated is shown in Figure 3.5.

A PIC instruction takes four clock cycles to complete, unless it causes a jump, in which case it

will take eight clock cycles (or two instruction cycles). The repeated loop in BIN1 will

therefore take 4þ 8¼ 12 clock cycles, and it will take 24 cycles for the RB0 to go low and

high, the output period of the LSB. If the CR clock is set to run at 100 kHz, the clock period is

1/105 s¼ 10 ms (frequency¼ 1/period), giving an instruction cycle time of 40 ms. The loop will

take 12� 10¼ 120 ms, giving an output period of 240 ms, a frequency of 4167 Hz, and RB7

will then flash at 4167/128¼ 32.5 Hz. These outputs can be displayed on an oscilloscope or

logic analyzer (virtual or real).

0

1

2

3

4

5

6

7

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

Time

Bit

Figure 3.5
BIN1 output waveforms

54 Chapter 3

In the real hardware, the output changes too quickly to see unaided, but it is possible to reduce

the clock speed by increasing the value of the resistance and/or the capacitor in the clock

circuit. We will see later how to slow the outputs down without changing the clock, by adding

a delay routine. In simulation mode, as we will see later, the timing can also be checked using

debugging tools such as the stopwatch in MPLAB or the timing display in Proteus VSM.

The frequencies generated are actually in the audio range, and they can be heard by

passing them to a small loudspeaker or piezo buzzer. This is a handy way of checking quickly

that the program is working, and also immediately suggests a range of PIC applications e

generating signals and tones at known frequencies. Wewill come back to this idea later, and see

how to generate audio outputs, or a tone sequence to make a tune, such as a mobile phone

ring tone.

3.4. Assembly Language

It should be apparent that writing the machine code manually for any but the most trivial

applications is going to be a bit tedious. Not only do the actual hex instruction codes have to be

worked out, but so do jump destination addresses and so on. In addition, the codes are not easy

to recognize or remember.

3.4.1. Mnemonics

For this reason, simple microcontroller programs are written in assembly language, not

machine code. Each instruction has a corresponding mnemonic defined in the instruction set.

The main task of the assembler program supplied with the chip is to convert a source code

program written in mnemonic form into the equivalent machine code. The mnemonic form of

the program BIN1 is shown in Program 3.2.

 Top Left of Edit Window

Line Number Column 0 Column 1 Column 2 Column 3
0 MOVLW

1 TRIS

2 CLRF

3 INCF

4 GOTO

5 END
Tab

00
06

06

06

03

Program 3.2
Mnemonic form of program BIN1

A Simple PIC Application 55

The instructions can now written as recognizable (when you get used to them!) code words.

The program is typed into a text editor, spaced out as shown, using the tab key to place the

code in the correct columns. Note that the first column (column 0) is kept blank; we will

see why later. The instruction mnemonics are placed in column 1, and the operands (data to be

operated on) in column 2. The operand 00 is the data direction code for the port initialization,

06 is the file register number of the port data register, and 03 is the jump destination

address, line 3 of the program. The PIC instructions are all 14 bits long, so each line of source

code becomes a 14-bit code, which we have already seen. The meaning of the mnemonics is as

follows:

Line Mnemonic Meaning

0 MOVLW 00 Move Literal 00 into W

1 TRIS 06 Move contents of W into TRISB to set port B (06)

as outputs

2 CLRF 06 Clear file register 06 (port B) to zero

3 INCF 06 Increment file register 06 (port B)

4 GOTO 03 Jump back to address 03 (previous instruction)

END End of source code e this is not an instruction!

The END statement is an assembler directive; it tells the assembler that this is the end of the

program, and is not converted into an actual instruction. When entering the program, there

must be space before and after each instruction mnemonic, and it is advisable to lay out the

program in columns as shown to improve its readability.

3.4.2. Assembly

The source code program could be created using a general purpose text editor, but is normally

edited within a dedicated software package such as MPLAB, the PIC integrated development

environment (IDE), which contains the assembler as well as a text editor. ISIS schematic

capture also incorporates a suitable text editor, which can be opened after the circuit drawing

has been completed, or it can be run in conjunction with MPLAB.

The source code text is entered in an edit window and the assembler invoked from the menu.

The assembler program analyzes the source code, character by character, and works out the

binary code required for each instruction. The terminology can be confusing here; the

assembly language application program (user source code) is created in the text editor, while

the software tool that performs the conversion is the assembler program or utility.

The source code is saved on disk as a text file called PROGNAME.ASM, where ‘progname’

represents any suitable filename. This is then converted by the assembler program

MPASM.EXE, which creates the machine code file PROGNAME.HEX. This appears as

56 Chapter 3

hexadecimal code when listed. At the same time, PROGNAME.LST, the list file, is created,

containing both the source and hex code, which may be useful later on when debugging (fault

finding) the program, we have already seen KEY690.LST in Chapter 1. This assembly and

download process will be described in more detail in the next chapter.

3.4.3. Labels

The mnemonic form of the program with numerical operands can now be further improved. We

want the operands to be specified in a more easily recognizable form, in the same way that

the mnemonics represent the instruction codes. Therefore, the assembler is designed to

recognize labels.

A label is a word that represents a number, which can be an address, register or literal.

Examples used below are ‘again’, ‘portb’ and ‘allout’. These are listed at the top of the program

with the replacement value, and the assembler simply replaces any occurrence of the label with

the corresponding number.

Jump destinations are similarly defined by label, by placing the label at the beginning of the

destination line, and using a matching label as the jump instruction operand. When the program

is assembled, the assembler notes the numerical address of the instruction where the label was

found, and replaces the label, when found as an operand, with this address.

The program BIN1 can thus be rewritten using labels as shown in BIN2 source code (Program

3.3). The literal value 00 and the port register address 06 have been replaced with labels,

which are assigned at the beginning of the program. The ‘equate’ statements define the

numbers that are to be replaced in the source code. In this case, the label ‘allout’ will

represent the port B data direction code, while the data register address itself, 06, will be

allout EQU 00
portb EQU 06

 MOVLW allout
 TRIS portb

 CLRF portb
again INCF portb
 GOTO again

 END

Edit Window

Program 3.3
BIN2 source code using labels

A Simple PIC Application 57

represented by the label ‘portb’. ‘EQU’ is another example of an assembler directive, which

is an instruction to the assembler program and will not be translated into code in the

executable program.

Note that lower case is used for the labels, while upper case is used for the instructionmnemonics

and assembler directives. Although this is not obligatory, this conventionwill be used because the

instruction mnemonics are given in upper case in the instruction set. The labels can then be

distinguished by using lower case. The jump destination label is simply defined by placing it in

column 0 of the line containing the destination instruction. The ‘GOTO label’ instruction then

uses a matching label. Initially, labels will be limited to six characters; they must start with

a letter, but can contain numbers, e.g. ‘loop1’. Longer labels may be used if preferred.

The programs BIN1 and BIN2 are functionally identical, and the machine code will be the

same.

3.4.4. Layout and Comments

A final version of BIN2 (Program 3.4) includes comments in the program to explain the action of

each line, and the overall program. As much information as possible should be provided. When

learning programming, comments help the learner to retain information, and when developing

real applications, it will help with future modifications and upgrading or software maintenance.

Even if you have written the program yourself, you may have forgotten how it works later on!

Comments must be preceded by a semicolon (;), which tells the assembler to ignore the rest

of that line. Comments and information can thus occupy a whole line, or can be added after

; BIN2.ASM MPB 11-10-03
; Outputs a binary count at Port B
; ...

allout EQU 00 ; Data Direction Code
portb EQU 06 ; Declare Port B Address

 MOVLW allout ; Load W with DDC
 TRIS portb ; Set Port B as outputs

 CLRF portb ; Switch off LEDs
again INCF portb ; Increment output
 GOTO again ; Repeat endlessly

 END ; Terminate source code

Program 3.4
BIN2 source code with comments

58 Chapter 3

each instruction in column 3. A minimal header has been added to BIN2, with the source code

file name, author and date, and a comment added to each line. Blank lines can be used without

a comment ‘delimiter’ (the semicolon); these are used to break up the source code into

functional sections, and thus make the structure of the program easier to understand. In

BIN2.ASM, the first block contains the operand label equates, the second the port initialization

and the third the output sequence. The layout of the source code is very important in showing

how it works.

The list file for the program BIN2 is provided as Program 3.5. It contains the source code,

machine code and program memory addresses in one file. It has been edited to remove

extraneous detail; the original may be downloaded from www.picmicros.org.uk with all the

other demo application filesets. A complete list file may be seen in Table 4.4 (Chapter 4).

We now have a program that can be entered into a text editor, assembled and downloaded to the

PIC chip. The exact method will vary with the development system you are using. Next, we

will look in more detail at developing the program.

Questions 3

1. State the four-digit hex code for the instruction INCF 06. (2)
2. State the two-digit hex code for the instruction MOVLW. (2)
3. What is the meaning of the least significant two digits in the PIC machine code

instruction 2803? (2)
4. Why must the instruction mnemonic be in the second column of the source code? (2)

 Label Directives

 Values & Instructions

 00001 ;
 00002 ; BIN2.ASM MPB 11-10-03
 00003 ;
 00004 ; Outputs a binary count at Port B
 00005 ; ..
 00006
 00000000 00007 allout EQU 00 ; Define Data Direction Code
 00000006 00008 portb EQU 06 ; Declare Port B Address
 00009
0000 3000 00010 MOVLW allout ; Load W with DDC
0001 0066 00011 TRIS portb ; Set Port B as outputs
 00012
0002 0186 00013 CLRF portb ; Switch off LEDs
0003 0A86 00014 again INCF portb ; Increment output
0004 2803 00015 GOTO again ; Repeat endlessly
 00016
 00017 END ; Terminate source code

Memory Machine Line Label Label Comments

Location Code Number Declarations References

Program 3.5
BIN2 list file (edited)

A Simple PIC Application 59

http://www.picmicros.org.uk

5. Give two examples of a PIC assembler directive. Why are they not represented in the machine
code? (3)

6. What are the numerical values of the labels ‘allout’ and ‘again’ in BIN2? (2)
7. A line from the list file for BIN2 is shown below. Explain the significance of each item. (6)

0003 0A86 00014 again INCF portb
8. State the function and origin of program files with the extension: (a) ASM, (b) HEX,

(c) LST. (6)

Answers on page 419. (Total 25 marks)

Activities 3

1. Check the machine code for BIN1 against the information given in the PIC instruction set in
the data sheet, so that you could, if necessary, write a program entirely in machine code.
Modify the machine code program by deleting the ‘Clear Port B’ operation and changing
the ‘Increment Port B’ to ‘Decrement Port B’. What would be the effect at the output when
the program was run? Suggest an alternative to the instruction MOVLW 00 which would
have the same effect.

2. Refer to Appendix E for a guide to using Proteus VSM to simulate the circuit. You will need
a version of Proteus that includes the working model of the 16F84A chip. Enter or download
the schematic BIN.DSN into ISIS and attach the program BIN1.ASM. Check that it assembles
and runs correctly. Display the SFRs and source code. Set the MCU simulated clock to
100 kHz and single step the program. Observe the execution sequence, and check that the
time taken to complete one loop is 120 ms.

3. Enter the program BIN2, using labels, into the text editor, assemble and test as above. Display
or print out the list file BIN2.LST and check that the machine code generated is the same as
BIN1. Note that there is no machine code generated for comment lines or assembler
directives.

If necessary, refer forward to relevant sections to complete these activities.

60 Chapter 3

CHAPTER 4

PIC Program Development

Chapter Outline
4.1. Program Development 62

4.2. Program Design 65
4.2.1. Application Specification 65

4.2.2. Program Algorithm 67

4.3. Program Editing 67
4.3.1. Instruction Set 68

4.3.2. BIN3 Source Code 68

4.3.3. Syntax 71

4.3.4. Layout 71

4.3.5. Comments 72

4.4. Program Structure 72

4.5. Program Analysis 72
4.5.1. Label Equates 74

4.5.2. Port Initialization 75

4.5.3. Program Jumps 75

4.5.4. Bit Test and Skip if Set/Clear 75

4.5.5. Decrement/Increment Register and Skip If Zero 76

4.5.6. Subroutine Call and Return 76

4.5.7. End of Source Code 77

4.6. Program Assembly 77
4.6.1. Syntax Errors 78

4.6.2. List File 79

4.7. Program Simulation 79
4.7.1. Single Stepping 82

4.7.2. Input Simulation 83

4.7.3. Register Display 83

4.7.4. Step Out, Step Over 83

4.7.5. Breakpoints 84

4.7.6. Stopwatch 84

4.8. Program Downloading 85
4.8.1. Programming Unit 85

4.8.2. In-Circuit Programming and Debugging 86

4.9. Program Testing 88

Questions 4 89

Activities 4 89

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10004-7

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

61

http://dx.doi.org/

Chapter Points
• The development process consists of specification, hardware selection and design,

program development and testing.

• The program is converted to assembler source code, FILENAME.ASM, using the instruction

format defined for the assembler.

• The assembler converts the source code text into object code, FILENAME.HEX.

• Syntax errors detected must be corrected at this stage.

• A list file, FILENAME.LST, is created which lists the source code, object code, label

and memory allocation.

• The simulator allows the machine code to be tested without downloading to the actual target

system.

• Logical errors detected must be corrected at this stage.

• The program can then be downloaded and tested in the target hardware.

We have seen how to get started with developing PIC� application hardware and software in

Chapter 3, and can take a closer look at some of the software tools available, and how each is

used in the program development process. The program BIN2 will be further developed using

the same hardware design.

This chapter will describe some features of the standard PIC development tools that are

currently available, but hardware and software to support application developers are being

continuously developed by Microchip and third-party suppliers, so it is impossible to be

completely up to date. These tools are downloadable from www.microchip.com. We will also

look at how to use Proteus VSM (www.labcenter.com) for schematic capture and simulation,

since this provides the most user-friendly method of testing the design prior to developing real

hardware. A tutorial for using this software is provided in Appendix E.

4.1. Program Development

The primary development system toolset for PIC applications is Microchip MPLAB IDE

(integrated development environment). At the time of writing, MPLAB version 8.60 is the

most recently released version. The basic principles of use do not change greatly as it is

updated, rather extra facilities and support for an ever-expanding range of devices are added,

and the reader will need to refer to the manufacturer’s documentation for details concerning

the use of any particular version. The intention at this stage is to outline how to assemble

and test demonstration programs BIN3 and BIN4. More advice on debugging programs is

provided in Chapter 9.

62 Chapter 4

http://www.microchip.com
http://www.labcenter.com

The flowchart in Figure 4.1 gives an overview of the program development process.

The starting point is the specification for the program, which describes how the application

will function when complete. This must then be analyzed by the software designer so that

the required program can be derived from it, taking into account the features of the

instruction set of the microcontroller (MCU). The program algorithm describes the process

whereby the required outputs are obtained from the given inputs. Various software design

techniques are available to outline the program, including flowcharts and pseudocode,

which we will use here. These represent the program processes and their sequence in

a logically consistent way, such that the assembler (or other language) source code can be

derived from them.

PIC APPLICATION

Convert specification

into algorithm

Design hardware

 Edit source code

Assemble program

Syntax errors?

Test code by simulation

Logical errors?

Download hex code to chip

Test code in target hardware

Functional errors?

Hardware errors?

DONE

YES

YES

YES

Figure 4.1
Program development flowchart

PIC Program Development 63

The source code is developed from the program algorithm by filling in the details and

converting each program block to assembler code. The program must be saved regularly as it is

developed; it is a good idea to always have backup copies on different disks (memory stick,

hard disk or network drive) in case of disk, memory or network failure. The source code text

file is called PROGNAME.ASM, where PROGNAME represents the application name, such as

BIN1. Successive versions of a program can be numbered BIN1, BIN2, etc., so that we can

revert to an earlier version if new code does not work properly.

After initial text entry, the program can be assembled by calling up the assembler utility,

MPASMWIN.EXE. It converts the source code into machine code, and creates additional

files to help with debugging (fault finding) the program. If a mistake has been made in the

individual instruction (e.g. misspelling a mnemonic), it will be reported in an error message

window and an entry added to the error file on disk. This must then be corrected in the source

code and the program reassembled until it is free of syntax errors.

The program can then be tested for correct operation by simulation, using the Microchip

MPLAB simulator MPSIM or Proteus VSM (ISIS). This means running the program in the host

computer as though it were running in the chip itself. The program is loaded and executed on

screen, and the outputs are observed. It can then be checked step by step for the correct logical

operation, by monitoring the changes in the registers, and checking the timing if necessary.

Simulated inputs are needed to represent all the likely input sequences and combinations. If

a logical error is found, the source code must be re-edited and reassembled, and the simulation

repeated.

This process is simpler in ISIS, since inputs can be generated interactively on the schematic

(see Figure 3.3) from animated manual inputs or simulated signals. Outputs can be observed

directly on light-emitting diodes (LEDs), seven-segment displays or liquid crystal displays

(LCDs), or on virtual instruments such as oscilloscopes or logic analyzers. However, MPLAB

has the advantage that inputs and outputs can be generated from a predefined stimulus file and

outputs recorded in a trace file, which provides a form of automated testing using standard

sequences and a permanent record of the test results. Thus, MPSIM has a more extensive range

of debugging tools, but Proteus can test the whole circuit and is more intuitive.

When the logical errors have been removed, the program can be downloaded to the chip. Final

testing can then allow the finished circuit function to be compared with the original

specification. If necessary, in-circuit debugging can be used to detect any remaining errors that

may arise from interaction with the real peripheral circuits. Most current PIC chips have

on-board circuitry to support this option, while smaller chips need a dedicated header

connector (see Chapter 7). Only MPSIM provides this final debugging stage.

The main software tools and the files created and used by MPLAB during the development

process are listed in Table 4.1. The most significant ones are the source code (.ASM) and

64 Chapter 4

machine code (.HEX) for simulation and downloading. The error file (.ERR) stores the

assembler error messages that are displayed automatically when generated. The list file

(.LST) contains the source text, machine code, memory allocation and label values in one text

file. In more complex applications, multiple relocatable machine code object files (.O) that

have been assembled separately as application components are combined by a linker utility

to produce a COF file which contains the hex and list files (see Microchip ‘MPASM User’s

Guide’).

4.2. Program Design

There are international standards for specifying engineering designs, which should be applied

in commercial work. The design standards for different types of products will vary; for

instance, a military application will typically be designed to a higher standard of reliability and

more rigorously tested and documented than a commercial one. Our designs here are somewhat

artificial in that they are intended to illustrate features of the PIC microcontroller, rather than

meet a genuine user requirement. Nevertheless, we can follow the design process through the

main steps.

4.2.1. Application Specification

The first step in the design process is to specify the functions and performance required by the

application. In the real world, this needs to be done in some detail so that the overall design,

development and production costings and timescales can be predicted as far as possible, as well

Table 4.1: Components of MPLAB development system (version 8.60)

Software Tool Tool Function Files Produced
or Used

File Description

Text Editor:
MPLAB.EXE þ
MPEditor.dll, etc.

Used to create and modify
source code text file

PROGNAME.ASM Source code text file

Assembler:
MPASMWIN.EXE
(stands alone)

Generates machine code
from source code, reports
syntax errors, generates list
and symbol files

PROGNAME.HEX
PROGNAME.ERR
PROGNAME.LST

Executable machine code
Error messages
List file with source &
machine code

Simulator:
MPLAB.EXE þ
MPSim.dll, etc.

Allows program to be tested
in software before
downloading

PROGNAME.HEX
PROGNAME.COF

Executable machine code
Linker output file

Programmer:
MPLAB.EXE þ
PICkit2.dll, etc.

Downloads machine code to
chip

PROGNAME.HEX Executable machine code

PIC Program Development 65

as establishing the market or customer requirements. For our purposes, the minimal

specification given in Chapter 3 will suffice:

The circuit should output a binary count to eight LEDs, under the control of two push-button

inputs. One input will start the output sequence when pressed. The sequence will stop when

the button is released, retaining the current value on the display. The other input will clear

the output (all LEDs off), allowing the count to resume from zero.

The next step is to design the hardware in which the application program will run, unless it

already exists. A block diagram, which shows the user interface requirements, is a good

starting point. The interfacing of the microcontroller is often implemented using certain

standard devices, such as push buttons, keypad, LED indicators, LCD, relays and so on. The

circuit design techniques required will not be covered in any detail here; the most common

interfacing techniques and devices are described in Interfacing PIC Microcontrollers:

Embedded Design by Interactive Simulation by the author (Newnes 2006). The microcontroller

must be selected by specifying the requirements such as:

• Number and type of inputs and outputs (based on chip pin-out)

• Program memory size (maximum number of instructions)

• Data memory size (number of spare file registers)

• Program execution speed (clock speed)

• Availability of special interfaces (e.g. analogue inputs, serial ports).

The hardware configuration for the BINx applications has already been described in Chapter 3

(Figure 3.3). We have established that the instruction set and programming features of the

microcontroller selected are suitable. If further features were required, the existing hardware

design could be modified. If the microcontroller selected was then found to be lacking in some

respect, for example, not enough input/output (I/O) pins, another microcontroller, or other

types of hardware such as a conventional microprocessor system, may be considered. However,

it is easier to stay within one family of processors, since it is normally based on a shared

architecture and instruction set, from which the most suitable can be selected. The PIC range is

the most extensive available for small and mid-range applications.

Microcontrollers are normally used in so-called real-time applications, typically a control

system where inputs are measured and outputs modified as rapidly as possible, such as a motor

vehicle engine controller. Complex data processing may be needed, but data storage is

minimal. For simpler applications, assembly language provides maximum speed and minimum

memory requirements, but for more complex software, a higher level language may be needed.

This will provide a greater range of more user-friendly statements and constructs, such as

mathematical functions and display drivers. The more powerful PIC microcontrollers are

therefore generally programmed in the language C, the next level up from assembler. The basic

syntax is more like English than assembler, and is therefore easier to learn and does not depend

on an intimate knowledge of the MCU architecture. The downside is that each C statement

66 Chapter 4

translates into several assembler instructions, so the program is longer and therefore slower to

execute. It also needs more program memory. Programming PIC microcontrollers in C is

introduced in Programming 8-bit PIC Microcontrollers in C with Interactive Hardware

Simulation by the author (Newnes 2008).

4.2.2. Program Algorithm

A flowchart can be useful for illustrating the overall algorithm (process) graphically,

particularly when learning programming. A flowchart for BIN3 is shown in Figure 4.2.

The program title is placed in the start symbol at the top of the flowchart, and the processes

required are defined as a sequence of blocks. Each flowchart box will contain a description of

the action at each stage, using different shaped boxes for processes (rectangle), input and

output (sloping) and decisions (pointed). The decision box has two outputs, to represent

a conditional branch in the program. This decision box should contain a question with the

answer yes or no, and the active selection labeled YES or NO as appropriate; only output one

needs to be labeled. The jump destinations can also be labeled, and these same labels can be

used in the program as address labels.

Programming packages exist that allow a flowchart to be converted directly into code,

which are most useful in education and training environments. Software design techniques,

including flowcharts, will be discussed in more detail later.

4.3. Program Editing

The program is written using the instruction set of the processor selected, as specified in the

MCU data sheet. The instruction set is essentially the same for all 16 series PIC chips. The

source code, that is, the assembly code program, must be entered into a suitable text editor,

BIN3

Initialize Ports

Clear Output Port

Reset?

Run?

Increment Output

Delay

YES

NO

Reset

Start

Figure 4.2
Flowchart for program BIN3

PIC Program Development 67

which is normally provided with the development system. We will not go into the details of

using a text editor, as it is assumed that the reader is familiar with using a word processor.

The MPLAB programming window has limited editing features, because it is only used for

creating plain text files. The typeface Courier is used because each character occupies the same

space, unlike proportionally spaced typefaces such as Arial and Times Roman. Displayed in

this way, the text lines up vertically as well as horizontally, so the program can be laid out

consistently in columns using tab stops, making it easier to understand. The tab spacing should

be set to eight characters for the programs in this book. When printing, also use Courier to

maintain the correct layout.

When a new application is started, a separate folder should be created to contain the source

code file, and all the other files that will be generated by the assembler. Name the folder with

the application name, e.g. BIN3. When the source code file has been opened, enter the source

code filename (e.g. BIN3.ASM) at the top of the file, and immediately save it in the folder. This

ensures that the required filepath is checked for correct operation before any further source text

is entered. Always keep a backup copy of your file on a different drive before quitting the

development system.

4.3.1. Instruction Set

The PIC 16 data sheets and the mid-range manual show the instruction set arranged by byte,

bit, literal and control operations. Table 4.2 shows the same instruction set organized by

function with an example given with each instruction so that the typical syntax can be seen.

A detailed description of each instruction is provided in the data sheet, with more information in

Chapter 6.

The grouping of the instructions in Table 4.2 reflects the different types of instruction explained

in Chapter 2: data movement, single and register pair arithmetic and logical operations,

sequence control and miscellaneous instructions. In the example instructions, the register used

is always 0C, the first general purpose register in the smaller PIC 16 chips. The register being

operated upon will normally be referred to by label (see Program BIN3 below). Literals and

register bit numbers may be referred to by number or label, depending on the context.

4.3.2. BIN3 Source Code

Program BIN3 uses the same instructions as BIN2 (Chapter 3), with additional statements to

read the switches and control the output. Program 4.1 is the result.

First, note the general layout and punctuation. The program header block contains as much

information as is necessary at this stage. These comments are preceded by a semicolon on

each line to indicate to the assembler that this text is not part of the program. Assembler

68 Chapter 4

Table 4.2: PIC mid-range instruction set

PIC 16 Instruction Set by Functional Groups

MOVE Move data from F to W MOVF 0C,W
Move data from W to F MOVWF 0C
Move literal into W MOVLW 0F9

REGISTER Clear W (reset all bits and value to 0) CLRW
Clear F (reset all bits and value to 0) CLRF 0C
Decrement F (reduce by 1) DECF 0C
Increment F (increase by 1) INCF 0C
Swap the upper and lower four bits in F SWAPF 0C
Complement F value (invert all bits) COMF 0C
Rotate bits Left through Carry Flag RLF 0C
Rotate bits Right through Carry Flag RRF 0C
Clear (reset to zero) the bit specified (e.g. bit 3) BCF 0C,3
Set (to 1) the bit specified (e.g. bit 3) BSF 0C,3

ARITHMETIC Add W to F (with carry out) ADDWF 0C
Add F to W (with carry out) ADDWF 0C,W
Add L to W (with carry out) ADDLW 0F9
Subtract W from F (with carry in) SUBWF 0C
Subtract W from F, result in W SUBWF 0C,W
Subtract W from L, result in W SUBLW 0F9

LOGIC AND the bits of W and F, result in F ANDWF 0C
AND the bits of W and F, result in W ANDWF 0C,W
AND the bits of L and W, result in W ANDLW 0F9
OR the bits of W and F, result in F IORWF 0C
OR the bits of W and F, result in W IORWF 0C,W
OR the bits of L and W, result in W IORLW 0F9
Exclusive OR the bits of W and F, result in F XORWF 0C
Exclusive OR the bits of W and F, result in W XORWF 0C,W
Exclusive OR the bits of L and W XORLW 0F9

TEST & SKIP Test a bit in F and Skip next instruction if it is Clear (¼ 0) BTFSC 0C,3
Test a bit in F and Skip next instruction if it is Set (¼ 1) BTFSS 0C,3
Decrement F and Skip next instruction if it is now Zero DECFSZ 0C
Increment F and Skip next instruction if it is now Zero INCFSZ 0C

JUMP Go To a labelled line in the program (e.g. start) GOTO start
Jump to the Label at the start of a Subroutine (e.g. delay) CALL delay
Return at the end of a Subroutine to the next instruction RETURN
Return at the end of a Subroutine with L in W RETLW 0F9
Return from Interrupt Service Routine to next instruction RETFIE

CONTROL No Operation e delay for 1 cycle NOP
Go into Standby Mode to save power SLEEP
Clear Watchdog Timer to prevent automatic reset CLRWDT
Load Port Data Direction Register from W* TRIS 06
Load Option Control Register from W* OPTION

Each instruction is given as an example, with explicit register and literal values.
F: Any file register (specified by number or label), e.g. 0C; W: working register; L: literal value (given in instruction), e.g. 0F9.
The result of arithmetic and logic operations can generally be stored in W instead of the file register by adding ‘ ,W ’ to the
instruction. General purpose register 1, address 0C, represents all file registers. Literal value 0F9 represents all values 00eFF.
Bit 3 is used to represent file register bits 0e7. For MOVE instructions data is copied to the destination and retained in the
source register. Some register pair operations are duplicated for result in F or W. Total number of instructions¼35, not
including TRIS and OPTION. For full details see Microchip’s ‘PIC Mid-Range MCU Family Reference Manual’, available online.
*Use of these special instructions is not recommended by the manufacturer.

PIC Program Development 69

;
; BIN3.ASM MPB 12-10-03
; ..
;
; Slow output binary count is stopped, started
; and reset with push buttons.
;
; Processor = 16F84A Clock = CR, 100kHz
; Inputs: RA0, RA1 Outputs: RB0 - RB7
;
; **

; Register Label Equates..

porta EQU 05 ; Port A Data Register
portb EQU 06 ; Port B Data Register
timer EQU 0C ; Spare register for delay

; Input Bit Label Equates

inres EQU 0 ; 'Reset' input button = RA0
inrun EQU 1 ; 'Run' input button = RA1

; **

; Initialise Port B (Port A defaults to inputs).................

 MOVLW 00 ; Port B Data Direction Code
 TRIS portb ; Load the DDR code into F86
 GOTO reset

; Start main loop ..

reset CLRF portb ; Clear Port B

start BTFSS porta,inres ; Test RA0 input button
 GOTO reset ; and reset Port B if pressed
 BTFSC porta,inrun ; Test RA1 input button
 GOTO start ; and run count if pressed

 INCF portb ; Increment count at Port B

 MOVLW 0FF ; Delay count literal
 MOVWF timer ; Copy W to timer register
down DECFSZ timer ; Decrement timer register
 GOTO down ; and repeat until zero

 GOTO start ; Repeat main loop always
 END ; Terminate source code

Program 4.1
BIN3 source code

70 Chapter 4

directives such as EQU and END are also not part of the program proper, but used to define

labels and the end of the program source code. The labels ‘porta’, ‘portb’ and ‘timer’ refer

to file registers 05, 06 and 0C, respectively; ‘inres’ and ‘inrun’ are input bit labels

representing the push buttons. The program uses ‘Bit Test and Skip’ instructions followed by

‘GOTO label’ for conditional jumping.

At this stage, the learner can type the source code into the editor without full analysis in

order to practice use of the editor. The instructions are placed in the first three columns, and the

comments can be left out to save time. Labels go in the first column, instruction mnemonics in

the second and the instruction operands in the third. The source code text file should be saved

as BIN3.ASM in a suitably named directory or folder on disk. Alternatively, the source code

file can be downloaded from the support website www.picmicros.org.uk. It can then be tested

in the free MPLAB simulator (see Section 4.7) or in Proteus VSM (see Appendix E).

4.3.3. Syntax

‘Syntax’ refers to the way that words are put together to create meaningful statements, or

a series of statements. In programming, the syntax rules are determined by the assembler,

which will be used to create the machine code. The assembler must be provided with source

code that it can convert into the required machine code without any ambiguity, that is, only one

meaning is possible. This is why the assembler syntax rules are very strict.

4.3.4. Layout

The program layout should be in four columns, as described in Table 4.3. Each character then

occupies the same space, and the columns are correctly aligned. The label, command and

operand columns are set to a width of eight characters, with the maximum label length of six

characters, leaving a minimum of two clear spaces between columns (longer labels can be

used, but a different form of the program layout must then be used). The tab key is normally

used to place the text in columns, and the tab spacing can be adjusted if necessary.

Table 4.3: Layout of assembler source code

Column 1 Column 2 Column 3 Column 4
Label Command Operand(s) Comment

Label equated
to a value, or
to indicate
a program
destination
address for
jumps

Mnemonic form of the
instruction for the
processor to carry out
a specific operation.
Only mnemonics
specified in the
instruction set may be
used

The data or register
contents to be used in the
instruction. Registers are
usually represented by
a label. Some instructions
do not need an operand

Explanatory text to the right of
a semicolon on any line of code
helps the programmer and user to
understand the program. It has no
effect on the operation of the
program. Full line comments may
also be used between program
blocks

PIC Program Development 71

http://www.picmicros.org.uk

4.3.5. Comments

Comments are not part of the actual program, but are included to help the programmer

and user understand how the program works. Comments are preceded by a semicolon (;),

which can be placed at the beginning of a line to indicate a comment which relates to a whole

program block (functional set of statements), or at the start of column 4 for line comment.

The comment and line are terminated with a line return (‘Enter’ key).

A standard header block is recommended (see Program 4.1). For simple programs, the first

line should at least contain the source code file name, the author and date, and/or version number.

A program description should also be provided in the header, and for programs that are more

complex, the processor type, target hardware details and other relevant information. In general,

the bigger the program, the more information would be expected in the header comments.

4.4. Program Structure

Structured programming means constructing the program, as far as possible, from discrete

blocks. This makes the program easier to write and understand, more reliable and easier to

modify at a later date. Program BIN3 is unstructured, in that the program instructions are

essentially executed in the order given in the source code. An equivalent ‘structured’ program,

BIN4, is listed as Program 4.2.

The main difference between BIN3 and BIN4 is that the program now has the delay sequence

as a ‘subroutine’. The subroutine is inserted before the main program block, and assembled

first. It is then ‘called’ from the main program by label. The subroutine can be created as

a self-contained program block, and reused in the program as necessary. It can be called as

many times as required, which means that the block of code needs to be written only once. It

can also be converted to a separate file and reused in another program. In addition, the delay

time is loaded before the subroutine execution, so the same delay routine could be used to

provide different delay times.

A program flowchart has been given for BIN3 (Figure 4.2). The same flowchart describes

BIN4, but the delay routine can now be expanded as a separate subroutine flowchart

(Figure 4.3). The use of flowcharts in program design will be more fully examined in Chapter 8.

4.5. Program Analysis

The program BIN4 will now be analyzed in some detail as it was designed to contain examples

of common PIC syntax. A sample instruction of each type will be examined.

72 Chapter 4

;
; Source File: BIN4.ASM
; Author: M. Bates
; Date: 15-10-03
; ...
; Program Description:
;
; Slow output binary count is stopped, started
; and reset with push buttons. This version uses a
; subroutine for the delay....
;
; Processor: PIC 16F84A
;
; Hardware: PIC Demo System
; Clock: CR ~100kHz
; Inputs: Push Buttons RA0, RA1 (active low)
; Outputs: LEDs (active high)
;
; WDTimer: Disabled
; PUTimer: Enabled
; Interrupts: Disabled
; Code Protect: Disabled
;
; ***

; Register Label Equates.....................................

porta EQU 05 ; Port A Data Register
portb EQU 06 ; Port B Data Register
timer EQU 0C ; Spare register for delay

; Input Bit Label Equates

inres EQU 0 ; 'Reset' input button = RA0
inrun EQU 1 ; 'Run' input button = RA1

; ***

; Initialise Port B (Port A defaults to inputs)..............

 MOVLW b'00000000' ; Port B Data Direction Code
 TRIS portb ; Load the DDR code into F86
 GOTO reset

; 'delay' subroutine ..

delay MOVWF timer ; Copy W to timer register
down DECFSZ timer ; Decrement timer register
 GOTO down ; and repeat until zero
 RETURN ; Jump back to main program

Program 4.2
BIN4 source code

PIC Program Development 73

4.5.1. Label Equates

timer EQU 0C

The use of labels in place of numbers makes programs easier to write and understand, but

we have to ‘declare’ those labels at the beginning of the program. In assembly code, the

BIN4

Set Delay Count

Run?

YES

NO

Delay

Port A = Inputs
Port B = Outputs

Output = 0

Reset?

Increment Output

NO

Load Timer

Decrement
Timer = 0?

Delay

Return

(a)

(b)

Figure 4.3
Flowcharts for program BIN4: (a) main routine; (b) subroutine

; Start main loop ...

reset CLRF portb ; Clear Port B Data

start BTFSS porta,inres ; Test RA0 input button
 GOTO reset ; and reset Port B if pressed
 BTFSC porta,inrun ; Test RA1 input button
 GOTO start ; and run count if pressed

 INCF portb ; Increment count at Port B
 MOVLW 0FF ; Delay count literal
 CALL delay ; Jump to subroutine 'delay'

 GOTO start ; Repeat main loop always
 END ; Terminate source code

Program 4.2: (continued)

74 Chapter 4

assembler directiveEQU is used to assign a label to a number,which can be a literal, a file register

number or an individual register bit. In BIN4, ‘porta’ and ‘portb’ are the port data registers (05

and 06) and ‘timer’ is the first spare register (0C), which will be used as a counter register. The

labels ‘inres’ and ‘inrun’ will represent bit 0 and bit 1 of port A; they are simply given the

numerical values 0 and 1. The label is replaced by the number when the program is assembled.

4.5.2. Port Initialization

TRIS portb

Port B is used as the output for the 8-bit binary count. The data direction must be set up using

the TRIS command, which loads the port data direction register with the data direction code. In

this example, the code is given in binary, b‘00000000’. This is useful, especially if the port bits

are to be set as a mixture of inputs and outputs; the binary code identifies the data direction for

each bit individually. This code is loaded into W using MOVLW, and the TRIS command

follows.

The TRIS instruction is still available as a simple way of initializing the ports, but the

manufacturers recommend an alternative method, which involves bank selection, and will be

covered later. Hopefully, TRIS will continue to be supported in by the MPASM assembler, as it

is easier for beginners.

4.5.3. Program Jumps

GOTO start

The ‘GOTO label’ command is used to make the program jump to a line other than the one

following. In BIN4, ‘GOTO reset’ skips over the following DELAY routine, to start the main

loop. We will come back to the reason for this in a moment. There is another unconditional

jump at the end of the program, ‘GOTO start’, which makes the main loop repeat endlessly.

Other ‘GOTO label’ instructions are used with ‘Test and Skip’ instructions to create

conditional branches. In this program, the input buttons are checked using this type of

instruction and the program branches, or not, depending on whether a button has been pressed.

4.5.4. Bit Test and Skip if Set/Clear

BTFSS porta,inres

The input button connected to port A, bit 0 is tested using the above instruction, which

means ‘Bit Test File (register bit) and Skip the next instruction if it is Set (¼1)’. Without

labels, the instruction ‘BTFSS 05,0’ would have the same effect. The buttons are connected

‘active low’, meaning that the input goes from ‘1’ to ‘0’ when the button is pressed. If the

button connected to RA0 is not pressed, the input will be high, that is, set. The following

PIC Program Development 75

instruction, ‘GOTO reset’ will therefore be skipped, and the next executed. When the button

is pressed, the ‘GOTO reset’ is executed, and the CLRF instruction repeated, clearing the

previous count.

BTFSC means ‘Bit Test and Skip if Clear’; it works in the same way as BTFSS, except

that the logic is reversed. Thus, ‘BTFSC porta,inrun’ tests bit 1 of port A register and

skips the following ‘GOTO start’ if the ‘run’ button has been pressed. The program will

then proceed to increment the output count. If the button is not pressed, the program

waits by jumping back to the ‘start’ line. The combined effect of the input buttons is that

the count runs when the ‘run’ button is pressed, and the count is reset to zero if the ‘reset’

button is pressed.

4.5.5. Decrement/Increment Register and Skip If Zero

DECFSZ timer

The other instructions for conditional branching allow a register to be incremented or

decremented and then checked for a zero result, all in one instruction. This is a common

requirement for counting and timing applications, and in the delay routine in BIN3, a register

‘timer’ is loaded with the maximum value FF and decremented. If the result is not yet zero, the

jump ‘GOTO down’ is executed. When the register reaches zero, the GOTO is skipped and the

subroutine ends. In BIN4, the timer value is set up before the delay subroutine is called.

4.5.6. Subroutine Call and Return

The main elements of the subroutine call structure are shown below:

start .. ; start main program

..

CALL delay ; jump to subroutine

.. ; return to here
GOTO start ; end of main loop

delay .. ; subroutine start
..

..

RETURN ; subroutine ends

In this program, the subroutine provides a delay by loading a register and counting down to

zero. The delay is started using the ‘CALL delay’ instruction, when the program jumps to

the label ‘delay’ and runs from there. CALL means ‘jump and come back to the same place

later’, so the return address has to be stored for later recall in a special memory block called

the ‘stack’.

76 Chapter 4

The address of the instruction following (in this case ‘GOTO start’) is saved automatically on

the stack as part of the execution of the CALL instruction. The subroutine is terminated

with the instruction ‘RETURN’, which does not require an operand because the return

destination address is automatically pulled from the stack and replaced in the program counter.

This takes the program back to the original place in the main program. The PIC 16 stack can

store up to eight return addresses, so multiple levels of subroutine can be used. The return

addresses are pushed onto and pulled from the stack in order, so if a CALL or RETURN is

missed out of the program, a stack error will occur. Unfortunately, this mistake will not be

detected by the assembler, but will cause a run-time error message.

4.5.7. End of Source Code

END

The source code must be terminated with assembler directive END so that the assembly

process can be stopped in an orderly way, and control returned to the host operating system. It

is the only assembler directive that is essential.

4.6. Program Assembly

To create the PIC program, the MPLAB IDE development system must be downloaded and

installed from the Microchip website www.microchip.com. After starting the software,

clicking on the new file button opens a source code edit window. The code for the demo

programs can be entered and saved in a suitable folder, using the same name as the fileset,

e.g. BIN4. The source code is saved as APPNAME.ASM. If the source code already exists, it can be

reopened in the usual way. The sample files may be downloaded from www.picmicros.org.uk.

A workspace file will be found, BIN4.MCW, which will open all the relevant windows

automatically (File, Open Workspace).

Note that in previous versions of MPASMWIN there was a limited file path length, so a folder

near the root of the drive is desirable. If the file path is too long, an error message may be

generated by the assembler, but it will not state the cause explicitly. This is simply a historical

limitation of the assembler, but can prevent successful assembly for no obvious reason. This

problem seems to have been fixed in the current version.

Once entered or opened in the edit window, the source code can be assembled in MPLAB by

selecting ‘Quickbuild sourcefile.asm’ from the Project menu. The correct processor type must

first be selected via the configuration menu, ‘select device’. The assembler program (MPASM)

takes the source code text and decodes it character by character, line by line, starting at the top

left. The corresponding machine code for each line in the source code is generated until the

END directive is detected. The binary code created is automatically saved as a file called

PIC Program Development 77

http://www.microchip.com
http://www.picmicros.org.uk

BIN4.HEX in the same folder as the source code. At the same time, several other files are also

created, some of which are needed for debugging.

In Proteus VSM, the circuit schematic must be created first, and then the program attached to

the MCU, by selecting Source, Add/Remove Source Files from the menu. The processor type

and assembler must be selected and a New source file created or attached. The program is

assembled by selecting Build All in the Source menu, and is automatically reassembled after

editing when the simulator is set to run, which makes source code debugging quick and easy.

Application creation in Proteus VSM is detailed in Appendix E.

4.6.1. Syntax Errors

If there are any syntax errors in the source code, such as spelling, layout, punctuation or failure

to define labels properly, error messages will be generated by the assembler. These will be

displayed in a separate window, indicating the type of error and line number. The messages and

line numbers must be noted, or the error file, BIN4.ERR, printed out then the necessary

changes made to the source code. The error is sometimes on a previous line to the one

indicated, and sometimes a single error can generate more than one message. Warnings and

information messages can usually be ignored, and can be disabled. There are more details

about error messages in Chapter 9.

You may receive the following messages:

Warning[224] C:\MPLAB\BOOKPRGS\BIN4.ASM 65 : Use of this instruction
is not recommended.

Message[305] C:\MPLAB\BOOKPRGS\BIN4.ASM 81 : Using default
destination of 1 (file).

The first warning is caused by the special instruction TRIS, which is not part of the main

instruction set. It is a simpleway of initializing the port, and there is an alternative method using

register bank selection, which is preferred in real applications. This will be introduced later.

The message about the ‘default destination’ is caused by the simplified syntax used in these

programs, where the file register is not explicitly specified as the destination in instructions

where the result can be placed in either the file register or the working register. The assembler

assumes that the file register is the destination by default, and we are taking advantage of this to

simplify the source code.

When all errors have been eliminated and the program has been successfully assembled,

the machine code can be inspected by selecting ‘View’, ‘Program Memory’. Note that the

source code labels are not reproduced, as the program code has been ‘disassembled’ (recreated)

from the machine code. That is, the hex file has been converted back to mnemonic form so that

it can be checked against the original.

78 Chapter 4

4.6.2. List File

A program ‘list file’ BIN4.LST is produced by the assembler, which contains the source

code, the machine code, error messages and other information all in one listing (Table 4.4). This

is useful for analyzing the program and assembler operations, and debugging the source code.

The list file header shows the assembler version used and source file details. The column

headings are:

LOC: memory location addresses at which the machine code will be stored
VALUE: the numerical value with which equate labels will be replaced
OBJECT CODE: machine code produced for each instruction
LINE: line number of list file
SOURCE TEXT: source code including comments.

At the end of the list file, additional information is provided:

SYMBOL TABLE: lists all the equate and address labels allocated
MEMORY USAGE MAP: shows the locations occupied by the object code.

Note that no machine code is produced by lines that are occupied by a full line comment. The

actual program starts to be produced at line 00041. The machine code for the first instruction is

shown in column 2 (3000), and the address where it will be stored in the chip when downloaded

is shown in column 1 (0000). The whole program will occupy locations 0000 to 000F (16

instructions).

If we study the machine code, we can see how the labeling works; for example, the last

instruction ‘GOTO start’ is encoded as 2808, and the 08 refers to address 0008 in column 1, the

location with the label ‘start’. The assembler program has replaced the label with the

corresponding numerical address for the jump destination. Similarly, the label ‘porta’ is

replaced with its file register number 05 in the instruction code to test the input, 1C05.

The label values are listed again in the symbol table. These values will be used by the

simulator to allow the user to display the simulated registers by label. The amount of

program memory used, 16 locations, 0000 to 000F, is shown in graphical format in the

memory usage map, and finally a total of errors, warnings and messages given. If there are

fatal errors, which prevent successful assembly of the program, the list file will not be

produced.

4.7. Program Simulation

The BIN4.HEX file could now be downloaded to the PIC chip and the program executed in

hardware. It should run correctly because the program given here is known to be good.

However, when a program is first developed, it is quite likely that logical errors will be present.

PIC Program Development 79

Table 4.4: BIN4 list file

MPASM 5.36 BIN4.ASM 9-12-2010 16:17:57 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 ;
 00002 ; Source File: BIN4.ASM
 00003 ; Author: M. Bates
 00004 ; Date: 15-10-03
 00005 ; ...
 00006 ; Program Description:
 00007 ;
 00008 ; Slow output binary count is stopped, started
 00009 ; and reset with push buttons. This version uses a
 00010 ; subroutine for the delay....
 00011 ;
 00012 ; Processor: PIC 16F84
 00013 ;
 00014 ; Hardware: PIC Demo System
 00015 ; Clock: CR ~100kHz
 00016 ; Inputs: Push Buttons RA0, RA1 (active low)
 00017 ; Outputs: LEDs (active high)
 00018 ;
 00019 ; WDTimer: Disabled
 00020 ; PUTimer: Enabled
 00021 ; Interrupts: Disabled
 00022 ; Code Protect: Disabled
 00023 ;
 00024 ; ***
 00025
 00026 ; Register Label Equates..............................
 00027
 00000005 00028 porta EQU 05 ; Port A Data Register
 00000006 00029 portb EQU 06 ; Port B Data Register
 0000000C 00030 timer EQU 0C ; Spare register for delay
 00031
 00032 ; Input Bit Label Equates
 00033
 00000000 00034 inres EQU 0 ; 'Reset' input button = RA0
 00000001 00035 inrun EQU 1 ; 'Run' input button = RA1
 00036
 00037 ; ***
 00038
 00039 ; Initialize Port B (Port A defaults to inputs)..........
 00040
0000 3000 00041 MOVLW b'00000000' ; Port B Data Direction Code
0001 0066 00042 TRIS portb ; Load the DDR code into F86
0002 2807 00043 GOTO reset
 00044
 00045
 00046 ; 'delay' subroutine ..
 00047
0003 008C 00048 delay MOVWF timer ; Copy W to timer register
0004 0B8C 00049 down DECFSZ timer ; Decrement timer register
0005 2804 00050 GOTO down ; and repeat until zero
0006 0008 00051 RETURN ; Jump back to main program
 00052
 00053
 00054 ; Start main loop ...
 00055

80 Chapter 4

This means that the program executes but it does not necessarily carry out the right operations

in the right order. For example, if the wrong input pin is specified for testing, the button will not

be detected. Logical errors can be detected by running the program through a test sequence that

exercises all the features of the application. Any operational errors then have to be traced back

to the relevant source code section. This process may have to be repeated many times, making

it very time consuming.

This is where simulation is useful: it allows the program to be ‘run’ in a virtual environment on

the host PC, as if it were being executed in the chip, but without having to download to the

actual hardware. It can then be checked for logical errors and the source code changed and

re-tested much more quickly and easily. This will allow most of the logical errors to be

Table 4.4: continued

0007 0186 00056 reset CLRF portb ; Clear Port B Data
 00057
0008 1C05 00058 start BTFSS porta,inres ; Test RA0 input button
0009 2807 00059 GOTO reset ; and reset Port B if pressed
000A 1885 00060 BTFSC porta,inrun ; Test RA1 input button
000B 2808 00061 GOTO start ; and run count if pressed
 00062
000C 0A86 00063 INCF portb ; Increment count at Port B
000D 30FF 00064 MOVLW 0FF ; Delay count literal
000E 2003 00065 CALL delay ; Jump to subroutine 'delay'
 00066
000F 2808 00067 GOTO start ; Repeat main loop always
 00068 END ; Terminate source code

SYMBOL TABLE
 LABEL VALUE

__16F84A 00000001
delay 00000003
down 00000004
inres 00000000
inrun 00000001
porta 00000005
portb 00000006
reset 00000007
start 00000008
timer 0000000C

MEMORY USAGE MAP ('X' = Used, '-' = Unused)

0000 : XXXXXXXXXXXXXXXX ---------------- ---------------- ----------------

All other memory blocks unused.

Program Memory Words Used: 16
Program Memory Words Free: 1008

Errors : 0
Warnings : 1 reported, 0 suppressed
Messages : 2 reported, 0 suppressed

PIC Program Development 81

eliminated, leaving maybe a few issues related to the real hardware to be resolved, e.g. input/

output timing.

MPLAB provides a source code simulation and debugging for the MCU alone, while

Proteus VSM provides a much more user-friendly interactive method, with an animated

schematic and virtual signal analysis for the whole circuit (see Appendix E). Simulation allows

the effect of the program on the registers and outputs to be checked at critical points. For

example, in BIN4 we would check to see that port B has been incremented after the execution

of the main loop, because this is the primary function of the program. Figure 4.4 shows

a screenshot from MPLAB version 8.60 when simulating BIN4.

MPLAB now provides a logic analyzer, which allows the outputs to be viewed on a time axis,

as seen in Figure 3.5 by selecting View, Simulator Logic Analyzer. The ‘Channels’ button

opens a dialogue that allows the output pins RB0 to RB7 to be added to the display.

4.7.1. Single Stepping

Source code debugging allows the program to be tested in the edit window. First, load and

assemble the source code file BIN4.ASM. Then enable simulation mode by selecting

‘Debugger, Select Tool, MPLAB SIM’. A control panel should appear in the toolbar. Operate

Figure 4.4
MPLAB (Version 8.60) simulation workspace for debugging BIN4

82 Chapter 4

the ‘Run’ button: nothing appears to happen, but when the ‘Halt’ button is operated, the current

execution point is indicated in the source code window. You may get a message about the

‘Watchdog Timer’, which is an automatic interrupt that prevents the program getting stuck in

a loop. If necessary, open the Configure, Configuration Bits dialogue and turn the watchdog

timer off, unchecking the ‘Configuration Bits set in code’ option. At the same time, ensure that

the Power-Up Timer and Code Protection are off. These will be explained later. The program

can now be executed one instruction at a time using the ‘Step Into’ button in the control panel,

and the sequence examined. With no inputs, the program should loop through the reset

sequence. The program can be restarted from the top at any time by clicking on the ‘Reset’

button. If Animate is selected from the Debugger menu, execution steps automatically.

4.7.2. Input Simulation

We now need to simulate the action of the push buttons in the hardware that are used to start

and stop the output sequence. Select Debugger, Stimulus, New Workbook (Asynch tab).

Clicking the first cell in the PIN/SFR column allows an input to be selected from a drop-down

menu. Select RA0 in the first row, and RA1 in the second. In the Action column, set both to

toggle mode: this will make the input change each time the Fire button is pressed. The inputs

can now be operated to allow the program to proceed from the reset loop. Both inputs should be

set high initially, simulating the default (inactive) condition in the hardware. Taking RA1 low

will allow the main loop to proceed, and toggling RA0 will execute the reset loop.

Unfortunately, the state of the input is not indicated in the stimulus table, so file register 05,

port A, must be displayed (preferably in binary) to confirm the changes on the inputs.

4.7.3. Register Display

The special function registers can be viewed to check the effect of the program on the output

register 06, port B. The changes at the inputs can also be checked, and any intermediate

changes in internal registers tracked. Registers can also be displayed selectively using a watch

window. The display format can be changed from hex to binary by right-clicking for the

register properties, so individual bit status can be checked. Port A bits 0 and 1 should change

with the asynchronous stimulus inputs, and port B should display a random binary number after

the increment loop has been executed for an arbitrary time.

4.7.4. Step Out, Step Over

The Step Into control will step through all subroutines. Once the program has entered the delay

loop, the same simple sequence is being repeated, so single stepping is not so useful. We need

either to drop out of the subroutine (Step Out) or to bypass it altogether (Step Over). These

commands cause the loop to be executed at full speed, with single stepping being resumed after

PIC Program Development 83

the RETURN instruction. Once a subroutine is correct, it can be stepped over when debugging

the rest of the program.

4.7.5. Breakpoints

Another technique for executing selected parts of the program at full speed is the breakpoint.

For example, if part of a large program is known to be correct, we will want to run through that

section at full speed and start single stepping at a later point in the program. In BIN4,

a breakpoint can be set at the start of the main loop so that it executes once, then stops so we

can inspect the registers. A breakpoint can be set by simply double-clicking in the line number

margin of the source code window. The program can then be run from the start, and it will stop

at the breakpoint. Run again, and a complete loop will be executed at full speed and port B

should be seen to increment by one.

4.7.6. Stopwatch

The program timing can be checked using the stopwatch feature. This displays the total number

of instructions executed and the time elapsed, calculated from the simulated processor clock

frequency. For BIN4, RC oscillator should be selected in the configuration dialogue. The clock

speed is set in the Debugger, Settings dialogue, Osc/Trace tab. In this case, set the processor

frequency to 100 kHz. Then run the program to the breakpoint at ‘start’, zero the clock and run

again. The stopwatch will display the total time for one cycle. The frequency of the output can

be predicted from this measurement. Two program loop cycles will cause the low-output

bit RB0 to be toggled up and down once, giving one full output cycle. Therefore, we can

double the loop time to give the output period, and calculate the reciprocal to give the

frequency at RB0.

From the stopwatch readings:

Number of instructions executed per loop¼ 777

Processor frequency ¼ 100 kHz

Loop time ¼ 31.08ms

Therefore:

Output period at RB0 ¼ 2� 31.08 ¼ 62.16ms

Output frequency at RB0¼ 1/0.06216 ¼ 16.1Hz

This shows that changes in the higher order output bits will be clearly visible using this

clock frequency with the maximum delay loop count (FF). The frequency at RB1 will be about

8Hz, RB2 4Hz, RB3 2Hz and so on, with RB7 flashing about once every 8 s. By adjusting

the count value, and inserting NOP (no operation) instructions, an exact set of frequencies can

84 Chapter 4

be obtained. Using a crystal clock or calibrated internal clock will make the timing more

accurate. More information about using MPLAB for debugging is given in Chapter 9.

4.8. Program Downloading

After testing in the simulator for correct operation, the machine code program can be blown into

the flash memory on the chip. The program is downloaded via a serial link into a specific pin,

RB7 in the case of the 16F84A. There are twomethods for program downloading, outlined below.

4.8.1. Programming Unit

The original programming method for PIC chips required the chip to programmed before

fitting in the finished hardware circuit. A programming unit was plugged into the serial port of

the PC (COM1 or COM2) and the chip inserted into the zero insertion force (ZIF) socket on the

programmer (Figure 4.5). The chip orientation had to be carefully checked, as inversion would

reverse the supply pins and burn out the chip. Antistatic precautions had to be observed, since

the PIC is a complementary metal oxide semiconductor (CMOS) device, and static discharge

on a pin can break down the field effect transistor (FET) gate insulation in the internal circuitry.

Before downloading, the correct device must be selected in MPLAB under device

specifications, and the configurations bits set as described below. These can also be set up using

an assembler directive in the source code.

Oscillator (Clock): RC

The main options in the earlier chips were ‘RC’ and ‘XT’. RC must be selected for the

oscillator configuration used in the BIN hardware. XT will be selected in later applications

Figure 4.5
PIC programming unit

PIC Program Development 85

using an external crystal oscillator. The program will not run in the hardware if the wrong type

of oscillator has been selected, so check this carefully. More recently introduced chips now

have a third option, an internal oscillator that eliminates the need for external components to

control the clock. This is now generally the preferred option.

Watchdog Timer: Off

The watchdog timer (WDT) is an internal timer, which automatically restarts the program

if it is not cleared back to zero within 18ms, using the instruction CLRWDT. This can be

used to stop the controller hanging, owing to an undetected program bug or an input condition

that has not been predicted in testing. For applications not using this feature, WDT must be

switched off, or the program will reset repeatedly, preventing normal operation.

Power-up Timer: On

Mains-derived power supplies may take some time to reach the correct value (þ5 V) when first

switched on. The power-up timer (PuT) is an internal timer which delays the start of program

execution until the power supply is at the correct voltage and is stable. This helps to ensure that

the program starts correctly every time. It is not relevant in simulation mode, but should be

enabled when the program is downloaded for hardware operation.

Code Protect: Off

If the code protect (CP) bit is enabled, the program cannot be read back into MPLAB and

copied or manipulated. This is normally only necessary for commercial applications to prevent

software piracy, so we can switch off code protection for our simple examples.

For program downloading, PICSTART would be selected from the Programmer menu. If the

programming unit had been correctly connected, a programming dialogue was displayed, with

the hex code to be downloaded visible (Figure 4.6; note that this illustration dates back to

version 5 of MPLAB). When the configuration bits had been checked, the Program operation

could be selected to download the machine code. When complete, confirmation of successful

programming should be received, and the chip manually transferred to the application circuit,

again observing antistatic precautions.

4.8.2. In-Circuit Programming and Debugging

In-circuit programming is now usually the preferred downloading method, where the chip is

left in-circuit after assembly of the printed circuit board (PCB), allowing programming and

final debugging in the final hardware. When a board is produced in volume, the programming

can be done as the final stage when the hardware is complete. This is also very useful at the

prototyping stage, as program modifications can be more rapidly and safely implemented and

tested.

86 Chapter 4

To facilitate in-circuit programming and debugging (ICD), the board is designed with

a six-pin connector, which connects the programming pins on the chip to a programmer/

debugger module that is in turn connected to the universal serial bus (USB) output on

the host PC. This system has already been illustrated in Chapter 1 (Figure 1.11), and will

explained in more detail in Chapter 7 by examining some Microchip demonstration

systems.

When the hardware has been connected, the appropriate programmer/debugger is selected

from the programmer menu. PICkit2/3 is the low-cost option, which nevertheless offers some

very useful features. With the connection confirmed, the program can be downloaded. The

same module can then be selected from the debugger menu and the program run and debugged

using the same tools as used in software simulation (single step, breakpoints, etc.). However,

program execution now takes place in the chip itself. The interaction with the real hardware can

be monitored, and hence the hardware and software verified at the same time. Note that not all

chips support in-circuit debugging, especially smaller and older chips. Neither the 16F84A nor

the 16F690 supports ICD without a special header, which must be connected between the

debugger and the chip. The PIC 16F887 used later on the Microchip 44-pin demo board does

support ICD.

Figure 4.6
MPLAB (Version 5) program downloading windows

PIC Program Development 87

When debugging is complete, the final step is to configure the chip to run independently by

selecting the Release option in the drop-down menu in the project toolbar. This allows the

board to run when disconnected from the debugging module.

Thus, the software can be tested and debugged in stages: initially in MPSIM or Proteus

VSM, and finally in the actual hardware. Proteus also provides fully featured PCB design as

well as circuit simulation, so the finished hardware can be produced using the same

package.

4.9. Program Testing

Preliminary hardware inspection and testing is important if the circuit is newly constructed,

and essential if it is a new design. First, have a good look at the board to check that the

correct components have been fitted in the correct places and orientation, there are no dry

joints or solder bridges and so on. Connect the power before fitting the chip(s) if they are in

sockets, and check that the supply voltages are correct, and on the right pins. When the

hardware has been thoroughly checked, switch on and check that the MCU is not

overheating.

In a commercial product, a test schedule must be devised and correct operation

confirmed and recorded. The test procedure should check all possible input sequences,

not just the correct ones, if the design is to be completely reliable. It is quite difficult to

be sure that complex programs are 100% testable, as it is often not easy to predict

every possible operating sequence. An outline test procedure for BIN4 is suggested in

Table 4.5.

The program should start immediately on power-up. If it does not function correctly when

tested against the original specification, a fault-finding process needs to be followed, as

outlined below.

Table 4.5: Basic test schedule for BIN4

Test Correct operation Checked

1 Inspection: check PCB and components Visual: correct value, orientation and connections
2 Connect 5 V power supply Visual þ multimeter: chip power supplies OK
3 Check and adjust clock frequency Oscilloscope or frequency meter: 100 kHz
4 Press RUN Count on LEDs
5 Release RUN LED count halted
6 Press and release RESET LEDs off
7 Press RUN Count on LEDs from zero
Signed and dated Name Date

88 Chapter 4

1. Hardware checks:

(a) þ5V on MCLR, VDD, 0 V on VSS

(b) Clock signal on CLKIN

(c) Input changes on RB0, RB1.

2. Software checks:

(a) Simulation correct

(b) Correct clock selected

(c) WDT off, PuT on, CP off

(d) Program verified.

More suggestions on system testing are given in Chapter 9.

Questions 4

1. Place the following program development steps in the correct order: (a) Download hex file;
(b) Assemble source code; (c) Edit source code; (d) Test in hardware; (e) Design program;
(f) Simulate in software. (6)

2. State the file extension for the following files, and describe their function: Source code;
Machine code; List file. (6)

3. State two advantages of using subroutines. (4)
4. State an instruction for making a conditional jump in PIC assembler code. (2)
5. State an instruction which must precede a TRIS instruction to make the port pins all

outputs. (2)
6. How could you halve the delay time in BIN4? (2)
7. Explain how a switched input to the PIC 16F84A can be simulated in MPLAB

asynchronously. (4)
8. State the configuration settings that should be selected when downloading to the BIN

hardware. (4)

Answers on page 419e20. (Total 30 marks)

Activities 4

1. Download the supporting documentation for MPLAB from www.microchip.com. Study the
tutorial in the User’s Guide and the help files supplied with MPLAB as necessary to familiarize
yourself with editing, assembling and simulating an application program. Start up MPLAB,
create a source code file for BIN3, and enter the assembler code program, leaving out the
comments. Assemble, correct any errors and simulate. Check that the port B (F6) file register
operates as required.

2. Modify the program as BIN4, and confirm that its operation is essentially the same.
3. Modify the program to scan the output, that is, move one lit LED along the display, repeating

indefinitely, using a rotate instruction.

PIC Program Development 89

http://www.microchip.com

4. Construct a prototype circuit, download BIN4 and test to the schedule given in Table 4.5.
Refer forward to Chapter 10 if necessary.

5. If Proteus VSM is available, enter or download the schematic and source code for application
BIN4 from www.picmicros.org.uk. Assemble the source code, attach the hex file to the MCU
and check that the simulation works (LEDs flash). Adjust the program to give an output
period of exactly 50ms at RB0. Use NOPs in the code if necessary. Use the virtual oscilloscope
and timer counter to check the output period, and the logic analyzer to display all the outputs
simultaneously.

90 Chapter 4

http://www.picmicros.org.uk

CHAPTER 5

PIC Architecture

Chapter Outline
5.1. Block Diagram 95

5.1.1. Clock and Reset 95

5.1.2. Harvard Architecture 96

5.2. Program Execution 96
5.2.1. Program Memory 96

5.2.2. Instruction Execution 97

5.2.3. Data Processing 98

5.2.4. Jump Instructions 98

5.3. File Register Set 98
5.3.1. Special Function Registers 99

5.3.2. General Purpose Registers 104

Questions 5 105

Activities 5 105

Chapter Points
• The 16XFXXX mid-range microcontroller family is represented by a block diagram.

• Its Harvard architecture uses a RISC instruction set, execution pipeline and flash program

memory.

• A fixed-length 14-bit instruction contains the operation code and operands.

• The MCU has a working register, program counter, stack and instruction register, with decoding,

timing and control logic.

• Special function registers have dedicated functions.

• RAM general purpose registers provide temporary data storage.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10005-9

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

93

http://dx.doi.org/

An overview of microcontroller (MCU) principles has been provided in Part 1. We now need to

look at the PIC� internal hardware in more detail. We will use the 16F84A chip as a reference,

despite its partial obsolescence, since it has all the essential elements found on all the current

chips in the family without complicating features such as analogue inputs and serial ports. It is

also currently included in the low-cost Proteus VSM Starter Kit for microcontroller circuit

simulation. All members of the PIC family are based on the same core architecture, with each

having a different combination of memory and peripheral features.

An essential reference is the PIC 16F84A data sheet, especially Figure 5.1, the block diagram

of the internal architecture. A more complete picture is provided in the ‘PIC Mid Range

Reference Manual’ (Figure 4-2), which includes all the peripheral options for the 16 series

chips. For an explanation of the main blocks in the internal architecture, refer to Appendix C,

Ports A, B
I/O &
Program

Flash
ROM

Program
Memory

Instruction
Register

Instruction
Decoder

Stack

Program
Counter

Ports &
Timer

Status

decoder

Option

Interrupt

File Select

General
Purpose
Registers

EEPROM
Access

EEPROM
Data Memory

Program Address (13 bits)

Instruction Code (14 bits)

Data Bus (8 bits)

Arithmetic &
Logic Unit

Working
Register

ALU

Results

 Timing &
 Control

Multiplexer

Literal Data (8)

File

Register

 Data

ClockReset

Operation

Code (6)

Working

Data (8)

PIC 16 Core

File Register Address (5 bits)

Figure 5.1
PIC 16F84A simplified internal architecture

94 Chapter 5

which describes how the registers, arithmetic and logic unit, multiplexer, decoder, program

counter and memory work. Later, we will move on to the 16F690, which has a good range of

peripherals and is used in the Microchip LPC demo board. All data sheets and reference

manuals can be downloaded from www.microchip.com.

5.1. Block Diagram

A somewhat simplified internal architecture (Figure 5.1) has been derived from the block

diagram given in the data sheet. Some features seen in the manufacturer’s diagram have been

left out because they are not important at this stage. The functional blocks of the chip are

shown, with the main address paths identified. The bit width of each parallel path is indicated,

with the 8-bit data bus connected to all the main registers. The timing and control block has

control connections to all other blocks, which determine the processor operation at any point in

time, but they are not all shown explicitly in order to keep the diagram as clear as possible.

The file register set contains various control and status registers, as well as the port registers

and the program counter. The most commonly used are the ports (PORTA, PORTB), status

register (STATUS), real-time clock counter (TMR0) and interrupt control (INTCON). There is

also a number of spare general purpose registers (GPRx), which can be used as data registers,

counters and so on. The file registers are numbered 00 to 4F, but are usually given labels in the

program source code. File registers also give access to a block of EEPROM, which provides

non-volatile data memory.

5.1.1. Clock and Reset

A clock circuit is connected to the timing and control block to drive all the operations of the

chip. For applications where precise timing is not required, a simple external resistor and

capacitor network controls the frequency of the internal oscillator. Relatively low frequencies

are generated (< 1MHz) with an RC clock. For more precise timing, a crystal oscillator is used

(see data sheet Figure 6-7); a convenient frequency is 4MHz, because each instruction takes

four clock cycles to execute, that is, 1 ms. The exact program execution timing can then be more

easily calculated, and the hardware timer used for accurate signal generation and measurement.

With the high-speed oscillator option selected, the processor can be clocked at up to 20MHz,

giving a minimum 200 ns instruction execution period, and a maximum instruction execution

rate of 5 mips (millions of instructions per second). Most current chips also include an internal

oscillator that runs at frequencies between 32 kHz and 32MHz; this is now the default option

as it eliminates the external clock components.

In earlier processors, an external reset circuit was often needed to ensure a smooth start-up.

Now, the timing and control circuits contain start-up timers, which means that the reset input

!MCLR can simply be connected to VDD, the positive supply (normally via a precautionary

PIC Architecture 95

http://www.microchip.com

resistor), to enable the processor. An external reset button (with a pull-up resistor) or control

signal can still be connected to !MCLR if an external restart might be required. The MCU

program can then be restarted by pulsing the reset input low. In most of our simple applications,

the power-on reset will be used.

5.1.2. Harvard Architecture

It can be seen in the block diagrams that the memory and file register address lines are separate

from the data paths within the processor. This is referred to as Harvard architecture; it improves

the speed of processor operation because data and addresses do not have to share the same bus

lines. The reduced size of the instruction set also speeds up decoding and the short data path

length in a single chip design reduces data transmission time. The program execution hardware

also uses a ‘pipeline’ arrangement; as one instruction is executed, the next is being fetched

from program memory, overlapping instruction processing and thus doubling the overall

execution rate. All these features contribute to a high speed of operation, compared with

traditional microprocessors that use a conventional (Von Neumann) architecture, in which the

program and data share the same data bus and memory space.

5.2. Program Execution

The program consists of a sequence of 14-bit codes, which contain both the operation code

and operand in a fixed length instruction. This machine code program is derived from a source

code program created as a text file on a host PC, assembled and downloaded, as detailed in

Chapter 4. At the moment we are not too concerned about exactly how the downloading is

carried out; all we need to know for now is that the program is received in serial form from the

host PC via an input/output (I/O) port pin (RB7/PGD/ICSPDAT). The data transfer is

controlled by a data clock signal on an adjacent pin (RB6/PGC/ICSPCLK), while a high

programming voltage (14 V) is applied to !MCLR. A low-voltage programming option is also

available, which eliminates the need for this high programming voltage. In-circuit serial

programming (ICSP) can be carried out while the chip remains in circuit; the programmer

module is then connected via a six-pin connector on the application board (see Figure 1.9). The

PIC program memory is usually implemented as flash read memory (ROM), so an existing

program can be replaced by simply overwriting with a new version.

5.2.1. Program Memory

The program counter register holds the current address, reset automatically to 0000 when the

chip is powered up or reset. The user program must therefore start at address 0000, but the first

instruction is often GOTO the start of the program at some other labeled address. This is

necessary when using interrupts, as we shall see later, because the interrupt service routine

96 Chapter 5

(GOTO ISR) must be placed at address 0004. For now, we can place the start of the program at

address zero.

The program counter consists of a pair of 8-bit registers. The program counter low (PCL)

register holds the low byte of the current address, and the program counter high (PCLATH)

register holds the high byte. In the original PIC 16 specification, the current address is fed to

program memory from the program counter via a 13-bit address bus, so the high bits (5, 6

and 7) of PCLATH are unused, and the maximum program size accessible is 213¼ 8 k (see

Appendix C).

Program memory capacity has been extended in more recent chips, using additional bits of

PCLATH and a wider address bus. A maximum 64 k program instruction is possible with

a 16-bit address. In normal operation, the PCL is incremented during each instruction cycle,

and PCLATH incremented when PCL overflows (i.e. when PCL rolls over from 255 to 0). The

memory space is therefore divided into pages of 256 instructions, the range addressed by the

8 bits of PCL. See Appendix C for details of memory sizing.

5.2.2. Instruction Execution

The program execution section of the MCU contains the instruction register, instruction

decoder, and timing and control logic. The 14-bit instructions stored in program memory are

copied to the instruction register for decoding; each instruction contains both the operation

code and operand. The instruction decoder logic converts the op-code bits into settings for all

the internal control lines. The operand provides a literal, file register address or program

address, which will be used by the instruction.

If, for example, the instruction is MOVLW (Move a Literal intoW), the control lines will be set

up to feed the literal operand to W via literal data bus to the multiplexer and ALU. If the

instruction is MOVWF, the control lines will be set up to copy the contents of W to the

specified file register via the internal data bus. The operand will be the address of the file

register (00 to 4F) required. If we look at the ‘move’ instruction codes quoted in the instruction

set, we can see the difference in the code structure for the three move instructions:

MOVLW k ¼ 11 00xx kkkk kkkk

MOVWF f ¼ 00 0000 1fff ffff

MOVF f,d ¼ 00 1000 dfff ffff

In the MOVLW instruction, the operation code is the high 4 bits (1100), ‘x’ are ‘don’t care’

bits, and ‘k’ represents the literal bits, the low byte of the instruction. In the MOVWF

instruction, the operation code is 0000001 (7 bits) and ‘f’ bits specify the file register address.

Only 7 bits are used for the register address, allowing a maximum of 27¼ 128 registers to be

addressed. In the MOVF instruction the operation code is 001000, and the file register address

PIC Architecture 97

is needed as before to identify the data source register. Bit 7 (d) controls the data destination.

This bit must be 0 to direct the data into W, the usual operation. For example, to move an 8-bit

data word from file register 0C to W requires the syntax MOVF 0C,W.

5.2.3. Data Processing

The arithmetic and logic unit (ALU) can add, subtract or carry out logical operations on

single data bytes or pairs of numbers (see Chapter 2). These operations are carried out in

conjunction with the data multiplexer and working register. The multiplexer allows new data to

be fed from the instruction (a literal) or a register. This may be combined with data from W,

or register data manipulated in a single register operation. W is used in register pair

operations as a temporary data source or store, but the final result must usually be copied back

into a file register, since W may be needed for the next operation.

5.2.4. Jump Instructions

If a GOTO instruction is executed, the program counter will be loaded with the program

memory address of the jump destination given as the instruction operand. The program

label used in the source code will have been replaced by the destination address by the

assembler. For conditional branching (making decisions), any file register bit can be tested

by a ‘Bit Test & Skip’ instruction, which is then followed by a GOTO or CALL

instruction.

When a CALL instruction is executed, the destination address is loaded into the PC in the

same way as for the GOTO, but in addition, the address following the CALL is stored on

the stack, the return address. The subroutine is then executed until a RETURN instruction

is encountered. At this point, the return address is automatically pulled from the stack

and replaced in the PC, allowing program execution to pass back to the original point.

The stack works on a last in, first out (LIFO) basis, with the last address stored being the first to

be recovered. In conventional processors, the stack can be modified directly as it is located in

the main memory, but in the PIC16 this not possible.

5.3. File Register Set

All the file registers are 8 bits wide. They are divided into two main blocks: the special function

registers (SFRs), which are reserved for specific purposes, and the general purpose registers

(GPRs), which can be used for temporary storage of any data byte. The basic file register set

(16F84A) is shown in Figure 5.2.

The registers in Bank 0 (file addresses 00e4F) can be directly addressed, and it is

suggested that the register labels given in Figure 5.2, which match the data sheet, are used

98 Chapter 5

as the register labels. These labels are also used by default in MPLAB, and standard header

files can be included in your programs, which define all the register names using these

labels.

Special instructions are available to access the Bank 1 registers. For simplicity, we have already

used the instruction TRIS to access the data direction registers TRISA and TRISB. Similarly,

we will use the instruction OPTION to access the option register, which will be used later to set

up the hardware timer. Alternatively, a register bank select bit in the status register can be used

to access Bank 1 file registers. This operation is most easily implemented by using a special

instruction BANKSEL (see Program 1.1); this is the preferred method once the basics of

programming have been established.

5.3.1. Special Function Registers

The operation of the 16F84A SFRs is summarized below, describing the operation of those that

are used most frequently. The functions of all the registers are detailed in each chip data sheet.

The shaded registers in Figure 5.2 either do not exist, or are repeated at addresses 80eCF

(page 1).

Address Bank 0 Bank1 Address
0 IND0
1 81
2 PCL

3 STATUS

4 FSR
5 85
6

TMR0 OPTION

PORTA TRISA

PORTB TRISB 86
7
8 EEDATA EECON1 88
9 EEADR EECON2 89
A PCLATH
B INTCON

C GPR1

D GPR2

E GPR3

F GPR4

10 GPR5

General
Purpose
Registers

4F GPR68

Figure 5.2
PIC basic file register set (16F84A)

PIC Architecture 99

PCL Program Counter Low Byte

File Register Number ¼ 02

The program counter contains the address of (points to) the instruction currently being

executed, and counts from 000 to 3FF, unless there is a jump (GOTO or CALL). The PCL

register contains only the low 8 bits (00eFF) of the whole program counter, with the high

stored in the PCLATH register (address 0A). We only need to worry about the high bits if the

program is longer than 255 instructions in total, which is not the case for any of the

demonstration programs, and then only if the program counter is being modified directly. The

PC is automatically incremented during the instruction execution cycle, or the contents

replaced for a jump.

PORTA Port A Data Register

File Register Number ¼ 05

Port A has five I/O bits, RA0eRA4. Before use, the data direction for each pin must be set

up by loading the TRISA register with a data direction code (see below). If a bit is set to

output, data moved to this register appears at the output pins of the chip. If set as input, data

presented to the pins can be acted on immediately, or stored for later use by moving the data to

a spare register. Examples of this have already been seen in earlier chapters. In the 16F84A,

RA4 can alternatively be used as an input to the counter timer register (TMR0) for counting

applications. The use of the hardware timer will be covered in Chapter 6. The PORTA

register bit allocation is shown in Table 5.1. In other PIC chips, most port pins will have at

least two different functions, selected by setting up the relevant SFRs.

All registers are read and written as an 8-bit word, so we sometimes need to know what will

happen with unused bits. When the port A data register is read within a program (using

MOVF), the 3 unused bits will be seen as ‘0’. When writing to the port, the high 3 bits are

simply ignored. An equivalent circuit for each port pin is given in the 16F84A data sheet,

Section 5. The components of this block diagram are explained in Appendix B.

TRISA Port A Data Direction Register

File Register Number ¼ 85

The data direction of the port pins can be set bit by bit by loading this register with

a suitable binary code, or the hex equivalent. A ‘1’ sets the corresponding port bit to input,

while a ‘0’ sets it to output. Thus, to select all bits as inputs, the data direction code is 1111

1111 (FFh), and for all outputs is 0000 0000 (00h). Any combination of inputs and outputs can

be set by loading the TRIS register with the appropriate binary code.

When the chip first is powered up, these bits default to ‘1’, so it is not necessary to initialize for

input, only for output. This makes sense, because if the pin is incorrectly wired up, it is more

100 Chapter 5

easily damaged if set to output. For instance, if the pin is accidentally grounded, and then

driven to a high state by the program, the short-circuit current is likely to damage the output

circuit. If the pin is set as an input, no damage will be done.

The data direction register TRISA is loaded by placing the required code in W and then

using the instruction TRIS 05 or TRIS 06 for port A and port B, respectively. Alternatively,

all file registers with addresses 80eCF can be addressed directly, using the BANKSEL

command, and this option will be used in later programs.

PORTB Port B Data Register

File Register Number ¼ 06

Port B has the full set of eight I/O bits, RB0eRB7. If a bit is set to output, data moved to this

register appears at the output pins of the chip. If set as input, data presented to the pins can be

read at this address. The data direction is set in TRISB, using the TRIS or BANKSEL

command, and all bits default to input on power up. The PORTB register bit allocation is

shown in Table 5.1.

Bit 0 of port B has an alternative function; it can be initialized, using the interrupt control

register (INTCON), to allow the processor to respond to a change at this input with an interrupt

sequence. In this case, the processor is forced to jump to a predefined interrupt service routine

Table 5.1: Port bit functions (16F84A)

Register Bit Pin Label Function

Port A

0 RA0 Input or Output
1 RA1 Input or Output
2 RA2 Input or Output
3 RA3 Input or Output
4 RA4/T0CKI Input or Output or Input to TMR0
5 e None (read as zero)
6 e None (read as zero)
7 e None (read as zero)

Port B

0 RB0/INT Output or Input or Interrupt Input
1 RB1 Output or Input
2 RB2 Output or Input
3 RB3 Output or Input
4 RB4 Output or Inputþ Interrupt on change
5 RB5 Output or Inputþ Interrupt on change
6 RB6 Output or Inputþ Interrupt on change
7 RB7 Output or Inputþ Interrupt on change

PIC Architecture 101

(ISR) upon completion of the current instruction (see Section 6.3). The processor can also be

initialized to provide the same response to a change on any of the bits RB4eRB7.

TRISB Port B Data Direction Register

File Register Number ¼ 86

As in port A, the data direction can be set bit by bit by loading this register with a suitable

binary code, or the hex equivalent, where ‘1’ (default) sets an input and ‘0’ sets an output

(initialization required). The command TRIS 06 moves the data direction code from W to

TRISB register; the command BANKSEL allows direct access to bank 1 and the data direction

registers.

STATUS Status (or Flag) register

File Register Number ¼ 03

Individual bits in the status register record information about the result of the previous

instruction. Probably the most commonly used is the zero flag, bit 2; when the result of any

operation is zero, this zero flag bit is set to ‘1’. It is used by the Decrement/Increment and

Skip if Zero instructions, and can be used by the Bit Test & Skip instructions, to implement

conditional branching of the program flow. The status register bit functions are shown in

Table 5.2, where the function of the other bits is indicated.

TMR0 Timer Zero Register

File Register Number ¼ 01

A timer/counter register counts the number of pulses applied to a clock input; the binary count

can be read from the register when the count is finished. TMR0, an 8-bit register, can count up

to 255 pulses. For external inputs, the pulses are applied at pin RA4. When used as a timer, the

internal instruction clock is used to supply the pulses. If the processor clock frequency is

Table 5.2: STATUS register bit functions

Bit Label Name Function

0 C Carry Flag Set if register operation causes a carry-out of bit 8
of the result (8-bit operations)

1 DC Digit Carry Flag Set if register operation causes a carry-out of bit 3
of the result (4-bit operations)

2 Z Zero Flag Set if the result of a register operation is zero
3 PD Power Down Cleared when the processor is in sleep mode
4 TO Time Out Cleared when watchdog timer times out
5 RP0 Register Bank RP0 selects file registers 00e7F or 80eFF
6 RP1 Select Bits RP1 not used in ’84 chip
7 IRP IRP not used in ’84 chip

102 Chapter 5

known, the time taken to reach a given count can be calculated. When the counter rolls over

from FF to 00, an interrupt flag (see INTCON below) is set, if enabled. This allows the

processor to check if the count is complete, or to be alerted via an interrupt when a set time

interval has elapsed. The timer register can be read and written directly, so a count can be

started at a preset value to generate a known interval. The ‘Timer Zero’ label refers to the fact

that other PICs have more than one timer/counter register, but the 16F84A has only the one.

More details on using the TMR0 are given in Chapter 6.

OPTION Option Register

File Register Number ¼ 81

Table 5.3 details the option register bit functions. The TMRO counter/timer operation is

controlled by bits 0e5. When used as a timer (T0CS¼ 0), the processor instruction clock

signal increments the counter register. Prescaling can be selected (PSA¼ 0) to increase the

maximum time interval. Bits PS2, PS1 and PS0 control the prescale factor, which can be set to

divide the clock frequency by 2 (000), 4 (001), 8 (010), 16 (011), 32 (100), 64 (101), 128 (110)

or 256 (111). If the O 256 option is selected, the maximum count will be (256� 256)�
1¼ 65 535 cycles. As is the case with the TRISA and TRISB registers, the option register is

accessed using a special instruction, OPTION, or by bank selection. There is more on using the

timer in the next chapter. The option register is labeled OPTION_REG in more recent

processors, to avoid confusion.

INTCON Interrupt Control Register

File Register Number ¼ 0B

The INTCON bit functions are given in Table 5.4. An interrupt is a signal that causes the

current program execution to be suspended, and an ISR carried out. An interrupt can be

generated by an external device, via port B, or from the timer. In all cases, the ISR must start at

address 004 in the program memory. If interrupts are in use, an unconditional jump from

address zero, the program start address, to a higher start address, is needed. The INTCON

register contains three interrupt flags and five interrupt enable bits, and these must be set up as

Table 5.3: OPTION register bit functions

Bit Label Name Function

0 PS0 Prescaler Rate Select Bit 0 3-bit code to select one of eight prescale values
1 PS1 Prescaler Rate Select Bit 1
2 PS2 Prescaler Rate Select Bit 2
3 PSA Prescaler Assignment Assigns prescaler to WTD or TMR0
4 T0SE Timer Zero Source Edge Select Select rising or falling edge trigger for T0CKI input at RA4
5 T0CS Timer Zero Clock Source Select Selects timer/counter input as RA4 or internal clock
6 INTEDG Interrupt Edge Select Selects rising or falling edge trigger for RB0 interrupt input
7 RBPU Port B Pull-up Enable Enables pull-ups on port B pins so input data defaults to ‘1’

PIC Architecture 103

required during the program initialization by writing a suitable code to the INTCON register.

Program 6.2 in Chapter 6 demonstrates the use of interrupts. The precise function of the

INTCON bits varies in different PIC chips.

Other SFRs

More SFRs are listed in Table 5.5. EEDATA, EEADR, EECON1 and EECON2 are used to

access the non-volatile ROM data area. PCLATH acts as a holding register for the high bits

(12:8) of the program counter. The file select register (FSR) acts as a pointer to the file

registers. It is used with IND0, which provides indirect access to the file register selected by

FSR. This is useful for a block read or write to the GPRs, for example, for saving a set of data

read in at a port at intervals. More information on this is given in Chapter 6, Section 6.4.3.

Larger chips have more SFRs, which are required to control the additional peripheral blocks:

timers, analogue converters, serial ports and so on. These will be described later.

5.3.2. General Purpose Registers

The GPRs are numbered 0Ce4F in the 16F84A, 68 in all, and larger chips have more. They are

also referred to as random access memory (RAM) registers, because they can be used as a small

block of static RAM for storing blocks of data. We have already seen an example of using the

Table 5.5: Selected special function registers

SFR Name Function

00 INDF File Register Memory indirect addressing
04 FSR for block access
0A PCLATH Program Counter High Byte
08 EEDATA Data EEPROM indirect addressing
09 EEADR for block access
88 EECON1 Data EEPROM Read & Write Control
89 EECON2

Table 5.4: Interrupt control register (INTCON) bit functions

Bit Label Name Function

0 RBIF Port B Change Interrupt Flag Set when any one of RB4eRB7 changes state
1 INTF RB0 Interrupt Flag Set when RB0 detects interrupt input
2 T0IF Timer Overflow Interrupt Flag Set when timer TMR0 rolls over from FF to 00
3 RBIE Port B Change Interrupt Enable Set to enable port B change interrupt
4 INTE RB0 Interrupt Enable Set to enable RB0 interrupt
5 T0IE Timer Overflow Interrupt Enable Set to enable timer overflow interrupt
6 EEIE EEPROM Write Interrupt Enable Set to enable interrupt on completion of write
7 GIE Global Interrupt Enable Enable all interrupts which have been selected

104 Chapter 5

GPR1 (address 0C) as a counter register in a delay loop. The register was labeled ‘timer’,

preloaded with a value and decremented until it reached zero. This is a common type of

operation, and not only used for timing loops. For example, a counting loop can be used for

repeating an output operation a certain number of times, such as when performing

multiplication by successive addition. We could have used any of the GPRs for this function

because they are all operationally identical. When using more than one, a different label is

needed for each, declared using the EQU directive.

Questions 5

With reference to the PIC16 family of mid-range microcontrollers:

1. Describe the function of the following blocks within the MCU: program memory,
program counter, instruction decoder, multiplexer, W. (10)

2. Why is it not necessary to initialize a PIC port for input? (2)
3. State the main functions of the ALU, and the three sources of its data input. (5)
4. Why is the stack needed for subroutine execution? (2)
5. State the function of the following PIC file registers: PORTA, TRISA, TMR0, PCLATH,

GPR1. (5)
6. State the function of the register bits: STATUS,2; INTCON,1; OPTION,5. (6)

Answers on page 420. (Total 30 marks)

Activities 5

1. A trace table is shown below. By referring to the PIC 16F84A instruction set given in the data
sheet, complete the trace table to show the binary code present on the internal data
connections and in the registers during or after each instruction cycle while the program BIN1
(refer to Chapter 3) is executed. Copy this table and complete the additional columns to the
right for each of the remaining four instructions. The first is given as a guide. You need to
separate each instruction into op-code and operand, and work out the destination for each.

Activity 1: Trace table

Instruction no. 1 2 3 4 5

Address 0000

Instruction MOVLW 00

Machine code 3000

Program address bus (13 bits) 0 0000 0000 0000

File register address (5 bits) X XXXX

Instruction code register (8 bits) 0011 0000

Literal bus (8 bits) 0000 0000

(Continued)

PIC Architecture 105

Activity 1: Continued

Instruction no. 1 2 3 4 5

Data bus (8 bits) XXXX XXXX

Working register (8 bits) 0000 0000

Port B data register (8 bits) XXXX XXXX

Port B data direction register (8 bits) XXXX XXXX

X: don’t know/don’t care.

2. In the PIC 16F84A data sheet, Section 4.0, a block diagram of the internal circuit connected
to pin RA0 is shown. Refer to Appendices B and C if necessary, and complete the tasks below.
The FETs at the output form a complementary pair of switches, a P-type and an N-type. The
PFET is on when its gate is low. The NFET is on when its gate is high. For the port pin to
operate as an output, the TRIS latch is loaded with the data direction bit 0, and the data is
loaded into the data latch from the internal data bus.
(a) Construct a logic table to represent the operation of the output logic when the TRIS

latch is clear (Q¼ 0), that is, the pin is set as an output. Prove that the output pin
follows the latched output data.

(b) Extend the logic table and prove that P and N are both off when the pin is initialized
for input.

(c) Describe how a data bit is read onto the data bus when the pin is set for input.
(d) What is the function of the output FETs in the operation of the I/O pin?

106 Chapter 5

CHAPTER 6

Programming Techniques

Chapter Outline
6.1. Program Timing 108

6.2. Hardware Counter/Timer 110
6.2.1. Using TMR0 111

6.2.2. Counter Mode 112

6.2.3. Timer Mode 112

6.2.4. TIM1 Timer Program 113

6.2.5. Problems with TIM1 113

6.3. Interrupts 113
6.3.1. Interrupt Setup 115

6.3.2. Interrupt Execution 115

6.3.3. INT1 Interrupt Program 117

6.3.4. Multiple Interrupts 119

6.4. Register Operations 120
6.4.1. Result Destination 122

6.4.2. Register Bank Select 122

6.4.3. File Register Indirect Addressing 123

6.4.4. EEPROM Memory 124

6.4.5. Program Counter High Register, PCLATH 124

6.5. Special Features 129
6.5.1. Clock Oscillator Type 129

6.5.2. Power-up Timer 130

6.5.3. Watchdog Timer 131

6.5.4. Sleep Mode 131

6.5.5. Code Protection 131

6.5.6. Configuration Word 132

6.6. Assembler Directives 132

6.7. Pseudo-Instructions 138

6.8. Numerical Types 138

6.9. Data Table 140

Questions 6 142

Activities 6 142

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10006-0

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

107

http://dx.doi.org/

Chapter Points
• Instruction cycle time is four clock periods; jumps take two instruction cycles.

• Hardware timers are clocked by the instruction clock, or used to count input pulses.

• Programmable prescalers extend the range of the hardware timers.

• Interrupts force the execution of an interrupt service routine.

• EEPROM provides non-volatile memory operation.

• RC, crystal or internal clock oscillator options.

• Power-on timer, watchdog timer, sleep mode, in-circuit programming and code protection.

• Assembler directives, macros, special instructions.

• Numerical types include hex, decimal, binary, octal and ASCII.

Now that the basic programming methods have been introduced, we can look at some further

techniques. Sample programs demonstrating use of the timer, interrupts and data tables are

included in this chapter. A modified version of the 16F84A demo hardware schematic used for

these examples is shown in Figure 6.1. It has jumpers that allow RB0 to be used as an output to

a light-emitting diode (LED) or input to RB0 for demonstrating interrupts. The programs in

this section can all be downloaded for simulation in Proteus VSM, or tested in MPLAB.

6.1. Program Timing

Microcontroller (MCU) program execution is driven by a clock signal generated by an internal

oscillator, whichmay be controlled by an external RC circuit or crystal. This signal is divided into

four internal clockphases (Q1eQ4) that runat a quarter of the oscillator frequency (Fosc/4). These

Figure 6.1
Modified demo board with jumpers

108 Chapter 6

provide four separate pulses during each instruction cycle, which trigger the processor

operations. These include fetching the instruction code from the programmemory and copying it

to the instruction register. The instruction code is then used by the decoder to set up the control

lines to carry out the required process. The four clock phases are used to operate the data gates

and latches within the MCU in sequence to complete the data movement and processing (see

Microchip’s ‘PIC Mid-Range MCU Family Reference Manual’ and Appendix C).

The instruction timing is illustrated in Figure 6.2. Most instructions are executed within these

four clock cycles, unless a jump (GOTO or CALL) occurs. These will take eight clock cycles,

(a)

Q4 Q1 Q2 Q3 Q4 Q1 Q2

Fetch instruction from PC address

Execute previous instruction

Clock

Clock out

Instruction cycle time

(b)

Figure 6.2
PIC program timing: (a) instruction timing cycle; (b) BIN5MPLAB simulation, showing output timing

Programming Techniques 109

because the program counter contents have to be replaced, taking an extra instruction cycle.

The PIC� chip operates a simple pipelining scheme which overlaps the fetch cycle of one

instruction with the execution cycle of the previous one, doubling the speed in linear

sequences at the expense of a delay of one instruction cycle when branching. An output

instruction clock signal at Fosc/4 is available at the CLKOUT pin to operate external circuits

synchronously; it can also be used in hardware testing to check that the clock is running, and

to monitor its frequency.

If the clock rate is known, the execution time for a section of code can be predicted. A

frequency of 4 MHz, using a crystal oscillator, is a convenient value as it gives an instruction

cycle time of 1 ms. This is also the default frequency of the 8 MHz internal oscillator. The NOP

(No OPeration) is useful here to adjust the sequence execution time; it can be used to insert

a delay of one instruction cycle, that is, four clock cycles.

This point is illustrated in the simulation of program BIN5, Figure 6.2, which is a modification

ofBIN4 designed to give a binary count outputwith an output period of exactly 2 ms (500 Hz) at

the LSB. A delay of 1 ms overall can be created using a counting loop set to 247 and a NOP in

the loop tomake the loop execution time 4 ms. The total loop time is then 247 � 4 ¼ 988 ms plus

12 cycles for the loop control, giving a total of exactly 1000 ms. This is displayed on the

stopwatch by setting a breakpoint at the start of the loop, and zeroing the stopwatch before

running.

6.2. Hardware Counter/Timer

Accurate event timing and counting are often needed in microcontroller programs. For

example, if we have a sensor on a motor shaft that produces one pulse per revolution of the

shaft, the number of pulses per second will give the shaft speed. Alternatively, the interval

between pulses can be measured, using a timer, to obtain the speed by calculation. A process

for doing this would be:

1. Wait for pulse.

2. Read and reset the timer.

3. Restart the timer.

4. Process previous timer reading.

5. Go To 1.

If an independent hardware timer is used to make the measurement, and the timer interrupt

used, the controller program can carry on with other operations, such as processing the timing

information, controlling the outputs and checking the sensor input, while the timer

simultaneously records the time elapsed.

110 Chapter 6

6.2.1. Using TMR0

The special file register timer zero (TMR0) is found in all PIC 16 devices. It is an 8-bit

counter/timer register, which, once started, runs independently. This means it can count

inputs or clock pulses concurrently with (at the same time as) the main program execution.

A block diagram of TMR0 and its associated hardware and control registers is shown in

Figure 6.3.

As an 8-bit register, TMR0 can count from 00 to FF (255). The operation of the timer is set

up by moving a suitable control code into the OPTION register. The counter is then clocked

by an external pulse train or, more often, from the instruction clock. When it reaches its

maximum value, FF, and is incremented again, it rolls over to 00. This register overflow is

noitcnuF&lebaLtiBtpurretnIremiTtiB

2 T0IF

TMR0 Overflow Interrupt Flag
0 = No Overflow
1 = Overflow

5 T0IE

TMR0 Overflow Interrupt Enable
0 = Disable
1 = Enable

7 GIE

Global Interrupt Enable
0 = Disable
1 = Enable

oitaRnoisiviDrelacserP

Bit Timer Control Bit Label & Function 2 4 8 16 32 64 128 256
 0 PS0 Prescaler Rate Select Bit 0 0 1 0 1 0 1 0 1
 1 PS1 Prescaler Rate Select Bit 1 0 0 1 1 0 0 1 1
 2 PS2 Prescaler Rate Select Bit 2 0 0 0 0 1 1 1 1

 3 PSA Prescaler Assignment Bit 0 = Select Prescaler for TMR0
 1 = Deselect Prescaler for TMR0

 4 T0SE TMR0 Source Edge Select Bit 0 = Increment on rising edge of input pulse
 1 = Increment on falling edge of input pulse

 5 T0CS TMR0 Clock Source Select Bit 0 = Instruction Clock = Ext Clock/4
niptupnItceleS=1

X X X X X X X X
Prescaler

CLKIN/4
Input
pin

Pre-

scale

Select

Load / Read
TMR0 Register

TMR0
Overflow

TMR0 Input

1 X 1 X X 1 X X
Bit 7 6 5 4 3 2 1 0

INTCON Register

X X X 0 0 0 0 0 OPTION Register

Bit 7 6 5 4 3 2 1 0

Interrupt or Poll

Edge

Select

Input

Select

Pre-

scale

Enable

TMR0 Register

Figure 6.3
Timer0 setup and operation

Programming Techniques 111

recorded by the INTCON (interrupt control) register, Bit 2 (T0IF); assuming that it has been

previously enabled and cleared, it is set to 1 when TMR0 overflows. This condition can be

detected by bit testing in the program, or it can be used to trigger an interrupt (see Section 6.3

below).

In many PIC chips the 8-bit TMR0 is supplemented with additional 8-bit and 16-bit

counters. The latter provide an extended count (up to 65 535) that gives greater accuracy or

range. These timers are typically used to measure input intervals or generate output

signals with a controlled period, using a similar setup process to that described below for

TMR0.

6.2.2. Counter Mode

The simplest mode of operation of TMR0 is counting pulses applied to the relevant input (RA4

in the 16F84A, RA2 in the 16F690), which has the alternative name T0CKI, timer zero clock

input. These pulses could be input manually from a push button, or produced by some other

signal source, such as the sensor on the motor shaft mentioned above. If the sensor produces

one pulse per revolution of the shaft, and one of the PIC outputs controls the motor, the

microcontroller could be programmed to rotate the shaft by a set number of revolutions. If the

motor were geared down, a positioning system can be designed to move the output through

a set angle, for example, in a robot.

In order to increase the range of this kind of measurement, the prescaler allows the number of

pulses received by the TMR0 register to be divided by a factor of 2, 4, 8, 16, 32, 64, 128 or 256.

The ratio is selected by loading the least significant three bits in the OPTION register as

follows: 000 selects divide by 2, 001 divide by 4 and so on up to 111 for divide by 256. With the

maximum rate of division set, the register will count only 1 in 256 of the input pulses. TMR0

can also be preloaded with a value, say 156, using a standard MOVWF instruction. When it has

been topped up by a suitable number of pulses (100) the overflow can be detected and acted

upon by the program.

6.2.3. Timer Mode

The internal clock is selected as the TMR0 input source by setting the OPTION register, Bit 5,

to 0. For accurate timing, a crystal oscillator must be used, mode XT. With a 4 MHz clock,

the instruction clock will be 1 MHz, and the counter will then be clocked every 1 ms, taking

256 ms to count from zero round to zero again. By preloading with the value 156(9Ch)

as above, the overflow would occur after 100 ms.

If the time period measured is extended using the prescaler, the maximum timer period

will be 512 ms, 1024 ms and so on to 65.536 ms. Crystals are available that operate at

frequencies more conveniently divisible by 2; for example, a 32.768 kHz crystal frequency

112 Chapter 6

will produce an instruction clock at 8192 Hz. If this is now passed through the prescaler set

to divide by 32, the counter will be clocked at 256 Hz and will time out once per second.

Some PIC chips have an additional internal oscillator set to approximately this frequency

(31 kHz).

In Figure 6.3, TMR0 is set up with xxx000002 in the Option register, selecting the internal

clock source, with a prescale value of 2. The INTCON register has been set up with the timer

interrupt enabled and the timer overflow interrupt flag has been set (overflow has occurred).

Interrupts are explained in more detail in Section 6.3 below.

6.2.4. TIM1 Timer Program

A timer demonstration program TIM1 is listed as Program 6.1. It is designed to increment the

binary output at port B once per second. The program uses the same demonstration BIN

hardware as the previous programs, with eight LEDs displaying the contents of the output port.

An adjustable CR clock is used, set to give a frequency of approximately 65 536 Hz. This

frequency is divided by four, and is then divided by 64 in the prescaler, giving an overall

frequency division of 4 � 64 ¼ 256. The timer register is therefore clocked at 65 536/

256 ¼ 256 Hz. The timer register counts from zero to 256, overflows every second, and the

output is then incremented. It will take 256 s to complete the 8-bit binary output count.

6.2.5. Problems with TIM1

The program TIM1 works by ‘polling’ the timer interrupt bit. This means that the program has

to keep checking to see if this timeout flag has been set by the timer overflowing. This is not an

efficient use of processor time. In real applications, it is usually preferable to allow the

processor to carry on with some other process while the timer runs, and allow the timeout

condition to be processed using an interrupt. The overall performance of the MCU is thus

improved.

If the program is tested in MPSIM, and the stopwatch is used to measure the output step time,

using a breakpoint at the increment instruction, it measures just over one second. The extra

time is taken in completing the program loop before the timer is restarted. This will cause

a small error, which may not be significant in this case, but in other applications it may be

important. If the clock is adjustable (CR mode with variable resistor), overall timing can be

tweaked in the hardware, or the program timing adjusted using NOPs.

6.3. Interrupts

Interrupts are generated by an internal event such as timer overflow, or an external asynchronous

(i.e. not linked to the program timing) event, such as a switch closing. The interrupt signal can be

Programming Techniques 113

; **
; TIM1.ASM M. Bates 6/1/99 Ver 1.2
; **
;
; Minimal program to demonstrate the hardware timer operation.
;
; The counter/timer register (TMR0) is initialised to
; zero and driven from the instruction clock with a
; prescale value of 64.
;
; T0IF is polled while the program waits for time out.
; When the timer overflows, the Timer Interrupt Flag (T0IF) is
; set. The output LED binary display is then incremented.
; With the clock adjusted to 65536 Hz, the LSB LED flashes at
; 1 Hz.
;
; Processor: PIC 16F84A
;
; Hardware: PIC BIN Demo Hardware
; Clock: CR = 65536 Hz (approx)
; Outputs: RB0 - RB7: LEDs (active high)
; WDTimer: Disabled
; PUTimer: Enabled
; Interrupts: Disabled
; Timer: Internal clock source
; Prescale = 1:64
; Code Protect: Disabled
;
; Subroutines: None
; Parameters: None
;
; **

; Register Label Equates..

TMR0 EQU 01 ; Counter/Timer Register
PORTB EQU 06 ; Port B Data Register (LEDs)
INTCON EQU 0B ; Interrupt Control Register

T0IF EQU 2 ; Timer Interrupt Flag

; **

; Initialize Port B (Port A defaults to inputs).................

 MOVLW b'00000000' ; Set Port B Data Direction
 TRIS PORTB

 MOVLW b'00000101' ; Set up Option register
 OPTION ; for internal timer/64

 CLRF PORTB ; Clear Port B (LEDs Off)

; Main output loop ..

next CLRF TMR0 ; clear timer register
 BCF INTCON,T0IF ; clear timeout flag

check BTFSS INTCON,T0IF ; wait for next timeout
 GOTO check ; by polling timeout flag

 INCF PORTB ; Increment LED Count
 GOTO next ; repeat forever...

 END ; Terminate source code

Program 6.1
TIM1 hardware timer program

114 Chapter 6

received at any time during the execution of another process. In the PC, when you hit the

keyboard or move the mouse, an interrupt signal is sent to the processor from the keyboard

interface to request that the key be read in, or the mouse movement transferred to the screen. The

code that is executed as a result of the interrupt is called the ‘interrupt service routine’ (ISR).

When the ISR has finished its task, the process that was interrupted must be resumed as though

nothing has happened. This means that any information being processed at the time of the

interrupt needs be stored temporarily, so that it can be recalled later. This is known as context

saving. As part of the ISR execution, the program counter is saved automatically on the stack,

as when a subroutine is called, so that the program can return to the original execution point

after the ISR has been completed. This system allows the CPU to get on with other tasks

without having to keep checking all the possible input sources.

6.3.1. Interrupt Setup

A block diagram of the interrupt system in the 16F84A is shown in Figure 6.4. There are four

possible interrupt sources:

• RB0 can be set up as an edge triggered interrupt input by setting INTCON,4 (INTE).

• RB7 to RB4 can be set up to trigger an interrupt if any changes state, by setting INTCON,3

(RBIE).

• TMR0 overflow interrupt can be selected by setting INTCON,5 (T0IE).

• EEPROM write operation completion can be used to trigger the interrupt.

The interrupt source must be selected in the INTCON (Interrupt Control) register. Then, the

global interrupt enable (GIE) bit, which enables all interrupts, must be set (INTCON,7). The

MCU will then be ready to respond to the enabled interrupt (RBIF, INTF or T0IF). When the

interrupt condition is detected (e.g. TMR0 overflow), the program counter will be

automatically loaded with the address 004. That means that an ISR, or a jump to it, must be

located at this address. This is the same for any of the interrupts, so if more than one has

been enabled, a mechanism for identifying which is active must be included in the ISR. This

means checking the interrupt flags to see which is set and jumping to the appropriate ISR.

There is generally an interrupt associated with each peripheral interface, so most PICs have

numerous interrupt sources. For example, the 16F690 has 12.

6.3.2. Interrupt Execution

Interrupt execution is also illustrated in Figure 6.4. Each interrupt source has a corresponding

flag, which is set if the interrupt event has occurred. For example, if the timer overflows, T0IF

(INTCON,2) is set. When this happens, and the interrupt is enabled, the current instruction is

completed and the next program address is saved on the stack. The program counter is then

loaded with 004, and the routine found at this address is executed. Alternatively, location 004

Programming Techniques 115

can contain a ‘GOTO addlab’ (address label) if the ISR is to be placed elsewhere in the

program memory. This is known as an interrupt vector.

If interrupts are to be used, a GOTO should be used at the reset address, 000, to redirect the

program execution to the start of the main program at a higher memory address, because the

 Interrupt Control Bit Functions

 Bit Label Function Settings

 INTCON

0 RBIF Port B (4:7)
Interrupt Flag

0 = No change
1 = Bit change detected

 1 INTF RB0
Interrupt Flag

0 = No Interrupt
1 = Interrupt detected

 2 T0IF TMR0 Overflow
Interrupt Flag

0 = No Overflow
1 = Overflow detected

 3 RBIE Port B (4:7)
Interrupt Enable

0 = Disabled
1 = Enabled

 4 INTE RB0
Interrupt Enable

0 = Disabled
1 = Enabled

 5 T0IE TMR0 Overflow
Interrupt Enable

0 = Disabled
1 = Enabled

 6 EEIE EEPROM Write
Interrupt Enable

0 = Disabled
1 = Enabled

 7 GIE Global
Interrupt Enable

0 = Disabled
1 = Enabled

OPTION 6 INTEDG RB0 Interrupt
Active Edge Select

0 = Falling Edge
1 = Rising Edge

EECON1 4 EEIF EEPROM Write
Interrupt Flag

0 = No Interrupt
1 = Write completed

Control

INTCON

PCL

GOTO YYY

Interrupt
Service
Routine

Main
Program

Program

Memory

000

004

XXX
YYY

ZZZ

3FF

StackProgram Counter

OPTION

RB7
RB6
RB5
RB4

RB0

ZZZ

EECON1

TMR0
T0IF EEIE INTF

RBIF

External
Interrupts

Figure 6.4
16F84A interrupt setup and operation

116 Chapter 6

ISR (or GOTO addlab) will occupy address 004. The ISR must be created and placed at address

004 (ORG 004) as part of the program source code, or, alternatively, the interrupt vector placed

at this address.

Context saving may be included in the ISR; this is illustrated in the interrupt demonstration

program INT1 (Program 6.2) by saving and restoring the contents of port B data register. The

ISR must be terminated with the instruction RETFIE, Return From Interrupt. This causes the

address following that of the instruction that was interrupted to be pulled from the stack, with

program execution resuming from that point.

6.3.3. INT1 Interrupt Program

A demonstration program, Program 6.2, illustrates the use of interrupts. The BIN hardware

must be modified to run this program, with the push buttons connected to RB0 and RA4. This is

necessary because only port B pins can be used for external interrupts (Figure 6.1).

The program outputs the same binary count to port B (except RB0), as seen in the previous

BINx programs, to represent its normal activity. This process is interrupted by RB0 being

pulsed manually. The interrupt service routine causes all the outputs to be switched on, and

then waits for the restart button to be pressed. The routine then terminates, restores the value in

port B data register and returns to the main program at the original point. The program structure

and sequence are illustrated by the flowcharts in Figure 6.5.

Theprogram is in three parts: themain sequencewhich runs the output count, the delay subroutine

which controls the speedof the output count and the interrupt service routine. The delayprocess in

the main program is implemented as a subroutine, and expanded in a separate flowchart. The ISR

must be shown as a separate chart because it can run at any timewithin the program sequence. In

this particular program, most of the time is spent executing the software delay, so this is the

process that ismost likely to be interrupted. If the program included additional tasks that could be

carried out concurrently with the delay, a hardware timer interrupt could be added.

The interrupt routine is placed at address 004. The instruction ‘GOTO setup’ jumps over it at

run time to the initialization process at the start of the main program. The interrupt and delay

routines are assembled before the main program, because they contain the subroutine start

address labels referred to in the main program. The last instruction in the ISR must be RETFIE.

This instruction pulls the interrupt return address from the stack, and places it back in the

program counter, where it was stored at the time of the interrupt call.

To illustrate context saving, the state of the LEDs is saved in register ‘tempb’ at the beginning

of the interrupt, because port B is going to be overwritten with ‘FF’ to switch on all the LEDs.

Port B is then restored after the program has been restarted. Note that writing a ‘1’ to the

input bit has no effect. During the ISR execution, the stack will hold both the ISR return

address and the subroutine return address.

Programming Techniques 117

; ***
; INT1.ASM M. Bates 12/6/99 Ver 2.1
; ***
;
; Minimal program to demonstrate interrupts.
;
; An output binary count to LEDs on PortB, bits 1 - 7
; is interrupted by an active low input at RB0/INT.
; The Interrupt Service Routine sets all outputs high,
; and waits for RA4 to go low before returning to
; the main program.
; Connect push button inputs to RB0 and RA4
;
; Processor: PIC 16F84A
; Hardware: PIC Modular Demo System
; (reset switch connected to RB0)
; Clock: CR ~100kHz
; Inputs: Push Buttons
; RB0 = 1 = Interrupt
; RA4 = 0 = Return from Interrupt
; Outputs: RB1 - RB7: LEDs (active high)
;
; WDTimer: Disabled
; PUTimer: Enabled
; Interrupts: RB0 interrupt enabled
; Code Protect: Disabled
;
; Subroutines: DELAY
; Parameters: None
;
; ***

; Register Label Equates..................................

PORTA EQU 05 ; Port A Data Register
PORTB EQU 06 ; Port B Data Register
INTCON EQU 0B ; Interrupt Control Register
timer EQU 0C ; GPR1 = delay counter
tempb EQU 0D ; GPR2 = Output temp. store

; Input Bit Label Equates

intin EQU 0 ; Interrupt input = RB0
resin EQU 4 ; Restart input = RA4
INTF EQU 1 ; RB0 Interrupt Flag

; ***

; Set program origin for Power On Reset...................

 org 000 ; Program start address
 GOTO setup ; Jump to main program start

; Interrupt Service Routine at address 004................

 org 004 ; ISR start address

 MOVF PORTB,W ; Save current output value
 MOVWF tempb ; in temporary register
 MOVLW b'11111111' ; Switch LEDs 1-7 on
 MOVWF PORTB

wait BTFSC PORTA,resin ; Wait for restart input
 GOTO wait ; to go low
 MOVF tempb,w ; Restore previous output

Program 6.2
INT1 interrupt program

118 Chapter 6

The active edge of the RB0 interrupt is, by default, the rising edge (OPTION,6 ¼ 1). When this

input is operated, the interrupt only takes effect when the button is released. This eliminates the

need for debouncing the switch in hardware or software. Mechanical switches often

momentarily bounce open again when closed, before finally closing, and this can cause

program malfunction in the real hardware which would not necessarily be apparent in

simulation mode.

It is easier to test this particular application by interactive simulation using Proteus VSM

(ISIS), because the interrupt is a real-time process, and the effect can be seen immediately on

the output LEDs. By contrast, when tested in MPSIM, the effect of the program on the MCU

registers can only be seen when the program execution is stopped. However, MPSIM provides

more powerful simulation control and a complete record of the simulation. Both can provide

a virtual logic analyzer to display the output changes in time. The simulation methods are

shown together in Figure 6.6 for comparison. The files for both forms of simulation may be

downloaded from the support website.

6.3.4. Multiple Interrupts

In larger PIC 16 chips, many additional interrupt sources are present, such as analogue inputs,

serial ports and additional timers. These all have to be set up and controlled via additional

special function registers, but there is still only one interrupt vector address, 004, to handle

; DELAY subroutine..

delay MOVLW 0xFF ; Delay count literal is
 MOVWF timer ; loaded into spare register
down DECFSZ timer ; Decrement timer register
 GOTO down ; and repeat until zero then
 RETURN ; return to main program

; Main Program **

; Initialize Port B (Port A defaults to inputs)...........

setup MOVLW b'00000001' ; Set data direction bits
 TRIS PORTB ; and load TRISB
 MOVLW b'10010000' ; Enable RB0 interrupt in
 MOVWF INTCON ; Interrupt Control Register

; Main output loop

count INCF PORTB ; Increment LED display
 CALL delay ; Execute delay subroutine
 GOTO count ; Repeat main loop always

 END ; Terminate source code

 MOVWF PORTB ; at the LEDs
 BCF INTCON,INTF ; Clear RB0 interrupt flag
 RETFIE ; Return from interrupt

Program 6.2: (continued)

Programming Techniques 119

them. Therefore, when an interrupt is requested, these individual interrupt bits must be checked

in the software to see which is active before calling the appropriate ISR. The stack will still

only hold eight return addresses, meaning that only eight levels of interrupt or subroutine are

allowed. The limit of eight levels of subroutine or interrupt can easily be exceeded if the

program is too highly structured (i.e. multiple subroutine levels), so this must be borne in mind

when planning the program design. Higher power PIC chips have deeper stacks.

6.4. Register Operations

We will now briefly review some of the options available when using the file registers, which

provide more flexibility in programming.

(a)

(b)

(c)

INT1

Initialize Ports
& Interrupt

DELAY

Increment
LEDs

DELAY

Load Timer
register with FF

Decrement

Timer zero?

Return

NO

Save current
LEDs value

Switch on
all LEDs

Re-enable
interrupt

Return

ISR

Restart
Input = 0?

Restore previous
LEDs value

NO

Figure 6.5
INT1 interrupt program flowcharts: (a) main sequence; (b) delay subroutine; (c) interrupt service

routine

120 Chapter 6

(a)

(b)

Figure 6.6
INT1 simulation test: (a) interrupt program INT1 ISIS interactive test; (b) interrupt program INT1

MPSIM test

Programming Techniques 121

6.4.1. Result Destination

The default destination for single register operations can simply be specified by label or

number. For example,

INCF spare

increments the register labeled ‘spare’, with the result being left in the register. The above

syntax may generate a message when the program is assembled to remind the user that the

‘default’ destination is being used, unless messages are suppressed by specifying a list file

option. The full syntax for the instruction is:

INCF spare,1

or

INCF spare,f

where ‘1’ indicates the file register itself as the destination.

If the result of the operation were required in the working register (W), it could be moved using

a second instruction:

MOVF spare,W

However, the whole operation can be done in one instruction by specifying the destination as

W as follows

INCF spare,0

or

INCF spare,W

The label W is automatically given the value 0 by the assembler. The result of the operation is

stored in W, while the original value is left unchanged in the file register. All the register

arithmetic and logical byte operations have this option, except CLRF (Clear File Register) and

CLRW (Clear Working Register), which are by definition register specific, and MOVWF and

NOP (No OPeration). This option offers significant savings in execution time and program

memory requirements, and also compensates to some extent for the absence of instructions that

allow data to be transferred direct between file registers. These are available in higher power

PICs that have a more extensive instruction set.

6.4.2. Register Bank Select

The smallest PICs, including the 16F84A, have a file register set (Figure 5.2) organized in two

banks, with the most commonly used registers in the default bank 0. Some of the control

registers, such as the port data direction registers, TRISA and TRISB, and the OPTION

122 Chapter 6

register, are mapped into bank 1. Many of the special function registers (SFRs) can be accessed

in either bank. Others have used special access instructions, namely TRIS to write the port A

and B data direction registers, and OPTION which is used to set up the hardware timer counter.

The assembler warns that the instructions TRIS and OPTION may not be supported in future.

However, at the time writing, they still work, and provide a simplified method of bank 1 access

for the beginner.

Newer, more powerful PIC 16 chips can have up to 32 banks of RAM, so a more general

method of bank selection is needed. Bank selection bits are provided in one of the SFRs,

and these can be modified directly using BSF and BCF instructions. In the 16F84A, only

one bit is needed, bit 5 in the status register, named RP0. Bank 0 is enabled by default

(RP0 ¼ 0), thus bank 1 registers OPTION, TRISA, TRISB, EECON1 and EECON2 are

accessed by setting RP0 ¼ 1, prior to operating on the required register. This explicit bank

selection method is illustrated in the code fragment in the sequence below, which sets port

B as output:

STATUS EQU 03 ; label for status register
TRISB EQU 86 ; label for data direction register

BSF STATUS,5 ; select bank 1
CLRW ; load W with data direction code

MOVWF TRISB ; set Port B as outputs
BCF STATUS,5 ; reselect bank 0

It is a good idea to reselect bank 0 immediately, as this is the most commonly used. If further

bank 1 access is required, leave this step until later. Once a bank has been selected, it remains

accessible until deselected. The larger PIC chips will need additional bank select bits.

An easier option is to use the pseudo-operation ‘BANKSEL’, which carries out the above

process automatically:

BANKSEL TRISB ; select bank containing TRISB, bank 1
CLRW ; load code for all outputs

MOVWF TRISB ; set Port B as outputs
BANKSEL PORTB ; reselect bank containing PORTB, bank 0

BANKSEL selects the bank that the specified register is in, so any register in the required bank

will do. BANKSEL is effectively a predefined ‘macro’, a sequence of instructions that are

bundled together by the assembler and invoked using a user-defined label. Macros are

explained more fully in Section 6.6, below.

6.4.3. File Register Indirect Addressing

Register 04 in the PIC 16 chip is the file select register (FSR). It is used for indirect or indexed

addressing of the other file registers. A target file register address is loaded into FSR, and the

Programming Techniques 123

contents of that file register can then be read or written at file register 00, the indirect file

register (INDF). It is copied automatically to or from the target register. This method can be

used for accessing a block of general purpose registers (GPRs), by reading or writing the data

via INDF, and then selecting the next register in the data block by incrementing FSR. This

indexed, indirect file register addressing is useful, for example, for storing a set of data that is

read in at a port over a period of time. The technique is illustrated in Figure 6.7.

The demonstration program INX1 loads a set of file registers, 20 to 2F, with dummy data (AA),

using FSR as the index register. FSR operates as a pointer to a block of locations, and is

incremented between each read or write operation. Notice that the data actually has to be

explicitly moved into INDF each time to trigger the file register write. The source code is seen

in Program 6.3.

6.4.4. EEPROM Memory

PIC chips have a block of electrically erasable programmable read-only memory (EEPROM),

which operates as non-volatile, read and write memory, where the data is retained when the

power is off. This is useful, for example, in applications such as electronic lock, where the

correct combination can be stored for comparison with an input code, but occasionally

changed. Read from and write to EEPROM is illustrated in MPLAB in Figure 6.8. The code

sequence can be seen in the source code window. Notice that the simulated input (09h) at port

A is generated in a stimulus workbook window. The source code is listed as Program 6.4.

The set of registers used to access the EEPROM is EEDATA, EEADR, EECON1 and EECON2.

The data to be stored is placed in EEDATA, and the address at which it is to bewritten in EEADR.

Bank 1must then be selected, and a read or write sequence included in the program as specified in

the data sheet EEPROM section. The write sequence is designed to reduce the possibility of

accidentally overwriting EEPROM,whereby essential data is lost. Reading the EEPROM ismore

straightforward, as seen in the second sequence in the source code.

Other devices use a different technique to access the EEPROM. For example, the 8-pin PIC

12CE518/9 devices use serial access via the unused bits of the port register. More recently

introduced chips have extended the EEPROMwrite mechanism to include programmemory read

and write. The individual device data sheet must be studied carefully before using this feature.

6.4.5. Program Counter High Register, PCLATH

The basic 16 series PIC program memory can hold up to 8192 14-bit instructions (8k

addresses). This requires a 13-bit address (213 ¼ 8192), so most of the chips in this group have

a 13-bit program counter, even if the actual memory available is less than the maximum. Larger

chips have a full 16-bit program counter, addressing up to 64k memory.

124 Chapter 6

(a)

00 INDF

 Indirect File Register

04 FSR

 File Select Register

20 General Purpose

 Registers

21

22

2F

4F

A A

2 0

set
address,
inc/dec,
check,
& repeat

write
data

File Register Address

A A

A A

A A

A A

Data
written
through
to GPR

Select
File
Register

Block of
GPRs
loaded
with dummy
data

3

1

2

4

(b)

Figure 6.7
Indirect and indexed file register addressing: (a) file register operations; (b) file registers after INX1

run in MPSIM

Programming Techniques 125

The 8-bit PCL (program counter low byte) can only select one of 256 addresses, so the program

memory is effectively divided into pages of 256 instructions, in the same way that random

access memory (RAM) is divided into banks of 256 locations. PCL provides the address within

each page of memory and is fully readable and writable. The PCH (program counter high)

register, which provides the high bytes of the program address, is not directly accessible, but

can be manipulated via the PCLATH (program counter latch high byte) register. The way this

works is different for programmed jumps and direct writes to PCL, as illustrated in Figure 6.9,

with a 13-bit address. In either case, the data sheet must be studied carefully to avoid problems

with jumps over page boundaries.

GOTO and CALL

When a programmed jump is requested, the low three bits of PCH are written with the high

three bits from the 11-bit operand of the GOTO or CALL instruction. The PCLATH register

provides the remaining two bits of the address. If the chip has 2k program memory or less,

these bits have no effect. However, if the chip has more than 2k program memory (up to 8k, or

4� 2k blocks), a GOTO or CALL across a 2k memory block boundary will need the PCLATH

bits 3 and 4 to be modified explicitly. The CALL instruction must store all 13 bits of the return

address on the stack before the high bits are replaced.

; INX1.ASM M Bates 29-10-03
; ...
; Demonstrates indexed indirect addressing by
; writing a dummy data table to GPRs 20 - 2F
; ...

 PROCESSOR 16F84A ; select processor

FSR EQU 04 ; File Select Register
INDF EQU 00 ; Indirect File Register

 MOVLW 020 ; First GPR = 20h
 MOVWF FSR ; to FSR
 MOVLW 0AA ; Dummy data

next MOVWF INDF ; to INDF and GPRxx
 INCF FSR ; Increment GPR Pointer
 BTFSS FSR,4 ; Test for GPR = 30h
 GOTO next ; Write next GPR

 SLEEP ; Stop when GPR = 30h

 END ; of source code

Program 6.3
Indexed addressing

126 Chapter 6

PCL Write

If PCL is modified by a direct write under program control, the upper five bits of the program

counter will be loaded from PCLATH. If the jump crosses a page boundary, these bits must be

corrected accordingly. This may be relevant if, for example, a data table crosses a page

boundary (see Section 6.9 on data tables below). See Microchip’s ‘PIC Mid-Range MCU

Family Reference Manual’ for further details. In other PIC chips, there may be other

limitations to program branching operations. For example, CALL instructions in the 12C5XX

(a)

29

2A

2B

B 8

2 A

EEDATA

EEADR

EECON1

EECON2

EEPROM

Memory

xxxx xxx1

xxxx xxxx

Enable RD bit

x x

B 8

x x

Select location

Data returned
File

Registers

1

2

3

(b)

Figure 6.8
EEPROM operation: (a) register read process; (b) simulation of test program EEP1

Programming Techniques 127

; EEP1.ASM MPB 02-02-11

; Reads in data at Port A, stores it in EEPROM
; and displays it at Port B

 PROCESSOR 16F84A

PCL EQU 02 ; Program Counter Low
PORTA EQU 05 ; Port A Data
PORTB EQU 06 ; Port B Data
STATUS EQU 03 ; Flags
EEDATA EQU 08 ; EEPROM Memory Data
EEADR EQU 09 ; EEPROM Memory Address
EECON1 EQU 08 ; EEPROM Control Register 1
EECON2 EQU 09 ; EEPROM Control Register 2

RP0 EQU 5 ; STATUS - Register Page Select
RD EQU 0 ; EECON1 - EEPROM Read Initiate
WR EQU 1 ; EECON1 - EEPROM Write Initiate
WREN EQU 2 ; EECON1 - EEPROM Write Enable

Write MOVF PORTA,W ; Read in data from port
 MOVWF EEDATA ; Load EEPROM data
 CLRF EEADR ; Select first EEPROM location
 BSF STATUS,RP0 ; Select Register Bank 1
 BSF EECON1,WREN ; Enable EEPROM write
 MOVLW 055 ; Write initialisation sequence
 MOVWF EECON2 ;
 MOVLW 0AA ;
 MOVWF EECON2 ;
 BSF EECON1,WR ; Write into current address
 BCF EECON1,WR ;
 BCF EECON1,WREN ; Disable EEPROM write
 BCF STATUS,RP0 ; Re-select Register Bank 0

Read BSF STATUS,RP0 ; Select Register Bank 1
 BSF EECON1,RD ; Enable EEPROM read
 BCF STATUS,RP0 ; Re-select Register Bank 0
 MOVF EEDATA,W ; Copy EEPROM data to W
 BSF STATUS,RP0 ; Select Register Bank 1
 BCF EECON1,RD ; Disable EEPROM read
 CLRF PORTB ; Set PortB as outputs
 BCF STATUS,RP0 ; Re-select Register Bank 0
 MOVWF PORTB ; Display data

 SLEEP

 END

Program 6.4
EEPROM operation

128 Chapter 6

group are limited to the first 256 locations of the program, even though the overall memory

may be up to 1k.

6.5. Special Features

These include options such as oscillator type, internal timers to make the chip operation more

reliable, code protection and internal hardware to support in-circuit programming and

debugging. Most of these options are selected via the chip configuration word.

6.5.1. Clock Oscillator Type

The PIC MCU can be driven by an external RC network, a crystal oscillator or an internally

generated clock signal. An external system clock can also be applied to synchronize its

operation with other system components. The clock type is selected in the chip configuration

word, which is programmed into a special location at the same time as downloading the user

code. The configuration options can be set via a dialogue in MPLAB or at the top of the

program using the __CONFIG directive (see Section 6.6 below).

The default clock option is normally the internal oscillator, if available. It reduces the number

of external components required, and provides a default clock rate of 4 MHz in standard chips

and a maximum clock rate of 32 MHz in the more recent 16F1xxx series chips. The internal

oscillator is factory calibrated, but can be tuned to a more precise figure using a set of bits in the

control register OSCTUNE.

For applications where the precise timing of the program is not important, and an internal

oscillator is not available, an inexpensive RC low-frequency clock circuit can be used. This

(a)
LCPHCP

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Program Counter h1 h0 Destination address from opcode (11 bits)

01234567tiB
PCLATH h1 h0

(b)
LCPHCP

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Program Counter h4 h3 h2 h1 h0 Result from ALU

Bit 7 6 5 4 3 2 1 0
PCLATH h4 h3 h2 h1 h0

Figure 6.9
Program counter operation: (a) GOTO or CALL; (b) PCL direct load

Programming Techniques 129

requires only a resistor and capacitor connected to the CLKIN pin of the chip. If a variable

resistor is used, as in the BIN hardware, the clock rate can be adjusted, within limits, and

therefore all output signal frequencies can be changed simultaneously. This can be very useful,

but the clock will not be very precise or stable.

The external quartz crystal oscillator option is slightly more expensive, but far more precise.

The crystal is connected across the OSC1 and OSC2 pins, with a capacitor (15e22 pF) to

ground from each pin, and an internal amplifier completing the circuit. The crystal resonates

at a precise frequency, with an accuracy of around 50 ppm (parts per million), or 0.005%.

This allows the hardware timer to measure exact intervals, and to generate accurate output

signals. The overall execution time of the program blocks can also be predicted more

precisely.

Three types of external crystal can be used: low power (LS), standard (XT) or high

speed (HS). LS mode should be selected for low-speed crystals up to 32.768 kHz, which

provides a frequency that is conveniently divisible by two. XT mode should be selected

for clock speeds up to 4 MHz (1 ms instruction period), and HS used up to 20 MHz; these

select a higher gain in the clock oscillator. Note that the overall power consumption is

broadly proportional to the clock speed. The full supply voltage (5.0 V) is generally

needed to run at high frequency, so a battery supply may not be suitable in this case.

Refer to the data sheet for specific devices for more information, and various application

circuits for the external component connections.

6.5.2. Power-up Timer

When a power supply is switched on, the voltage and current initially rise in an unpredictable

way, depending on the design of the supply and the load connected to it. If the processor program

tries to start immediately, before the supply has settled down, it may malfunction. The PIC has

a power-up timer (PWRT) built into the chip to overcome this problem. This timer is also

invoked if the chip is reset at some later stage or the power supply dips temporarily (brownout).

When the PIC is powered up, it waits until the minimum operating voltage has been reached

(typically 2.0 V), then generates an internal reset, which starts the PWRT. This times out after

approximately 64 ms and the program starts executing. As a precaution, PWRT should

normally be enabled when programming the chip, as the resulting delay on start-up will usually

be insignificant.

The !MCLR (master clear) input (active low) can be used to restart the programat any time. This is

useful as the power does not need to be switched off to restart, but particularly sowhen debugging,

since the processor may hang for no obvious reason. If no reset input is required, this pin must be

tied high to enable the processor to run; it is recommended that the !MCLR input is decoupledwith

130 Chapter 6

a 1k0 resistor (minimum value) and a 100 nF capacitor to protect against power supply transients

causing a random reset, and electrostatic discharge, which can damage the input.

6.5.3. Watchdog Timer

The watchdog timer (WDT) is an internal independent timer that automatically forces the PIC to

restart after a selectable period. The purpose is to allow the processor to escape from an endless

loop or other error condition, without having to be reset manually. This option will be used

by more advanced programs, so our main concern here is to prevent watchdog timeout occurring

when not required, because it will disrupt the normal operation of our demo programs.WDTwill

therefore normally be disabled by selecting the appropriate configuration setting during

program downloading, or specifying it in the configuration word in the source code.

If the watchdog is to be enabled, the WDT must be regularly reset within the program loop

using the instruction CLRWDT. If this happens at least every, say, 1ms (1000 instructions at

4MHz), the WDTauto-reset can be prevented. If a programmisbehaves in the simulator, check

that WDT is disabled. If the WDT option is enabled, an interrupt is generated, so a suitable

service routine to restart the processor must be set up at address 004, the ISR vector address.

6.5.4. Sleep Mode

The instruction SLEEP causes normal operation to be suspended and the clock oscillator is

switched off. Power consumption is minimized in this state, which is useful for battery-

powered applications. The PIC is woken up by a reset or interrupt; for example, when a key

connected to port B is pressed. The SLEEP instruction is also used to terminate the program if

it is not required to loop continuously (see Program 6.3). This prevents program execution

running on into unused locations, where the program memory bits default high. This code (all

1s) is in fact a valid instruction in the PIC 16 instruction set, ADDLW FF, which will be

repeated throughout the unused locations. If the program is not terminated, these meaningless

instructions will be executed up to the end of program memory. The program counter will then

roll over and the program will be restarted at address zero, so the program will restart by

default.

6.5.5. Code Protection

In commercial applications, the PIC firmware may need to be protected from piracy. The code

protect fuses, selected during programming, will prevent unauthorized copying of the code.

The chip can also be given a unique identification code during programming, if required. In the

demo programs, the code protection is not enabled, as the program could not then be read back

for verification.

Programming Techniques 131

6.5.6. Configuration Word

The oscillator selection bits, watchdog timer, power-up timer, code protection and other

options are selected by setting the bits of a configuration word, located at a special address that

is only accessible when the chip is being programmed. These bits can be set via the

programming dialogue in MPLAB. Alternatively, the configuration options can be set by

including an assembler directive in the source code (see __CONFIG directive, Section 6.6,

below). The default settings suggested here are:

• Clock source as required

• Watchdog timer disabled

• Power-up timer enabled

• Master clear enabled

• Code protection disabled

• All other features disabled.

6.6. Assembler Directives

Assembler directives are commands inserted in PIC source code that control the operation of

the assembler. They are not part of the program itself and are not converted into machine code.

Many assembler directives will only be used when a good knowledge of the programming

language has been achieved, so we will refer to a small number of the more useful ones at this

stage. Some of these are demonstrated in Program 6.5, ASD1. In order that the effect of the

directives can be seen, the list file is reproduced here rather that just the source code, which can

be seen in the right-hand columns.

The assembler directives are placed in the second column of the source code. They are not

case sensitive, but are conventionally written in upper case to distinguish them. We have

already met some of the most commonly used directives, but END is the only one that is

essential. All the others are simply available to make the programming process more

efficient. For definitive information refer to the documentation and help files supplied

with your current assembler version. Some of the more useful directives are explained

below.

PROCESSOR

This directive specifies the PIC processor for which the program has been designed, and

allows the assembler to check that the syntax is correct for that processor. In MPLAB, the

MCU type can also be specified via the menu items Configure, Select Device. It is therefore

not essential to use this directive in MPLAB, but it is required if using the bare assembler in

the Proteus VSM simulator. The include file also specifies the processor, if used (see

INCLUDE directive below).

132 Chapter 6

(a)

 00001 ; **
 00002 ; ASD1.ASM M. Bates 13/11/10 Ver 1.2
 00003 ; **
 00004 ; Assembler directives, a macro and a pseudo-
 00005 ; operation are illustrated in this counting
 00006 ; program ...
 00007 ; **
 00008
 00009 ; Directive sets processor type:
 00010 PROCESSOR 16F84A
 00011
 00012 ; Set configuration fuses:
2007 3FF3 00013 __CONFIG B'11111111110011'
 00014 ; Code protection off, power up timer on,
 00015 ; watchdog timer off, RC clock
 00016
 00017 ; SFR equates are inserted from disk file:
 00018 INCLUDE P16F84A.INC
 00001 LIST
 00002 ; P16F84A.INC Standard Header File, Version 2.00
 00134 LIST
 00019
 00020 ; Constant values can be predefined by directive:
 00FF 00021 CONSTANT maxdel=0xFF, dircb=b'00000000'
 00022
 0000000C 00023 timer EQU 0C ; delay counter register
 00024
 00025 ; Define DELAY macro ***********************************
 00026
 00027 DELAY MACRO
 00028
 00029 MOVLW maxdel ; Delay count literal
 00030 MOVWF timer ; loaded into spare register
 00031
 00032 down DECF timer ; Decrement spare register
 00033 BNZ down ; Pseudo-Operation:
 00034 ; Branch If Not Zero
 00035 ENDM
 00036
 00037 ;***
 00038
 00039 ; Initialize Port B (Port A defaults to inputs)
 00040
0000 1683 00041 BANKSEL TRISB ; Select Bank 1
0001 3000 00042 MOVLW dircb ; Port B Data Direction Code
0002 0086 00043 MOVWF TRISB ; Load the DDR code into F86
0003 1283 00044 BANKSEL PORTB ; Reselect Bank 0
 00045
 00046 ; Start main loop
 00047
0004 0186 00048 CLRF PORTB ; Clear Port B Data & restart
0005 0A86 00049 again INCF PORTB ; Increment count at Port B
 00050 DELAY ; Insert DELAY macro
 M
0006 30FF M MOVLW maxdel ; Delay count literal
0007 008C M MOVWF timer ; loaded into spare register
0008 038C M down DECF timer ; Decrement spare register
0009 1D03 2808 M BNZ down ; Pseudo-Operation:
 M ; Branch If Not Zero
000B 2805 00051 GOTO again ; Repeat main loop always
 00052
 00053 END ; Terminate source code

Program 6.5
ASD1 list file components: (a) main program; (b) include file labels; (c) memory map

Programming Techniques 133

(b)

SYMBOL TABLE
 LABEL VALUE

C 00000000
DC 00000001
DELAY
EEADR 00000009
EECON1 00000088
EECON2 00000089
EEDATA 00000008
EEIE 00000006
EEIF 00000004
F 00000001
FSR 00000004
GIE 00000007
INDF 00000000
INTCON 0000000B
INTE 00000004
INTEDG 00000006
INTF 00000001
IRP 00000007
NOT_PD 00000003
NOT_RBPU 00000007
NOT_TO 00000004
OPTION_REG 00000081
PCL 00000002
PCLATH 0000000A
PORTA 00000005
PORTB 00000006
PS0 00000000
PS1 00000001
PS2 00000002
PSA 00000003
RBIE 00000003
RBIF 00000000
RD 00000000
RP0 00000005
RP1 00000006
STATUS 00000003
T0CS 00000005
T0IE 00000005
T0IF 00000002
T0SE 00000004
TMR0 00000001
TRISA 00000085
TRISB 00000086
W 00000000
WR 00000001
WREN 00000002
WRERR 00000003
Z 00000002
_CP_OFF 00003FFF
_CP_ON 0000000F
_HS_OSC 00003FFE
_LP_OSC 00003FFC
_PWRTE_OFF 00003FFF
_PWRTE_ON 00003FF7
_RC_OSC 00003FFF
_WDT_OFF 00003FFB
_WDT_ON 00003FFF
_XT_OSC 00003FFD
__16F84A 00000001
again 00000005
dircb 00000000
down 00000008
maxdel 000000FF
timer 0000000C

Program 6.5: (continued)

134 Chapter 6

__CONFIG

In MPLAB, the menu selection Configure, Configuration Bits opens a window where the

configuration bits can be set up prior to downloading, but this will be overridden by the source

code __CONFIG directive if the ‘Configuration Bits set in code’ box is checked. The double

underscore that starts the directive indicates an operation on the MCU registers. The

significance of each bit is shown in the MCU data sheet. The configuration bits for two sample

chips are shown in Table 6.1.

In the 16F84A, only clock type, power-up timer, watchdog and code protection need

configuring. There are more options in the 16F690, reflecting the more extensive range of

peripheral features. Bits 0, 1 and 2 set the clock type (111 ¼ RC, 001 ¼ XT, 010 ¼ HS,

101 ¼ INTOSC), bit 2 disables the watchdog timer if cleared and bit 3 enables the power-up

timer if cleared. All the other bits are set to 1 to disable code protection, brownout protection

and other clock options. In the list file ASD1.LST (Program 6.5), the bits are specified in

binary, and the hex equivalent code and destination register (2007) are listed in the left column.

ORG

This sets the code ‘origin’, referring to the address to which the first instruction following this

directive will be assigned. We have already seen (Program 6.2) how it is necessary to set the

origin of the interrupt service routine as 004. The default origin is 000, the first program

memory location, so if ORG is not specified, the program will be placed at the bottom of the

memory. This is the reset address where the processor always starts on power-up or reset. If

using interrupts, an unconditional jump ‘GOTO label’ must be used at the reset address 000, as

the first instruction to take the execution point to the main program starts higher up the

memory, above the ISR vector location. For in-circuit debugging, a NOP may be necessary in

the second location (001).

(c)

MEMORY USAGE MAP ('X' = Used, '-' = Unused)

0000 : XXXXXXXXXXXX---- ----------------
2000 : -------X-------- ----------------

All other memory blocks unused.

Program Memory Words Used: 12
Program Memory Words Free: 1012

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 3 reported, 0 suppressed

Program 6.5 (continued)

Programming Techniques 135

LIST

A text file PROGNAME.LST is produced by the assembler, which contains the source code

(with line numbers), machine code, memory allocation and symbol (label) table. This can be

studied for error checking or reference using any text editor, or printed out. The LIST directive

has a number of options which allow the format and content of the List File to be modified, e.g.

number of lines and columns per page, error levels reported, processor type and so on. These

can be selected in the MPLAB build output options. The three main elements of the list file

are seen in Program 6.5, ASD1.LST: the main program, label definitions and memory map.

In the main program section, the machine code and corresponding memory locations are

listed in the left-hand columns. The memory map (Program 6.5c) summarizes the program

memory usage and the assembler messages.

EQU

This is a commonly used directive for representing numerical values with a more memorable

label (symbol in the list file). It is used in the include file (see below) to define standard symbols

for the special function registers for a specific processor (e.g. PORTA), and by the user for

Table 6.1: Configuration bits

Bit 16F84A 16F690

Name Function Name Function

0 FOSC0 Oscillator type: 00 ¼ LP, 01 ¼ XT,
10 ¼ HS, 11 ¼ RC

FOSC0 000 ¼ LP, 001 ¼ XT, 010 ¼ HS,
011 ¼ EC, 100 ¼ INTOSCIO,
101 ¼ INTOSC, 110 ¼ RCIO,
111 ¼ RC (affect I/O on OSC1 and
OSC2)

1 FOSC1 FOSC1
2 WDTE Watchdog timer enable ¼ 1 FOSC2

3 PWRTE Power-up timer enable ¼ 0 WDTE Watchdog timer enabled ¼ 1
4 CP Code protected ¼ 0 PWRTE Power-up timer enabled ¼ 0
5 CP Code protected ¼ 0 MCLRE Master clear enabled ¼ 1
6 CP Code protected ¼ 0 CP Program memory code

protected ¼ 0
7 CP Code protected ¼ 0 CPD Data memory code protected ¼ 0
8 CP Code protected ¼ 0 BOREN0 Brownout protection modes

disabled ¼ 009 CP Code protected ¼ 0 BOREN1
10 CP Code protected ¼ 0 IESO Switchover enabled ¼ 1
11 CP Code protected ¼ 0 FCMEN Fail-safe clock monitor

enabled ¼ 1
12 CP Code protected ¼ 0 e Reserved e do not use
13 CP Code protected ¼ 0 e Reserved e do not use

Typical value XXX1 1111 1111 0011 (FFF3h) XX00 0000 1110 0100 (00E4h)
Code protect and WDT off All disabled except MCLR, PWRT
PWRTE on, CR clock With internal oscillator

136 Chapter 6

additional file register labels. The numerical value can be specified as hexadecimal, binary,

decimal or ASCII (see Section 6.8, below). In the list file, all the user-defined labels’ values

(constants, equates, addresses) are listed after the include file label values.

INCLUDE

This directs the assembler to include a block of source code from a named file on disk. If

necessary, the full file path must be given, but if the file is copied into the application folder

with the source code and the files generated by the assembler, only the file name is needed. In

the example ASD1.LST (Program 6.5), the file P16F84A.INC provided by Microchip is

included at line 18, but the listing has been suppressed, as it is 134 lines long. It defines labels

for all the special function registers and individual control bits in this device, which can be seen

in the label value listing (Program 6.5b). The file also includes directive codes for setting the

configuration bits individually, e.g. directive _PWRTE_ON will switch on the power-up timer

if used in the program header.

These standard header files, which use labeling that is consistent with the data sheet register

names, are supplied with the development system files for all processors. They are currently

found in the folder ‘MPASM Suite’ in the ‘Microchip’ system folder alongside the

MPASMWIN.EXE file. The text file is included as though it had been typed into the source

code editor, so it must conform to the usual assembler syntax; any program block,

subroutine or macro can be included in this way. This allows separate source code files to be

combined together, and opens the way for the user to create libraries of reusable program

modules.

MACRO ENDM

A macro is a block of source code that is inserted into the program by using its label as an

instruction. In ASD1 (Program 6.5), for example, DELAY is the name of the macro, and its

insertion in the main program can be seen in the list file. Using a macro is equivalent to

creating a new instruction from standard instructions, or an automatic copy and paste

operation. The directive MACRO defines the start of the block with a label, and ENDM

terminates it. The advantage of a macro over a subroutine to perform the same function is

that it is reduces overall execution time by eliminating the extra instruction cycle required

by CALL and RETURN. It is therefore most suitable for short sequences or where speed is

important. Subroutines, on the other hand, will use less memory, as they are only assembled

once.

BANKSEL

This directive allows access to register banks other than the default, zero, which contains the

main SFRs. In ASD1 (Program 6.5), it is used to access and initialize the port B data

direction register. The operand is the register required (TRISB) and the effect is to set the

Programming Techniques 137

register select bit(s) in the status register. Remember that bank 0 must be reselected before

using the main SFRs. See Section 6.4.2 above for more details.

END

The END directive informs the assembler that the end of the source code has been reached.

This is the one directive that must be present; an error message will be generated if it is

missing.

6.7. Pseudo-Instructions

These additional instructions are essentially macros that are predefined in the assembler. An

example is shown in the program ASD1 (Program 6.5), ‘BNZ down’, which stands for ‘Branch

if Not Zero to label’. It is replaced by the assembler with the instruction sequence Bit Test and

Skip if Set and GOTO:

BNZ down ¼ BTFSS 3,2

GOTO down

The zero flag (bit 2) in the status register (register 3) is tested, and the GOTO skipped if it is set

(as a result of the previous operation being zero). If the result was not zero, the GOTO is

executed, and the program jumps to the address label specified (down).

Other examples are BZ (Branch if Zero), BC (Branch if Carry), BNC (Branch if no

Carry). This type of instruction is included in the main instruction set of the more

powerful PICs. Other pseudo-instructions are simply alternative forms of standard

instructions, such as SETC (¼BSF 3,0). LGOTO and LCALL are long jumps that

automatically adjust PCLATH for branch over program memory page boundaries (see

PCLATH, Section 6.4.5 above).

6.8. Numerical Types

Literal values given in PIC source code can be written using different number systems. The

default is hexadecimal, that is, if the type is not specified, the assembler will assume it is hex.

However, it is very important to note that the assembler will still get confused between

numbers and labels if the hex number starts with a letter (i.e. A, B, C, D, E or F). The literal

must start with a number, so use a leading zero at all times. Therefore, 8-bit literals should be

written as three hex digits, including the leading zero (000e0FF).

The numerical types supported by the MPASM assembler are:

• Hexadecimal

• Decimal

138 Chapter 6

• Binary

• Octal

• ASCII.

If necessary, refer to Appendix A for more details on hex and binary number systems. Octal

is a base 8 number system, which has limited use as far as we are concerned here. ASCII is

described below. To specify a type, the initial letter of the type can be used with quotes,

such as:

Hex: H'3F' (or 0x3F or default 03F)

Decimal: D'47'
Binary: B'10010011'

ASCII: A'K' (or 'K')

The numerical type prefix is not case sensitive. Hex has an alternative form that is used

in C programming (e.g. 0xFA). Binary is useful for specifying register values that are

bit oriented, especially when setting up control registers; the state of each bit is then

explicit.

ASCII code represents text characters. The codes are listed in Table 6.2; the high bits and low

bits for each character code must be combined together to form a 7-bit code. Notice that most

of the characters on a standard keyboard are available, including upper and lower case,

numbers, punctuation and other symbols.

Table 6.2: ASCII character set

Low Bits High Bits

0010 0011 0100 0101 0110 0111

0000 Space 0 @ P ‘ p
0001 ! 1 A Q a q
0010 ’ 2 B R b r
0011 # 3 C S c s
0100 $ 4 D T d t
0101 % 5 E U e u
0110 & 6 F V f v
0111 ’ 7 G W g w
1000 (8 H X h x
1001) 9 I Y i y
1010 * : J Z j z
1011 þ ; K [k {
1100 , < L \ l j
1101 - ¼ M] m }
1110 . > N ^ n ~
1111 / ? O _ o Del

Programming Techniques 139

If an ASCII character is specified in the program source code, the corresponding code in

the range 00e7F will be generated. This option is used in sending data to alphanumeric

displays or serial ports, for example:

MOVLW 'Y' ; Converted to binary 01011001
MOVWF PortB ; send to display

Note that the A for ASCII can be left out in the operand, and the character will still be correctly

recognized by the assembler.

6.9. Data Table

A program may be required to output a set of predefined data bytes, for example, the

codes to light up a seven-segment display with the correct pattern for each display digit.

The data set can be written into the program as a table within a subroutine, and the

data list accessed using CALL and RETLW. To fetch the table value required, the position

in the table is placed in W. ‘0’ will access the first item, ‘1’ the second and so on. At the

top of the subroutine, ADDWF PCL is used to add this table pointer value to the program

counter register so that the execution point jumps to the required item in the list.

RETLW is then used to return the table value in W, and it can then be moved to the

required file register.

Program 6.6, TAB1, shows how such a table may be used to generate an arbitrary sequence at

the LEDs in our BIN demonstration hardware. In this case, it is a bar graph display, which

lights the LEDs from one end, using the binary sequence 0, 1, 3, 7, 15, 31, 63, 127, 255.

GPRs labeled ‘timer’ and ‘point’ are used. Port B is set as outputs, and subroutines are defined

for a delay and to provide a table of output codes. In the main loop, the table pointer

register ‘point’ is initially cleared, and will then be incremented from 0 to 9 as each code is

output. The value of the pointer is checked each time round the loop to see if it is 9 yet. When 9

is reached, the program jumps back to ‘newbar’, and the pointer is reset to zero.

For each output, the pointer value (0e8) is placed in W and the ‘table’ subroutine called. The

first instruction, ‘ADDWF PCL’, adds the pointer value to the program counter. At the first call,

this value is zero, so the next instruction, ‘RETLW 000’, is executed. The program returns to

the main loop with the value 00 in W. This is output to the LEDs, the delay is run, and the

pointer value incremented. The new value is tested to see if it is 9 yet, and if not, the next call is

made to the table, until finally the ninth code (0FF) is returned to the main output loop for

display. After this, the test of the pointer being equal to 9 succeeds, the jump back to ‘newbar’

is taken, and the process repeats. Note the use of ‘W’ as the destination for the result of the

subtract (SUBWF) instruction. This is necessary to avoid the pointer value being overwritten

with the result of the subtraction.

140 Chapter 6

;**
; TAB1.ASM MPB 4-2-11
;**
;
; Output binary sequence gives a demonstration of a
; bar graph display, using a program data table..
;
; ***

 PROCESSOR 16F84A

; Register Label Equates...............................

PCL EQU 02 ; Program Counter Low
PORTB EQU 06 ; Port B Data Register
timer EQU 0C ; GPR1 used as delay counter
point EQU 0D ; GPR2 used as table pointer

; ***

 ORG 000
 GOTO start ; Jump to start of main prog

; Define DELAY subroutine.............................

delay MOVLW 0xFF ; Delay count literal
 MOVWF timer ; loaded into spare register
down DECFSZ timer ; Decrement timer register
 GOTO down ; and repeat until zero
 RETURN ; then return to main program

; Define Table of Output Codes

table ADDWF PCL ; Add pointer to PCL
 RETLW 000 ; 0 LEDS on
 RETLW 001 ; 1 LEDS on
 RETLW 003 ; 2 LEDS on
 RETLW 007 ; 3 LEDS on
 RETLW 00F ; 4 LEDS on
 RETLW 01F ; 5 LEDS on
 RETLW 03F ; 6 LEDS on
 RETLW 07F ; 7 LEDS on
 RETLW 0FF ; 8 LEDS on

; Initialise Port B (Port A defaults to inputs)........

start MOVLW b'00000000' ; Port B Data Direction
 TRIS PORTB ; and load into TRISB

; Main loop ...

newbar CLRF point ; Reset pointer
nexton MOVLW 009 ; Check if all done yet
 SUBWF point,W ; (note: destination W)
 BTFSC 3,2 ; and start a new bar
 GOTO newbar ; if true...
 MOVF point,W ; Set pointer to
 CALL table ; access table...
 MOVWF PORTB ; and output to LEDs
 CALL delay ; wait a while...
 INCF point ; Point to next value
 GOTO nexton ; and repeat...

 END ; Terminate source code

Program 6.6
TAB1 table program

Programming Techniques 141

For full details on topics in this chapter related to the assembler, refer to the ‘MPASM

User’s Guide’ at www.microchip.com.

Questions 6

1. State (a) the number of clock cycles in a PIC instruction cycle, and the number of
instruction cycles taken to execute the instructions (b) CLRW and (c) RETURN. (3)

2. If the PIC clock input is 100 kHz, what is the instruction cycle time? (2)
3. Calculate the preload value required in TMR0 to obtain a delay of 1 ms between the

load operation and the T0IF going high, if the clock rate is 4 MHz and the prescale
ratio selected is 4:1. (3)

4. List the bits in the SFRs that have to be initialized to enable an RB7:RB3 interrupt. (2)
5. State one advantage each of the RC, XT, HS and INTOSC clock options. (4)
6. State the assembler directive that must be used in all PIC programs. (2)
7. Explain the difference between a subroutine and a macro, and one advantage of each. (4)

Answers on pages 420e1. (Total 20 marks)

Activities 6

1. Calculate the time taken to execute one complete cycle of the output obtained from TAB1
with a clock rate of 100 kHz. Check this result by simulation.

2. Modify the program TIM1 to use a timer interrupt rather than polling to control the delay.
3. Devise a program to measure the period of an input pulse waveform at RB0, which has

a frequency range of 10e100 kHz. When measured, the input period should be stored in
a GPR called ‘period’ as a value where 0A16 ¼ 10 ms and 6416 ¼ 100 ms (resolution of 1 bit
per microsecond). The MCU clock frequency is 4 MHz.

142 Chapter 6

http://www.microchip.com

CHAPTER 7

PIC Development Systems

Chapter Outline
7.1. In-Circuit Programming 144

7.2. PICkit2 Demo System 145

7.3. PIC 16F690 Chip 147

7.4. Test Program 148

7.5. Analogue Input 150

7.6. Simulation Test 151

7.7. Hardware Test 152

7.8. Other PIC Demo Kits 153

7.9. In-Circuit Debugging 155

7.10. In-Circuit Emulation 157

Questions 7 158

Activities 7 158

Chapter Points
• In-circuit programming is the usual method of PIC program downloading.

• PICkit2 and 3 are low-cost USB programmer/debugger modules.

• LPC is a standard Microchip demonstration board based on the PIC 16F690 chip.

• The test program demonstrates analogue input and other programming techniques.

• The program can be tested in MPSIM or Proteus VSM before downloading.

• Microchip supplies a range of demo kits for training and application development.

• A range of in-circuit debugging modules offers three levels of cost and performance.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10007-2

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

143

http://dx.doi.org/

A development system is the software and hardware package that supports a particular range of

microcontrollers (MCUs). The software provides the program development environment,

including utilities for testing and downloading the program to the MCU. Many of the more

advanced features available in MPLAB are not covered in this book, in particular, use of the

linker and librarian features of the assembler tool suite. These support the creation of new

applications from modular, reusable code, and are used by advanced programmers to improve

the efficiency of the development process for more complex programs. Third-party suppliers

also provide tools that are designed to support a range of different types of MCU, of which, for

us, Proteus VSM is the most useful.

The development system also requires hardware peripherals to complete the toolset.

A programming module is the main requirement, and there are various options depending on

the MCU type and the application development context (hobby, education, commercial).

There are also various interfacing options (e.g. headers required for some chips), demo

boards and so on. Some basic options are described below, focusing in particular on the

16F690 LPC demo board and similar kits.

7.1. In-Circuit Programming

MPLAB IDE and a hardware programmer are the essential components of the Microchip

toolset. Originally, PIC� chips had to be removed from the circuit for programming in a separate

module, and then replaced in the target application board. Now, in-circuit programming allows

the chip to be programmed without being removed, which avoids possible mechanical (broken/

bent legs) and electrical (static) damage. The MCU must incorporate the necessary hardware

features to support this option. If in-circuit debugging (ICD) is supported by the design of the

target hardware (six-pin connector and suitable connections to the MCU), the programming

module can act as both a programming and a debugging interface.

The connections shown in Figure 7.1 are common to the low-price PICkit2/3 and the ICD2/3

programmer/debugger modules. Each has a six-pin connector, with the PICkit using a single

in-line (SIL) connector on the target board. The program is downloaded via ICSPDAT/PGD

(in-circuit serial programming data) synchronized by ICSPCLK/PGC (clock). If the target board

does not need too much current, it can be powered from the host computer via the universal

serial bus (USB) programmingmodule (VDD and VSS). For example, the PIC 16F690-based low-

pin count (LPC) demo board can be programmed without an external supply. The target board

reset can be controlled from MPLAB (!MCLR) and VPP provides the programming voltage.

If the chip and development system support ICD, the same MPLAB simulation tools can be

used to test the program as it runs in the actual chip, with the real hardware providing the inputs

and outputs. This allows the interaction with the target hardware to be examined more closely

and a final debugging stage implemented to ensure correct operation of the MCU in the actual

144 Chapter 7

circuit. All the usual techniques are available: single stepping, breakpoints, register monitoring

and so on. The finished program can then be run at full speed in the target hardware, and

any final bugs removed that become apparent. Previously, an expensive in-circuit emulator

would have been needed for this type of testing.

Unfortunately, the 16F690 chip does not support ICD without a header. If this feature is

required, the 44-pin demo board with the 16F887 chip on board is available, since this chip

contains the ICD interface while the 16F690 does not.

7.2. PICkit2 Demo System

The PICkit2 is an in-circuit programming module that supports a full range of PIC

microcontrollers. PICkit3 is now available. The PICkit2 Starter Kit also includes the LPC board

incorporating the 16F690MCU and some minimal test circuitry (Figure 7.2). The programmer is

connected to theUSBport of the host PC runningMPLAB,with the six-pin in-line output plugged

into a six-pin male connector on the target board. The connections are shown in Table 7.1.

The board has four light-emitting diodes (LEDs) to display programmed output sequences,

a push button connected to !MCLR and a small pot providing an analogue test input. The LPC

board can be powered from the USB port via pins 2 and 3. For programming,þ12V is applied to

pin 1, but after programming is complete, it reverts to the reset (!MCLR) input function. When

under control of the host PC, the on-board reset button is overridden by a command/button in the

MPLAB toolbar. When detached from the programmer, the push button can be configured as

a reset input or as a digital input. Pins 4 and 5 carry the program data and clock, which write the

code into program memory in the target chip. Pin 6 is available for additional functions of the

programmer. These features can be seen in the schematic for the LPC (Figure 7.3).

PIC

MCU

ICSPDAT/PGD
ICSPCLK/PGC
VPP/!MCLR
VDD
VSS

PROGRAMMER/

DEBUGGER

MODULE

Data
Clock

Program
+5V

0V

HOST

PC

+

MPLAB

USB

APPLICATION
BOARD

Figure 7.1
Programmer/debugger connections

PIC Development Systems 145

Figure 7.2
PICkit2 Starter Kit including LPC board

Table 7.1: PICkit2 pin functions

Pin Label Function

1 VPP/!MCLR Programming voltage or reset input when application running
2 VDD Target Power supply positive voltage (can supply LPC board) þ5 V
3 VSS (ground) Power supply reference voltage (can supply LPC board) þ0 V
4 ICSPDAT/PGD Programming data: bidirectional serial signal (program download and verify)
5 ICSPCLK/PGC Programming clock: unidirectional clock signal supplied by programmer
6 Auxiliary Connected to T1G/CLKOUT on LPC

Figure 7.3
LPC board schematic

146 Chapter 7

The board has additional connections to all the chip pins and a small prototyping area, which

can be used to add peripheral components. Links are provided in the LED circuits so that

they can be disconnected if these outputs are needed for another load. When the board is

removed from the programmer, it needs to be connected to an external supply via connector P2.

7.3. PIC 16F690 Chip

The data sheet for this chip should be downloaded from www.microchip.com and studied

in conjunction with this section. The pin-out can be seen in the schematic Figure 7.3; it has only

20 pins in total, hence the ‘low pin count’ description. The 16F690 is representative of the

16 series chips as it has a typical range of interfaces, including:

• Digital input/output

• Analogue inputs (12)

• Multi-mode timers (3)

• Serial ports (USART, SPI, I2C)

• An internal clock oscillator (4MHz).

The chip has 4k of program memory, with 256 bytes each of random access memory (RAM)

and electrically erasable programmable read-only memory (EEPROM). It can be initialized to

provide simple digital input/output (I/O) on 18 of the 20 pins, which are grouped as ports A (6),

B (4) and C (8). Notice that port bits RB0 to RB3 are missing, and the chip is programmed

via RA0 and RA1. In common with most current chips, the 16F690 has analogue inputs,

which allow voltage measurement interfaces to be connected. The basic setup will be explained

here, and there is further information on the principles of analogue to digital conversion in

Section 12.3.3 (Chapter 12). For digital I/O the ports must be initialized as shown in the test

program below because the analogue pins default to analogue inputs if not explicitly set up.

The analogue inputs use a single analogue to digital (A/D) converter, which can be connected

to any one of 12 input pins (AN0 to AN11) via a multiplexer. The A/D converts an input

voltage to a corresponding 10-bit binary code, which is placed automatically in special

function registers (SFRs) ADRESH and ADRESL when the conversion is finished. The

conversion is triggered by setting bit ADCON0,1 (A/D control register 0) and is complete when

the same bit is set low by the hardware. This bit can be polled (checked repeatedly in a loop) or

an interrupt set to indicate completion.

An alternative method of checking an analogue input is to use a comparator, which simply

indicates which of two inputs is at a higher voltage (the input polarity). The analogue

comparator has two inputs, labeled plus (þ) and minus (�). Signals are applied to both, and the

output goes logic high if the voltage at the (þ) input is higher than at the (�) input, otherwise it

is low. In the 16F690, several inputs are multiplexed with reference voltages so different

combinations of inputs can be detected (see data sheet).

PIC Development Systems 147

http://www.microchip.com

The hardware timers can be used in the usual counter or timer mode, but in addition can be

used in capture, compare or pulse width modulation (PWM) mode. Capture means the

timer value is stored when a selected input changes, allowing, for example, the period of an

input to be measured. Compare mode is the inverse operation: the timer value is compared

after each increment to a reference register and an output changed or interrupt generated

when they match. This can be used to generate an output pulse waveform of a set period.

PWM is similar, designed to provide a pulse waveform with a set mark/space (high/low)

ratio.

Serial ports allow communication with other devices (microprocessors or computers) via

single- or two-wire connection. There are various methods (protocols) available; the 16F690

supports RS232, RS485, LIN, SPI and I2C. The function of each pin must be selected during

initialization, since each has multiple operating modes. The internal clock frequency is

selected in the OSCCON register. The internal clock defaults to a frequency of 4MHz, with

8 MHz the maximum. The default is accepted in the test program.

All the peripheral interfaces mentioned here are explained further in Chapter 12, and typical

applications are described in detail in Interfacing PIC Microcontrollers: Embedded Design

by Interactive Simulation (Newnes 2006) by this author.

7.4. Test Program

The test program LPC1 (Program 7.1) exercises the analogue input and LEDs, and is used to

explain the testing and downloading processes. Its function is to rotate an LED through the

bits of port B, with the speed controlled by the pot. The test program has the following

structure:

Main

Processor configuration
Control register setup
Main Loop

Rotate LED
Read pot via ADC

Call delay using ADC result
Repeat always

Subroutine
Delay using ADC result

In the processor configuration word !MCLR (reset input) is enabled as this allows the program

execution in the LPC board to be controlled from the MPLAB programming toolbar. Bank

selection is used to access the control registers, in descending order (bank 2, 1, 0) so the port data

register bank does not need to be reselected at the end of the register initialization sequence.

148 Chapter 7

;
; LPC1.ASM MPB Ver 1.0
; Test program for LPC demo board
; Rotates LED, pot controls the speed
;
;***

 PROCESSOR 16F690 ; Specify MCU for assembler
 __CONFIG 00E5 ; MCU configuration bits
 ; PWRT on, MCLR enabled
 ; Internal Clock (default 4MHz)
 INCLUDE "P16F690.INC" ; Standard register labels

 LOCO EQU 20 ; GPR labels
 HICO EQU 21

; Initialize registers..

 BANKSEL ANSEL ; Select Bank 2
 CLRF ANSEL ; Port C digital I/O
 BSF ANSEL,0 ; except AN0 Analogue input
 CLRF ANSELH ; Port C digital I/O

 BANKSEL TRISC ; Select Bank 1
 CLRF TRISC ; Initialise Port C for output
 MOVLW B'00010000' ; A/D clock setup code
 MOVWF ADCON1 ; A/D clock = fosc/8

 BANKSEL PORTC ; Select bank 0
 CLRF PORTC ; Clear display outputs
 MOVLW B'00000001' ; Analogue input setup code
 MOVWF ADCON0 ; Left justify, Vref=5V,
 ; Select RA0, done, enable A/D

; Start main loop...

 CLRF PORTC ; LEDs off
 BSF PORTC,0 ; Switch on LED0
loop RLF PORTC ; Rotate output LED
 BSF ADCON0,1 ; start ADC..
wait BTFSC ADCON0,1 ; ..and wait for finish
 GOTO wait
 MOVF ADRESH,W ; store result high byte
 MOVWF HICO
 INCF HICO ; avoid zero count
 CALL slow
 GOTO loop ; Repeat main loop

; Subroutine..

slow CLRF LOCO ; delay block
fast DECFSZ LOCO
 GOTO fast
 DECFSZ HICO
 GOTO slow
 RETURN

 END ; Terminate assembler..........

Program 7.1
LPC1 test program

PIC Development Systems 149

The main sequence lights up an LED, rotates it through port B bits, reads the pot voltage

and uses that value in the delay counter, with the result that the pot controls the speed of the

LED sequence. At the mid-position of the pot, with a clock rate of 4MHz, the whole cycle

takes about 1 second. Note the high bit is rotated through all 8 bits but only 4 are displayed,

so there is a delay between the last LED going out and the first coming on.

7.5. Analogue Input

The registers used in setting up and operating the analogue input are listed in Table 7.2.

The ANSEL and ANSELH (analogue input select) register bits are configured with 0 for digital

and 1 for analogue inputs. Only AN0 is required in this case (ANSEL,0), the others will be

set for digital input. The register bits default to 1, or analogue inputs, so must be initialized

for digital I/O with 0. Usually it is convenient to clear all the control bits, and then set

those that are required as analogue inputs.

The analogue-to-digital converter (ADC) works by a successive approximation method, and

uses the system clock to drive the converter that generates the binary equivalent of the input

voltage. Since the conversion takes a minimum time per bit, the clock must not be too fast, so

a frequency divider is provided which can be set to a suitable value. The recommended division

ratio is given in the data sheet (Table 9-1) for each oscillator frequency. In this example,

a 4MHz system clock requires division by 8, to provide a 500 kHz A/D clock. ADCON1, bits

4, 5 and 6 are used to select the recommended ADC clock rate.

ADCON0 has several functions. ADCON0,0 enables the ADC and bit 1 starts the conversion

process when set to 1 in the program, and also indicates the conversion is finished when it is

cleared in hardware. In the test program, this bit is polled in a loop that repeats until it is

cleared. Bits 2e5 select the current input as the corresponding binary number (0000¼AN0,

Table 7.2: A/D registers setup for analogue input at AN0

Register name Setup Bits Comment

ANSEL 00000001 Bit 0¼ 1 Input AN0¼ analogue
Bits 1e7¼ 0 AN1 to AN7¼ digital

ANSELH 0000 0000 Bits 0e3¼ 0 AN8 to AN11¼ digital
ADCON1 0 001 0000 Bits 6e4¼ 001 A/D clock¼ f/8
ADCON0 00 0000 01 Bit 7¼ 0 Left justify result

Bit 6¼ 0 Vref ¼þ5 V internal
Bits 5e2¼ 0 Select RA0 as input
Bit 1¼ 0 Done bit cleared
Bit 0¼ 1 A/D enabled

ADRESH XXXX XXXX Result High bits only

150 Chapter 7

0001¼AN1, etc., up to AN11¼ 1011). Since only one ADC is available, only one input can

be selected and converted at a time.

The ADC needs a reference voltage to set the range of the input that will be converted.

ANCON0,6 selects between an internal reference of 5 Vand an external reference which must

be supplied from a constant voltage circuit, usually based on a zener diode. A 10-bit

conversion gives results from 0000000000 (010) to 1111111111 (102310) or 1024 steps, giving

a resolution of better than 0.1%. If an accurate reference voltage of say 4.096 V is supplied,

the resolution will be 4096/1024¼ 4.00 mV per bit. With a 5 V reference, the resolution

would not be such a convenient value (5000/1024¼ 4.88 mV), but no external circuit is

needed. In the test program, an accurate measurement is not needed, so the internal reference

is used.

Since the result is more than 8 bits, two registers are needed to receive the result: ADRESH and

ADRESL. The justification of the result controls how it is placed in these. Left justification

places the high 8 bits in ADRESH and the low 2 bits in ADRESL (bits 6 and 7). In the test

program, therefore, the whole range is covered (0e5 V) by reading ADRESH, but at reduced

8-bit resolution (19.5 mV per bit). Right justification places the low 8 bits in ADRESL,

providing 25% of the range (0e1.25 V) but at full resolution.

7.6. Simulation Test

The program can be tested in simulation mode before downloading to the LPC board.

Assuming it has been edited and assembled in MPLAB, MPSIM can be invoked and the

program run with the SFRs, stopwatch, etc., displayed. However, an analogue input stimulus is

not available in MPSIM, so the ADRESH must be loaded via a register stimulus or a modified

simulation version of the program used where a literal is loaded in place of the input.

Otherwise, the program can only then be tested with the delay count loaded with 00 from

ADRESH, giving the maximum delay.

Interactive simulation using Proteus VSM (Figure 7.4) is, therefore, in this case, simpler and

more convenient. The program is written, assembled and attached to the MCU in the

schematic, and the simulation run with source code and SFRs displayed (see Appendix E

for tutorial notes). The pot can be adjusted on screen and the LEDs will animate in real time,

so correct program function can quickly be demonstrated. The program timing can be checked

on the display of simulated time elapsed in the status bar.

The advantages of both systems can be realized by running the interactive simulation from

within MPLAB. The debug tools provided by MPLAB are used to control the VSM simulation

in a viewing window, while the interactive features are still available.

PIC Development Systems 151

The simulation test allows the basic program syntax and logic to be checked before

downloading. Any syntax errors will be detected by the assembler, with a line number

indicated and the error type indicated in the output window. If the scanning output is not

obtained, check the main sequence by single stepping through the main loop, stepping over the

delay subroutine. If the sequence appears correct, view the SFRs and check that the changes

are correct. If the main sequence and intialization are correct, step into the delay loop and

make sure the program is not getting stuck in an endless loop and failing to return.

7.7. Hardware Test

When simulating correctly, the program can be downloaded. The PICkit programmer is

plugged into a USB port and Programmer, Select Programmer, PICkit2 from the menus.

Successful connection to the programmer should be confirmed in the output window.

Sometimes an updated version of the programmer operating system needs to be downloaded.

A programming toolbar also appears.

Figure 7.4
LPC board VSM simulation

152 Chapter 7

Assuming the source has been successfully assembled into program memory (View, Program

Memory), download it by hitting ‘Program the Target Device’ button, and run the program

using the ‘Bring Target Device MCLR to Vdd’ button. The LEDs on the LPC board should start

scanning, and the speed should be controlled by the on-board pot. Note that the SW1 push

button on the board has no effect as it is overridden by MCLR from the programmer.

Thus, the LPC board provides a convenient demonstration of all the main features of PIC

program development, except for ICD.

7.8. Other PIC Demo Kits

There are several other Microchip demonstration kits that allow the user to investigate

a range of devices and techniques and provide convenient hardware platforms for further

application development. The features of some of the currently available range are

summarized in Table 7.3, and described below.

44/28-Pin Demo Boards

The 44-pin demo board incorporates the 16F887 MCU, which has a full range of features in

a surface-mounted TQFP package. The chip has 33 I/O pins (ports AeE), so is useful if

more peripherals are needed. Additional features are a full set of eight LEDs, a 32 kHz

crystal clock input for timer 1 and a 10 MHz system crystal clock. A major advantage of the

board is that the ’887 supports direct ICD (without a header). Otherwise, the board facilities

are similar to the LPC demo board with a small prototyping area and extra connections

to the chip. The 28-pin board has similar features, but with the smaller sibling of the

’887 chip, the 16F886, fitted.

PICDEM2 Plus Demo Board

This board has an alphanumeric liquid crystal display (LCD) commonly used to display simple

messages in microcontroller applications. As well as push-button switches and a buzzer, it

has a serial EEPROM that allows the I2C serial protocol to be examined, and a temperature

sensor, which can provide real-time data for storage. It has 18-, 28- and 40-pin dual in-line

(DIL) sockets, allowing a range of different chips to be fitted.

PICDEM Lab Development Kit

This kit allows users to build peripheral circuits on a plug board, and is therefore a good choice

for training purposes. It includes a set of different processors and a brushed direct current

(dc) motor. Flowcode programming software is included, which is a user-friendly option that

avoids the need to learn the details of assembler programming. Programs are entered as

a flowchart (see Section 4.2 on program design in Chapter 4), which is then compiled directly

to downloadable code.

PIC Development Systems 153

Table 7.3: PIC demo systems

PICkit2 44-Pin Demo Board
PIC 16F887 MCU fitted
Prototyping area
PICkit2 programmer/debugger
LEDs, pot and button
20MHz and 32 kHz crystals

PICDEM2 Plus Demo Board
Supports 16 and 18 series MCUs
18-, 28- and 40-pin devices
Prototyping area
2� 16 LCD alphanumeric display
Serial EEPROM
Temp sensor and RS232 port
Requires ICD2/3 prog/debug

PICDEM Lab Development Kit
5 different PIC MCUs supplied
PICkit2 programmer/debugger
Prototyping area
DC motor and other components
Demo Flowcode software

PICDEM System Management Kit
PIC 16F886 MCU
Prototyping area
Fan and tacho. sensor
Heater and temperature sensor
Serial comms and analyzer
Free C compilers

Courtesy of Microchip� Technology Inc.

154 Chapter 7

PICDEM System Management Kit

This kit, again based on the 16F886 MCU, has a small computer fan on board, incorporating

a brushless dc motor and a sensor to monitor the fan speed, allowing experimentation with

closed loop motor control, as well as a heater and temperature sensor. C compilers are

included, so that more complex programs can be developed, especially applications requiring

real-time calculations. A serial analyzer pod also allows the communications signals produced

in the board to be examined at the outputs.

7.9. In-Circuit Debugging

In-circuit debugging (ICD) is the most powerful fault-finding technique available for

microcontrollers. It allows the chip to be programmed and tested in circuit using the standard

MPLAB debugging tools to control program execution in the actual target board. This is

obviously a major advantage, as it allows the interaction of the PIC chip with the real hardware

to be more fully examined than in a purely software simulation. Microchip currently offers

three main debugging interfaces, of increasing cost and power, which all support the whole

range of PIC chips. These are:

• PICkit3

• ICD3

• Real ICE.

They all possess the following features:

• USB connection

• Program download, read and verify

• In-circuit debugging, including

• Unconditional and conditional breakpoints

• Register display and stopwatch timing.

PICkit3 is the most cost-effective solution for non-professional developers, providing all

the necessary features for learning and hobby applications in a compact and easy-to-use

package. It is an enhanced version of PICkit2, operating at a USB full speed data rate of 12Mb/

s. It uses the six-pin in-line board connector, which will normally connect direct to the chip in

circuit.

ICD3 is more powerful, operating with high-speed USB (up to 480Mb/s) to provide real-time

ICD with maximumMCU clock rates and more complex breakpoint triggering options. It uses

the six-pin RJ-11 connector, designed to connect directly to chips that support ICD, or to

a header board (see below) for those that do not.

PIC Development Systems 155

(a)

(b)

Host

PC

+

MPLAB

IDE

ICD

Module

Application Board

ICD
Header

Board

PIC chip
with ICD

RJ-11

USB

(c)

PIC

!MCLR
VDD
VSS
ICSPDAT
ICSPCLK
N/C

1
2
3
4
5
6

ICD

Module

VPP
VDD
VSS

PGD
PGC
Aux

USB

+5V Target Supply

0V

ICD
Connector

PC

Host

10k

1k0

Reset

Figure 7.5
In-circuit debugging system with header board: (a) block diagram; (b) ICD header with 20-pin DIL

MCU; (c) ICD connections

156 Chapter 7

PICkitX and ICDX programmers are both capable of supporting ICD. Unfortunately, the

smaller mid-range (16FXXX) chips, including the 16F690 chip fitted in the LPC board, do

not support ICD internally, owing to pin-out limitations and cost constraints. For these

chips, ICD can be implemented instead by using a header board connected between the

ICD module and the chip socket on the application board. The header board carries

a version of the target chip that incorporates the on-chip ICD circuitry, which substitutes

for the target device while the system is under development (these chips are not available

separately).

The ICD header system configuration is shown in Figure 7.5(a). The ICD module sits in

between the host PC running MPLAB IDE and the application board MCU socket

(Figure 7.5b). When debugging is complete, the chip can be programmed to run

independently and plugged directly into the board. The ICD signals are shown in Figure 7.5(c),

with definitions provided in Table 7.1. The on-board reset circuit has been included to show

how it is isolated from the VPP by a 1k0 resistor.

7.10. In-Circuit Emulation

An in-circuit emulator (ICE) traditionally allows processor systems to be tested without the

microcontroller or microprocessor present. A host computer with a hardware dedicated

emulator pod replaces the target processor, with a header connector with the same pin out as

the processor connected to its socket on the application board. The emulator then substitutes

for the processor operating at full speed with the real hardware, giving complete control

over the target system. In the microcontroller, however, only the ports are accessible on the

pins, so internal debug circuitry is needed to feed register status information out to the

debugger in real time, or a header is needed to substitute for the MCU and generate the

same data.

The Microchip REAL ICE debugger offers the most comprehensive facilities of the range of

in-circuit programmer/debuggers, with multiple modes of operation for interactive hardware

testing. As well as the standard connections to the target, or substitute header board, high-speed

options are available which can also employ the serial and parallel ports to supply additional

debug information. PIC 32 devices have special trace outputs to enhance the debugging

operation.

For professional development, the PIC REAL ICE provides superior performance and

additional debug facilities, while using the same programming and debugging connections in

the target device. For programming chips on a commercial scale, the Microchip PM3 and

a number of third-party programmers are available. For current product information, visit

www.microchip.com.

PIC Development Systems 157

http://www.microchip.com

Questions 7

1. List the functions of pins 1e5 on the six-pin programming connector of the PICkit2
module. (5)

2. A PIC 16F690 is to be used for digital input on all pins of port C, and therefore no
port initialization is performed. Why will this not work correctly? (2)

3. Calculate the maximum value and resolution of an A/D conversion if the reference
voltage is 1.024 V, the result is right justified and only the contents of ADRESL are used. (4)

4. Explain why testing a program in simulation mode speeds up the development process. (3)
5. Why does the push button on the LPC board not work when the board is attached to

the PICkit2 programmer? (3)
6. Compare the Microchip LPC board with the 44-pin demo board and summarize the

additional features of the latter. (3)

Answers on page 421. (Total 20 marks)

Activities 7

1. Download the program LPC1.ASM from the support website www.picmicros.org.uk, load it
into MPLAB, assemble and test it in MPLAB. Ensure that the output port bit rotates as
required. Modify the program so that the delay count is fixed at 0x80, and check the cycle
time is about 1 s. Make sure the clock frequency is set to 4MHz.

2. If you have access to Proteus VSM, download LPC690.DSN and test the program as above
with the pot in mid-position. Setup the display as per Figure 7.4. Check that the output speed
is controlled by the pot, and ADRESH and PORTB are displayed correctly.

3. Obtain the PICkit2 demo kit with LPC and test the system using the program LPC1. Connect
the hardware, load the program into MPLAB, select PICkit2 programmer, download and run.
The MCLR buttons should switch the sequence on and off, and the pot should control the
speed.

4. Log onto www.microchip.com and research the current range of starter kits (home/
development tools/starter kits).

158 Chapter 7

http://www.picmicros.org.uk
http://www.microchip.com

CHAPTER 8

Application Design

Chapter Outline
8.1. Design Specification 163

8.2. Hardware Design 165
8.2.1. Block Diagram 165

8.2.2. Hardware Implementation 166

8.3. Software Design 167
8.3.1. MOT1 Outline Flowchart 168

8.3.2. MOT1 Detail Flowchart 169

8.3.3. Flowchart Symbols 169

8.3.4. Flowchart Structure 172

8.3.5. Structure Chart 173

8.3.6. Pseudocode 173

8.4. Program Implementation 174
8.4.1. Flowchart Conversion 175

8.4.2. MOT1 Source Code 176

Questions 8 180

Activities 8 180

Chapter Points
• The application requirements and target performance specification are stated.

• A block diagram is used to outline the hardware to be converted into a schematic.

• The application program consists of statements which allow sequence, selection and iteration.

• The software algorithm is represented with a suitable software design technique.

• The program outline is elaborated until sufficiently detailed to translate into source code.

• Flowcharts should be structured, using separate charts to expand the lower level processes.

• Source code should be fully commented for future reference, maintenance and modification.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10008-4

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

161

http://dx.doi.org/

In this chapter, we will go through the complete process of application design and

development, based on a simple motor drive system, to illustrate the principles outlined in the

preceding sections. At each step, basic design techniques will be explained and a suitable

implementation developed.

Before designing hardware or writing a program, we have to describe as clearly as possible

what an application is required to do; this means a specification is needed which defines the

user’s requirement. Once the specification has been written, a prototype hardware design can

be attempted; a useful starting point for hardware design is a block diagram. We have already

seen some examples in previous chapters. It should represent the main parts of a system and the

signal/data flow between them, in a simplified form.

This can later be converted to circuit diagrams and the hardware connections laid out and

constructed on a printed circuit board (PCB). In a similar way, software can be designed using

techniques that allow the application program to be outlined, and then the details progressively

filled in. Flowcharts have been used already, and this chapter will explain in more detail the

basic principles of using flowcharts to help with program design.

Pseudocode is another useful method for designing software. This is a program outline in text

form that can be entered directly into the source code editor as a set of general statements that

describe each major block, which would be defined as functions and procedures in a high-level

language, and subroutines and macros in a low-level language. Detail is then added under each

heading until the pseudocode is suitable for conversion into source code statements for the

assembler or compiler for the target processor or programming language.

At this stage, we will concentrate on flowcharts, as their pictorial nature makes them a useful

learning tool. The first step in the software design process is to establish a suitable algorithm for

the program; that is, a processing method that will achieve the specification using the features of

an available programming language. This obviously requires some knowledge of the range of

languages that might be suitable, and experience in the selected language. Formal software

design techniques cannot be properly applied until the software developer is reasonably familiar

with the relevant language syntax. However, when learning programming we have to develop

both skills together, so some trial and error is unavoidable. When learning, it is useful to apply

these design techniques retrospectively, that is, as an analytical tool or as part of the application

documentation. For instance, a final version of a flowchart might be drawn after the program has

been written and tested, when the suitability of the design algorithm has been proven.

Real software products will generally be far more complex than the simple examples

considered here, but the same basic design principles may be applied. If the design brief is not

specific about the hardware, considerable experience and detailed knowledge of the options

available is required to select the most appropriate hardware and software combination. The

relative costs in the planning, development, implementation, testing, commissioning and

162 Chapter 8

support of the product should also be estimated to obtain the most cost-effective solution.

Naturally, the example used here to illustrate the software development process has been

chosen as suitable for PIC� implementation.

8.1. Design Specification

The application program will be required to generate a pulse width modulated (PWM) output

to drive a small, brushed direct current (dc) motor. This can be generated by a specially

designed hardware interface in many microcontrollers (MCUs), including PICs, as it is

a common requirement. The software implementation will help us to understand the operation

of the hardware-based PWM interface, which will be described later.

Under PWM control, the motor runs at a speed that is determined by the average level of

a pulsed signal, which in turn is dependent on the ratio of the on (mark) to off (space)

time, or ‘duty cycle’. This method provides an efficient method of using a single digital

output to control output power from a motor, heater, lamp or similar power output

transducer. PWM is also used to control small digital position (hobby) servo units, as used

in radio-controlled models. The basic drive waveform is shown in Figure 8.1.

A variable mark/space ratio (MSR) of 0e100%, with a resolution of 1%, is required.

The frequency is not critical, but should be high enough to allow the motor to run without any

significant speed variation over each cycle (> 10Hz). It is desirable to operate at a frequency

above the audible range (> 15 kHz) because some of the signal energy can radiate as sound from

the windings of the motor, which can be quite irritating! A higher frequency of operation also

ensures full averaging of the current. However, it is more practical to implement this using the

dedicated (hardware) PWM interface, so we will aim for lower frequency of operation just to

demonstrate the principles involved. The interfacing hardware is also simplified; a single field

effect transistor (FET) drive transistor is used to drive the motor in one direction only, such as

Mark (M)
Space (S)

Volts

Time

+5V

Waveform Period (T)

Frequency, f = 1/T Hz Mark/Space Ratio = M/S x 100%

Variable Falling Edge Position

0V

Duty
Cycle

Figure 8.1
Pulse width modulated signal

Application Design 163

would be required in a ventilation fan. A full bridge driver with four FETs is normally used to

provide bidirectional motor control, which would be needed in a position controller, for example.

The motor speed will be controlled by two active low inputs, which will increment or

decrement the PWM output. An active low enable signal is also required to switch the drive on

and off, while preserving the existing setting of the MSR. The system should start on reset or

power up at 50%MSR, that is, with equal mark and space, and a reset input should be provided

to return the output to the default 50% MSR at any time. The increment and decrement

operations must stop at the maximum and minimum values; in particular, 0% must not roll over

to 100%, causing a zero to maximum motor speed transition in a single step. The inputs and

outputs must be TTL (transistoretransistor logic) compatible (þ5V nominal signals) for

interfacing purposes, allowing PWM control from a separate master controller. A programmed

device (i.e. PIC) allows the control parameters to be modified to suit different motors and to

enable future enhancement of the controller options and performance. A performance

specification and a control logic table (Table 8.1) define the operational characteristics required.

Table 8.1: MOT1 application specification

(a) Performance Specification

Project: MOT1

Variable Speed Controller for Small DC Motor

1. Maximum load: 500mA @ 5V (2.5W @ 100% MSR)

2. Manual or remotely controlled variable MSR:

2.1 Start: at 50% MSR

2.2 Reset: to 50% MSR

2.3 Range: Min < 2%, Max > 98%

2.4 Step Resolution: < 1%

2.5 Manual Control:

2.5.1 Push Button Increment, Decrement

2.5.2 Hold MSR when inputs inactive

(b) Control Logic Table

Inputs Operation description Output dc motor

!MCLR !RUN !UP !DOWN

0 x x x Initialize e set speed to 50% Off
1 1 x x Disabled Off
1 0 1 1 Run with MSR¼ 50% or run

at current speed
Default speed or Speed
Constant

1 0 0 1 Increment MSR (until max.) Speed increasing
1 0 1 0 Decrement MSR (until min.) Speed decreasing

164 Chapter 8

8.2. Hardware Design

The hardware is typically designed before the software, although it may need to be revisited

subsequently. It is possible that the initial choice of MCU may need to be changed when the

overall design requirements have been finalized.

8.2.1. Block Diagram

In the block diagram, the system inputs and outputs can be identified, and a provisional

arrangement of subsystems worked out. The blocks and their connections should be labeled,

indicating their function. The direction and type of information flow between the blocks should

be described using arrows. Inset diagrams can be used to illustrate the waveform of analogue

signals. Parallel data paths will be shown as block arrows, or with suitable signal labeling. The

block diagram for MOT1 is seen in Figure 8.2.

The block diagram can be readily created using the drawing tools in Microsoft� Word or

a general purpose drawing package, since it needs only basic shapes, arrows and text boxes. In

Word, the drawing toolbar may need to be selected via the main menu, ‘View, Toolbars,

Drawing’. The drawing can be embedded in a text file, but beware of interaction of drawing

objects with the text cursor, which can disrupt the drawing. It is usually a good idea to move the

text cursor below the drawing area. A drawing grid can be switched on to help line up the main

drawing objects; from the ‘Draw’ menu, select ‘Grid’ and check the ‘Snap to grid’ option. To

make fine adjustments to drawing objects, the grid can later be switched off. It may be found

that drawing directly onto the text page by switching off the default option of inserting

a drawing canvas is more convenient (Tools, Options, General).

The main elements can be drawn using text boxes, and the same object used for labeling with

the ‘No line’ and ‘No fill’ options selected. Various line and arrow styles are available, and the

‘Freeform’ line style in the ‘Autoshapes’ menu is useful for multi-segment lines. This menu

also provides various standard shapes for block diagrams and flowcharts. When the drawing is

PWM Output

!UP

!DOWN

!RUN

!MCLR

PWM

Controller
Current
Drive

DC
Motor

Averaged
Current

Figure 8.2
MOT1 system block diagram

Application Design 165

finished, select all the drawing elements by looping with the ‘Select objects’ tool and select

‘Draw, group’. This will create a single drawing object, which will no longer be affected by the

text cursor, and allows the whole drawing to be repositioned on the page if necessary.

8.2.2. Hardware Implementation

Unless the program is being written for an existing hardware system, the general hardware

configuration must be worked out as part of the design exercise. The nature and complexity of

the software are important considerations in the selection of a microprocessor or

microcontroller, as are the number and type of inputs and outputs, data storage and interfacing.

Various types of control system could be applied here, some of which are described in more

detail in Chapter 14. The requirement is for minimal complexity with no special interfacing. A

purely hardware solution could be based around the 555 timer, a standard pulse generator chip

whose output is controlled by external CR (analogue) networks. However, this would not

provide the push-button (digital) continuously variable output required. The microcontroller

also provides a more flexible solution, in that the software is easily reconfigured.

A circuit derived from the block diagram is shown in Figure 8.3. The input control uses simple

active low push buttons, with the additional feature of connections for remote system control.

The motor is controlled by an FET, which acts as a current switch operated by the PIC digital

output. An FET is selected whose input gate operates at TTL levels (0Vorþ5V with respect to

the source terminal), so that it can be connected directly to the PIC output, and can handle the

motor current anticipated (about 500mA for a small motor). The motor forms an inductive

PIC

3V DC
Motor

+5V

0V

RA4
RA2
RA3
!MCLR

RA0

100k

100K
CLKIN

10K

1nF
RunDown UpReset

1k0

Remote
Control
Inputs

FET

10uF

Figure 8.3
MOT1 circuit diagram

166 Chapter 8

load, so a diode is connected to protect the FET from the back electromotive force (emf)

normally generated by the motor. Additional decoupling is applied across the supplies to

prevent the motor switching transients from disrupting the PIC supply.

The microcontroller only needs four input/output (I/O) pins, so a 12XXX series device with six

I/O could be considered. However, an external reset is required, so our basic device 16F84A

will be used, at least for simulation purposes. The controller I/O allocation can then be

specified as shown in Table 8.2.

The PIC thus provides motor speed control with a PWM output at RA0. The !RUN (‘Not Run’,

active low) input has been allocated to RA4. This will be programmed to enable the PWM

output to run the motor when low. When RA2 (!UP) is low, the MSR at RB0 should increase,

and the motor speed up. When RA3 (!DOWN) is low, the MSR should be reduced, slowing the

motor down. !MCLR (Master Clear) is the reset input to the PIC, which will restart the program

when pulsed low, and hence reset the speed to the default value of 50% MSR.

8.3. Software Design

We can now start work on the software using a flowchart to outline the program. A few simple

rules will be used to help devise a working assembly code program; these have been discussed

in more detail in Chapter 2.

A program consists of a sequence of instructions that are executed in the order that they appear

in the source code, unless there is an instruction or statement that causes a jump, or branch.

Usually jumps are ‘conditional’, which means that some input or variable condition is tested

and the jump is made, or not, depending on the result. In PIC assembler, ‘Bit Test and Skip if

Set/Clear’ and ‘Decrement/Increment File Register and Skip if Zero’ provide conditional

branching when used with a ‘GOTO label’ or a ‘CALL label’ immediately following.

A loop can be created by jumping back at least once to a previous instruction. In our standard

delay loop, for instance, the program keeps jumping back until a register that is decremented

within the loop reaches zero. In high-level languages, conditional operations are created using

Table 8.2: MOT1 I/O allocation using PIC 16F84A

Signal Type Pin Description Comment

Clock System CLKIN RC Clock ~100 kHz
Reset System !MCLR Active low Restart at default speed
PWM Output RA0 Pulse FET drive
!Run Input RA4 Active low Enable motor
!Up Input RA2 Active low Increase speed
!Down Input RA3 Active low Decrease speed

Application Design 167

IF (a condition is true) THEN (do a sequence), and loops created using statements such as DO

(a sequence) WHILE (a condition is true/not true). This terminology can be used in a program

outline to clarify the logical sequences required.

8.3.1. MOT1 Outline Flowchart

Flowcharts illustrate the program sequence, selections and iterations in a pictorial way, using

a simple set of symbols. Some basic rules for constructing flowcharts are all that are needed to

ensure consistency in their use, leading to well-structured programs. An outline flowchart for

the motor speed control program MOT1 is shown in Figure 8.4.

The outline flowchart shows a sequence where the inputs (Run, Speed Up and Speed Down)

are checked and the delay count is modified if either of the speed control inputs is active. The

output is then set high and low for that cycle, using the calculated delays to give the MSR.

The loop repeats endlessly, unless the reset is operated. The reset operation is not represented

in the flowchart, because it is an interrupt, and therefore may occur at any time within the

loop. The program name, MOT1, is placed in the start terminal symbol. Most programs need

some form of initialization process, such as setting up the ports at the beginning of the main

program loop. This will normally only need to be executed once. Any assembler directives,

such as label equates, should not be represented, as they are not part of the executable

program itself.

MOT1

Initialize Port A
& Delay Count

Test Inputs &
Modify Count

Output High
& Delay for

Count

Output Low
Delay for !Count

Figure 8.4
MOT1 outline flowchart

168 Chapter 8

In common with most ‘real-time’ applications, the program loops continuously until reset or

switched off. Therefore, there is an unconditional jump at the end of the program back to start,

but missing out the initialization sequence. Since no decision is made here, the jump back is

simply represented by the arrow, and no process symbol is needed. It is suggested here that the

loop back should be drawn on the left side of the chart, and any loop forward on the right,

unless it spoils the symmetry of the chart or causes line segment cross-overs. Note that when

branching, the flow junctions must be BETWEEN process boxes, to preserve a single input,

single output rule for each process. Each process then always starts and ends at the same point.

8.3.2. MOT1 Detail Flowchart

The outline flowchart given in Figure 8.4 may show enough information for an experienced

programmer. If more detail is needed, boxes in the main program can be elaborated until there

is enough detail for the less experienced programmer to translate the sequence into assembly

code. A detail flowchart is shown in Figure 8.5.

After the initialization sequence, a set of conditional jumps is required to enable the motor,

check the ‘up’ and ‘down’ inputs, and test for the maximum and minimum values of the value

of ‘Count’ (FF and 01). Two different forms of the decision box have been used in this

example, both of which may be seen. The diamond-shaped decision symbol is used here to

represent a ‘Bit Test and Skip If Zero/Not Zero’ operation, while the elongated symbol

represents an ‘Increment/Decrement and Test for Zero’ operation, which essentially combines

two instructions in one. In either case, the decision box should contain a question, with its

outputs representing a ‘Yes’ or ‘No’ result of the test. Note that only the result producing the

jump needs to be specified.

‘Decrement and Skip if Zero’ is used to create the software delay loop. Two different delays are

required, one for the mark time, one for the space. Since the delay needed is relatively short,

and only a single loop is needed, a delay subroutine is not necessary.

8.3.3. Flowchart Symbols

A minimal set of flowchart symbols is shown in Figure 8.6. The data flowchart symbols

provided in Word (Autoshapes) may be used, but they do not necessarily have the same

meaning here. The text can be inserted via the drawing object properties menu (right click, add

text).

Terminals

These symbols are used to start or end the main program or a subroutine. The program name or

routine start label used in the source code should be specified in the start box. If the program

loops endlessly the END symbol is not needed, but RETURNmust always be used to terminate

a subroutine. In PIC programming, use the project name (e.g. MOT1) in the start symbol of the

Application Design 169

MOT1

Define Motor Output
Up, Down, Run Inputs

Count = 80h

Run = 0 ? NO

Up = 0 ?

Inc & Test
Count = 0?

Decrement
Count

NO

NO

Down = 0 ?

Dec & Test
Count = 0?

Increment
Count

NO

NO

Set Motor On

Delay for Count

Set Motor Off

Delay for (256-Count)

Figure 8.5
MOT1 detail flowchart

170 Chapter 8

main program, and the subroutine start address label in subroutine start symbols. Terminals

have only one input or output.

Processes

The process box is a general purpose symbol that represents a sequence of instructions,

possibly including loops inside it. The top-level flowchart of a complex program can be

simplified, with a lot of detail concealed in each box. A subroutine is a process that will

be implemented in the source code as a separate block, and may be used more than once

within a program. It may be expanded into a separate subroutine flowchart, using the same

name in the start symbol as that shown in the calling process. Subroutines can be created

at several levels in a complex program. Processes should have only one input and one

output.

(a)

(b)

(c) (d)

Description Condition
True ?

yes / no

Default

TITLE
END RETURN

Start Program
or Subroutine

Return from
Subroutine

End
Program

Description Description

Process Subroutine

Figure 8.6
Flowchart symbols: (a) terminals; (b) processes; (c) input or output; (d) decision

(conditional branch)

Application Design 171

Input/Output

This represents processes whose main function is input or output using a port data register in

the microcontroller. Use a statement in the box that describes the general effect of the I/O

operation, for example, ‘Switch Motor On’ rather than ‘Set RA0’. This will make the flowchart

easier to understand. This symbol should also have only one input and one output.

Decisions

The decision symbol contains a description of the conditional branch as a question. There will

be two alternative exit paths, for the answers ‘yes’ and ‘no’. Only the arrow looping back

or forward needs to be labeled ‘yes’ or ‘no’; the default option, which continues the program flow

down the center of the chart, need not be labeled. In PIC assembly language, this symbol would

refer to the ‘Test and Skip’ instructions. In the MOT1 detailed flowchart, an enlarged decision

box is used to represent the ‘Decrement/Increment and Skip if Zero’ operation. This symbol

allows more text inside, so is a useful alternative to the standard diamond shape. The decision

symbol thus contains a logical question, and has one input and two outputs, ‘yes’ or ‘no’.

8.3.4. Flowchart Structure

In order to preserve good program structure, there should be single entry and exit points to and

from all process blocks, as illustrated in the complete flowcharts. Loops should rejoin the main

flow between symbols, and not connect into the side of a process symbol, as is sometimes seen.

Terminal symbols have a single entry or exit point. Decisions in assembler programs only have

two outcomes, branch or not, giving two exits. Loops back should be drawn on the left of the

main flow, and loops forward on the right of the main flow, if possible. For the main flow down

the page, the arrowheads may be omitted as forward flow is clearly implied.

Connections between pages are sometimes used in flowcharts, shown by a circular labeled

symbol. It is recommended here that such connections be avoided; it should be possible to

represent a well-structured program with a set of separate flowcharts, each of which should fit

on one page. An outline flowchart should be devised for the main sequence, and then each

process detailed with a separate flowchart, so that each process can be implemented as

a subroutine or macro. In this case, the main program sequence should be as small as possible,

consisting of subroutine calls and the main branching operations.

Therefore, the program should initially be represented as an outline flowchart on a single page,

and each process expanded using subroutines or functions on separate pages. Keep expanding

the detail until each block can be readily converted to source code statements. A well-

structured program like this will be easier to debug and modify. Subroutines can be ‘nested’, to

a depth that depends on the MCU hardware stack size (including interrupts). Mid-range PICs

have space for eight return addresses in a hardware stack, which means that only eight levels of

subroutine or interrupt are allowed.

172 Chapter 8

8.3.5. Structure Chart

The structure chart is another method for representing complex programs. Each program

block is placed in a hierarchical diagram to show how it relates to the rest of the program.

This technique is most commonly used in data processing and business applications running

on larger computer systems, but may be useful for more ambitious microcontroller

applications.

The program shown in the structure diagram (Figure 8.7) has four levels. The main program

calls subroutines to initialize, process inputs and process outputs. The input processing

routine in turn calls Sub1 and Sub2 subroutines. Output processing only requires Sub3,

but Sub2 calls Sub4 and Sub5 at the lowest level. At this level, 3 stack locations will be

used up.

8.3.6. Pseudocode

Pseudocode is a text outline of the program design. The main operations are written as

descriptive statements that are arranged as functional blocks. The structure and sequence are

represented by suitable indentation of the blocks, as is the convention for high-level languages.

An outline of MOT1 is shown in Figure 8.8.

The pseudocode version of the program uses high-level style syntax, such as IF ... THEN, to

describe the selections in the program. It has the advantage that no drawing is required, and the

Program
Name

Initialize Process
Inputs

Process
Outputs

Sub1 Sub2 Sub3

Sub4 Sub5

Figure 8.7
Structure chart

Application Design 173

pseudocode can be entered directly into the text editor used for writing the source code. It can

be started as a brief outline and developed in stages, until it is ready to be translated into

assembler syntax. The pseudocode can be left in the source code as the basis of program

comments, or replaced, whichever suits the programmer. Although used here to represent an

assembler program, pseudocode is probably most useful for developing ‘C’ programs for

applications for the more powerful PIC microcontrollers.

8.4. Program Implementation

When the program logic has been worked out using flowcharts, or otherwise, the source code

can be entered using a text editor. Normally, the program editor is part of an integrated

development package such as MPLAB. Most programming languages are now supplied as part

of an integrated edit and debug package. Assembler source code can also be entered directly

into the Proteus VSM system, which includes an editor and the PIC assembler, and this is

MOT1
Program to generate PWM output to Motor

Initialize
Outputs

Motor
Inputs

Speed up
Speed down
Run enable

Registers
Count = 128

Start loop

IF Run enable = off THEN wait
IF Speed up = on THEN inc Count
IF Count = 0 THEN dec Count
IF Speed down = on THEN dec Count
IF Count = 0 THEN inc Count

Switch on Motor
Delay for Count

Switch off Motor
Delay for 256-Count

End loop

Figure 8.8
MOT1 pseudocode

174 Chapter 8

preferable where the schematic has already been created in ISIS and the program is not too

complex.

8.4.1. Flowchart Conversion

The program design method should be applied so as make the program as easy as possible

to translate into source code. The PIC has a ‘reduced’ instruction set, meaning that the

number of available instructions has deliberately been kept to a minimum to increase the

speed of execution and reduce the complexity of the chip. While this also means that there

are fewer instructions to learn, the assembler syntax (the way the instructions are put

together) can be a little trickier to work out. For example, the program branch is

achieved using the ‘Bit Test and Skip’ instruction. In CISC assembly code languages,

branching and subroutine calls are implemented using single instructions. The PIC

assembler requires two instructions. However, recall that ‘Special Instructions’

(essentially predefined macros) are available which combine ‘test’, ‘skip’ and ‘goto’

instructions to provide equivalents to conventional conditional branching instructions (see

Chapter 6).

The representation of the program with different levels of detail is illustrated in Figure 8.9.

Figure 8.9(a) shows the process in enough detail that each process box converts into only one or

two lines of code. This may be necessary when learning the programming syntax. Later, when

the programmer is more familiar with the language and the standard processes that tend to

recur, such as simple loops, then a more condensed flowchart may be used, such as

Figure 8.9(b), where the loop is concealed within the ‘delay’ process. As we have seen above,

Delay

Set Output High

Set Output Low

Load Counter

Decrement and
Test Counter = 0?

Set Output High

Set Output Low

NO

(a) (b)

Figure 8.9
PIC program branch flowchart fragments: (a) detail flowchart; (b) outline flowchart

Application Design 175

this process can also be written as a separate, reusable, software component: a subroutine. The

corresponding source code fragment is shown in Table 8.3.

Another limitation in PIC 16 assembler is found when moving data between registers. It is not

possible to copy data directly between file registers; it has to be moved into the working

register (W) first, and then into the file register. This requires two instructions instead of the

single instruction available in other processors. This problem is overcome to some extent by

the availability of the destination register option with the byte processing operations, which

allows the result to be placed in W or F, as required. Nevertheless, the advantage of simplicity

in PIC assembly language outweighs these limitations, especially in the early stages of

learning.

8.4.2. MOT1 Source Code

The program source code for the MOT1 program is listed in Program 8.1. The program

produces the PWM output by toggling RA0 with a delay. A register labeled ‘timer’ holds the

current value for the ‘on’ delay. The program does not use a subroutine for the delay, because

the ‘timer’ value has to be modified for the ‘off’ delay. Note the use of the COMF instruction,

which complements the contents of the timer register, which effectively subtracts the value

from 256. The total PWM cycle time stays constant as a result. When incremented, the

‘timer’ value has to be checked to prevent it rolling over from FF to 00, by decrementing it

again if the new value is zero. The roll-under at the low end of the scale is prevented in

a similar way.

The program source code has instruction mnemonics in upper case to match the instruction set

in the data sheet. However, by default, they are not case sensitive, so you will often see them in

lower case. On the other hand, labels ARE case sensitive, so they must match exactly when

Table 8.3: PIC program branch code fragment

; Branch Program Fragment

.

.
BSF PortA,0 ; Set Output

MOVLW 0FF ; Set Count Value
MOVWF count1 ; Load Count

back1 DECFSZ count1 ; Dec. Count & Skip if 0
GOTO back1 ; Jump Back

BCF PortA,0 ; Reset Output
.
.

176 Chapter 8

Program 8.1
MOT1 source code

Application Design 177

Program 8.1: (continued)

178 Chapter 8

declared and used. The label case sensitivity can be switched off as an assembler option if you

wish. Upper case characters for the special function register names (PORTA) have been used to

match the register names used in the data sheet, and lower case characters with the first letter

capitalized used for general purpose registers (Timer, Count). The bit labels are lower case

(motor, up, down, run), as are the address labels. Using source code editing conventions like

this is not obligatory, but consistent layout and presentation improves program readability and

makes it easier to understand.

Most programming languages allow comments to be included in the source code as

a debugging aid for the programmer, and information for other software engineers who may

need to fix the code at a later date. Comments in PIC source code are preceded by a semicolon;

the assembler ignores any source code text following, until a line return is detected.

A header should always be created for the main program and the associated routines. It should

contain relevant information for program downloading, debugging and maintenance.

Examples have already been given. The layout should be standardized, especially in

commercial products. The author’s name, organization, date, and a program version number

and description are essential. Hardware information on the processor or system type is

important; for example, when a PIC program is assembled, the processor type must be

specified, because there is variation in the SFRs available. The processor type may be

specified in the header block as an assembler directive (essential when using the bare

assembler in Proteus VSM), or by selecting the processor in the MPLAB development system

options. Alternatively, the standard header file can be included, which defines the MCU and

registers. Target hardware details such as input and output pin allocation are useful, and the

design clock speed needs to be specified in programs where code execution time is significant.

Programmer settings that enable or disable hardware features such as the watchdog timer,

power-up timer and code protection should also be listed, unless specified explicitly using the

available assembler directives.

The general layout of the source code should be designed to make the structure clear, with

subroutines headed with their own brief functional description. The asterisk symbol (*) is often

used to separate and decorate comments; rows of dots are also useful, but there is some scope

here for individual touches! The main object is to make the source code and program structure

as easy as possible to understand. Blank lines should separate the functional program blocks;

that is, instructions that together carry out an identifiable operation. In this way, the source code

can be presented in a way that makes it as easy to interpret as possible.

When the program has been finalized and the memory and I/O requirements of the PIC have

been established, the final choice of MCU can be made. The range of 16F devices will be

reviewed in Chapter 12. When finalizing the circuit design, a more detailed consideration of

a range of interfacing techniques can be found in Interfacing PIC Microcontrollers: Embedded

Design by Interactive Simulation by this author (Newnes 2006).

Application Design 179

Questions 8

1. Sketch a PWM waveform and explain how PWM controls the power delivered to dc
loads from a single digital output. (4)

2. Explain briefly the role of the block diagram and flowchart in creating the final hardware
and software design for an application. (4)

3. Describe two alternative techniques to flowcharts for program design and one advantage
of each. (4)

4. Explain the function of the following statements in the source code for MOT1, expanding
on the comment given in the program source code:
(a) motor EQU 0
(b) BTFSC PORTA, run
(c) INCF Count
(d) COMF timer. (8)

Answers on pages 421e2. (Total 20 marks)

Activities 8

1. Compare the source code for MOT1 with the flowchart in Figure 8.5, and the pseudocode
in Figure 8.8, and note how they correspond. Draw a structure chart for the application
using the drawing tools in Word, or equivalent word-processing application.

2. Test MOT1 in MPLAB and confirm correct operation, or in Proteus VSM if available.
3. (a) Devise a set of structured flowcharts for making a nice cup of tea, manually!

(b) Draw a block diagram of a coffee machine, and devise a set of flowcharts for a control
program. You may assume a PIC microcontroller will be used with suitable
interfacing, sensors and actuators.

4. (a) Devise a block diagram for a motor control system which has a bidirectional drive, and
inputs which select the motor on/off and direction of rotation. Separate active low
outputs should be provided to enable the motor in each direction. Investigate full bridge
driver circuits and modify the MOT1 circuit to incorporate this output stage.

(b) Modify the outline flowchart for MOT1 to operate the full bridge bidirectional output,
allowing the direction to be changed only while the motor is disabled. Produce
a logic table and detail flowchart, and amend the source code observing the recom-
mendations for source code documentation.

Compare your design with that provided in Chapter 11.

180 Chapter 8

CHAPTER 9

Program Debugging

Chapter Outline
9.1. Syntax Errors 182

9.2. Logical Errors 184
9.2.1. Simulation 185

9.2.2. Program Testing in MPLAB 186

9.2.3. Setting up MPSIM 188

9.2.4. Testing with Asynchronous Inputs 189

9.2.5. Testing with Scheduled Inputs 190

9.3. Test Schedule 191
9.3.1. Typical Logical Errors 193

9.3.2. Limitations of Software Simulation 193

9.3.3. Hardware Testing 193

9.4. Interactive Debugging 194
9.4.1. ISIS Schematic 194

9.4.2. VSM Debugging 196

9.5. Hardware Testing 198

Questions 9 199

Activities 9 200

Chapter Points
• MPLAB IDE includes editor, assembler, simulator, programming and debugging utilities.

• Two main types of error can occur in source code: syntax and logical error.

• Syntax errors are invalid statements which are detected by the assembler, generating

error messages.

• Logical errors are mistakes in the program design or implementation detected by simulation.

• Simulation identifies logical errors using single stepping and breakpoints with register monitoring.

• In-circuit debugging allows the software to be tested at full speed on the target hardware.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10009-6

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

181

http://dx.doi.org/

The design of a simple PIC� motor control application, MOT1, has been described in

Chapter 8, and an assembler code program developed (Program 8.1). In practice, it is likely

that such a program will contain errors, especially when learning the language, so we need

now to look further at the techniques and tools that are available for debugging (removing

the errors from) PIC programs. We are going to continue with MOT1 as our example

application, and will see how to resolve two main types of error.

The syntax of a language refers to the way that the words are put together. Any language,

programming or spoken, must follow certain rules so that the meaning is clear and the usage

consistent (English is a very poor example of this!). The rules in programming languages are

very strict, because the source code must be converted into machine code without any

ambiguity. Syntax errors are mistakes in the source code, such as the misspelling of an

instruction mnemonic, or failure to declare a label before using it in the program. These

errors are detected by the MPLAB assembler (MPASM), resulting in error messages being

generated and displayed in a separate window. The source code is color coded in recent

versions of MPLAB to highlight correct syntax and errors. If a syntax error is detected, the

correct use of the instruction set and assembler directives must be checked against the

programming rules.

Once a program has been assembled without any syntax errors, it does not mean that it will

function correctly when run. Logical errors may well be present which prevent correct

operation. The software simulator (MPSIM) can be used to detect and correct these errors

prior to downloading to the chip. It allows the program to be run in a virtual processor.

Logical errors are detected by inspecting the program output and comparing it with the

performance specification. This usually requires inputs to be simulated in a sequence that

represents the normal usage of the application, using either asynchronous (user-generated)

inputs or a stimulus file (workbook) that generates the same test sequence each time.

Alternatively, interactive simulation can offer a schematic with animated input and output

devices, and instant results. Proteus VSM is the most user-friendly package for

microcontroller (MCU)-based circuits, offering a highly intuitive user interface and

comprehensive co-simulation of analogue, digital and programmed devices, including a full

range of PIC MCUs.

9.1. Syntax Errors

When the program source code for a PIC program has been created in the editor, it must

be converted into machine code for downloading to the chip. This is carried out by the

assembler program, MPASMWIN.EXE, which analyzes the source code text line by line,

converts the instruction mnemonics into a list of corresponding binary codes and saves it as

PROGNAME.HEX for downloading into the chip. Only valid statements as defined in the

182 Chapter 9

PIC instruction set will be recognized and successfully converted. Assembler directives

provide additional programming instructions, but these are not converted to machine code

(see Chapter 6).

Before starting a project, create a folder to keep the project files in, named, for example,

MOT1. In MPLAB, the source code is created in an edit window opened by hitting the New

File button. Type in the file name and save it immediately in the application folder as

MOT1.ASM, or any file name with an ASM extension. It is a good idea to keep a backup

version of the file set on a different drive (USB stick, portable drive or network).

When the program has been entered and saved, the project menu item ‘Quickbuild’ will

assemble a single file. If required, a project can be created, but this is only really necessary

for more complex applications using multiple source files or a higher level language

(usually C). In the Project menu, select ‘New .’ and call the project MOT1, or the same

name as the source code. Now select ‘Add Files to Project .’ and select the source code

created above. The program can now be assembled by selecting ‘Build All’, and the project

saved. Alternatively, the workspace can be saved, that is, the screen configuration and

working files.

In the source code file, numerical formatting, assembler directives and so on must all be used

correctly. If they are not, error messages will be generated when the program is assembled.

These describe the syntax errors that have been found. The error messages are saved in a text

file PROGNAME.ERR, and displayed when the assembler is finished. A typical set of

messages is shown below:

Executing: "C:\Program Files\MPLAB IDE\MCHIP_Tools\mpasmwin.exe" /q /p16F84

"MOT1.asm" /l "MOT1.lst" /e"MOT1.err"

Warning[205] C:\MOT1.ASM 24 : Found directive in column 1. (PROCESSOR)

Warning[224] C:\MOT1.ASM 44 : Use of this instruction is not recommended.

Message[305] C:\MOT1.ASM 56 : Using default destination of 1 (file).

Warning[207] C:\MOT1.ASM 58 : Found label after column 1. (DEC)

Error[122] C:\MOT1.ASM 58 : Illegal opcode (Count)

Error[113] C:\MOT1.ASM 71 : Symbol not previously defined (Timer)

Error[113] C:\MOT1.ASM 73 : Symbol not previously defined (again1)

Error[129] C:\MOT1.ASM 92 : Expected (END)

Halting build on first failure as requested.

BUILD FAILED

To generate this list, deliberate errors were introduced into the demo program MOT1.ASM,

and the messages selected from the error file MOT1.ERR. There are three levels of error

shown: ‘Message’, ‘Warning’ and ‘Error’. The source code line number where the problem

was found is indicated, and the type of problem that the assembler thinks is present. However,

a word of warning: owing to the presence of the error itself, the assembler may be misled as to

Program Debugging 183

the actual error. Consequently, the message generated is not always entirely accurate. For

example, the incorrect instruction mnemonic at line 58 caused the assembler to misinterpret

‘Count’ as an illegal op-code.

The PROCESSOR directive was misplaced, causing a non-fatal warning, which would not

itself prevent successful assembly of the program. The TRIS instruction also caused a warning

in the MPLAB assembler, because its use is not recommended, but will still be successfully

assembled. It is used in our examples because the alternative method of port initialization,

using register bank selection, is more complicated.

The instruction mnemonic DECF was misspelt as DEC, causing the errors at line 58. This

contributed to the register label count being misinterpreted. The register label ‘Timer’ was

missed out of the EQU statements at the top of the program, causing the error at line 71. The

jump destination ‘again1’ has been incorrectly labeled ‘again’, causing the error at line 73.

Finally, the END directive had been omitted at the end of the program, causing the message

‘Expected (END)’.

The message ‘Using default destination of 1 (file)’ refers to the fact that the full syntax for

MOVWF instruction has not been used. Using the full syntax, the destination for the result of

the operation is specified as the file register or the working register, by placing aW (0) or F (1)

after the destination register number or label. In the examples throughout this text, we take

advantage of the assumption by the assembler that the destination is the file register if not

specified in the instruction; this simplifies the source code. When the error messages have

been studied carefully, and printed out if necessary, the source code must be re-edited and

reassembled until it is correct. The different levels of error message (message, warning and

error) can be selectively suppressed in the list file output using the list file options with the

directive LIST. These options can also be set in the Project, Build Options dialogue in

MPLAB by selecting the Output Category under the Assembler tab, then the preferred

Diagnostics level.

9.2. Logical Errors

When all syntax errors have been eliminated the programwill assemble successfully, and the hex

file will be created. However, this does not necessarily mean that it will function correctly when

downloaded to the chip; in fact, it probably won’t! Usually there will be logical errors,

particularly when learning the programming method. Mistakes in the program functional

sequence or syntax will prevent it operating as required. For instance, the wrong register may be

operated on or a loop may execute correctly, but the wrong number of times. There may also be

‘run-time’ errors, that is, mistakes in the program logic that only show up when the program is

actually executed. A typical run-time error is ‘Stack Overflow’, which is caused by CALLing

184 Chapter 9

a subroutine, but failing to use RETURN at the end of the process. This is not detected by the

assembler.

9.2.1. Simulation

Once the program has been successfully assembled, it could be tested by downloading to

the hardware and running it. If there are logical errors, and the output is incorrect, the

source code must be modified, rebuilt, downloaded and tested again. In the early days of

microprocessors this was the only option, but it is time consuming and inefficient. The

only way round this was the use of an emulator system, which plugged into the

processor socket in place of the MPU and allowed register monitoring, single stepping

and breakpoints to be used. Such emulator systems were expensive, and the program

read-only memory (ROM) still had to be reprogrammed out of circuit each time the

source code was corrected, unless this was also emulated.

Some form of virtual testing of the program sequence was therefore desirable, to eliminate

logical errors before downloading. The rise in the use of microcontrollers meant that, in

small systems at least, the program memory, processor and peripheral interfaces were all on

one chip, which could be simulated in software as a complete package. This allowed the

program logic to be tested and modified more quickly, with all the internal registers

displayed while tracing through the program for the correct sequence of operations. Source

code debugging allows the execution point reached in the source code to be identified while

single stepping through the program. Step-over and breakpoint setting allow execution of

selected portions of the program at full speed to reach the problem areas or the code

quickly.

Thus, a major advantage of the microcontroller over an equivalent discrete

microprocessor system is that the design of the chip is fixed, so a full simulation model

can be supplied for each device. The Microchip simulator tool MPSIM allows windows to

be opened to show the source code, machine code, registers, simulated input, timing

checks and so on. The MPLAB development system, including the assembler and

simulator, has always been provided free by Microchip to encourage the development of

the market for its chips.

Proteus VSM provides an alternative debugging environment, which is integral with ISIS

schematic capture. It can be run independently or as a debugging tool from within

MPLAB. The latter arrangement is preferred for more complex assembler and C

applications, when the MPLAB project management tools are required. For simple

assembler programs, MPLAB is not required. The schematic is entered using the ISIS

graphics editor, and the program written using the integrated source code editor. It is

assembled using the same Microchip MPASM assembler as provided in MPLAB

integrated development environment (IDE), which is included in the Proteus package.

Program Debugging 185

The resulting HEX machine code program file is then attached to the MCU. The

program can then be run and debugged in a source code window, which includes three

single stepping options and simple breakpoints. The procedure for interactive testing in

Proteus VSM is detailed in Appendix E.

9.2.2. Program Testing in MPLAB

The simulator must model the operation of the selected microcontroller as completely as

possible. The user must be able to provide the inputs that would occur in the actual system, and

to monitor the effect on relevant registers, especially the outputs. The program will need to be

started and stopped at critical points, single stepped to check the sequence of operations, and

timing measured. All possible input events and sequences must be anticipated and tested, to

ensure that no unforeseen problems arise when the application is in use.

In MPLAB, with the source code loaded and assembled, select ‘Debugger’, ‘Select Tool’ and

‘MPLAB SIM’ from the main menu. The debugging toolbar should appear with the buttons:

• RUN: Execute the program.

• HALT: Stop the program with the current execution point indicated.

• ANIMATE: Run the program in auto-step mode.

• STEP INTO: Execute program one instruction at a time, including subroutines.

• STEP OVER: Single step current routine, but execute subroutines at full speed.

• STEP OUT: Exit from the current subroutine at full speed and wait.

• RESET: Start again at the top of the program.

These controls allow the source code to be debugged using the single stepping options with

breakpoints. Various windows can be opened via the View and Debugger menus, which assist

with debugging in MPSIM. The most commonly used are described below (see Figure 9.1).

Edit Window (Open/New File Buttons)

The Edit window is used to create and subsequently modify the source code, PROG1.ASM, as

a text file. Ensure it is saved in a project folder with the rest of the assembler fileset, as further

simulation files will be added. When the program has been assembled and is then run from the

debug controls and halted, the current instruction is indicated in the source code window by

a green arrow. Breakpoints can be inserted by double-clicking on the line required, causing

a red marker to appear in the margin.

Special Function Register Window (View Menu)

All the special function registers (SFRs) are displayed in this window in hex, binary and

decimal (right-click on the column headings bar to select the format). We may want to read

186 Chapter 9

a counter in decimal, but a data direction (TRIS) register in binary. A basic set of SFRs found

in the 16F84A is shown in Table 9.1.

The functions of these registers have been described in Chapters 5 and 6. More complex

chips have additional SFRs, and the address of a register given here may be different. For

example, the 16F887 has ports AeE, using registers 05e09, so the electrically erasable

programmable read-only memory (EEPROM) access registers are moved to bank 2,

address 10Ch and 10Dh. The SFRs displayed will therefore change according to the chip

selected in Configure, Select Device.

Watch Window (View Menu)

A watch window allows selected registers to be displayed, that is, only those of interest in

a particular application. SFRs and user-labeled registers are added separately, and the

numerical format for each can be selected individually. This allows, for example, counters to be

displayed in decimal, and port and status bits in binary.

Simulator Stimulus (Debugger Menu)

In most applications, a sequence of inputs needs to be generated to test the response to all

possible combinations. In MPLAB, a workbook is created to specify and store the simulated

inputs. The simplest method is to use the Asynch (asynchronous input) table; each input pin is

assigned a row in a stimulus table, and is operated manually during the course of the

simulation. Alternatively, a schedule of input changes may be created which allow the same

test sequence to be generated each time the program is run using the Pin/Register Actions tab.

Table 9.1: PIC 16F84A SFRs

Address Name Function

e WREG Working Register (not an SFR)
00 INDF Indirect file addressing access register
01 TMR0 Timer0 8-bit hardware counter
02 PCL Program Counter keeps track of execution point
03 STATUS Flag register, Zero ¼ bit 2
04 FSR File Select Register for indirect addressing
05 PORTA I/O port bits connected to external pins RAx
06 PORTB I/O port bits connected to external pins RBx
08 EEDATA EEPROM data access register
09 EEADR EEPROM address access register
0A PCLATH Program counter latch high byte
0B INTCON Interrupt control register

81 OPTION_REG Option register for bank selection
85 TRISA Data direction register for PORTA
86 TRISB Data direction register for PORTB
88 EECON1 EEPROM control register
89 EECON2 EEPROM control register

Program Debugging 187

Stopwatch (Debugger Menu)

The stopwatch window records the simulated time elapsed and number of instructions

executed. It can be zeroed to measure intervals between events, for example, the delay created

by a software loop, or the period of an output pulse. The MCU clock rate must be entered via

the Debugger, Settings dialogue to match the oscillator frequency to be used in hardware.

Trace Window (View Menu)

As the program is executed, the trace window displays a disassembled version of each line with

the corresponding machine code and addresses, so the changes can be checked and recorded.

At the same time, the original source code is displayed in a lower window.

Logic Analyzer (View Menu)

This displays the input and output bits individually or in groups on a timebase display, as would

be seen on an oscilloscope. This gives a much more immediate view of the system performance

and allows event timing to be more easily checked.

9.2.3. Setting up MPSIM

The setup for a typical application, MOT1, will now be described step by step. If necessary,

assemble the program, using the Project, Quickbuild option, or rebuild the project using the

Build All button. Ensure that the correct processor is selected, via the Configure, Select Device

dialogue (16F84A for the MOT1 project). At the same time, it is advisable to set the chip fuses

via Configure, Configuration Bits. For MOT1, uncheck ‘Configuration Bits set in code’,

selecting oscillator¼RC, watchdog timer off, power-up timer on and code protection off. Set

the processor clock frequency via Debugger, Settings, Osc/Trace (100 kHz for MOT1).

The program can now be run and stopped to make sure the simulator is working. When halted,

the current execution point is indicated in the margin of the source code window. We now need

to set up the simulator so that the relevant information is displayed and the correct program

function can be confirmed, or logical errors corrected. Simply running the program in the

simulator does not generally provide enough information to confirm its correct operation, let

alone to debug it. Single stepping allows the program to be executed one instruction at time; the

registers can then be checked for the right contents as the execution progresses.

In the Watch window, use Add SFR to display the PCL, WREG, PORTA and TRISA registers,

and Add Symbol to display the Count and Timer registers using the buttons. Select and right-

click on PORTA, select Properties from the drop-down menu and change the display format to

binary so the state of the individual bits can be seen. Repeat for TRISA. In the same dialogue,

change the format of the Count and Timer registers to decimal.

188 Chapter 9

9.2.4. Testing with Asynchronous Inputs

We are aiming for a setup as shown in Figure 9.1. The simplest method of simulating inputs is

the asynchronous stimulus. Single-bit inputs are changed by the user via on-screen buttons

while the program is executed in single-step mode. The source code, Stopwatch, Stimulus,

Watch and Trace windows are displayed.

The trace facility (View, Simulator Trace) provides a comprehensive record of program

execution by displaying the program line from the list file alongside the source and destination

register address and contents (SA, SD, DA, DD) after each instruction, as well as the number of

cycles completed. This can be saved, printed and studied. The original source code is also

displayed in the lower pane when single stepping.

To set up the simulated inputs, select Debugger, Stimulus, NewWorkbook and the Asynch tab.

In the Pin/SFR column, select RA2, RA3 and RA4, and Toggle mode for each in the Action

column. Add a comment stating its function. Set all the inputs high by clicking on each fire

button and stepping once. Check that the port A input bits are set high in the SFR window.

Reset the program and single step through the initialization sequence. Step through the

initialization sequence to the label ‘start’ and check that the register ‘Count’ is initialized

correctly. With the ‘run’ input high, the program should wait at the ‘start’ label. Now clear

Figure 9.1
MPSIM test with asynchronous inputs and trace

Program Debugging 189

input RA4 by hitting the ‘Fire’ button, and step to the start of the delay sequence. Once in the

delay sequence, single stepping is not helpful, so we will now use breakpoints to test the main

loop. Set a breakpoint at the ‘cycle’ label by double-clicking in the source code line number

margin; a red marker appears. Set a breakpoint at the BCF instruction as well. Reset the

program and run to the first breakpoint.

Zero the stopwatch, run to the next breakpoint and note the time (15ms). Zero the stopwatch

again and run to the first breakpoint. The time should be similar (16ms), indicating a mark/

space ratio (MSR) of approximately 50%. At the same time, check that RA0 is toggling each

time, which indicates that the output PWM signal is present.

The up and down control can now be tested. Hit the ‘Up’ button (RA2) and check that the

Count value increments for each output cycle. Disable ‘Up’ (high) and enable ‘Down’ (low).

The Count value should decrement. Now disable the breakpoints (right-click) and run the

program. The Count value should go down to 1 and stop there. Now enable the ‘Up’ input and

check that Count goes to its maximum value (255) and stops there. With the breakpoints

reinstated, the stopwatch can be used to check the minimum and maximum MSR values.

The single-step facility has two options, ‘step into’ and ‘step over’. Step into means execute all

the instructions including those in subroutines. As we have seen above, the delay sequence is

not suitable for single stepping as it is repetitive. If the delay is in a subroutine, as in BIN4, step

over can be used; this will step through the current routine, but will run any subroutines called at

full speed. This allows each program block to be tested separately. However, as the delays in

MOT1 are not subroutines, breakpoints are used to allow them to run at full speed.

9.2.5. Testing with Scheduled Inputs

Testing a program can be automated using a stimulus workbook. The state of an input or file

register is changed at a particular step in the program, and the same test sequence can then be

applied each time the simulation is run, making the testing quicker and easier, particularly in

more complex applications.

The workbook is opened via Debugger, Stimulus, New Workbook. Select the ‘Pin/Register

Actions’ in the workbook window, and ‘Click here to Add Signals’. The output (RA0) and

input (RA2,3,4) bits are added to the active window, and the bit state is changed at specific

times, measured in instruction cycles. The stimulus sequence used for MOT1 can be seen in the

stimulus window in Figure 9.2.

The simulator logic analyzer in the view menu will provide a time-based trace of changes in

individual input/output (I/O) register bits. The Channels button opens a dialogue where the

required bits are selected for display. In order to record the outputs over a suitable time period,

a break must be set after a suitable number of cycles. This can be setup in the Debugger,

190 Chapter 9

Settings dialogue, by checking the Break on Trace Buffer Full box and setting the buffer size

to, say, 1000k for the stimulus inputs scheduled in the workbook as above. This provides

enough time for the inputs to take effect, over a period of about 10 s.

A trace of the output at RA0 is obtained as shown with these settings (it appears solid at full

scale). It can be seen that it is switched onwhenRA4 (run input) is low, and off whenRA4 is high.

RA3 (down) low decreases the MSR and RA2 (up) increases it. To see the effect of these inputs

on the output waveform, the zoom controls must be used to expand the waveform in a selected

area. The overall timescale has to be adjusted so that the duty cycle has enough time to reach the

minimum andmaximum values. Some experimentation is needed to get the right combination of

overall timescale and input timing. The scheduled test allows exactly the same test sequence to

be used each time, and a record kept if required, at the cost of increased setup time.

9.3. Test Schedule

Using the simulator, the program function can be tested against the design requirements. The

specification for MOT1 has been converted into a test procedure designed to exercise all its

functions; we also need to anticipate incorrect input sequences that may cause a problem.

A test procedure for MOT1 is suggested in Table 9.2.

Figure 9.2
MPSIM test with scheduled inputs and logic analyzer

Program Debugging 191

Table 9.2: Simulation test schedule for MOT1

Project: MOT1 Simulator: MPLAB 8.60

Setup: Source code: MOT1.ASM
Watch registers: PORTA, Timer, Count
Simulator Stimulus: RA2¼ up, RA3¼ down, RA4¼ run (toggle mode)
Stopwatch: clock frequency 100.00 Hz
Optional: Program memory

Test Action Required performance OK? Fault/comment

1 Initialize RA2, RA3,
eRA4¼ 1

Check Watch Window,
PORTA

All inputs inactive

2 Start Step Over Count¼ 80 Waiting for Run Enable
Waits in Start Loop

3 Enable Run Input: RA0¼ 1 One cycle of output at
default MSR 50%

RA4¼ 0 Runs into high delay Stopwatch: Output
Period ~ 33ms

Step Over Timer decrements to 0
RA0¼ 0
Runs into low delay
Timer decrements to 0
Repeats

4 Disable Run Input: RA4¼ 1 Returns to start loop Waiting for Run Enable
Step Over

5 Select Increment Input: Count increments to 81,
82 after next cycle etc.

Count increments

RA2¼ 0 MSR increasing
RA4¼ 0
Step Over

6 Test for no
roll-over

Run at full speed &
stop

Maximum Count¼ FF Roll-over prevented

Count NOT to 00
7 Select decrement Input: Count decrements to FE Count decrements

RA3¼ 0 FD after next cycle, etc. MSR decreasing
RA4¼ 0
Step Over

8 Test for no
roll-under

Run at full speed &
stop

Minimum Count¼ 01 Roll-under prevented

Count NOT to 00
9 Restart All inputs¼ 1 Returns to start loop Restart correct

Run & Stop
10 Program reset Reset Execution reset to first

instruction
Reset correct

11 Recheck default
output

RA4¼ 0 Count¼ 80 Output Toggles
MSR ~ 50%

Tested by:
Comments:

Date:

192 Chapter 9

9.3.1. Typical Logical Errors

It is difficult to anticipate exactly what kinds of logical errors will arise, as they are generally

the result of inexperience, but the following are typical:

• Port initialization: If a port does not appear to respond to output operations, check that

the initialization is correct.

• Register operations: If a register is not responding as it should, ensure that the correct

register is being modified, and the address label is correct. Check for correct bank selection

during setup.

• Bit test & skip: Obtaining the correct sequence of operations in the program depends on

these instructions. Make sure the skip condition logic is correct, as it is easy to get this

wrong.

• Jump destinations: Make sure that the destination specified is correct, and the loop

sequence includes all the necessary steps.

• Program structure: If the program gets lost during subroutine execution, check that

call address labels are correct, and all subroutines are terminated with ‘return’ instructions.

9.3.2. Limitations of Software Simulation

The simulator allows the program logic to be tested before running the program in the actual

hardware, to ensure that it is functionally correct. However, the simulation is cannot be 100%

realistic, and its limitations need to be taken into account in testing the real system. The

following is given as an example of the kind of problem that might easily be missed, but

seriously affects the operation of the application, and would compromise safe operation of the

real system if a more powerful motor were used.

The data sheet for the 16F84A shows that the state of the port A bits is unknown after

a power-on reset. Therefore, the motor output may come on during the power-on timer phase,

before the program starts executing. This is obviously a potential problem, which is only

partially addressed by following the port initialization instructions with one to clear the motor

output bit. There could still be an on pulse to the motor before the start of the program. If this

caused a problem in practice, a suitable fix would be needed; for example, a separate fail-safe

contactor in the power circuit that ensured that the motor was not powered up until the

controller had been successfully started, which is probably desirable in any case.

9.3.3. Hardware Testing

The test procedure looks very detailed when written down, but in practice it does no more than

test all the features of MOT1. It can be converted to workbook stimulus sequence as indicated

in the previous section. The software product needs to meet the specification only once, in

Program Debugging 193

prototype hardware. Once the software is proved, the hardware in the production units can be

tested in conjunction with firmware (final ROM program) that is known to be correct. A similar

test schedule could be used to test each unit, using an oscilloscope to monitor the output

waveform at RA0. It would then be useful to measure the actual resulting motor speed for the

range of output duty cycles generated (the motor will typically not run below a minimum

MSR). Alternatively, a special test program could be written to exercise the hardware, before

downloading the working version.

9.4. Interactive Debugging

Interactive simulation of microcontroller circuits provides a powerful extra dimension in

application design and debugging. Proteus VSM offers a complete design package, with

schematic editing and capture, using a library of components which provides a graphical

symbol for the schematic, a mathematical model for circuit analysis and component pin-out

for use in the circuit layout. These are provided in two software packages, ISIS schematic

capture and ARES PCB layout. Detailed guidance on using Proteus VSM is given in

Appendix E.

9.4.1. ISIS Schematic

The application design concept may be outlined using a block diagram and converted to

a provisional circuit, which can be entered into ISIS. The components are selected from the

library of parts, placed on the screen and connected using virtual wiring. The result is

a schematic such as that for MOT1 seen in Figure 9.3, which includes a virtual oscilloscope for

monitoring the output.

Mixed mode simulation uses standard circuit modeling techniques for the analogue parts of

the circuit. For example, the mathematical model for a resistor is V¼ IR. The behavior of

reactive components (e.g. capacitors and motors) is modeled using complex mathematics,

which is used to represent the phase relationships between voltage and current, and hence

transient and frequency response in switching circuits. Overall, the analogue parts of

a circuit are represented as a set of nodes connected together by these components, forming

a mesh. This is then represented by a set of simultaneous equations in the form of a matrix,

which can be solved for any given input signals. This process is repeated at intervals to predict

the output and provide a dynamic, interactive model of the circuit.

Modeling the digital circuit elements, on the other hand, is simply a question of representing

the logical processes performed by the components using a suitable logical model. For

example, the output of an AND gate is A$B (see Appendix B). The microcontroller is

represented by a combination of its internal logic and the application program attached. The

effects of all types of component can then be combined to give a reasonably complete model

194 Chapter 9

of the whole circuit. The main limitation of the simulation is that it sometimes fails to

converge on a solution, especially in complex or high-speed circuits. The model then needs to

be simplified, resulting in a less accurate simulation. Of course, the model is only an

approximation to the real circuit in any case, especially when modeling complex devices such

as motors.

The components used in MOT1 are mostly generic types, that is, they do not represent

a specific component. For example, the resistor has a model described as an ‘analogue

primitive’ or generic model. The capacitor is the same. The push button is an active device, that

is, it can be operated on screen, in either transient (click on button) or latched (click on control

spot) mode. The generic NMOS FET (see Appendix B) could be replaced by a specific

component that has a model tailored to the operating parameters of that particular device. The

dc motor parameters can be changed in the properties dialogue (i.e. operating voltage, nominal

speed and coil resistance).

The microcontroller, in contrast, is a specific device from a particular manufacturer. It needs

a machine code program (hex file) to be attached to determine its operation. This can be created

in a built-in editor and, if a PIC, assembled using a copy of MPASM included with the

simulation package. The hex file is attached via the component properties dialogue (double-

left-click on the component). The clock speed (100 kHz) and configuration word can also be

defined in this dialogue. The components are selected from the component libraries as

illustrated in Figure 9.4.

The oscilloscope is one of a selection of virtual instruments. The power supplies are

represented by a ground (0V) connection and a power terminal whose supply voltage is

Figure 9.3
MOT1 circuit schematic

Program Debugging 195

specified by the label (þ5V and þ12V). These additional items are selected via the mode

toolbar buttons at the left of the edit window (see Appendix E for details).

9.4.2. VSM Debugging

When the circuit is complete, and the MCU program attached, the simulation can be run. The

logic levels on each connection are displayed as blue (low) and red (high). Clicking on the

Run button in the schematic should make the motor appear to turn. The Up button should

make it speed up and the Down button slow down. The Reset will restart it at the default

speed. This can be seen more easily by displaying the PWM signal on the virtual

oscilloscope. If the program needs debugging, the source code can be displayed and single

stepping and breakpoints applied. A screenshot of the VSM debugging setup is shown in

Figure 9.5.

The benefits of both the more extensive debugging and project management tools in MPLAB

and the user-friendly interface of Proteus VSM can be realized by running VSM as the

debugging tool from within MPLAB (Figure 9.6). When selected as the debugging tool in the

MPLAB menu, a VSM viewing window opens, allowing the current program in memory to be

run in interactive mode. Debugging and program modification are still carried out using the

Figure 9.4
VSM component selection

196 Chapter 9

Figure 9.5
VSM debugging screenshot

Figure 9.6
VSM running from MPLAB

Program Debugging 197

same MPLAB controls and facilities. However, if the schematic needs modifying, it must be

re-edited in ISIS itself.

9.5. Hardware Testing

Hardware construction will be covered in more detail in Chapter 10. For the moment, we will

assume that suitable hardware has been constructed for MOT1 and we are ready to test it.

When the program has been fully debugged in a simulator, it can be downloaded to the chip.

In some cases, the chip must be programmed before fitting, specifically 16F84A-based

circuits. For most current PIC chips, however, it is preferable to program it in-circuit via the

six-pin in-circuit serial programming (ICSP) connection (see Chapter 7). In-circuit debugging,

as described in Chapter 7, can also be used in the final stages of testing. This allows the

program to be exercised in conjunction with the final hardware, using the debugging tools in

MPLAB. The state of the registers in response to real inputs can then be monitored for fault-

finding purposes.

The target hardware layout and connections should be carefully checked and tested before

inserting the chip. The populated circuit board should be inspected for correct assembly;

wrong component orientation, solder bridges between tracks and dry joints are common

faults. The connections can be buzzed out with a continuity tester and checked against the

circuit diagram.

Before fitting the microcontroller chip, it is a good idea to apply power and check the rest

of the circuit. Make sure the components connected to the chip outputs can be safely

powered up with an open circuit input. For example, in the MOT1 circuit, the field effect

transistor (FET) gate input should not be allowed to float, so there is a pull-down resistor

fitted. The supply current should not be excessive, and components should be checked

for overheating. The voltages at the chip power supply pins (VDD and VSS) of the chip

should also be checked, as incorrect connection of the supply is likely to damage most

integrated circuits.

If all is well, switch off the power and fit the chip using a suitable tool. Antistatic precautions

should be observed, but PIC chips have not been found to be particularly sensitive in practice.

Make sure it is the right way round! Pin 1 should be marked on the board. Switch on and

check that the chip is not overheating or drawing excessive current. If left to overheat for

more than a few seconds, the chip will probably be destroyed.

Connect an oscilloscope to the output. On power-up, there should be no output from MOT1.

When the ‘Run’ button is pressed, the default output waveform with a 50% MSR should be

observed, running at a frequency of about 30Hz. The speed ‘Up’ and ‘Down’ buttons should be

operated to ensure that the speed control stops at the minimum and maximum value, and

does not roll over from zero to full speed in one step. Note that the program algorithm does not

198 Chapter 9

give an MSR of 100% or 0%, but stops one step short of the maximum and minimum. Since

there are 255 steps altogether, the step size is less than 1%.

The circuit should also be tested for fail-safe operation, that is, no unplanned or potentially

dangerous output is caused by an incorrect input operating sequence. In this case, operating

both the ‘Up’ and ‘Down’ buttons together would be an erroneous input combination, which

should result in no change in speed, because the increment and decrement operations

cancel out.

Other examples of potential problems that would need to be considered are input switch

bounce, variation in component performance (check specifications), dynamic operation of

motor, minimum MSR required to make the motor run, and so on. Complex applications are

likely to have more potentially incorrect input conditions and component-related problems, but

the test schedule should ideally anticipate all possible fault modes (not easy!). If the circuit is

being produced on a commercial basis, a formal test schedule would be needed, and the

performance certificated as being correct to the product specification.

A basic test schedule for the MOT1 program running in a PIC 16F84A has already been

outlined for the simulator test in Table 9.2, and this can be adapted for hardware testing.

Additional documentation should be prepared according to circumstances (education,

commercial, research) to provide the application user or product customer with the relevant

information on using the system.

Questions 9

1. Explain briefly the difference between syntax and logical program errors, and how they are
detected. (4)

2. How are the following used in program debugging: single stepping, breakpoint, pin stimulus,
watch window? (4)

3. An instruction in the program memory listing appears as follows:

0005 1A05 start btfsc 0x5,0x4

Explain the meaning of each of the six elements in the line, such that its correct effect can be
predicted when debugging. (6)

4. State two advantages of interactive debugging using Proteus VSM. (2)
5. State two checks to be carried out before powering up a new prototype microcontroller

board. (4)

Answers on pages 422e3. (Total 20 marks)

Program Debugging 199

Activities 9

1. (a) In MPLAB, open a source file edit window, enter or download the source code for
MOT1 and assemble it using the Quickbuild option. Note any error messages generated.
If the program assembles correctly first time, put some deliberate errors in the source code
and inspect the error messages.

(b) In MPLAB, create a project MOT1, assign MOT1.ASM to the project, reassemble and test
the program using scheduled inputs as described in Section 9.2.5.

2. (a) Design an application for the LPC demo board with 16F690 to control the brightness of
an LED using PWM. When the input button is pressed, the LED should increase in
brightness up to a maximum and then reduce back to the minimum, so that it can be
stopped at any point by releasing the button. Demonstrate correct operation in MPLAB
using an asynchronous stimulus.

(b) If Proteus VSM for 16 series PIC is available, download the simulation of the LPC board
to test the dimmer program interactively. Modify it so that the LED brightness is
controlled by the pot.

200 Chapter 9

CHAPTER 10

Hardware Prototyping

Chapter Outline
10.1. Hardware Design 202

10.2. Hardware Construction 203
10.2.1. Printed Circuit Board 204

10.2.2. Breadboard 208

10.2.3. Stripboard 209

10.3. Dizi84 Board Design 209
10.3.1. Hardware Specification 209

10.3.2. Hardware Implementation 211

10.3.3. Implementation 211

10.4. Dizi84 Applications 214
10.4.1. Program BUZZ1 216

10.4.2. Program DICE1 217

10.4.3. Program SCALE1 217

10.4.4. DIZI Application Outlines 220

Questions 10 230

Activities 10 230

Chapter Points
• Breadboard allows circuits to be prototyped quickly and easily.

• Stripboard is more reliable, but not reusable.

• ISIS software is used to create a schematic, and to test the design by simulation.

• ARES software is used to create a circuit board design.

• The DIZI board demonstrates a range of simple applications.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10010-2

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

201

http://dx.doi.org/

Circuit design, simulation and layout software has developed to the point where

comprehensive packages are now available at reasonable cost, which can be used to create

microcontroller-based circuits. Schematic capture software allows a circuit to be created on

screen, printed and saved as a netlist of components and connections. This can be imported

into a printed circuit board (PCB) design package, where the circuit is laid out on screen.

The layout can be printed onto a masking sheet to transfer the layout to copper-coated board

manually, or a file can be generated which is used to manufacture the PCB on a production

system. Proteus VSM� software from Labcenter Electronics is used here as it provides the

most complete support for PIC� designs currently available. This consists of two main parts:

ISIS� for circuit design and schematic capture, and ARES� for PCB layout.

Traditional prototyping methods, breadboard and stripboard, will also be discussed, as these

require minimum expenditure and need only simple tools to create a prototype microcontroller

test circuit. Breadboard is purely temporary, easy to construct, but unreliable, particularly if

moved about. Stripboard is more permanent, and the standard technique for hobbyists to build

semi-permanent boards, but is not suitable for production.

10.1. Hardware Design

Before computer-based electronic computer-aided design (ECAD) was widely available,

circuits would be designed as sketches on paper and a layout produced manually. In the

absence of fast and powerful computer simulation methods such as SPICE, this process relied

more heavily on the experience of the design engineer to be able to predict the circuit

performance from theoretical knowledge and practical experience. Numerous prototypes

might be needed to arrive at a working solution.

Since the development of increasingly powerful desktop computers, the design process has

been radically improved. The designer still has to come up with the original ideas, but circuits

can now be rapidly drawn and tested on screen, and a working design quickly produced. The

hardware prototype is much more likely to work first time, or at least require less development

time. The time taken from design concept to market is regarded as a major competitive factor,

so ECAD is now a vital tool for the electronics engineer, just as computer-aided design (CAD)

has become in mechanical engineering.

A circuit schematic can now be created, tested and converted into a PCB layout within a single

software package, such as Proteus VSM. Complete libraries of all the most commonly used

components and microcontrollers are available, which consist of a mathematical model, on-

screen circuit symbol and, in selected cases, a physical component pin-out for each. A set of

animated components also allows interactive simulation. A circuit can be drawn on screen, the

application program attached to the microcontroller and the program tested by operating the

on-screen inputs, such as switches and or a keypad, with the mouse. The outputs are then seen

202 Chapter 10

on simulated displays (LED and LCD), or operate animated output devices, such as relays and

motors. Examples can be seen in previous chapters.

A further example is shown in Figure 10.1, which will be converted into a PCB layout. It is an

electronic dice board with a push button, seven-segment display and buzzer controlled by a PIC

16F84A. It can be programmed to display a random number between 1 and 6 when the button is

pressed.

When a suitable program is assigned to the PIC in the simulation (see below), the circuit

becomes interactive on screen. When the switch is operated, the display will operate in the

same way as the real device. If the chip is programmed to generate a sound output via the

buzzer, the waveform can be displayed on a virtual oscilloscope, and reproduced at the PC

audio output. The techniques for developing the firmware (Flash ROM software) have been

explained in detail in previous chapters.

10.2. Hardware Construction

First, we will look briefly at some traditional techniques suitable for building one-off boards

and prototypes, using the dice circuit in Figure 10.1. Then a slightly more elaborate general

Figure 10.1
ISIS circuit design and test for dice board

Hardware Prototyping 203

purpose demonstration board will be designed and laid out in prototype form, and some

programs provided to demonstrate its features and the related programming principles.

10.2.1. Printed Circuit Board

The PCB is the standard method for making electronic circuits. In its basic form, it starts life as

a sheet of insulating glass fiber-reinforced epoxy resin, with a layer of copper on one side. The

circuit connections are made by printing or photographically transferring a pattern of

conducting tracks and pads onto the copper.

The layout for a simple PIC circuit is shown in Figure 10.2. It has a PIC 16F84A, push

button, seven-segment display, buzzer and associated components. It can be programmed to

operate as electronic dice, generating a random number between 1 and 6. The pattern of the

copper tracks is shown, as well as the ‘silk screen’ printing, which is applied to the component

side of the board to show where to place the components.

The layout is reversed, as it will be printed onto a translucent mask, which is then used to create

the pattern of connections on the copper side of the board. The copper layer is coated with

a light-sensitive material, which is exposed to ultraviolet light through the mask. In the exposed

areas of the board, the photosensitive material becomes soluble and is removed by a caustic

solvent, exposing the copper below. This is then dissolved (etched) in an acid bath, leaving

behind the copper layout where it was protected by the etch-resistant layer. The components

are then fitted to the top side of the board, and the leads and pins soldered to the pads.

Silk
Screen
Print

Track PadPIC

Figure 10.2
PIC dice board layout (courtesy Melvyn Ball, SCCH)

204 Chapter 10

Once the layout has been designed, it can be used for batch production of the application

hardware. Specialist companies are now often used tomanufacture the boards direct from the file

output of the PCBdesign software, as the cost of short production runs is now lower, owing to the

application of advanced manufacturing techniques. The final product is shown in Figure 10.3.

Another simple single-sided layout is shown in Figure 10.4(a) on the edit screen of ARES PCB

software. This package allows the ISIS schematic to be imported and converted to a layout for

printing or export to a manufacturing system in a standard format (usually a Gerber file). Before

transfer from ISIS, each component needs a suitable pin arrangement attached, depending on the

actual component to be used. For example, the physical size of a resistor depends on its power

rating, which consequently affects the pin spacing. Switches have a great variety of pin outs, or

may be mounted off the board so suitable terminals must be provided. The ARES library

provides standard pin-outs, or they can be created if necessary for non-standard components.

The netlist is then exported to ARES, and the list of components appears in a window at the left

of the edit screen (Figure 10.4a). The components may be selected and placed individually on

the layout edit screen and their positions adjusted for the most compact arrangement (auto-

placement is also available). Initially, the connections are shown as direct lines between pins

(‘rat’s nest’). These are converted into tracks when the auto-router utility is invoked. Final

adjustments to the track layout are completed manually. If necessary, wire links may be used on

a single-sided board to achieve a viable layout. A double-sided board simplifies the track

arrangement a great deal, but plated through-holes or connecting pins are then necessary. When

the layout is complete, a three-dimensional preview of the populated board can be generated

(Figure 10.4b). The use of ARES is described in more detail in Appendix E.

Figure 10.3
PIC 16F84 dice board

Hardware Prototyping 205

(a)

(b)

Figure 10.4
ARES PCB layout screenshots: (a) editing the layout; (b) 3D view of final layout

206 Chapter 10

The Microchip LPC demo board is an example of a double-sided board commercially

produced in large quantities. Using both sides of a board allows it to be more compact

overall, and simplifies the track layout. In general, tracks are oriented in a common direction

on each side, perpendicular to the other side. More complex boards, such as the PC

motherboard, have multiple layers sandwiched together to provide the large number of

connections required by the system busses. Holes are plated through to make the connections

between different layers, and a printed silk-screen layer carries the component labeling (or

legend) on the top side. High-resolution printing techniques in the commercial production

process allow a finer track width (where the current is small) and, overall, a more precise,

compact layout.

Most production designs now use surface-mounted components, which are smaller and do not

require through-holes for mounting, but are all soldered to the surface layer simultaneously

by flow soldering. The surface-mount version of the PIC 16F887 can be seen on the

Microchip 44-pin board. Full details of these boards can be downloaded from www.

microchip.com, with the layouts provided in the user manuals. Both boards have prototyping

areas so that simple peripheral circuits can be added without having to design a test board

from scratch.

An alternative method for making simple prototype boards, which has recently become viable

for the hobbyist, training organizations and small businesses, is the PCB mill. This is

essentially a small 2.5D (dimensions) milling machine. An engraving tool is mounted on X, Y

and Z (limited travel) axes and programmed to outline the copper tracks and pads to isolate

them from the rest of the copper layer (Figure 10.5). This avoids the use of corrosive chemicals,

and is viable for small-scale production.

Mobile Gantry

Drill

Dust Extraction

Engraving Tool

PCB

Mounting Plate

Heavy-Gauge
Steel Base

Figure 10.5
PCB Mill

Hardware Prototyping 207

http://www.microchip.com
http://www.microchip.com

Even with the current user-friendly ECAD packages, the PCB layout can take some time to

create, and a considerable amount of skill is needed to use the software. Therefore, we will also

look at how to prototype our hardware using traditional methods, which do not require

specialist software or PCB fabrication equipment.

10.2.2. Breadboard

Breadboard (plugboard) has sets of miniature sockets laid out on a 0.1 inch grid which will

accept the manual insertion of component leads and tinned copper wire (TCW) links

(Figure 10.6a). It has rows of contacts interconnected in groups placed either side of the center

line of the board, where the integrated circuits (ICs) are inserted, giving multiple contacts on

each IC pin. At each side of the board, there are long rows of common contacts, which are used

for the power supplies. Some types of breadboard are supplied in blocks that link together to

accommodate larger circuits, or are mounted on a base with built-in power supplies.

The layout for a simple circuit is shown in Figure 10.6(b), with a PIC 16F84A driving a light-

emitting diode (LED) at RB0 via a current-limiting resistor. The only other components

required are a capacitor and resistor to form the clock circuit, but we must not forget to connect

the !MCLR (Master Clear) pin to the positive supply, or the chip will not run. The chip could

now be programmed to flash the output at a specified rate.

Breadboard circuits can be built quickly, with no special tools required, other than a supply of

insulated wire (recycled telephone cables are ideal) and wire cutters. However, the connections

(a)
(b)

CR
Clock
Circuit

LED
Output

Connected
Internally

0V Power +5V
 Supply

PIC

Figure 10.6
Breadboard: (a) PIC breadboard prototype circuit; (b) simple PIC circuit layout

208 Chapter 10

are relatively unreliable, so bad connections are likely in more complicated circuits. Therefore,

a method of producing prototype circuits with more reliable soldered connections might be

preferred.

10.2.3. Stripboard

Stripboard (veroboard) requires no special tools or chemical processing. The components

are connected via copper tracks laid down in strips on a 0.1 inch grid of pinholes in an

insulating board (Figure 10.7a).

The components are soldered in place and the circuit is completed using wire links on the

component side soldered to the tracks on the copper side. The tracks must be cut where

necessary to isolate the connection nodes in the circuit using a hand drill. The components are

generally placed across the tracks, so that each pin connects with a separate track. The tracks

must be cut between the rows of pins in each dual in-line (DIL) chip. Care is required to avoid

dry joints (too little solder) or short-circuits between tracks due to solder splashes and whiskers

(too much solder). A manual drawing may used to draft the layout, if necessary, but

experienced constructors will often build the circuit ad hoc, with maybe some additional

wastage of board area.

Figure 10.7(b) shows how the simple PIC circuit can be laid out for construction on stripboard

using general purpose drawing tools, such as those provided withWord�. In the word processor,

the drawing toolbar needs to be switched on, and page layout view selected. In the Draw menu,

the grid should be switched on and set to 0.1 inch; this allows layouts to be drawn actual size,

since this is the spacing between standard in-line pins. The circuit can then be drawn using

suitable line styles, text boxes and so on. When finished, use the Select Objects tool to select the

whole drawing and Group it in the Draw menu. This prevents text cursor movement from

disrupting the drawing, and the whole diagram can be repositioned on the page if required.

Naturally, the circuit can also be hand-drawn in the traditional manner.

10.3. Dizi84 Board Design

A circuit will now be designed, and a set of programs provided, to illustrate the hardware

design process and programming principles discussed in previous sections. The DIZI board

will allow the user to experiment with the various features of the PIC hardware and

programming techniques.

10.3.1. Hardware Specification

The microcontroller demonstration board will be suitable for demonstrating a range of

processes incorporating display, audio, counting, timing and interrupt operations. The

Hardware Prototyping 209

board will have a single-digit seven-segment display for showing output data in

hexadecimal or decimal form, and a low-power audio transducer. Manually operated

toggle switches will provide a 4-bit parallel input. Two input push buttons will be used for

general control (e.g. run, clear), to simulate input events to be counted, or to generate an

external interrupt. Timed events should be measured or generated with an accuracy of

better than 1%. The circuit will be battery powered, with a push button power switch to

ensure that the power cannot be left on, and a power ‘on’ indicator. The board will be as

(a)

(b)

A2 A1

A3 A0

A4 CI

MC CO

0V V+

B0 B7

B1 B6

B2 B5

B3 B4

10k

220R

PIC

10nF

 +5V

 0V

Track Cut

LED

TCW Link Component Pins

1

2

3

4

5

6

7

8

9

10

11

12

13

Tracks

PSU

Figure 10.7
Stripboard: (a) a simple stripboard circuit; (b) PIC stripboard layout

210 Chapter 10

small as possible, and the microcontroller must be easily reprogrammable, with flash

memory.

10.3.2. Hardware Implementation

The seven-segment display will require seven outputs from the microcontroller. Active

high operation can be provided by a common cathode LED display, and the display decimal

point can be used as the power indicator. The audio transducer requires one output. A piezo

buzzer has sufficient bandwidth and output power, and its power consumption is low. A

miniature DIP switch bank will be used for 4-bit input, and miniature push buttons used, to

conserve space.

Fourteen input/output (I/O) pins are required; the PIC 16F84A has only 13, so a chip with more

I/O, such as the 16F690, could be considered. However, the audio output and interrupt input

can share the same I/O pin, because the high impedance of the buzzer will not interfere with

input signals on the same pin. RB0 will be used as the dual function pin, since it is defined as the

principal interrupt input, but can also be used as an output. The outputs can source up to 25mA,

but current-limiting resistors will restrict the current per display segment to 10e15mA to

control the maximum load on the port when all the segments are on. The I/O allocation for the

project is shown in Table 10.1.

A crystal clock of 4MHz will be used to obtain the required timing precision, and the

convenience of a 1 ms instruction cycle. The 16LF84A-04 (LF¼ low voltage) can operate from

a supply of between 2.0 V and 5.5 V, so the circuit will be powered from 2� 1.5 V dry

cells, giving a 3.0 V supply. The ‘04’ suffix indicates that a maximum 4MHz clock frequency

can be used. A block diagram of the proposed system is shown in Figure 10.8. The inputs and

outputs are given the labels that will be assigned in the application programs.

10.3.3. Implementation

A circuit for the DIZI board is shown in Figure 10.9. The PIC 16LF84A drives an active

high- (common cathode)elow-current seven-segment LED display at port B, RB1eRB7,

via a block of 220R current-limiting resistors. RB0 drives an audio sounder when set as

Table 10.1: DIZI board I/O allocation

Device Type Pin(s)

7-Segment display Outputs RB1eRB7
4-Bit switch bank Inputs RA0eRA3
Push button Input RA4
Push button interrupt Input RB0 (dual function)
Audio transducer Output RB0 (dual function)

Hardware Prototyping 211

g

f

e

d

c

b

a

8 Resistors x k01

 V 0

 V 3+

R022
 8 x

tpurretnI

tupnI

 tnemgeS 7
 yalpsiD

1CSOVSS 2CSO

RLCMVDD

4AR

3AR

2AR

1AR

0AR

7BR

6BR

5BR

4BR

3BR

2BR

1BR

0BR

zHM4

Fp22

-Piezo
rezzuB

 hctiwS PID
4 x

CIP

 A48FL61

edohtaC

 V5.1 x 2

 pd

R022

 rewoP
NO

tuptuO
 tseT
tnioP

 rewoP
NO

Figure 10.9
DIZI board circuit diagram

RA4
RB7

to
RB1

RA3
to
RA0

RB0

OSC1/2

XTAL
4MHz

!INPUT

!INTER

PIC 16F84A

PORTA

PORTB

BUZZER Power On
Indicator

Switch Bank

7-Segment Display

Figure 10.8
Block diagram of DIZI demonstration board

212 Chapter 10

an output, but can also be used to detect the ‘Interrupt’ push button when set as an input

and the chip is initialized for this option. To prevent RB0 being shorted to ground if set as

an output, the spare 220R resistor is connected between the push button and RB0.

This does not affect the operation of the sounder, which has a relatively high resistance.

A 4-bit DIP switch input is connected to port A, RA0eRA3, with a push button connected

to RA4, which can be used as an external pulse input to the Counter/Timer Register

TMR0. These operate as active low inputs with 100k pull-up resistors, as does the

interrupt push button.

A stripboard layout for the DIZI board is shown in Figure 10.10. The detail of the

component pin connections has been omitted owing to the reduced scale of the illustration,

but this information can be obtained from the component pin out data, when selecting

particular components. The finished stripboard circuit is shown in Figure 10.11. The

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Piezo
Buzzer

0V

+3V

Input
Button

Input
DIP

Switch

Interrupt
Button

7-Segment
Display

Buzzer
Output

e
d
cc
c
dp

g
f

cc
a
b

1

Power
Button

Resistors 100k x 8

PIC
16F84A

Crystal
Clock

220R 220R
x8

TCW
Bridge

Figure 10.10
Stripboard layout for DIZI board

Hardware Prototyping 213

construction process for a slightly modified board is described in a little more detail in

Appendix D.

10.4. Dizi84 Applications

Titles for a set of programs to run on this hardware are suggested below. Three applications (*)

will be described in some detail, while a further eight will be specified and the source code

listed. These form a set of applications suitable for group assignment work in a training

program.

Display Apps

FLASH1 Flash all Segments

STEP1 Step through Segments

HEX1 Binary to Hex Converter

MESS1 Message Display

SEC1 One Second Clock

REACT1 Reaction Timer

DICE1* Electronic Dice

Sound Apps

BUZZ1* Output Single Tone

SWEEP1 Sweep Tone Frequency

TONE1 Switch Tone On/Off

SEL1 Select Tone on Switches

GEN1 Audio Frequency Generator

MET1 Metronome

Figure 10.11
DIZI stripboard circuit

214 Chapter 10

GIT1 Guitar Tuner

SCALE1* Musical Scale

BELL1 Doorbell Tune

Interrupt Apps

STEP1 Step Through Scale

STEP2 Step Scale and Display Note

BUZZ2 Output Tone using TMR0

REACT2 Reaction Timer using TMR0

SEC2 One Second Clock using TMR0

MET2 Metronome using TMR0

EEPROM Apps

STORE1 Store a display sequence in EEPROM

STORE2 Store a tone sequence in EEPROM

LOCK1 Store a code and buzz if matched

An ISIS schematic for the DIZI board is shown in Figure 10.12, which allows the above

applications to be tested by simulation. All can be downloaded from the support website

(www.picmicros.org.uk), and tested in MPLAB if Proteus VSM is not available. If VSM is

available, virtual instruments can be used for checking the outputs. The frequency counter and

oscilloscope are shown in Figure 10.13.

Figure 10.12
DIZI board schematic

Hardware Prototyping 215

http://www.picmicros.org.uk

10.4.1. Program BUZZ1

A flowchart for the program BUZZ1 is shown in Figure 10.14. It will generate a single

tone at the buzzer when the input button is operated, by toggling the output to the buzzer,

with a delay between each change of output state. If a count of 255 is used with a 1 ms

Figure 10.13
DIZI simulation screenshot

Initialize
RA4 = Input

RB0 = Output

BUZZ1

NO
Input Low?

Output High

Delay

Output Low

Delay

Figure 10.14
BUZZ1 flowchart

216 Chapter 10

instruction cycle time, we have seen that the loop itself will take 255� 3� 1¼ 765 ms,

which will give an output frequency of 106/(765� 2)¼ 654 Hz, which is well within the

audible range.

This frequency can be adjusted by simply reducing the count value in the delay loop; 654 Hz is

the minimum frequency available. A more precise calculation of the delay loop can be used to

obtain a more exact frequency, or the hardware timer can be used. In either case, the period can

be checked using the stopwatch in the simulator before downloading. The source code is listed

in Program 10.1.

10.4.2. Program DICE1

This program will generate a random number at the display between 1 and 6 when the input

button in pressed. A continuous loop will increment a register from 1 to 6, and back to 1. The

loop is stopped when the button is pressed and the number displayed. The display is retained

when the button is released.

First, the allocation of the segments to the pins on the display chip must be established. The

segments of the display are labeled from a to g, as shown in Figure 10.15. They must be lit in

the appropriate combinations to give each display number; for instance, segments ‘b’ and ‘c’

must be lit for the number ‘1’ to be displayed. A table is useful here to work out the codes

required for output to the display (Table 10.2).

The display is active high in operation. This means a 1 at the pin will light that segment. This

arrangement is also described as common cathode, as all the LED cathodes are connected

together at the common terminal. A common anode display will therefore operate active low.

The binary or hexadecimal code for each digit will be included in the program in the form of

a program data table.

The program represented in the flowchart (Figure 10.16) uses a spare register as a counter,

which is continuously decremented from 6 to 0. When the button is pressed, the current number

is used to select from the table of codes using the method described in Program 10.2. This

results in the pseudo-random number code being displayed, and remaining visible until the

button is pressed again. Because the number is selected by manually stopping a fast loop, the

number cannot be predicted. In the flowchart, the jump destinations have been labeled, and

these labels will be used in the program source code. The table subroutine is also named ‘table’

to match the source code subroutine start label.

10.4.3. Program SCALE1

This program will output a musical scale of eight tones. The frequencies for a musical scale

from middle C upwards are 262, 294, 330, 349, 392, 440, 494 and 523 Hz. These can be

Hardware Prototyping 217

; ***
; BUZZ1.ASM MPB 30-11-10 Ver 1.1
; ***
;
; Generates an audio tone at Buzzer when the
; Input button is operated..
;
; Hardware: PIC 16F84 DIZI Demo Board
; Clock: XTAL 4MHz
; Inputs: RA4: Input (Active Low)
; Outputs: RB0: Buzzer
; MCLR: Enabled
;
; PIC Configuration Settings:
;
; WDTimer: Disable
; PUTimer: Enable
; Interrupts: Disable
; Code Protect: Disable
;
 PROCESSOR 16F84A ; Declare PIC device

; Register Label Equates...................................

PORTA EQU 05 ; Port A
PORTB EQU 06 ; Port B
Count EQU 0C ; Delay Counter

; Register Bit Label Equates

Input EQU 4 ; Push Button Input RA4
Buzzer EQU 0 ; Buzzer Output RB0

; Start Program ***

; Initialize (Default = Input)

 MOVLW b'00000000' ; Define Port B outputs
 TRIS PORTB ; and set bit direction
 CLRF PORTB ; Switch off display
 GOTO check ; Start main loop

; Delay Subroutine ..

delay MOVLW 0FF ; Standard Routine
 MOVWF Count
down DECFSZ Count
 GOTO down
 RETURN

; Main Loop ...

check BTFSC PORTA,Input ; Check Input Button
 GOTO check ; and wait if not 'on'

 BSF PORTB,Buzzer ; Output High
 CALL delay ; run delay subroutine
 BCF PORTB,Buzzer ; Output Low
 CALL delay ; run delay subroutine
 GOTO check ; repeat always

 END ; Terminate source code

Program 10.1
BUZZ1 source code

218 Chapter 10

translated into a table of delay counts which give the required tone period, since period T¼ 1/f

(s), where f¼ frequency (Hz). The buzzer on the DIZI board is driven from RB0, so this needs

to be toggled at a rate determined by the frequency of each tone. We therefore need to use

a counter register or the hardware timer to provide a delay corresponding to half the period of

each tone. We have previously seen how to calculate the delay time for a loop. Using a formula

for the count value derived from this analysis, figures were calculated for a half cycle of

each tone, which were then placed in the data table in SCALE1.ASM. To keep the program

simple, each tone will be output for 255 cycles, so we will use another register to count the

number of cycles competed during each tone. The scale will then be played over a period of

about 5 s. The table of values can later be modified to play a tune in the doorbell program.

Instead of a flowchart, the SCALE1 program source code listing (Program 10.3) has been

annotated with arrows to show the execution sequence. This informal method of analysis

 RA4

PIC

16F84A

RB1
RB2
RB3
RB4
RB5
RB6
RB7

 Roll
 Button

c
d

e

f
g

a

b

7-Segment
LED Display
(Active High)

4MHz
Clock

Figure 10.15
Block diagram for DICE1 system

Table 10.2: DICE1 display encoding table

Displayed Digit Segment Code (1[Segment On)

g f e d c b a hex

RB7 RB6 RB5 RB4 RB3 RB2 RB1 (RB0[0)

1 0 0 0 0 1 1 0 0C
2 1 0 1 1 0 1 1 B6
3 1 0 0 1 1 1 1 9E
4 1 1 0 0 1 1 0 CC
5 1 1 0 1 1 0 1 DA
6 1 1 1 1 1 0 1 FA

Hardware Prototyping 219

can be used to check the program logic before simulation. The eight tone frequencies are

controlled by the value of ‘HalfT’, obtained from the program data table at ‘getdel’. ‘HalfT’

is a counter value, which will give a delay corresponding to half a cycle of the frequency

required when the chip is clocked at 4 MHz. The eight tones are selected in turn by the

value of ‘TonNum’, which is initialized to 8. This is used as the program counter offset in

the data table fetch operation. It is decremented in the main loop after each tone has

finished to select the next. The ‘HalfT’ values are thus selected from the bottom of the table

upwards.

The tone is generated in the routine ‘note’, where RB0 is set high, the delay using ‘HalfT’ runs,

RB0 is cleared, and the second half cycle delay executed. No OPeration instructions (NOP)

have been inserted to equalize the duration of each half cycle. RB0 is toggled 255 times using

the ‘Count’ register, which gives a duration of around half a second, depending on which tone

is being generated (the lower frequencies are output for longer). The main loop thus selects

each of the eight values of ‘HalfT’ in turn, and outputs 255 cycles of each tone.

10.4.4. DIZI Application Outlines

A further eight applications are specified below, and the source code for each is listed in

Programs 10.4. They can be downloaded from www.picmicros.org.uk, and tested in simulation

(a) (b)

Add Count Register to
Program Counter

Table

Return with
7 Segment Code

Setup Display Outputs

YES

Set Count Register to 6

NO

reload

start

nexnum

Input Button On?

Call TABLE

Display Number

Decrement Count
& Check = 0?

DICE1

Figure 10.16
DICE1 program flowcharts: (a) main routine; (b) table routine

220 Chapter 10

http://www.picmicros.org.uk

; ***
; DICE1.ASM MPB 30-11-10 Ver 2.0
; ***
;
; Displays pseudo-random numbers between 1 and 6
; when a push button is operated.
;
; Hardware: PIC 16F84A DIZI Demo Board
; Clock: XTAL 4MHz
; Inputs: RA4: Roll (Active Low)
; Outputs: RB1-RB7: 7seg LEDs (AH)
; MCLR: Enabled
;
; PIC Configuration Settings:
; WDTimer: Disable
; PUTimer: Enable
; Interrupts: Disable
; Code Protect: Disable
;
; Set Processor Options......................................

 PROCESSOR 16F84A ; Declare PIC device

; Register Label Equates.....................................

PCL EQU 02 ; Program Counter
PORTA EQU 05 ; Port A
PORTB EQU 06 ; Port B
Count EQU 0C ; Counter (1-6)

; Register Bit Label Equates

Roll EQU 4 ; Push Button Input

; Start Program ***

; Initialize (Default = Input)

 MOVLW b'00000001' ; Define RB1-7 outputs
 TRIS PORTB ; and set bit direction
 MOVLW 0FF ; Switch on..
 MOVWF PORTB ; ..all segments
 GOTO reload ; Jump to main program

; Table subroutine ...

table MOVF Count,W ; Put Count in W
 ADDWF PCL ; Add to Program Counter
 NOP ; Skip this location
 RETLW 00C ; Display Code for '1'
 RETLW 0B6 ; Display Code for '2'
 RETLW 09E ; Display Code for '3'
 RETLW 0CC ; Display Code for '4'
 RETLW 0DA ; Display Code for '5'
 RETLW 0FA ; Display Code for '6'

; Main Loop ...

reload MOVLW 06 ; Reset Counter
 MOVWF Count ; to 6

Program 10.2
DICE1 source code

Hardware Prototyping 221

mode in MPSIM or ISIS (if available). If the DIZI hardware is constructed, they can be

programmed into a 16F84A chip using an out-of-circuit programmer.

HEX1 Hex Converter

The hexadecimal number corresponding to the binary setting of the DIP switch inputs is

displayed. The input switches select from a table of 16 seven-segment codes which drive the

display in the required pattern for each hex digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, b, C, d and E. Note

that numbers B and D are displayed in lower case so that they can be distinguished from 8 and

0, respectively.

MESS1 Message Display

A sequence of characters is displayed for about 0.5 s each. Most letters of the alphabet can be

obtained on the seven-segment display in either upper or lower case, for instance ‘HELLO’.

The number of characters must be set in a counter, or a termination character used.

SEC1 Second Counter

An output is displayed which counts down exactly once per second, from 0 to 9, and then

repeats. A table of display codes is required as in the Hex Converter application. A 1 s time

delay can be achieved using the hardware timer (Chapter 6) and spare register. A tick could be

produced at the audio output by pulsing the speaker at each step.

REACT1 Reaction Timer

The user’s reaction time is tested by generating a random delay of between 1 and 10 s,

outputting a beep, and timing the delay before the input button is pressed. A number

representing the time between the sound and the input, in multiples of 100 ms, should be

displayed as a number 0e9, giving a maximum reaction time of 900 ms.

start BTFSC PORTA,Roll ; Test Button
 GOTO nexnum ; Jump if not pressed
 CALL table ; Get Display Code
 MOVWF PORTB ; Output Display Code
 GOTO start ; start again

nexnum DECFSZ Count ; Dec & Test Count=0?
 GOTO start ; Start again
 GOTO reload ; Restart count if zero

 END ; Terminate source code

Program 10.2: (continued)

222 Chapter 10

;**
; SCALE1.ASM MPB 30-11-10 Ver 1.1
; ***
; Outputs a scale of 8 tones, 255 cycles per tone,
; tone duration of between a half and one second.
; Hardware: PIC 16F84 XTAL 4MHz
; Start input RA4, audio output: RB0

 PROCESSOR 16F84A

; Assign Registers **********************************

PCL EQU 02 ; Program Counter
PORTA EQU 05 ; Port A for input
PORTB EQU 06 ; Port B for output
HalfT EQU 0C ; Half period of tone
Timer EQU 0D ; Delay time counter
Count EQU 0E ; Cycle count
TonNum EQU 0F ; Tone number (1-8)

; Initialize Registers

MOVLW B'11111110' ; RB0 set..
TRIS PORTB ; as output
GOTO wait ; Jump to main loop

; Tone Period Table (HalfT)

getdel ADDWF PCL ; jump offset
NOP
RETLW D'156' ; 262 Hz
RETLW D'139' ; 294 Hz
RETLW D'124' ; 330 Hz
RETLW D'117' ; 349 Hz
RETLW D'104' ; 392 Hz
RETLW D'92' ; 440 Hz
RETLW D'82' ; 494 Hz
RETLW D'77' ; 523 Hz

; Delay for half tone cycle

delay MOVF HalfT,W
MOVWF Timer

again DECFSZ Timer
GOTO again

 RETURN

; Output 255 cycles of tone

note MOVLW D'255' ; cycle count
MOVWF Count

cycle BSF PORTB,0 ; output high
CALL delay ; high delay
NOP ; fill to ..
NOP ; match low..
NOP ; ..cycle
BCF PORTB,0 ; low cycle
CALL delay ; low delay
DECFSZ Count ; next cycle
GOTO cycle
RETURN ; unitl done

Program 10.3
SCALE1 source code

Hardware Prototyping 223

GEN1 AF Generator

An audio frequency generator outputs frequencies in the range 20 Hz to 20 kHz. The sounder

output is toggled with a delay between each operation determined by the frequency required, as

in the BUZZ1 program. For example, for a frequency of 1 kHz, a delay of 1 ms is required,

which is 1000 instruction cycles at a cycle time of 1 ms. The information on program timing

must be studied in Chapter 6. The delay time, and hence the frequency, can then be incremented

using the input button, and range selection with the input switches might be incorporated, as

there are only 255 steps available when using an 8-bit register as the period counter.

MET1 Metronome

An audible pulse is output at a rate set by the DIP switches or input buttons. The output tick can

be adjustable from, say, 1 up to 4 beats per second, using the interrupt button to step the speed

up and down, and the input button to select up or down. A software loop or the TMR0 register

can be used to provide the necessary time delays.

BELL1 Doorbell

A tune is played when the input button is pressed, using a program look-up table for the tone

frequency and duration. Each tone must be played for a suitable time, or number of cycles, as

required by the tune. The program can be elaborated by selecting a tune using the DIP

switches, and displaying the number of the tune selected.

GIT1 Guitar Tuner

The program will allow the user to step through the frequencies for tuning the strings of

a guitar, or another musical instrument using the input button, or selecting the tone at the DIP

switches. The program could be enhanced by displaying the string number to be tuned. The

tone frequencies will be generated as for the doorbell application. The digit display codes

would also be required in a table.

; Main Loop Outputs 8 Tones

wait BTFSC PORTA,4 ; Wait for button
 GOTO wait ; ..pressed
 MOVLW 08 ; Intialise..

MOVWF TonNum ; ..tone delay
next MOVF TonNum,W ; Select tone

CALL getdel ; Get delay count
MOVWF HalfT
CALL note ; Output tone
DECFSZ TonNum ; Next tone..

 GOTO next
 GOTO wait ; ..until 8 done

 END ; of source code

Program 10.3: (continued)

224 Chapter 10

;***************************
; BEL1.ASM MPB 2-12-10
;...........................
; Program to output a tone
; Sequence (random) of 8
; RBO = Output Buzzer
; RAO = Input Button
;

 PROCESSOR 16F84

PCL EQU 02
PortB EQU 06
PortA EQU 05
Notnum EQU 0C
Tabnum EQU 0D
Cycnum EQU 0E
Count EQU 0F

;Initialise

 MOVLW B'11111110'
 TRIS PortB
Wait BTFSC PortA,4
 GOTO Wait

; Get note

Start MOVLW 08
MOVWF Notnum

Nexnot MOVF Notnum,W
 CALL Table
 MOVWF Tabnum

; 256 Cycles of note

 CLRW
 MOVWF Cycnum
Cycle BSF PortB,0
 CALL Half
 BCF PortB,0
 CALL Half
 DECFSZ Cycnum
 GOTO Cycle

; Next note of 8

 DECFSZ Notnum
 GOTO Nexnot
 GOTO Wait

;Half cycle delay

Half MOVF Tabnum,W
 MOVWF Count
Down DECFSZ Count
 GOTO Down
 RETURN

;Table of delay values....

Table ADDWF PCL
 NOP
 RETLW D'124'
 RETLW D'82'
 RETLW D'117'
 RETLW D'156'
 RETLW D'77'
 RETLW D'156'
 RETLW D'92'
 RETLW D'104'

 END

;*******************************
; GEN1.ASM MPB 2-12-10
; Audio generator 200Hz-20kHz
; RB0 = Output to buzzer
; RA0 = Decrease frequency
;*******************************

 PROCESSOR 16F84A

PORTA EQU 05
PORTB EQU 06
Multi EQU 0C
Count1 EQU 0D
Count2 EQU 0E

; Initialise

 MOVLW B'11111110'
 TRIS PORTB
 MOVLW 02
 MOVWF Multi

; Output one cycle

Cycle BSF PORTB,0
 CALL Half
 BCF PORTB,0
 CALL Half
 BTFSC PORTA,4
 GOTO Cycle

; Reduce frequency.........

 INCF Multi
 CLRF Count2
Down2 DECFSZ Count2
 GOTO Down2
Wait BTFSS PORTA,4
 GOTO Wait
 GOTO Cycle

; Delay one half cycle...

Half MOVF Multi,W
 MOVWF Count1
Down1 NOP
 NOP
 NOP
 NOP
 NOP
 DECFSZ Count1
 GOTO Down1
 RETURN

Programs 10.4
8 DIZI applications.

Hardware Prototyping 225

;************************************
; GIT1.ASM MPB 2-12-10
; Guitar Tuner
; Outputs standard frequencies
; 330,245,196,147,110,82Hz
; 3030,4081,5102,6802,9090,12195us
; Count = 30,41,51,68,91,122 x50us
; Measured accurate to about 1%
; RB0 = buzzer(string tone)
; RA4 = button(next string)
;
;************************************

PortA EQU 05
PortB EQU 06
String EQU 0C
Count1 EQU 0D
Count2 EQU 0E
PCL EQU 02

 PROCESSOR 16F84A

; Initialise

 MOVLW B'11111110'
 TRIS PortB
 MOVLW 06
 MOVWF String

; Output one cycle

Next BSF PortB,0
 CALL Cycle
 BCF PortB,0
 CALL Cycle
 GOTO Next

; Delay and check inputs

Cycle MOVF String,W
 CALL Table
 CALL Tone
 BTFSS PortA,4
 CALL Wait1
 RETURN

; Select next tone

Wait1 BTFSS PortA,4
 GOTO Wait1
 DECFSZ String

 RETURN
 MOVLW 06

 MOVWF String
 RETURN

;Table of tone values..........

Table ADDWF 02
 NOP
 RETLW D'122'
 RETLW D'91'
 RETLW D'68'
 RETLW D'51'
 RETLW D'41'
 RETLW D'30'

; Subroutine to generate Tone..

Tone MOVWF Count1
Loop1 CALL Fifty
 DECFSZ Count1
 GOTO Loop1
 RETURN

; Subroutine 50us delay

Fifty NOP
 NOP
 MOVLW 08
 MOVWF Count2
Loop2 NOP
 NOP
 DECFSZ Count2
 GOTO Loop2
 RETURN

 END

 ;**********************************
; HEX1.ASM MPB 2-12-10
; Program to convert binary
; input to 7 segment output
; *********************************

 PROCESSOR 16F84A

PortA EQU 05
PortB EQU 06
PCL EQU 02

 MOVLW B'0000000'
 TRIS PortB

Start MOVF PortA,W
 ANDLW B'00001111'
 CALL Table
 MOVWF PortB
 GOTO Start

Table ADDWF PCL
 RETLW 07E
 RETLW 00C
 RETLW 0B6
 RETLW 09E
 RETLW 0CC
 RETLW 0DA
 RETLW 0FA
 RETLW 00E
 RETLW 0FE
 RETLW 0CE
 RETLW 0EE
 RETLW 0F8
 RETLW 072
 RETLW 0BC
 RETLW 0F2
 RETLW 0E2

 END

Programs 10.4: (continued)

226 Chapter 10

;**************************
; MESS1.ASM
; MPB 2-12-10
; Message display
; *************************

 PROCESSOR 16F84A

PCL EQU 02
PortA EQU 05
PortB EQU 06
Timer1 EQU 0C
Timer2 EQU 0D
Timer3 EQU 0E
count EQU 0F

; Initialise...............

 CLRW
 TRIS PortB

; Output loop..............

repeat MOVLW D'12'
 MOVWF count

next MOVF count,w
 CALL table
 MOVWF PortB
 CALL delay
 DECFSZ count
 GOTO next
 GOTO repeat

; Meassage delays..........

delay MOVLW 05
 MOVWF Timer3

loop3 MOVLW 0FF
 MOVWF Timer2
loop2 MOVLW 0FF
 MOVWF Timer1
loop1 DECFSZ Timer1
 GOTO loop1

 DECFSZ Timer2
 GOTO loop2
 DECFSZ Timer3
 GOTO loop3
 RETURN

; Message characters.....

table ADDWF PCL
 NOP
 RETLW B'00000000'
 RETLW B'00000000'
 RETLW B'01111110'
 RETLW B'00000000'
 RETLW B'01110000'
 RETLW B'00000000'
 RETLW B'01110000'
 RETLW B'00000000'
 RETLW B'11110010'
 RETLW B'00000000'
 RETLW B'11101100'
 RETLW B'00000000'

 END

;*******************************
; MET1.ASM MPB 2-12-10
; Program to output beeps
; between 0.1-10Hz
; RB0 = Output Buzzer
; RA0 = Input Button Up
; RA1 = Input Button Down
;

 PROCESSOR 16F84A

PortB EQU 06
PortA EQU 05
Count1 EQU 0C
Count2 EQU 0D
Count3 EQU 0E
Wait1 EQU 0F
Count0 EQU 10

; Initialise...................

 MOVLW B'11111110'
 TRIS PortB
 MOVLW D'10'
 MOVWF Wait1

; Main loop...................

start MOVLW 020
 MOVWF Count0
beep BSF PortB,0
 CALL delay1
 BCF PortB,0
 CALL delay1
 DECFSZ Count0
 GOTO beep

; Read buttons................

fup BTFSS PortA,0
 DECFSZ Wait1
 GOTO fdown
 INCF Wait1
fdown BTFSS PortA,1
 INCFSZ Wait1
 GOTO Wait
 DECF Wait1

; Wait 0.1 - 2.5s..........

Wait MOVF Wait1,w
 MOVWF Count3
loop3 CALL del100
 DECFSZ Count3
 GOTO loop3
 GOTO start

; Wait 100ms...............

del100 MOVLW D'100'
 MOVWF Count2
loop2 CALL delay1
 DECFSZ Count2
 GOTO loop2
 RETURN

; 1ms Delay...............

delay1 MOVLW D'250'
 MOVWF Count1
loop1 NOP
 DECFSZ Count1
 GOTO loop1
 RETURN
 END

Programs 10.4: (continued)

Hardware Prototyping 227

;******************************
; REACT1.ASM MPB 30-11-10
; Reaction time program
; RBO = Buzzer
; RA4 = Test Input
; RB1-RR7 = Display
;******************************

 PROCESSOR 16F84A

PortA EQU 05
PortB EQU 06
Random EQU 0C
Rtime EQU 0D
Count3 EQU 0E
Count2 EQU 0F
Count1 EQU 10

; Initialise...................

 MOVLW B'00000000'
 TRIS PortB
 MOVLW 0FF
 MOVWF PortB

; Generate random count 0-100..

wait BTFSC PortA,4
 GOTO wait
 CALL onehun
 CLRW
 MOVWF PortB
reload MOVLW D'100'
 MOVWF Random

down BTFSC PortA,4
 GOTO randel
 DECFSZ Random
 GOTO down
 GOTO reload

; Delay for random time(0-10s)..

randel CALL onehun
 DECFSZ Random
 GOTO randel

; Beep and start timer(512ms)..

 CLRF Rtime
beep BSF PortB,0
 CALL onems
 BCF PortB,0
 CALL onems
 BTFSS PortA,4
 GOTO stop
 INCFSZ Rtime
 GOTO beep

; Divide Reaction time by 32..

stop MOVLW 4
 MOVWF Count3
loop3 BCF 3,0
 RRF Rtime
 DECFSZ Count3
 GOTO loop3

; Display reaction time..

 MOVF Rtime,W
 CALL table
 MOVWF PortB
done CALL onehun
 BTFSS PortA,4
 GOTO done
 GOTO wait

;100ms delay............

onehun MOVLW D'100'
 MOVWF Count2
loop2 CALL onems
 DECFSZ Count2
 GOTO loop2
 RETURN

; 1ms delay..................

onems MOVLW D'249'
 MOVWF Count1
loop1 NOP
 DECFSZ Count1
 GOTO loop1
 RETURN

; Display codes 0-9...........

table ADDWF 002
 RETLW 0EC ; H
 RETLW 00C ; 1
 RETLW 0B7 ; 2
 RETLW 09E ; 3
 RETLW 0CC ; 4
 RETLW 0DA ; 5
 RETLW 0EA ; 6
 RETLW 00E ; 7
 RETLW 0FE ; 8
 RETLW 0CE ; 9
 RETLW 0EC ; H
 RETLW 0EC ; H
 RETLW 0EC ; H
 RETLW 0EC ; H
 RETLW 0EC ; H

 END

Programs 10.4: (continued)

228 Chapter 10

;******************************
; SEC1.ASM
; MPB 30-11-10
; One second counter
;******************************

 PROCESSOR 16F84A

PCL EQU 02
PortA EQU 05
PortB EQU 06
count EQU 0C
Timer0 EQU 0D
Timer1 EQU 0E
Timer2 EQU 0F

 CLRW
 TRIS PortB

repeat MOVLW D'10'
 MOVWF count

next MOVF count,w
 CALL table
 MOVWF PortB
 CALL delay
 DECFSZ count
 GOTO next
 GOTO repeat

delay MOVLW D'25'
 MOVWF Timer0
loop0 MOVLW D'100'
 MOVWF Timer1
loop1 MOVLW D'99'

MOVWF Timer2
loop2 NOP

DECFSZ Timer2
GOTO loop2

 DECFSZ Timer1
 GOTO loop1
 DECFSZ Timer0
 GOTO loop0
 RETURN

Table ADDWF PCL
NOP
RETLW 07E
RETLW 00C

 RETLW 0B6
 RETLW 09E
 RETLW 0CC
 RETLW 0DA
 RETLW 0FA
 RETLW 00E
 RETLW 0FE
 RETLW 0CE

END

Programs 10.4: (continued)

Hardware Prototyping 229

Questions 10

1. State one advantage and one disadvantage of: (a) breadboard; (b) stripboard;
(c) simulation for testing prototype designs. (6)

2. State an output binary code for: (a) all segments off and (b) displaying a ‘2’ in
a common cathode seven-segment LED display, assuming the connections shown in
Figure 10.15. (4)

3. Outline an algorithm for generating a fixed frequency output of approximately 1 kHz
from the DIZI board using the hardware timer. (5)

4. Draw a flowchart representing the process of generating a ‘random’ delay between
a button being pressed and an output LED being switched on. (5)

Answers on page 423. (Total 20 marks)

Activities 10

1. Build the DIZI circuit on breadboard, stripboard or PCB and test the programs BUZZ1,
DICE1 and SCALE1.

2. Confirm by calculation or simulation that the values used in the program data table in
SCALE1.ASM will give the required delays.

3. Devise a breadboard layout for the BIN circuit in Figure 3.3. Build the circuit and test the BINx
programs.

4. Design and implement one of the programs outlined for the DIZI hardware, and compare
your solution with the model programs provided for HEX1, MESS1, SEC1, REACT1, GEN1,
MET1, BELL1 or GIT1.

5. (a) Investigate how input from a numeric keypad can be detected. Refer to Chapter 1,
Section 1.4.1. The typical keypad, shown in Figure 10.17, has 12 keys in four rows of
three: 1, 2, 3; 4, 5, 6; 7, 8, 9; *, 0, #. These are connected to seven terminals, and can

+Vs

1 2 3

4 5 6

7 8 9

* 0 #

C1 C2 C3 R1 R2 R3 R4

Pull-up
Resistors

Figure 10.17
Keypad connections

230 Chapter 10

be scanned in rows and columns. A key press is detected as a connection between a row
and column. The pull-up resistors ensure that all lines default to logic ‘1’. If a ‘0’ is
applied to one of the column terminals (C1, C2, C3), and a key is pressed, this ‘0’ can be
detected at the row terminal (R1, R2, R3, R4). If the keypad terminals are connected to
a PIC port, and a ‘0’ output in rotation to the three columns, a key can be detected as
a combination of the column selected and the row detected. Column terminals can be
set as outputs, and rows as inputs. Draw a flowchart to represent the process for
converting each decimal key into the corresponding BCD number.

(b) A lock function may be implemented by matching an input sequence with a stored
sequence of, say, four digits, and switching on an output to a door solenoid if
a match is detected. Specify the hardware and outline the program for the lock
application.

(c) Design, build and test an electronic lock system using the keypad shown, a suitable PIC
and an LED to indicate the state of the lock (ON¼ unlocked). Research the design for
the interface to a solenoid operated door lock.

Note: Keypad scanning is used in Program 13.1, and a lock application outlined in Appendix D.

Hardware Prototyping 231

CHAPTER 11

PIC Motor Applications

Chapter Outline
11.1. Motor Control 234

11.2. Motor Application Board MOT2 236

11.3. Motor Control Methods 239
11.3.1. Open Loop Control 239

11.3.2. Closed Loop Control 240

11.4. Test Programs for MOT2 241
11.4.1. Direction Test 241

11.4.2. Position Control 241

11.5. Closed Loop Speed Control 243
11.5.1. Counting Pulses 246

11.5.2. Measuring Pulse Period 247

11.5.3. PWM Motor Control 247

11.5.4. Program Simulation 249

11.5.5. Hardware Testing 253

11.5.6. Evaluation and Improvements 253

11.6. Motor Control Modules 253
11.6.1. Serial Input Position Controller 253

11.6.2. Microchip Mechatronics Kit 254

11.6.3. Hobby Servo 255

Questions 11 257

Activities 11 258

Chapter Points
• Demonstration hardware MOT2 is based on the PIC16F690 (hardware and simulation).

• MOT2 board has a dc motor with index pulse sensor, full bridge driver, analogue and digital

inputs.

• Bidirectional drive and position test programs are provided.

• Speed control uses pulse feedback to modify the PWM drive output.

• Position control module, mechatronics board, hobby servo and brushless motors are described.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10011-4

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

233

http://dx.doi.org/

Following on from Chapter 8, we will develop further the topic of driving small motors, since

this is a significant application area and illustrates some important real-time control principles.

Printers, DVD players, computer hard drives, robots, motor vehicles and many other consumer

and industrial products contain microprocessor-controlled motors. The various types of motors

have their own drive requirements and dynamic characteristics that must be taken into account

in the program design, and can cause complications in practice. The simple permanent magnet

brushed direct current (dc) motor is taken as a starting point.

11.1. Motor Control

There are two main types of control system, open loop and closed loop. An open loop system is

essentially manually controlled or involves operating a load under fixed conditions. For

example, a cooling fan will usually not need precise speed control, and might simply be

switched on and off from a fixed voltage supply. A closed loop system uses sensors to monitor

the system outputs and control them automatically, so, in a motor, the output speed or position

is more precisely controlled. The dynamic response (i.e. when there is a change in speed or

position) should then be more predictable, particularly when starting or stopping. Position

control in a robot arm (Figure 11.1) is a good example of a motor application using digital

feedback in a closed loop system.

The block diagram in Figure 11.1(b) shows the operation of one axis. The motor is controlled

via a PWM drive (see Chapter 8), and its position and speed are monitored via an incremental

encoder, which produces a pulse train as the motor rotates. A sequence of positions is specified

in the robot program, and the main controller sends the next position required to the axis

controller as a certain number of steps from the current position. The axis is moved

accordingly, with the axis controller accelerating and decelerating the motor to provide

a smooth motion and accurate end position, using the feedback provided by the encoder.

A small, inexpensive, brushed (having a conventional commutator) dc motor will be used to

demonstrate the use of the PIC� microcontroller (MCU) in a such a control application,

allowing simple open and closed loop operation to be investigated. More sophisticated systems

these days tend to use brushless motors, as they are more efficient and reliable, but are more

complicated to drive, as they need electronic commutation. This entails the microcontroller

switching the windings on and off in sequence, and monitoring the current to provide precise

control.

Motor output is measured as the shaft speed or position. Open loop control of a motor would

consist of simply switching it on and off for a fixed period to position it, or varying the speed,

under manual control. There are obvious limitations to open loop control. A dc motor will not

start from stationary until there is a significant current, owing to inertia, stiction and its

electromagnetic characteristics. This makes its response non-linear, at least at low speeds,

234 Chapter 11

which means that the speed is not directly proportional to the current or voltage applied. In

addition, the speed cannot be accurately predicted for any given current, because it will vary

with the load on the shaft. The final position of the shaft when the motor stops cannot be

precisely controlled either. Therefore, if the speed or position of a dc motor is to be controlled

accurately, we need sensors to measure the output, and a control system for the motor drive.

A simple analogue potentiometer can measure position, by converting it to a voltage, or speed

can be measured using a tachometer (essentially a small dc generator), which produces

a voltage that is proportional to the motor speed. These transducers have traditionally been

used in analogue motor control systems, where all the signals are continuously variable

currents and voltages. With the development of digital control systems, feedback is usually

(a)

(b)

DC
MotorCurrent

Drive
Axis

Controller
Programmed

Controller

PWM
Drive

PWM
Signal

Position
Code

Program with
positions

Pulse Feedback
Position
Sensor

Figure 11.1
Robot arm and axis control: (a) robot loading a milling machine; (b) robot axis control block

diagram

PIC Motor Applications 235

derived from switching sensors (optical or magnetic) and the microcontroller provides

a programmable device in which the program can be designed to handle the motor

characteristics and load requirements, and the dynamic response can be adjusted in software.

The speed of a dc motor is controlled by the current in the armature, which interacts with the

magnetic field produced by the field windings (or permanent magnets in small motors) to

produce torque. An analogue control system gives continuous control over the motor current,

and a digital to analogue drive converter can be used at the output if the feedback and control

are digital. However, the control interface can be simplified if pulse width modulation (PWM)

is used. PWM is a simple and efficient method of converting a digital signal to a proportional

drive current. Many microcontrollers now provide dedicated PWM outputs, but we are going to

generate the control signal in software here for simplicity.

Digital feedback can be obtained from a sensor, which detects the shaft rotation, as in the robot

axis above. One way of doing this is to use a perforated or sectored disk attached to the

shaft and an optical sensor to detect the slots or holes in the disk. The shaft position can be

detected by counting pulses, and the speed by measuring their frequency. This signal can be

fed directly to a microcontroller, which monitors the pulse input, and varies the output to

control the speed and/or position of the motor.

11.2. Motor Application Board MOT2

We will investigate these ideas via a general purpose motor test board design, MOT2, which

can control a dc motor requiring up to 30A drive current. This is provided by a full bridge

driver that allows bidirectional speed and position control with pulse feedback (servo motor).

MOT2 is based on the PIC 16F690 (as used in the LPC demo board). A block diagram is shown

in Figure 11.2 and a circuit schematic in Figure 11.3.

A variety of motor control operations can be demonstrated using this system:

• Motor On/Off

• Motor Forward/Reverse

• Open/Closed Loop Position Control

• Open/Closed Loop Speed Control.

Command inputs can be received from an 8-bit switch bank, a remote 8-bit master controller,

two push buttons, or from the analogue inputs or serial ports. The motor can be turned in

either direction via a full bridge driver, providing position and speed control. Pulse width

modulation (see Chapter 8) will be used to control the speed. The shaft speed and position are

monitored by a shaft encoder, which has three outputs, but only the index output (one pulse

per revolution) is connected in the initial design. In the simulation schematic, the motor

and encoder are integrated into a single servo motor model, DCM.

236 Chapter 11

Opto-
Sensor

DC
Motor

PIC

16F690

Switch
Bank 8 bits Current

Switch
& Load

Push
Buttons

Analogue

Inputs

RB4

RB5

Port C

RB6
RB7

RA4

RA2

RA5

Remote

Digital

Input

 Add

 Dummy

 Load

Manual

Remote

RA0 RA1

Programming
Inputs

Serial
Ports

Figure 11.2
Block diagram of MOT2 board

Figure 11.3
MOT2 dc motor board schematic

PIC Motor Applications 237

Motor Drive

A 6V permanent magnet motor is used since it will run from the same 5V supply as the PIC.

However, a large decoupling capacitor (C4) should be fitted because the motor will generate

a lot of noise on the supply, particularly when it switches off. The motor current direction,

forward or reverse, is controlled by switching on two of the four MOSFETs from RA4 or RA5.

Q1 and Q3 are switched on if RA4 output goes high (motor forward), and Q2 and Q4 if RA5

goes high (motor reverse). Q1 and Q2 switch on when the gate is high (N-FET), but Q3 and Q4

switch on when the gate is low (P-FET), so an inverting bipolar stage is needed on each gate.

The current flows diagonally through the bridge and motor to drive it in either direction. The

bridge is rated at 30A, so a range of small to medium dc motors could be driven successfully.

In the simulation, the motor characteristics can be adjusted to represent different motors:

nominal voltage, coil resistance, coil inductance, zero load rpm, effective mass of the motor

and load, and the number of encoder pulses per revolution.

Output Sensor

The rotary encoder represented in the simulation circuit schematic has three outputs. Two have

the same number of slots per revolution (adjustable in simulation to represent a range of

encoders, default 24), but they are offset by half a slot so that the direction of rotation can be

detected from the phase difference in the output signals. The third output generates an index

signal once per revolution, which can be used to generate an absolute initial position, or to

measure the speed as time per revolution. In hardware, an opto-sensor containing a light-

emitting diode (LED) and photodetector can be mounted either side of a perforated wheel

attached to the motor shaft. This allows the light to pass through holes or slots causing digital

pulses to be output from the sensor via a built-in amplifier, allowing the motor speed or position

to be monitored by the controller. The simplest type can have a single slot producing one pulse

per revolution. Alternatively, the sensor can work by reflection from a shaft surface, or

magnetically. The index output on the simulated servo in Figure 11.3 is connected to the

Timer0 (T0CKI) input of the PIC, so that the shaft revolutions can be counted. Alternatively,

the pulse interval can be measured using timer mode, if that will produce a more accurate

measurement. The pulse may also be used to trigger a Timer0 interrupt.

Switched Inputs

The control program can use the push buttons (S1, S2) connected to RB6 and RB7 to stop, start,

or change speed or direction. The binary input switches could be used to select the speed or

position. Alternatively, a remotely generated digital control code can be applied to the digital

input connector pins (J2) from a master controller, which could be operating a number of

motors in a robot system or machine tool. In this case, part of the digital input would be a motor

select code, and part would be a position or speed command. Serial commands could also be

used, with the port B pins reassigned for this purpose (see Section 12.4). If the parallel input is

removed from the circuit, a smaller, cheaper PIC 12FXXX series device could be used instead.

238 Chapter 11

These have six input/output (I/O) pins, so there would be three inputs available with which to

control the motor speed, position and/or direction. Analogue inputs are also available, if the

motor needs to be voltage controlled.

Analogue Input

The analogue input could be used to receive a voltage that sets the speed or position of the

motor. For example, a position servo may use a potentiometer to provide position feedback to

the controller, or a temperature sensor might control the speed of a fan. The analogue-to-digital

converter (ADC) must be initialized to suit, in this case using the internal supply reference to

set the range. For test purposes, a pot is connected to AN10, to provide a dummy analogue

input. If the jumper is closed, AN11 can be used to monitor the motor drive current as a voltage

across a 0R1 current sensing resistor connected in the common arm of the bridge (100 mV/A).

This can be used as a feedback signal or to shut down the output if the motor current is too high.

External analogue inputs can be connected at J1.

The default internal clock frequency of the PIC 16F690 is 4MHz to give an instruction cycle

time of 1 ms. The internal clock mode needs to be selected in the configuration word at the top

of the program, along with the power-up timer and MCLR enable (00E4h). MCLR is

controlled from the programmer during testing, but a reset button is also provided on board.

The power-on timer should be enabled during programming to ensure a reliable start. The

motor drive will need an external power supply providing sufficient current for the motor

connected, so the supply from the programming connector may need to be disconnected at JP2

while programming.

11.3. Motor Control Methods

The programs described below have been tested on a previous version of the hardware, and in

simulation mode with the current design.

11.3.1. Open Loop Control

Open loop control of a dc motor (MOT1) has been described in Chapter 8 and a program

developed which allows the speed to be controlled manually. In the MOT2 circuit

(Figure 11.3), the motor can be driven in either direction by setting RA4 or RA5 high, with

both set low to turn the motor off. They must not be high together; this would switch on both

transistors, resulting in no current through the motor, and possible damage to the power

transistors. Open loop speed control can therefore be implemented by outputting a PWM signal

at either RA4 or RA5.

The push-button inputs could be programmed to run the motor in either direction, or to

increment and decrement the speed in one direction by modifying the delay in a PWM

PIC Motor Applications 239

program. Alternatively, the speed could be set at the binary inputs to port B, either manually at

the DIP switches, or with an 8-bit digital input code supplied from a master controller.

Analogue control is possible from a manual input (RV1) or from a remote voltage source. Any

of these inputs could be used to set the duty cycle of the drive waveform. However, neither the

speed nor position can be controlled accurately without feedback.

11.3.2. Closed Loop Control

The simulation design uses the index output of the servo module for feedback, because this

is easier to implement in a prototype. The signal can be generated by making one

opto-sensor mark on the shaft (or magnetic equivalent) or one slot or hole in a disk attached

to the shaft. One pulse per revolution will also provide more time between pulses for the

control program to complete its processing tasks. The sensor is connected to the Timer0

input, an 8-bit counter/timer register that can be clocked externally or from the system clock,

and which we can use to measure the pulse total count, frequency or period, depending on

the application.

Closed loop position control involves counting the revolutions as the shaft turns. This sounds

straightforward, but the dynamic characteristics of the motor have to be taken into account. For

example, the motor can be switched on from the controller, the pulses counted, and the motor

turned off when a set number of pulses has occurred. However, the motor will probably

overshoot the required position owing to inertia of the rotor and load. A simple solution is to

keep counting the slots and turn the motor back by the requisite number of slots. This may have

to be repeated several times, causing oscillation. Another improvement is to ramp the speed of

the motor up and down at the start and end of the move.

With only one slot, the position can only be determined to the nearest whole revolution. This

may be acceptable if a gearbox is fitted (often the case in position controllers), which reduces

the angular rotation and speed. For instance, if the gearbox has a reduction ratio of 50:1, the

output can be positioned within 1/50 of a revolution. If a shaft encoder is used, a known number

of slots per revolution is generated, and a proportionate increase in accuracy obtained. With

100 slots, for example, and the gearbox, the accuracy will be 360/(50� 100)¼ 0.072 degrees.

This result can then be used to estimate the positional resolution of the load attached. For

example, if a robot arm of length 300 mm is attached to this drive, the accuracy at the end of the

rotating arm will be the length of arc:

Circumference of working circle ¼ 2pr ¼ 2� 0:3� p ¼ 1:885m

Arc of step ¼ 1:885� 0:072=360 ¼ 0:38mm ¼ resolution

Speed control will involve measuring the index pulse interval, and comparing it with a target

value. The target value can be input from any of the analogue, digital or serial data sources

available in MOT2. The PWM duty cycle is then adjusted continuously towards this target.

240 Chapter 11

Since there is some delay in the response of the motor, owing to mechanical inertia, the speed

may oscillate around the target value to some extent. This depends very much on the

characteristics of the motor and load, which can be varied in the simulation circuit to

investigate their effect.

11.4. Test Programs for MOT2

The following test programs for the MOT2 board will demonstrate aspects of direction,

position and speed control.

11.4.1. Direction Test

A simple test program to drive the motor in each direction DCM1 is listed as Program 11.1.

When S1 is held on, the motor runs in the forward direction, and in the reverse direction

when S2 is operated. In ISIS simulation mode, the motor properties should be set to

supply¼ 6 V, armature resistance¼ 3U and load mass¼ 0.0001, so that the motor responds

quickly. A voltage probe can be attached to the bridge common node to measure the current

in the sensing resistor (60 mA). The nominal speed should be set to 1000 because the

maximum displayed rpm is 999. The simulated servo parameters can be adjusted to check

the effect.

11.4.2. Position Control

A program POS2 that moves the motor to a position set on the pot is represented in the

flowchart in Figure 11.4, and the source code listed as Program 11.2.

The principle of the program is to read a position from the pot in the range 0e255, as an

8-bit result from the ADC, and move the motor to a corresponding position. To allow the pot to

be adjusted before the motor responds, push-button S1 is used to trigger the move. Initially,

the motor position is set midway at 127. If the pot is moved to a forward or reverse position,

the motor moves the same number of revolutions, i.e. � 127. The index output of the

servomotor is fed back to Timer0 (8-bit counter) in the MCU, which counts the number of

revolutions. This is compared with the target value in the monitoring phase, and the motor

stopped when the correct number of pulses has been received.

The main problem with motor control, which is illustrated in this example, is that the motor

tends to overshoot the target position because of mechanical inertia. An attempt to correct this

is incorporated in the program, where the overrun is counted and the motor moved back if

necessary. This is achieved by waiting an arbitrary time after the motor has been switched off

and checking the count again. However, if the program timing and motor characteristics are not

closely matched, the motor may either oscillate about the target position (hunting) or not

PIC Motor Applications 241

achieve an accurate position. This effect can be seen if the program is simulated in ISIS. The

motor mass needs to be adjusted to about 0.0002 for the simulation to work properly; this can

be varied to see the effect on the overshoot.

In this case, the position can only be controlled to a resolution of one revolution. Using the

incremental encoder outputs of the servo would allow this performance to be improved, by

counting more pulses per revolution. Another way of achieving better performance is for the

current position to be continuously compared with the required position, and the motor driven

;**
; DCM1.ASM MPB Ver 1.0
; Test program for DC motor demo board MOT2
; S1 = Forward, S2 = Reverse
;
;**

 PROCESSOR 16F690 ; Specify MCU for assembler
 ; MCU configuration bits
 __CONFIG 00E4 ; PWRT on, MCLR enabled
 ; Internal Clock (4MHz)
 INCLUDE "P16F690.INC" ; Standard register labels

; Initialize registers.......................................

 BANKSEL ANSEL ; Select Bank 2
 CLRF ANSEL ; Port A digital I/O
 MOVLW B'00001100' ; Input setup code
 MOVWF ANSELH ; RB6, RB7 digital input

 BANKSEL TRISA ; Select Bank 1
 MOVLW B'11001111' ; PortA setup code
 MOVWF TRISA ; RA4, RA5 output
 BANKSEL PORTA ; Reselect Bank 0

; Start main loop..

 CLRF PORTA ; Both FETs off
S1 BTFSS PORTB,6 ; Test S1
 GOTO For
 BCF PORTA,4 ; If not,off
 GOTO S2
For BSF PORTA,4 ; If on, forward

S2 BTFSS PORTB,7 ; Test S2
 GOTO Rev
 BCF PORTA,5 ; If not,off
 GOTO S1
Rev BSF PORTA,5 ; If on, reverse
 GOTO S1 ; repeat always

 END ; Terminate assembler......................

Program 11.1
DCM1 source code

242 Chapter 11

at a speed proportional to the error. The motor will slow down as it approaches the target

position. This type of process is referred to as PID (proportional, integral and differential)

control, where the response of the system can be tuned to give the best compromise between

speed of response, accuracy and overshoot. A simpler process called ‘trapezoidal’ control can

also be used. This involves ramping the motor speed up and down at the ends of the move, with

a constant speed period in the middle.

11.5. Closed Loop Speed Control

In this example, the motor board is to operate as a slave speed-controlled unit. A master

controller supplies an 8-bit code to set the speed of the motor, with the local controller required

to maintain it with a specified degree of precision. The MOT2 board allows for a test input at

NO

Initialize
Ports, ADC

POS2

Get New Pot Input

Motor Forward

Wait for Button

Forward or Reverse?

Motor Reverse

Calculate Pulse Count

Motor Stop

Overrun?

Count = Pulses?

YES

NO

Figure 11.4
Flowchart for motor program POS2

PIC Motor Applications 243

;**
; POS2.ASM MPB Ver1.0
; Test program for motor demo board MOT2
; Position control from pot
; Counts motor pulses in TMR0
; Complete 15/12/10
;
;**

 PROCESSOR 16F690 ; Specify MCU for assembler
 ; MCU configuration bits
 __CONFIG 00E4 ; PWRT on, MCLR enabled
 ; Internal Clock (4MHz)
 INCLUDE "P16F690.INC" ; Standard register labels

PotLas EQU 020 ; Pot start position
PotNow EQU 021 ; Pot target position
Count1 EQU 022 ; Overrun counter
Count2 EQU 023 ; Overrun counter
PotDif EQU 024 ; Pot change or overrun
Timer1 EQU 025 ; Delay timers
Timer2 EQU 026 ;
Timer3 EQU 027 ;
OverCo EQU 028 ; Overcount holding

; Initialize registers.......................................

 CLRF PORTA ; Motor off

 BANKSEL ANSEL ; Select Bank 2
 CLRF ANSEL ; All digital I/O
 CLRF ANSELH ; ..initially
 BSF ANSELH,2 ; Analogue inputs
 BSF ANSELH,3 ; ..AN10, AN11

 BANKSEL TRISA ; Select Bank 1
 MOVLW B'11001111' ; RA4, RA5 output
 MOVWF TRISA ;
 MOVLW B'01110000' ; A/D clock setup code
 MOVWF ADCON1 ; Internal clock

 BANKSEL ADCON0 ; Select Bank 0
 MOVLW B'00101001' ; Analogue setup code
 MOVWF ADCON0 ; Left justify, Vref=5V,
 ; RA10, done, enable A/D
 MOVLW D'127' ; Mid value
 MOVWF PotLas ; ..into position regs
 MOVWF PotNow

 CLRF PORTA ; Switch off motor
 CLRF PotDif ; Zero pot movement

; Main loop ..

Program 11.2
POS2 source code

244 Chapter 11

getpot MOVF PotNow,W ; Save previous pot input
 MOVWF PotLas

 BSF ADCON0,1 ; Start ADC..
finish BTFSC ADCON0,1 ; ..and wait for finish
 GOTO finish
 MOVF ADRESH,W ; Store result high byte
 MOVWF PotNow ; Current pot value

 BCF STATUS,Z ; Clear zero flag
 BSF STATUS,C ; Set carry flag
 MOVF PotLas,W ;
 SUBWF PotNow,W ; W = PotNow - PotLas
 MOVWF PotDif ;
 BTFSC STATUS,Z ; If PotDif = 0
 GOTO start

BTFSC STATUS,C ; Pot moved negative?
 GOTO forwrd
 COMF PotDif ; Convert to positive
 GOTO revers ; yes - reverse motor

forwrd BCF PORTA,5 ; Reverse off
 BSF PORTA,4 ; Motor forward
 CALL wait
 MOVF PotDif,W ; Motor at target?
 BTFSC STATUS,Z ;
 GOTO start ; Yes - start again

revers BCF PORTA,4 ; Forward off
 BSF PORTA,5 ; Motor reverse
 CALL wait
 MOVF PotDif,W ; Motor at target?
 BTFSC STATUS,Z ;
 GOTO start ; Yes - start again

 GOTO forwrd

; Subroutine to stop motor and to correct overrun

wait CLRF TMR0 ; Count motor pulses
check MOVF TMR0,W
 SUBWF PotDif,W
 BTFSS STATUS,Z ; until target reached
 GOTO check
 CLRF PORTA ; Motor off

 CLRF TMR0 ; Reset pulse count
stop MOVF TMR0,W
 MOVWF Count1 ; Store pulse count
 CALL long ; Wait a while

start BTFSC PORTB,6 ; Wait for S1
 GOTO start

Program: 11.2: (continued)

PIC Motor Applications 245

the switch bank to simulate this external demand. Alternatively, the required speed could be

input as a data byte at a serial port.

Suppose that the motor is to be controlled to a speed of exactly 600 rpm. This will produce 10

pulses per second (pps) with a single slot in the wheel. This relatively low speed is used for

simulation in ISIS, because the DCM rev counter only reads up to 999 rpm. Real hardware

needs to be controlled at speeds up to at least 3000 rpm, using a higher MCU clock speed. The

speed can be measured in one of two main ways: by counting sensor pulses over a measured

time period, or by measuring the period between sensor pulses.

11.5.1. Counting Pulses

The accuracy of the speed measurement using this method will depend on the number of slots

counted, because the error is always� 1 slot. If the rev count were made over a period of 1 s at

10 pps, the precision would be 10% and the speed could only be corrected once per second.

This response time is too slow for most practical purposes, so this option will be rejected. It

would be viable if the encoder had more slots per revolution or the motor was running at high

speed.

 MOVF OverCo,W ; store overcount
 MOVWF PotDif
 RETURN

; Long delay..

long MOVLW D'10'
 MOVWF Timer1 ; 1s
loop1 MOVLW D'100'
 MOVWF Timer2 ; 100ms
loop2 MOVLW D'249'
 MOVWF Timer3 ; 1ms
loop3 NOP
 DECFSZ Timer3
 GOTO loop3
 DECFSZ Timer2
 GOTO loop2
 DECFSZ Timer1
 GOTO loop1
 RETURN

 END ; Terminate assembler...................

 MOVF TMR0,W ; Store count again
 MOVWF Count2
 MOVWF OverCo
 SUBWF Count1 ; Check if changed
 BTFSS STATUS,Z
 GOTO stop ; ..until unchanged
 CALL long ; Wait a while

Program: 11.2: (continued)

246 Chapter 11

11.5.2. Measuring Pulse Period

At 10 pps, the target speed, the pulse period will be 100 ms. This can be measured using a

100 ms timer, which can be set up using the 8-bit TMR0 hardware counter/timer (see Chapter 6).

The counter is driven by the instruction clock (1/4 of the MCU oscillator frequency). The

timer prescaler allows this to be divided by 2, 4, 8, 16, 32, 64, 128 or 256, by setting a 3-bit

code in the option register. If the MCU clock is set to 1MHz, the timer clock rate is 250 kHz,

with period 4 ms, with the maximum prescaler setting of 256, the longest period measurable

will be 256� 256� 4¼ 26 2144 ms¼ 262 ms. The count required, as a proportion of this

maximum value, will be 100/262� 256¼ 98 (to the nearest whole number). Recall that the

timer counts up to FF then 00, when the overflow flag is set, so the timer must be preloaded

with the complement of this value, 256� 98¼ 158.

11.5.3. PWM Motor Control

The speed of the motor is controlled using PWM, which switches the motor current on and off

over a fixed period cycle. The ratio of the on/off periods controls the average current, and hence

the speed. A software delay loop will be used to generate a PWM drive signal to the motor,

while running a hardware timer to generate a timing reference to compare with the sensor

feedback each time round the motor delay loop. The mark/space ratio (MSR) is adjusted to

control the speed. The target speed is set using the switch inputs to generate the timer preload

value.

The process is illustrated in the timing diagram (Figure 11.5). The timing cycle starts at the

rising edge of the sensor pulse when the timer is started. The program waits for the falling edge

of the sensor pulse, then starts checking if the next pulse has arrived, or if the timer has timed

out, once per motor cycle. If the speed is too low, the timer times out first, before the pulse

arrives, so the speed must be increased for the next timing cycle. If the slot arrives before the

timer has timed out, it means that the motor is running too fast, so the speed must be

decremented for the next cycle. User flags have been defined, one to record the fact that the

falling edge has been detected and acted upon (‘slot’ flag) and another to record the fact that

the timer has been restarted (‘done’ flag), to make the program wait for the next slot to

restart the timer. When the speed is correct, the speed correction will alternate between

incrementing and decrementing.

Figure 11.6 shows the top-level flow chart for the program. This initializes the program and

switches the motor on and off. ‘Speed’ is a user register that holds the value for the PWM ‘on’

time. The ‘off’ time is derived by complementing this value. The total count for each motor

drive cycle is then 256, which means the frequency will remain constant. At the start of the

main loop, on the rising edge of the sensor pulse, Timer0 is loaded with the 8-bit value read

PIC Motor Applications 247

 MOTOR

DRIVE

One Revolution

+5v

0vSlot Pulse

time

On Delay
Off Delay

100ms

Reload Timer

Slot Flag Set

Time out:

Increment speed,

Set done flag,

Reload timer,

Wait for next pulse

ON

OFF

Slot found:

Reload timer,

Clear done flag,

Set slot flag

Slot found before timeout:

Set slot flag,

Decrement speed,

Reload timer immediately

Timer
Runs

Time out:

Reload timer

Set slot flag

0

SENSOR

(CORRECT

SPEED)

Reset Slot
Flag

Alternates between

timeout and

slot found

SENSOR

(TOO SLOW)

SENSOR

(TOO FAST)

Figure 11.5
Timing diagram for PWM motor speed control (CLS2.ASM)

248 Chapter 11

from the switch bank. A low value will give a longer remaining count in Timer0, and a longer

target cycle time, corresponding to a low speed. A high value will give a high target speed.

The main subroutine checks the input and timeout flag in a polling loop. If the timer times out

before the next slot arrives, as is the case when starting up, the motor is going too slowly, so the

PWM ‘on’ time is increased. When the motor is eventually going too quickly, the slot arrives

before the timer has finished, so the ‘on’ time is reduced. The speed must be stopped from

rolling over from FF (maximum) to 00 (minimum), so the speed value is tested for zero after

incrementing or decrementing and set back to FF or 1, respectively.

When the motor is running at the correct speed, the sensor period should match the timer

period. In practice, the motor will hunt around the target value owing to limited resolution in

the measurements, program delays, motor imperfections and mechanical inertia. The source

code is listed as CLS2.ASM in Program 11.3.

11.5.4. Program Simulation

The speed control application was tested in simulation mode (Figure 11.7). The

forward drive, index sensor feedback and current monitoring signals can be seen on the

(a) (b)

INITIALIZE
Switch & Sensor

Inputs
Motor Output
User Registers

Reload
Timer

TESTEM

Motor On

Motor Off

CLS2

TESTEM

TESTEM

Time Out?

Slot Arrived?

Speed Up

Speed Down

Reload Timer

NO

NO

RETURN

Dec PWM
Count = 0?

NO

Timed Out?

YES

Figure 11.6
Flowcharts for closed loop motor speed control: (a) main loop; (b) main subroutine

PIC Motor Applications 249

; ***
; CLS2.ASM MPB Ver1.0
; Status: Working OK in simulation 17-12-10
; ***
; Closed Loop DC Motor Speed Control using Pulse
; Width Modulation (software loop) to control speed
; and hardware timer to set reference time interval
;
; Hardware: MOT2 Proteus VSM simulation
; MCU: 16F690, 1MHz internal clock
; Inputs: RC0-RC7 DIP switches
; RA2 index sensor (high pulse)
; Outputs: RA4,5 Motor forward, reverse
;
; Set Processor Options....................................

 PROCESSOR 16F690 ; Specify MCU for assembler
 ; MCU configuration bits
 __CONFIG 00E4 ; PWRT on, MCLR enabled
 ; Internal Clock (1MHz)
 INCLUDE "P16F690.INC" ; Standard register labels

; Register Label Equates...................................

Speed EQU 020 ; Counter Pre-load Value
Count EQU 021 ; Delay Counter
Flags EQU 022 ; User Flags

; Register Bit Label Equates

forwd EQU 4 ; Motor Forward = RA4
revrs EQU 5 ; Motor Reverse = RA5
sensor EQU 2 ; Shaft Opto-Sensor = RA2
slot EQU 0 ; Slot Found Flag
done EQU 1 ; Time Out Done Flag
timout EQU 2 ; Time Out Flag = TMR0,2

; Initialize, Port B defaults to input....................

 BANKSEL ANSEL ; Select Bank 2
 CLRF ANSEL ; All digital I/O
 CLRF ANSELH ; ..initially
 BSF ANSELH,2 ; Analogue inputs
 BSF ANSELH,3 ; ..AN10, AN11

 BANKSEL TRISA ; Select Bank 1
 MOVLW B'11001111' ; RA4, RA5 output
 MOVWF TRISA ; and load dirc. reg.
 MOVLW B'10000111' ; Code for TMR0..
 MOVWF OPTION_REG ; sets prescale 1:256
 MOVLW B'01000111' ; Code to select..
 MOVWF OSCCON ; internal clock = 1MHz

 BANKSEL PORTA ; Select Bank 0
CLRF PORTA ; Motor off

 MOVLW d'100' ; Initial value for
 MOVWF Speed ; ..speed

Program 11.3
CLS2 source code for closed loop speed control

250 Chapter 11

; Subroutine reloads Timer0...............................

reltim MOVF PORTC,W ; Get input switches &..
 MOVWF TMR0 ; Load Timer with input
 BCF INTCON,timout ; Reset 'TimeOut' Flag
 RETURN

; Subroutine checks for time out or slot...................

testem BTFSS INTCON,timout ; Time Out?
 GOTO tessen ; NO: Skip Speed Increment
 BSF Flags,done ; YES: Set Time Out Flag
 INCFSZ Speed ; Test for maximum speed
 GOTO reload ; NO: jump to timer reload
 DECF Speed ; YES: Decrement to 255
 GOTO reload ; & jump to timer reload

tessen BTFSC PORTA,sensor ; Slot Present?
 GOTO teslot ; YES: jump to test slot
 BCF Flags,slot ; NO: Reset 'Slot' Flag
 GOTO datcon ; & continue Count loop

teslot BTFSC Flags,slot ; 'Slot' Flag Set?
 GOTO datcon ; YES: Skip speed decrement
 BTFSC Flags,done ; NO: 'Done' Flag Set?
 GOTO clrdone ; YES: Skip speed decrement
 DECFSZ Speed ; NO: Test for min. speed
 GOTO clrdone ; NO: continue loop
 INCF Speed ; YES: increment back to 1

clrdone BCF Flags,done ; Clear 'Done' Flag
setslot BSF Flags,slot ; Set 'Slot' Flag
reload CALL reltim ; Reload timer
datcon DECFSZ Count ; Decrement & Test Count
 GOTO testem ; Counter not zero yet
 RETURN ; End motor cycle if zero

; Drive loop outputs one cycle of PWM to motor

start CALL reltim ; reload timer to start

again BSF PORTA,forwd ; Motor ON
 MOVF Speed,W ; Put ON delay value
 MOVWF Count ; into counter
 CALL testem ; Modify speed

 BCF PORTA,forwd ; Motor OFF
 MOVF Speed,W ; Put ON delay value
 MOVWF Count ; into counter
 COMF Count ; and convert to OFF value
 BTFSC STATUS,Z ; Test for zero count
 INCF Count ; ..and avoid
 CALL testem ; Modify speed
 GOTO again ; next drive cycle

END ; Terminate source code *******************

 CLRF Flags ; and clear user flags
 GOTO start ; Jump to main program

Program: 11.3: (continued)

PIC Motor Applications 251

virtual oscilloscope. The drive is operating at about 100 Hz and the feedback has

a period of 100 ms, indicating a speed of 600 rpm (switch input¼ 0xA0). The maximum

motor speed (switch input¼ FF) with this setup is just over 1000 rpm, the maximum

displayed on the animated motor. The minimum speed (switch input¼ 00) is just below

240 rpm.

The closed loop response can be tested at 600 rpm by opening the switch across the dummy

load of 2U. This adds extra resistance in series with the motor causing a drop in the ‘on’

current, hence the speed. The drive program must compensate by increasing the PWM drive to

restore the set speed.

The current in the bridge drivers, forward and reverse, can be monitored across the 0.1U

sensing resistor. The ‘on’ current generates a voltage of about 0.4 V, indicating a current of 4 A.

This can be connected to the analogue input AN11 by closing the jumper JP1 so it can be

measured for control purposes. This could also be used to prevent excessive current in the

bridge if, for example, the motor stalls.

Figure 11.7
CLS2 simulation screenshot

252 Chapter 11

Depending on the processing power of your computer, the simulation speed may drop back

from real-time operation to a lower speed when testing this circuit. Check the status

information below the edit screen: when the processor load reaches 100%, the simulation clock

will slow down.

11.5.5. Hardware Testing

A hardware implementation can be tested using a dual-beam scope as indicated above. The

correct function of the closed loop control process can be tested by setting the binary input to

B‘10100000’ and checking the actual speed of the motor by measuring the period of the sensor

pulse, which should be 100 ms. The binary input can then be varied, and the sensor period

should vary in proportion, within limits stated above. The transient and start-up response can

be examined by stalling the motor (if not too powerful), and studying the motor response as it

locks on to the target speed. When the dummy load is switched in, the drive should compensate

and maintain the speed of the motor by increasing the drive PWM MSR.

11.5.6. Evaluation and Improvements

The output was found to be slightly unstable around the target value, owing to the unequal

timing of the alternative routes through the program, but this may not be significant in a real

motor where the load inertia will tend to maintain a constant speed. Ideally, the PWM speed

control should operate at a frequency above about 15 kHz. The demonstration program

CLS2 operates at a lower frequency, because of the time required to sample the timer status

and sensor input, and to complete the software loop for one drive cycle, which only uses an

8-bit count counter, Timer0. The performance will be improved by operating at the

maximum MCU clock speed of 20MHz, using interrupts and the hardware PWM output

associated with 16-bit Timer2. Timer1 is a 16-bit counter, which would provide greater

range and/or precision in the speed measurement. The Timer1 interrupt could be

incorporated into signal timeout. Alternatively, the sensor pulse could be detected as

a change at port A interrupt.

11.6. Motor Control Modules

Some examples of more complete designs for position controllers are described below.

11.6.1. Serial Input Position Controller

A position controller with serial input is described in Microchip� application note AN532

(Figure 11.8a). Although based on a now obsolete MCU, it represents a commercially viable

design which could be updated for applications such as printers and X,Y (two-dimensional)

PIC Motor Applications 253

positioning systems. It incorporates a dc motor with quadrature (two-phase) encoder,

integrated circuit full bridge driver and separate programmable logic device (PLD) encoder

interface. The position demand input is received via an RS232 serial input from a master

controller or PC, producing a trapezoidal output speed profile. The application note, which

has some useful additional information about servo control design, can be found at

www.microchip.com.

11.6.2. Microchip Mechatronics Kit

A very useful motor demo system is provided in the PIC Mechatronics Development Kit

(Figure 11.8b). It has a dc brushed motor with a single slot wheel and a stepper motor,

a reconfigurable full bridge driver and control logic. It is based on the PIC16F917,

which has a dedicated interface to operate a 3.5-digit liquid crystal display (LCD). The

board has a six-pin connector for PICkit2/3 programming and in-circuit debugging, and can

be used as target hardware to test the programs (suitably adapted) in this chapter. For

a fuller description, see the product information sheets or Programming 8-bit PIC

Microcontrollers in C with Interactive Hardware Simulation by this author (Newnes 2008).

A simulation schematic can be downloaded from www.picmicros.org.uk.

Recently, much attention has been directed towards brushless dc motors, which, as the name

implies, eliminate the traditional commutator by using a permanent magnet rotor surrounded

by a stationary set of windings. A rotating magnetic field drives the rotor, in a similar way to

stepper motors. They are more efficient and reliable than brushed dc motors, but are more

complex to control, requiring a three-phase full bridge driver with six transistors. Search for

BLDC (Brushless DC Motor) among the Microchip Application Notes archive for background

theory and demonstration circuits.

(a) (b)

Figure 11.8
Direct current motor control boards: (a) AN532 Servo Module; (b) PIC Mechatronics Development

Board

254 Chapter 11

http://www.microchip.com
http://www.picmicros.org.uk

11.6.3. Hobby Servo

A popular position controller is the hobby servo, as used in remote-controlled systems such as

model boats and planes, mainly for steering control. A compact self-contained unit contains

a small dc motor, feedback pot and control chip, which receives a standard PWM signal and

moves the output shaft to a position determined by the pulse width. The signal is received via

a radio link to a radio-frequency receiver module, into which the control servos are plugged.

The transmitter is housed in a control console with two joysticks, which can operate up to four

servos, each controlling a left/right and an up/down pot.

The same servo module can be connected directly to a PIC chip to provide a simple position

control system. Figure 11.9 shows it connected to the LPC board for testing, as per the

schematic in Figure 11.10, using program HOB1 (Program 11.4). The servo PWM input

requires a TTL (transistoretransistor logic) positive pulse of between about 0.5 and 2.5 ms

Figure 11.9
Hobby servo connected to LPC test board

Figure 11.10
LPC driving a hobby servo

PIC Motor Applications 255

;***
; HOB1.ASM MPB Ver 1.0
; Test program for LPC demo board
; Pulse output to servo on RC5
;
; Internal clock = 4MHz
; Variable frequency pulse output to servo
; 0.5 - 1.5 - 2.5 ms pulse, overall 18ms period
;
; Status: working 21-12-10
;
;***

 PROCESSOR 16F690 ; Specify MCU for assembler

 INCLUDE "P16F690.INC" ; MCU register lables

 Count EQU 20 ; Delay count
 Two EQU 21 ; Delay multiplier
 Ten EQU 22 ; Delay multiplier
 HiPer EQU 23 ; High period count
 LoPer EQU 24 ; Low period count
 ADres EQU 25 ; AD result store

; Initialize registers.....................................

 BANKSEL ANSEL ; Select Bank 2
 CLRF ANSEL ; Ports digital I/O
 CLRF ANSELH ; Ports digital I/O
 BSF ANSEL,0 ; except AN0 Analogue input

 BANKSEL TRISC ; Select Bank 1
 CLRF TRISC ; Initialise Port C for output
 MOVLW B'00000000' ; Analogue input setup code
 MOVWF ADCON1 ; Left justify result, ref=Vdd

 BANKSEL PORTC ; Select bank 0
 CLRF PORTC ; Clear display outputs
 MOVLW B'00000001' ; Analogue input setup code
 MOVWF ADCON0 ; f/8, RA0, done, enable

; Start main loop..

getpot BSF ADCON0,1 ; Start ADC..
wait BTFSC ADCON0,1 ; ..and wait for finish
 GOTO wait
 MOVF ADRESH,W ; Test result
 BTFSC STATUS,Z
 INCF ADRESH ; Avoid zero
 MOVF ADRESH,W ; store result
 MOVWF HiPer ; Store high time
 MOVWF LoPer
 COMF LoPer ; Calculate low time
 BTFSC STATUS,Z
 INCF LoPer ; Avoid zero

Program 11.4
Hobby servo test program (HOB1, ASM) for LPC board

256 Chapter 11

(depending on the servo specification), corresponding to the limits of travel, with the mid-

position set by a pulse of about 1.5 ms. Some live calibration is normally required. The overall

signal period is about 18 ms, but this is not critical.

In the test circuit, the PIC reads the pot input and sets the output pulse width accordingly, so the

position of the servo follows the pot. To keep it simple, software loops are used to generate the

PWM, but hardware timers and interrupts will typically be used in a more complete

application.

Questions 11

1. Outline a method of controlling the speed of a small dc motor by PWM. Identify the main
hardware components required. (4)

2. Explain how an incremental encoder can be used to provide speed and position feedback
from a shaft to a microcontroller. (4)

; Wait for Count x 12us

by12 MOVLW 02 ; Loop delay adjusted
 MOVWF Two ; in simulation
by3 NOP
 DECFSZ Two
 GOTO by3
 DECFSZ Count
 GOTO by12
 RETURN

 END ; Terminate assembler ***********************

 BCF PORTC,5 ; Output low
 MOVF LoPer,W
 MOVWF Count
 CALL by12 ; and wait for LoPer

 MOVLW D'10' ; Extra delay for 15ms
 MOVWF Ten ; to make total cycle
by4 MOVLW D'125' ; time = 18ms
 MOVWF Count
 CALL by12
 DECFSZ Ten
 GOTO by4
 GOTO getpot ; Repeat main loop

 BSF PORTC,5 ; output high pulse
 MOVWF Count
 CALL by12 ; and wait for HiPer

Program 11.4: (continued)

PIC Motor Applications 257

3. Based on your answers to Questions 1 and 2, explain how the speed of a dc motor can
be accurately controlled by a microcontroller using digital feedback. (4)

4. (a) Calculate the positional resolution (smallest step size) in degrees at the output shaft
of a robot arm drive with a 90:1 gearbox, if a shaft encoder with 200 steps per
revolution is attached to the motor shaft. (4)

(b) Calculate, to one significant figure, the positional resolution of a robot
gripper positioned at 500 mm from the axis of rotation controlled by the above
axis controller. (4)

Answers on page 424. (Total 20 marks)

Activities 11

Carry out the following investigations using test hardware or simulation, or both.

1. Construct the MOT2 board on stripboard and devise a test schedule. Confirm the correct
operation of the hardware prior to fitting the PIC chip, OR download the simulation of the
MOT2 board and confirm correct operation of DCM1.

2. Evaluate the performance of the position control program POS2 in terms of speed of
response, accuracy and reliability. What are the characteristics of the motor that affect the
performance?

3. (a) Investigate the performance of the program CLS2 in terms of reliability, response time,
range of control (maximum and minimum speeds). Devise a method of loading the
motor to test the performance of the controller with varying loads (the speed should be
held constant within limits).

(b) Modify CLS2 to read the input push buttons on the MOT2 board to increase or
decrease the set speed.

4. (a) Modify the CLS2 program for the MOT2 board to use the timer interrupt to signal time
out. Compare the performance of this alternative implementation with the original
program.

(b) Modify the program CLS2 to use the port A interrupt to monitor the feedback from the
motor. Compare the performance of this alternative implementation with the original
program.

(c) Modify program CLS2 to control the set speed from the analogue input AN10.

258 Chapter 11

CHAPTER 12

More PIC Microcontrollers

Chapter Outline
12.1. Common Features 262

12.1.1. Harvard Architecture 264

12.1.2. RISC Instruction Set 264

12.1.3. Flash Program Memory 264

12.1.4. RAM and Special Function Registers 265

12.1.5. EEPROM Data Memory 265

12.1.6. ALU and Working Registers 265

12.1.7. Stack Size 265

12.1.8. Protection Devices 266

12.1.9. Interrupts 266

12.1.10. Hardware Timers 266

12.1.11. Sleep Mode 267

12.1.12. In-Circuit Programming 267

12.1.13. In-Circuit Debugging 267

12.1.14. Power PICs 268

12.2. Device Selection 268
12.2.1. Input/Output Pins 269

12.2.2. Program Memory 271

12.2.3. Data Memory 271

12.2.4. Internal Oscillators 272

12.2.5. Clock Speed 272

12.2.6. Power Consumption 272

12.2.7. Packaging 273

12.2.8. Price 274

12.3. Peripheral Interfaces 275
12.3.1. Timers and CCP 275

12.3.2. Analogue Comparators 276

12.3.3. Analogue/Digital Inputs 276

12.4. Serial Ports 278
12.4.1. USART 278

12.4.2. SPI Bus 280

12.4.3. I 2C Bus 280

12.4.4. LIN Bus 282

12.4.5. CAN Bus 282

12.4.6. Ethernet and USB 283

Questions 12 283

Activities 12 284

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10012-6

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

261

http://dx.doi.org/

Chapter Points
• The PIC family of microcontrollers share a common core architecture and instruction set.

• PICs are designed with separate program and data buses, a reduced instruction set and two-stage

pipelining.

• The 10, 12, 16 and 18 series MCUs offer increasing power and features.

• Selection criteria include I/O provision, program memory size, analogue input and serial ports.

• In-circuit programming is a common feature, with in-circuit debugging in selected devices.

• Serial communication interfaces include RS232, LIN, SPI, I2C and CAN.

The PIC� 16F84A has been used as a reference device in this book as it the simplest of the PIC

16 range. However, it is now effectively obsolete, since chips with more features are available

at lower cost. The 16F690 has been selected for particular scrutiny, since it is used in

Microchip’s own basic demo hardware, the low pin count (LPC) board (see Chapter 7). This

chapter will summarize the additional features available in other 8-bit PIC devices, so that the

most suitable may be selected for a given application. Essentially, this means selecting the PIC

chip that has the required number and type of inputs and outputs, program memory capacity

and other special features, all at the minimum price.

The main groups of 8-bit (internal data) PIC flash devices are shown in Table 12.1. They are

divided into four groups: the 10F2xxx microcontrollers (MCUs) are four input/output (I/O)

devices with minimal features, the 12Fxxxx series are eight-pin miniature PICs, the 16Fxxxx

group is the mid-range series, and the 18Fxxxx devices are the high-performance group with

much larger memory and extensive I/O facilities.

Comprehensive selection tables and individual data sheets can be downloaded at

www.microchip.com.

12.1. Common Features

All PIC microcontrollers use the same basic architecture (Chapter 5) and instruction set

(Chapter 4), to provide a design progression path from simple programs to the most complex

applications. The architectural features may be compared by studying the block diagram for

each device found in its data sheet. The shared features of the 8-bit devices considered here are:

• Harvard architecture with RISC instruction set

• Flash program memory with in-circuit programming

• RAM block including special function registers

262 Chapter 12

http://www.microchip.com

Table 12.1: Eight-bit PIC flash microcontroller families

PIC Flash Device Group Summary Details

10F2XXX Low cost and minimal size
8 pin packages, 6 pins used, 4 I/O pins
Set of 33 12-bit instructions
Up to 512 program instructions
Up to 23 RAM locations
4/8 MHz internal oscillator only
1 � 8-bit timer only
Up to 2 analogue inputs*

6 devices total

12FXXXX Low cost and small size
8 pin packages, 6 I/O pins
Set of 33/35 14-bit instructions
Up to 1024 program instructions
Up to 256 RAM locations
20MHz max. clock, 4MHz internal oscillator
8-bit and 16-bit timer
Up to 4 analogue inputs*

14 devices total

16FXXXX Mid-range cost and performance
14e64 pin packages
Up to 55 I/O pins
35/49 � 14-bit instructions
Up to 16k program instructions
Up to 1536 bytes RAM
20MHz max. clock, 16MHz internal oscillator*

Up to 6 � 8-bit and 3 � 16-bit timers*

Up to 30 analogue inputs
Up to 4 serial ports*

92 devices total

18FXXXX Higher cost and performance
18e100 pin packages
Up to 70 I/O pins
77 � 16-bit instructions
Up to 64k program instructions
Up to 4096 bytes RAM
40MHz max. clock, 16MHz internal oscillator*

Up to 6 � 8-bit and 5 � 16-bit timers
Up to 28 analogue inputs
Up to 4 serial ports, USB, Ethernet*

198 devices total

*Selected devices in the range.

More PIC Microcontrollers 263

• Single working register and dedicated, non-writable stack

• Power-up, brownout and watchdog timers

• Multiple interrupt sources, with single vector address

• 8- and 16-bit hardware timers with PWM, capture and compare mode

• Sleep mode and low-power operation in selected devices

• EEPROM non-volatile data memory in selected devices.

12.1.1. Harvard Architecture

In conventional processor systems, the instruction codes and associated operands have to be

transferred from memory using the same address and data bus as the system data, that is, the

data read in via inputs or generated by the processor. The PIC architecture has separate paths

for the instructions and the system data. Therefore, the instruction fetch operation can be

carried out at the same time as the results from the previous operation are stored. As a result,

the program executes more quickly at the same clock speed, by carrying out two processes

concurrently. The instruction fetch and execute cycles overlap to double the execution rate

(pipelining; see Chapter 5).

12.1.2. RISC Instruction Set

The PIC has a relatively small number of instructions compared with a conventional complex

instruction set computing (CISC) processor. This has two main benefits: the instruction set is

easier to learn and the code executes more quickly, because the instruction decoding hardware

is less complicated. The downside is that more complex operations may have to be constructed

from simpler ones, ending up taking longer to execute. Overall, the reduced instruction set

computing (RISC) performance is usually superior because, in a typical application, these

complex instructions are not needed too often. The PIC 16 chip typically has 35 instructions,

while the 18 series MCUs have up to 85, so the more powerful devices need more instructions

for extra performance.

12.1.3. Flash Program Memory

The introduction of flash memory was a key stage in the development of microcontrollers.

Writable, but non-volatile, memory is essential in embedded systems to store the control

program. Previously, erasable programmable read-only memory (EPROM) was used, but this

had to be removed from the system for erasing under ultraviolet light before reprogramming.

Battery-backed random access memory (RAM) was an alternative, but battery life is limited.

In-circuit serial programming allows flash ROM to be reprogrammed without the

inconvenience, time-wasting and possible damage caused by having to remove it from the

264 Chapter 12

circuit each time. Program memory capacity ranges from 256 instructions in the smallest 10F

chip to 128k in the larger 18F MCUs. The program counter range varies accordingly.

12.1.4. RAM and Special Function Registers

The individual bits in the special function registers (SFRs) need to be read and written when

initializing the chip or during program operation. Because they are located in the same RAM

block as the general purpose registers (GPRs), they can be accessed using the same

instructions. This means that special instructions for control register access are not needed,

which helps to keep the instruction set small. RAM size varies from 16 bytes to over 2k bytes,

with the number of SFRs also increasing with the chip complexity and the number of

peripheral interfaces.

12.1.5. EEPROM Data Memory

This is useful in applications where data read in at the ports or produced by the processor needs

to be stored in non-volatile memory. For example, in a keypad-operated electronic lock, the

lock code is entered by the user and then retained to be checked against user keypad input to

release the lock. Data logging applications, where sampled input data may need to be retained

over a period of time, may also need to store the data while the power is off. Electrically

erasable programmable read-only memory (EEPROM), unlike flash ROM, can be written as

individual data bytes, but is not as physically compact, so is provided in smaller blocks.

EEPROM capacity ranges between 256 and 1k bytes, and is not fitted in some chips.

12.1.6. ALU and Working Registers

CISC processors tend to have a block of registers for storing current data, rather than a single

working register (W) as found in the PIC. They also tend to have much larger address spaces.

This means that the instructions, including operands, are typically 4 bytes in total, often more,

compared with 14 bits for the PIC 16. An architecture with only one working register, used in

conjunction with the RAM register block, reduces the overall number and complexity of

instructions required, as the options are reduced. This does mean, however, that all data

transfers must go through W. In the more powerful MCUs, the arithmetic and logic unit (ALU)

support hardware can be more elaborate. For example, the 18F4580 has an 8� 8 multiplier, but

still has only one working register.

12.1.7. Stack Size

The stack size determines the number of subroutine or interrupt levels that can be used in the

application program. A CISC processor can have an unlimited stack, as general purpose RAM

is used, unlike the PIC, which has a dedicated internal stack of limited depth. The 12 series

More PIC Microcontrollers 265

chips have only a two-level stack, the 16 series eight levels, and the 18 series 32 levels. This

reflects the typical program complexity for each type. The application programmer needs to be

aware of this limitation, and balance the advantages of a well-structured program using

multiple subroutine levels, and the absolute limit imposed by the stack size. Unlike in CISC

processors, the stack cannot be overwritten by a program instruction, making it more secure.

12.1.8. Protection Devices

Internal timers are used to ensure a reliable start-up on power-up, after a reset or a short-term

dip in the supply voltage. In the 16F690, the power-up timer provides a nominal delay of 64 ms

to allow the power supplies to stabilize before the program execution begins. The watchdog

timer allows the chip to reset itself automatically if the program execution fails to follow the

normal sequence, thereby improving overall reliability. Brownout protection allows the chip to

reset in an orderly fashion if the power supply fails for a short period. Full details, including

a block diagram, are provided in each chip data sheet. Over time, these protective features are

becoming more elaborate, so that, if they are properly applied, the overall reliability of PIC

applications is improved, at the expense of the firmware becoming more complex.

12.1.9. Interrupts

An interrupt is an internally or externally generated signal, which forces the processor to

suspend the current operation and execute a interrupt service routine (ISR). The ISR thus

has a higher priority than the background process. PIC chips provide a variety of interrupt

sources, for example, a change on a selected input, or a hardware timer timeout. There is an

interrupt priority system available in the more advanced 18 series PICs; this allows the chip

to be set up to ignore an interrupt source if a more important one is already active. In CISC

microprocessors, multiple interrupt vectors are usually available, and a different ISR can be

invoked for different interrupt sources. In the PIC, all interrupts have to be serviced via the

single interrupt vector, located at address 004 in program memory. To differentiate between

them and to determine the action required, the ISR needs to check the relevant control

register flags, to find out which interrupt source is active, before branching to the required

routine. As the number of peripheral devices increases, such as additional timers, serial

ports and so on, the number of potential interrupt sources increases, making interrupt

servicing via a single vector more complicated.

12.1.10. Hardware Timers

The number of hardware timers available generally increases with the chip complexity. They

are either 8-bit or 16-bit counters, with prescalers or postscalers, which divide down the input

or output of the counter to extend its range. If we take the motor program in Chapter 11 as an

266 Chapter 12

example, we can see how additional hardware timers could have been utilized; the 20 ms time

interval and the motor output cycle delay could both have been implemented as hardware

operations, while the sensor pulse monitoring could have used RB0 interrupt. As well as simple

counting and timing, the hardware timers can be configured to measure input intervals,

generate timed outputs and drive output loads using pulse width modulation (PWM; see

Section 12.3.1 below). Sometimes, independent clocks are associated with the timers and

protective devices, so that they can continue to function when the main clock fails, or

a different timebase is needed.

12.1.11. Sleep Mode

This is useful for terminating programs that do not loop continuously, suspending operations

pending an interrupt or saving power in battery applications. The processor switches off the

clock and disables most of its normal functions when the instruction SLEEP is encountered, with

current consumed dropping to around 1 mA, or less in low-power devices (LP designation).

Using SLEEP to terminate a program prevents it continuing into unprogrammed memory

locations. These default to all 1s, which generally corresponds to a valid instruction code,

ADDLW FF in 14-bit code (W, C, DC and Z all affected). If a program is not terminated with

a SLEEP or GOTO instruction, the program will carry on to the end of memory, the program

counter will roll over to zero and the program will restart. A hardware reset input or suitable

interrupt will be needed if the application code is terminated with SLEEP.

12.1.12. In-Circuit Programming

The PIC microcontrollers use a common program downloading system, which consists of

transferring the machine code in serial form via one of the data pins when the chip is in

programming mode. Previously, the chip would be placed in a programming unit for

downloading the application code, and then physically transferred to the application board.

Now, the chip is normally programmed in circuit, where the chip can be left in circuit, reducing

the risk of damage. It can then be programmed after the circuit has been manufactured, and

reprogrammed at any time, via a six-pin on-board connector, which can be seen in the 16F690-

based LPC board.The connector can be in the form of a SIL (PICkit 2/3) or RJ-11 (ICD 2/3)

connector (see Chapter 7).

12.1.13. In-Circuit Debugging

Mid-range PIC chips are now generally being designed to support in-circuit debugging (ICD),

where, after programming, the firmware can be executed within the final target hardware under

control of the MPLAB IDE via the programming interface. This allows the application to be

more fully tested using the same debugging tools available in MPSIM and makes it easier to

More PIC Microcontrollers 267

eliminate firmware and hardware bugs in the final stages of testing. Smaller chips, which do not

provide internal ICD support, must be debugged using a header connector that carries a version

of the chip that contains the ICD circuitry. The PICkitX development programmer provides all

programming and debugging features we need at minimal cost, while the ICDX module may

be needed to debug smaller chips which require a header.

12.1.14. Power PICs

To complete the analysis of the whole PIC range, the features of the more powerful PICs must

be considered. The PIC24 series of microcontrollers have a 16-bit internal data bus and ALU,

and move from the single working register model to a set 16� 16 bit working registers.

Otherwise, the architecture is similar to the 8-bit MCUs. The dsPIC30 and dsPIC33 are also

16-bit processors, but include a digital signal processing (DSP) engine for fast floating-point

calculations. Top of the range are 32-bit PIC32 chips with the kind of central processing unit

(CPU) enhancements used to improve performance in CISC devices such as the Intel� PC

processors: a split-bus architecture, instruction pre-fetch and cache, five-stage execution

pipeline and high-performance interrupt controller. The same MPLAB IDE supports the whole

range, but these processors will normally be programmed in C, to make optimum use of the

additional features.

12.2. Device Selection

Each type of PIC microcontroller offers a different combination of features; the most

suitable can be selected for any given application. The range is expanding all the time, with

additional features and improved performance at lower cost. Tables of MCU families at

www.microchip.com allow the current features and price of each to be readily compared.

The key selection criteria are:

• Total number of I/O pins available

• Grouping of I/O in ports

• Program memory size

• Data RAM size

• EEPROM data memory availability

• Timers (8-bit or 16-bit), CCP, PWM

• Number of 10-bit analogue inputs

• Serial comms (USART, SPI, I2C, CAN, LIN)

• Internal/external oscillator and maximum clock speed

• Package/footprint (DIP, SOIC, PLCC, QFP)

• Price

268 Chapter 12

http://www.microchip.com

When developing an embedded application, the hardware will generally be specified and

designed first. This will determine the number and type of inputs and outputs required.

Simple switches will require single digital input, while a keypad will require several inputs.

A temperature sensor will need an analogue input, while a motor will probably require

a PWM output. Most systems use some kind of status or information display, and the type

of display will determine the number of output pins needed to drive it. Serial

communication will often be used if the PIC is part of a larger system or is connected to

a master controller.

When the hardware requirements have been established, the program can be developed,

and tested by simulation. The size of the program will then be known, so that chip memory

size can be specified. In addition, the size of the stack in the selected device must be

sufficient for the number of subroutine levels and interrupts; if not, the program can be

restructured or a different chip used. If necessary, an overspecified chip can be used

initially, and the chip that matches the application requirements more exactly substituted

later.

When the design parameters, such as I/O requirements, program memory size and so on, have

been finally established, the most suitable device can be selected using the search facilities on

the manufacturer’s website. Summary information for selected 8-bit PIC flash

microcontrollers is provided in Table 12.2, as a guide to the range of features available. The

current device selection tool on the website is illustrated in Figure 12.1.

The smallest 8-bit chip currently available has only four I/O, 256 instructions and one timer

with an internal 4 MHz oscillator. The largest has 70 I/O, 128k program memory, a more

extensive instruction set and multiple peripherals, and runs at 42 MHz.

12.2.1. Input/Output Pins

The number and type of inputs and outputs required needs to be considered at an early stage in

circuit design. The convenient grouping of the pins for particular interfaces may also be

relevant, with many chips having partial port implementations. For example, a 4-bit port can

be conveniently used for a 4-bit input from a DIL switch, while a seven-segment display with

a decimal point needs the full 8-bit port. The number of analogue inputs available must also be

adequate for inputs requiring a voltage measurement. Most I/O pins have more than one

function, one of which is selected during initialization by setting up the relevant control

register. If no setup is performed for a particular pin, it will normally default to a digital input,

or an analogue input if this is an option. Pins can be reconfigured within the program sequence

to have a different function at different times. If this is the case, the designer must ensure that

the two functions do not interfere with each other, in terms of both the hardware and the

software.

More PIC Microcontrollers 269

Table 12.2: Selected 8-bit PIC flash microcontrollers

PIC
Device
no.

Total
Pins

I/O
Pins

Program
ROM
Words

File
RAM
Bytes

EEPROM
Bytes

Analogue
Inputs 3
10 Bits

Timers 8þ
16 Bit

Max.
Clock
(MHz)

Internal
Oscillator
(MHz)

In-
circuit
Debug

CCP/
PWM
modules

Serial
Comms

No. of
Instructions

Relative
Cost

10F200 6 4 256 16 e e 1 4 4 e e e 33 0.30
10F222 6 4 512 23 e 2 1 8 8 e e e 33 0.39
12LF1822* 8 6 3k5 128 256 4 2 þ 1 32 32 U 1 All 49 0.73
12F508 8 6 512 25 e e 1 4 4 e e e 33 0.41
12F629 8 6 1k 64 128 e 1 þ 1 20 4 U e e 35 0.70
16F627A 18 16 1k 224 128 e 2 þ 1 20 4 e e UART 35 1.30
16F648A 18 16 4k 256 256 e 2 þ 1 20 4 e e UART 35 1.67
16F676 14 12 1k 64 128 8 1 þ 1 20 4 U e UART 35 0.98
16F690 20 18 4k 256 256 12 2 þ 1 20 8 e 1 All 35 1.20
16F72 28 22 2k 128 e 4� 8-bit 2 þ 1 20 e e 1 e 35 1.91
16F77 40 33 8k 368 e 8� 8-bit 2 þ 1 20 e e 2 All 35 4.12
16F819 18 16 2k 256 256 5 2 þ 1 20 8 U 1 I2C, SPI 35 1.78
16F84A 18 13 1k 64 64 e 1 20 e e e e 35 3.11
16F877A 40 33 8k 368 256 8 2 þ 1 20 e U 2 All 35 N/A
16F88 18 16 4k 368 256 7 2 þ 1 20 8 U 1 All 35 2.20
16F887 40 33 8k 368 256 14 2 þ 1 20 8 U 2 All 35 1.77
16LF1907* 40 33 8k 256 e 14 1 þ 1 20 16 U e UART 49 F
18F1220 18 16 2k 256 256 7 1 þ 3 40 8 U 1 UART 77 1.96
18F4320 40 36 4k 512 256 12 1 þ 3 40 8 U 2 All 77 4.81
18F4580 40 36 16k 1536 256 11 1 þ 3 40 8 U 2 All 83 4.38
18F6520 64 52 16k 2048 1024 12 1 þ 3 40 e U 5 All 77 5.93
18F97J60* 100 70 128k 3808 e 16 2 þ 3 42 e U 5 All þ

Ethernet
85 3.77

N/A: no longer available; F: future product at time of writing.
*Low-voltage operation (maximum 3.6 V).

2
7
0

C
hapter

1
2

12.2.2. Program Memory

The specification of memory size can only be finalized after the software has been developed,

but an experienced application developer should be able to anticipate this requirement fairly

early on. Otherwise, a chip with more than enough memory can be used at first, and one with

the correct capacity selected later on. If the program is developed in ‘C’ language, the memory

size required will be greater, because each program statement can expand into several machine

code instructions. In this case, an 18 series device is likely to be the best choice. Microchip

supply a free C compiler for the 18XXXX chips, and third party compilers are also available

for both the 18 and 16 series chips. PIC microcontrollers are generally supplied with flash

program memory, as this is the most flexible option for prototyping and production. If larger

volumes of chips with a fixed program are required, masked ROM program memory (not

reprogrammable) can be configured in the final manufacturing stage.

12.2.3. Data Memory

The file register RAM block, which includes the SRFs and GPRs, tends to increase in size with

the program memory size and chip complexity, and ranges from 16 to 4096 bytes in the 8-bit

PICs. Note that some blocks of RAM are unique, while others are common to all the RAM

banks (that is, the same register is accessed at the corresponding address in different banks),

while other address ranges may not be implemented at all. Therefore, the total amount of RAM

cannot simply be calculated as the number of locations per bank multiplied by the number of

banks. For example, the 16F690 has four banks of 128 locations, equivalent to 512 addresses.

The first 32 addresses in each bank are assigned as SFRs (total 128), but there are only 256

bytes in total of unique RAM locations (20he7Fh, A0heEFh and 120he16Fh). The remaining

Figure 12.1
Microchip Product selector tool

More PIC Microcontrollers 271

128 registers are duplicates or unimplemented. The number of variables and temporary data

storage blocks required can be totaled when the program has been developed, perhaps adding

an allowance for future expansion or changes to the specification. If non-volatile data storage is

needed, the EEPROM size must also be checked.

12.2.4. Internal Oscillators

To save on external components, many PICs now include an internal oscillator. In the ’690, this

runs at 8 MHz, or lower frequencies by division, with a default of 4 MHz selected if the

OSCCON register is not initialized and the internal oscillator selected in the configuration

word. More recently, 32MHz internal oscillators have been introduced. The frequency can be

calibrated using an internal register if a more accurate clock is needed. However, an external

crystal clock will still provide maximum accuracy. In recent chips, multiple clock modes are

available to optimize the tradeoff between clock speed, accuracy and power consumption.

Many chips now have an additional internal oscillator, an internal 31 kHz clock, which can be

connected to Timer 1 as an independent timebase and drives the power-up timer system.

12.2.5. Clock Speed

Clock speed is the primary factor in the performance of any microprocessor system, and is

critical in some applications. For example, in the motor control example previously described,

the higher the clock speed, the more precise the control can be, as the shaft speed can

potentially be measured more accurately. Most of the flash PICs currently available operate at

up to 20MHz (12 and 16 series) or 40MHz (18 series). This gives an instruction cycle time of

200 or 100 ns (nanoseconds) and an execution rate of 5 or 10MIPS (million instructions per

second). All PICs use a fully static design, which means that they can operate down to zero

frequency. The clock rate is limited by the time taken by the internal signals to rise and fall, so

correct performance is only guaranteed up to the maximum rated speed. The maximum speed

is also limited by power dissipation and the consequent heating effect.

12.2.6. Power Consumption

Power consumption is generally proportional to clock speed in complementary metal oxide

semiconductor (CMOS) devices, since most of the power is consumed when the transistors

switch on and off. This is illustrated by the current consumption curve for a typical device,

shown in Figure 12.2. For external crystal operation at clock frequencies between 4 and

20MHz, high-speed (HS) mode must be selected when programming the chip, and below

4MHz crystal (XT) mode. The power consumption at high speed may necessitate additional

cooling measures to keep a chip within its temperature limits, especially in the larger PICs. A

heat sink or even a fan, as found on the processor in a typical PC motherboard design, could be

272 Chapter 12

used. For this reason, a major development effort has recently been applied to reducing power

consumption. Extreme-low-power (XLP) devices now operate at low supply voltage (3 V) for

battery-powered operation, with a typical battery life of 8 years being claimed. Judicious use of

sleep and wake-up modes is also important in minimizing power consumption.

12.2.7. Packaging

Some sample integrated circuit (IC) packages are shown in Figure 12.3. The traditional

package for integrated circuits is the plastic dual in-line (PDIP) chip, which has two rows of

pins spaced at 0.1 inch intervals. The maximum number of pins that can practically be

accommodated in this type of package is 64, so other formats have been adopted for larger

0 4 20

17

Power
(W)

1.0

HS Mode XT Mode

3.4

0.2

Current
(mA)

Clock Frequency

Figure 12.2
PIC power consumption against crystal clock rate

(a) (b)

(c) (d)

Figure 12.3
MCU packages (18-pin) (not to scale): (a) plastic dual-in-line package (PDIP); (b) small outline
integrated circuit (SOIC); (c) shrink small outline package (SSOP); (d) quad flat no lead (QFN)

More PIC Microcontrollers 273

chips, and to reduce the board area consumed. The plastic leaded chip carrier (PLCC) package

has the pins arranged around four sides of a square package, which is designed to fit in

a recessed socket. The pin grid array (PGA) has pins arranged in a grid covering one side of the

package, with a flat socket mounting.

The actual IC occupies only a small central portion of the dual in-line (DIP) package, so

miniaturized packages are possible, if the means to connect them is provided. Surface-mount

components are now normally used in commercial products, as chips become larger, circuits

more complex, and products themselves miniaturized. The pins of the ICs are not fitted through

holes on the board, but soldered onto the surface on flat pads. Surface-mount boards require

very precise manufacturing techniques, generally being produced on automatic production

systems. Solder paste is applied by printing techniques, components are added by pick-and-

place machines, and the whole board is flow-soldered in one operation.

The small outline integrated circuit (SOIC) is a surface-mount DIL package with a pin pitch of

0.05 inches. The smaller shrink small outline plastic package has a pin pitch of 0.026 inches.

Quad flat pack (QFP) is a square surface-mount package for larger chips, such as the 44-pin

PIC 16F887, with pins on four sides. The larger 8-bit chips can use thin quad flat pack (TQFP),

with rows of pins on four sides, or ball grid array (BGA), which has balls of solder attached

instead of pins, ready for machine soldering.

12.2.8. Price

The relative cost for each chip shown in Table 12.2 is based on the ‘budgetary price’ quoted by

the manufacturer at the time of writing. Relative cost can be compared, while the actual price

will obviously increase in time, and will depend on the volume purchased and third-party

supplier prices. The individual price is determined by the complexity of the chip and also the

volume of production.

As the range is constantly updated, each design will be superseded by a chip with better

features; as the volume builds up, the new device becomes cheaper owing to economies of

scale in production and recovery of development costs. New chips may be also sold at

a reduced price as a marketing strategy. The older design may become relatively more

expensive, as well as having fewer features, before slipping into obsolescence. For example,

at the current time the guide price quoted for the original 16F84A is US $3.11, while the

pin-compatible replacement, the 16F819, which has analogue inputs and other extra features, is

only $1.78, and the 16F690, which has even more features, is $1.20. Therefore, while the older

chip has been used as an example because it is less complicated, the reader should consider

using the more recent chip in new designs, even if its features are not used to the full. Some

devices previously available are no longer produced. In particular, the 16F877A, which had

a comprehensive set of features in a 40-pin package, which made it versatile and popular, has

been superseded by the 16F887, which has an internal oscillator and other improvements.

274 Chapter 12

12.3. Peripheral Interfaces

In the block diagram of each chip, the peripherals are shown as separate blocks attached to the

internal data bus. These provide additional features such as timers, analogue inputs and serial

ports. These are set up for use by initializing the related SFRs. The appropriate combination of

peripherals is a major factor in chip selection.

12.3.1. Timers and CCP

Hardware timers are used for timing and counting operations, allowing the processor to carry

on with some other process while the timer process runs. Basic timer operation has been

described in Chapter 6, where a clock input drives a counting register to measure time or count

external events. Its functionality can be extended by using additional registers to store timer

values, creating a CCP module. CCP stands for capture/compare/PWM.

Capture mode provides input interval measurement (Figure 12.4a). The value in a timer

register is captured (stored) when an input changes; the time between the timer start and input

change is therefore recorded. In the motor application, for example, the timer could be started

when a pulse is received from the shaft sensor, and the time captured when the next pulse

arrives, giving the period of the shaft sensor pulse. An interrupt can be enabled to signal this

event.

Compare mode provides output interval generation (Figure 12.4b). A value is loaded into

a register, which is then continuously compared with a timer register as it runs. When the

register values match, an output pin is toggled and an interrupt generated to signal the timeout

event. This is a convenient way to generate a timed interval, so that, for example, an output

pulse waveform can be generated with set pulse period.

(a) (b)

Count Register

Capture Register

Clock

Trigger
Signal
from
Input

Read Captured Value

Comparator

Clock

Output
Changes When
Compare is True

Reference Register

Write Compare Value

Count Register

Figure 12.4
Timer CCP operations: (a) capture; (b) compare

More PIC Microcontrollers 275

In PWM mode, preset values are loaded into two registers representing the mark and space

period of the PWM output required (Figure 12.5). The timer value is then compared with the

mark register and the output toggled after the mark value is reached. The timer is then restarted

and compared with the space value as it runs, and the output toggled when the space value

matches. The process is repeated, causing the output from the flip-flop to toggle after each

mark and space interval, generating a PWM output.

12.3.2. Analogue Comparators

The comparator allows one voltage to be compared with another, and sets or clears its output

bit depending on the polarity of the input. Many PICs incorporate comparator inputs as well as

analogue/digital (A/D) inputs, with the result bits recorded in a relevant SFR. Often, there are

multiple inputs which can be set up to operate in different combinations, and also trigger

a range of output events, such as an interrupt. See, for example, the block diagram of the

16F690 C1 comparator module (Figure 8-2 in the data sheet).

12.3.3. Analogue/Digital Inputs

The analogue inputs are used in control systems with input sensors that produce a voltage,

current or resistance change in response to an environmental variation or system measurement.

For example, in the LPC board, a pot is connected to RA0, which is designated AN0 when used

as an analogue input. In the test program, it reads 0e5 V from the pot and uses this value to

control the speed of the LED output scan, by copying it into the delay counter as the initial

value. The temperature controller described in Chapter 13 is designed to accept inputs from

Count Register

Space Comparator

Clock

Space Register

Mark Register

Mark Comparator
Set

Flip
Flop

Reset

Data Bus

PWM
Output

Load
Mark

Register
Data Bus

Load
Space

Register

Figure 12.5
Pulse width modulation (PWM)

276 Chapter 12

temperature sensors which give an output change of 10 mV/�C. The PIC then operates outputs

to a heater or a cooling fan, which keep the temperature in the target system constant.

Most PICs provide 10-bit conversion. This means that the input voltage is converted to a 10-bit

number, giving a resolution of 1 in 1024, or better than 0.1%. This is good enough for all but

the most demanding applications. If the full resolution is not required, an 8-bit result can be

used by ignoring the two extra bits. Multiple analogue inputs are usually available; the PIC

16F690 has 12 (AN0 to AN11). Code for performing the analogue input conversion is given in

the LPC Program 7.1.

The analogue-to-digital conversion (ADC) system is illustrated in Figure 12.6. The port

containing the ADC inputs can be set up with a combination of analogue and digital inputs, or

all analogue. One of the analogue inputs is selected at a time for conversion, and the converter

output is stored in an ADC result register. The maximum voltage level to be converted

(reference voltage) can be set externally, or the internal supply voltage (þ5 V) can be used. In

the temperature controller board, an external voltage reference ofþ2.56 V is used, because this

gives a convenient 0.01 V per bit conversion for an 8-bit result. The converter is driven by the

chip clock, but a divider must be set up to allow the minimum specified conversion time (about

Analogue
to

Digital
Converter

ADC
MUX

ADC Control Registers

Channel
Select

Bits

Inputs

External
Reference

Voltage

Select
Vref

10-bit
Output

Input
MUX

Set Mix of
Analogue
or Digital

Inputs

Data
Bus

GO/
DONE

Divider

Clock Rate
Select

System
Clock

VADC

Internal Reference Voltage VDD

ON/
OFF

Interrupt

Analogue
Inputs

Figure 12.6
Analogue-to-digital converter general block diagram

More PIC Microcontrollers 277

20 ms); for example, if the chip clock is 20MHz, divide by 32 must be selected, and at 4MHz,

divide by 8. The GO/DONE bit in the control register is used to start a conversion; the same bit

indicates when the conversion is finished.

The ADC works by successive approximation, details of which can be found in standard

electronics references. The converter consists of a register, a digital-to-analogue converter

(DAC) and an analogue comparator. The register is loaded with the half-range value (512 for

10 bits) and this is converted to an analogue value by the DAC, whose maximum output is set

by the ADC reference voltage. The DAC output voltage is compared with the input, and if the

input is higher, the comparator value is increased by half of the remaining range

(512þ 256¼ 768, set bit 8). The input is compared again and the register value adjusted up or

down, until the value converges on the actual input value within 10 iterations.

12.4. Serial Ports

Serial communication ports allow the PIC to communicate with other MCUs, or exchange data

with a master controller, via a single connection. Serial connections may also be made with

external memory devices and sensors. There are several protocols available in PICs:

• USART (universal synchronous asynchronous receiver transmitter)

• SPI (serial peripheral interface)

• I2C (inter-integrated circuit)

• LIN (local interconnect network)

• CAN (controller area network)

• Ethernet

• USB (universal serial bus)

12.4.1. USART

RS232 is an asynchronous communication protocol previously used in the serial (COM) port of

the PC for connecting peripherals such as the mouse, before USB was developed. It is low

speed, but easy to understand, and has been used as the direct communication between

computers, terminals and other systems for many years. It is also still used to download

programs to the PIC MPSTART programmer module.

‘Asynchronous’ means that no separate clock signal is provided with the data, so correct

reception of data relies on the sender and receiver operating at the same speed, with reception

synchronized using a start bit for each byte. Serial data is sent and received as individual bytes

using a pair of shift registers (Figure 12.7a). After each bit is shifted out of the send register

onto the line, it must be shifted into the receiver register at the same time. In other words, the

receiver must sample the line during the time that the transmitted bit is present. It must then

take the next sample after the appropriate interval, which depends on the data rate.

278 Chapter 12

The ‘baud rate’ sets this time interval, and there is a set of standard rates of between 300 and

115 200 bits per second. The sender and receiver must be initialized to operate at the same baud

rate. At a typical rate of 19 200 baud (about 20 kbits/s), the bit time interval is about 50 ms. The

signal is illustrated in Figure 12.7(b). The line is high when inactive; the start of a byte is

indicated by the falling edge of a start bit. The receiver then samples the line at the required

interval to read each bit, and the sampling is retriggered at the start of each byte.

When the USART is operated in asynchronous mode (Figure 12.8), there is a separate data path

for send (TX) and receive (RX). One byte of data is transmitted at a time down the serial line,

with start, stop and optional error check (parity) bits. If an error is detected, a retransmission

can be requested. A synchronous mode is also available, when the TX pin is used instead to

(a)

(b)

xxx10001 1101xxxx
Serial Data Line

 daeR lellaraP daoL lellaraP
Send
Clock Receive

Clock

Shift Out

Idle Start Stop Idle
 Bit Bit/s

1 1 0 1 0 0 1 0

Data

Sample Data Line Here

Figure 12.7
USART operation: (a) shift register operation; (b) serial data signal

Host

Transmit Data, TXD
Receive Data, RXD

Peripheral

RXD
TXD

Figure 12.8
USART connections

More PIC Microcontrollers 279

carry a clock (CK) signal. This is sent alongside the data signal to clock the receiver, making

the process more reliable. In this mode, the device can still send and receive, but only in one

direction at a time.

The RS232 data signal produced by the PIC USART is output at TTL (transistoretransistor

logic) levels. Most terminals, such as the PC, will produce a signal that is transmitted at higher

bipolar voltage, typically � 12 V, to allow the signal to travel further on the line (up to about

100 m). If the PIC is to communicate with such a terminal, the signal must be passed through

a line driver, which will boost the voltage and shift the level as required.

12.4.2. SPI Bus

The SPI system uses three pins on each system device:

• Serial data out (SDO)

• Serial data in (SDI)

• Serial clock (SCK).

It is a single-master, multi-slave system, using hardware slave selection (Figure 12.9). To

exchange data with a slave, the master selects it by taking the slave select input low (!SS).

Synchronous 8-bit data is then exchanged via SDI or SDO, with a clock pulse to strobe in each

bit to the destination register. Owing to the hardware selection requirements, this system is

most suitable for communication between devices on the same board. Data can be transmitted

and received at the same time, at a clock rate of up to 5MHz with a 20MHz chip clock.

12.4.3. I2C Bus

The I2C (pronounced eye squared see) system needs only two pins on each system device:

• Serial data (SDA)

• Serial clock (SCL).

This system also uses synchronous mastereslave communication, but with a software- rather

than a hardware-based addressing system (Figure 12.10). As in a network, the destination

address is transmitted on the same line (SDA) before the data. A 7- or 10-bit address can be

used (up to 1023 slaves), which must be preprogrammed into an address register in each slave.

The slave then only picks up the messages with its own address. The clock can operate at up to

1 MHz. I2C is suitable for communication between separate microcontroller boards, since no

slave selection hardware connections are needed. Compare with SPI, the hardware is simpler,

but the software is more complex. Note that in the hardware diagram, the lines are pulled up to

þ5 V, giving active low, wired-OR operation on the serial bus and clock line.

280 Chapter 12

(a)

(b)

Master Slave 1 Slave 2 + 5V

SDA
SCL

7 6 5 4 3 2 1 0SD

SC

AcknowledgeAddress / Data Start

Figure 12.10
Inter-IC bus (I2C): (a) PC connections; (b) PC signals

(a)

(b)

Master

Serial Data Out, SDO
Serial Data In, SDI
Serial Clock, SCK

Slave Select SS1
Outputs SS2

SS3
etc

Slave 1

SDO
SDI
SCK

!SS

Slave 2

SDO
SDI
SCK

!SS

7

Data Bits

SDO/SDI

SCK

06 5 4 3 2 1

Figure 12.9
Serial peripheral interface (SPI) communication: (a) SPI connections; (b) SPI signals

More PIC Microcontrollers 281

12.4.4. LIN Bus

The LIN bus is a mixture of the I2C and RS232 protocols (Figure 12.11). The PIC interface is

designated EUSART (extended USART) to indicate that it supports this additional bus

option. It is a single-master, multi-slave protocol using a single bidirectional signal wire

operating at 9e18 V (12 V) with open collector output bus transceivers and pull-up resistors.

The transceivers are connected to the TX and RX pins as per RS232. Data and control bytes

are transmitted in asynchronous mode with start and stop bits in the same way as RS232, but

sent as message blocks with synchronization, identifier and up to 8 bytes of data, and

terminated by an error check byte in the same way as a network data frame. It is primarily

designed for automotive systems, where a reasonably simple and robust protocol is needed to

integrate distributed controllers into a network. See Microchip Application Note AN729 for

details.

12.4.5. CAN Bus

The CAN system (Figure 12.12) is also designed for transmitting signals in electrically noisy

environments, such as motor vehicle control, using differential current drivers operating at 5 V.

It is a multi-master system, meaning that any of the system nodes (electronic control units) can

send a message at any time. This consists of a data frame containing identifier bits, up to 8 data

(a)

(b)

Master
MCU

TX
RX

LIN
Transceiver

Slave MCU +
LIN Transceiver

Slave MCU +
LIN Transceiver

+12V

Synch
Field

Synch
Break

+12V (inactive)

Ident
Field

Data
Byte 1

Data
Byte 2

Last
Byte

Error
Check

0V

Synch
Break

Figure 12.11
LIN controller network: (a) hardware connections; (b) signal

282 Chapter 12

bytes, error checking and acknowledge bits. Collisions are resolved by each message having

a priority code within its identifier code. CAN bus is only currently available in selected

high-performance PIC 18 series devices.

12.4.6. Ethernet and USB

Ethernet and USB interfaces are now being added to some of the more powerful PIC MCUs, so

they can be connected directly to standard peripherals. Some PIC32 (32-bit) devices support

100Mb/s Ethernet, PIC24 (16-bit) chips do not, while some PIC18 (8-bit) chips offer 10Mb/s

Ethernet. All groups include chips with a USB 2.0 interface. Both interfaces require significant

additional hardware and firmware capabilities to support these complex communication

protocols.

More details on these communication interfaces is provided in Interfacing PICMicrocontrollers:

Embedded Design by Interactive Simulation (Newnes 2006) by this author.

Questions 12

1. Summarize the keydifferencesbetween thePIC10,12,16and18seriesofmicrocontrollers. (16)
2. State two advantages of in-circuit serial programming. (4)
3. From the table of PIC flash microcontrollers (Table 12.2), select for minimal cost and name:

(a) a device that has eight analogue inputs in the smallest package
(b) a device that could control two PWMmotor outputs, has EEPROM, runs at 40MHz and

can be programmed in C. (4)
4. Explain the essential difference between capture and compare timer operations. (3)
5. Describe the essential difference between SPI and I2C addressing. Which has more complex

hardware requirements? (3)

Answers on pages 424e5. (Total 30 marks)

Electronic Control
Unit ECU1

TX RX

ECU2

TX RX

CAN_H

CAN_L

Actuators

Sensors

Figure 12.12
CAN bus system

More PIC Microcontrollers 283

Activities 12

1. Download the data sheet and study the summary page for the PIC 12F675, 16F690 and
18F8720. Summarize the features of each, and suggest a typical application for each device.

2. A robot has four axes to be controlled by a PIC MCU. Each has a PWM speed controlled
motor and an incremental encoder with three digital outputs providing the position feed-
back. A block of EEPROM is needed to store up to 128 programmed positions, requiring
a 16-bit code for each axis for each position. Select the most suitable chip from the Microchip
website that could be used as a controller for the robot positioning system. Download the
data sheet and draw a block diagram for the system, identifying the pins that should be
connected to the motors and encoders. Outline how the controller will move the robot
between programmed positions. Refer back to Chapter 11 if necessary.

3. Sketch a block diagram for an alternative implementation of the robot controller in Activity 2
above, using a separate controller for each axis connected to a master SPI controller. Select
suitable chips for the master and slave controllers, and list the connections required.
Compare the cost of each system and suggest an advantage of the mastereslave system over
the single controller solution proposed in Activity 2.

284 Chapter 12

CHAPTER 13

More PIC Applications

Chapter Outline
13.1. TEMCON2 Temperature Controller 286

13.1.1. System Specification 286

13.1.2. Input/Output Allocation 288

13.1.3. Circuit Description 288

13.1.4. Hardware Development 292

13.1.5. Temperature Controller Test Program 293

13.1.6. Application Enhancements 296

13.2. Simplified Temperature Controllers 303
13.2.1. 16F818 Temperature Controller 303

13.2.2. 12F675 Temperature Controller 304

13.3. PIC C Programming 304
13.3.1. Comparison of 16 and 18 Series PICs 305

13.3.2. PIC C Programming 305

13.3.3. Advantages of C Programming 308

Questions 13 308

Activities 13 309

Chapter Points
• The PIC 16F887 has a full range of peripheral interfaces, with analogue inputs, serial ports, CCP

and PWM.

• The TEMCON2 temperature controller board has four sensors, three power outputs, a keypad and

two-digit display.

• TEMCON2 is programmed to maintain the temperature in a heating/cooling system within a set

range.

• A similar application is implemented without the keypad using the 16F818.

• A similar application is implemented without the display using the 12F675.

• The 18F4580 is similar to the 16F887, but can be programmed in ‘C’ and runs at twice the speed.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10013-8

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

285

http://dx.doi.org/

In Chapter 12, the features of the main groups of PIC� flash microcontrollers (MCUs) were

outlined. The 16 series provides an intermediate range of features, with between 13 and 33 I/O

pins and 1ke8k of program memory. The miniature group (10F/12F) of eight-pin chips have

six I/O pins and 1k instructions. The 18F high-performance group provides up to 64k

program memory and 70 I/O pins. In this chapter, an application for the 16F887 will be

described in some detail, along with how similar applications can be designed using smaller

devices, with more limited features.

13.1. TEMCON2 Temperature Controller

The 16F887 has a comprehensive set of peripheral features, including 14 analogue inputs, three

timers, four ECCP (Enhanced Capture Compare PWM) channels, extended universal

synchronous asynchronous receiver transmitter (EUSART), MSSP (Master Synchronous Serial

Port) and in-circuit debugging (ICD). The ’887 is a pin-compatible replacement for the

16F877A, with some extra features such as additional analogue inputs, comparators and pulse

width modulation (PtWM) outputs, an internal oscillator and local interconnect network (LIN)

connectivity.

The temperature controller application board TEMCON2 uses most of the available I/O,

matching the PIC selected to the application fairly closely. The 8k memory should be sufficient

for most application programs that might be developed for this hardware. A demonstration

program is provided which will exercise the simulation design and hardware for test purposes.

13.1.1. System Specification

A heating and ventilation system is required to control the environment in a space such as

a greenhouse where the temperature must be kept within set limits (0e50�C). A basic block

diagram is shown in Figure 13.1.

The unit will be programmed to accept a maximum and minimum temperature, or a set

temperature and operating range. The system will operate on the average temperature reading

from four sensors, to give a more accurate representation of the overall temperature. Using

more than one temperature sensor also allows the system to tolerate a fault in one sensor, if the

application firmware includes a check to see if any sensor is out of range. The temperature is

maintained by a relay switched heater and vent, and a fan which can be speed controlled via

a field effect transistor (FET) output. The fan is fitted to the heater, so that it can be used for

forced heating or cooling, depending on whether the heater is on. The FET interface allows

speed control of the fan by PWM. The system should operate as specified in Table 13.1.

Figure 13.2 shows the interfacing requirements for the application. Four temperature sensors

are used to monitor the temperature at different points in the target system. Fortunately, this

286 Chapter 13

application does not need much analogue signal conditioning on the input side, other than

capacitor decoupling to inhibit noise, and the temperature sensors can be connected directly to

the PIC. Their readings can be averaged, or processed with a weighting factor for each, to give

a representative value for the measured temperature.

The outputs are controlled via two different interfaces. Relays are used for the heater and

vent, assuming that on/off control is suitable. These interfaces are implemented as normally

open switched relays, so that an external power supply can be used. The fan output

demonstrates the alternative solid-state interface, using a general purpose power FET. This

allows proportional control, but the external circuit must be operated at 5 V. This interface

would need to be elaborated for a speed-controlled fan in a full-scale system, and the output

could be reallocated to one of the PWM outputs on the 16F887.

Controller

Heater

Fan

Temp Sensors
USER INPUT

Max Temp
Min Temp

Dead Band

DISPLAY

Max Temp
Min Temp
Run Temp

Heater Status
Fan Status

Vent

Greenhouse

Figure 13.1
Temperature control system

Table 13.1: Temperature controller function table

Measured temperature Heater Vent Fan Action

Temp << Min ON OFF ON Forced heating
Temp < Min ON OFF OFF Heating
Min < Temp < Max OFF OFF OFF Correct temperature
Temp > Max OFF ON OFF Cooling
Temp >> Max OFF ON ON Forced cooling

More PIC Applications 287

13.1.2. Input/Output Allocation

The I/O functions provided by the PIC 16F887 are detailed in Table 13.2. These were mapped

against the requirements of the application, and the most convenient grouping was decided,

giving the I/O allocation in Table 13.3.

13.1.3. Circuit Description

Figure 13.3 shows the schematic for the temperature controller. Each interface will be

described separately. The default internal 4 MHz clock is used, to give a convenient instruction

execution time, although no timing critical operations are required in this application.

Analogue Inputs

The four temperature sensors are connected to port A, with four pots providing dummy inputs.

It is expected that standard calibrated sensors (LM35 or similar) with an output of 10 mV/�C
will be used (0�C¼ 0 mV). The controller is designed to operate at up to 50�C, at which
temperature the sensor output is 500 mV. This low voltage is acceptable if the sensors are not

connected on long leads, which could pick up electrical interference. For more remote

operation, a dc amplifier should be used at the sensor end of the connection to increase the

voltage to, say, 5.00 V at 50�C, and the analogue-to-digital converter (ADC) rescaled

MCU

10mV/degC

2.56V

4 row outputs
3 column inputs

7 segments
2 digit select

Temp.
Sensor

x4

Test
Inputs x 4

ADC
Reference

12 Button
Keypad

2-Digit
7-Segment

LED Display

Heater Relay
Interface

Vent Relay
Interface

Fan FET
Interface

ICD
Interface

Buzzer

Figure 13.2
Temperature controller interfacing

accordingly. Screened leads should also be used. The inputs are protected from noise and

288 Chapter 13

Table 13.2: 16F887 pin functions (40-pin DIP package)

Pin No. Pin Label

12/31
11/32

VSS
VDD

Ground (0 V)
Positive supply (þ5 V nominal)

PORT A (8 BITS)

2 RA0/AN0/ULPWU/C12IN0- Digital I/O or analogue input or wake up input or comparator
input

3 RA1/AN1/C12IN- Digital I/O or analogue input or comparator input
4 RA2/AN2/Vref-/Cvref/C2INþ Digital I/O or analogue input or negative reference voltage for ADC

or comparator 2 input or reference output
5 RA3/AN3/Vrefþ/C1INþ Digital I/O or analogue input or positive reference voltage for ADC

or comparator input
6 RA4/T0CKI/C1OUT Digital I/O or input to timer 0 or comparator 1 output
7 RA5/AN4/SS/C2OUT Digital I/O or analogue input or slave select input (SPI mode) or

comparator 2 output
14 RA6/OSC2/CLKOUT Digital I/O or external clock circuit or instruction clock output
13 RA7/OSC1/CLKIN Digital I/O or external clock circuit or clock input

PORT B (8 BITS)

33 RB0/AN12/INT Digital I/O (interrupt on change) or analogue input or external
interrupt input

34 RB1/AN10/C12IN3- Digital I/O (interrupt on change) or analogue input or comparator
input

35 RB2/AN8/P1B Digital I/O (interrupt on change) or analogue input or PWM
output

36 RB3/AN9/PGM/CI2IN2- Digital I/O (interrupt on change) or analogue input or
programming mode or comparator 1 input

37 RB4/AN11/P1D Digital I/O (interrupt on change) or analogue input or PWM
output

38 RB5/AN13/T1G Digital I/O (interrupt on change) or analogue input or timer 1 gate
input

39 RB6/ICSPCLK Digital I/O (interrupt on change) or in-circuit serial programming
clock input

40 RB7/ICSPDAT Digital I/O (interrupt on change) or in-circuit serial programming
data input

PORT C (8 BITS)

15 RC0/T1OSO/T1CKI Digital I/O or timer 1 oscillator output or timer 1 clock input
16 RC1/T1OSI/CCP2 Digital I/O or timer 1 oscillator input or capture 2 input or

compare 2 output or PWM2 output
17 RC2/P1A/CCP1 Digital I/O or capture 1 input or compare 1 output or PWM1

output
18 RC3/SCK/SCL Digital I/O or synchronous serial clock input or output in SPI and

I2C modes
23 RC4/SDI/SDA Digital I/O or SPI data input or 12C data I/O
25 RC5/SDO Digital I/O or SPI data output

(Continued)

More PIC Applications 289

overvoltage by a 1k/1nF low pass filter; the input impedance at the ADC is high enough for this

to have a negligible effect on the input voltage measurement.

The ADC normally operates at 10-bit resolution, giving output values in the range 0e1023. It

needs reference voltages to set the maximum and minimum values for the input conversion.

These can be provided internally as VDD and VSS (supply values), but VDD does not give

a convenient conversion factor. Therefore, an external reference value was provided from a

Table 13.2: Continued

Pin No. Pin Label

26 RC6/TX/CK Digital I/O or USART asynchronous transmit or USART
synchronous clock output

27 RC7/RX/DT Digital I/O or USART asynchronous receive or USART synchronous
data output

PORT D (8 BITS)

19
20
21
22
27
28
29
30

RD0
RD1
RD2
RD3
RD4
RD5/P1B
RD6/P1C
RD7/P1D

Digital I/O
Digital I/O
Digital I/O
Digital I/O
Digital I/O
Digital I/O or PWM output
Digital I/O or PWM output
Digital I/O or PWM output

PORT E (4 BITS)

8
9
10
1

RE0/AN5
RE1/AN6
RE2/AN7
RE3/MCLR/Vpp

Digital I/O or analogue input
Digital I/O or analogue input
Digital I/O or analogue input
Digital I/O or master clear input or programming voltage input

Table 13.3: Temperature controller I/O allocation

Device Function 16F887 Pin Initialization

Temperature sensors 0e512 mV¼ 0e51.2�C RA0, RA1, RA2, RA5 AN0, AN1, AN2, AN4
ADC reference voltage 2.048 V RA3 VREFþ
Heater Switched output RE0 Digital output
Vent Switched output RE1 Digital output
Fan Switched output RE2 Digital output
4� 3 keypad Read column

Scan row
RD0, RD1, RD2
RD3, RD4, RD5, RD6

Digital output
Digital input

2� 7-segment display Segments
Digit select

RC1eRC7
RB1, RB2

Digital output
Digital output

Buzzer Audio alarm RB0 Digital output
ICPD interface Program & debug RB3, RB6, RB7 N/A

290 Chapter 13

2.7 V Zener diode and potential divider, giving Vrefþ adjusted to 2.048 V. This gives

a conversion factor of 2048/1024¼ 2 mV per bit. To simplify the software, and to cover the

correct range, only the low 8 bits of the ADC result will be used in the test program, with

a maximum value of 255. At 50�C, the input will be 500 mV/2 mV¼ 250, giving a resolution

of 0.2�C per bit. The test pots allow the input to set manually, to check the operation of the

software without having to heat and cool the target system. These can be switched in and out as

required via a bank of dual in-line package (DIP) switches.

Outputs

Two types of output device are provided: relay and FET. The relay allows the load circuit to be

isolated (electrically separate) from the controller. The external circuit operates with its own

supply, so the load (heater in this case) can be powered from a single or three-phase supply. The

relay is easy to use, but its changeover is relatively slow, and the contacts may wear out in time.

The FET interface is more reliable, as it is solid state. The disadvantage in this design is that the

load has to operate from the same supply as the FET, the 5 V board supply. It also does not

Figure 13.3
TEMCON2 temperature controller schematic

More PIC Applications 291

provide full electrical isolation between the controller and the load. However, the FET interface

can be switched at high frequency, allowing PWM speed control, and could be modified for

isolated operation. All the outputs include an on-board status light-emitting diode (LED).

Keypad

The 12-button keypad allows the user to input the required temperature and other operating

parameters as required by the application program. The target temperature, upper and lower

limits, alarm levels and so on would be input as two digits. The keypad is simply a set of

switches connected in a row and column arrangement, and accessed by a scanning routine. If

the row inputs (A, B, C, D) are all set high initially, and no button is pressed, all the column

outputs (1, 2, 3) will be high (pulled up to 5 V). A ‘0’ is then output on each row in turn, and, if

a button is pressed, that ‘0’ will appear at the column output and can be detected by the MCU.

The combination of the active row and column identifies the key.

Display

A seven-segment display is used, as it is relatively easy to drive compared with the liquid

crystal display (LCD), and is self-illuminating. The encoding has been covered in Chapter 10;

a look-up table (Table 10.2) provides the output combination for each displayed digit. In this

case, two digits are required, but they can both be operated from the same set of outputs by

multiplexing. The digits are switched on alternately via Q1 and Q2, at a rate that is fast enough

for the digits to appear to be on at the same time, albeit at reduced brightness. Since this

effectively halves the average current, the current limiting resistors otherwise needed in the

display outputs are unnecessary. Since the switching transistor is acting as a constant current

source, and this current will be shared among those segments that are lit, there may be some

variation in brightness depending on the digit displayed. This could be improved by using

a constant voltage source to control the common terminal current.

Other Interfaces

A buzzer is fitted to provide an audible alarm output. This can be used to signal system failure

or, for example, the temperature being too low for too long. Audible feedback from keystrokes

is also desirable. A manual reset is provided, so that the program can be restarted without

powering down. This will be useful for testing as well as in normal operation. In-circuit

programming and debugging are provided via the ICPD connector. An ICD module must be

connected between the host PC and the application board.

13.1.4. Hardware Development

The circuit was developed using Labcenter� ISIS schematic capture software, a component of

Proteus VSM, which provides animated drawing objects for integrated software and hardware

testing (see Appendix E for details). When the circuit had been tested by simulation,

292 Chapter 13

a stripboard implementation was devised (Figure 13.4). This layout was designed for an earlier

version of the board using the pin-compatible PIC 16F877A chip, with a common anode

display, so slight modifications would be needed to implement the TEMCON2 circuit in

Figure 13.3.

A demo target system was constructed of this original design, with two filament lamps as the

heaters, operating from a high-current 5 V supply. A 5 V central processing unit (CPU) fan was

fitted as the cooling element, and the temperature sensors were arranged symmetrically inside

the enclosure. The wiring of the target hardware is shown in Figure 13.5. Note that there is

a sensor output on the fan that could be used to monitor the actual fan speed, if a suitable

interface were added to convert the fan sensor pulse to TTL (transistoretransistor logic) levels.

The vent was not physically implemented in this test hardware.

The photograph of the finished system (Figure 13.6) shows the simulator at the right of the

picture, with the ICD module (enclosed in ABS box) connected to the ICPD connector on the

TEMCON board. Five-volt power supplies and a host PC would complete the system. When

final hardware testing was completed, an application board was created using Labcenter

ARES� printed circuit board (PCB) layout software, shown in Figure 13.7. This incorporated

an on-board þ5 V supply for operation from a mains adapter.

13.1.5. Temperature Controller Test Program

Program 13.1 was written to exercise the hardware and to get started in developing applications

for the TEMCON2 system, using hardware built to this design or the simulation download.

The program will read in the analogue inputs (select the test inputs by setting the dual in-line

(DIL) switches on) and display the raw data on the displays. Pressing a key on the keypad will

select an analogue input for display, key ‘1’ for input 1, and so on to ‘4’, then repeating for keys

5e8. An apparently random pattern results, which changes if the test pots are varied, indicating

that the hardware input and display interfaces are working. Key 9 will sound the buzzer, while

‘*’,‘0’ and ‘#’ will operate the heater, vent and fan, respectively. A full header has been

included with as much information as possible: details of the target system, program

description, register initialization, port allocation and so on.

The routine to read in an analogue input is based on the model routine provided in the data

sheet, with 20 ms settling time. The conversion is started by setting the GO bit in the ADC

control register, and then waiting for it to be cleared by the ADC to indicate that the conversion

is complete. In this program, only 8 of the 10 bits of the ADC result are used, so the result is

‘right justified’ to place the least significant 8 bits in the ADRESL register for output to the

display. Note that ADRESL is in bank 1 in the 16F887, requiring this bank to be selected and

deselected as necessary. In a working program, the analogue input value would be converted

into a two-digit decimal value for the display. Using the conversion scaling calculated above,

More PIC Applications 293

1

Q5
D6

Relay 1
Q3

D4

Relay 2

Q4

D5

8 X 220R

2X
7-Segment

Display

4 X 10K
Pots

X4
DIP
Switch

Push
Button

x4 1nF

PIC
16F877

x6 SIL IDC
Connector

Buzzer
under
3X4
Keypad

Q1, Q2

Relay Outputs
FET

Output

Temperature Sensor Inputs
+5V 5V

PSU Test Input Pots

Figure 13.4
Stripboard layout for original TEMCON board

294 Chapter 13

Sensor 2 Output (0–512 mV)
Heater +5 V (1A)
Sensor 1 Output (0–512 mV)
0 V

Fan Sensor Output

Fan Control (0 V = ON)

+5 V (100 mA)
Sensor 3 Output (0–512 mV)
Heater 0 V
Sensor 4 Output (0–512 mV)

Temp Sensor 1 Temp Sensor 2

Temp Sensor 3 Temp Sensor 4

Heater 1

Heater 2

FAN

Figure 13.5
Greenhouse simulator wiring

(a) (b)

Figure 13.6
TEMCON temperature controller hardware: (a) stripboard version of TEMCON board;

(b) TEMCON board with ICD module and dummy load

More PIC Applications 295

a temperature of 50�C would give a result of 250 (in binary) in ADRESL, with the result

right justified. Only a quarter of the ADC range is then being used, because the input range

is only 500 mV. This result can then be converted into the corresponding display digits ‘5’

and ‘0’, and so on down to zero.

The keyboard scanning routine uses a simple method to check if each key in each row has

been pressed, then calls the required action. A more elegant and compact keyboard scanning

method is possible when reading in numerical values. A full working program would allow

the user to enter the maximum and minimum values for the target temperature, and then go

into run mode, where the temperature would be controlled within the set range by operation of

the heater, vent and fan. An outline of this application is shown in Program 13.2.

13.1.6. Application Enhancements

It is always useful to consider how an application design could be improved, even if it is

ultimately decided that the design effort or extra hardware costs are not justified by the

improved performance. As mentioned above, the PWM module could be used to control the

speed of the fan. The display could be upgraded to an alphanumeric LCD, so that more

information could be displayed and the operating parameters shown to a greater degree of

precision. A serial communication port could send the temperature data to a master controller,

and receive new operating parameters. If a PC were acting as the host, an external USART/

USB converter would be needed. The PC could display the operating data, perhaps in graphical

form, or as a plot of temperature variation over time. This data could then be saved on disk, and

sent via a network to a supervisory system.

Other references on interfacing which cover the range of techniques needed for input and

output in more detail include Interfacing PIC Microcontrollers: Embedded Design on

Interactive Simulation by the author (Newnes 2006).

Figure 13.7
TEMCON temperature controller board

296 Chapter 13

;***
; Source File: TEMCON1.ASM
; Design & Code: MPB
; Date: 13-1-11
; Version: 1.0
;
; Target Hardware: TEMCON Board
; Simulation: Proteus VSM Ver7.7
; ISIS Design File: TEMCON.DSN
;
;***
;
; Test program for PIC887 Controller Board
;
; Circuit description:
; PIC 16F887 flash microcontroller receives 4 analogue
; inputs from temperature sensors (or test input pots)
; to control Heater, Vent and Fan in a target system.
; Target temp will be set up using keypad input and
; displayed on 2-digit multiplexed LED display.
;
; Test program:
; Checks all inputs and outputs for correct operation
; - Press keypad buttons 1-4 to display input pots
; - Buttons 5-8 ditto
; - Button 9 to sound buzzer
; - Button * to operate HEATER output
; - Button 0 to operate VENT output
; - Button # to operate FAN output
;
; Configuration:
; -Internal clock mode (4MHz, 1us per instruction)
; -Power-up timer enabled
; -Watchdog timer disabled
; -Code Protection off
;
; I/O ALLOCATION **
;
; Analogue temp sensors input (10mV/degC) RA0,RA1,RA2,RA5
; ADC reference volts input (2.048V) RA3
; Buzzer output RB0 = toggle
; 7-segment display Select lo digit RB1 = 1
; Select hi digit RB2 = 1
; Segments RC1 - RC7 = 1
; Keypad column detect input (active low) RD0 - RD2
; Keypad row select output RD3 - RD6 = 0
; Relay interfaces Heater RE0 = 1
; Vent RE1 = 1
; FET interface Fan RE2 = 1
;
; Data direction codes:
; TRISA = 11111111
; TRISB = 11111000
; TRISC = 00000001
; TRISD = 00000111
; TRISE = 00000000
;

Program 13.1
Test program for TEMCON board

More PIC Applications 297

; ADC SETUP **
;
; ADCON0 Bits 76 01 = A/Dclock = f/8)
; Bits 5432 Channel Select (AN0 - AN13)
; Bit 2 Go=1 / Done=0
; Bit 0 A/D module enable = 1
; ADCON0 = 01xxx001 depending on channel required
;
; ADCON1 Bit 7 1 = RIGHT justify result
; Bits 3210 0010 = RA0-RA5 analogue
; RE0-RE2 digital
; ADCON1 = 00000010
;
; ASSEMBLER DIRECTIVES ***
;
 PROCESSOR 16F887 ; Select processor
 INCLUDE "P16F887.INC" ; Include file
; 0x00E4 = CONFIG CODE 1
; 0XFFFF = CONFIG CODE 2
; ...
;
count EQU 020 ; assign GPR1 for counter
;
; ..
;
; Set origin at address 000:
 org 0x000
;
; START PROGRAM ***

 nop ; No op. required at 000 for ICD mode

; Initialise control registers

 banksel ANSEL ; Select Bank 3
 movlw b'00011111' ; Set Port A anlogue
 movwf ANSEL ; ..& Port E digital
 clrf ANSELH ; Set Port B digital

 banksel TRISB ; Select Bank 1
 movlw b'11111000' ; Set up..
 movwf PORTB ; display select
 clrf TRISC ; display outputs
 movlw b'10000111' ; Set up..
 movwf PORTD ; keypad I/O
 clrf PORTE ; relay/FET outputs
 movlw B'10000000' ; A/D right justified,
 movwf ADCON1 ; ..& internal ref
 movlw 0FF
 movwf ADRESL

 banksel PORTC ; Select bank 0
 clrf PORTC ; Clear outputs
 movlw B'01000001' ; A/D Fosc/8, AN0,
 movwf ADCON0 ; ..& enable

; RB3, RB6, RB7 reserved for ICD operation
;

Program 13.1: (continued)

298 Chapter 13

; Initialise outputs ..

 banksel PORTA ; select bank 0
 clrf PORTB ; switch off outputs
 clrf PORTD
 clrf PORTE
 movlw 0FF ;
 movwf PORTC ; all segments on
 goto start ; jump over subroutines

; Subroutine to wait about 0.8 ms

del8 clrf count ; Load time delay
again decfsz count ;
 goto again ;
 return ;

; Subroutine to get analogue input

; Wait 20us ADC aquisition settling time ..

getAD movlw 007 ; 3us per loop
 movwf count ;
down decfsz count ;
 goto down ;

; Get analogue input ..

 bsf ADCON0,GO ; Start A/D conversion
wait btfsc ADCON0,GO ; Wait to complete
 goto wait ; by testing GO/DONE bit
 return ; with result in ADRESL

; Subroutine to show ADC result

show nop
 banksel ADRESL
 movf ADRESL,W ; move ADC result
 banksel PORTC
 movwf PORTC ; to display
 return

; Subroutines to process keys

proc1 movlw b'01000001' ; Select channel 0
 movwf ADCON0 ; and
 call getAD ; and get analogue input
 return ; for next key

proc2 movlw b'01000101' ; Select channel 1
 movwf ADCON0 ; and
 call getAD ; and get analogue input
 return ; for next key

proc3 movlw b'01001001' ; Select channel 2
 movwf ADCON0 ; and
 call getAD ; and get analogue input
 return ; for next key

proc4 movlw b'01010001' ; Select channel 4
 movwf ADCON0 ; and
 call getAD ; and get analogue input
 return ; for next key

Program 13.1: (continued)

More PIC Applications 299

wait0 btfss PORTD,0 ; * button released?
 goto wait0 ; no, wait
 return ;

proc0 bsf PORTE,1 ; switch on vent output
wait1 btfss PORTD,1 ; * button released?
 goto wait1 ; no, wait
 return ;

proch bsf PORTE,2 ; switch on fan output
wait2 btfss PORTD,2 ; * button released?
 goto wait2 ; no, wait
 return ;

; Routine to scan keyboard ..

scan movlw 0FF ; Deselect...
 movwf PORTD ; ...all rows on keypad

; scan row A of keypad

 bcf PORTD,3 ; select row A

 btfsc PORTD,0 ; test key 1
 goto key2 ; next if not pressed
 call proc1 ; process key 1

key2 btfsc PORTD,1 ; test key 2
 goto key3 ; next if not pressed
 call proc2 ; process key 2

key3 btfsc PORTD,2 ; test key 2
 goto key4 ; next if not pressed
 call proc3 ; process key 3

; scan row B of keypad

key4 bsf PORTD,3 ; deselect row A
 bcf PORTD,4 ; select row B

 btfsc PORTD,0 ; test key 4
 goto key5 ; next if not pressed
 call proc4 ; process key 4

key5 btfsc PORTD,1 ; test key 5
 goto key6 ; next if not pressed
 call proc1 ; process key 5

key6 btfsc PORTD,2 ; test key 6
 goto key7 ; next if not pressed
 call proc2 ; process key 6

; scan row C of keypad

key7 bsf PORTD,4 ; deselect row B
 bcf PORTD,5 ; select row C

 call del8 ; delay about 0.8ms
 bcf PORTB,0 ; Toggle buzzer off
 call del8 ; delay about 0.8ms
 return ; for next key

procs bsf PORTE,0 ; switch on heater

proc9 bsf PORTB,0 ; Toggle buzzer on

Program 13.1: (continued)

300 Chapter 13

; scan row D of keypad

keys bsf PORTD,5 ; deselect row C
 bcf PORTD,6 ; select row D

 btfsc PORTD,0 ; test key *
 goto key0 ; next if not pressed
 call procs ; process key *

key0 btfsc PORTD,1 ; test key 0
 goto keyh ; next if not pressed
 call proc0 ; process key 0

keyh btfsc PORTD,2 ; test key #
 goto done ; next if not pressed
 call proch ; process key #

; all done

done bsf PORTD,6 ; deselect row D
 clrf PORTE ; clear outputs
 return ; to main loop

; Main program ***

start bcf PORTB,2 ; switch off high digit
 bsf PORTB,1 ; and low digit on
 call scan ; and read keypad
 call show ; and display

 bcf PORTB,1 ; switch off low digit
 bsf PORTB,2 ; and high digit on
 call scan ; and read keypad
 call show ; and display

 goto start ; repeat main loop

 END ; of source code

 goto key8 ; next if not pressed
 call proc3 ; process key 4

key8 btfsc PORTD,1 ; test key 5
 goto key9 ; next if not pressed
 call proc4 ; process key 2

key9 btfsc PORTD,2 ; test key 2
 goto keys ; next if not pressed
 call proc9 ; process key 3

 btfsc PORTD,0 ; test key 4

Program 13.1: (continued)

More PIC Applications 301

TEMCONAPP1
 Initialise
 Ports
 Port A = Temp sensor inputs(4)
 Port B = Display digit select(2),ICP/D(3)
 Port C = Display segments(7)
 Port D = Keypad(4 outputs, 3 inputs)
 Port E = Heater, Vent, Fan outputs

 ADC Right justify, 4 channels
 ADC frequency Fosc/8, select input AN0

 GetMaxMin

 Scan keyboard
 Store & display first digit of maxtemp
 Scan keyboard
 Store & display second digit of maxtemp
 Convert to byte MaxTemp (0-200)

 Scan keyboard
 Store & display first digit of mintemp
 Scan keyboard
 Store & display second digit of mintemp
 Convert to byte MinTemp

 Cycle
 Read tempsensor1 AN0
 Read tempsensor2 AN1
 Read tempsensor3 AN2
 Read tempsensor4 AN5

 IF sensor out of range
 replace with previous value
 Calculate AverageTemp

 Display AverageTemp
 MSD = AverageTemp/10
 Get 7-seg code & display MSD
 LSD = Remainder
 GEt 7-seg code & display LSD

 IF AverageTemp > Mintemp
 switch heater OFF
 ELSE switch heater ON
 IF AverageTemp > Maxtemp
 switch vent ON
 ELSE switch vent OFF
 IF AverageTemp > Maxtemp + 4
 switch fan ON
 ELSE switch fan OFF

 GOTO Cycle

Program 13.2
Outline of temperature controller application

302 Chapter 13

13.2. Simplified Temperature Controllers

We will now briefly look at using a couple of other chips to create simplified versions of the

temperature controller.

13.2.1. 16F818 Temperature Controller

The PIC 16F818 is a replacement part for the 16F84A. It has a compatible pin-out

(Figure 13.8), and additional features at a lower cost. Sixteen I/O pins are available, including

five analogue inputs. It has 1k words of program memory; if extra memory is needed, the

16F819 has the same features but 2k program memory. As usual, each pin has multiple

functions, other than the two supply pins. Analogue inputs can be selected on RA0eRA4, or

external reference voltages. There is a capture, compare and PWM (CCP) module and

a synchronous serial port offering serial peripheral interface (SPI) or inter-integrated circuit

(I2C) modes. Other special features are a variety of power-saving modes in addition to the usual

‘sleep’, an internal oscillator which obviates the need for external clock components, and

in-circuit programming and debugging.

This chip can be used in the temperature controller if the keyboard is eliminated, and the set

temperature is input from a pot via one of the analogue inputs (Figure 13.9). A fixed control

range might be acceptable, or other analogue inputs assigned for setting maximum and

RA2/AN2/Vref- 1 18 RA1/AN1
RA3/AN3/Vref+ 2 17 RA0/AN0

RA4/AN4/T0CKI 3 16 RA7/OSC/CLKI
RA5/!MCLR/Vpp 4 15 RA6/OSC2/CLKO

Vss 5 14 Vdd
RB0/INT 6 13 RB7/T1OSI/PGD

RB1/SDO/CCP1 7 12 RB6/T1OSOT1CKI/PGC
RB2/SDO/CCP1 8 11 RB5/!SS
RB3/CCP1/PGM 9 10 RB4/SCK/SCL

Figure 13.8
PIC 16F818 pin-out

AN0 RA5
AN1 RA6
AN2 RA7
AN3

RB0 - RB7
AN4

x8 Display

Temp.
Sensor
Inputs

x4

Set Temp

Heater
Vent
Fan

Figure 13.9
16F818 temperature control block diagram

More PIC Applications 303

minimum temperatures. The display digit selection can be reconfigured to use only one output,

or binary coded decimal (BCD) displays used which need only four outputs each. The

application then only needs 16 I/O pins. Operating data could be transferred via the serial

interface if the display is omitted (RB1, RB2 and RB4).

13.2.2. 12F675 Temperature Controller

The 10 and 12 series of PIC mini-chips offer a minimal set of features in eight-pin packages.

The pin-out for the 12F675 illustrates the point (Figure 13.10). It can be configured with six

plain digital I/O pins, but also offers two timers, an analogue comparator or four analogue input

channels. The 12F629 is the same, except that it does not include the ADC and is therefore

a little cheaper. An internal oscillator and in-circuit programming are also available.

A temperature controller could be implemented using this chip if only two analogue inputs are

used (Figure 13.11). It could operate with a fixed set temperature, or another analogue input

could be used as a set temperature input. With no display, a dial on the set temperature pot may

be useful.

13.3. PIC C Programming

The 18 series are the most powerful of the 8-bit PIC microcontrollers. The group offers a large

selection of different combinations of advanced 8-bit features, and the larger memory size

means that ‘C’ can be used for application programming, instead of assembler. The instruction

set of 75 16-bit instructions is designed to support this option. New low-power consumption

devices are being added to this range all the time.

Vdd 1 8 Vss
GP5 / T1CKI / OSC1 / CLKIN 2 7 GP0 / AN0 / Cin+

GP4 / AN3 / !T1G / OSC2 / CLKOUT 3 6 GP1 / AN1 / Cin- / Vref
GP3 / !MCLR / Vpp 4 5 GP2 /AN2 / T0CKI / INT / Cout

Figure 13.10
12F675 pin-out

AN0 GP3
AN1 GP4

GP5

AN2

Temperature
Sensors

Set
Temperature

Heater
Vent
Fan

Figure 13.11
12F675 temperature controller

304 Chapter 13

13.3.1. Comparison of 16 and 18 Series PICs

A small selection of the available 18F devices is included in Table 12.2. The architecture is

somewhat more complex than the 14-bit devices, with extra blocks for multiplication,

a hardware data table access, additional file select registers and other advanced features.

However, the data bus is still 8 bits. Taking the 18F4580 as an example, in terms of peripheral

features it is comparable to the 16F887 described in Section 13.1, so a comparison of the two

devices will be made to illustrate the differences and similarities of the two groups (Table 13.4).

As can be seen, the 18 series device has some advantages: 40MHz clock rate, 16k program

memory and more data memory. However, bear in mind that a program written in C will not be

as code efficient as an assembly language equivalent, so these advantages may or may not

translate into faster performance, depending on the application and the way that it is structured.

The main advantage is that more complex operations, such as mathematical functions, are

easier to program in C. For example, the conversion of binary temperature readings to two-digit

BCD will be much easier in the temperature controller above. The 18 series PIC has a richer

instruction set, including instructions such as multiply, compare and skip, table read,

conditional branch and move directly between registers, so still has advantages even when

programmed in assembly language.

13.3.2. PIC C Programming

For those readers unfamiliar with C programming, a simple example is shown in Program 13.3.

The program will give the same output as BIN1.ASM assembly language program. The

program must be converted to PIC 16-bit machine code using the MPLAB C18 Compiler,

Table 13.4: Comparison between the 16F877 and the 18F4580

Feature 16F887 18F4580

Total pins 40 40
Input/output pins 33 36
Ports A, B, C, D, E A, B, C, D, E
Clock 20MHz 40MHz
Instruction bits 14 16
Program memory (instructions) 8k 16k
Instruction set size 35 75/83
Data memory (bytes) 368 1536
EEPROM (bytes) 256 256
Interrupt sources 14 20
Timers 3 4
Capture, Compare, PWM modules 2 2
Serial communications MSSP, USART MSSP, USART, CAN, LIN
Analogue inputs 14� 10 bits 11� 10 bits
Resets POR, BOR POR, BOR, Stack, Programmed

More PIC Applications 305

which is supplied as an add-on to the development system. This compiler recognizes ANSI

(American National Standards Institute) C, the standard syntax for microcontrollers. The C

compiler must be selected in the development mode dialogue when building the application.

The main elements of the program are as follows:

/* comment */

Comments in C source code are enclosed between /* and */ and can be run over several lines. A

semicolon is used in assembler.

#include<p18f4580.h>

The ‘include’ is a compiler directive that calls up a header file named ‘p18f4580.h’, which has

the same function as the include file in assembler, in that it contains predefined register labels

for that particular processor and the corresponding addresses.

int counter

This assigns a label to a register and declares that it will store an integer, or whole number. A

standard integer in C is stored as a 16-bit number, requiring two data random access memory

(RAM) general purpose register (GPR) locations. EQU provides the equivalent operation in

assembler.

/* BIN1.C M Bates Version 1.0

 Program to output a binary count to Port B LEDs

***/

#include <p18f4580.h> /* Include port labels for this chip */
#include <delays.h>

int counter /* Label a 16-bit variable location */

void main(void) /* Start main program sequence */
{
 counter = 0; /* Initialise variable value */
 TRISB = 0; /* Configure Port B for output */

 while (1) /* Start an endless loop */
 {
 PORTB = counter; /* Output value of the variable */
 counter++; /* Increment the variable value */
 Delay10KTCY(100); /* Wait for 100 x 10,000 cycles */
 }
} /* End of program */

Program 13.3
A simple PIC ‘C’ program

306 Chapter 13

void main(void)

This rather peculiar syntax simply indicates, as far as we are concerned here, the start of the

main program sequence. The following brace (curly bracket) starts the main program block,

with a corresponding brace at the end. These are lined up in the same column and the main

program tabbed in between them, so that they can be matched up correctly.

counter ¼ 0;

Avalue of 0 is initially placed in the variable location (low byte). The equivalent in assembler

is MOVLW, followed by MOVWF.

TRISB ¼ 0;

Avalue 0 is loaded into the data direction register of port B to initialize the port bits for output

to the LEDs.

while(1)

This starts a loop, which will run endlessly. A condition is placed in the brackets that control

the loop. For example, the statement could read ‘while(count<256)’, in which case the

following group of statements within the curly brackets (braces) would execute 255 times,

counting up to the maximum binary value and stopping. The value 1 means the condition is

‘always true’, so the loop is endless, until reset. This translates into GOTO in assembler, with

DECFSZ providing the conditional test.

PORTB ¼ counter;

The value in counter is copied to port B data register for display on the LEDs (assembler

equivalent: MOVxx).

counterþþ;

The variable value is incremented each time the loop is executed. This causes the output to be

incremented the next time (assembler equivalent: INCF).

Delay10KTCY(100);

This calls a predefined block of code, which provides a delay, so that the LED output changes

are visible. At a maximum clock rate, the processor instruction cycle time is 0.1 ms, so the delay

works out to 0.1 s (10 000� 100 cycles). The overall count cycle will then take 25.6 s. The

delay function is an example of a function call, corresponding to a subroutine in assembler. We

know that this is implemented in assembler as a software delay loop or hardware timer

operation.

The layout of the program, with tabs, is important for understanding the program and checking

the syntax if there are logical errors. However, the layout does not affect the program function,

More PIC Applications 307

only the sequence of characters. Nevertheless, the statements must be all on one line; line

returns are not allowed within a statement.

Each complete statement is terminated with a semicolon. Note that some are not complete in

themselves, and do not have a semicolon. For example, ‘while(1)’ is not complete without the

loop statements, or at least the pair of braces. The close brace terminates the ‘while’

statement. The whole of the main loop, and any functional subblock, must be enclosed

between braces.

13.3.3. Advantages of C Programming

The C compiler converts the program into PIC 16-bit machine code. Most of these C

statements translate into more than one machine code instruction. This can be confirmed by

studying the list file, which is produced by disassembling the machine code.

The pseudocode for the temperature controller above (Program 13.2) can probably be more

easily translated into C than assembly language. For example, the conditional control

operations defined using IF.THEN statements will translate directly, whereas, in assembler,

they have to be implemented by suitable combinations of ‘Bit Test and Skip’ with ‘Goto’ or

‘Call’. The comparison of the ‘average temperature’ with the set values can be done in one

statement in C, but in assembler needs a subtract or compare prior to a bit test, which is much

more complicated. On the other hand, checking bit inputs is not as easy in C as in assembler, as

ANSI C contains no individual bit operations. Bit status in a register has to be checked by using

a logical or numerical range check.

There are many references on C programming. To program a microcontroller in C, only the

basic set of statements and simple data structures will probably be needed, so if the reader has

some knowledge of C already, using it to develop PIC applications should not be too difficult.

For further details, see Programming 8-Bit PIC Microcontrollers in C with Interactive

Hardware Simulation by this author (Newnes 2008). This uses the CCS C compiler, which has

a complete set of ready-made functions that simplify the C code, especially I/O handling and

mathematical functions.

Questions 13

1. (a) What interfacing modifications are recommended for the LM35 temperature sensor if the
connections are over 1 m long? (4)

(b) For the TEMCON2 system, calculate the output of the LM35 sensor at 25�C, and
the decimal value that would be found in the ADRESL on completion of an A/D
conversion of this input, if the result is right justified. (4)

2. State one advantage of (a) the relay output and (b) the FET output as used in the
temperature controller. (4)

308 Chapter 13

3. Describe briefly how a multiplexed seven-segment LED display works, and its advantage in
terms of I/O requirements. (4)

4. Suggest two reasons why the PIC 16F818 would be preferred over the 16F84A in a
temperature control application. (4)

5. Compare PIC assembler and ANSI C programming, outlining the advantages of each. (5)

Answers on page 425. (Total 25 marks)

Activities 13

1. Devise an alternative keypad scanning routine to that in Program 13.1 using the rotate
instruction, such that the binary value for the keys 0e9 are stored in a suitable register.

2. Design and implement the fully functional program for the temperature controller based on the
pseudocode provided in Program 13.2. The user will enter an upper and lower temperature limit,
and set the controller to run mode, where the outputs are operated to maintain the temperature
between those limits. The system should tolerate a fault in one sensor which puts the output
outside the normal operating range. Develop a full design and performance specification for the
controller. Test by simulation.

3. Design a temperature-controlled enclosure with heaters, fan and vent, which will allow a fully
functioning temperature control program to be tested. Investigate the design of an interface
for the fan sensor, so that the fan speed could be controlled by PWM with feedback.
Investigate the set-up required to use the PWM output of the 16F887, and redesign the
hardware to connect the fan to a PWM output.

4. Implement the minimal temperature controller proposed above using the 12F675 chip,
operating as specified in Table 13.1. Create a schematic, simulate the application (interactively
if possible), design a layout, implement and test.

5. Study relevant C programming references and the Microchip manual ‘MPLAB C18 C
Compiler, Getting Started’, and modify the program BIN1.C such that the output can be
stopped, started and reset by push-button inputs at RA0 and RA1. Why is reading the inputs
more difficult in C?

More PIC Applications 309

CHAPTER 14

More Control Systems

Chapter Outline
14.1. Other Microcontrollers 312

14.1.1. Intel� 8051 Microcontroller 312

14.1.2. Atmel� AVR Microcontrollers 312

14.1.3. Other Microcontrollers 314

14.2. Microprocessor Systems 315
14.2.1. M68000 Hardware 315

14.2.2. M68000 Program 318

14.3. Control Technologies 319
14.3.1. Electromechanical Control 320

14.3.2. Relay Control 320

14.3.3. PLC Control 320

14.3.4. Microcontroller 324

14.3.5. Production Systems 325

14.4. Control System Design 330

Questions 14 330

Activities 14 331

Chapter Points
• Alternative microcontroller designs are derived from the Intel 8086 and the Motorola

68000 architectures.

• Simple sequence control can be implemented using electromechanical relays.

• PLCs have built-in interfacing and user-friendly programming methods to simplify sequence

control system design.

• The PC is a universal administrative, design, computing, control and networking hardware

platform.

• The control system designer needs to select the most suitable technology for any given

application.

PIC Microcontrollers. DOI: 10.1016/B978-0-08-096911-4.10014-X

Copyright � 2011 Martin Bates. Published by Elsevier Ltd. All rights reserved.

311

http://dx.doi.org/

In this chapter, we will look at some other technologies used to build controller systems, in

order to put microcontrollers (MCUs) in context and to evaluate different technologies. Other

makes of microcontroller will be briefly considered, and their features compared with the

PIC�. Conventional microprocessor systems, with separate processor, memory and input/

output (I/O) chips, may offer a more effective solution for complex digital systems, although

such discrete designs are increasingly rare. The programmable logic controller (PLC) provides

a self-contained device, containing a microcontroller with built-in interfacing. It is frequently

connected into a system under PC supervision so that control information can be transferred

over a network. In this way, complex production systems can be centrally operated and

monitored.

14.1. Other Microcontrollers

The PIC currently dominates the 8-bit microcontroller market, but a comparison with other

controllers is still useful, particularly as the alternatives are generally based on historically

significant conventional architectures using complex instruction sets, which provide a useful

contrast with the PIC reduced instruction set computing (RISC) architecture.

14.1.1. Intel� 8051 Microcontroller

The Intel PC architecture has dominated the desktop/laptop computer market for many years,

and the first widely used general purpose microcontroller was based on this architecture. First

introduced in 1980, the Intel 8051 was derived from the then standard PC microprocessor, the

8086. As can be seen in the block diagram (Figure 14.1), the original design had multiple

parallel ports, timers and interrupts, and a serial port. The 8051 can be used as a conventional

processor, as well as a microcontroller. It can access external memory using port 0 and port 2,

which act as multiplexed data and address lines. Some of port 1 and port 3 pins also have a dual

purpose, providing connections to the timers, serial port and interrupts. The program memory

was erasable programmable read-only memory (EPROM), which had to be erased under

ultraviolet light and reprogrammed out of circuit.

The 8051 had a conventional architecture, where the same data bus was used to transfer the

program code and the internal data. This makes it inherently slower than the PIC Harvard

architecture, which has a separate program and data paths operating concurrently. The 8051

also had a complex instruction set (CISC), which provided more options when programming,

but reduced execution speed.

14.1.2. Atmel� AVR Microcontrollers

European manufacturer Atmel offers a range of CISC microcontrollers derived from the 8051

architecture and instruction set. The AT89 family are updated 8051 type MCUs. The AVR

312 Chapter 14

range includes 8-bit ATtiny and ATmega devices, and 32-bit AT32 devices. The AT91SAM

group are also 32-bit MCUs, but are based on the high-performance ARM architecture.

The internal architecture of a representative chip, the ATtiny20 MCU, is shown in Figure 14.2.

The program execution section is similar to the PIC, in that it has a separate instruction bus

(Harvard architecture). It also uses a two-stage pipeline, overlapping the fetch and execution

cycles. It can therefore execute instructions in one clock cycle, at a maximum clock rate of

12MHz. It has a similar range of features to the equivalent PIC, that is, an 8-bit and 16-bit

timer, serial ports and eight multiplexed 10-bit analogue-to-digital converter (ADC) inputs.

Unlike the PIC, the AVR chip has 16 general purpose registers that contain the current data,

compared with the single working register of the PIC. In addition, it has a separate random

access memory (RAM) block for data storage, whereas the PIC has a single integrated RAM

block containing special function registers (SFRs) and general purpose registers (GPRs). The

timers and other SFRs are addressed explicitly in the instruction set rather than as RAM

addresses. The stack is implemented as a selected set of RAM locations, making it more

CPU
Instruction Reg.

Program Counter
Status Register
Stack Pointer

000 – FFF

EPROM
Program Memory

4K

00 - 1F
Register Banks

Interrupt
Control

Timers
× 2

PORTS

4 × 8 bits

Serial
Port

Clock
Bus

Control

P0

P2

P1

P3

T0
T1

TxD
RxD

INT0
INT1

ALE
EA
PSEN

XTAL

Timing
& Control

20 - 3F
RAM

80 - FF
Special Function

Registers

Reset

Multiplexed
Address &
Data for
External
Memory

Timer
Interrupts
& Serial
Port

Internal Data Bus
8 bits

Figure 14.1
Block diagram of Intel 8051 microcontroller

More Control Systems 313

flexible in operation but less well protected from corruption by incorrect code. The AVR also

incorporates multiple interrupt vectors.

The instruction set is more extensive, comprising 54 instructions with multiple addressing

modes. For example, there are several conditional branching instructions, and data movement

requires different instructions for load (LD, LDI, LDS), store (ST, STI), move (MOV), input

(IN) and output (OUT). This provides some advantages to the experienced programmer who

can make best use of the available options, but is more complex to learn initially.

14.1.3. Other Microcontrollers

At the time of writing ST Microelectronics produces a range of microcontrollers with similar

features to the PIC16, but with a complex instruction set and conventional architecture.

Port A

2k
Flash
ROM

Program
Memory

Instruction
Register

Instruction
Decoder

Instruction

 Code

(16/32 bits)

ALU

Status
Register

Results

 Timing
 Control

ICSP
Registers

Clock Reset

Operation

Code

Internal

Data

Bus

8 bits

ATtiny20

Program Counter

3 × 16 bit
X,Y,Z

10 × 8 bits
GPRs

Data
RAM
128

bytes

Port B

ADC
+

Comp

Timer0 (8)

SPI

TWI (I 2C)

Timer1 (16)

WDT

Interrupts

Direct

Address

Indirect

Internal
Osc.

Stack Pointer

Figure 14.2
AVR internal architecture

314 Chapter 14

Freescale Semiconductor Inc. offers a range of microcontrollers based on the architecture and

instruction set of the standard Motorola 68000 microprocessor. The current offering

concentrates on high-end microcontrollers with 16- and 32-bit cores. Similarly, Texas

Instruments Inc. and NXP Semiconductors NV (formerly a division of Philips) offer a power

MCU range, including the ARM/CortexM3 32-bit MCUs running at 50MHz.

14.2. Microprocessor Systems

The main elements of the microcontroller were originally developed as separate devices before

being integrated into one chip to produce the microcontroller. The PC, as outlined in Chapter 1,

is an example, where the individual central processing unit (CPU), memory and I/O devices are

linked together by system address, data and control buses. The M68000 CPU was used in many

different microprocessor systems from the 1980s onwards, including home computers, training

systems, industrial controllers and instrumentation. It was the first, and most popular, 16-bit

microprocessor. The original Apple� Macintosh�, main rival to the Intel-based PC, was

designed around it.

The advantage of the conventional microprocessor system is that it can be designed to suit the

application more precisely. It includes only those peripherals that are actually needed, and

memory capacity as required. Obviously, the system is more complex to design and build, and

so this type of system tends to be used for larger applications, where for example, extensive

data storage is required. Although now largely obsolete, the 68000 remains a useful example of

conventional CISC system architecture, because its regular architecture makes it easier to

understand than current microprocessors which have a multi-level bus hierarchy and advanced

design features added to the original CPU to improve performance.

14.2.1. M68000 Hardware

A typical development and training system based on the M68000 is shown in Figure 14.3. The

target board incorporates separate CPU, EPROM, RAM and port chips. It can be connected to

an applications board, which has a range of peripheral transducers, such as switches,

light-emitting diodes (LEDs) and a pulse width modulation (PWM)-controlled motor and

shaft opto-sensor. This is controlled by the 68000 CPU via a standard 68230 parallel interface/

timer (PI/T) chip, which has three 8-bit ports, of which port A provides data transfer and port B

the individual control and data lines. The operation of this type of system is described further

in Appendix C, Section C.9.

The M68000 target board is shown in Figure 14.4, with a block diagram of the system

in Figure 14.5, which can be compared with the PIC internal architecture. Notice that in the

PIC MCU block diagram, the internal architecture of the processor is visible, whereas in the

More Control Systems 315

68000 system, it is concealed within the CPU. To design a microprocessor system, the

CPU signal timing specification must be carefully studied, but this is not necessary in

the microcontroller system, a major advantage of designing around an MCU. Another is

that the microcontroller can be simulated as a whole, whereas in the microprocessor

HOST PC

Source Editor
Assembler/
Compiler

Terminal Emulator

68000 TARGET

BOARD

68000 CPU
64k RAM

64k Monitor EPROM
64k User EPROM

Serial Ports
Parallel Port

COM 1 or 2

Serial Port

68681

DUART

Serial Port

PA0

to

PA7

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PERIPHERAL

TEST BOARD

LEDs D1 - D7
or ADC
or DAC

DAC Enable
ADC Start Conversion
ADC Busy
ADC Enable
Motor Sensor
Motor PWM Drive
US/IR Transmitter
US/IR Receiver

Download

Program

& Send

Commands

Display

Monitor and

Program

Messages

68230

PI/T

User Port

×8 bits

Figure 14.3
M68000 microprocessor demonstration system

Figure 14.4
Motorola 68000 microprocessor target board

316 Chapter 14

Clock
8 MHz

00086

UPC

teseR
remiT

51D - 0D suB ataD

 LAP

 sserddA

redoceD

suB
rorrE

 remiT

 MAR

hgiH
 etyB

MAR

 woL
 etyB

MOR

 woL
 etyB

MOR

hgiH
 etyB

T\IP

TRAUD

launaM
teseR

stupnI QRI RESU

SDU
SDL
2CF
1CF
0CF

SA

E
RREB

 APV
W/R
KCATD

tpurretnI
 ytiroirP
redocnE

TSR

TLAH

SC

 QRIP
KCATD

W/R

SC

W/R
KCATD

 2PO
SER

QRI

IHMAR
OLMAR
TIP
TRAUD
MOR

XAM
232

XAM
232

 A lennahC
 CP TSOH

 LAIRES

 STROP

 B lennahC
 /MMOC RESU

 RETNIRP

 7 - 0AP
RESU

 7 - 0BP
 TROP

 3 - 0H

 51D – 0D 51D – 0D
 NOISNAPXE

SUB

ataD

sserddA
NOISNAPXE

SUB

W/R
KCATD

 lortnoC APV
 SA
 QRI

 6 - 0CP
 /DAPYEK

YALPSID

PO/PI

k46 k46

2LPI
1LPI
0LPI

TIP
TRAUD
RESU 4

PXE

PAWSR

4X

32A - 1A suB sserddA 32A - 12A 51A - 1A 51A - 1A 4A - 1A 5A - 1A

0D – 7D

Figure 14.5
Block diagram of M68000 microprocessor board

M
ore

C
ontrol

S
ystem

s
3
1
7

system only the CPU can be modeled, unless a system simulator such as Proteus VSM is

used.

14.2.2. M68000 Program

A simple program for the 68000 system is shown in Program 14.1, so that the syntax for

a complex instruction set (CISC) processor can be compared with PIC assembly language. The

program has a similar function to the PIC program BIN2, outputting a binary count to LEDs

with a delay. The syntax is analyzed below.

Comments

The comments are delimited with a star.

use tim.ini

This is equivalent to the include directive in the PIC e it incorporates a file ‘tim.ini’ which

contains standard register labels, PortA and DircA. Port A is the 8-bit port data register and

DircA the data direction register (DDR).

move.b #$ff,DircA

Move the literal FF into the DDR to set all bits as output. The ‘.b’ means this is a byte operation

(16- and 32-bit words can be moved in the 68000). ‘#’ means this is a literal (immediate data in

* OUT3.ASM MPB 27/8/97
*
* A demo program using general purpose system
* initialization file TIM.INI
*
* --

 use tim.ini Initialise system

 move.b #$ff,DircA Port A data direction code

again move.b d0,PortA Output data to LEDS
 addq #1,d0 Increment output value

 move.w #$0fff,d1 Initialize delay count
delay subq.w #1,d1 Decrement and
 bne delay Loop until zero

 bra again Repeat forever...........

Program 14.1
Simple program for 68000 board

318 Chapter 14

68000 speak). ‘$’ indicates a hex number. Note that in the 68000, a ‘1’ in the DDR sets that bit

as output e this is the opposite to the PIC.

again move.b d0,PortA

The label ‘again’ represents a source code line address, ‘d0’ is the first data register in a set of

eight (d0ed7) and PortA is the output register to which the LEDs are connected.

addq #1,d0

This means add 1 to (increment) d0. Surprisingly, the 68000 does not have an increment (or

decrement) instruction. ‘addq’ means ‘add quick’, used for adding a small number to a register.

move.w #$0fff,d1

Move a 16-bit word (w) into d1 to initialize the delay loop.

delay subq.w #1,d1

Start of delay loop. Decrement (subtract 1 from) the counter register ‘d1’.

bne delay

This means ‘branch if not zero’ to the label delay. The program jumps back and repeats the

decrement until the result of the previous operation (decrement) is zero. This is available in the

14-bit PIC only as a pseudo-operation.

bra again

This is an unconditional jump equivalent to the GOTO label in PIC programs, to make the

program repeat endlessly.

It can be seen that the 68000 syntax is more complex because, first, there are more instructions

and, second, there are more registers and addressing modes.

14.3. Control Technologies

Microprocessors and microcontrollers are part of a wide range of technologies used in control

systems. These include:

• Electromechanical relays

• Programmable logic controllers

• Microcontroller-based boards

• Dedicated microprocessor designs

• PC-based controllers

• Networked control systems.

To complete an overview of controllers, and to allow comparison with PIC microcontroller-

based systems, the essential features of these are outlined below.

More Control Systems 319

14.3.1. Electromechanical Control

A familiar example of an electromechanical sequence controller is found in traditional domestic

washing machines (non-digital types). A motorized rotary switch slowly operates multiple

contacts in the required sequence to open valves (filling), and switch on motors (washing,

spinning and pumping) and heaters. Switched sensors (level, temperature) and safety interlocks

(door switch) are connected to the same rotor. In this way, purely electromechanical components

can be used to make a robust sequence controller, where the environment is hostile to delicate

electronics. However, switches and relays are inherently unreliable because of the moving parts

and wear on the contacts due to arcing and mechanical forces.

14.3.2. Relay Control

The relay was the first control system component to be invented, originally to boost telephone

signals. It is an electromechanical switching device, which allows a high power load to be

controlled by a small input current, using an electromagnetic coil to operate a set of changeover

switches. Relays can be wired up to operate in sequence, with time-delayed switching if

required, to operate as a process controller. Before the development of transistors and digital

logic, even before the development of valves, relays could be used to make simple industrial

controllers. For example, a relay can be used to switch on a machine tool, using on and off push

buttons and safety interlocks to make its operation safer.

The main components of a relay are shown in Figure 14.6(a). The small input current through

the coil creates an electromagnetic field that attracts a steel yoke, which operates a set of

contacts, which in turn switch a load (motor, heater, pump, etc.) on and off. The coil typically

operates at 12 Vor 24 V dc, but a 5 V coil allows the relay to be connected directly to a digital

or microcontroller system (see the temperature controller, Section 13.1, Chapter 13).

A relay circuit for controlling a machine tool is illustrated in Figure 14.6(b). The system is

designed to provide push-button operation and to prevent the main motor starting unless the

machine guard is closed and the cutting fluid pump is on. There is also a thermal torque

overload sensor, which disables the machine if the tool jams or the motor is stalled for some

other reason. The relays operate in latched mode, and the system will ‘fail safe’ if the power

goes off. Relay 2 (motor) is controlled from relay 1 (control), operated at 24 V. The motor and

pump are connected to a 240 V supply via contacts in relay 2 and 1, respectively.

14.3.3. PLC Control

Programmable logic controllers are often used for sequential control in industrial systems. The

PLC is a self-contained sequence controller, built around a microprocessor or microcontroller,

320 Chapter 14

but with all the interfacing built in. PLCs also use more user-friendly programming techniques,

such as ladder logic. A small Mitsubishi PLC is shown in Figure 14.7.

The PLC can be programmed to act like a set of relays to give a particular output sequence

in response to switched inputs, which can be manual inputs or derived from sensors. It is

suitable for controlling systems where motors, heaters, valves and other loads must be switched

directly from a power supply. The same machine tool seen in the previous example is now

shown under PLC control in Figure 14.8.

The PLC has inputs labeled X0, X1, X2 and X3. These are detected as ‘on’ when connected to

24 V via an external switched sensor or control input. The PLC is programmed to operate the

outputs, labeled Y0 and Y1, according to the input sequence. The outputs are also simple

switched contacts, as in the normally open contact of a relay, which operate a load circuit with

an external supply. They are typically designed to handle high power loads operating with

mains voltage, or three-phase supplies. If necessary, the PLC outputs can control external

(a)

(b)

24 V
Common
Terminal

Normally Normally
 Open Closed

Start

Stop

Guard

Motor Pump

24 V DC
+

-

240 V AC
L

N Relay 1

Relay 2

Overload

Machine Tool

Figure 14.6
Relay control systems: (a) relay operation; (b) wiring diagram of relay machine control system

More Control Systems 321

contactors (load relays) if the load current exceeds the PLC output contact rating. The control

and load circuits are electrically isolated from each other, for safety, reliability and ease of

use. The PLC inputs use opto-isolators, where the on/off signal is passed as infrared light,

giving complete electrical isolation between the input and controller internal circuits.

Figure 14.7
Programmable logic controller

Guard

Motor Pump

24 V DC

240 V AC

+

-

L

N

Torque Overload

MACHINE TOOL

COM
Y0 Y1

PLC

Start

Stop

Host PC
Program

Inputs

X0 X1 X2 X3 24 V

SupplyOutputs

Figure 14.8
Wiring diagram of PLC machine control system

322 Chapter 14

The program for the PLC can be created in ‘ladder logic’ form (Figure 14.9), which allows the

control program to be defined as if the PLC contained the relay system shown in Figure 14.6.

The graphical program corresponds to the wiring diagram of the low-voltage (control) side of

the relay system. Ladder logic uses a basic set of three symbols: normally open contacts,

inverted contacts and output coils. These are associated by label with a physical input (Xn) or

output (Yn). The normally open contacts represent external normally open contacts connected

to the corresponding input; when the real contact closes, the contact in the program is closed.

An inverted contact (X1) simply reverses the polarity of the external switch. The sides of the

ladder correspond to the 24 V supply rails in the real circuit, so an output goes on when there is

a closed path through the contacts in that rung of the ladder to switch on the coil, which

operates the associated output in the PLC. The graphical program is entered on a host PC and

converted to a machine code program, which is downloaded to the microcontroller in the PLC,

in the same way as an assembler program.

In the ladder diagram, the system will come on when the ‘Start’ input is pressed, if the

‘Stop’ button is open and the ‘Guard’ switch is closed (guard closed). The ‘Stop’ button

itself is normally open, but is inverted in the ladder program so it operates as if normally

closed. The contact labeled Y1 (pump) closes because the virtual circuit is complete. The

associated contact Y1 therefore also closes, which ‘holds on’ the output, even when the start

button is released. A second Y1 contact then switches on the motor, as long as the overload

cut-out is closed (no overload). The machine is then running. If the motor is overloaded, the

thermal cut-out operates and switches off the motor, but the pump stays on to maintain

coolant feed. If the guard is opened or the stop button pressed, then both motor and pump

go off. Output Y1 corresponds to relay 1 coil in the relay-controlled system, and Y0 to

relay 2 coil.

X0 X2

Y1

Y1

Y1

Y0 X3

Pump

Overload Motor

X1

StopStart Guard

Figure 14.9
Ladder program for machine tool control

More Control Systems 323

Ladder programming was designed as a user-friendly method for creating this type of

sequential control program, for engineers used to dealing with hard-wired relay systems. It was

the first graphical programming method, of which there are now many, such as Flowcode for

the PIC.

14.3.4. Microcontroller

For comparison with other control technologies, Figure 14.10 shows the same machine tool

operated by a microcontroller. As we know, the microcontroller uses signal levels around 5 V,

so the input switches have to be connected with pull-up resistors. The microcontroller is

programmed to operate the output loads via suitable interfaces, which allow its outputs to

switch the high-power motors. These could be relays or three-phase contactors, but high-

current field effect transistors (FETs) are useful here, as they can operate with 5 V inputs and

have no moving parts. The microcontroller can be programmed in its native assembler

Start

Stop

Guard

Motor Pump

 5 V DC

PSU

+

–

240 V AC

L

N

Torque Overload

MACHINE TOOL

Program

Inputs

Outputs

RB0
RB1

RA0
RA1
RA2
RA3

Motor
Interface

Pump
Interface

Micro-

controller

+5 V

0 V

Figure 14.10
Microcontroller machine control system

324 Chapter 14

language (Program 14.2), or C, both of which take time to learn. This is why ladder logic was

developed for programming PLCs, and the built-in interfacing in the PLC makes this the usual

choice for such control applications.

14.3.5. Production Systems

There are two main types of production system. Manufacturing systems include materials and

component handling technologies such as conveyors and robots, which work with machine

; MAC1.ASM
; M Bates 5/12/03 Ver 1.0
; Program to operate a simple machine tool

; Assembler directives

 PROCESSOR 16F84A

PortA EQU 05
PortB EQU 06

; Initialize ...

 MOVLW B'11111100' ; Initialize outputs
 TRIS PortB ; to Motor & Pump

; Start main loop ..

alloff CLRW ; Switch off
 MOVWF PortB ; Motor & Pump

start BTFSC PortA,0 ; Check Start button
 GOTO start ; & wait is not pressed

stop BTFSC PortA,1 ; Check for Stop
 GOTO alloff ; & restart if pressed

guard BTFSC PortA,2 ; Check for Guard in place
 GOTO alloff ; & restart if not safe

 BTFSC PortA,3 ; Check for Overload
 GOTO coolit ; & switch off Motor if true

 BSF PortB,0 ; Motor ON
BSF PortB,1 ; Pump ON

 GOTO stop ; and loop

coolit BCF PortB,0 ; Motor off, keep Pump on
 GOTO coolit ; and wait for reset

 END

Program 14.2
PIC machine control program

More Control Systems 325

tools and assembly subsystems to produce discrete product items, such as motor vehicles.

Process control systems are those that supervise continuous flow production, such as an oil

refinery, where the product is a liquid, gas, powder, granules or similar material. This typically

involves sequence control of pumps and valves, controlling storage tanks and pipework

installations, with inputs from flow, level, temperature sensors, etc., to form a closed loop

system. All these systems will contain microprocessor-based controllers, both within the PLCs

that control the component subsystems, and within the dedicated controllers built into

machines, tools and robots.

A flexible manufacturing system (FMS) workcell has machines that can be reprogrammed to

produce a variety of similar products. Typically, it consists of pick-and-place robots working

alongside machine tools to manufacture components and assemble them into a finished

product. A basic demonstration system is shown in Figure 14.11. It consists of a milling

machine, a hydraulic assembly rig and a component handling robot. It is designed to machine

and assemble a simple product consisting of three components: a printed circuit board (PCB) in

a milled plastic enclosure with a press-fit cover. The robot places a plastic blank in the mill,

which machines the casing; the robot then retrieves the enclosure, places it in the assembly rig

and inserts the PCB, and the cover is fitted by the hydraulic press.

A block diagram (Figure 14.12) shows how the subsystems of the workcell interconnect. The

digital signals in the system operate at 24 V, the higher voltage providing better noise immunity

than TTL (5 V) levels. The various controllers signal to each other with, usually, individual

active low signals, to control the sequence of operations. For example, when the mill has

finished, it asserts (sets active) a ‘Mill Ready’ signal to the robot controller, which triggers the

robot program to pick up the finished workpiece. The robot slide, the press rig and the mill are

all controlled by their own PLCs, with the main PLC in charge of the overall system. The robot

Assembly Rig

 Hydraulic Pump

Robot on Track

Milling Machine

Control PLC

Pneumatic Pump

Robot Controller

Figure 14.11
Demonstration flexible manufacturing system

326 Chapter 14

controller needs a reasonably powerful processor system, because of the complex calculations

required for the robot movement. This and the PLCs are programmed from a PC, via a serial

port. The main system PLC remains connected to the PC, which then operates as a supervisory

control and data acquisition (SCADA) system host when the system is running. It provides

a virtual control panel and graphical status display of the system as it runs, reading status bits

and writing control bits in the main PLC, and modifying the display accordingly.

Both manufacturing and process control systems can be managed by a SCADA network to

provide integrated, centralized control and performance monitoring. A typical display is shown

in Figure 14.13. Powerful software suites support the communication and presentation of the

information, principally using on-screen interactive mimic diagrams and dynamic database

management to give a complete overview of the system operation.

In the industrial environment, the subsystems need to be mounted and connected together using

physically robust methods. A typical control cabinet is shown in Figure 14.14. The vulnerable

parts of the control system, such as PLCs, microcontroller boards, terminal blocks, power

supplies, communication modules and keypads, are protected in a steel cabinet. Another

important feature is the emergency stop buttons.

Main
PLC Robot

Controller

Slide
PLC

Servo
Motor

Controller

Robot Slide

Milling
Machine

Press
Rig

Press
PLC

M

SCADA
Host PC

Network

Valves

Limit Switches

Motors

Encoders

Go/Done

Position

Done

Steps

PWM

Program

Control

Status

Go/Done

CNC Program

Figure 14.12
Demo flexible manufacturing system block diagram

More Control Systems 327

Figure 14.14
Industrial system control cabinet

Figure 14.13
SCADA screen

328 Chapter 14

Table 14.1: Comparison of control technologies

Technology Advantages Disadvantages Typical applications

Relays Simple to design Slow Machine safety interlocks
No programming needed Unreliable Simple process control
No electronics skills needed High power consumption High power systems
Good electrical isolation Not suitable for complex systems Contactors for heavy loads

PLC Minimal interfacing needed Limited processing functionality Machine control
Easy to program Limited interfacing flexibility Process control systems
Easy to install Flexible manufacturing systems

Microcontroller Flexible hardware design Hardware design skills needed Smart cards
Large choice Programming skill needed Consumer goods
Suitable for small embedded
applications

Limited memory
Interface design required

Instrumentation
Dedicated controllers

Microprocessor
system

Flexible controller design
Suitable for larger systems

Expert hardware design skills
Good programming skill needed

Automatic machines
Specialist control systems

Expandable memory, I/O, etc. Overall expensive Large computers

PC Host Available off the shelf High cost of basic unit Machine tool host
Built in data storage and comms
Graphical programming and display
Basic interfacing skills only needed
Standard operating system

Large physical size
Mainly used as front end for other
control systems

SCADA host
Large systems user interface
Instrumentation systems host
Networks and distributed systems

M
ore

C
ontrol

S
ystem

s
3
2
9

14.4. Control System Design

The microcontroller or microprocessor forms the basis of most control systems. A dedicated

microprocessor design allows the memory and interfacing to be designed separately, but,

because of the range of microcontrollers now available and the additional system design work

required, this is now much less likely to be a cost-effective solution. In either case, the

peripheral interfacing must also be designed at component level.

By contrast, the PLC offers an off-the-shelf hardware package, requiring no external

electronics to interface it. PLCs are generally designed around dedicated microcontrollers,

with a built-in proprietary operating system. The program is traditionally written in ladder

logic and is compiled automatically to machine code. Additional programming tools are also

usually supplied by the individual manufacturer to meet more complex specifications and

project management requirements. Overall, the PLC is robust, and easy to install and program,

with a variety of communication interfaces to support system integration.

In industrial systems, the PC can function as a general purpose administrative computer,

programming host, design workstation, SCADA display, network client or server. As a system

controller, the PC is most often connected to client PLCs, robots and machine tools via

a network, with the PLCs controlling the target hardware, as in the FMS above. The PC can

also act separately as a programming terminal for the different programmable devices, then

SCADA host when the system is operational. It can also act as a computer-aided design or

electronic computer-aided design (CAD/ECAD) workstation, component database server or

just a plain old word processor!

Table 14.1 provides a comparison of the advantages and disadvantages of the different forms of

system control outlined above. A reasonable working knowledge of all the options is required

in order to select the most appropriate technology for any given application. The

microcontroller is central to all these technologies.

Questions 14

1. Outline the differences between the Intel 8051 microcontroller and an equivalent PIC MCU
in terms of their general internal architecture and consequent performance. (4)

2. State two advantages and two disadvantages of the conventional processor system over the
microcontroller in designing a system to meet a particular specification. (4)

3. Explain briefly the advantages of using a PLC compared with a microprocessor system in
control applications. (4)

4. Draw a flowchart for Program 14.2 to show the control sequence clearly. (7)
5. List six possible functions of the PC in a production system. (6)
6. Match up the controller type with the most appropriate programming language or

technique:
(a) Small microcontroller 1. ‘C’
(b) CISC Microprocessor 2. None

330 Chapter 14

(c) Relay system 3. Mimic
(d) PLC 4. Assembler
(e) SCADA 5. Ladder Logic. (5)

Answers on pages 425e6. (Total 30 marks)

Activities 14

1. Log on to the Atmel website. Select a microcontroller from the list of available flash devices
that is most similar to the 16F690 and compare its features and instruction set. Identify any
advantages that the AVR microcontroller may have over the PIC.

2. Study the relay-based machine controller. Devise a circuit to switch a motor on and off using
push buttons and a single relay. Why is this safer than using a simple mains switch?

3. Modify the PLC machine tool controller in Figure 14.8, and its program, to operate an alarm
output if the machine overloads. The alarm is wired as another output.

4. Devise a block diagram of a domestic washing machine, controlled by a microcontroller.
Show interface blocks between the switched actuators and sensors and the microcontroller.
Write a description of the operating sequence of the machine, and devise a flowchart for the
control sequence, constructed so that it could be implemented in PIC assembly language.

5. By reference to the temperature controller design in Chapter 13, design the hardware
interfacing for PIC implementation of the system shown in Figure 14.10. Select a suitable
device according to the I/O and memory requirements, test Program 14.2 in the MPLAB
simulator and implement the design using the most readily available construction techniques.
Devise a target system to simulate the machine tool, and confirm correct operation in
hardware.

More Control Systems 331

APPENDIX A

Binary Numbers

Chapter Outline
A.1. Number Systems 335

A.1.1. Decimal (Base 10) 336

A.1.2. Binary (Base 2) 336

A.1.3. Hexadecimal (Base 16) 337

A.1.4. Counting 338

A.1.5. Bits, Bytes and Words 340

A.2. Numerical Conversion 341
A.2.1. Binary to Decimal 341

A.2.2. Decimal to Binary 341

A.2.3. Binary and Hex 341

A.2.4. BCD 342

A.2.5. ASCII 343

A.3. Binary Arithmetic 344
A.3.1. Addition 344

A.3.2. Subtraction 345

A.3.3. Multiplication and Division 346

A.3.4. Floating Point Numbers 347

Digital computers, microprocessors and microcontrollers (MCUs) store their working data as

binary numbers. The storage is built from electronic switching circuits. The state of the output

of each stage of the circuit can be 0 or 1, which can be represented by 0 Vandþ5 V. Input data

tends to be in the form of decimal numbers and text characters, so these have to be converted to

binary for storage and processing, and converted back for output and display. This data is

transmitted as digital pulses on the connections between the inputs, storage, processor and

output, which are routed between these devices using the same switching transistors (see

Appendices B and C for more details).

A.1. Number Systems

All arithmetic is based on number systems, which use a set of characters to represent numerical

values. In microcontrollers, decimal, binary and hexadecimal are the most important. We will

start with decimal, as this is our reference system used in manual calculations. Binary is the

native language of microcontrollers, and hexadecimal is simply a convenient way of

representing binary.

335

A number system can have any base you like, but some are more useful than others. For

instance, base 12 is still in widespread usee think of clocks (time), boxes of eggs (dozens) and

measurement of angles (degrees). In the past it was even more common, e.g. in old English

money (12 pence¼ 1 shilling). Base 12 is useful because 12 is divisible by 2, 3, 4 and 6, giving

lots of useful fractions: one-half, one-third, one-quarter and one-sixth.

A.1.1. Decimal (Base 10)

The name of each number system refers to the ‘base’ of the number system, which corresponds

to the number of symbols used in representing values. In decimal, 10 symbols are used,

with which you are familiar:

0 1 2 3 4 5 6 7 8 9

The reason for using 10 is simple: humans have 10 fingers that can be used for counting,

so the decimal system was developed as a way of writing this down and doing calculations

on paper instead of on our fingers or an abacus. It is no coincidence that the term ‘digits’

can refer to fingers as well as numbers.

Assuming that we know how to count and write down numbers in decimal, let us analyze their

structure. Take, for example, the number 274: in words, two-hundred and seventy-four. This

means: take two hundreds, seven tens and four units and add them together. The position of

each digit in the number is literally significant; each column has a weighting that applies to

the digit in that column. As you know, the least significant digit is conventionally placed at the

right, and the most significant at the left. More digits are added at the left-hand end as

the number size increases. In decimal, the columns have a weight 1, 10, 100, etc. Note that

these correspond to a power series of 10, the number system base. Another example is

examined in more detail in Table A.1.

A.1.2. Binary (Base 2)

We can understand the binary system by comparing it with decimal e the basic rules are the

same for any number system. In binary, the base is 2, so the column weighting is a power series

of 2, as shown in Table A.2. With a base of 2, only the digits 0 and 1 are available, so the

numbers tend to have a lot of digits. For instance, a 32-bit computer uses 32-digit binary

numbers to represent its data. An example with eight digits is given, showing what the digits

Table A.1: Structure of a decimal number

Column weight 1000 100 10 1
Power of base 103 102 101 100

Digits 3 6 5 2
Sum (3� 1000) þ(6� 100) þ(5� 10) þ(2� 1)
Total ¼ 3652

336 Appendix A

represent and how to convert the value back to decimal. Note that any number to the power zero

has the value 1.

The decimal equivalent in all number systems can be calculated by multiplying the digit value

by its weighting in decimal, and then adding the resulting column products. In binary,

because the digit value is 1 or 0, the result can be obtained by simply adding the digit weight

where the digit value is a ‘1’, because any number multiplied by zero is zero. When decimal

data is entered into a computer, the values are converted to binary using this process.

The range of a binary number is the number of different codes possible, corresponding to

a count from zero up to the maximum possible with the number of bits available. It is calculated

as 2n, where n is the number of digits. For example, for a 4-bit number, the range is

24¼ 2� 2� 2� 2¼ 16. The maximum value can be calculated as 2n� 1. For example, for an

8-bit number, the maximum value is 28� 1¼ 25510.

A.1.3. Hexadecimal (Base 16)

Because binary numbers have many digits, they are not very easy to understand when written

down or printed out. Conversion to decimal is not particularly straightforward, so hexadecimal

is used as a way to represent binary numbers in a compact way, while allowing easy conversion

back to the original binary.

Hexadecimal (base 16), or ‘hex’ for short, uses the same digits as the decimal system from 0 to

9, then uses letters A to F, as a single character representation for numbers ten to fifteen. Thus,

characters that are normally used to make words are used as numbers in hex, not least because

the symbols are already available on the keyboard. A binary number can be easily converted to

hex by writing it down in groups of four bits, and then converting each group to its equivalent

hex digit, as in Table A.3.

The base of the number can be shown as a subscript where necessary to avoid confusion. All

number systems use the same set of characters, so if the base of the number given is not

obvious from the context, it can be specified. For example, the number 100 (one, zero, zero)

Table A.2: Structure of a binary number

Bit Significance MSB LSB

Column weight 27 26 25 24 23 22 21 20

Decimal weight 128 64 32 16 8 4 2 1
Example number 1 0 1 0 0 0 1 1
Sum 128 þ 0 þ32 þ0 þ0 þ0 þ2 þ1
Total ¼ 163

MSB: most significant bit; LSB: least significant bit.

Binary Numbers 337

could have the decimal value four in binary, one-hundred in decimal or two-hundred and

fifty-six in hexadecimal. Later, we will see other ways of indicating numerical type when

programming. Some examples of equivalent values are given in Table A.4.

The base-8 number system, octal, has sometimes been used in computing, with the digits 0e7

representing 3-bit binary numbers, but is not often seen now. It was useful in some early

mainframe computers which operated with 12-, 24- or 36-bit numbers.

A.1.4. Counting

A list of equivalent numbers, counting from zero, is given in Table A.5, with some comments

on important values. This table also defines memory capacity in microprocessor systems; for

example, ‘1k’ of memory is 1024 locations. Notice that 1024¼ 210. This is worth remembering

as a starting point in calculating memory capacity.

Table A.4: Examples of equivalent values

Decimal Binary Hexadecimal

1610 1002 1016
3110 1 11112 1F16

10010 110 01002 6416
16910 1010 10012 A916
25510 1111 11112 FF16

102410 100 0000 00002 40016

Table A.3: Hexadecimal digits

Decimal Binary Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

338 Appendix A

Table A.5: Significant equivalent numbers

Decimal (Base 10) Binary (Base 2) Hex (Base 16) Comment

0 0 0 All the same
1 1 1 All the same
2 10 2 [21] Uses 2nd column in binary
3 11 3 Maximum 2 bit count
4 100 4 [22] Uses 3rd column in binary
5 101 5 [22] Uses 3rd column in binary
6 110 6 [22] Uses 3rd column in binary
7 111 7 Maximum 3 bit count
8 1000 8 [23] Uses 4th column in binary
9 1001 9 Decimal and hex same until 9

10 1010 A Uses letters in hex
11 1011 B Uses letters in hex
12 1100 C Uses letters in hex
13 1101 D Uses letters in hex
14 1110 E Uses letters in hex
15 1111 F Maximum 4 bit count
16 1 0000 10 [24] Uses 2nd column in hex
17 1 0001 11 Uses space to clarify binary
18 1 0010 12
19 1 0011 13
20 1 0100 14
21 1 0101 15
22 1 0110 16
23 1 0111 17
24 1 1000 18
25 1 1001 19
26 1 1010 1A
27 1 1011 1B
28 1 1100 1C
29 1 1101 1D
30 1 1110 1E
31 1 1111 1F Maximum 5 bit count
32 10 0000 20 ¼ 25

33 10 0001 21
34 10 0010 22
..

62 11 1110 38
63 11 1111 39 Maximum 6 bit count
64 100 0000 40 ¼ 26

65 100 0001 41
..

127 111 1111 79 Maximum 7 bit count
128 1000 0000 80 ¼ 27

129 1000 0001 81
..

254 1111 1110 FE

(Continued)

Binary Numbers 339

The rules for counting in any number system are:

1. Start with all digits set to zero.

2. In the right digit position (least significant digit), count up from zero to the maximum digit

available (1 in binary, 9 in decimal, F in hexadecimal).

3. If a column value is at its maximum, reset it to zero, and increment (add 1 to) the next

column to the left.

There is a fixed number of digits in microprocessor registers or memory locations. These tend

to come in multiples of 8 bits (1 byte): 8, 16, 32, 64, 128 or 256. This determines the maximum

value that can be stored. This is calculated as 2n� 1, where n is the number of bits. The lower

values appear in the list of equivalent numbers; for example, a 16-bit register holds the

maximum value 216� 1¼ 65 53510. Obviously leading zeros must be used to fill the empty

positions, because each register bit must be either 1 or 0, and leading zeros do not alter the

value.

A.1.5. Bits, Bytes and Words

One binary digit represents a ‘bit’ of information. A group of eight bits is called a ‘byte’, and

larger binary codes are called ‘words’. As we now know, in hexadecimal four bits are

represented by one hex digit, so a byte is 2 hex digits, a word 4 and so on. Memory blocks

in microprocessor systems tend to be addressed as 8-bit locations, even if multiple bytes are

Table A.5: Continued

Decimal (Base 10) Binary (Base 2) Hex (Base 16) Comment

255 1111 1111 FF Maximum 8 bit count
256 1 0000 0000 100 ¼ 28

..
511 1 1111 1111 1FF Maximum 9 bit count
512 10 0000 0000 200 ¼ 29

..
1023 11 1111 1111 3FF Maximum 10 bit count
1024 100 0000 0000 400 ¼ 210¼ 1k

..
2047 111 1111 1111 7FF Maximum 11 bit count
2048 1000 0000 0000 800 ¼ 211¼ 2k

..
4095 1111 1111 1111 FFF Maximum 12 bit count
4096 1 0000 0000 0000 1000 .

..
65535 1111 1111 1111 1111 FFFF Maximum 16 bit count

340 Appendix A

used, so the contents are typically displayed as 2 hex digits (8 bits). Registers may have

from 8 to 256 bits, but still in multiples of 8. The 14-bit program codes in the PIC� 16 are

represented with 4 hex digits, the most significant only having values from 0 to 3. The two most

significant two bits are assumed to be zero.

A.2. Numerical Conversion

Conversion between numerical types is often required in microprocessor systems. Data may be

input in ASCII, processed in binary and output in binary coded decimal (BCD). Machine code

is normally displayed in hexadecimal. We therefore need to know how to perform these

conversions.

A.2.1. Binary to Decimal

The structure of binary numbers has been described above. Thus, the value of a number is

found by multiplying each digit by its decimal column weight and adding. The weighting of the

digits in binary is, from the least significant bit (LSB), 1, 2, 4, 8, 16. or 20, 21, 22, 23. that is,

the base of the number system is raised to the power 0, 1, 2, 3, etc. Another example is shown in

Table A.6. The same principle could be applied for converting a number of any arbitrary base

to decimal.

A.2.2. Decimal to Binary

This conversion is achieved by successive division by two, the base of the required number

format. The decimal number is divided by two, the remainder recorded as a binary bit value, and

the result dividedby two again, until the result is zero.The binary result is obtainedby transcribing

the columnof remainder bits from the bottomup (most significant bit (MSB) toLSB) (TableA.7).

Again, the same process could be applied to obtain a number in any required base.

A.2.3. Binary and Hex

Binary to hexadecimal conversion is simple; that is why hex is used. Each group of four

bits is converted to the corresponding hex digit, starting with the least significant four, and

Table A.6: Binary to decimal conversion

Column weight 27 26 25 24 23 22 21 20

Binary digit 1 0 0 1 0 1 1 0
Weight� digit 128� 1 64� 0 32� 0 16� 1 8� 0 4� 1 2� 1 1� 0
Result 128 þ0 þ0 þ16 þ0 þ4 þ2 þ0
Sum 15010

Binary Numbers 341

padding with leading zeros if necessary (Table A.8). The reverse process is just as trivial, where

each hex digit is converted to a group of four bits, in order. The result can be checked by

converting both to decimal, using the process described above in Table A.6. Hex to decimal is

shown in Table A.9.

A.2.4. BCD

Binary coded decimal (BCD) uses only the binary codes from 0 to 9 to represent decimal digits

(Table A.10). A numeric keypad, for example, has numbers 0e9, so this format could be

used for input. When multi-digit numbers are input, the keys are pressed in the sequence from

the highest significant digit to the lowest. To obtain the binary equivalent of the complete

number, the value of each keystroke must be added to a binary sum after the number has been

Table A.8: Binary to hexadecimal conversion

1001 1111 0011 1101 ¼ 9F3D16

9 F 3 D

Table A.9: Hex to decimal conversion

Hex Digits 9 F 3 D

� Column
weight

9� 163 15� 162 3� 161 13� 160

Results 36 864 þ3840 þ48 þ13
Total 40 76510

Table A.7: Decimal to binary conversion

Decimal number[150

Divide by 2 Result Remainder Order

150/2 ¼ 75 0 LSB
75/2 ¼ 37 1
37/2 ¼ 18 1
18/2 ¼ 9 0
9/2 ¼ 4 1
4/2 ¼ 2 0
2/2 ¼ 1 0
1/2 ¼ 0 1 MSB
Binary equivalent¼ 10010110

342 Appendix A

entered. The least significant digit is added to the total unweighted, the next multiplied by

10 and added, the next by 100, and so on to give the total value in binary.

After processing in binary, results may need to be displayed in BCD format on, for example,

a seven-segment display. Binary to BCD conversion for output may be implemented as the

inverse process to that described above. If the maximum value is, say, 9999, the value must be

divided in turn by 1000, 100 and 10. The division result gives the BCD code for each digit, with

the remainder being passed to the next stage. See Section A.3.3 for an outline of multiplication

and division in binary.

A.2.5. ASCII

ASCII (American Standard Code for Information Interchange) is a binary code for

representing alphanumeric characters, as found on the computer keyboard. The basic code

consists of seven bits. For example, capital (upper case) ‘A’ is represented by binary code

100 0001 (6510), ‘B’ by 66, and so on to ‘Z’¼ 65þ 25¼ 90¼ 10110102. Lower case

letters and other common keyboard characters such as punctuation, brackets and arithmetic

signs, plus some special control characters, also have a code in the range 32 to 126. The

numerical characters are included, for example ‘9’¼ 011 10012, so it sometimes needs to

be clear if the code is the binary equivalent (10012) or the ASCII code (011 10012). Notice

that 30h is added to the binary number to get the ASCII code for that decimal number.

Table A.11 shows selected characters from the set that would be found on a simple

calculator keypad.

The microcontroller program instructions are stored as binary codes. The source code

itself is stored as ASCII, so the source code mnemonics (text strings) must be

converted to binary machine code by the assembler (see Chapter 3) to create the MCU hex

program.

Table A.10: Binary coded decimal (BCD) codes

Decimal BCD

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Binary Numbers 343

A.3. Binary Arithmetic

Some form of calculation is needed in most programs, even if it is a simple subtraction to

determine whether an input is greater or less than a required level. At the other extreme,

a gaming program may carry out millions of operations per second when animating

a three-dimensional graphic scene. Here, we will cover just the basics so that simple arithmetic

operations can be programmed.

A.3.1. Addition

A simple calculation, adding two numbers whose result is 255 or less (the maximum for an

8-bit location), is shown in Example A.1. The addition of each bit pair is carried out, from

right to left, according to the rules:

0 þ 0 ¼ 0

0 þ 1 ¼ 1

1 þ 1 ¼ 0 carry 1 to the next column

Table A.11: Selected ASCII codes

Decimal Value Hex Value Binary Value ASCII Character

35 23 010 0011 #
42 2A 010 1010 *
43 2B 010 1011 þ
45 2D 010 1101 �
47 2F 010 1111 /
48 30 011 0000 0
49 31 011 0001 1
50 32 011 0010 2
51 33 011 0011 3
52 34 011 0100 4
53 35 011 0101 5
54 36 011 0110 6
55 37 011 0111 7
56 38 011 1000 8
57 39 011 1001 9
65 41 100 0001 A
66 42 100 0010 B
67 43 100 0011 C

etc. etc.
97 61 110 0001 a
98 62 110 0010 b
99 63 110 0011 c

etc. etc.

344 Appendix A

The conversion to decimal of each binary number is also shown to confirm that the result is

correct.

When implemented by the ADDWF or similar instruction in the PIC microcontroller, the carry

bits are internally handled, until there is a carry-out from the MSB. This occurs when the result

is higher than 255, shown in Example A.2. This carry-out is recorded in the Carry bit of the

status register. It is held there so that, for example, it can be added to the next most significant

byte of a multi-byte number. In this case, the carry bit from the low byte addition must be added

to the LSB of the next byte to obtain the right result. The sample calculation for this case is also

shown in Example A.3.

A.3.2. Subtraction

Subtraction is straightforward if one number is subtracted from a larger one. Pairs of binary

digits are processed individually from the least significant to the most significant according to

the rules:

0 � 0 ¼ 0

1 � 0 ¼ 1

Carry out 1
+

0111 0010
1001 0000
0000 0100

= 116
= 144
= 260

Example A.2
Adding with result greater than 255

0111 0101 0101 0111 = 7557
+ 0001 1000 1100 1011 = 18CB

1000 1110 0010 0010 = 8E22
Carry bits 111- --11 1-11 111-

Carry from low to high byte ^

Example A.3
Adding multiple bytes

Binary Conversion Decimal

0111 0100 64+32+16+4 116
+ 0011 0101 32+16+4+1 +53
= 1010 1001 128+32+8+1 169

Carry bits 11 1

Example A.1
Adding with result less than 256

Binary Numbers 345

1 � 1 ¼ 0

0 � 1 ¼ 1 (borrow 1, then 2 � 1 ¼ 1)

A borrow is taken from the next column if necessary, having a weight of 2 in the current column.

This may cause a further borrow from the next significant column. If the overall result is positive

(no borrow into the MSB required), no further processing is needed, as in Example A.4.

When executing SUBLW, for example, in the PIC, the carry flag provides the borrow bit into

the MSB. Therefore, the carry flag must be set before a subtract operation so that a 1 is

available to borrow. If the borrow is taken, the carry flag is cleared, indicating a negative result.

This is a negative number represented by the ‘2s complement’ form of that number

(Example A.5).

Negative numbers are generated when the register is decremented below zero, as shown in

Table A.12. Thus, in 8-bit 2s complement form, �1 is represented by FF, �2 by FE and so on.

To convert this form back to the equivalent negative integer, invert all the bits and add 1. For

example, to convert the 2s complement value FC into its equivalent, �4:

FC ¼ 1111 1100 / 0000 0011 þ 1 ¼ 4 / �4

This would be necessary if the result were to be displayed as BCD or ASCII digits. The 2s

complement conversion is shown in Example A.5 to check the result.

A.3.3. Multiplication and Division

A simple algorithm for multiplication is successive addition. For example:

3 � 4 ¼ 4 þ 4 þ 4

Carry 222222--
1 00100001 = 33

- 00101101 = -45
0 11110100 = -12

Complement 00001011
+1 = 00001100 = 12

Example A.5
Subtraction with a negative result

Borrow -22- ----
1100 1011 = 203

- 0110 0010 = -98
0110 1001 = 105

Example A.4
Subtraction with a positive result

346 Appendix A

This can be implemented by initializing a register to zero, then adding four, three times. The

outline for a multiply program is shown below:

MULTIPLY BY ADDING
Clear a Result register

Load a Count register with Num1
Loop

Add Num2 to Result
Decrement Count

Until Count ¼ 0

After the procedure, the result of the multiplication remains in the Result register. If the

result is greater than 255, the carry-out must be handled as part of a multi-byte addition. An

alternative method uses shift and add, which is more efficient for larger numbers. Divide

is the inverse of multiply, so can be implemented using successive subtraction for

small numbers. Specific multiply and divide instructions are typically provided in

higher performance MCUs, where the arithmetic and logic unit (ALU) contains suitable

hardware.

A.3.4. Floating Point Numbers

On a scientific calculator, large and small numbers are represented by a decimal number

(mantissa) and exponent, for example 1.2345� 106. Computers can also handle numbers in

this format, typically as 32-bit numbers with 23 bits representing the decimal part and 8 bits the

exponent, with the remaining bit recording the sign (positive or negative). This format would

only be used in high-powered microcontrollers programmed in C.

Table A.12: Negative binary numbers

Decimal Binary Hex

þ3 0000 0011 03
þ2 0000 0010 02
þ1 0000 0001 01
0 0000 0000 00

�1 1111 1111 FF
�2 1111 1110 FE
�3 1111 1101 FD
�4 1111 1100 FC
etc.

Binary Numbers 347

APPENDIX B

Microelectronic Devices

Chapter Outline
B.1. Digital Devices 349

B.1.1. FET Logic 350

B.1.2. Logic Gates 352

B.2. Combinational Logic 353
B.2.1. Binary Addition 354

B.2.2. Binary Adder Circuit 354

B.2.3. Full Adder 354

B.2.4. Four-Bit Adder 355

B.3. Sequential Logic 357
B.3.1. Basic Latch 357

B.3.2. Data Latch 358

B.4. Data Devices 359
B.4.1. Data Input Switch 360

B.4.2. Tri-State Gate 360

B.4.3. Data Latch 361

B.4.4. LED Data Display 361

B.5. Simple Data System 361

B.6. Four-Bit Data System 362

This appendix describes the basic circuit elements used in microcontrollers, for those who have

not previously studied microelectronic devices. This should allow the reader to interpret the

logic circuits and block diagrams that appear in the PIC� data sheet.

B.1. Digital Devices

The binary codes that make up the program and data in the microcontroller are stored and

processed as electronic signals. The binary numbers are nominally represented as follows:

Binary 0 ¼ 0 Volts

Binary 1 ¼ þ5 Volts

A þ5 V power supply unit (PSU) operated from the mains is the traditional method of

powering digital circuits. It must be able to provide sufficient current for the processor circuits

at a voltage between 4.75 and 5.25 V for standard TTL (transistoretransistor logic). The power

349

consumption is the product of the supply voltage and current drawn at the power supply pins of

the chip:

P ¼ VI Watts ðI ¼ chip currentÞ

By replacing I using Ohm’s law (I¼ V/R), we get:

P ¼ V2=R Watts ðR ¼ input resistance of chipÞ
This power is dissipated as heat, which is undesirable from both the point of view of efficiency

and the fact that all chips have a maximum operating temperature. If necessary, cooling must

be fitted, as is seen in the typical PC motherboard where the central processing unit (CPU) has

a fan attached to its heatsink.

Assuming the input resistance of the chip is constant, we can see that the power consumption is

proportional to the square of the supply voltage. That means that if the voltage is halved, for

example, the power consumed will be reduced to a quarter of the original value, so any

reduction in supply voltage is highly desirable.

A supply of 3.3 V is now commonly used to reduce power consumption in large chips. The

power consumption will then be 3.32/52� 100¼ 44%, or less than half, compared with a 5 V

supply. This also allows the chip to run faster, since power consumption is broadly proportional

to clock speed.

In the original design of small-scale chips, bipolar transistors were used to form TTL gates

operating at þ5 V. These have relatively large power dissipation, and run at a correspondingly

high temperature. This limits the number of gates that can be operated on one chip, so very

large-scale integrated (VLSI) circuits normally use field effect transistor (FET) logic gates,

because of their lower power consumption. These are used in complementary metal oxide

semiconductor (CMOS) chips, like the PIC, and can run at lower voltages, saving even more

power. Low power technology is essential for battery-powered applications, such as laptops

and mobile phones. There is continuing development of logic technologies, to obtain higher

speed, lower cost and lower power dissipation in increasingly complex chips. Microchip is

currently extending its range of XLP (extra low power) chips, which operate down to 1.8 V.

B.1.1. FET Logic

The FET is the basic device upon which microcontroller logic circuits are based. It works as

a current switch: current flow through a semiconductor channel is controlled by the voltage at

the input gate. An individual FET is shown in Figure B.1(a).

Current flows through the channel when it is switched on by applying a positive voltage between

the gate and 0 V.When the input voltage is zero, the channel has a high resistance to current flow,

350 Appendix B

and the device is off. The current flows from the drain to the source terminal in the N-channel

FET. N-channel means there is a surplus of negative charge carriers (electrons) in the

semi-conductor channel to conduct the current. P-channel FETswork in the inverse fashion, and

N and P types are often used in pairs, where one is on and the other off at any one time.

A logical invert operation is implemented by the FET circuit in Figure B.1(b). Assume that the

FET is switched on withþ5 Vat input A. The channel will then have a low resistance allowing

current to flow through the load resistor, R, causing a voltage drop across it. This means that the

voltage at F must fall, and for correct switching operation, F must be near zero volts when the

FET is on. Thus, the output is near 0 V (logic 0) when the input is þ5 V (logic 1). Conversely,

the output is ‘pulled up’ toþ5 V (logic 1) by R when the input is low (logic 0). There is then no

current flow in the FET channel, and no voltage drop across the resistor. The output must

therefore be at the same voltage as the supply, þ5 V, giving us the required logic inversion.

The logic operation AND requires the output of a circuit to be high only when all inputs are

high (Table B.1). NAND, the inverse operation, requires that the output is low only when all

Input
Voltage

Current flow

Channel

0V

Field Effect Transistor

Gate

FET Logic Inverter

0V

Output F

+5V

Input A

R

0V

Output F

+5V

 Input A

Input B

R

Simplified NAND Gate

Input B

Input A

0V

Output F

+5V

R

Simplified NOR Gate

(b)(a)

(c) (d)

Figure B.1
Field effect transistor logic gates: (a) field effect transistor; (b) FET logic inverter; (c) simplified

NAND gate; (d) simplified NOR gate

Microelectronic Devices 351

inputs are high. This operation can be implemented as shown in Figure B.1(c). The output F is

only low when both transistors are on. The AND function can be obtained by inverting the

NAND output, which can be implemented by connecting the inverter circuit to the NAND

output.

Similarly, the logic operation OR requires the output of a gate to be high when either input is

high (Table B.1). NOR, the inverse output, requires that the output is low when either input is

high. This operation can be implemented as shown in Figure B.1(d). The output F is low when

either transistor is on. The OR function can then be obtained by inverting the NOR output, by

connecting the inverter circuit.

In real logic gates, the circuits are a little more complex, but not much. Resistors are not used

because they waste too much power; instead, an additional FET is used as an active load, which

reduces dissipation. The logic operations in Table B.1 are all we need to make any logic or

processor circuit. Digital circuits are based on various combinations of these logic gates,

fabricated on a silicon wafer. A microprocessor may contain thousands of gates and millions of

transistors.

B.1.2. Logic Gates

The basic set of logic devices comprises the AND gate, OR gate and NOT gate (or logic

inverter); standard symbols are shown in Figure B.2. The inputs on the left accept logic

(binary) inputs, producing a resulting output on the right.

Three additional gates can be made up from the basic set: the NAND gate, NOR gate and XOR

(exclusive OR) gate. The NAND is just an AND gate followed by a NOT gate, and a NOR gate

is an OR gate followed by a NOT gate. An XOR gate is similar to an OR gate except that the

output is low when both inputs are high (Table B.1).

Table B.1 shows all the possible input combinations for one and two inputs. Obviously, the

only possible inputs for the inverter are 1 and 0. With two inputs, there are four possible input

Table B.1: Logic table for one and two input gates

Inputs

Outputs

NOT AND OR NAND NOR XOR

0 1 - - - - -
1 0 - - - - -

00 - 0 0 1 1 0
01 - 0 1 1 0 1
10 - 0 1 1 0 1
11 - 1 1 0 0 0

352 Appendix B

combinations. Individual gates may have more inputs, but the logical operation will be similar;

for instance, a three-input AND gate requires all inputs to be high to give a high output.

Variations on this representation may appear in data sheets. For instance, the circle

representing logic inversion may be used at the input to a gate, as well as the output, but it

should always be possible to work out the logical operation from the basic logic symbol set.

The more detailed analysis and design of discrete logic circuits are described in standard

textbooks, and do not need to be covered here. Such discrete design principles are, in any case,

less important now for the circuit designer owing to the availability of microcontrollers such as

the PIC, which provide a firmware-based alternative to hard-wired logic.

B.2. Combinational Logic

Logic circuits can be divided into two categories: combinational and sequential.

Combinational logic describes circuits in which the output is determined only by the current

inputs, and the only timing issue is the short delay between input and output changes. In

a sequential circuit, the output at any time is determined by current and previous inputs.

NOT Gate

AND Gate
OR Gate

 XOR Gate

 NOR Gate NAND Gate

(a)

(c)
(d)

(e) (f)

(b)

Figure B.2
Logic gate symbols (US Standard): (a) AND gate; (b) OR gate; (c) NOT gate; (d) XOR gate;

(e) NAND gate; (f) NOR gate

Microelectronic Devices 353

A timing or clock signal is normally required to trigger changes in a sequential circuit, but not

in a combinational one.

B.2.1. Binary Addition

Circuits designed for binary addition provide examples of simple combinational logic.

Binary addition is a basic function of the arithmetic and logic unit (ALU) in any

microprocessor. A 4-bit binary addition is shown in Figure B.3 to illustrate the process

required, as outlined in Appendix A.

The digits in the least significant column are added first, and the result 1 or 0 is inserted in the

sum row. If the sum is two (102), the result is zero with a carry into the next column. The carry

is then added to the sum of the next column, and so on, until the last carry-out is recorded as the

most significant bit of the result. The result can therefore have an extra (carry) digit. We can

design a logic circuit to implement this process, using a binary adder circuit for each column,

feeding the carry bits forward as required.

B.2.2. Binary Adder Circuit

The basic operation can be implemented using logic gates as shown in Figure B.4. Two input

bits are applied at A and B, giving the result at F. This circuit is equivalent to a single XOR

gate, which can be used as our basic binary adder as the circuit is developed. The circuits that

store the inputs and display the outputs will be described later.

B.2.3. Full Adder

To add complete binary numbers, a carry bit must be generated from each bit adder, and added

to the next significant bit in the result. This can be done by elaborating the basic adder circuit as

A
B

F

Figure B.4
Binary adder logic circuit

 1 1 1 1 (A)
 + 0 1 1 0 (B)
 = 0 1 0 1 (Sum)
Carry (1) 1 1

Figure B.3
Example of binary addition

354 Appendix B

shown in Figure B.5(a). The required function of the circuit can be specified with a logic table,

as shown in Figure B.5(b). To implement this logic function, the carry-out (Co) from each stage

must be connected to the carry-in (Ci) of the next, so that we end up with four full adders

cascaded together. The overall carry-in must be applied to the Ci of stage 1 and the carry-out

will then be obtained from Co of stage 4.

B.2.4. Four-Bit Adder

A set of four full adders can be used to produce a 4-bit adder, or any other number of bits, by

cascading one adder into the next. The PIC 16 ALU processes 8-bit data. Since the circuit is

now getting a bit complicated, and we are not particularly concerned with exactly how the logic

is designed, we can hide it inside a block, and then simply define the necessary logical inputs

and the resulting outputs, as shown in Figure B.6.

Input
A

Input
B

Carry In
Ci

Carry Out
Co

Sum
S

Inputs Outputs

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A
B

Ci

S

Co

Inputs

Carry
In Sum

Carry
Out

(a)

(b)

Figure B.5
Full adder circuit and logic table: (a) full adder logic circuit; (b) full adder logic table

Microelectronic Devices 355

All possible input combinations must be processed, and these can be generated by using

a binary count in the inputs. The state of the output for each input combination is defined in

a logic table. With 2� 4-bit inputs, plus the carry-in, there are 512 possible input combinations

in all, so the logic table only shows the first few and last rows.

In the past, logic circuits had to be designed using Boolean mathematics and built from discrete

chips. Now, programmable logic devices (PLDs) make the job easier, as the required operation

can be defined with a logic table or function statement. This is entered as a text file into a PC

OUTPUTINPUTS

muS tuptuOB tupnIA tupnI

Row A4 A3 A2 A1 B4 B3 B2 B1 Ci Co S4 S3 S2 S1 Dec

etc etc

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1
3 0 0 0 0 0 0 0 1 1 0 0 0 1 0 2
4 0 0 0 0 0 0 1 0 0 0 0 0 1 0 2
5 0 0 0 0 0 0 1 0 1 0 0 0 1 1 3
6 0 0 0 0 0 0 1 1 0 0 0 0 1 1 3
.

.
509 1 1 1 1 1 1 1 0 1 1 1 1 0 1 30
510 1 1 1 1 1 1 1 1 0 1 1 1 1 0 30
511 1 1 1 1 1 1 1 1 1 1 1 1 1 1 31

Co Carry Out

S1

S2

S3

S4

Sum Output Input B

B1

B2

B3

B4

A1

A2

A3

A4

Input A
4-bit

Binary

Adder

Carry In Ci

(a)

(b)

Figure B.6
Four-bit binary full adder: (a) 4-bit adder block; (b) logic table for 4-bit adder

356 Appendix B

and converted into programming instructions, which are sent to the PLD to configure the links

between each gate.

B.3. Sequential Logic

Sequential logic refers to digital circuits whose outputs are determined by the current inputs

AND the inputs that were present at an earlier point in time. That is, the sequence of inputs

determines the output. Such circuits are used to make data storage cells in registers and

memory, and counters and control logic in the processor.

B.3.1. Basic Latch

Sequential circuits are made from the same set of logic gates shown in Figure B.2. They are all

based on a simple latching circuit made with two gates, where the output of each gate is

connected back to an input of the other, as shown in Figure B.7(a).

This latch circuit uses NAND gates, but NOR gates will work in a similar way. When both

inputs, A and B, are low, both outputs must be high. This state is not useful here, so is called

‘invalid’.When one input is taken high, the output of that gate is forced low, and the other output

high. The latch is now set, or reset, depending on which output, X or Y, is being used to feed the

INPUTS OUTPUTS
Time A B X Y Comment

dilavnI1
1=X2

1=XdloH3
0=XteseR4

0=XdloH5
1=XteS6

7

0 0 1 1
0 1 1 0
1 1 1 0
1 0 0 1
1 1 0 1
0 1 1 0
1 1 1 0 Hold X = 1

A

B

X (Output)

Y

(a)

(b)

Figure B.7
Basic latch: (a) basic latch circuit; (b) sequential logic table for basic latch

Microelectronic Devices 357

next stage. In Figure B.7, X is taken as the output, and is set high. This state is held when the

other input is taken high, and this gives us the data storage operation required. The output X can

now be reset to zero by taking input B low. This reset state is held when B is returned high.

The sequence of events is shown in FigureB.7(b). At time slot 3 a data bit ‘1’ is stored at X,while

at time slot 5 data bit ‘0’ is stored. Note that in the time slots when both inputs are high, output X

can be high or low, depending on the sequence of inputs before that step was reached.

With additional control logic, the basic latch circuit can be developed to give two important

logic building blocks: the D-type (data) latch, which acts as a one bit data store, and T-type

(toggle) bistable, which is used in counters. Such bistable (two stable states) devices are often

referred to as ‘flip-flops’. Different kinds of sequential circuits, including the counters and

registers as used in the microcontroller, can be constructed from a general purpose device

called a ‘J-K flip-flop’. Counters and registers are covered in Appendix C.

B.3.2. Data Latch

The data latch is a basic data storage device, shown in Figure B.8(a). The operating sequence

can be represented by a logic table (Figure B.8b). When the enable (EN) input is high, the

INPUTS OUTPUT
Time D EN Q Comment

unknowntuptuO1
0tupnI=tuptuO2

dehctaL0ataD3
dleH0ataD4

1tupnI=tuptuO5
dehctaL1ataD6

dleH1ataD7
8

0 0 x
0 1 0
0 0 0
1 0 0
1 1 1
1 0 1
0 0 1
0 1 0 Output = Input 0

Data
Input

Enable
Input

Data
OutputD

EN

Q

(b)

(a)

Figure B.8
Data latch: (a) data latch circuit; (b) sequential logic table for data latch

358 Appendix B

output (Q) follows the state of the input (D). When the enable is taken low, the output state is

held. The output does not change until the enable is taken high again. This is a transparent

latch, because the data goes straight through when the enable is high. A timing diagram

(Figure B.9) shows the latch operating sequence in a way that may be easier to interpret than

the logic table. An alternative type, the edge-triggered latch, stores the data input at a specific

point in time, when the enable (clock) signal changes; this is used in registers and static random

access memory (RAM) to store groups of 8 bits.

B.4. Data Devices

All data processing or digital control systems need circuits to carry out the following

operations:

• data input

• data storage

• data processing

• data output

• control and timing.

In order to explain the operation of microprocessor and microcontroller systems, the logic

devices outlined above will be used to make up a basic data processing circuit. Some additional

devices are needed, the tri-state gate (TSG) and line driver, to complete the system

(Figure B.10). Note that all the active devices (TSG, latch and driver) need a power supply

(nominally 5 V), which is not normally shown explicitly in the digital circuit.

Data Input
D

Enable
EN

Data Output
Q

time

1

0

1

0

1

0

Invalid Input 0 Hold 0 Hold 0 Input 1 Hold 1 Hold 1 Input 0 etc

1 2 3 4 5 6 7 8

Figure B.9
Data latch timing

Microelectronic Devices 359

B.4.1. Data Input Switch

In Figure B.10(a), a switch (S) and resistor (R) are connected across a 5 V supply. If the switch

is open, the data output is pulled up to þ5 V, via the resistor. If the switch is closed, the logic

level at the data output must be 0, as it is connected directly to ground. The resistor is required

to prevent a short-circuit between the þ5 Vand 0 V supplies, while allowing the output to rise

to þ5 V when the switch is open. This only works if a relatively small current is drawn by the

load at the data output. This is usually not a problem, as digital inputs typically draw no more

than a few microamps. One practical problem is switch bounce; when the switch is closed, the

contacts may bounce open again briefly, which can be detected by any digital circuit attached

as multiple switch operations. To provide a single clean transition, a capacitor can be

connected across the contacts to smooth the rising voltage, or a latch (see above) connected to

the switch output. Data input switches can be used individually as control inputs, or in an array

of rows and columns in a keypad (see Chapter 1, Figure 1.9).

B.4.2. Tri-State Gate

The TSG (Figure B.10b) is a digital device that allows electronic switching and routing of

signals through a data processing system. It is basically an FET switch (see Section B.1.1

above), where the data passes through the drain-source channel. It is controlled by the Gate

Current Driver IC

Data
Input

0v

LED

R

(d)

Data
Output

Data Latch
Enable Pulse

D Q

EN

Data
Input

(c)

+5v

0v

Data

R

S

(a) (b)

TSG
Enable
[GE]

Data
Out

Tri - State Gate IC

Data
In

Figure B.10
Data circuit elements: (a) switch input; (b) tri-state gate; (c) data latch; (d) LED output

360 Appendix B

Enable input (GE). When GE is active (in this example high), the gate is switched on, and data

is allowed through, 1 or 0. When GE is inactive (low), the data is blocked, and the output goes

into a high impedance (HiZ) state, which effectively disconnects it from the input of the

following stage. The TSG may have an active low input, in which case the control input has

a circular invert symbol. TSGs are used within VLSI circuits such as the PIC microcontroller,

where they allow data from different sources onto the internal data bus.

B.4.3. Data Latch

A data latch (Figure B.10c) is a circuit block which stores one bit of data, as described in

section B.3.2. If a data bit is presented at the input D (1 or 0), and the latch clocked by pulsing

the Latch Enable input (0,1,0), the data appears at the output Q. It remains there when the input

is removed or changed, until the latch is clocked again. Thus, the data bit is stored, and can be

retrieved at a later time in the data processing sequence. Sets of data latches are used to form

the registers in a microcontroller.

B.4.4. LED Data Display

A light-emitting diode (LED) provides a simple data display device. In Figure B.10(d) the logic

level to be displayed (1 or 0) is fed to the current driver, which operates as an amplifier that

provides enough current (typically about 10 mA) to make the LED light up when the data is ‘1’.

Again, this is essentially an FET switch, which connects the LED to the supply when the input

gate is enabled. The resistor value controls the size of the current. Seven-segment, and other

matrix displays, use LEDs to display decimal or hexadecimal digits by lighting up suitably

arranged LED segments or dots.

B.5. Simple Data System

The way that data is transferred through a digital system using the devices described above is

illustrated in Figure B.11. The circuit allows one data bit to be input at the switch (0 or 1),

enabled onto the input of the latch, stored at its output and displayed on the LED.

The operational steps are as follows:

1. The data at D1 is generated manually at the switch (‘0’¼ 0 V and ‘1’¼þ5 V).

2. When the TSG is enabled, the data becomes available at D2 (while the gate is disabled, the

line D2 is floating, or indeterminate).

3. When the data latch is pulsed, level D2 is stored at its output, D3 (D3 remains stored until

new data is latched, or the system powered down).

4. While latched, the data at D3 is displayed by the LED (On¼ ‘1’), via the current

driver stage.

Microelectronic Devices 361

Table B.2 details the control sequence, with the data states that exist after each operation. Note

that ‘x’ represents ‘don’t know’ or ‘don’t care’ (it could be 1, 0 or floating).

B.6. Four-Bit Data System

Data is usually moved and processed in parallel format within a microprocessor system. The

circuit shown in Figure B.12 illustrates this process in a simplified way.

The function of the 4-bit system is to add two binary numbers that are input at the switches. The

two numbers A and B will be stored, processed and output on a seven-segment display, which

shows the output value in the range 0 to F. The display has a built-in decoder that converts the

4-bit binary input into the corresponding digit pattern on the segments. To obtain the correct

result, the two input numbers must add up to 1510 or less, or up to 910 for a binary coded

decimal (BCD) result.

The common data bus, as is the case in any microprocessor system or microcontroller

architecture, is used to minimize the number of connections required. However, this means that

Table B.2: One-bit system operating sequence

Operation Switch D1 GE D2 LE D3

Data Input 1 Open 1 0 x 0 x
Input Enable Open 1 1 1 0 x
Latch Data Open 1 1 1 0-1-0 1
Input Disable Open 1 0 x 0 1
Data Input 0 Closed 0 0 x 0 1
Input Enable Closed 0 1 0 0 1
Latch Data Closed 0 1 0 0-1-0 0
Input Disable Closed 0 0 x 0 0

D1 D2

Tri - State
Gate

TSG
Enable
[GE]

+5v

0v

Data
Input
Switch

Current
Driver

Data
Output
Display

D3

Data
Latch

Data Latch
Enable Pulse
[LE]

D Q

0V

EN

Figure B.11
One-bit data system

362 Appendix B

only one set of data must be allowed on the bus at any one time, so only one set of gates must be

enabled at a time; otherwise contention occurs on the bus and the data is invalid. The data

destination is determined by which set of latches is operated when data is on the bus. The gates

(data switches) and latches (data stores) must therefore be operated in the correct sequence by

the control unit.

For the moment, we will assume that the control signals are generated manually using suitable

switches or push buttons. The first number (6) is set up on the input switches, and the data input

gate enable (DIGE) set active. This data word is now on the bus, and can be stored in latch A by

pulsing the data A latch enable (DALE). Now the input switches are changed to generate the

second number (3), which is to be added to the first. This value now appears on the bus and can

be stored in latch B by activating DBLE (Table B.3).

7 Segment
Display

4-Bit Binary
Adder

D Q

D Q

DA

DB

DIGE
DOGE

DALE
DBLE
DOLE

d3
d2
d1
d0

Data
Bus
Lines

Control
Unit

Clock

 DO

4 bit Data
Input Gate

4 bit Data
Output Latch

Input
Switches

Data
Latch

A

Data Output
Gate

Data
Latch

B

D Q

Figure B.12
Four-bit data system

Microelectronic Devices 363

Table B.3: Four-bit system operating sequence

Step
Input Switches
(4-Bit Binary) DIGE DOGE DALE DBLE DOLE

Display
Hex 0eF

Data Bus
(4-Bit Binary) Operation

0 xxxx 0 0 0 0 1 X xxxx Ready for input

1 0110 0 0 0 0 1 X xxxx Set data input number A on switches

2 0110 1 0 0 0 1 6 0110 Enable data A onto bus by switching on input gates

3 0110 1 0 0-1-0 0 1 6 0110 Store data A in latch A by clocking it with a pulse

4 0110 0 0 0 0 1 X xxxx Disable input gates e no valid data on bus

5 0011 0 0 0 0 1 X xxxx Set data input number B on switches

6 0011 1 0 0 0 1 3 0011 Enable data B onto bus by switching on input gates

7 0011 1 0 0 0-1-0 1 3 0011 Store data B in latch B by clocking it with a pulse

8 0011 0 0 0 0 1 X xxxx Disable input gates e no valid data on bus

9 xxxx 0 1 0 0 1 9 1001 Enable result from ALU onto bus

10 xxxx 0 1 0 0 0 9 1001 Store result in output latch by clocking it with a pulse

11 xxxx 0 0 0 0 0 9 xxxx Result displayed e ready for next input

DIGE: data input gate enable; DOGE: data output gate enable; DALE: data A latch enable; DBLE: data B latch enable; DOLE: data output latch enable.

3
6
4

A
ppendix

B

With the numbers stored at the outputs of the latches DA and DB, the result appears at the

output of the binary adder, DO. If the data output gate is enabled (DOGE), the result will

appear on the bus. However, the data input gatemust be disabled first, so that there is no conflict

on the bus. The result (9) can then be stored and displayed by operating the data output latch

enable (DOLE).

If this operating sequence can be automated, we are on the way to making a microcontroller.

The binary operating sequence produced by the control unit must be recorded and played back

in some way. This can be done by storing it in a read-only memory (ROM) memory block,

along with the data to be input at the switches. Combining the ‘instruction codes’ (control

switch operations) with the ‘operands’ (input data) gives us the simple ‘machine code program’

as seen in Table B.4.

The program has three instructions, of 9 bits in length. The instruction/operation code (op-code)

is the first 5 bits, and the operand (data) the last 4. The control block needs to be designed such that

the op-codes are generated on the control lines in the right sequence, and the data is connected in

place of the switch inputs. This could be achieved by addressing the program ROM using

a counter so that the control codes are output in turn. A clock signal will drive the system along.

The next stepwould be to replace the binary adder with a block that could also subtract and carry

out logical operations such as increment, shift, AND, OR and so on. Different instruction codes

would then set up the circuit to carry out all the required operations. More latches could be

added, forming registers within the processor. Better input and output devices such as a keypad

and multi-digit display would then give a usable system, as outlined in Chapter 1. The means to

program the ROM (a development system) completes our simple processor system. This is how

early calculator chips were developed, leading to microprocessors and microcontrollers.

The system outlined above could be implemented in hardware, but the discrete components

used may not now be easily obtainable. Since it is designed purely to illustrate the principles of

data system operation using a shared data bus, a simulation is probably more useful. A

schematic for the 4-bit processing system is shown in Figure B.13 and the design file can be

downloaded from www.picmicros.org.uk.

The key component is the ALU 74LS181 (U1), which can operate on pairs of 4-bit binary

numbers applied at inputs A0eA3 and B0eB3. The operation can be selected via inputs

Table B.4: Four-bit system ‘machine code program’

‘Instruction’ Code ‘Operand’ Hex ‘Program’ Operation

1 0101 0110 156 Input and Latch Data A

1 0011 0011 133 Input and Latch Data B

0 1001 0000 090 Latch and Display Result

Microelectronic Devices 365

http://www.picmicros.org.uk

S0eS3; to perform an arithmetic addition, these are set to 1001 on the switches. Initially, the

control switches should all be switched on, setting all control inputs low to disable the gates

and latches.

To start the sequence, the first data is set on the input switches, and allowed onto the data

bus via the gates in U2 when enabled via OEB (control switch 1 off). The first nibble (4-bit

BCD number) can then be stored in latches U3 by toggling control switch 2 to generate

a positive pulse at CLK. The input is then changed and the second nibble stored in U4 by

pulsing control switch 3. The sum of these two numbers then appears at the output of the ALU.

Switch off the input gates (control switch 1 on) and enable the output gates in U6 (control

switch 4 off). The result is now on the bus, and can be stored in the display latches (U5) by

pulsing control switch 5 high. The next pair of numbers can now be processed while the

previous result is displayed.

Figure B.13
ISIS schematic of 4-bit data system

366 Appendix B

APPENDIX C

Digital Systems

Chapter Outline
C.1. Encoder and Decoder 367

C.2. Multiplexer, Demultiplexer and Buffer 368

C.3. Registers and Memory 371

C.4. Memory Address Decoding 372

C.5. Counters and Timers 373

C.6. Serial and Shift Registers 374

C.7. Arithmetic and Logic Unit 375

C.8. Processor Control 376

C.9. CPU System Operation 376

C.10. PIC16 MCU Operation 379

The basic set of digital devices described in Appendix B is enough to build working data

systems; these can be combined into circuit blocks which can in turn be incorporated into more

complex digital systems. Some of these system blocks can be built from or supplied as discrete

small- and medium-scale integrated circuits, but are now more commonly found integrated

within microprocessor system chips and microcontrollers (MCUs). Proteus VSM is ideal for

experimenting with these circuits, and no programming is required to test the circuits. Apart

from supplying essential background in digital systems, the main purpose of this appendix is to

support the interpretation of the hardware diagrams in the PIC� data sheet.

C.1. Encoder and Decoder

A digital encoder is a device that has a number of separate inputs and a binary output, which

generates a binary code corresponding to the numbered input that is activated. Therefore, a

3-bit encoder has eight inputs and three outputs. If, for example, input number 4 is set active

(usually low), the binary code for 4 (100) is output.

A decoder carries out the inverse logical operation e a binary input code activates the

corresponding output. The 3-bit decoder therefore has three inputs and eight outputs. Thus, if

the binary code for 5 (101) is input, output 5 of the decoder goes active (low).

An encoder and decoder can be used to operate a keypad, providing a neat example of how they

work. This hardware interface reduces the number of input/output (I/O) lines needed to connect

367

the keypad to a microcontroller, and generates the keycode in hardware. The keypad consists of

a set of switches connected in a two-dimensional array, such as that found on a phone or

calculator. A simple decimal keypad has 12 keys, 0e9, hash (#) and star ()). A hexadecimal

keypad has 16 keys, 0eF, and this type is used in Figure C.1. A calculator keypad has

additional keys for the calculator function, and can be scanned in the same way. A standard

computer keyboard operates in a similar way, with the keycode transmitted to the main

processor in serial form.

A 2-bit decoder has its outputs connected to the four rows of the hex keypad, and a 2-bit

encoder receives the input from each column. A key will be detected as a combination of the

row select code and column detect code, a total of 4 bits. An additional encoder output

indicates when a key has not been pressed.

The four select lines output from the row decoder are normally high. When a binary input code

is applied, the corresponding row line goes low (Figure C.1b). A 2-bit binary counter

(consisting of two T-type flip-flops; see Section C.5) is used to drive the row decoder, as this

will generate each row select code in turn. If a key on the active row is pressed, this low bit will

be detected on the column line. These are also normally held high (via pull-up resistors) and are

connected to a column encoder. This generates a binary code (Figure C.1c), which corresponds

to the input that has been taken low by connection to the active row.

Thus, the combination of the row select binary code (R1, R0) and the column detect binary

code (C1, C0) will give the number of the key that has been pressed. For instance, if key 9 is

pressed, row 2 will go low when the input code is 10. This will take column 1 low, which

will give the column code 01 out. The complete code is then 1001 in binary (910). A

microcontroller connected to the keypad interface can be programmed to generate four

clock pulses to the row counter and read the inputs after each pulse, to complete a scan of

the keypad. Switch debouncing can be incorporated by reading the inputs after a suitable

delay.

Encoders and decoders are combinational logic circuits, which can be designed with any

number of code bits, n, and 2n selected lines. Discrete 3-bit encoders and decoders are available

as medium-scale integration (MSI) chips, while the 2-bit encoders needed here would have to

be designed from discrete gates. This kind of discrete logic design is covered in numerous

standard textbooks. In this case, the counter, decoder and encoder could be designed as

a complete subcircuit fitted adjacent to the keypad, perhaps using a programmable logic device

(PLD).

C.2. Multiplexer, Demultiplexer and Buffer

A multiplexer is essentially an electronic changeover switch, using a tri-state gate (TSG),

which can select data from alternative sources within a data system. This allows two or more

368 Appendix C

(a)

(b)

(c)

(d)

Inputs Outputs
B A 0 1 2 3
0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

Inputs Outputs
0 1 2 3 B A G
1 1 1 1 x x 1
0 1 1 1 0 0 0
1 0 1 1 0 1 0
1 1 0 1 1 0 0
1 1 1 0 1 1 0

Clock R1 R0 C1 C0 NK

0 1 2 3
00

4 5 6 7
01

8 9 A B
10

C D E F
11

00 01 10 11

Row
Decoder

Column Encoder
0 1 2 3

B A
G

B A

0

1

2

3

+5V

2-bit Q0
Counter Q1

Key
Press

Row
Decoder

Input

R1 R0

Row
Decoder
Output

3 2 1 0

Column
Encoder

Input

3 2 1 0

Column
Encoder
Output

 C1 C0 NK
None X X X X X X 1 1 1 1 X X 1

0 0 0 1 1 1 0 1 1 1 0 0 0 0
1 0 0 1 1 1 0 1 1 0 1 0 1 0
2 0 0 1 1 1 0 1 0 1 1 1 0 0
3 0 0 1 1 1 0 0 1 1 1 1 1 0
4 0 1 1 1 0 1 1 1 1 0 0 0 0
5 0 1 1 1 0 1 1 1 0 1 0 1 0
6 0 1 1 1 0 1 1 0 1 1 1 0 0
7 0 1 1 1 0 1 0 1 1 1 1 1 0
8 1 0 1 0 1 1 1 1 1 0 0 0 0
9 1 0 1 0 1 1 1 1 0 1 0 1 0
A 1 0 1 0 1 1 1 0 1 1 1 0 0
B 1 0 1 0 1 1 0 1 1 1 1 1 0
C 1 1 0 1 1 1 1 1 1 0 0 0 0
D 1 1 0 1 1 1 1 1 0 1 0 1 0
E 1 1 0 1 1 1 1 0 1 1 1 0 0
F 1 1 0 1 1 1 0 1 1 1 1 1 0

Figure C.1
Keypad scanning using an encoder and decoder: (a) decimal keypad operation; (b) 2-bit decoder

logic table; (c) 2-bit encoder logic table; (d) keypad logic table

Digital Systems 369

different system devices to share a common signal path (bus line) at different times. In

Figure C.2(a), input 1 or 2 is selected by the logic state of the select input. The logic inverter

ensures that only one of the TSGs is enabled at a time. Conversely, a demultiplexer

(Figure C.2b) splits the signal using the same devices. That is, it can pass data to alternative

destinations from the bus. A controller block is needed to provide these coordinated signals.

The bidirectional buffer (Figure C.2c) is used to allow data to pass in one direction at a time

along a data path, for example, on a data bus or serial link. To achieve this, the TSGs are

connected nose to tail, and are only enabled one at a time, as in the multiplexer. When the

(a)
Tri-
State
Gates

Logic Inverter

Select
Input

Input 1

Input 2
Multiplexer
Output

(c)
Tri-State
Gates

Logic Inverter
Select
Data Direction

Bidirectional
Data

Bidirectional
Data

(b)
Tri-
State
Gates

Logic Inverter
Select
Input

Data
Input

Output 2

Output 1

Figure C.2
Multiplexer, demultiplexer and bidirectional buffer: (a) 1-bit multiplexer; (b) 1-bit demultiplexer;

(c) bidirectional data buffer

370 Appendix C

control input is low, the data is enabled through from left to right, and when high, from right

to left.

These subcircuits can all be constructed from the same set of gates: two TSGs and a logic

inverter. All are important for the operation of bus systems, as outlined in Appendix B. Any

data source connected to a common (bus) line needs to be isolated via a TSG. Data receivers do

not need isolation, as inputs (data latches) are by definition high impedance (hi-Z). Thus, only

one data source should be enabled at a time, whereas the data can be received by multiple

devices at once, if required.

C.3. Registers and Memory

We have seen previously how a 1-bit data latch works. If the bidirectional data buffer

(Figure C.2c) is added, data can be read from a data line into the latch, or written to the data line

from it, depending on the data direction selected. We then have a register bit store. In

Figure C.3(a), the Data In/Out line can be connected to the D input or Q output, depending on

(a)

(b)

8-Bit
Data
Bus

8-Bit
Data
Bus

Register
Enable

Bit Number

1 0 0 1 0 1 1 0
Read/
Write

 EN

 D Q

 Data In/Out

Data
Direction
Select

Latch
Enable

Bi-directional
Buffer

Data
Bus
Line

7 6 5 4 3 2 1 0

Figure C.3
Register operation: (a) data register bit operation; (b) 8-bit data register operation

Digital Systems 371

the state of the Data Direction Select. If data is to be stored by the latch from the data line,

Latch Enable is activated at the appropriate time.

If a set of these register elements is used together, a data word can be stored. The usual data

word size is 8 bits (1 byte), with most systems handling data in multiples of 8 bits. An 8-bit

register, consisting of eight data latches, is shown in Figure C.3(b). The Register Enable and

Read/Write (data direction select) lines are connected to all the register bits, which operate

simultaneously, to read and write data to and from the 8-bit data bus.

C.4. Memory Address Decoding

A static random access memory (RAM) location operates in a similar way to a register.

The memory device stores a block of 8-bit data bytes, which are accessed as numbered

locations (Figure C.4). Each location consists of eight data latches, which are loaded and

read together. A read operation is shown in the diagram; the data is being output from the

selected location. A 3-bit code is needed to select one of eight locations in the memory block,

using an internal address decoder to generate the location select signal. The selected data byte

is enabled out via an output buffer, which allows the memory device to be electrically

disconnected when another device wants to use the data bus.

The number of locations in a memory device can be calculated from the number of address pins

on the chip. In the example above, a 3-bit address provides eight unique location addresses

(0002 to 1112). This number of locations can be calculated directly as 23¼ (2� 2� 2)¼ 8.

01100101
10010000
11101011
00110101
00111010
00011111
11101011
01110001

000
001
010
011
100
101
110
111

Data
Out

Output
Buffer

3-Bit
Input

Address

A2

A1

A0

8-bit Memory
Locations

Address
Decoder

Output
Enable

Location
Select Lines

Figure C.4
Memory device operation

372 Appendix C

The number of locations is therefore calculated as 2 raised to the power of the number of

address lines. Some useful values are listed in Table C.1.

C.5. Counters and Timers

A counter/timer register can count the number of digital pulses applied to its input. If a clock

signal of known frequency is used, it becomes a timer, because the duration of the count is

equal to the count value multiplied by the clock period. Like the data register, the counter/timer

register is made from bistable units, but connected in ‘toggle’ mode, so that each stage drives

the next. Each outputs one pulse for every two pulses that are input, so the output pulse

frequency is half the input frequency (Figure C.5a). The counter/timer register can therefore be

viewed as a binary counter or frequency divider, depending on the application.

Table C.1: Common memory sizes

Address Line Location (1 Byte Each) Memory Size

8 28¼ 256 256 bytes
10 210¼ 1024 1 kb (kilobyte)
16 216¼ 65536 64 kb
20 220¼ 1048576 1Mb (megabyte)
30 230¼ 1073741824 1 Gb (gigabyte)

(a)

(b)

T - Type
(Toggle
Mode)
Flip-
Flop

Input Frequency = f Output Frequency = f/2

Data Preload

0 00 0 0 1 00
Clock / Pulses

00000000

Time Out
Flag

Preload with Start Value
0–255

Read out count

Figure C.5
Counter/timer register operation: (a) counter stage; (b) 8-bit counter register

Digital Systems 373

Figure C.5(b) shows an 8-bit counter/timer, with the input to the least significant bit (LSB) at

the right. The binary count seen at the outputs increments each time the LSB is pulsed.

Two pulses have been applied, so the counter shows binary 2. After 255 pulses have been

applied, the counter will ‘roll over’ from 11111111 to 00000000 on the next pulse. A signal is

output to indicate this, which can be used as a carry-out in counting operations or indicate time

out when timing. In a microprocessor system, the time-out signal typically sets a bit in the

status register to record this event. Optionally, an interrupt signal may be generated, which

forces the processor to carry out an interrupt service routine to process the time-out event.

If the clock pulse frequency is, say, 1 MHz (1 megahertz, 106 cycles per second), the period

will be 1 ms (1 microsecond, 10�6 seconds), and the counter will generate a time-out signal

every 256 ms. If the counter is preloaded with a suitable number, we can make it time out after

some other number of input pulses. For example, if preloaded with a count of 56, it will time

out after 200 ms. In this way, arbitrary time intervals can be generated. In conventional

microprocessor systems, the I/O ports often contain timers that the processor uses for timing

operations. All PICs have at least one 8-bit counter/timer, with a prescaler that divides the input

frequency by a factor of between 2 and 256 in order to extend its range. Many also have 16-bit

counters, which allow longer intervals to be generated without a prescaler, and a more accurate

count to be recorded. PIC timer/counters are explained in more detail in Chapter 6.

C.6. Serial and Shift Registers

The general purpose data register, as described in Section C.3, is loaded and read in parallel.

A shift register is designed to be loaded or the data read out in serial form. It consists of a set

of data latches that are connected so that a data bit fed into one end can be moved from

one stage to the next, under the control of a clock signal. An 8-bit shift register can therefore

store a data byte that is read in one bit at a time from a single data line. The data can then

be shifted out again, one bit at a time, or read in parallel. Alternatively, the register could be

loaded in parallel and the data shifted out onto a serial output line.

In Figure C.6(a), the 8-bit shift register is fed data from the right. The shift clock has to operate

at the same rate as the data arrives, so that the register samples the data at the right time at the

serial data input. This means that there must be standard clock rates used to set up the shift

register in advance. As each bit is read in, the preceding bits are shifted left to allow the next bit

into the LSB. The timing diagram shows the data being sampled and shifted on the falling

clock edge e note that only the state of the input at the sampling instant is registered, so the

short negative going pulse between bits 6 and 7 is ignored. This type of register is used in

microcontroller serial ports, where data is sent or received in serial form (see Chapter 12). In

the PC, this could be the modem or network port, the keyboard input or visual display unit

(VDU) output.

374 Appendix C

C.7. Arithmetic and Logic Unit

The main function of any microsystem is to process data, for example, to add two numbers

together. The arithmetic and logic unit (ALU), shown in Figure C.7, is therefore an essential

feature of any microprocessor or microcontroller. A binary adder block has already been

described in Appendix B, but this would be just one of the functions of an ALU. The ALU

takes two data words as inputs and combines them together by adding, subtracting, comparing

and carrying out logical operations such as AND, OR, NOT and XOR. The operation to be

carried out is determined by function select inputs. These, in turn, are derived from the

(a)

(b)

Time

Shift Clock

Serial Data Input

Bit 0 1 2 3 4 5 6 7

1 0 0 1 0 1 1 1

1 00 0 1 1 11

Read Out In Parallel

Shift Clock

Serial Data Input

Bit 0 1 2 3 4 5 6 7

Figure C.6
Shift register operation: (a) shift register; (b) shift register signals

Data Word 1

Data Word 2

Result

Control Inputs
Select Operation

ALU

Figure C.7
Arithmetic and logic unit

Digital Systems 375

instruction code in the program being executed in the processor. The block arrows used in

the diagram indicate the parallel data paths (8-bit in PIC16) which carry the operands to the

ALU, and the result away to the next stage. A set of data registers that store the operands is

usually associated with the ALU. In the PIC16, the working register (W) always receives the

result, and provides one of the operands. In other processors, multiple data registers can

provide the operands and store the result.

C.8. Processor Control

The instruction decoder is a logic circuit in the central processing unit (CPU), which receives

the instruction codes from the program to control the sequence of operations. The decoder

output lines, which are connected to the registers, ALU, gates and other control logic, are set up

for a particular instruction to be carried out (e.g. add two data bytes). The processor control

block (Figure C.8) also includes timing control and other logic to manage the processor

operations. The clock signal drives the sequence of events, so that after a certain number of

clock cycles, the results of the instruction are generated and stored in a suitable register or back

in memory.

C.9. CPU System Operation

Although we are mainly concerned with microcontroller architecture, it is worth looking

briefly at memory and I/O access in a conventional system, because it explains the process that

occurs within the microcontroller chip, and is important for an overview of microprocessor

systems. It is a logical extension of address decoding within each memory chip.

The typical microprocessor system consists of memory and I/O devices connected to the

CPU by a shared data bus. Only one peripheral chip can use the data bus at any one time, so

a system of chip selection is needed whereby the processor can communicate with a particular

device. Figure C.9(a) shows the system connections that allow the CPU to read and write

Instruction
Decoder

CPU
Sequence

Control

Clock

Instruction
Code

Control lines
to processor
registers,
ALU, etc.

Figure C.8
CPU control logic

376 Appendix C

data to and from the memory and I/O devices, using an address bus and other control lines.

The peripheral chips each have a set of registers or memory locations, and require the

following connections (Figure C.9b):

• Data Bus: A set of bidirectional data lines, connected to the CPU system data bus, which

feed the data in and out of the memory locations or registers in the chip. In an 8-bit

system, they are numbered D0eD7.

(a)

(b)

(c) Address Range

Lowest

Address

Highest

Address

High

Bits
Decoder Logic Number of Locations Device

0000 3FFF 00XX
4000 7FFF 01XX

800016 = 3276810 RAM

8000 801F 100X 2016 = 3210 Parallel Port Registers
Serial Port Registers8

A15.!A14.!A13
A15.!A14.A13

!A15

101XA008A000
C000 FFFF 11XX A15.A14 400016 = 1638410 ROM

System
Address
Decoder

CPU

RAM ROM

Serial
Port

Chip
Select
Lines

High Address
Lines

Read/Write

Register
Select

Address Bus

Data Bus

Low
Address

Parallel
Port

Memory

Or

Port

Chip

Address Bus
An – A0

(Register or location
select)

Read/!Write (R/!W)

Chip Select (!CS)

Data Bus
(8-bits)
D7 – D0

Figure C.9
Microprocessor system operation: (a) block diagram; (b) memory or port chip connections;

(c) memory map

Digital Systems 377

• Address Bus: A set of input location or register select lines connected to the internal

address decoder; generated in the CPU by the program counter or derived from an

instruction operand. A 16-bit address bus, A0eA15, can access 64k memory.

• Read/!Write: Control input selects the data direction at the input bidirectional buffer for the

location selected. Generated by the CPU depending on whether a read or write to the

location is required. Usually, 1¼ read, 0¼write.

• !Chip Select: Active low control input, which enables the output TSGs for a read, and the

input latches for a write.

We will assume that in this system the CPU has a 16-bit address bus, allowing 64k (216)

locations to be addressed. The address decoder generates chip select signals derived from

the three most significant address lines (A15, A14, A13). It operates according to the table

shown in Figure C.9(c). The decoder logic is fairly simple in this case, and can be implemented

with a few discrete gates or a small PLD. In fact, the RAM chip select (!A15¼ not A15¼ low)

can simply be connected directly to the address line A15, with no logic required, since the

RAM is selected for all addresses with the most significant bit (MSB)¼ 0.

All data transfers are carried out in the same way, but let us assume that the CPU is reading

a program instruction from read-only memory (ROM). The CPU program counter contains the

address of the instruction e this is output as a binary code on the address bus. The system

address decoder takes, in this system, the 3-bit code on the most significant address lines

(ROM¼ 11X) and activates the ROM chip select line. The lower order address lines are used,

as described in Section C.4, to select the required location within the chip. Thus, the location

select is a two-stage process, with external (system) and internal (chip) decoding of the

address.

When the location has been selected, the data stored there can be read (or written) via the

data bus according to the setting of the read/not write (R/!W) line generated by the CPU. To

read from memory, the TSGs at the output of the selected device, say ROM, are enabled,

while all others connected to the bus are disabled, allowing the ROM data onto the bus lines.

The data can then be read off the bus by the CPU, and copied into a suitable register

(instruction register in this case). Note that ROM cannot be written and therefore does not

need the R/W line connected. The I/O ports only have a few addressable locations, their

control registers and a data register for each channel, so only a few of the address lines are

needed for these devices.

The design of the decoding logic determines the allocation of the memory and I/O locations to

specific ranges of addresses. In this case, the memory space is divided into eight parts by

the upper three bits of the 16-bit address, and each chip is assigned to one or more ranges.

Notice that not all the available addresses in some ranges are used, especially in those assigned

to the ports, as they have only a small number of registers. On the other hand, RAM fully

occupies its available space (32k) across the first four of the eight blocks.

378 Appendix C

Unlike the microcontroller, the CPU system can be tailored to a specific application by the

hardware designer, with just the right amount of memory and I/O. An example of this type of

system is shown in more detail in Figure 14.5, the block diagram of an M68000 microprocessor

system, which has a 24-bit address bus and 16-bit data bus, with 64k of RAM and 64k ROM.

This system has linear address space, where all locations are accessed using a continuous

addressing sequence.

A similar process is used to select RAM locations in the PIC16, except that the bank selection

bits have to be adjusted explicitly in the program using the BANKSEL command. This

means the RAM address space is not linear, but paged. Similarly, program ROM is divided into

pages of 256 instructions, with PCLATH controlling page selection.

C.10. PIC16 MCU Operation

Figure C.10 reproduces the internal block diagram of the PIC 16F84A, which has the same

core as all PIC16 chips, but is the simplest. It incorporates many of the hardware concepts

described in this appendix. The data paths between each block show the data word size and the

possible data transfer routes. The data bus itself is 8 bits wide, the address bus (program

counter output) 13 bits. The control lines that are used by the instruction decoder and control

block to manage the data transfers are not shown, because it would make the diagram too

complicated. They connect to all parts of the processor, enabling data outputs via TSGs at the

source end, and operating data latches at the receiving end, for all data transfers.

• Memory Blocks: The MCU contains a flash ROM program memory block (1k� 14 bits),

RAM file register block (68� 8 bits) and EEPROM (64� 8 bits). The program counter

generates the program memory address (13 bits). The instruction register receives the

instruction code from the selected program memory address. The RAM address

multiplexer (Addr Mux) can source the RAM address from the instruction literal or

file select register (FSR).

• ALU: The ALU multiplexer (MUX) selects the data source as an instruction literal or data

bus. The ALU result is stored in the working register (W) or a file register. The result

affects individual bits in the status register, e.g. zero flag.

• Ports: The ports A and B are located in the file registers, addresses 05 and 06. The data

direction registers, which control the bidirectional multiplexers at the outputs, are at

addresses 85 and 86 in bank 1. In other PIC chips, serial port data and control registers are

also in the RAM block.

• Timers: TMR0 is an 8-bit timer/counter (RAM address 01), which can be clocked from pin

RA0 (counter) or internally from the instruction clock (timer). The control block also

contains system timers (power-up, oscillator and watchdog).

For more details on the operation of the PIC16 MCU, refer to Chapter 5.

Digital Systems 379

Figure C.10
PIC 16F84A internal architecture (courtesy of Microchip� Technology Inc.)

380 Appendix C

APPENDIX D

Dizi84 Demo Board

Chapter Outline
D.1. Circuit Design 381

D.2. Construction and Testing 383

D.3. Analogue Conversion 385

D.4. EEPROM Storage 387

D.5. LOCK Application 388

This appendix will outline the procedure for producing a demonstration board using

stripboard, which will allow simple PIC� programs to be tested in hardware. The Dizi84

(16F84A with DIsplay, buZzer & Interrupt) board has push-button and switched inputs,

a seven-segment light-emitting diode (LED) display and a buzzer. This hardware was

introduced in Chapter 10, and here the development of the board will be described in more

detail, with an application that uses most of its featurese an electronic lock. The finished

hardware is shown in Figure 10.11.

An in-circuit programming connector is not provided e the chip must be programmed

separately and then physically transferred to the target system. The enhanced Dizi84 board

described in this appendix incorporates an on-board battery supply, a finger pot to provide an

analogue input and hardware switch debouncing to improve the reliability of the push-button

operation. The demo programs in Chapter 10 can be tested on this hardware.

D.1. Circuit Design

The circuit is to be built on a 100 mm� 100 mm section of stripboard, a prototyping method

that produces a reliable circuit with no special tools or design software. It has parallel copper

tracks for making the component connections on a standard 0.1 inch grid. The design includes

a 2� 1.5 V battery pack on the board, so the circuit operates at a voltage of 2e3 V. The power

is switched on via a non-latching push button so that it cannot be left on accidentally, and

thereby exhaust the batteries; it must be held on manually while the circuit is in operation.

A circuit diagram is shown in Figure D.1. A seven-segment display allows decimal and

hexadecimal digits to be displayed. A range of applications with a numerical output can be

demonstrated, for example, the electronic DICE in Chapter 10 and the LOCK application

detailed below (Section D.5). Port B has eight input/output (I/O) bits; seven are used for the

381

LED display, leaving RB0 free for use as both an audio output and a push-button (interrupt)

input. A small audio transducer, a piezoelectric buzzer, provides a simple and effective way of

monitoring audio output frequencies or generating status signals.

Port A has five pins. RA4 can be used as an input to the TMR0 counter, so this was allocated as

another push-button input. A 4-bit switch bank is useful for setting coded inputs, for example

binary coded decimal (BCD) inputs for the LOCK application, so RA0 to RA3 were allocated

for this purpose. The switch and push-button inputs have 100k pull-up resistors, and the push

buttons have 22 mF debouncing capacitors. These are fitted to such inputs because, when

a switch closes, the metal contacts can bounce open again several times before finally closing.

The CR network prevents multiple transitions on the logic signal input to which the switch is

connected, because after the capacitor has quickly discharged on the first contact, it must

recharge via the 100k. This takes a relatively long time, preventing the voltage from jumping

back to a high level when the contacts reopen. By the same process, the CR network also

ensures a smooth transition from low to high logic levels when the push button is released. In

addition, the CR network on RA4 was modified with a potentiometer (pot) connected as

a variable resistance in series with the 100k, so that it could also be used to demonstrate

analogue measurement using a digital input.

The layout of a printed circuit board (PCB) or prototype circuit is derived from the circuit

diagram. The pins on dual in-line (DIL) chips are spaced 0.1 inch apart, so the circuits must be

dp
g
f
e
d
c
b
a

100k x 8

0 V

+3 V

INT

7-Seg.
Display

Vss O1 O2

Vdd
RA4

RA3
RA2
RA1
RA0

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

4MHz
Piezo-
Buzzer

DIL x 4
Switch

PIC

16F84A

cc

Power
Supply
2 x 1.5V

220R

Signal
Output

Power
ON

10k

22nF

220R
 x 8

22nF 22pF 22pF 22nF

MCLR

(17nF)

Figure D.1
Dizi84 test board circuit diagram

382 Appendix D

laid out on a 0.1 inch grid.When the pin-out of each component has been established by reference

to the data sheet or catalogue information, the connections can be mapped out on a square

grid on paper. Alternatively, it is not too difficult to use the basic drawing tools in a word

processor to do the same job. The layout and parts list for theDizi84 board is shown in FigureD.2.

The board is viewed from the front (component) side, with the tracks on the back shown

vertically. The chips are all placed in the same orientation, so that pin 1 is bottom left. The

integrated circuits (ICs) must be fitted across the tracks, so that their pin connections can be

separated by cutting the track between each pair of pins on the DIL connector. The PIC chip

must be fitted in a socket so that it can be removed for programming.

Horizontal links of tinned copper wire (TCW) complete the connections required. A solder

joint is shown as a solid black dot. The broader solid lines indicate a continuous link across the

tracks on the back of the board, where a set of adjacent tracks must be connected. Where

required, the tracks are cut with a hand drill, as shown on the layout (where visible).

A computer drawing method allows component positioning to be easily adjusted so that the

minimum area of stripboard is used. However, with experience, the circuit may be built directly

onto the board without necessarily drawing the layout, perhaps with some additional wastage

of board area.

The components on the board are numbered according to the parts list in Figure D.2(b). Ideally,

this should specify the exact component to be ordered from a suitable supplier, with a catalogue

number. If a particular part becomes unavailable, the layout might be affected, as the pin-out

might be different. One advantage of using electronic computer-aided design (ECAD) to create

a schematic and PCB layout is that the parts list is generated automatically.

D.2. Construction and Testing

When the layout has been checked against the circuit diagram, the main components can be

inserted in the board and retained by, if necessary, slightly bending the pins outwards. All the

pins should then be soldered to the tracks using the minimum amount of solder necessary,

while ensuring that the joint is covered evenly with no cavities. At the same time, the soldering

iron should be in contact with the joint for the shortest possible time, to avoid component

overheating. The TCW links can also be retained before soldering by bending the ends towards

each other. If a very neat job is required, one end can be soldered and the link stretched slightly

before fixing the other end, to ensure that the link has no kinks in it, and that adjacent links do

not touch; insulated TCW may be used on longer links if necessary. The tracks should then be

cut where necessary, and the track side brushed with a small stiff brush to clear any debris.

Rake lightly between the tracks with a small screwdriver or knife to ensure that there are no

short-circuits left between adjacent tracks and solder joints.

Dizi84 Demo Board 383

(a)

(b) Layout Description

1 Battery Box, 2 x AA cells, PCB mounting
2 Microcontroller, PIC 16LF84-04
3 Piezo Electric Sounder, PCB mounting
4 Seven-Segment LED Display, 0.5 inch, Common Cathode
5 Piano DIL Switch, 4-way
6 Tactile Switch, PCB mounting (3 of)

 Caps for above: Red
 Blue
 Yellow
7 Preset Potentiometer, 10k, H-mount
8 DIL Isolated Resistor Network, 100k x 8
9 DIL Isolated Resistor Network, 220R x 8

10 Quartz Crystal, General Purpose, 4MHz
11 Capacitor, 22pF, Ceramic (2 off)
12 Capacitor, 22nF, Polyester (3 off)
13 Stripboard, SRBP 3939 100mm x 100mm
14 Batteries, 1.5V, size AA, Duracell (2 off)
15 18-pin DIL IC Socket

2 & 15
8

9

10
11

3

1 & 14

13

6

12 12

13 4

56

12

7

6

Figure D.2
Dizi84 prototype design: (a) stripboard layout; (b) parts list

384 Appendix D

Thoroughly reinspect the board for correct connections, and check that there is no remaining

debris, solder splashes or whiskers, or dry joints. With the batteries not yet fitted, check with

a multimeter that there is no short-circuit between the power supplies. Fit the batteries, but not

the PIC chip, and hold down the power button. The display decimal point should light. Check

the supply voltages on the supply tracks and PIC socket pins: Pin 5¼ 0 V and Pin 14¼þ3 V.

Check that the voltages at the PIC inputs change correctly as the switches are toggled. A digital

multimeter or an oscilloscope is required for this test, because of the high impedance of the

pull-up resistors. Connect a temporary link between Pin 14 (þ3 V) on the PIC IC socket and

each PIC output in turn, RB0eRB7. The piezo-buzzer should produce an audible ‘tick’ and the

LED segments should light.

To complete testing of the Dizi84 board, a program needs to be blown into the PIC that

exercises all the hardware, while remaining as simple as possible so that there is no question of

the software being faulty. A suitable program is listed as Program D.1, which allows functional

checks to be carried out as specified in the test procedure. If faults are found, it is quite possible

that there are still hardware faults on the board. Check also that all the tracks have been cut as

required, and that all connections and components are correct.

The test program source code can be downloaded from www.picmicros.org.uk. A programmer

module (e.g. PICSTART Plus) is needed to program the chip (see Chapter 4).

D.3. Analogue Conversion

Most PIC chips contain a 10-bit analogue-to-digital converter (ADC), which can be connected

to a selected input. If this is not available (e.g. when using a 16F84A), an external CR network

can provide an alternative, if the voltage measurement does not have to be too accurate.

The components connected to RA4 are shown in Figure D.3. The PIC chip is a complementary

metal oxide semiconductor (CMOS) device, so the voltage level at which an input changes

from logic 0 to 1, the threshold voltage, is around half the supply voltage, 1.5 V. The time taken

to reach this level is estimated at 1.5 ms. This could be calculated more accurately from the

formula for the charging of a capacitor, but as long as the circuit operation is consistent, it is not

necessary for this application where the analogue pot is simply a convenient way of inputting

decimal numbers.

The resistance, R, varies between 100k and 110k, depending on the position of the pot. The

variation in the pot value will produce a corresponding variation in the rise time of the circuit.

The rise time can be measured by discharging the capacitor and then counting while the voltage

rises back towards the threshold. The capacitor is discharged by setting RA4 as an output and

then setting the port data bit to zero. RA4 is then reconfigured as an input and checked at fixed

time intervals while a register is incremented. The count is stopped when RA4 goes high.

Dizi84 Demo Board 385

http://www.picmicros.org.uk

(a)

; diz1.asm

 PROCESSOR 16F84A

; Test DIZI hardware

 GOTO inter ; jump over delay

; Delay Subroutine

delay MOVLW 0FF ; Load FF
 MOVWF 0C ; into counter
down DECFSZ 0C ; and decrement
 GOTO down ; until zero
 RETURN

; Check Interrupt Button

inter BTFSC 06,0 ; Test Button RB0
 GOTO inter ; until pressed

; Check Display

 MOVLW 00 ; Set PortB bits
 TRIS 06 ; as outputs
 MOVLW 0FF ; Switch on all
 MOVWF 06 ; display segments

; Check Input Button

input BTFSC 05,4 ; Test Button RA4
 GOTO input ; until pressed

; Check DIP Switches and Buzzer

again MOVF 05,W ; get DIL input &
 MOVWF 06 ; send to display
 RLF 06 ; rotate bits left

 BSF 06,0 ; set buzzer high
 CALL delay ; delay about 1ms
 BCF 06,0 ; reset buzzer low
 CALL delay ; delay about 1ms

 GOTO again ; and keep going..
 END ; End of code

(b)

tluseRtseTpetS

NOtnioPlamiceDnOnottuBrewoP1
2 Button B Pressed & Released All display segments ON
3 Button A Pressed & Released Buzzer sounds
4 Operate DIL Switches Segments a,b,c,d change

Program D.1
Test program for Dizi84 board: (a) source code; (b) test procedure

386 Appendix D

The waveform that will be seen at RA4 is illustrated in Figure D.4(a), and the CR ADC

conversion process is outlined in Figure D.4(b). In the LOCK program (Program D.2),

a counter register labeled PotVal is incremented, and RA4 checked, within a loop taking 20 ms

to execute. An adjustable delay routine allows the timing to be modified to suit the application

and CR component values.

The result of the process is that a count is obtained which represents the setting of the pot. This

could be converted to a resistance value if required, but in the LOCK program, all we need is

a variation in the displayed digit between 0 and 9, to allow the user to input a decimal

combination. Therefore, the delay associated with the count was adjusted to give one decade on

the display with one turn of the pot. Only the low four bits of the count were required, so any

decade of values could be used. The upper end of the 4-bit range, hex numbers A to F, is

displayed as ‘-’. These could be used as ‘hidden’ digits for extra security, if required.

D.4. EEPROM Storage

Non-volatile read and write memory is useful because data input by the user or acquired by the

processor during its operation can be retained while the power is off. One application area is

data security and encryption, while another is storage of frequency settings in digital tuners.

The LOCK application illustrates this feature of the PIC 16F84A by using electrically erasable

programmable read-only memory (EEPROM) to store a four-digit security code. The chip has

64 bytes of EEPROM, with addresses 00e3F. The memory is accessed via EEDATA and

EEADR in the special function register (SFR) set. The EEPROM address is loaded into

EEADR, and the data byte to be stored in EEDATA. A write initialization sequence is then

executed to write the data to the EEPROM memory, using EECON1 and EECON2 page 1

SFRs. The sequence is designed to reduce the possibility of an accidental write to the

EEPROM, because a high level of reliability is required for security applications. This code

RA4

100k

10k

C = 22nF

0V

3V

R = 105k +/- 5k

 Estimation of Charging Time

 Capacitor value

 = 22nF = 22 x 10
-9

F

 Resistor value with 10k pot

 set midway = 100k + 5k

 = 105k = 105 x 10
3 Ω

∴ Network Time Constant = C.R

 = 22 x 105 x 10
6

 = 2.31 ms

 Estimated Charging Time

≈ 1.5 ms

Figure D.3
CR conversion network

Dizi84 Demo Board 387

sequence is given in the data sheet and LOCK program listing. The read sequence, for

retrieving the data, is more straightforward. Using EECON1, the data in the address pointed to

by EEADR is returned in EEDATA. For accessing sequences of locations, EEADR can be

incremented directly. See Chapter 6 for more details.

D.5. LOCK Application

In this demonstration application, a sequence of four decimal digits is stored in the PIC

EEPROM memory from the DIL switch inputs. This sets the combination for the lock. To

‘open’ the lock, the pot is rotated, and the input decimal digits are displayed and entered. This

simulates the rotary action of mechanical combination locks. If the sequence of four input

digits matches that previously stored in EEPROM, a siren sound is made to indicate the

opening of the lock.

(a)

(b)

Set RA4 as Output
 Clear RA4 to 0V to discharge C
 Clear Counter Register
 Set RA4 as Input
 Test RA4 while C charges through R:
 Increment Counter Register
 Delay 20us
 Until RA4 = 1
 Convert Count to Resistance or Pot Position

Sample RA4 every 20μs & increment count
in PotVal register until RA4 goes high

Voltage
on RA4

3V

1.5V

RA4 = 0

RA4 = 1

Charging Time Varies
with Pot Resistance

Lower Pot Resistance
 - Faster Charging
 - Lower Count Higher Pot Resistance

 - Slower Charging
 - Higher Count

time

Delay while C
discharges

Figure D.4
CR ADC conversion: (a) waveform at analogue input; (b) conversion procedure outline

388 Appendix D

LOCK PROGRAM OUTLINE MPB 29/8/99

Hardware: DIZI PIC 16F84 Demo Board

General Purpose Register Labels:
 0C = Period = Delay Period Preload Value
 0D = Count = Delay Counter
 0E = PotVal = Count from ADC conversion
 0F = DigVal = Low 4 bits of PotVal
User Bit Labels:
 butA (RA4 input) - Normally 1
 butB (RB0 input) - Normally 1
 buzO (RB0 output)
See Data Sheet for SFR Labels and addresses

{Power Button On}
INIT: Initialise Port B *************************

Port A defaults to inputs
 RA0 - RA3 = DIL Switches = 4-bit input
 RA4 = Input = butA = INP Button
 RB0 = Input = butB = INT Button
 RB1 - RB7 = Output = 7 Seg Display

MAIN: Select Set or Check Combination ***********

select {Press Button A or B}
 If (butA)=0, GOTO [stocom]
 If (butB)=0, GOTO [checom]
 GOTO [select]

SEQ1: Store 4 digits in EEPROM, beep after each *

stocom {Release Button A}
 CALL [delay] with (W)=FF
 GOTO [stocom] UNTIL (butA)=1

 Clear (EEADR)
getdil {Set DIL Switches or Press A}
 Read (PORTA) into (W)
 Calc (W) AND 0F
 Store (W) in (EEDATA)
 CALL [codtab] with (W)=00-0F
 {Returns with '7SegCode' in (W)}
 Output (W) to (PORTB)
 GOTO [getdil] UNTIL (butA)=0

waita {Release Button A}
 GOTO [waita] UNTIL (butA)=1
 Store (EEDATA) in (EEADR)
 CALL [beep]
 Increment (EEADR) from 00 to 04
 GOTO [getdil] UNTIL (EEADR)=4
 CALL [beep]
 CALL [beep]
 GOTO [done]
SEQ2: Check 4 digits from pot for match *********

checom {Release Button B}
 CALL [delay] with (W)=FF
 GOTO [checom] UNTIL (butB)=1

 Clear (EEADR)
potin {Adjust Pot or Press Button B}
 CALL [getpot] for (DigVal)
 {Returns with (DigVal)=00-0F}
 GOTO [potin] UNTIL (butB)=0
 Read (EEDATA) at (EEADR)
 Compare (EEDATA) with (DigVal)
 If (Z)=0 GOTO [done]

waitb {Release Button B}
 GOTO [waitb] UNTIL (butB)=1
 CALL [beep]

Program D.2
LOCK program outline

Dizi84 Demo Board 389

In the actual application, a solenoid-operated lock mechanism would be activated from this

output, by replacing the siren sequence with an instruction to set an output bit. A suitable

current driver interface for the solenoid would be required (see the motor interface in Chapter

8). Only the Power button, Enter button, Digit Select pot and display would be accessible to the

 Increment (EEADR)
 GOTO [potin] UNTIL EEADR=4
 GOTO [siren]

END1: Sequences matches, sound siren*************

 siren CALL [beep]
 GOTO [siren]

END2: Digit compare failed, finish **************

 done Clear (PORTB)
 Sleep

SUBROUTINES *************************************

SUB1: Get Display Code
 Receives: Table Offset in W
 Returns: 7-Segment Display Code in W

codtab Add (W) to (PCL)
 RETURN with '7SegCode' in (W)

SUB2: Variable Delay
 Receives: (Count) in W

delay Load (Count) from (W)
 Decrement (Count) UNTIL (Count)=0
 RETURN

SUB3: Outputs one cycle of sound output
 Receives: (Period)

beep Load (Period) with FF
 Set RB0 as 0utput
cycle Set (BuzO)=1
 CALL [delay] with (Period) in W
 Set BuzO=0
 CALL [delay] with (Period) in W
 Decrement (Period) from FF to 00
 GOTO [cycle] UNTIL (Period)=0
 Reset RB0 as Input
 RETURN

SUB4: Get Pot Value using CR ADC method
Returns: (DigVal)=00-0F

getpot Set RA4 as Output
 Clear (RA4)
 CALL [delay] with (W)=FF
 Reset RA4 as Input
 Clear (PotVal)
check Increment (PotVal) from 00 to XX
 CALL [delay] with (W)=3
 GOTO [check] UNTIL (RA4)=1
 (DigVal) = (PotVal) AND 0F
 CALL [codtab] with (DigVal)=00-0F
 RETURN

END OF LOCK PROGRAM *****************************

Program D.2: (continued)

390 Appendix D

user in the final design. The hardware would need to be reconfigured so that the unit would

appear as in Figure D.5 to the user. The DIL switch bank and its button for setting the entry

code would be concealed.

The application program contains the following blocks:

1. Declaration of Register and Bit Labels

2. Initialization of Registers

3. Sequence 1 e Store Combination

4. Sequence 2 e Check Combination

5. End 1 e Continuous siren output

6. End 2 e Sleep

7. Subroutine 1 e Display Code Table

8. Subroutine 2 e Variable Delay

9. Subroutine 3 e Output One Tone Cycle

10. Subroutine 4 e Get Digit from Pot.

The program has two main sequences, for inputting and checking a combination, and two

alternative endings. The processor goes to sleep after completion of the input sequence, or an

incorrect digit match. The DIZI board must be repowered to try again, as there are no other

interrupts enabled to restart it. If the combination is correct, the siren sounds, continuing until

the power goes off.

The application code is outlined in Program D.2. The pseudocode is developed in a word

processor or the program source code editor until the statements are detailed enough to be

converted into assembly code statements. It should be written in a form that allows it to be

readily converted to PIC assembly language. In this way, the program structure and logic can

be worked out before attempting to write the source code itself.

The conventions used in the pseudocode are as follows:

Block Structure applied

Target Hardware specified

Register & Bit Labels defined

Power

Enter
Select
Digit

Figure D.5
LOCK user interface

Dizi84 Demo Board 391

User Inputs included in the sequence

GOTO [deslab]

- Jump to destination address label

CALL [subnam]

- Call subroutine at address label

- values passed to and received from subroutine defined

GOTO [addlab] UNTIL (condition)

- implemented using Bit Test, Skip & GoTo operation

- (regname) ¼ contents of register labeled ’regname’

Program block type defined:

INIT ¼ Initialize

MAIN ¼ Main Program

SEQn ¼ Sequence ending with GOTO

ENDn ¼ End operation

SUBn ¼ Subroutine, optionally receiving and/or returning values

The source code file uses the following conventions:

• full details of hardware and operation of application in source code

• SFR, user and bit labels defined in separate blocks for clarity

• block and line comments in source code

• lower case for address labels

• upper case for instruction mnemonics and SFR labels

• capitalization of user register labels

• identification and separation of block types.

The list file for the LOCK program (Program D.3) contains the source code, machine code and

memory allocation. The source code can be downloaded from www.picmicros.org.uk.

 00001 ; **
 00002 ; LOCK.ASM MPB 17/8/99
 00003 ; **
 00004 ;
 00005 ; Four digit combination lock simulation demonstrates the hardware
 00006 ; features of the DIZI demo board and the PIC 16F84.
 00007 ;
 00008 ; Hardware: DIZI Demo Board with PIC 16F84 (4MHz)
 00009 ; Setup: RA0-RA3 DIL Switch Inputs
 00010 ; RA4 Push Button Input / Analogue Input
 00011 ; RB0 Push Button Input / Audio Output
 00012 ; RB1-RB7 7-Segment Display Output
 00013 ; Fuses: WDT off, PuT on, CP off
 00014 ;
 00015 ; Operation --
 00016 ;
 00017 ; To set the combination, a sequence of 4 digits is input on the DIL
 00018 ; piano switches; this is retained in the EEPROM when power is off.
 00019 ; To 'open' the lock, a sequence of 4 digits is input via
 00020 ; the potentiometer. These are compared with the stored data, and
 00021 ; an audio output generated to indicate the correct sequence.
 00022 ; The processor halts if any digit fails to match, and the program
 00023 ; must be restarted.

Program D.3
LOCK program list file

392 Appendix D

http://www.picmicros.org.uk

 00024 ;
 00025 ; To set a combination:
 00026 ; 1. Hold Power On Button
 00027 ; 2. Press Button A
 00028 ; 3. Set a digit on DIL switches and Press A - beeps
 00029 ; 4. Repeat step 3 for 3 more digits
 00030 ; 5. Release Power Button
 00031 ;
 00032 ; To check a combination:
 00033 ; 1. Hold Power On Button
 00034 ; 2. Press Button B
 00035 ; 3. Set a digit on pot and Press B - beeps if matched
 00036 ; 4. Repeat step 3 for 3 more digits
 00037 ; - if digits all match, siren is sounded
 00038 ; - if any digit fails to match, the processor halts
 00039 ; 5. Release Power Button
 00040 ;
 00041 ; ***
 00042 PROCESSOR 16F84 ; Processor Type Directive
 00043 ; ***
 00044
 00045 ; EQU: Special Function Register Equates...........................
 00046
 0002 00047 PCL EQU 02 ; Program Counter Low
 0005 00048 PORTA EQU 05 ; Port A Data
 0006 00049 PORTB EQU 06 ; Port B Data
 0003 00050 STATUS EQU 03 ; Flags
 0008 00051 EEDATA EQU 08 ; EEPROM Memory Data
 0009 00052 EEADR EQU 09 ; EEPROM Memory Address
 0008 00053 EECON1 EQU 08 ; EEPROM Control Register 1
 0009 00054 EECON2 EQU 09 ; EEPROM Control Register 2
 00055
 00056 ; EQU: User Register Equates..
 00057
 000C 00058 Period EQU 0C ; Period of Output Sound
 000D 00059 Count EQU 0D ; Delay Down Counter
 000E 00060 PotVal EQU 0E ; Analogue Input Value
 000F 00061 DigVal EQU 0F ; Current Digit Value 00 to 09
 00062
 00063 ; EQU: SFR Bit Equates..
 00064
 0005 00065 RP0 EQU 5 ; STATUS - Register Page Select
 0000 00066 RD EQU 0 ; EECON1 - EEPROM Memory Read Byte Initiate
 0001 00067 WR EQU 1 ; EECON1 - EEPROM Memory Write Byte Initiate
 0002 00068 WREN EQU 2 ; EECON1 - EEPROM Memory Write Enable
 0002 00069 Z EQU 2 ; STATUS - Zero Flag
 00070
 00071 ; EQU: User Bit Equates...
 00072
 0004 00073 butA EQU 4 ; PORTA - RA4 Input Button
 0000 00074 butB EQU 0 ; PORTB - RB0 Input Button
 0000 00075 buzO EQU 0 ; PORTB - RB0 Output Buzzer
 00076
 00077 ; ***
 00078
 00079 ; INIT: Initialize Port B (Port A defaults to inputs)
 00080
0000 3001 00081 start MOVLW 001 ; RB0 = Input, RB1-RB7 = Outputs
0001 0066 00082 TRIS PORTB ; Set Data Direction
0002 0086 00083 MOVWF PORTB ; Clear Data
0003 286D 00084 GOTO select ; Select Combination Read or Write
 00085
 00086 ; SUBROUTINES ***
 00087
 00088 ; SUB1: 7-Segment Code Table using PCL + offset in W
 00089 ; Returns digit display codes, with '-' for numbers A to F
 00090
0004 0782 00091 codtab ADDWF PCL ; Add offset to Program Counter
0005 347E 00092 RETLW B'01111110' ; Return with display code for '0'
0006 340C 00093 RETLW B'00001100' ; Return with display code for '1'
0007 34B6 00094 RETLW B'10110110' ; Return with display code for '2'
0008 349E 00095 RETLW B'10011110' ; Return with display code for '3'
0009 34CC 00096 RETLW B'11001100' ; Return with display code for '4'
000A 34DA 00097 RETLW B'11011010' ; Return with display code for '5'
000B 34FA 00098 RETLW B'11111010' ; Return with display code for '6'
000C 340E 00099 RETLW B'00001110' ; Return with display code for '7'
000D 34FE 00100 RETLW B'11111110' ; Return with display code for '8'
000E 34DE 00101 RETLW B'11011110' ; Return with display code for '9'
000F 3480 00102 RETLW B'10000000' ; Return with display code for '-'
0010 3480 00103 RETLW B'10000000' ; Return with display code for '-'
0011 3480 00104 RETLW B'10000000' ; Return with display code for '-'
0012 3480 00105 RETLW B'10000000' ; Return with display code for '-'
0013 3480 00106 RETLW B'10000000' ; Return with display code for '-'
0014 3480 00107 RETLW B'10000000' ; Return with display code for '-'
 00108

Program D.3: (continued)

Dizi84 Demo Board 393

 00109 ; ---
 00110 ; SUB2: Delay routine
 00111 ; Receives delay count in W
 00112
0015 008D 00113 delay MOVWF Count ; Load counter from W
0016 0B8D 00114 loop DECFSZ Count ; and decrement
0017 2816 00115 GOTO loop ; until zero
0018 0008 00116 RETURN ; and return
 00117
 00118 ; ---
 00119 ; SUB3: Output One Beep Cycle to BuzO
 00120
0019 30FF 00121 beep MOVLW 0FF ; Load FF into
001A 008C 00122 MOVWF Period ; Period counter
 00123
001B 3000 00124 MOVLW B'00000000' ; Set RB0
001C 0066 00125 TRIS PORTB ; as output
 00126
 00127 ; Do one cycle of rising tone....
 00128
001D 1406 00129 cycle BSF PORTB,buzO ; Output High
001E 080C 00130 MOVF Period,W ; Load W with Period value
001F 2015 00131 CALL delay ; and delay for Period
 00132
0020 1006 00133 BCF PORTB,buzO ; Output Low
0021 2015 00134 CALL delay ; and delay for same Period
0022 0B8C 00135 DECFSZ Period ; Decrement Period
0023 281D 00136 GOTO cycle ; and do next cycle until 0
 00137
 00138 ; Set RB0 to input again.........
 00139
0024 3001 00140 MOVLW B'00000001' ; Reset RB0
0025 0066 00141 TRIS PORTB ; as input
0026 0008 00142 RETURN ; from tone cycle
 00143
 00144 ; ---
 00145 ; SUB4: Get pot value (Rv) using rise time due to C and R on RA4
 00146 ; Returns with digit value (0-F) in DigVal
 00147
 00148 ; Discharge external capacitor on RA4
 00149
0027 300F 00150 getpot MOVLW B'00001111' ; Set RA4
0028 0065 00151 TRIS PORTA ; as output
0029 1205 00152 BCF PORTA,4 ; and discharge C setting output low
002A 30FF 00153 MOVLW 0FF ; Delay for about 1ms
002B 2015 00154 CALL delay ; to ensure C is discharged
002C 301F 00155 MOVLW B'00011111' ; Reset RA4
002D 0065 00156 TRIS PORTA ; as input
 00157
 00158 ; Increment a counter until RA4 goes high due to charging of C
 00159
002E 018E 00160 CLRF PotVal ; Clear input value counter
002F 0A8E 00161 check INCF PotVal ; increment counter
0030 3003 00162 MOVLW 03 ; Set delay count to 3
0031 2015 00163 CALL delay ; and delay between input checks
0032 1E05 00164 BTFSS PORTA,4 ; Check input bit RA4
0033 282F 00165 GOTO check ; and repeat if not yet high
 00166
 00167 ; Mask out high bits of count value, and store & display
 00168 ; 4-bit digit value, 0-F
 00169
0034 080E 00170 MOVF PotVal,W ; Put count value in W
0035 390F 00171 ANDLW 00F ; and set high 4 bits to 0
0036 008F 00172 MOVWF DigVal ; Store 4-bit value
0037 2004 00173 CALL codtab ; Get 7-segment code, 0-9
0038 0086 00174 MOVWF PORTB ; and display
 00175
0039 0008 00176 RETURN ; with DigVal from setting of pot
 00177
 00178 ; MAIN SEQUENCES **
 00179
 00180 ; SEQ1: Store 4 Digits in non volatile EEPROM
 00181 ; Beep after each digit, and twice when 4 done
 00182
 00183 ; Complete Button A input operation
 00184
003A 30FF 00185 stocom MOVLW 0FF ; Delay for about 1ms
003B 2015 00186 CALL delay ; to avoid Button A switch bounce
003C 1E05 00187 BTFSS PORTA,butA ; Wait for Button A
003D 283A 00188 GOTO stocom ; to be released
 00189
 00190 ; Read 4-bit binary number from DIL switches into EEDATA and display
 00191
003E 0189 00192 CLRF EEADR ; Zero EEPROM address register
003F 0805 00193 getdil MOVF PORTA,W ; Read DIL switches
0040 390F 00194 ANDLW 0F ; and set high 4 bits to 0

Program D.3: (continued)

394 Appendix D

0041 0088 00195 MOVWF EEDATA ; Put DIL value in EEPROM data
 00196
0042 2004 00197 CALL codtab ; Display DIL input as decimal
0043 0086 00198 MOVWF PORTB ;
 00199
0044 1A05 00200 BTFSC PORTA,butA ; Check if Button A pressed
0045 283F 00201 GOTO getdil ; If not, keep reading DIL input
 00202
 00203 ; Store the current DIL input in EEPROM at current address
 00204
0046 1683 00205 store BSF STATUS,RP0 ; Select Register Bank 1
0047 1508 00206 BSF EECON1,WREN ; Enable EEPROM write
0048 3055 00207 MOVLW 055 ; Write initialization sequence
0049 0089 00208 MOVWF EECON2 ;
004A 30AA 00209 MOVLW 0AA ;
004B 0089 00210 MOVWF EECON2 ;
004C 1488 00211 BSF EECON1,WR ; Write data into current address
004D 1283 00212 BCF STATUS,RP0 ; Re-select Register Bank 0
 00213
004E 1E05 00214 waita BTFSS PORTA,butA ; Wait for Button A to be released
004F 284E 00215 GOTO waita ;
0050 2019 00216 CALL beep ; Beep to indicate digit write done
 00217
 00218 ; Check if 4 digits have been stored yet, if not, get next
0051 0A89 00220 INCF EEADR ; Select next EEPROM address
0052 1D09 00221 BTFSS EEADR,2 ; Is the address now = 4?
0053 283F 00222 GOTO getdil ; If not, get next digit
0054 2019 00224 CALL beep ; Beep twice when 4 digits stored
0055 2019 00225 CALL beep ;
0056 2874 00226 GOTO done ; Go to sleep when done
 00228 ; ---
 00230 ; SEQ2: Check PotVal v EEPROM
 00231
0057 30FF 00232 checom MOVLW 0FF ; Delay for about 1ms
0058 2015 00233 CALL delay ; to avoid Button B switch bounce
0059 1C06 00234 BTFSS PORTB,butB ; Wait for Button B to be released
005A 2857 00235 GOTO checom ;
 00236
 00237 ; Read the value set on the input pot
 00238
005B 0189 00239 CLRF EEADR ; Zero EEPROM address
005C 2027 00240 potin CALL getpot ; Get a digit value set on pot (Rv)
005D 1806 00241 BTFSC PORTB,butB ; Check in Button pressed again
005E 285C 00242 GOTO potin ; If not, keep reading the pot
 00243
 00244 ; Get a digit value from EEPROM and compare with the pot input
 00245
005F 1683 00246 BSF STATUS,RP0 ; Select Register Bank 1
0060 1408 00247 BSF EECON1,RD ; Read selected EEPROM location
0061 1283 00248 BCF STATUS,RP0 ; Re-select Register Bank 0
0062 0808 00249 MOVF EEDATA,W ; Copy EEPROM data to W
 00250
0063 068F 00251 XORWF DigVal ; Compare the input with EEPROM data
0064 1D03 00252 BTFSS STATUS,Z ; If it does not match, go to sleep
0065 2874 00253 GOTO done ;
 00254
 00255 ; If digit match obtained, check if 4 done and do next if not
 00256
0066 1C06 00257 waitb BTFSS PORTB,butB ; Wait for Button B to be released
0067 2866 00258 GOTO waitb ;
0068 2019 00259 CALL beep ; Beep to confirm successful match
 00260
0069 0A89 00261 INCF EEADR ; Select next EEPROM location
006A 1D09 00262 BTFSS EEADR,2 ; 4 digits checked yet?
006B 285C 00263 GOTO potin ; If not, do the next
006C 2872 00264 GOTO siren ; When 4 digits done, run siren
 00265
 00266 ; ***
 00267
 00268 ; MAIN: Select Set or Check Combination
 00269
006D 1E05 00270 select BTFSS PORTA,butA ; Button A pressed?
006E 283A 00271 GOTO stocom ; If so, store a combination
006F 1C06 00272 BTFSS PORTB,butB ; Button B pressed?
0070 2857 00273 GOTO checom ; If so, check a combination
0071 286D 00274 GOTO select ; repeat endlessly
 00275
 00276 ; ***
 00277
 00278 ; END1: When combination successfully matched, make siren sound
 00279
0072 2019 00280 siren CALL beep ; Do a tone cycle
0073 2872 00281 GOTO siren ; and repeat endlessly
 00282
 00283 ; ---
 00284

Program D.3: (continued)

Dizi84 Demo Board 395

0074 0186 00287 done CLRF PORTB ; Switch off display
0075 0063 00288 SLEEP ; Processor halts
 00289
 00290 ; ***
 00291 END ; of program source code

SYMBOL TABLE
 LABEL VALUE

Count 0000000D
DigVal 0000000F
EEADR 00000009
EECON1 00000008
EECON2 00000009
EEDATA 00000008
PCL 00000002
PORTA 00000005
PORTB 00000006
Period 0000000C
PotVal 0000000E
RD 00000000
RP0 00000005
STATUS 00000003
WR 00000001
WREN 00000002
Z 00000002
__16C84 00000001
beep 00000019
butA 00000004
butB 00000000
buzO 00000000
check 0000002F
checom 00000057
codtab 00000004
cycle 0000001D
delay 00000015
done 00000074
getdil 0000003F
getpot 00000027
loop 00000016
potin 0000005C
select 0000006D
siren 00000072
start 00000000
stocom 0000003A
store 00000046
waita 0000004E
waitb 00000066

MEMORY USAGE MAP ('X' = Used, '-' = Unused)
0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXX----------

All other memory blocks unused.

 00285 ; END2: When a digit check fails, go to sleep, and try again
 00286

Program D.3: (continued)

396 Appendix D

APPENDIX E

Dizi690 Demo Board

Chapter Outline
E.1. Circuit Design 397

E.2. Schematic Edit 398

E.3. Program Edit 401

E.4. Circuit Simulation 402

E.5. PCB Design 406

E.6. Package Assignment 407

E.7. Layout Edit 409

E.8. Output Files 411

E.9. PCB Fabrication 413

This appendix describes the process of developing a test board based on the PIC� 16F690

microcontroller (MCU), as used in the Microchip LPC (low pin count) demonstration board.

The design stages are:

• schematic capture with Labcenter ISIS

• interactive simulation with Labcenter Proteus VSM

• printed circuit board (PCB) design using Labcenter ARES

• PCB manufacture using Galaad Percival CNC software.

Proteus VSM has been used throughout this book as a design and debugging tool for

PIC microcontroller designs. Currently, a demonstration version may be downloaded which

only allows sample applications to be tested. For developing new designs, or testing those

described in this book, a suitable bundle containing PIC 16 models must be purchased from

Labcenter Electronics. For current product and demonstration software availability, refer to

www.labcenter.com. The design files for this test board can be downloaded from

www.picmicros.org.uk.

E.1. Circuit Design

A target system was required which allowed basic PIC programming principles, as well as the

hardware development process, to be demonstrated. The following features are required:

• two push-button inputs (tactile switches, two inputs)

• 4-bit binary switched input (DIP switch, four inputs)

397

http://www.labcenter.com
http://www.picmicros.org.uk

• one analogue input (manual pot, one analogue input)

• one-digit seven-segment display (LED, eight outputs including decimal point)

• sounder output (piezo transducer, one output).

In total, 16 input and output pins are required to meet this specification, and the number and

type can be matched by the 16F690 MCU. The input/output (I/O) allocation and peripheral

connections can be seen in the schematic (Figure E.1).

The six-pin programming connector (J1) is connected to port A, as in the LPC board, with the

push buttons (active low) connected to the other pins of this port. The binary input is connected

to port B, and the display is on port C. The light-emitting diode (LED) segments require

current-limiting resistors (RN1, 150R). The separate LED represents the decimal point which

is part of the actual seven-segment display, but this device is not available as a simulated

component. The piezo sounder, having a high resistance, can be connected direct to the PIC

output. RP1 provides a bank of pull-up resistors for the switch inputs, with the pot connected to

RA0. When testing, power is supplied via the programming connector, and an additional power

supply connector is provided for independent operation.

E.2. Schematic Edit

The schematic in Figure E.1 was created using Labcenter ISIS, a component of Proteus VSM.

On opening this application, an edit screen appears (Figure E.2). The main operations are:

• Select components from library.

• Place and connect up components.

• Write a test program for the MCU.

• Attach to the MCU and simulate.

• Debug the program if necessary.

• Modify the hardware if necessary.

Figure E.1
Dizi690 demo board schematic

398 Appendix E

• Export netlist to ARES to make a PCB.

Before starting to use the editor, create an application folder with a suitable project name, such

as ‘DIZI690’, which will hold the design and program files. Open ISIS, and Save As:

DIZI690.DSN. The design title, version and author may now also be entered via the Design

menu, Edit Design Properties dialogue.

To start creating the schematic, click on the P button at the top of the Object Selector window

and the Pick Devices window opens (Figure E.3). The components are organized by category;

for example, select Microprocessors ICs, subcategory PIC 16 Family, and the devices are listed

in numerical order. Note that the integrated circuit (IC) package is also displayed, which we

will need later. If the component number is known, it may be quicker to enter its number in the

Keywords search box. Double-click to add the component to the Devices list. Repeat this

procedure for the required components in the different categories.

If the design does not need to be tested by simulation, specific components can be selected with

the correct pin-out already specified. This appears in the PCB Preview window in the Pick

Devices dialogue. If we do wish to test the design by simulation, we need to select active

components for the schematic and, if necessary, attach a suitable pin-out when the component

is finally specified for the PCB layout (see Section E.5 below).

With all the components included in the devices list, select the PIC16F690 and left-click on the

edit screen. The component can be positioned and dropped on the circuit with a second click.

Place the other devices in order of size to get a rough arrangement on the diagram, and line up

connections where possible, for example, the display inputs with port C outputs. Finish

File, View, Edit , Design Toolbars

Overview Window

Mode Selection Toolbar

Object Selector

Editing Window

Simulator Controls

Figure E.2
ISIS schematic capture screenshot

Dizi690 Demo Board 399

connecting up and adjust the component positions for the neatest arrangement. The

components can be flipped and rotated as necessary, either before placing or after using the edit

window buttons or component menu. In more complex circuits, labeled connectors can be used

to clarify the schematic by reducing the number of explicit connections and allowing

connection between separate sheets of the drawing.

In component mode, devices can be moved by single-clicking to highlight, and dragging.

Single right-click opens a component edit menu, and double right-click deletes the device.

Wiring is completed by clicking on the component connections and dropping the other end

by clicking on the destination pin. Bends can be placed by clicking or the connection moved

after highlighting. Wiring junctions are indicated by dots, but take care, as it is possible for

a junction to be not connected, even if it appears that it is. Move the component labeling

(highlight and drag) or hide it in the properties dialogue if it interferes with neat

connections and provides no essential information. In the Template, Set Design Defaults

menu, it is often desirable to uncheck the Show Hidden Text option to minimize text clutter

on the schematic.

When finished and saved, the schematic can be printed or exported as a bitmap DIZI690.BMP

file, or a screenshot taken, for insertion into a document. Figure E.1 is an example. To save the

bitmap, select File, Export Graphics, Export Bitmap. Adjust the resolution to maximum

(600 dpi) and the orientation if necessary, and check the bitmap file box. A bill of materials

Figure E.3
Pick Devices dialogue

400 Appendix E

(list of components) (List E.1) can also be produced, which will be needed later for ordering

components.

E.3. Program Edit

To test the design by interactive simulation, a hex file needs to be attached to the MCU. The

application program can be designed using flowcharts (Chapter 4) or a text outline, which must

then be converted into source code. Assembler code can be created using a built-in editor, so

MPLAB editor is not essential. To edit the source code, in the Source menu, select Add/

Remove Source Files, New, enter a filename such as TEST1.ASM and create the file.

Bill Of Materials
=================
Design: Dizi690 Board
Doc. no.: 1
Revision: 1.0
Author: M Bates
Created: 29/11/10
Modified: 06/01/11

QTY PART-REFS VALUE
--- --------- -----
Resistors

7 R1-R7 1k

Capacitors

1 C1 100nF
1 C2 1nF

Integrated Circuits

1 U1 PIC16F690

Diodes

1 D1 DP

Miscellaneous

1 DIS1 7SEG
1 DSW1 DIPSW_4
1 J1 CONN-SIL6
1 J2 CONN-SIL2
1 J3 CONN-SIL10
1 LS1 SOUNDER
1 RN1 150R
2 RP1,RV1 10k
1 S1 Input A
1 S2 Input B

List E.1
ISIS bill of materials

Dizi690 Demo Board 401

Alternatively, for this design, download the program shown as Program E.1, TEST1.ASM,

place it in the application folder and attach it in the source file dialogue.

In the source code, the processor is specified so that the assembler can check that the statements

are suitable for that processor, for example, that only the available registers are used. The

CONFIG code specifies the configuration bits in the MCU, including selection of the default

internal clock speed, 4 MHz. Note that the oscillator selection bits also affect the function of

RA4 and RA5 (which must be digital I/O). The include file P16F690.INC provides the special

function register and bit labeling. This file is downloaded with the MPLAB IDE file set, and

must be copied from the ‘Microchip/MPASM Suite’ folder into the project folder.

The PIC 16F690 must be initialized for most of the pins to operate as digital I/O, so the SFRs

ANSEL and ANSELH are cleared initially, and then the analogue input RA0 is enabled by

setting ANSEL,0. Note the bank selection syntax required to access the special function

registers (SFRs), accessing them in descending order so that bank 0 remains selected for the

main program. The analogue setup is described in more detail in Chapter 7, as applied

to the LPC board. The data sheet for the 16F690 will need to be downloaded from

www.microchip.com to support the program development.

The main loop of the test program provides two main functions, selected via the push buttons:

a scan of port B, which also tests the sound output (hold input A), and a hex display (input B).

The programming techniques used are described in Chapter 6, including subroutines, software

delay loop and data table. The program is initially assembled using the Build All command in

the Source menu. The assembler MPASMWIN.EXE is supplied with Proteus VSM. The

assembler should be selected automatically when a PIC device is placed on the schematic, but

this can be checked in the Source File dialogue.

E.4. Circuit Simulation

The circuit is stored as a set of components and the connections between them in a netlist (List

E.2). It is simply a list of the components, the unique numbered nodes (1000e1033, 0¼ 0 V) to

which the pins are connected, and the component value or label.

The standard simulation engine for analogue networks, which is used in VSM, is called SPICE,

a system that has been developed and refined over many years. Essentially, the network is

analyzed as a set of simultaneous equations based on the netlist and the component

mathematical models, which is solved for given inputs, to predict the resulting outputs. In

VSM, these are presented as output voltages and current, or graphs (time and frequency

response, etc.), or displayed on virtual instruments.

Digital elements are represented as the logical relationship between device inputs and outputs,

and can be combined with the analogue analysis to provide a mixed-mode simulation. The

402 Appendix E

http://www.microchip.com

;**
; TEST1.ASM MPB Ver 1.0
; Test program for DIZI690 demo board
; Status: Tested OK 6-1-11
;
;**

 PROCESSOR 16F690 ; Specify MCU for assembler
 __CONFIG 00E5 ; MCU configuration bits
 ; PWRT on, MCLR enabled
 ; Internal Clock (default 4MHz)
 INCLUDE "P16F690.INC" ; Standard register labels

Loco EQU 20 ; Low count register
Hico EQU 21 ; High count register
Hexnum EQU 22 ; Hex table offset

; Initialise registers.......................................

 BANKSEL ANSEL ; Select Bank 2
 CLRF ANSEL ; Ports digital I/O
 BSF ANSEL,0 ; except AN0 Analogue input
 CLRF ANSELH ; Ports digital I/O

 BANKSEL TRISC ; Select Bank 1
 CLRF TRISC ; Port C for output
 MOVLW B'00010000' ; A/D clock setup code
 MOVWF ADCON1 ; A/D clock = fosc/8

 BANKSEL PORTC ; Select bank 0
 CLRF PORTC ; Clear display outputs
 MOVLW B'00000001' ; Analogue input setup code
 MOVWF ADCON0 ; Left justify, Vref=5V,
 ; Select RA0, done, enable A/D

; Main loop ...

buta BTFSC PORTA,2 ; Check button A
 GOTO butb ; ..and button B if off
 CLRF PORTC ; Clear display
 BSF PORTC,0 ; Switch on LSB

rotdis RLF PORTC ; Rotate segment
 CALL vardel ; Run variable delay
 BTFSS PORTA,2 ; Check button A again
 GOTO rotdis ; ..and continue if on

butb BTFSC PORTA,5 ; Else check button B
 GOTO buta ; ..and repeat if off
 CALL hexdis ; Get display code
 MOVWF PORTC ; Show it
 GOTO buta ; and repeat always

; Delay subroutine...

vardel BSF ADCON0,1 ; start ADC..
wait BTFSC ADCON0,1 ; ..and wait for finish
 GOTO wait
 MOVF ADRESH,W ; Store result high byte
 MOVWF Hico
 INCF Hico ; Avoid zero count

slow CLRF Loco ; use result in delay
fast DECFSZ Loco
 GOTO fast
 DECFSZ Hico
 GOTO slow
 RETURN ; done

Program E.1
Test program for Dizi690 board

Dizi690 Demo Board 403

behavior of an MCU is controlled by an associated machine code program (HEX file), with the

whole network then being described as a co-simulation model. Active components (switches,

pots, LEDs, etc.) allow inputs to be generated and outputs displayed in a more natural,

interactive way.

The hex file for a PICMCU (generated from user source code by the assembler; Chapters 3 and

4) must be attached via its properties dialogue. Double-click on the PIC and, in the Edit

Component dialogue, click on the Program File tab to open the Select File dialogue. For this

application, select and open the TEST1.HEX file. While the Edit Component dialogue is open,

set the MCU clock to 4MHz, and the Configuration Word to 0x00E5, to match the source code

configuration statement.

We are now ready to run the simulation by clicking on the Run button at the lower left of the

edit window. If all previous steps have been carried out correctly, the schematic will go live,

indicated by the logic levels being displayed on each pin (red¼ high, blue¼ low) and the

status bar showing the simulation time elapsed and host processor load (Figure E.4).

If the central processing unit (CPU) load exceeds 100%, the animation rate drops below

real time. This will happen if the circuit is complex or the host CPU is too slow. The properties

of the simulated components must be taken into account if the simulation speed is reduced.

For example, the switches have a default delay of 1 ms before closing to simulate the

mechanical properties. This may be significant if this translates into long real-time delay in the

simulation, and the switch does not appear to be working correctly.

; Hex display subroutine

hexdis MOVF PORTB,W ; Get DIP switches
 ANDLW B'11110000' ; Mask low bits
 MOVWF Hexnum
 SWAPF Hexnum ; Swap hi-lo bits
 MOVF Hexnum,W

 ADDWF PCL ; Hex code table
 RETLW B'01111110' ; 0
 RETLW B'00001100' ; 1
 RETLW B'10110110' ; 2
 RETLW B'10011110' ; 3
 RETLW B'11001100' ; 4
 RETLW B'11011010' ; 5
 RETLW B'11111010' ; 6
 RETLW B'00001110' ; 7
 RETLW B'11111110' ; 8
 RETLW B'11001110' ; 9
 RETLW B'11101110' ; A
 RETLW B'11111000' ; b
 RETLW B'01110010' ; C
 RETLW B'10111100' ; d
 RETLW B'11110010' ; E
 RETLW B'11100010' ; F

 END ; Terminate assembler.......................

Program E.1: (continued)

404 Appendix E

*C:\PIC Micros 3\Programs\diz690\design\dizi690.DSN
C1 1036 0 100NF
C2 1008 0 1NF
D1 1016 0 DP
DIS1 1004 1003 0 1002 1001 1000 0 1005 1006 7SEG
DSW1 0 0 0 0 1020 1019 1018 1017 DIPSW_4
J1 1022 1008 0 1025 1032 1027 CONN-SIL6
J2 0 1008 CONN-SIL2
J3 1024 1009 1010 1011 1012 1013 1014 1015 0 1008 CONN-SIL10
LS1 0 1024 SOUNDER
R1 1036 1025 1K
R2 1033 1023 1K
R3 1028 1021 1K
R4 1029 1017 1K
R5 1030 1018 1K
R6 1031 1019 1K
R7 1026 1020 1K
RN1 1008 1009 1010 1011 1012 1013 1014 1015 1006 1005 1004 1003 1002
1001 1000 1016 150R
RP1 1008 1022 1023 1021 1020 1019 1018 1017 10K
RV1 0 1008 1036 10K
S1 0 1023 0 1023 INPUT A
S2 0 1021 0 1021 INPUT B
U1 1008 1028 1027 1022 1013 1012 1011 1014 1015 1026 1031 1030 1029
1010 1009 1024 1033 1032 1025 0 PIC16F690

List E.2
ISIS schematic netlist for Dizi690 schematic

Figure E.4
ISIS simulation screenshot

Dizi690 Demo Board 405

Stop resets the program simulation and Pause allows access to the debug menu options. The

CPU options are the most frequently used; the CPU source code, registers, data memory and

watch window are most useful (Figure E.4).

The source code window provides run, step and breakpoint controls. Step Into means execute

all instructions in sequence, Step Over means run subroutines below the current level at full

speed and Step Out allows us to leave a subroutine at full speed. Breakpoints are set by simply

double-clicking on the source code line, and the program will stop there. Using these controls,

the program sequence can be checked and particular sections scrutinized.

Register changes can be tracked via the register, data or a watch window; the latter has the

advantage that it remains visible during program execution at full speed. Registers to be

monitored are selected by right-clicking on the watch window. SFRs can be selected by

name, and user registers by number (source code labels, unfortunately, are not recognized by

the debugger).

The animated schematic buttons can be operated in transient or toggle mode by clicking on the

button or the red dot control. The dual in-line (DIL) switches similarly can be controlled

individually or collectively. The pot is adjusted up and down via theþ and� dots. The sounder

outputs via the host sound card, and the display illuminates to demonstrate correct program

operation.

There are some components that have no simulation model, for example the connectors J1 and

J2. An error message will be displayed to this effect. The solution is to exclude them from the

simulation via their properties dialogue. Similarly, the discrete LED can be excluded from the

PCB layout because its function will be performed by the decimal point of the hardware

version of the component.

The main purpose of the simulation is software debugging. The relevant techniques are

outlined in Chapter 9. Normally, the source code window will be kept open during debugging

to make any changes necessary. After editing and saving any corrections, the program is

reassembled automatically when the Run button is pressed.

The interactive components provide a much more intuitive interface than the tabular output in

MPLAB, while the range of debugging and project management tools is fewer in Proteus VSM.

Normally, the hardware will be designed based on the application specification, then the

software, but it may be necessary to revisit the hardware in the light of program debugging.

E.5. PCB Design

When the circuit design has been completed in ISIS and firmware has been successfully tested,

the schematic netlist can be exported to the PCB layout package ARES.

406 Appendix E

To create a layout, a physical pin arrangement is needed for each component. The electrical

connections in the schematic also have to be mapped onto the physical pins of the selected

component. This means that the real component must be selected and its pin-out specified both

electrically and physically. Some major components may need to be selected from a supplier’s

catalogue at this stage and the data sheet studied for this information.

Some pin-outs are already attached because the choice of package is limited to the available

component packages selected from the library. For example, the PIC 16F690 is only available

in a standard dual in-line (DIL), through-hole package, or one of three surface-mount

packages. For prototyping, the DIL package will be used, with a view to converting the PCB to

a surface-mount layout when fully functional. The finished prototype through-hole layout is

seen in Figure E.7 on page 410.

Other devices have a greater choice of package, and the pin-out of the hardware component

selected must be created to suit. For example, a generic seven-segment display has been used in

the simulation which has no layout package attached in the Proteus library. A real component is

available with a decimal point, which can be used as a power indicator, replacing the discrete

LED in the schematic. The data sheet for this was saved in the application folder and a pin-out

created in ARES (this is also good practice in using the layout editor). The special pin-out

created can then be assigned to the display using the packaging tool in ISIS. The resulting

package can be seen on the layout.

E.6. Package Assignment

The device selected was the Kingbright SC52-11 single-digit numerical display. Dimensioning

and connection information from the data sheet is shown in Figure E.5. There are two rows

of pins with a standard spacing of 0.1 inch, separated by 0.6 inch. Pin 1 is bottom left,

which will be identified by a square pad, with the rest circular.

To create the package for the display component, open ARES and save the workspace as

DISPLAY.LYT. In the View menu, deselect Metric mode (i.e. select Imperial measure) and set

the Snap to 50th (fifty-thousandths of an inch, 0.05 inch). A grid of this resolution is displayed.

Click on the Square Through-hole Pad Mode button in the mode toolbar on the left of the

screen and place a DILSQ pad on the center marker in the edit window. Then select the Round

Through-hole Pad Mode and place four DILCC pads at intervals of 0.1 inch to the right of the

square pad. Complete the pin-out with five round pads 0.6 inch (12 squares) above this row.

The cursor position is displayed in the status bar below. This should correspond to the positions

of pins 1e10 in the dimensioned component front view seen on the data sheet.

Now draw a rectangle (2D Graphics Box Mode) around the pins to represent the outline of the

component and select the whole device by looping around this outline in Selection Mode.

Dizi690 Demo Board 407

Right-click on the highlighted package and Make Package. Give it a suitable name in the

dialogue (e.g. 7SEGDIS), and select the Package Category: Miscellaneous and Package Type:

Through Hole. It will be placed in the USERPKG library.

Now switch back to ISIS and assign packages to the other components where necessary. In the

case of the PIC, it is pre-assigned in the Proteus library. In the case of others, such as the pot

and tactile (push-button) switches, study the physical properties in the component data sheet. A

suitable pin-out may, or may not, be found in the libraries, but it is relatively simple to make

one as described above for the display. The pin-out for the pot is fairly standard for a finger pot,

but the package for the switches had to be created.

If a component is placed in ISIS and the pins are already numbered, it implies that a package is

already attached (e.g. U1, J1, J2, J3, DSW1, RP1, RN1). If not, a package must be assigned, or

manufactured in ARES. It is attached by right-clicking on the component and selecting the

Packaging Tool (Figure E.6).

In this window, add the required package (7SEGDIS) to the Packagings list from the Pick

Packages dialogue. The device pins are listed by function, and the user must assign a pin

(a)

(b)

Figure E.5
Numerical display data: (a) display dimensions; (b) LED connections

408 Appendix E

number in column A. In this case the segment connections are copied from the numerical

display data sheet common cathode connection diagram, for example, segment A¼ pin 7.

When done, hit the Assign Package(s) button.

When all the components have been assigned a package, the netlist can be exported to ARES

PCB layout (ARES button).

E.7. Layout Edit

When the netlist is imported into ARES, the components are listed in the device window, if

component mode is selected. These can then be selected and dropped onto the edit window,

with the connections initially shown as a rat’s nest, directly between pins. Ensure that the

imperial measurement is enabled, with the snap set to 50th. There is an automatic placement

tool, but it is suggested that in this case the components be placed manually, with the MCU

centrally positioned first, followed by the larger components. Try to minimize connection

length and cross-overs, with the manually operated inputs, outputs and connectors

conveniently placed together, from left to right. The programming connector must be at the

edge of the board, with the pins horizontal to connect to PICkit2/3.

Assuming a single-sided board is to be designed, with topside links, open the Design Rule

Manager dialogue and select the Net Classes tab. For the Power class, change Pair 1 (Hoz) to

Figure E.6
Package device dialogue

Dizi690 Demo Board 409

‘none’, with Trace Style T30. For the Signal class, also change Pair 1 (Hoz) to ‘none’, with

Trace Style T20. A layout with a bottom copper layer only will be produced.

The auto-router may now be invoked, which will place as many tracks as possible, leaving rat’s

nest connections for those left over. Some manual tidying will be needed, and the remaining

tracks should be connected on the copper layer if possible, but using links if necessary. There

are nine of these on the sample layout, with a through-hole (via) at each end.

Tracks are laid in copper (default blue) by clicking on the pin at each end. The rat’s nest

connection then disappears. If necessary, a double-click drops a via on the layout and the track

goes red, representing the top layer or a wire link on a single-sided board. Double-click again

and another via is dropped and the track reverts to bottom copper blue for final connection to

the destination pin. Bends can be dropped by clicking, or by reselecting the track after

completion and moving it about. Right-angle bends should be avoided by using a short section

at 45� to facilitate current flow and avoid hotspots, especially on the supply tracks which may

carry the maximum current. Some experimentation is necessary to achieve optimum results,

with the components logically arranged with minimum links required.

Finally, a graphics box should be drawn around the layout; right-click on the boundary line and

change the layer to Board Edge. Leave a margin for positioning a mounting screw, standoff or

adhesive pad at each corner. The final layout is shown in Figure E.7.

Design
Rule
Manager Autorouter

Mode
Buttons

Figure E.7
ARES PCB layout editor screenshot

410 Appendix E

When finished, the PCB can be displayed in 3D by ARES by selecting Output, 3D

Visualization (Figure E.8) for final checking.

E.8. Output Files

The layout can now be exported as text files which are used as input to the PCB production

process. In ARES, select Output, Gerber/Excellon Output. In the output dialogue, uncheck the

Top Copper, Top Resist and Bottom Resist options, leaving the Bottom Copper, Top Silk, Drill

and Edge options checked. Four files are then produced:

• CADCAM Bottom Copper.TXT

• CADCAM Drill.TXT

• CADCAM READ-ME.TXT

• CADCAM Top Silk Screen.TXT

The first is a Gerber file, which comprises a list of commands for moving a plotter or machine

between positions on the board defined by X and Y coordinates, creating the pads and traces.

The format uses the same command codes as a standard CNC machine (G-codes). The first few

lines are shown in List E.3 as an illustration, the whole file being much longer.

There are three main types of statement, examples of which are shown below (with added

spaces):

Xþ18400 Yþ13120 D01) ¼ Trace

Xþ18800 Yþ12720 D02) ¼ Move

Xþ15500 Yþ10520 D03) ¼ Pad

The first means move to another position while plotting a trace (track), indicated by the

drawing command D01 at the end. The second means move to a position without plotting,

indicated by the command D02 at the end. The third means make a pad at this position, D03.

Figure E.8
3D visualization of PCB

Dizi690 Demo Board 411

The initialization commands at the top of the program specify the pad sizes and shapes, which

are selected for each set of pads using the select tool command, for example, ‘G54D12’.

This file is most frequently used to control a photo-plotter, which creates a transparency

(Figure E.9) for making multiple boards photographically. The blank copper board is coated

G04 PROTEUS RS274X GERBER FILE*
%FSLAX24Y24*%
%MOIN*%
%ADD10C,0.0200*%
%ADD11C,0.0300*%
%ADD12C,0.0500*%
%ADD13R,0.0500X0.0500*%
%ADD14R,0.0600X0.0600*%
%ADD15C,0.0700*%
%ADD16C,0.0800*%
%ADD17C,0.0400*%
%ADD18C,0.0900*%
%ADD19R,0.0800X0.0800*%
%ADD70C,0.0080*%
G54D10*
X+40000Y+8020D02*
X+40000Y+8020D01*
X+18800Y+12720D02*
X+18400Y+13120D01*
X+18400Y+17920D01*
X+19500Y+19020D01*
X+7600Y+11520D02*
X+7600Y+15120D01*
X+8000Y+15520D01*
X+13600Y+15520D01*
Etc

List E.3
Gerber file extract

Figure E.9
PCB layout produced in ARES

412 Appendix E

with an etch-resistant layer, which is photosensitive. When exposed to ultraviolet light through

the transparency, the exposed etch resist can be dissolved away, and the board developed by

etching away the copper in an acid solution where it has been exposed. This leaves the copper

traces and pads behind.

A cheaper way of achieving the same result is to send the layout as a bit map to a laser printer,

and print onto translucent drafting film. This can then be used as the photo-resist masking

image for the chemical etching process. This is the traditional method for hobbyists and

educational purposes. Note that the layout must be reversed for exposure.

An alternative process is to use the same file to control a milling machine, which will isolate

the tracks by machining around them with an engraving tool. This has the advantage of being

chemical (hazard) free, but is not as precise. However, it does have the major advantage that the

drilling operations (through holes) and milling (board edge) can be carried out on the same

machine by replacing the engraving tool with a drill or milling tool. The machining option is

probably best suited to making prototypes and small numbers of less complex boards. Such

machines are now available at reasonable cost for the hobby and education markets.

The Excellon format drill file is similar to the Gerber file, consisting principally of a list of X,Y

coordinates for each drill hole, with the drill sizes specified in the initialization code. The Top

Silk file also contains a list of coordinates, which control the plotting of the alphanumeric

characters to form the labeling of the components and connectors on the component (top) side

of the board. The Read-Me file has information about the file list, formatting options and

design information, since there is some variation in file formats and machine compatibility.

Since all these files are plain text, they can be opened in any text editor and the control codes

analyzed.

E.9. PCB Fabrication

Low-cost 2.5D milling machines are now available which make the mechanical route to

a prototype PCB more attractive. They are basically an inexpensive drill attached to an XeY

plotter. Limited vertical movement (Z) is also needed to lift the engraving tool and implement

drilling operations. The software used here is Galaad Percival (www.galaad.net), designed to

control a CIF mill (Figure E.10). A demo version of the software can be downloaded for

experimentation; a dongle must be purchased to enable the machine interface.

Percival is loaded onto the host computer, which is attached to the mill via an RS232 link. It

takes the ARES output files, displays the layout and calculates the engraving tool path required

to make the PCB connections, and carry out the additional milling and drilling operations. This

will leave most of the copper in place, as a ground plane. Centering holes can be added at each

corner for mounting the board, if required.

Dizi690 Demo Board 413

http://www.galaad.net

The main tools used will typically be an engraving bit with 60� point angle to separate the

tracks from the rest of the copper layer, a 0.8 mm drill for the component lead holes and a 3 mm

slot drill used as a milling tool to bore the mounting holes and other larger apertures, and finally

cut round the board edge.

To process the board files in Percival layout editor and mill controller, we select Open, New

Circuit and select the file CADCAM Bottom Copper.TXT, and the layout should appear in the

edit window. Select File, Flip Horizontal to reverse the layout and to view from the copper side.

Using Parameters, Selected Tools, open the Active Tools dialogue and assign the engraving,

drilling and milling tools. Now select Machine, Calculate Contours and the toolpath will be

calculated and displayed in yellow around the tracks. Display, Final Rendering and the

engraved copper side will be displayed (Figure E.11).

The mill must be connected to the PC, and the Machine Parameters set up accordingly.

When communication has been successfully established, the mill control panel is used to set

up the tool in the initial (reference) position, setting up the reference plane to coincide

exactly with the surface of the copper, which in turn must be completely level in relation to

the X and Y axes. The engraving depth must be set up to provide a suitable track width.

Some experimentation will be necessary to achieve acceptable results, for example, setting

up suitable drilling depth, milling depth and speed. The PCB blank must be fitted on

a sacrificial board, which will be drilled and milled along with the board. Hazardous copper

and epoxy dust should be vacuum extracted from around the tool point while the machine is

operating.

When successfully manufactured, the PCB can be populated and tested in the usual way.

Figure E.10
CIF PCB mill

414 Appendix E

Figure E.11
Percival copper side layout

Dizi690 Demo Board 415

Answers to Questions

Chapter 1

1. Two of each required:

Input devices: keyboard, mouse, scanner, microphone. (2)

Output devices: screen/display, printer, speaker/headphone. (2)

Storage devices: hard disk, memory stick, CD/R/W. (2)

2. It contains start-up code in non-volatile memory, required before the main operating

system code has been transferred to RAM from hard disk, which takes some time. (4)

3. There are too many connections required between the chips for each to be made

separately. (2)

4. Two of these:

Can be designed to meet different requirements (e.g. games, business, education). (2)

Can be repaired more easily with replacement modules. (2)

Can be upgraded easily. (2)

Is a very flexible design which has stood the test of time. (2)

5. ROM is non-volatile, so the program starts without delay in the MCU. (2)

RAM is more compact, and therefore has greater data capacity, but is volatile,

so it needs loading initially, which delays the start of the PC system. (2)

6. (a) CPU: controls the system and performs calculations. (2)

(b) ROM: non-volatile memory contains program code. (2)

(c) RAM: volatile memory contains user data and downloaded code. (2)

(d) Address bus: carries address code for location required by CPU. (2)

(e) Data bus: carries data to and from memory (RAM) and I/O registers. (2)

(f) Address decoder: generates memory/I/O select signal. (2)

(g) Program counter: holds the address of the current instruction (or next). (2)

(h) Instruction register: holds the current machine code program instruction. (2)

7. The microprocessor system has the main elements (CPU, ROM, RAM, I/O) as separate

chips connected together with address, data and control buses. The MCU has all these in

one chip. It is used in smaller applications where not too much data memory is needed, such

417

as control systems. The microprocessor system, e.g. PC, has more memory and is used as

a general-purpose computer for personal, business and educational use, for word

processing, database management, design, etc. (8)

8. The hardware is designed and built. The MCU program is written in a text editor on a host

computer, debugged, assembled to a hex file, tested in simulation, debugged again,

downloaded and tested in hardware. (6)

(Total 50 marks)

Chapter 2

1. The program is stored as a list of binary machine codes in program memory, created by

the assembler from the user source code. The instructions are executed in turn, copied to

the instruction register and decoded to set up the processor control logic accordingly.

The program counter stores the address of the current instruction, and is incremented

automatically to the next. If a jump is required, the destination address is given as the

instruction operand, which is placed in the program counter. The MCU clock drives the

program execution along at four clock cycles per instruction. (5)

2. Original data ¼ 01101010

(a) 00000000, (b) 01101011, (c) 01101001, (d) 10010101, (e) 00110101, (f) 11010100,

(g) 01001010, (h) 01101011 (1 each)

3. Original data ¼ 01001011, 01100010

(a) 01001011, (b) 10101101, (c) 01000010, (d) 01101011, (e) 00101001 (1 each)

4. PC Stack

.. ..

02F2 XXXX Instructions

02F3 XXXX Before Call

016F 02F4 Subroutine Start

0170 02F4 Subroutine

0171 02F4 Instructions

0172 02F4 Return

02F4 XXXX Instructions

02F5 XXXX After Call (5)

.. ..

5. Allocate registers A,B,C

Clear register A

Move 4 into register B

Move 3 into register C

418 Answers to Questions

Loop1 Add B to A

Decrement C

Test C for zero

Jump back to ‘Loop1’ if C not zero

Finished with product in A (7)

(Total 30 marks)

Chapter 3

1. 0A86. (2)

2. 30. (2)

3. Jump Destination. (2)

4. Labels go in first column. (2)

5. EQU, END, they are directions for the assembler, not part of the program. (3)

6. 00, 03. (2)

7. Memory address, machine code, line number, address label, instruction mnemonic,

operand label. (1 each)

8. (a) Source code file, assembler program entered by user. (2)

(b) Machine code file, generated by assembler. (2)

(c) List file, shows all files combined. (2)

(Total 25 marks)

Chapter 4

1. e, c, b, f, a, d. (6)

2. ASM: Text file entered using instruction mnemonics. (2)

HEX: Machine code created by assembler from source code. (2)

LST: List file contains source and machine code plus label and memory allocation. (2)

3. Avoids repetition of code, saving on program memory. (2)

Reusable within program and as a separate file. (2)

4. BTFSS or BTFSC. (2)

5. MOVLW 00 or CLRW. (2)

6. Replace count value 0FF with 07F or 080. (2)

Answers to Questions 419

7. A stimulus workbook table is created with the input pin selected in the first column

and the operating mode (e.g. toggle) in the second. (4)

8. Watchdog timer off, code protection off, power-up timer on, RC clock. (4)

(Total 30 marks)

Chapter 5

1. Program memory stores the machine code in flash memory as a binary list. (2)

The program counter stores the current address and is incremented for each

instruction. (2)

The instruction decoder converts the instruction code into a control line setup. (2)

The multiplexer selects the data source for the ALU, literal or register. (2)

The working register stores the current data for and receives results from the ALU. (2)

2. The data direction bits in the TRIS register default to 1 for input. (2)

3. The arithmetic and logic unit carries out operations such as increment, rotate and bit set

on individual registers and add, subtract, AND and OR on pairs of registers. It receives

one byte from the working register, and the other from either the instruction literal or a file

register. (5)

4. The stack stores the return address automatically so the program can return to the

next instruction after the subroutine has finished. (2)

5. PORTA is the data register for the port pins RA0eRA3. (1)

TRISA is the data direction register for PORTA. (1)

TMR0 is the timer/counter register. (1)

PCLATH is the program counter high byte, bits 8e12. (1)

GPR1 is the first general purpose register in RAM. (1)

6. STATUS,2 is the zero flag, Z, which is set when result zero occurs in a register. (2)

INTCON,1 is the RB0 interrupt flag, INTF, set when RB0 changes to force an

interrupt. (2)

OPTION,5 is the Timer0 clock source select bit, T0CS, internal or RA4. (2)

(Total 30 marks)

Chapter 6

1. (a) 4 clock cycles, (b) 1 instruction cycle, (c) 2 instruction cycles. (3)

2. Instruction cycle¼ 40ms. (2)

3. 1ms¼ 1000ms, clock¼ 1ms, count¼ 1000/4¼ 250¼max count 256 � 6, preload¼ 6. (3)

420 Answers to Questions

4. TRISB 3,4,5,6¼ 0 and INTCON 3,7¼ 1. (2)

5. RC: Adjustable. (1)

XT: Accurate. (1)

HS: Maximum clock speed. (1)

INTOSC: No external components needed. (1)

6. END. (2)

7. Subroutine: block of code only assembled once and called many times, uses less

memory. (2)

Macro: block of code that is inserted each time it is needed, faster. (2)

(Total 20 marks)

Chapter 7

1. Pin 1: !MCLR Master Clear/Vpp programming voltage. (1)

Pin 2: VDD positive supply, 5V nominal. (1)

Pin 3: VSS negative supply, 0V. (1)

Pin 4: ICSPDAT, In-circuit serial programming data. (1)

Pin 5: ICPSCLK, In-circuit serial programming clock. (1)

2. The port pins default to analogue inputs. (2)

3. Maximum value¼ 1024/4¼ 256mV, 1mV per bit. (4)

4. Testing by simulation allows logical errors to be eliminated more quickly than

downloading and testing in hardware. (3)

5. The button input on !MCLR is by-passed by the programmer connected to the

same pin, so it can only be operated from the host computer. (3)

6. Three of the following: more I/O pins (18 vs 33), LEDs (8 vs 4), separate timer

clock, external crystal clock, in-circuit debugging. (3)

(Total 20 marks)

Chapter 8

1. See Figure 8.1. (2)

The average current in the load can be controlled by switching it on and off over

a fixed cycle and varying the mark/space ratio. (2)

2. The block diagram is an outline of the hardware showing the main circuit blocks

and signal flow between them, which can be converted into a circuit diagram. (2)

Answers to Questions 421

The flowchart is an outline of the software showing the main operations and the sequence of

execution of these operations, using a small set of symbols for terminators, processes, input,

output and branches, which can be converted into source code. (2)

3. Pseudocode e a text outline e can be converted directly into source code in the editor. (2)

Structure cart e a block diagram e shows the program hierarchy in complex

programs. (2)

4. (a) Assigns a label to the port bit connected to the motor output. (2)

(b) Tests the active low input bit which enables the motor to run, and wait if not

pressed. (2)

(c) Follows the decrementing of the speed variable to correct register roll-under to

prevent change from zero to maximum speed. (2)

(d) Complements speed control count to generate off delay, so that overall period is

constant. (2)

(Total 20 marks)

Chapter 9

1. Syntax error: incorrect source code instruction, detected by the assembler, reported

in the error messages. (2)

Logical error: program sequence or output effect is incorrect in relation to the specification,

detected by source code debugging. (2)

2. Single stepping: one instruction at a time with a break after each to check sequence. (1)

Breakpoint: stop the program at selected points to check function, or start single

stepping. (1)

Pin stimulus: changes to single inputs in the simulator, asynchronous or programmed

changes specified in the workbook. (1)

Watch window: selected registers can be displayed and updated continuously. (1)

3. 0005: source code line number. (1)

1A05: machine code in hex. (1)

start: jump destination label. (1)

btfsc: assembler instruction mnemonic. (1)

0x5: register to be operated on. (1)

0x4: register bit to be operated on. (1)

4. Two of:

Inputs can be operated on screen. (1)

Outputs can be seen immediately. (1)

Animated schematic with voltage/logic levels. (1)

Integrates with schematic editing and hardware layout. (1)

422 Answers to Questions

5. Two of:

Inspect the board for correct components, build faults, etc. (2)

Check power supply to MCU pins before fitting. (2)

Check for overheating in components. (2)

(Total 20 marks)

Chapter 10

1. (a) Breadboard: quick and easy to construct. (1)

unreliable. (1)

(b) Stripboard: reliable connections. (1)

not suitable for volume production. (1)

(c) Simulation: does not require hardware. (1)

cannot fully represent the final hardware. (1)

(Or other answer given in the text.)

2. (a) 0000 000x. (2)

(b) 1011 101x. (2)

3. Clock¼ 4MHz, timer clock¼ 1MHz, period ¼ 1ms.

Required frequency¼ 1 kHz, period¼ 1ms.

Half cycle¼ 500ms, set prescale to 2.

Preload timer with 6.

Wait for timeout flag after 250 cycles.

Toggle output.

Reload timer and repeat. (5)

4. (5)

(Total 20 marks)

Load Counter

Decrement

Load Delay Counter
With Random Value

Button?

Random Delay

Switch On LED

Answers to Questions 423

Chapter 11

1. Pulse width modulation switches the drive to a motor on and off rapidly using a

pulse waveform. The ratio of the on and off time is varied to control the average

current in the motor, hence the speed. (2)

A power transistor is needed to switch the current in the motor, and a microcontroller

to generate PWM. The required speed can be input as an analogue or digital value. (2)

2. A slotted wheel or similar device is attached to the motor shaft, which produce pulses

in a sensor. The pulses can be counted to monitor the position, and frequency or

period can be measured to calculate the speed. (4)

3. The microcontroller can control the speed of the motor using PWM. It can measure

the actual speed using an encoder attached to the motor shaft, and modify the duty

cycle of the output until the feedback matches the required speed. (4)

4. (a) Number of steps per output rev¼ 90� 200¼ 18 000.

Resolution/accuracy¼ 360/18000¼ 0.02�. (4)

(b) Circumference of circle¼ 2pr¼ 2� 3.14� 0.5¼ 3.14m.

Arc of circle¼ 0.02/360� 3.14m¼ 0.174 ~ 0.2mm. (4)

(Total 20 marks)

Chapter 12

1. The PIC10 range is the smallest of the range, with only four I/O pins in an eight-pin

package. They have only one 8-bit timer, and two analogue inputs, with an 8 MHz

internal oscillator. Program memory is 0.5k, with a maximum of 23 RAM locations. (4)

The PIC12 range have six I/O pins in the same package, with an additional 16-bit timer

and four analogue inputs. The internal oscillator can be replaced by a 20MHz external

crystal oscillator. Program memory is slightly greater (1k) with more RAM

(256 bytes). (4)

The PIC16 range is much more extensive, with chips up to 64 pins and 55 I/O. The

largest have nine timers and 30 analogue input channels. Program memory is up to 16k

instructions, and 1536 RAM locations. Various serial ports are available. (4)

The PIC18 range has a more complex and extensive 16-bit instruction set, up to 64k

program capacity and 4k RAM. The maximum speed is doubled to 40MHz, with a

much greater choice of chips than the other groups. A USB serial port is added. (4)

2. The MCU does not have to be removed, avoiding damage and saving time. (2)

The chip can be reprogrammed quickly and easily. (2)

3. (a) 16F676. (2)

(b) 18F4580. (2)

424 Answers to Questions

4. Capture mode uses an external signal to capture the count in a timer register, which

allows a time interval to be measured. Compare mode waits for the timer count to

match a preset value in a reference register and thereby generate a timed output pulse.(3)

5. SPI uses hardware slave selection using an extra signal input to the target peripheral.

I2C uses software slave selection, with the address given in the data frame. SPI

therefore has more complex hardware requirements. (3)

(Total 30 marks)

Chapter 13

1. (a) A dc amplifier to increase the voltage range and screening. (4)

(b) 250mV, 125. (4)

2. (a) The relay provides complete electrical isolation of the load. (2)

(b) The FET switches more quickly, allowing PWM. (2)

3. Multiplexing means the displays are switched on alternately using the same set of outputs to

operate them, reducing the I/O requirement. (4)

4. Two of: internal oscillator, analogue inputs, PWM output, serial ports. (4)

5. Assembler relates directly to the internal architecture and may be more straight forward for

simple applications, and uses less memory. However, for more complex applications,

C source code is shorter and simpler, provides better features for data handling, etc., and is

easier to derive from the typical program outline. (5)

(Total 25 marks)

Chapter 14

1. The 8051 was a CISC processor with conventional Von Neumann architecture,

i.e. an internal data bus shared by instructions and data, reducing its performance. The

PIC MCU has Harvard architecture, which separates data and instructions, and a RISC

instruction set, allowing faster execution at the same clock speed. (4)

2. Advantages: Hardware can be tailored to the application. (1)

Large memory can be handled. (1)

Disadvantages: Two of:

More hardware design needed. (1)

More expensive. (1)

Simulation not possible. (1)

3. The PLC is self-contained, has built in interfacing, an easier programming method

(ladder logic) and features for system integration. (4)

Answers to Questions 425

4. (7)

5. Six of: Programming host, SCADA host, database server, network server, network client,

word processor, spreadsheet host, CAD workstation. (6)

6. (a) 4, (b) 1, (c) 2, (d) 5, (e) 3. (5)

(Total 25 marks)

MAC1

NO

NO

YES

YES

Initialize

Motor & Pump OFF

Start?

Stop?

Overload?

Motor & Pump ON

Motor OFF

Guard?

426 Answers to Questions

Links and Acknowledgements

Links

www.picmicros.org.uk

The author’s support site, providing:

• Downloads of application examples for this and related books

• Information about related books

• Current updates from the author

www.microchip.com

Manufacturer of the PIC microcontroller and support products

• PIC microcontroller product information

• Development system free downloads (MPLAB IDE)

• Demo system hardware information

www.labcenter.com

Supplier of Proteus VSM ECAD design software

• ISIS schematic capture and interactive co-simulation

• PIC simulation models and demo versions

• ARES PCB design

www.galaad.net

Supplier of PCB CNC production software

By the same author

M. Bates. Interfacing PIC Microcontrollers: Embedded Design by Interactive Simulation

(Newnes 2006).

M. Bates. Programming 8-bit PIC Microcontrollers in C with Interactive Hardware Simulation

(Newnes 2008).

Acknowledgements

The author gratefully acknowledges the use of development software and product information

supplied by Microchip Inc. (US), Labcenter Electronics (UK) and Galaad (France).

427

http://www.picmicros.org.uk
http://www.microchip.com
http://www.labcenter.com
http://www.galaad.net

Demo Files

The following demonstration files can be downloaded from www.picmicros.org.uk. In most

cases, a Proteus VSM design file (APPX.DSN) is provided for testing. If necessary, the

APPX.HEX file attached to the MCUmust be changed to test each application *. If VSM is not

available, test in MPLAB IDE.

BINAPPS*

Very simple programs for the BIN board with LED outputs.

Use MPLAB IDE, LED1.DSN simulation design or hardware.

GENAPPS*

Demonstrate various programming techniques.

Test using MPLAB IDE, LED2.DSN simulation design or hardware.

DIZI84*

Apps for DIZI84 board with digit display and audio output.

Test using DIZI84.DSN simulation design or hardware.

BIN1 Minimal program with no labels outputs a binary count

BIN2 As BIN1 with labels

BIN3 Outputs a binary count with run and reset inputs

BIN4 As BIN3 with delay subroutine

BIN5 Simulation version of BIN4

ASD1 Demonstrates the use of assembler directives

EEP1 Demonstrates the use of EEPROM storage

INT1 Demonstrates the use of interrupts

INX1 Demonstrates the use of indexed addressing

TAB1 Demonstrates the use of a program data table

TIM1 Demonstrates the use of the hardware timer

429

http://www.picmicros.org.uk

MOTORS

Demonstrate motor control using various hardware.

Test using individual simulation design.

ADVAPPS

Various demo board designs and test programs.

Test using individual simulation design.

BEL1 Generates a random tone sequence

BUZZ1 Generates a fixed audio tone

DICE1 Displays random numbers 1 to 6

DIZ1 Test program for DIZI board

GEN1 Variable frequency audio output

GIT1 Outputs six guitar string frequencies

HEX1 Displays hexadecimal numbers

LOCK1 Operates as an electronic lock using EEPROM

MESS1 Displays a message on the 7-segment display

MET1 Metronome simulator outputs low frequency ticks

REACT1 Reaction timer measures delay between beep and button

SCALE1 Outputs a scale of 8 tones

SEC1 Displays a one second count 0 to 9

CLS2 Runs a dc motor under closed loop speed control in MOT2 board

DCM1 Runs the dc motor on the MOT2 board forward and reverse

HOB1 Operates a hobby servo using PWM from 16F690 on LPC board

MOT1 Open loop speed control of dc motor simulated in MPLAB using 16F84

POS2 Moves a dc motor to set position in MOT2 board

DIZ690 Design, test program and PCB layout for DIZI690 demo board

KEY690 Displays two digits from a keypad using a 16F690 in simulation mode

LPC690 Simulation of Microchip LPC demo board with test program

TEM887 Simulation of temperature controller board running test program

430 Demo Files

Index

0-9

2.5D milling machine, 413

3D PCB visualisation, 411

44/28 pin demo board, 153

4-bit adder, 355

4-bit system, 362

A

A/D - see Analogue/Digital input

ADC - see Analogue to Digital Converter

ADCON0, ADCON1 registers, 147, 150

add operation, 36, 37

ADDLW instruction, 69

address bus, 14, 378

address decoder, 14, 378

ADDWF instruction, 69

ADRESH, ADRESL registers, 147, 151

algorithm, 67

ALU - see Arithmetic & Logic Unit

analogue comparator, 276

analogue conversion, 385

Analogue/Digital input, 276

analogue input, 147, 150, 288

Analogue to Digital Converter, 150, 277

AND operation, 36, 37

AND gate, 351

ANDLW instruction, 69

ANDWF instruction, 69

ANSEL, ANSELH registers, 150

application design, 161

application folder, 68

application specification, 65

architecture, 28

ARES PCB layout, 205, 397, 409

ARES PCB output files, 411

Arithmetic & Logic Unit, 29, 31, 97, 265,

375

arithmetic operation, 34, 37

ASCII code, 12, 139, 343

ASM file - see assembler source code file

assembler directives, 132

assembler message, 78

assembler program, 34, 55

assembler source code file, 57, 64

assembler syntax, 78

assembler warning, 78

assembly language, 33, 55

asynchronous communication, 278

asynchronous stimulus, 84, 187

Atmel AVR MCU, 312

audio output, 211, 292

B

Bank 0, 52

Bank 1, 52

BANKSEL directive, 138

bank selection, 124, 138

base, 10, 336

base, 16, 337

base, 2, 336

Basic Input/Output System, 9

baud rate, 279

BCD - see binary coded decimal

BCF instruction, 69

bi-directional buffer, 370

431

bill of materials, 400

BIN hardware, 47

binary, 139, 336

binary adder, 354

binary addition, 344

binary arithmetic, 344

binary coded decimal, 342

binary count, 54, 340

binary counter, 373

binary digit, 340

binary division, 346

binary multiplication, 346

binary subtraction, 345

binary to decimal conversion, 341

binary to hexadecimal conversion, 342

BIOS - see Basic Input/Output System

bit - see binary digit

bit test & skip instructions, 76

block diagram, 5, 47, 165

BORENn configuration bit, 136

branch, 30

breadboard, 207

breakpoints, 84

browser, 5

brushless motor, 234

BSF instruction, 69

BTFSC instruction, 76

BTFSS instruction, 76

buffer, 368

bus, 8

bus controller, 8

byte, 340

C

C - see Carry flag

‘C’ programming language, 66, 304

call, 34, 42, 77, 127

CALL instruction, 69, 77, 98, 140

CAN - see Controller Area Network

Capture/Compare/PWM, 275

capture mode, 275

Carry flag, 32, 36, 102

CCP - see Capture/Compare/PWM

Central Processing Unit, 7, 16

character set, 12, 139, 343

chip select, 378

circuit design, 397

circuit simulation, 402

CISC - see Complex Instruction Set

Computer

clear bit operation, 35

clear register operation, 35

CLKIN pin, 46

CLKOUT pin, 46, 109

clock, 14, 31, 86, 95

clock type, 129

clock cycle, 109

clock speed, 272

closed loop control, 234, 240

CLRF instruction, 69

CLRW instruction, 69, 86

CLRWDT instruction, 69, 131

CMOS - see Complementary Metal Oxide

Semiconductor

code protection, 87, 132, 136

COF file - see linker output file

column weight, 336

COM port, 24

combinational logic, 353

COMF instruction, 69

command line interface, 5

comments, 58, 72

comparator, 147

compare mode, 147, 275

complement operation, 35

Complementary Metal Oxide Semiconductor,

350

Complex Instruction Set Computer, 7

component pin-out, 407

conditional jump/branch, 32, 34, 40

CONFIG directive, 135

configuration word, 83, 132

control operations, 34

control system design, 329

432 Index

control technologies, 319

Controller Area Network bus, 282

counter mode, 111

counter/timer, 109, 147, 373

counter/timer prescaler, 111

CP configuration bit, 136

CPD configuration bit, 136

CPU - see Central Processing Unit

CR clock, 49

CR-ADC conversion, 385

CPU system operation, 376

crystal oscillator, 130

current driver, 361

D

data bus, 14, 377

data conversion, 10

data direction register, 32

data input, 11, 360

data latch, 358, 361

data memory, 271

data output, 12

data processing, 11, 97

data register, 31

data sheets, 28

data storage, 11

data table, 140

DC - see Digit Carry flag

dc motor, 163

debugging, 182

DECF instruction, 69

DECFSZ instruction, 69, 76

decimal, 139, 336

decimal to binary conversion,

341

decision symbol, 172

decoder, 367

decrement operation, 35

decrement & skip, 76

delay routine, 41, 43, 117

delimiter, 58

demo program ASD1, 132

demo program BELL1, 231

demo program BIN1, 52

demo program BIN2, 57

demo program BIN3, 68

demo program BIN4, 72

demo program BIN5, 109

demo program BUZZ1, 216

demo program CLS2, 249

demo program DCM1, 241

demo program DICE1, 217

demo program GEN1, 225

demo program GIT1, 231

demo program HEX1, 223

demo program HOB1, 255

demo program INT1, 117

demo program INX1, 124

demo program LPC1, 148

demo program MESS1, 225

demo program MET1, 230

demo program POS2, 241

demo program REACT1, 225

demo program SCALE1, 221

demo program SEC1, 225

demo program TAB1, 141

demo program TEMCON1, 293

demo program TIM1, 112

demultiplexer, 368

design specification, 163

detail flowchart, 169, 175

development system, 4, 144

Digit Carry flag, 102

digital camera, 17

digitial devices, 349

DIL - see Dual In-Line

DIMM - see Dual In-line Memory

Module

DIP switch, 211

DIZI84 demo board, 211, 381

DIZI690 demo board, 397

DIZI applications, 223

drawing tools, 165

D-type latch, 358

Index 433

Dual In-Line IC, 46

Dual In-line Memory Module, 7

E

ECAD - see Electronic Computer-Aided Design

edge-triggered latch, 359

edit window, 186

EEADR register, 104, 124

EECON1 register, 104, 124

EECON2 register, 104, 124

EEDATA register, 104, 124

EEIE - see EEPROM Write Interrupt Enable

EEIF - see EEPROM Write Interrupt Flag

EEPROM - see Electrically Erasable Read-Only

Memory

EEPROM Write Interrupt Enable bit, 103, 116

EEPROM Write Interrupt Flag,

116

Electrically Erasable Read-Only Memory, 124,

265, 387

electromechanical control, 320

Electronic Computer-Aided Design, 25

encoder, 367

END directive, 56, 77, 138

ENDM directive, 137

EPROM - see Erasable Programmable Read-Only

Memory

EQU directive, 57, 137

Erasable Programmable Read-Only Memory,

312

ERR file - see error file

error file, 65, 78

error message, 79, 183

Ethernet interface, 283

Excellon drill file, 413

execution cycle, 16

F

fatal error, 82

FCMEN configuration bit, 136

FET - see Field Effect Transistor

FET logic, 350

FET output, 287

Field Effect Transistor, 11, 166, 350

file registers, 98

file register indirect addressing, 124

File Select Register, 104, 124

firmware, 24

flash ROM, 23, 264

flip-flop, 358

Flexible Manufacturing System, 326

floating point numbers, 347

flowcharts, 13, 18, 67, 117, 168

flowchart conversion, 175

flowchart structure, 117, 172

flowchart symbols, 67, 169

FOSCn configuration bits, 136

frequency divider, 54, 112

FSR - see File Select register

full adder, 354

G

Galaad software, 413

General Purpose Registers, 28, 52, 98, 104

Gerber file, 411

GIE - see Global Interrupt Enable bit

Global Interrupt Enable bit, 103, 115

GOTO, 38, 76, 98, 127

GOTO instruction, 69

GPR - see General Purpose Register

greenhouse simulator, 293

H

hard disk, 10

hardware construction, 203

hardware design, 165, 202

hardware prototyping, 202

hardware testing, 152, 198

hardware timers, 266

Harvard architecture, 28, 96, 264

header file, 179

hexadecimal, 139, 337

434 Index

hexadecimal to decimal conversion, 342

HEX file - see machine code file

high impedance state, 361

hiZ - see high impedance state

hobby servo, 254

HS clock, 130

I

I2C - see Inter-Integrated Circuit

I/O - see input/output

IC - see Integrated Circuit

ICD - see In-Circuit Debugging

ICD2/3 module, 25, 144, 155

ICE - see In-Circuit Emulator

ICSP - see In-Circuit Serial Programming

IDE - see Integrated Development Environment

INCF instruction, 69

INCFSZ instruction, 69

In-Circuit Debugging, 25, 144, 267

In-Circuit Emulator, 157

In-Circuit Serial Programming, 25, 87, 144, 267

In-Circuit Debugging, 87, 155

INCLUDE directive, 137

increment operation, 35

increment & skip, 76

incremental encoder, 234

INDF - see Indirect File register

indirect addressing, 124

Indirect File register, 124

IESO configuration bit, 136

INI file - see initialisation file

initialisation file, 137

input/output, 11, 14

input/output symbol, 172

input simulation, 83

instruction, 29

instruction decoder, 30

instruction execution, 97

instruction format, 97

instruction register, 28, 30

instruction set, 68

instruction timing, 109

INTCON - see Interrupt Control Register

INTE - see RB0 Interrupt Enable

INTEDG - see Interrupt Edge Select bit

Intel 8051 MCU, 312

Inter-Integrated Circuit bus, 280

INTF - see RB0 Interrupt Flag

Integrated Circuit packaging, 273

Integrated Development Environment, 25

Intel CPUs, 7

interactive debugging, 194

internal architecture, 28

internal data bus, 30

internal oscillator, 130, 272

Internet, 5

interrupts, 15, 30, 115, 266

Interrupt Control Register, 103, 111,

115

interupt demo program INT1, 117

Interrupt Edge Select bit, 103, 116

interrupt executuion, 115

interrupt flag, 115

Interrupt Service Routine, 31, 115

interrupt vector, 30, 117

interrupt setup, 115

interrupt sources, 115

INTF - see RB0 Interrupt Flag

IORLW instruction, 69

IORWF instruction, 69

ISIS schematic capture, 397

ISIS schematic, 17, 194

ISR - see Interrupt Service Routine

J

jump, 15, 38, 98

jump conditionally, 40

jump to subroutine, 42

jump unconditionally, 38

K

keyboard, 11

keypad, 17, 292, 367

Index 435

L

Labcenter ISIS, 397

Labcenter ARES, 397

label, 38, 57

label equate, 74

ladder logic, 323

LAN - see Local Area Network

laptop, 5

Last In, First Out, 30

latch, 357

Least Significant Bit, 337

LED - see Light Emitting Diode

LED output, 361

LIFO - see Last In, First Out

Light Emitting Diode, 17

LIN - see Local Interconnect Network

linker output file, 65

LIST directive, 136

list file, 22, 58, 65, 79

literal, 30

Local Area Network, 5

Local Interconnect Network, 282

LOCK application, 388

logic analyzer, 82, 188

logic gates, 352

logic operation, 34

logical errors, 184

LS clock, 130

LSB - see Least Significant Bit

LSI - see Large Scale Integrated circuit

LST file - see list file

M

machine code, 25, 53

machine code file, 65

machine control, 320

MACRO directive, 137

mark/space ratio, 163

mask ROM, 29

Master Clear, 46, 95, 131

MCLR - see Master Clear

MCLRE configuration bit, 136

MCLR pin, 46

MCU - see microcontroller unit

mechatronics, 17

mechatronics board, 25, 254

memory, 371

memory address decoding, 14, 372, 378

memory capacity, 30, 372

memory map, 14, 378

memory page, 97

memory usage, 79

messages, 183

microcontroller, 4, 17, 324

microcontroller unit, 4

microcontroller block diagram, 28

microprocessor, 7

microprocessor system, 13, 315

mixed mode simulation, 194

mnemonic, 34, 55

modem, 5

modular system, 7

monitor, 5

Most Significant Bit, 337

MOT1 circuit, 166

MOT2 board, 236

motherboard, 7

motor applications, 233

motor control, 163, 234

motor drive, 238

Motorola 68000 CPU, 315

mouse, 5, 11

move instructions, 34

move operation, 36, 37

MOVF instruction, 69

MOVLW instruction, 69

MOVWF instruction, 69

MPASM/MPASMWIN assembler,

64, 78

MPLAB IDE, 25, 62, 68, 78

MPSIM simulator, 64, 185

MSB - see Most Significant Bit

MSR - see mark/space ratio

436 Index

multiple interrupts, 120

multiplexer, 368

N

NAND gate, 351

network, 5

NOP instruction, 69, 109

NOR gate, 352

number systems, 335

numerical conversion, 341

numerical types, 139

O

op-code - see operation code

open loop control, 234, 239

operand, 16, 29

operating system, 5, 9

operation code, 29, 34

OPTION instruction, 69

OPTION register, 102

OR gate, 352

OR operation, 36, 38

ORG directive, 136

oscillator type, 129

OSCCON register, 148

OSCTUNE register, 130

outline flowchart, 168

output frequency, 85

output period, 85

P

package assignment, 407

PAL - see Programmable Array Logic

parallel data, 11, 17, 362

PC - see Personal Computer

PC - see Program Counter

PC architecture, 7

PC hardware, 6

PC main unit, 6

PC memory, 9

PC motherboard, 7

PCB - see Printed Circuit Board

PCB 3D view, 205

PCB design, 406

PCB fabrication, 413

PCB layout, 204, 409

PCB mill, 207, 413

PCB visualisation, 411

PCI bus, 7

PCL - see Program Counter Low register

PCL write, 129

PCLATH - see Program Counter Latch High

register

PD - see Power Down flag

PDF - see Portable Document Format

performance specification, 182

period, 55, 85

peripheral interfaces, 275

Percival software, 413

Personal Computer, 4-13

PIC 12F675, 304

PIC 16F690, 18, 146, 236

PIC 16F818, 303

PIC 16F84A, 28, 46

PIC 16F84A block diagram, 95, 380

PIC 16F84A instruction set, 69

PIC 16F887, 286

PIC 16FXXX internal architecture, 94

PIC 18F4580, 305

PIC features, 262

PIC MCU operation, 379

PIC registers, 98, 371

PIC selection, 268

PICDEM demo boards, 153

pick devices, 399

PICkit2/3, 88, 144, 145, 152, 155

PICSTART programmer, 24, 87

piezo buzzer, 211

pin-out, 46

pipelining, 31, 96, 109

pixels, 12

PLC - see Programmable Logic Controller

PLD - see Programmable Logic Device

ports, 31

Index 437

Port B Change Interrupt Enable, 103

Port B Change Interrupt Flag, 103, 116

Port B Pull-Up enable, 103

port initialisation, 75

port registers, 31

Portable Document Format, 13

PORTA, 46, 100

PORTA data direction register, 51, 101

PORTA data register, 52, 100

PORTB, 46

PORTB data direction register, 51, 101

PORTB data register, 51, 101

position control, 234, 240

position controller, 253

Power Down flag, 102

power consumption, 272, 349

power supply, 349

power-up reset, 31, 266

Power-up Timer, 86, 130, 266

prescaler, 111

Prescaler Assignment bit, 103

Prescaler rate Select bits, 103

Printed Circuit Board, 204

printer, 12

processor control, 376

process symbol, 171

PROCESSOR directive, 135

production systems, 325

program algorithm, 67

program analysis, 74

program assembly, 78

Program BIN1, 52

program comments, 179

program control, 38

program counter, 16, 30, 51, 96, 99

Program Counter Latch High register, 51, 96, 126

Program Counter Low register, 51

program debugging, 182

program design, 162

program development, 62

program downloading, 85

program editing, 67, 401

program errors, 182

program execution, 15, 28, 50, 54, 96

program header, 58, 179

program implementation, 174

program instruction, 15

program jump, 76, 127

program labels, 38, 57

program layout, 58, 70

program memory, 28, 29, 51, 96, 271

program memory window, 79

program operations, 33

program outline, 173

program simulation, 82

program start address, 51

program structure, 72

program testing, 88, 186

program timing, 109

Programmable Logic Controller, 320

Programmable Logic Device, 14, 378

programmer/debugger, 87

programming, 24

programming connector, 18

programming unit/module, 19, 85

project files, 183

Proteus VSM, 12, 19, 78, 185, 397

PS0, PS1, PS2 - see Prescaler rate Select bits

PSA - see Prescaler Assignment bit

pseudocode, 173

pseudo-instructions, 138

pull-up resistor, 48

pulse count, 109, 246

pulse period, 109, 246

Pulse Width Modulation, 163, 234

PWM - see Pulse Width Modulation

PWM mode, 147, 276

PWM motor control, 247

PWRT - see Power-up Timer

PWRTE configuration bit, 136

R

RAM - see Read-And-write Memory

RAM block, 28

438 Index

RAn - see Port A

RB0 Interrupt Enable, 103, 116

RB0 Interrupt Flag, 103, 116

RBIE - see Port B Interrupt Enable, 103,

116

RBIF - see Port B Interrupt Flag, 103,

116

RBn - see Port B

RBPU - see Port B Pull-Up enable

RC clock, 86

Read Only Memory, 9

read/write, 378

Read-And-write Memory, 7, 9, 11, 265

Real ICE, 155

Reduced Instruction Set Computer, 7, 264

register bank selection, 52, 123

register bank select bits, 102

register block, 28

register display, 84

register operations, 34, 122

register pair operations, 36

register processing, 28

relative cost of PICs, 274

relay control, 320

relay output, 287

reset, 31, 95

result destination, 122

RETFIE - see Return From Interrupt

RETFIE instruction, 69

RETLW instruction, 69, 140

Return From Interrupt, 117

RETURN instruction, 69, 77, 98

RISC - see Reduced Instruction Set Computer

RLF instruction, 69

robot, 234

ROM - see Read Only Memory

rotate operation, 35

rotary encoder, 238

RP0, RP1 - see register bank select bits

RRF instruction, 69

RS232 protocol, 24, 278

run-time errors, 184

S

SCADA system, 327

scheduled inputs, 190

schematic edit, 398

screen, 12

SD card, 24

sequential logic, 357

serial data, 11, 374

Serial Peripheral Interface, 280

serial port, 15, 85, 148, 278

serial register, 374

servo, 236, 239, 254

set bit operation, 35

seven segment display, 17, 292

SFR - see Special Function Register

SFR window, 186

shaft encoder, 236

shift register, 278, 374

simple data system, 361

simulation, 82, 185

simulator clock, 84

simulator inputs, 187

simulation test, 82, 151

single step, 82

SLEEP instruction, 69, 131

sleep mode, 131, 267

software design, 167

sound output, 211, 292

source code, 19, 176

source code (ASM) file, 69

source code header, 72

source code debugging, 185

Special Function Register, 28, 32, 99, 265

specification, 46, 65

speed control, 234, 240, 243

SPI - see Serial Peripheral Interface

stack, 30, 77, 117, 265

STATUS register, 32, 102

step into, 84

step out, 84

step over, 84

stopwatch, 84

Index 439

stripboard, 208

stripboard circuit design, 381

stripboard construction, 383

structure chart, 173

SUBLW instruction, 69

subroutine, 42, 72

subroutine call, 74, 77

subtract operation, 36, 37

SUBWF instruction, 69

successive approximation, 278

support chips, 14

SWAPF instruction, 69

switch debouncing, 382

switch inputs, 48, 360

symbol table, 79

syntax, 70

syntax errors, 78, 182

system modelling, 12

T

TEMCON hardware, 293

TEMCON2 application, 286

temperature controllers, 286

temperature sensors, 288

terminal symbol, 169

test schedule, 88, 191

text editor, 4, 67

text file, 25

time out, 102, 111

Time Out flag, 102

timer, 109

timer demo program TIM1, 112

timer interrupt, 111

timer mode, 112

timer overflow, 115

timer period, 112

timer preload, 112

Timer Zero, 111

Timer Zero Clock Input, 102, 111

Timer Zero Clock Source select bit, 103

Timer Zero Interrupt Enable, 103, 116

Timer Zero Interrupt Flag, 103, 111, 116

Timer Zero register, 102, 111

Timer Zero Source Edge select bit, 103

timing & control, 31

timing diagram, 359

TMR0 - see Timer Zero register

T0 - see Time Out Flag

T0CKI - see Timer Zero Clock Input

T0CS - see Timer Zero Clock Source select bit

T0IE - see Timer Zero Interrupt Enable

T0IF - see Timer Zero Interrupt Flag

T0SE - see Timer Zero Source Edge select bit

trace window, 188

Transistor-Transistor Logic, 349

transparent latch, 359

TRIS instruction, 69, 75

TRISA register, 52

TRISB register, 51

Tri-State Gate, 360

TSG - see Tri-State Gate

TTL - see Transistor-Transistor Logic

T-type bistable, 358

U

unconditional jump, 34, 38

Universal Serial Bus, 5, 283

Universal Syncronous/Asynchronous Receiver

Transmitter, 278

USART - see Universal Syncronous/Asynchro-

nous Receiver Transmitter

USB - see Universal Serial Bus

V

Vdd pin, 46

volatile memory, 9

Vss pin, 46

W

W - see Working register

WAN - see Wide Area Network

warning, 183

watch window, 84, 187

440 Index

Watchdog Timer, 86, 131

WDT - see WatchDog Timer

WDTE configuration bit, 136

word-processor, 10, 13

Working Register, 29, 30, 51, 265

X

XOR gate, 352

XOR operation, 36, 38

XORLW instruction, 69

XORWF instruction, 69

XT - see crystal oscillator

XT clock, 86, 130

XTAL - see crystal oscillator

Z

Z - see Zero flag

zero flag, 32, 36, 102

Zero Insertion Force socket, 24, 85

ZIF socket - see Zero Insertion Force socket

Index 441

	PIC Microcontrollers: An Introduction to Microelectronics
	Copyright
	Preface to the Third Edition
	Introduction to the Third Edition
	1 Computer Systems
	1.1.Personal Computer System
	1.1.1. PC Hardware
	1.1.2. PC Motherboard
	1.1.3. PC Memory

	1.2. Word-Processor Operation
	1.2.1. Starting the Computer
	1.2.2. Starting the Application
	1.2.3. Data Input
	1.2.4. Data Storage
	1.2.5. Data Processing
	1.2.6. Data Output

	1.3. Microprocessor Systems
	1.3.1. System Operation
	1.3.2. Program Execution
	1.3.3. Execution Cycle

	1.4. Microcontroller Applications
	1.4.1. Microcontroller Application Design
	1.4.2. Programming a Microcontroller

	Questions 1

	2 Microcontroller Operation
	2.1. Microcontroller Architecture
	2.1.1. Program Memory
	2.1.2. Program Counter
	2.1.3. Instruction Register and Decoder
	2.1.4. Timing and Control
	2.1.5. Arithmetic and Logic Unit
	2.1.6. Port Registers
	2.1.7. Special Function Registers

	2.2. Program Operations
	2.2.1. Single Register Operations
	2.2.2. Register Pair Operations
	Move
	Arithmetic
	Logic

	2.2.3. Program Control
	Jump
	Conditional Jump
	Subroutine

	Questions 2

	3 A Simple PIC Application
	3.1. Hardware Design
	3.1.1. PIC 16F84A Pin-Out
	3.1.2. BIN Hardware Block Diagram
	3.1.3. BIN Circuit Operation

	3.2. Program Execution
	3.2.1. Program Memory
	3.2.2. Program Counter, PCL: File Register 02
	3.2.3. Working Register, W
	3.2.4. Port B Data Register, PORTB: File Register 06
	3.2.5. Port A Data Register, PORTA: File Register 05
	3.2.6. General Purpose Register 1, GPR1: File Register 0C
	3.2.7. Bank 1 Registers

	3.3. Program BIN1
	3.3.1. Program Analysis
	3.3.2. Program Execution

	3.4. Assembly Language
	3.4.1. Mnemonics
	3.4.2. Assembly
	3.4.3. Labels
	3.4.4. Layout and Comments

	Questions 3

	4.1. Program Development
	4.2. Program Design
	4.2.1. Application Specification

	4.3. Program Editing
	4.4. Program Structure
	4.5. Program Analysis
	4.5.3. Program Jumps
	4.5.4. Bit Test and Skip if Set/Clear
	4.5.5. Decrement/Increment Register and Skip If Zero
	4.5.6. Subroutine Call and Return
	4.5.7. End of Source Code

	4.6. Program Assembly
	4.6.1. Syntax Errors
	4.6.2. List File

	4.7. Program Simulation
	4.8. Program Downloading
	4.9. Program Testing
	Questions 4
	5 PIC Architecture
	5.1. Block Diagram
	5.1.1. Clock and Reset
	5.1.2. Harvard Architecture

	5.2. Program Execution
	5.2.1. Program Memory
	5.2.2. Instruction Execution
	5.2.3. Data Processing
	5.2.4. Jump Instructions

	5.3. File Register Set
	5.3.1. Special Function Registers
	5.3.1. Other SFRs

	5.3.2. General Purpose Registers

	Questions 5

	6.1. Program Timing
	6.2. Hardware Counter/Timer
	6.3. Interrupts
	6.4. Register Operations
	6.5. Special Features
	6.6. Assembler Directives
	6.7. Pseudo-Instructions
	6.8. Numerical Types
	6.9. Data Table
	Questions 6
	7 PIC Development Systems
	7.1. In-Circuit Programming
	7.2. PICkit2 Demo System
	7.3. PIC 16F690 Chip
	7.4. Test Program
	7.5. Analogue Input
	7.6. Simulation Test
	7.7. Hardware Test
	7.8. Other PIC Demo Kits
	44/28-Pin Demo Boards
	PICDEM2 Plus Demo Board
	PICDEM Lab Development Kit
	PICDEM System Management Kit

	7.9. In-Circuit Debugging
	7.10. In-Circuit Emulation
	Questions 7

	8 Application Design
	8.1. Design Specification
	8.2. Hardware Design
	8.2.1. Block Diagram
	8.2.2. Hardware Implementation

	8.3. Software Design
	8.3.1. MOT1 Outline Flowchart
	8.3.2. MOT1 Detail Flowchart
	8.3.3. Flowchart Symbols
	Terminals
	Processes
	Input/Output
	Decisions

	8.3.4. Flowchart Structure
	8.3.5. Structure Chart
	8.3.6. Pseudocode

	8.4. Program Implementation
	8.4.1. Flowchart Conversion
	8.4.2. MOT1 Source Code

	Questions 8

	9 Program Debugging
	9.1. Syntax Errors
	9.2. Logical Errors
	9.2.1. Simulation
	9.2.2. Program Testing in MPLAB
	Edit Window Open/New File Buttons
	Special Function Register Window View Menu
	Watch Window View Menu
	Simulator Stimulus Debugger Menu
	Stopwatch Debugger Menu
	Trace Window View Menu
	Logic Analyzer View Menu

	9.2.3. Setting up MPSIM
	9.2.4. Testing with Asynchronous Inputs
	9.2.5. Testing with Scheduled Inputs

	9.3. Test Schedule
	9.3.1. Typical Logical Errors
	9.3.2. Limitations of Software Simulation
	9.3.3. Hardware Testing

	9.4. Interactive Debugging
	9.4.1. ISIS Schematic
	9.4.2. VSM Debugging

	9.5. Hardware Testing
	Questions 9

	10.1. Hardware Design
	10.2. Hardware Construction
	10.2.1. Printed Circuit Board
	10.2.2. Breadboard
	10.2.3. Stripboard

	10.3. Dizi84 Board Design
	10.3.1. Hardware Specification
	10.3.2. Hardware Implementation
	10.3.3. Implementation

	10.4. Dizi84 Applications
	10.4.4. DIZI Application Outlines
	HEX1 Hex Converter
	MESS1 Message Display
	SEC1 Second Counter
	REACT1 Reaction Timer
	GEN1 AF Generator
	MET1 Metronome
	BELL1 Doorbell
	GIT1 Guitar Tuner

	Questions 10
	11.1. Motor Control
	11.2. Motor Application Board MOT2
	Motor Drive
	Output Sensor
	Switched Inputs
	Analogue Input

	11.3. Motor Control Methods
	11.3.1. Open Loop Control
	11.3.2. Closed Loop Control

	11.4. Test Programs for MOT2
	11.4.1. Direction Test

	11.5. Closed Loop Speed Control
	11.5.1. Counting Pulses
	11.5.2. Measuring Pulse Period
	11.5.3. PWM Motor Control
	11.5.4. Program Simulation
	11.5.5. Hardware Testing
	11.5.6. Evaluation and Improvements

	11.6. Motor Control Modules
	11.6.1. Serial Input Position Controller
	11.6.2. Microchip Mechatronics Kit
	11.6.3. Hobby Servo

	Questions 11
	12.1. Common Features
	12.1.1. Harvard Architecture
	12.1.10. Hardware Timers
	12.1.11. Sleep Mode
	12.1.12. In-Circuit Programming
	12.1.13. In-Circuit Debugging
	12.1.14. Power PICs

	12.2. Device Selection
	12.2.1. Input/Output Pins
	12.2.2. Program Memory
	12.2.3. Data Memory
	12.2.4. Internal Oscillators
	12.2.5. Clock Speed

	12.3. Peripheral Interfaces
	12.4. Serial Ports
	Questions 12
	13 More PIC Applications
	13.1. TEMCON2 Temperature Controller
	13.1.1. System Specification
	13.1.2. Input/Output Allocation
	13.1.3. Circuit Description
	Analogue Inputs
	Outputs
	Keypad
	Display
	Other Interfaces

	13.1.4. Hardware Development
	13.1.5. Temperature Controller Test Program
	13.1.6. Application Enhancements

	13.2. Simplified Temperature Controllers
	13.2.1. 16F818 Temperature Controller
	13.2.2. 12F675 Temperature Controller

	13.3. PIC C Programming
	13.3.1. Comparison of 16 and 18 Series PICs
	13.3.2. PIC C Programming
	13.3.3. Advantages of C Programming

	Questions 13

	14 More Control Systems
	14.1. Other Microcontrollers
	14.1.1. Intel® 8051 Microcontroller
	14.1.2. Atmel® AVR Microcontrollers
	14.1.3. Other Microcontrollers

	14.2. Microprocessor Systems
	14.2.1. M68000 Hardware
	14.2.2. M68000 Program
	Comments

	14.3. Control Technologies
	14.3.1. Electromechanical Control
	14.3.2. Relay Control
	14.3.3. PLC Control
	14.3.4. Microcontroller
	14.3.5. Production Systems

	14.4. Control System Design
	Questions 14

	Appendix A Binary Numbers
	A.1. Number Systems
	A.1.1. Decimal Base 10
	A.1.2. Binary Base 2
	A.1.3. Hexadecimal Base 16
	A.1.4. Counting
	A.1.5. Bits, Bytes and Words

	A.2. Numerical Conversion
	A.2.1. Binary to Decimal
	A.2.2. Decimal to Binary
	A.2.3. Binary and Hex
	A.2.4. BCD
	A.2.5. ASCII

	A.3. Binary Arithmetic
	A.3.1. Addition
	A.3.2. Subtraction
	A.3.3. Multiplication and Division
	A.3.4. Floating Point Numbers

	Appendix B Microelectronic Devices
	B.1. Digital Devices
	B.1.1. FET Logic
	B.1.2. Logic Gates

	B.2. Combinational Logic
	B.2.1. Binary Addition
	B.2.2. Binary Adder Circuit
	B.2.3. Full Adder
	B.2.4. Four-Bit Adder

	B.3. Sequential Logic
	B.3.1. Basic Latch
	B.3.2. Data Latch

	B.4. Data Devices
	B.4.1. Data Input Switch
	B.4.2. Tri-State Gate
	B.4.3. Data Latch
	B.4.4. LED Data Display

	B.5. Simple Data System
	B.6. Four-Bit Data System

	Appendix C Digital Systems
	C.1. Encoder and Decoder
	C.2. Multiplexer, Demultiplexer and Buffer
	C.3. Registers and Memory
	C.4. Memory Address Decoding
	C.5. Counters and Timers
	C.6. Serial and Shift Registers
	C.7. Arithmetic and Logic Unit
	C.8. Processor Control
	C.9. CPU System Operation
	C.10. PIC16 MCU Operation

	Appendix D Dizi84DemoBoard
	D.1. Circuit Design
	D.2. Construction and Testing
	D.3. Analogue Conversion
	D.4. EEPROM Storage
	D.5. LOCK Application

	Appendix E Dizi690 Demo Board
	E.1. Circuit Design
	E.2. Schematic Edit
	E.3. Program Edit
	E.4. Circuit Simulation
	E.5. PCB Design
	E.6. Package Assignment
	E.7. Layout Edit
	E.8. Output Files
	E.9. PCB Fabrication

	Answers to Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	Links and Acknowledgements
	 Links
	 By the same author
	 Acknowledgements

	Demo Files
	 BINAPPS∗
	 GENAPPS∗
	 DIZI84∗
	 MOTORS
	 ADVAPPS

	Index
	0-9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

